

65

chapter provides the acknowledgement of the document that the document is still alive with

or without the existence of this chapter, so deleting this chapter does not affect the entire

document. In Figure 8, resource1 or document is contributed of resource2, resource3 and

resource4, which these are chapters of the document. Relationship type between resource1

and resource2, as well as resource1 and resource4 are reverse composition because resource2

and resource4 are the fundamental chapters. Resource3 and resource1 are connected under

the relationship type reverse aggregation, which means resource 3 is not the fundamental

chapter.

Figure 8- compound resource

● Attributes are attached to an entity to define the entity uniquely, so that entity can be

distinguished in the social network. The following explains definition of attributes in each

class.

o S, O, R, A, and E are subjects, objects, relationships, actions and environmental

conditions respectively. In our model, subject may be accessing user, controlling user, or

supervisor. Object may be target user or target resource.

o SAk (1<= k <= K), OAl (1<= l <= L), RAm (1<= m <= M), AAp (1<= p <= P), EAn (1<= n

<= N) are defined attributes for subjects, objects, relationships, actions, and

66

environmental conditions respectively. The number of attributes attached to each entity

may change during the life time of the social network.

o A represents the set of attributes for each entity, and Ai represents one attribute of each

set. Each attribute encompasses the name and the value of the attribute, like: Ai = (Ni: Vi).

o Attr(S), Attr(O), Attr(R), Attr(A), and Attr(E) are set of attributes assigned with subject,

object, relationship, action, and environmental condition respectively.

Attr(S) ⊆ SA1x SA2x …… x SAk

Attr(O) ⊆ OA1 x OA2 x …… x OAl

Attr(R) ⊆ RA1 x RA2 x …… x RAm

Attr(A) ⊆ AA1 x AA2 x …… x AAp

Attr(E) ⊆ EA1 x EA2 x …… x EAn

● Environment condition includes data generated by a social network. This data, such as time

and location, is changed rapidly related to conditions existing in the social network.

Environment condition provides information about the current date and time as well as the

location. Table15 shows environment information.

Type Value

Date & Time Current date and time

Location Current location

Table 15 - Environment condition

● Actions representing operations (e.g. read, or edit) or accesses are initiated by the accessing

user. As mentioned previously, an action is an entity of the proposed model and is almost

initiated by a subject in the social network. The following table presents the actions covered

by the proposed model.

67

Action Description

Access Accessing to a target user

Read Reading information or resource

Write or Edit Writing or editing information or resource

Delete Deleting information or resource

Create Adding new information’s item or adding a part of resource associated

with a target resource

Copy Coping information or resource

Execute objects Performing a function against a target resource

Grant permission

to someone else

to run an

operation on an

object

Accessing user is allowed to give permission to another accessing user

in order to perform an operation on a particular object

Table 16 - Operations

● Different connections among the elements in Figure 3 may represent relationship, access

request, attached policy, and attached attribute.

o Relationship which has different types may connect supervisor to accessing user,

supervisor to target user, supervisor to controlling user, supervisor to target resource,

accessing user to target user, accessing user to controlling user, controlling user to target

resource or repository, and target user to repository.

o Access request is created when an accessing user creates an inquiry to access a target user

or to run an action on a target resource.

o Attached policy connects policies to an entity such as target user, target resource, or

supervisor.

68

o Attached attribute connects attributes to an entity such as accessing user, target user, or

relationship.

As mentioned before, five entities such as subject, object, action, relationship, and environmental

condition have their own properties which store attributes; the first two are able to store rules in

an associated repository. Attributes offer individual information of entity such as name, and

unique ID, and rules are the transformed statements of policies defined by the subject or the

object. It is required to define policy specification language for transforming policies to rules,

accordingly. This model, unlike the model introduced by Cheng at al. [83], consists of subject-

to-subject, object-to-object, and subject-to-object relationships in the social network, although

this capture uses subject-to-object relationships for authorization purpose.

3.6 Graph Model

As shown in Figure 3, the social network can be indicated as a directed labeled graph.

Generally, a graph is a collection of vertices which are connected by edges. There are two types

of graphs, directed graphs and undirected graphs. Edges in a directed graph have arrows and

each arrow only goes in one direction. Edges in an undirected graph does not have arrows and

does not present any specific direction. In other words, a graph is a general data structure for

storing related data which nodes denote objects or subjects and edges represent connections

among nodes.

The graph of a social network may be modeled as a G = <N, E, Ʃ, W> where

● N is union of a finite set of subjects (S) and a finite set of objects (O) in the system,

represented as nodes on the graph. Each node carries one or more attributes.

● Ʃ is a finite set of relationship types, represented as labels for connection on the graph.

69

● W is a number that may be attached to a relationship connecting a subject to another subject

or object. This number shows a percentage a user can trust other users to give them a

particular permission on the social network.

● E ⊆N × N× Ʃ × W denotes graph edges and may be a set of existing connection, like:

subject→ subject, subject→object, and object→object relationships.

Figure 9 represents a graph for a model which has been defined based on the ABAC model

and the PBAC model.

Figure 9 –Graph Model

3.7 Policy-Based Attribute Access Control Method

Before starting to describe the PBAAC method, considering an example which shows how

someone can sign up, be a member of a group, and make a connection with other users on the

social network would be helpful. Before starting the example, it’s worth mentioning that for

extracting information from the graph, we use several functions which will be described in

chapter 6.

Example: if one signs up to a social network, one fills out a form and enters personal

information which is required for the social network’s authentication. Afterwards, the social

network creates a credential for that user. According to the graph concept that we use to store the

entities, behind the scene, the social network creates a node for the new user and attaches one or

70

more properties that keep data of attributes, such as first name, last name, and date of birth. The

user can define a membership in an existing group or create a new group just by choosing a name

for the new group and defining oneself as a member of that group. Technically, a group of nodes

is defined by a label which is considered as an attribute of the entity. Labels are used to classify

nodes. Later, we will show that labels may be used to define which groups and under which

circumstances they are allowed to do an operation on an object. Meanwhile, we define functions

determining who and under which conditions they are allowed to do an operation on an object.

As we mentioned before, in the proposed model we define a supervisor who has a direct

relationship with other entities in the social network. The following descriptions explain the

entire process of the proposed model.

Description 1: supervisor (SpUser) has a relationship as “HasMember” with other users such

as accessing user, target user, and controlling user on the social network (SN). The following

shows this:

∀ User ϵ SN, ∃ SpUser ϵ SN: SpUser -----:HasMember-----> User

Establishing a relationship among other users is possible and it is established when a user

sends a request to another user for creating a specific relationship type. If the receiver accepts the

request, the relationship will be established; otherwise that relationship will not be created. It is

obvious that several different relationships may connect a user with another user.

∃ User1, User2ϵ SN, ∃ r1 ϵ Relationship: User1 -----:ri-----> User2

For instance, two users might settle on a relationship as friend and as colleague.

Description 2: Users can establish a relationship with their own resources. As described

previously, there are three different relationship types between a user and associated resources,

like FullOwner, PartiallOwner, and CollectedBy. The following shows this definition:

71

∀ Resource ϵ Asset, ∃ User ϵ SN:

User ---------:FullOwner-----------> Resource ⋁ User ---------:PartiallOwner----------> Resource ⋁

User --------:CollectedBy--------> Resource

Asset is a set of resources existing in the social network. This means that all resources

existing on the social network belong to a group called asset.

Description 3: Resources belonging to a user are assets of the social network. Therefore, the

supervisor has a relation with resources. This relationship type is called “HasAsset”. The

following shows this definition:

∀ Resource ϵ Asset, ∃ User ϵ SN Resource € User, ∃ SpUser ϵ SN:

SpUser -----: HasAsset-----> Resource

Description 4: Environment condition has a relationship with the supervisor. This

relationship type is called “ControlledBy”. The following shows this definition:

∀ Environment Condition ϵ SN, ∃ SpUser ϵ SN:

SpUser -----:controlledBy-----> Environment Condition

Description 5: Resources existing in a social network and associated with a controlling user

may include other simple resources owned by other users or may be a simple resource owned by

just one user. Previously, we described these two types of resources. The following shows if a

resource composes of other simple resources: (assume there are n resources and m users in the

social network)

∃ res1, res2, …., resi, resn ϵ Assets, resn ∁ (res1⋀ res2⋀….⋀ resi),

∃ User1, User2, ….., Usermϵ SN, res1€ User1, res2€ User2………, resi € Userj, resn € Userm, i<=n-1,

j<=m-1

72

(resi -----------:RevAggregation-------------> resn ⋁ resi ------------:RevComposition------------> resn)

Types of relationships exist between object and subject were defined before. It is obvious

that the User can be supervisor, meaning, resn may have relationship with supervisor rather than

having relationship with an ordinary user.

Description 6: Users are able to define policies on behalf of their adjacent or trusted users.

Regarding the definition of adjacent and trusted users, they have at least one directed or

undirected relationship with the accessing user. If a directed connection exists between these two

sides, the user will be allowed to define policies to take control of information and resources

belonging to the adjacent or trusted user.

The supervisor defines general policies for the social network. The policies defined by the

supervisor should not conflict with the policies defined by other users. Also policies defined by a

user should not conflict with the policies defined by other users. As a matter of fact, if there are

conflicts between policies defined by various entities, the decision engine who collects all

policies contributing in an accessing request and generates the result is responsible to recognize

these conflicts and solves these conflicts. The proposed model defines an efficient function,

which is a part of the request engine, as solution for this problem. The function assigns a priority

to each rule which is transformed format of a policy. This priority identifies a rule having higher

priority overrides other rules having lower priority. This priority may be defined by timestamp or

by other criteria were defined before. By comparing data attached to each rule, a process of the

request engine choses the most appropriate rules for making decisions. Later in the request

engine section, this function will be comprehensively explained.

The accessing user generates an inquiry to do an action against information or resources that

are owned by another user. Using notation, the following shows this:

73

∃ Accessing user ϵ SN, Target user ϵ SN, Target resource ϵ Assets:

Accessing user ⊕ (Target user ⋁ Target resource)

This request may be accepted or rejected in terms of the target user or target resource access

control policies. Sometimes supervisor’s policies are included to compute whether or not giving

permission to requestors.

As explained before, several parameters such as user’s attribute, resource’s attribute, access

control policy, environment condition, adjacent and trusted users are used to determine who is

allowed to access a resource. Up to this point, all parameters required in the proposed model to

compute a received request will be defined.

Users define policies to protect their individual information and resources. All policies are

defined in the English language. In order to store these policies into the social network, these

policies must be transformed to a format, which is understandable, by the application and

working with that transformed format is much easier than working with the format of a policy

presenting in natural language. A transformation engine creates the simple format of those

policies and stores them as rules on the social network. Rules are stored in the properties of the

subject or object. The transformation engine will be covered in decision engine section of this

document.

Description 7: In order to define the adjacent user with a particular relationship type, an

algorithm has been defined to count the number of the specified relationship between the target

user or controlling user in one side and accessing user on the other side. The following shows

this:

Connections = ∑ ri , R={ ri | is a particular relationship type between source and target user,

or source and controlling user}

74

If number of connections is equal to the number determined the adjacent user which defined

by supervisor, then the destination user is the adjacent user of the source user. Figure 10 shows

an example; an adjacent user is one who has less than or equal to two connections with source

user. In this figure Alice is a source user, so Bob and John are the adjacent friend for Alice, but

Liz, Sue, and Ben are not.

Figure 10 – Adjacent user

For defining who the trusted user is, a weight has been assigned with each relationship. By

knowing the accessing user and the target user, or controlling user, the graph is traversed for all

paths connecting the accessing user to the target user or controlling user; for each acyclic path

the trust value will be computed. For making result and by following conservative approach, the

trust value of each path will be compared and the minimum value will be selected as result. The

following formula shows this:

valuep = ∏ ωi , W = {ωi | is a weight attached to each connection in a path}

result = min {valuep | p is a acyclic path connects source to destination}

The result identifies whether the destination user is a trusted user or not. Figure 11 shows all

paths existing between Hana and Al; each connection has its weight. With regards to this figure,

there are two paths between Hana and Al. The first path which starts from Hana and ends with

Al (Hana→Ted→Ava→Al) gives us the 72% trust and the second path which starts from Hana

and ends with Al (Hana→Pat→Al) gives us 16% trust. Due to following conservative approach

75

for defining the trusted user, by comparing two numbers, the result is 16% which tells us Hana

should not trust Al.

Figure 11 – trusted graph

3.8 Decision Engine

Decision engine is a principal part of the proposed model. As shown in Figure 12, the

decision engine is a process standing between subject (e.g. accessing user) and object (e.g. target

user or target resource). At first sight, the decision engine receives a policy or an inquiry as an

input and converts it into a well-formed format. If the received sentence is a policy, the decision

engine stores the output (i.e. rule) into a repository associated with the one who generates the

policy, otherwise the decision engine evaluates the request converted format of an inquiry, and

either accepts or rejects the request. The decision engine consists of two major engines, the

transformation engine and the request engine. The decision engine accomplishes its task through

the combination of transformation and request engines. Figure 12 provides a simple diagram of

the decision engine.

76

Figure 12 – Decision Engine

The transformation engine, as its name implies, uses natural language processing technique

to generate an appropriate and efficient format for representing a sentence provided in the

English language. An input sentence might be either a policy or an inquiry fed into the social

network by one who needs to protect associated resource(s) or to access other resource(s)

belonging to someone else. The appropriate format of the output generated by the transformation

engine is called well-formed format. If the input is a policy, the well-formed format is called

rule, and if the input is an inquiry, the well-formed format is called request. Under the

transformation engine section, the workflow and the whole process of this engine will be

explained thoroughly.

The request engine is a recipient of a request generated by the transformation engine. By

gathering pertinent knowledge, which is coming from rules and attributes attached to entities

interrelating with the request, the request engine evaluates the request and might be able to come

to a decision in order to either accept or reject the request. Under the request engine section,

more information of the entire process will be provided.

3.8.1 Transformation Engine

All policies enforcing access control and all inquiries representing request for accessing or

doing an operation on resources are fed into social networks in a natural language (e.g. English

language). Hence, by employing a natural language, users are able to define access control

77

policies that secure their assets, and they can generate inquiries to get permission to access a

resource belonging to other users. This facility empowers users to feed their commands into

social networks in a convenient way and enables users to protect their information and resources

from unauthorized access effortlessly. On the other hand, social networking software

applications cannot understand these commands. These commands are understandable by

software application, providing they will be transformed into a simple format which is called a

well-formed format.

In this work, the transformation engine converts a complex format into a well-formed format.

Due to consistency between the formats generated by the transformation engine and the general

definition of a well-formed format [89, 90]. It is possible to offer an appropriate notation for

describing rules and queries with this format. This newly generated format is remarkably

compatible with the syntactic structure of a policy or an inquiry. This means that words in a

policy or an inquiry are appearing with an order such as subject, verb, and object. The syntactic

order of elements existing in a rule or a request is as subject, action, and object as well. We

assume that verbs in a policy or an inquiry and actions in a rule or a request are the same.

Regarding the well-formed format, rules or requests are generated under the following format,

which is a list with four elements: (subject, action, object, condition).

This format may be presented by a tree structure where root presents the action. The leaves

represent the subject, the object, and the condition of the expression. The subject may represent

the accessing user, the adjacent user, or the trustworthy user, and the object may represent the

target user or the target resource. Target resource usually is followed by corresponding

controlling user. The condition represents the environmental condition. Figure 13 shows this

tree.

78

Figure 13 – Rule Tree

Due to the complexity of a policy, subject and object of a rule could be a well-formed format

as well. This format is called a nested well-formed format and rules may look as follows:

((subject, action, object, condition), action, (subject, action, object, condition), condition).

The tree for representing the nested well-formed format is shown in Figure 14. In this tree,

the root represents an action. the left most leaf is a subtree presenting all entities related to

subject part, and the middle leaf is a subtree presenting all entities related to object part. The

right most left is condition. Under this structure, all middle nodes show actions or relationships,

and all leaves my show accessing users, adjacent users, trusted users, target user, target resource,

controlling user, and environment condition. Resource owner is attached to the its own target

resource.

Figure 14 – Nested Rule Tree

In order to have a well-formed format, three criteria, listed in the following, must be met.

● Each list must be opened and subsequently closed

● Each element may be properly nested so it does not overlap

79

● Each element represents a subject followed by another element representing an action, and

this will be followed by an element representing an object. Occasionally, this format may be

ended with conditions.

Our model obeys these three requirements to generate the well-formed format [90]. By

collaboration of various functions defined in the transformation engine, this engine receives an

input and then converts it into a well-formed format.

Figure 15 shows a basic picture of the transformation engine. Based on the nature of an input,

inputs are categorized into two groups as follows:

● Policy: it safeguards individual data resources against unjustified access. Policy is fed into

the transformation engine, and then it is converted to a well-formed format called rule.

● Inquiry: it denotes a request for doing an action against data or resource. Inquiry is fed into

the transformation engine, and then it is converted into a well-formed format called request.

Figure 15 – Transformation Engine

At first glance, the output of the transformation engine would be a rule or a request. The rest

of this section explains, in details, how a rule and a request will be generated.

The transformation engine is assumed to complete the conversion process in two phases due to

having a robust engine. The two phases are described as follows:

80

● First phase: this phase generates a list of words existing in the input. Each word is followed

by information describing that word. Thus, this process extracts words from input; these

words carry the gist of the input. The type of received input has been defined when it was

created by subject or object such as accessing user, target user, or controlling user, so the

category of input is completely distinguishable by the transformation engine. This phase is

started by performing the Natural Language Parsing (NLP) process.

NLP receives input, and then distinguishes all words from the input sentence and adds

grammatical information to every word. In order to achieve this goal, NLP uses three

processes called tokenize, keyword recognition, and knowledge extraction processes.

o Tokenize process provides a list of all terms or words existing in the input. Tokenize

process distinguishes words from a given sentence by finding one or more spaces

separating these words. This process ignores symbols such as “,”, “:”, “;”, and

parenthesis. Moreover, if this process finds alphanumeric characters connected to

alphabetic characters, it separates numbers from alphabets and adds them as different

words on to the list. If numbers are surrounded by an alphabet, the numbers will be

removed from that word and only the alphabetic part will be added as one word on to the

list. These two sub-functions help to mitigate or remove any mistyped word effect.

Finally, the output of the tokenize process will be generated. This is a list of all words

existing in the input sentence. Words in this list are ordered in terms of their appearing in

the original sentence. The output might be a list as follows:

<word1, word2, word3, ……………………………., wordn>

For instance, someone defines a policy in order to secure oneself from unauthorized

access and she said “no one can poke me”. Hence, the tokenize process generates a list as:

81

<no, one, can, poke, me>

o Keyword recognition process attaches some basic information into every word in the list

provided by the tokenize process. The keyword recognition process receives the list of

words from the tokenize process and searches every word in the keyword table to find out

the grammatical point which has been provided for that word in the social network. The

keyword table as shown before stores grammatical information, specifically parts of

speech, for every possible word. Previously, we described that the supervisor is

responsible for maintenance and saving information into this table stored in the repository

belonging to the supervisor. Besides, if one word of the list carries negative meaning

intrinsically like (unable), or intuitively has negative meaning (like not or no), the

negative meaning is reflected in the basic information. Every item of the list represents a

word and its related information. Hence, output of the keyword recognition process may

be a list of several elements. Each element may have a structure such as the following:

<word, (parts of speech (major), parts of speech (detail), negative or positive meaning)>

The following defines every item in this list:

✓ Word: this is a token of the input sentence.

✓ Part of speech (major): this may be noun, pronoun, verb, adverb, adjective,

conjunction, preposition, article, or determiner.

✓ Part of speech (detail): this may be possessive, objective, subjective, reflexive

pronoun, possessive adjective, possessive pronoun, auxiliary verb and main verb.

Having the example provided for the tokenize process, the keyword recognition process

generates the following list: (< no, (determiner, subject, ¬)>, < one, (noun, subject, -)>,

< can, (verb, auxiliary, -)>, < poke, (verb, main, -)>, < me, (pronoun, object, -)>)

82

o Knowledge extraction process: The knowledge extraction process receives the list

generated by those processes. Sometimes, in an input sentence (i.e. policy or inquiry),

there are side by side words which are syntactically related and they altogether represent

one comprehensive concept in terms of the information extracted from each word. Hence,

the knowledge extraction process collects these words and puts them on the list as one

word and attaches proper grammatical information. Sometimes, an input sentence

includes one or more accessing users in order to access one or more several objects (i.e.

target user or target resources). In this case, the proposed method generates several rules

or queries. The number of accessing users or objects defines how many outputs will be

generated by knowledge extraction. In addition, using the word-entity table, the

knowledge extraction process maps each word in the list onto the closest entity type and

entity defined in the social network. All entities associated with the social networks are

stored in this table. Earlier, the word-entity table and its data were described.

The following shows the format of a list generated by the knowledge extraction process.

The list includes several items including a word and its own basic information which

provides remarkable knowledge for that word as follows:

<word, (entity type, quantifier, entity, negative or positive meaning)>

The following describes detailed information for every item of the list:

� Word: it may be a token or concatenation of more tokens of the input sentence.

� Entity type: based on the definition addressed previously in this document, it may be

a subject, an object, a relationship, an action, or an environment condition.

� Quantifier: this is a symbol and indicates the scope of a term or determines the

quantity to which it is attached. Two famous examples of a quantifier are “∀” which

83

is a quantifier that represents “for all entities” and “∃” which is a quantifier that

represents “there exists an entity” [5].

� Entity: based on the components of the proposed model defined earlier, this may be

an accessing user, a target user, a target resource, a controlling user, a relationship

type, an action type, or an environment condition.

� Negative or positive meaning: this is a symbol. If the word carries negative meaning,

either explicitly or implicitly, symbol “¬ “will be used. Otherwise, symbol “-“ will be

used to show positive meaning.

Subsequently, the knowledge extraction process creates a list by collecting the items

described above. The following shows the output of this process:

{(T, X), (<word1, (entity type, quantifier, entity, negative or positive meaning)>………

<wordn, (entity type, quantifier, entity, negative or positive meaning)>)}

The final list includes two additional pieces of information about the input as follows:

� The first variable, T, represents the date and time when the input was fed into the

social network site. It is called timestamp.

� The next one, X, represents the type of input. If X in “0”, it means this input is a

policy. If X is “1”, it means this input is an inquiry.

To clarify the functionality of these processes, pursuing the following example will be

helpful. For instance, a sentence “no one can poke me” was received as a policy input by the

transformation engine at time “t1”. In order to distinguish hidden information from that input,

the tokenize process, which is part of the NLP, splits the input sentence into its constituent

words. Then the keyword recognition process defines grammatical roles for every word and

84

the knowledge extraction process provides a short and clean list of words and corresponding

entities. So the output of each process for the above example may be as follows:

Output of the tokenize process may be such as: <no, one, can, poke, me>

Output of the keyword recognition process may be written as: (<no, (determiner, subject,

¬)>, <one, (noun, subject, -)>, <can, (verb, auxiliary, -)>, <poke, (verb, main, -)>, <me,

(pronounce, object, -)>)

Finally, output of the knowledge extraction may be presented as: {(t1,’0’), (<no one, (subject,

∄, accessing user, ¬)>, <poke, (action, poke, -)>, <me, (object, ∃, target user, -)>)

Within the above three processes, using ontology concepts, it is possible to create an agreed-

upon vocabulary for exchanging information. Ultimately, each vocabulary or word of the

input will be mapped onto a specific concept on the social network. Without any doubt,

having comprehensive information for each word of the input, decision of granting or

revoking access to an object will be more precise.

● Second phase: based on the input type received by the first phase, either a policy or an

inquiry, the transformation engine performs a rule maker or a request maker processes to

generate a rule or a request, respectively.

o Rule maker process receives a list of words and their related information of a policy and

generates a well-formed format which is a rule. Users are allowed to save their defined

rules into their rule repository. These rules will be used when the object receives inquiry

for accessing or doing an action against user’s resources. If the list generated by the

knowledge extraction includes a relationship, depending on which parts of the sentence

(i.e. subject or object or both part) include the relationship, that parts (i.e. subject part or

object part or both) may be represented in a complex format. Hence, the rule will be

85

presented in a nested well-formed format meaning that the subject, object, or both may be

represented in the well-formed format as well. Based upon the object, which can be a

target user or a target resource included in the list, rule maker process generates a rule

under one of the following formats. In both formats, the accessing user may be an

adjacent or a trusted user.

✓ If the policy is protecting target user’s individual information from illegal access, the

rule may be presented as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_user [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)]), [([quantifier] environment_conditions [(attribute_name1:

attribute_value1), ….., (attribute_namen: attribute_valuen)])]}- T

✓ If the policy is protecting controlling user’s resource from illegal access, the rule may

be presented as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_resource [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)] [quantifier] controlling_user [(attribute_name1:

attribute_value1), ….., (attribute_namen: attribute_valuen)]), [([quantifier]

environment_conditions [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)])]}- T

o Request maker process receives a list of words and related information extracted from

inquiry input. With regards to the action existed in the list, this process generates request

86

under one of the following formats. In both formats, the accessing user is an individual

user and usually attribute-name just presents the name of the accessing user.

✓ If the inquiry is doing an operation against a target user’s individual information, the

request may be presented as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_user [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)]), [([quantifier] environment_conditions [(attribute_name1:

attribute_value1), ….., (attribute_namen: attribute_valuen)])]}- T

✓ If the request is doing an operation against a controlling user’s resource, the request

may be presented as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_resource [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)] [quantifier] controlling_user [(attribute_name1:

attribute_value1), ….., (attribute_namen: attribute_valuen)]), [([quantifier]

environment_conditions [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)])]}- T

3.8.2 Request Engine

The request engine receives a request and makes a decision about whether or not give

permission to accessing users in order to access a particular object. Figure 16 shows a basic

picture of the request engine.

87

Figure 16 – Request Engine

An accessing user generates an inquiry to access or do an operation against a target user or a

target resource. Since an inquiry for accessing a resource or information is received, the

recipient, who is given the request, should respond to that request. In order to respond to the

received inquiry, the decision engine will be performed for creating an appropriate answer for

the inquiry. As mentioned before, the first engine of the decision engine is the transformation

engine process. After performing the transformation process, the query, which is a transformed

format of the inquiry, will be delivered to the request engine. The request engine collects all

parameters playing key roles for evaluating the request and then concludes a result. The main

parameters may be accessing user’s attributes, action’s attributes, relationship’s attributes,

environment condition’ attributes, supervisor’s rules, target user’s rules, and target resource’s

rules. The request engine consists of three processes as follows:

● The first process is responsible for selecting appropriate rules from several different sets of

rules defined by entities contributing in the request, and the supervisor. This process is called

selecting rules.

88

● The second process is responsible for collecting all required attributes from entities

contributing in the request, and the supervisor. Using the given request, this process

recognizes necessary parameters. This process is called selecting attributes.

● The third process is responsible for deriving result from collected information. Moreover, in

the case of arising confliction among selected rules, this process provides a solution and

chooses the most appropriate rule which either accepts or rejects the request clearly. This

process is called deriving result.

Selecting Rules

An object, a target user or a target resource, has various rules, each of which confines access

to a target user or doing an operation against a target resource based on the type of the operation,

the environment conditions’ attributes, the target user’s attributes, the target resource’s attributes,

and the accessing user’s attributes (or a group which an accessing user is a member of). One or

more rules which satisfy the request may be extracted from two different sets of rules. The two

sets of rules could be as follows:

● The first set of rules may be reached from the repository belonging to the target user or the

target resource to protect belongings against illegal access.

● The second one may be selected from a set of rules defined by the supervisor. That is defined

as general rules to dictate policies for monitoring the access to the entire social network.

This process selects rules which protect corresponding object from specific action. This

action has been mentioned in the received request.

Generally, selecting appropriate rules is burdened by a process of the decision engine called

the selecting rules process. As mentioned before, the request engine receives the request, which

serves as goal. Hence, the goal is specified and the request engine or selecting rules process

89

specifically, must specifically find a way to achieve that specified goal. A backward-chaining

method accomplishes this. Indeed, there are two methods for achieving goals from many rules.

These methods are [94,95]:

● Forward chaining: forward chaining is an inference method that may be described as working

forward from data. Forward chaining starts with the given data and uses rules to extract more

data until a goal is reached. In this case, an inference engine searches the rules until it finds

one that meets the conditions. When such a rule is found, the engine concludes the

consequent, and adds recent rule to the set of collected rules. The name of forward chaining

comes from the fact that the interface engine starts with the data and reasons its way to the

answer. Because the data determines which rules are selected and used, this method is also

called data-driven [85].

● Backward chaining: backward chaining is an inference method that can be described as

working backward from the goal(s). Backward chaining starts with a goal or list of goals and

works backwards from the consequences to the antecedent to see if there are data available to

support any of these consequences. This inference engine searches the inference rules until it

finds one which has a consequent that matches a desired goal. If the antecedent (If clause) of

that rule is known to be true, it is added to the list of goals (in order for one's goal to be

confirmed, one must also provide data that confirm this new rule). Because the goal

determines which rules are selected and used, this method is further called goal-driven [86].

To achieve the result, the selecting rules process looks for the rules that gratify the

determined goal. Particularly, selecting rules process looks for the rules that can produce this

goal. If a rule is found and fired, selecting rules process takes one or all rules which completely

90

or partially gratify the goal. Selecting rules process continues searching until there are no more

rules matched. Set of extracted rule may be defined as follows:

Set = {rulex | (∃ Ac ∋ rulex, ∃ nj ϵ Ac < (n1:v1),…, (nk,vk)> ⋀ ∀ Ac ∋ request,

∃ ni ϵ Ac < (n1: v1),…………., (nk; vk)> , If nj == ni Then vj == vi)}

If set of extracted rule is null, the next two steps will be skipped. This means that the request

is accepted.

Eventually, the request engine must extract one result from those selected rules and return

that as a final result.

Selecting Attribute

After choosing appropriate rules, and by knowing the format of every rule, determining who

are allowed to access or do a specific operation on the object under mentioned circumstances

(i.e. environment condition) is accomplished. By observing the format of a rule, the first item

represents one of the four pieces of information:

● Name of the subject or accessing user

● One or more attributes of subject or accessing user. These attributes may be used for

grouping the subject or accessing user. Each attribute appears with related value

● Adjacent user of the target user or the controlling user

● Trusted user of the target user or the controlling user

As defined previously, adjacent and trusted users may be determined as rules defined by a

target user, a controlling user, or the supervisor of the social network. In the proposed model,

supervisor is supposed to provide definition for both adjacent and trusted users.

91

The selecting attributes process may generate two sets of rules. The first set includes rules

that fulfill the request, and the second set includes rules that do not meet the request. The

following list show how one or two sets are generated:

● Set 1: {rulex | (∃ ua ∋ rulex , ∃ nj ϵ ua < (n1:v1),…………., (nk,vk)> ⋀

∀ ua ∋ request, ∃ ni ϵ ua < (n1: v1),…………., (nk; vk)> , If nj == ni Then vj == vi) ⋀

(∃ ec ∋ rulex, ∃ vt ϵ ec <time:vt>, vt == Current Time ⋀ ∃ vl ϵ ec <location:vl>, vl == Current

Location)}

● Set 2: {rulex | (∃ ua ∋ rulex , ∃ nj ϵ ua < (n1:v1),…………., (nk,vk)> ⋀

∀ ua ∋ request, ∃ ni ϵ ua < (n1: v1),…………., (nk: vk)> , If nj == ni ⋀ vj != vi) ⋁

(∃ ec ∋ rulex , ∃ vt ϵ ec <time:vt>, vt != Current Time ⋁ ∃ vl ϵ ec <location:vl>, vl != Current

Location)}

Finally, two lists of rules can be generated. The first list includes one or more rules granting

permission to the accessing user and the second list includes one or more rules denying

permission to the accessing user. Either Set1 or Set2 may be null.

Note that the entire social network graph must be traversed in order to extract entities and

their attributes. Using functions introduced in chapter 6, the entities and related information can

be reached through the social network.

Deriving result

This process uses the lists generated by the previous process and concludes the result. If

either Set1 or Set2 includes rules, there is no conflict and deriving result process either accepts or

rejects the request in terms of which Set includes rule(s). Sometimes the rules defined by

controlling user conflicts with the rules defined by the supervisor of the social network. The

conflict is recognizable if both sets of rules include one or more rules. To resolve this issue, rules

92

existing in the two lists need to be compared one by one correspondingly in terms of the criteria

addressed earlier in this chapter. This can be done using a process called fixing clashes. Fixing

clashes engine uses the following three criteria to resolve the conflict.

● The first criterion is the timestamp attached to each rule. As mentioned before, since the

transformation engine receives a policy and converts the policy into one or more rules, the

transformation engine attaches a timestamp to the recently added rule. This timestamp

represents the time when the rule is added to the social network.

● The second criterion defines rules, which override other rules. This can be defined by the

target user, the controlling user, or the supervisor.

● The third criterion comes from the policy metadata defined by the supervisor. This basically

determines who dominates who. In the proposed model, it is assumed that the supervisor

dominates other users on the social network.

Based on the above descriptions, this process chooses the most appropriate rule in terms of:

Appropriate rule = {rulei | (∀ rulei, rulej: rulei ϵ Uca, rulei ϵ Set1, rulej ϵ Ucb, rulej ϵ Set2)

If rulei.t > rulej.t ⋁ rulei overrides rulej ⋁ Uca dominates Ucb} ⋃ {rulej | (∀ rulei , rulej : rulei ϵ

Uca, rulei ϵ Set1 , rulej ϵ Ucb, rulej ϵ Set2) If rulej.t >= rulei.t ⋁ rulej overrides rulei ⋁ Ucb

dominates Uca }

Fixing clashes selects the rule of the first list and compares it to the corresponding rule of the

second list. Comparison may be done based on one or more criteria.

For simplicity, the proposed model is tuned for the first criterion so that Fixing clashes

process orders rules in ascending or descending order based on the timestamp and related

definition provided in the removing confrontation criteria table. Deriving result process looks at

the rule of the first list and compares it to the corresponding rule of the second list. Both rules

93

have the equal position in these two lists. If fixing clashes process finds that conflicting rules

having the same timestamp, the fixing clashes process will use the second criterion. Again if this

process does not find any fact to choose the rule, this process uses the third criterion for

comparison. Fixing clashes process performs this step until between two compared rules, it

selects one, and consequently it removes the conflict. This means that in terms of the selected

rule, the request engine accepts or rejects the request. If fixing clashes reaches to the end of the

lists and does not find any rule, it cannot remove the conflict. Due to respecting to conservative

solution, the request will be rejected. Ultimately, the request engine is able to provide an answer

for a request.

3.9 Examples

In order to describe how the proposed model evaluates a request, several examples will be

presented and discussed in the following.

Example 1: Ben pokes Alice.

In this example Bob wants to poke Alice. Previously, Alice defined a policy like “only my

friends are allowed to poke me”. Transformation engine translates this policy into a rule, which

is an easy-to-use form and understandable by social network access control engine. To reach this

goal, transformation engine sends a policy to NLP, meanwhile the type of input is completely

clear for this process. Transformation engine’s result is a list of words with comprehensive

information. In order to prepare this list, NLP module uses tokenize process to split the given

sentence into constituent words. The following list denotes the tokenize process result.

<only, my, friends, are, allowed, to, poke, me>

Keyword recognition process, which is a process of NLP module, adds grammatical

information to every item in the list. This process uses a keyword table to find out parts of speech

94

for each word and word-entity table that maps words in a policy or in an inquiry into social

network entities. The result of this step may be expressed as follows:

(<only, (preposition, adjective, -)>, <my, (pronounce, subjective, -)>, <friends, (noun, plural, -

)>, <are, (verb, tobe, -)>, <allowed, (verb, main, -)>, <to, (preposition, second verb, -)>,

<poke, (verb, second verb, -)>, <me, (pronounce, objective, -)>)

When knowledge extraction receives a list, regarding the words’ parts of speech, knowledge

extraction collects words, which appear in the list sequentially and have related meaning, and

keeps them as an item in the new list. Hence, the result of the knowledge extraction process may

be expressed as the following:

{(t1,’0’), (<only, (subject, ∃, accessing user, -)>, <my friend, (subject, ∀, relationship, -)><are

able to poke, (action, poke, -)>, <me, (object, ∀, target user, -)>)

In this example, the type of input sentence is a policy. Therefore, transformation engine calls

rule maker to create a rule, which is converted form of a policy. The rule stored in the repository

managed by Alice may look like:

“< ∃ ua (∀ ua, Ac (relationship: friend+1), ∀ tu (name: _self)), Ac (action: poke), ∀ tu (name:

_self) >- t1”

When someone tries to poke Alice, one creates an inquiry to access Alice who is object and

target user specifically on the social network. Suppose there is an inquiry like “Ben wants to

poke Alice”. Like in the previous step, this inquiry must be changed into a simple format.

Transformation engine uses several processes and converts the inquiry to request. The request

may look like as the following:

“< ∃ ua (name: Ben), Ac (action: poke), ∃ tu (name: Alice)>”

95

The social network site sends the inquiry to an object who is supposed to manage a given

action. In this example, the inquiry was created for accessing (i.e. poke) the object, which is a

target user whose name is Alice.

Request engine takes the request. First, selecting rules process must find all rules that are

defined by the target user or the supervisor, and meet all conditions or criteria in the request.

These selected rules must meet several criteria such as the following:

● Type of the action which is requested by the accessing user to perform an operation on an

object

● Environment conditions, which are mentioned in the query by accessing user, identifies

conditions which have been fulfilled by given request. As mentioned earlier in this

document, these conditions are stored and managed by supervisor.

● Adjacent users who have a specific relationship with the object under a certain distance,

have been defined in the received request. Adjacent users are defined either by an object, or

by a supervisor.

● Trusted users who are in the circle of trustee of the object or subject, have been mentioned

in the given request. Trusted users are defined by either object, supervisor or both.

In this example selecting rules process returns only one rule, which is stored in Alice’s

repository. Regarding Alice’s rule, only her friends can poke her. It means that every user on the

social network site who has a direct friend relationship with Alice is allowed to poke her. Direct

relationship means the length or distance of relationship is one. In this example, the accessing

user is determined explicitly. In order to find out Alice’s friends, selecting attribute process

should search in terms of the requestor name. Due to existing merely one rule, selecting attribute

looks for the accessing user attribute of the rule. It is obvious if there are more rules, selecting

96

attribute searches one or more attributes in terms of each rule. Afterwards, deriving result

process, the third process of the request engine, searches a user whose name is “Ben” and has a

relationship type as “friend” with “Alice”. In this example, deriving result process finds a user

whose name is “Ben” even though this user does not have a “friend” relationship with “Alice”, in

terms of Figure 9. So making result process returns nothing. Ultimately, the decision engine

rejects the request meaning that Ben is not allowed to poke Alice.

Example 2: None of my colleagues are allowed to be friend with my kids.

In this example Alice defines a policy on behalf of her kids. In the proposed method,

members of the social network are allowed to define policies on behalf of other members who

are part of adjacent or trusted group. A member for whom another member defined the policy is

allowed to accept or reject the policy. If this member accepts that policy, the policy will be

transformed into a rule and will be saved in their repository. The acceptance of the policy will

therefore affect the member’s response. Otherwise, the policy will be rejected. In this example,

Alice defines a policy like “none of my colleagues are allowed to be friend with my kids” and her

kids accept it. Like the previous example, Transformation engine translates this policy into a

rule. To reach this goal, NLP receives this policy. NLP module uses tokenize process to split the

given sentence into constituent words. The following list denotes the tokenize process result.

< none, of, my, colleagues, are, allowed, to, be, friend, with, my, kids >

Keyword recognition process adds grammatical information to every item of the list. This

process uses the keyword table to find out parts of speech for each word. Finally, the output of

keyword recognition process is a list as follows:

(<none, (preposition, adjective, ¬)>, <of, (preposition, adjective, -)>, <my, (pronounce,

subjective, -)>, <colleagues, (noun, plural, -)>, <are, (verb, tobe, -)>, <allowed, (verb, main, -

97

)>, <to, (preposition, -, -)>, <be, (verb, tobe, -)>, <friend, (noun, singular, -)>, <with,

(preposition, -, -)>, <my, (adjective, possessive, -)>, <kids, (noun, plural, -)>)

After doing some processes by knowledge extraction, the result may be presented as the

following:

{(t1,’0’), (<none, (subject, ∃, accessing user, ¬)>, < my colleagues, (subject, ∀, relationship,

¬)>, < friend, (action, friend, -)>, <my kids, (object, ∀, target user, -)>)

In this example, the type of input sentence is a policy. Therefore, transformation engine calls

rule maker to create a rule, which is converted form of a policy. The rule stored in the repository

managed by Alice’s kids (i.e. Sue) may be formatted as follows:

“< (∄ ua (∀ ua, Ac (relationship: colleague+1), ∃ tu (name:_self))), Ac (action: friend), ∃ tu

(name: Sue) >- t1”

Example 3: Alice says “my colleagues are allowed to edit my documents after office hours and at

weekends”

In this example Alice defines a policy to give permission to her colleagues for editing her

documents during certain time including after office hours and at weekends. Like the previous

example, Transformation engine translates this policy into rule. To reach this goal, NLP, a

process of transformation engine, receives this policy. Knowledge extraction’s result is a list of

words with its comprehensive information. In order to prepare this list, NLP module uses

tokenize process to split the given sentence into constituent words. The following list denotes the

tokenize process result.

<my, colleagues, are, allowed, to, edit, my, documents, after, office, hours, and, at, weekends >

98

Keyword recognition process adds grammatical information to every item of the list. This

process uses a keyword table to find out parts of speech for each word. Finally, the output of

keyword recognition is a list as follows:

(<my, (adjective, possessive, -)>, <colleagues, (noun, plural, -)>, <are, (verb, tobe, -)>,

<allowed, (verb, main, -)>, <to, (preposition, -, -)>, <edit, (verb, , -)>, (<my, (adjective,

possessive, -)>, <documents, (noun, plural, -)>, <after, (preposition, adjective, -)>, <office,

(adverb, , -)>, <hours, (noun, plural, -)>, <and, (conjunction, -, -)>,<at, (preposition, -, -)>,

<weekends, (adverb, , -)>)

After doing some processes by knowledge extraction, the result may look as the following:

{(t1,’0’), (< my colleagues, (subject, ∀, relationship, -)>, < edit, (action, edit, -)>, <my

documents, (object, ∀, target recourse, -)>, < (time: work hour+, time: weekends)>)

In this example, the type of input sentence is a policy. Therefore, transformation engine calls

rule maker to create a rule, which is converted form of a policy. The rule stored in the repository

managed by Alice may follow a form as follows:

“< (∀ ua (∀ ua , Ac (relationship: colleague+1), ∃ tu (name:_self))), Ac (action: edit), ∀ tr (name:

document) ∃ uc (name:_self), Ec (time: >office hour, time: weekend)>- t1”

Example 4: Only my adjacent colleagues are allowed to read my documents.

In this example Alice defines a policy to give permission to her trusted colleagues to read her

documents. Like the previous example, Transformation engine translates this policy into the rule.

To reach this goal, transformation engine receives this policy and generates a list of words with

its comprehensive information. In order to prepare this list, NLP module uses tokenize process to

split the given sentence into including words. The following list denotes the tokenize process

result.

99

< only, my, adjacent, colleagues, are, allowed, to, read, my, documents >

Keyword recognition process adds grammatical information to every item of the list. This

process uses the keyword table to find out parts of speech for each word. Finally, the output of

keyword recognition is a list as follows:

(<only, (preposition, adjective, -)>, <my, (adjective, possessive, -)>, <adjacent, (adjective, -, -

)>,<colleagues, (noun, plural, -)>, <are, (verb, tobe, -)>, <allowed, (verb, main, -)>, <to,

(preposition, -, -)>, <read, (verb, , -)>, (<my, (adjective, possessive, -)>, <documents, (noun,

plural, -)>)

After doing some process by knowledge extraction, the results may be as follows:

{(t1,’0’), (<only, (subject, ∃, trusted user, -)>, < my adjacent colleague, (subject, ∀, relationship,

-)>, < edit, (action, edit, -)>, <my documents, (object, ∀, target recourse, -)>)

In this example, the type of input sentence is policy, so transformation engine calls rule

maker for creating a rule which is converted form of policy. The rule stored in the repository

managed by Alice might be as following:

“< (∀ ua (∀ ua , Ac (relationship: colleague+1), ∃ tu (name:_self))), Ac (action: edit), ∀ tr (name:

document)>- t1”

Example 5: Alice wants to share her photo with users who share their photos with Alice.

Regarding this example, Alice defines a policy to keep her photos safe from unauthorized

access. She defines “someone whom I can access their photos, is allowed to access my photos”.

The transformation engine receives the policy. After tokenizing the input, it generates the

following list:

< someone, whom, I, can, access, their, photos, is, allowed, to, access, my, photos >

After running knowledge recognition, we have:

100

(<someone, (pronoun-indefinitive, subject, -)>, <whom, (pronoun-relative, subject, -)>, <I,

(pronounce, subject, -)>, <can, (verb, auxiliary, -)>, <access, (verb, main, -)>, (<their,

(adjective, possessive, -)>, <photos, (noun-common, object, -)>, <is, (verb, tobe, -)>, <allowed,

(verb, main, -)>, <to, (preposition, -, -)>, <access, (verb, main, -)>, (<my, (adjective,

possessive, -)>, <photos, (noun-common, subject, -)>)

Knowledge extraction receives the list and generates a new list as follows:

{(t1,’0’), (<someone, (subject, ∃, accessing user, -)>, <whom, (subject, ∃, controlling user, -)>,

<I, (subject, ∃, accessing user, -)> <can access, (verb, main, -)>, <their photos, (object, target

recourse, ∀, -)>, < is allowed to access, (action, access, -)>, <my photos, (object, target

recourse, ∀, -)>)}

Finally, the rule might be shown like:

“< (∀ ua (∃ua (name: Alice), Ac (name: access), ∀ tr (name:photo) ∃ uc)), Ac (action: access), ∀

tr (name:photo) ∃ uc (name: _self)>- t1”

Example 6: Alice wants to tag Bob in her photo.

Regarding this inquiry, Bob defined a policy which is no one is allowed tagging me in its

documents. On the other hand, the supervisor defined a policy which mentions everyone is

allowed tagging someone in its document. The decision engine generates the query and the rules

corresponding to the inquiry and the policies defined by users. The following shows these

outputs:

Alice’s request: “< (∃ua (name: Alice), Ac (name: tag), ∃ tu (name: Bob) >- t3”

Bob’s rule: “< (∄ ua, Ac (name: tag), ∃ tu (name:_self)>- t2”

Supervisor’s rule: “< (∀ ua, Ac (action: tag), ∀ tu >- t1”

101

When the request engine is given the request, the selecting rules process will be performed.

This process searches all rules stored in the repository of the supervisor and the repository of

Bob. Using the backward chaining mechanism, this process extracts rules and generates a list.

Each rule mentions about “Alice” in accessing user’s name or mentions “tag” as action, no

matter the rule accepts or rejects the request.

The selecting attributes is given the list. This process searches the attribute of entity

participated in the rules and the request and certifies which rule accepts the request and which

rule rejects the request. Based on this recognition, two lists will be generated. the first list

includes rules accepting the request and the next list includes all rules rejecting the request. So

list 1 consists one rule defined by the supervisor, and list 2 consist a rule defined by Bob.

The deriving results is given two lists. Using the rules contradiction table, this process

concludes the result. Based on the data saved in this table, this process uses timestamp to remove

the conflict. Compare to the supervisor’s rule timestamp, the Bob’s rule has been fed to the

social network recently, so the Bob’s rule will be credited. Hence, the request will be rejected

and Alice cannot tag Bob in her photo.

102

4. Enterprise Policy-Based Attribute Access Control Model

4.1 Introduction

Online communication sites need to share their resources among themselves. A user of one

site should be able to access a resource of another site. Hence, under extend social networks

model, each social network site must secure their assets against an access request received from

other social network sites. The model defined in Chapter 3, consists of only one social network

site in which all requests are initiated and computed internally. This chapter concentrates on the

enterprise model that encompasses several social network sites, which wish to share their

resources.

Several assumptions in the enterprise model are offered in this chapter. Firstly, no entity of a

social network is allowed to define policies on behalf of another entity of another social network

in order to protect its associated resources, although this feature supports in the fundamental

model described in Chapter 3. Secondly, users from different social networks cannot be adjacent

or trusted user to others. This means that adjacent or trusteed user can be define within one social

network.

This chapter is considering how access control mechanism manages the entire enterprise

model. The access control mechanism, which depends upon the users’ requirements and

distribution of the resources, plays an important role in the success of the model. The

components of an access control mechanism may be separated and distributed within an

enterprise model and may be different from one social network to another.

This chapter investigates the access control requirements within the enterprise model. Each

social network site participating in this model has its own access control mechanism (i.e.

decision engine) which evaluates a given request and provides an appropriate response. This

103

chapter describes a coordinator that is situated among all social network sites and is responsible

to route a request and corresponding response among participants. The response to a given

request is part of each social networks’ responsibility. This approach is an appropriate method to

manage the enterprise access control model in a dynamic way and is called Enterprise Policy-

Based Attribute Access Control (EPBAAC).

4.2 Enterprise Policy-Based Attribute Access Control Model

EPBAAC represents the association of various social networks in which they wish to share

resources and information, not only within one social network but also among several social

networks. Regarding the NIST definition, “an enterprise is a collaboration or coalition among

several participants requiring them to share and manage their information” [10]. These

participants could be either social network sites or organizations. An enterprise model could be a

heterogeneous or homogeneous collection of either social network sites or organizations. Hence,

participants might have different or identical governing principles for sharing resources and

information. The EPBAAC model supports homogeneous participants. In other words, each

participant has its own identical governing principle. An enterprise model should have

appropriate management for efficient resource sharing, using of policies and attributes, and

forcing access control mechanism through the extended model.

Figure 17 presents a basic picture of the EPBAAC.

Figure 17- Enterprise Access Control Model

104

In this model, two noticeable sections can be seen. The first section is the management

section, which presents enterprise supervision, and the second one creates the body of the

enterprise model and represents the gigantic part of this model. This part is a collection of

various independent participants, which might be either social network sites or organizations.

The following gives a brief description for each section:

• The first section or management section is called enterprise supervision. At first glance, this

section is the administrator of the enterprise model and oversees all events happening on the

enterprise model. Briefly, the enterprise supervision receives a request from a participant

(sender), performs some process on the request, and finally delivers the request to the

particular participant (recipient). The enterprise supervision might use metadata to route

messages among social network sites. In fact, enterprise supervision is a bridge connecting

all participants. Later in this document, more explanation for the supervision responsibilities

in the enterprise model will be provided.

• The other section is a set of social network sites. Every participant uses the PBAAC model to

enforce access control for the corresponding resources and information, as well as to manage

them. Chapter 3 provides the comprehensive definitions for the PBAAC model. Within the

enterprise model, each participant is required to determine one or more policies to manage

not only the internal requests (i.e. sent by a local user) but also the external requests (i.e. sent

by users from other participants). Social network sites contributing to the enterprise PBAAC

model are completely independent, and they have access to one another’s resources through

the enterprise supervision. Under our approach, there are two types of social networks.

Figure 18 shows these two types. The following list provides definitions for both.

105

o The source social network is the one that initiates an inquiry to access information or do

an operation on resources, which are governed either by the current or by another social

network.

o The destination social network is the one that receives a request generated by the source

social network.

Figure 18 – Source, Target in Enterprise PBAAC

Besides the two important sections, there are some relationships, which are established

between the enterprise supervision and other social network sites. These relationships identify

each social network as part of the enterprise system, and sending and receiving an access request

or a response by assistance of the enterprise supervisor. In the rest of this chapter, a complete

explanation of the enterprise model will be provided.

106

4.3 Enterprise Policy-Based Attribute Access Control Model Components

Figure 19 shows the EPBAAC model.

Figure 19- EPBAAC Model Components

The following listed items explain components of the EPBAAC model.

• Enterprise supervision includes several elements such as a supervisor and one or more

repositories for storing access control policies and metadata. Enterprise supervision is a

bridge among other social networking sites. Therefore, social networking sites can send a

request to or receive response from other social networks. Through the enterprise supervisor,

requests and responses travel through the social network sites as messages. A request could

be an access resource or a list of the names of attributes associated with the accessing user

who exists on the source social network. A response could be an answer to the request or a

list of the values of attributes associated with the accessing user who exists on the source

social network. Enterprise supervision is the administrator of the enterprise model and may

define various policies to govern all operations on the enterprise social networks. These

policies will be defined and covered as future work. An element of the enterprise supervision,

called enterprise supervisor, is responsible to guide the enterprise model. The enterprise

supervisor organizes all events, which happen across the enterprise scope. For instance, an

107

event could be a request raised by an accessing user in the source social network site to

access a resource supervised by a target social network site. The supervisor of the enterprise

model, like the supervisor of each collaborated social network site, has one or more

attributes, which is called Enterprise Supervisor Attribute (ESPA); each attribute stores a part

of the enterprise supervisor’s information represented in Table 3, Chapter 3.

The enterprise supervisor is responsible for maintenance a large amount of data such as

metadata (e.g. social networks’ information) and environmental conditions.

The enterprise supervisor stores volatile data related to environmental conditions, which

accommodates information of location or time. The structure of this table is the same as the

structure mentioned in Table 15, Chapter 3. Developing environmental conditions controlled

by the enterprise supervisor is not supported in this research, and it may be part of future

work.

The enterprise supervision may have one or more repositories. One repository stores various

information related to every social networking site. Table 17 shows this information. The

enterprise supervisor is allowed to define which participant dominates other participants.

This data item is used when rules defined by social networks have conflicts. This item helps

choosing the rule determined by a social network, which has a higher priority to control the

accessing of the associated resources. In order to show this, the last column of the table stores

a priority number; a participant with smaller number is able to overshadow others with bigger

numbers. Based on Table 17, SNS1 dominates SNS2. Several participants may have the same

dominant value. In this case, the function, described in Chapter 3, uses another criterion for

defining who is able to overshadow others.

108

Participants’ ID Participants’ Name Dominant Value

SNS1 Social networking site1 1

SNS2 Social networking site2 2

Table 17 - Participants’ Information

Policies defined by the enterprise supervisor are converted to rules and then rules are saved

into the repository owned and managed by the enterprise supervisor. The structure saving the

rule is the same as the structure for saving rules defined by the supervisor existing in the

PBAAC model in Chapter 3.

• Social network sites or organizations are the main body of the EPBAAC model. In Chapter 3,

social network site architecture and its associated elements have been described thoroughly.

As the social network described in Chapter 3, all social networks in the enterprise model

have their own supervisor. Social networks contributing to the EPBAAC model are

completely independent, and as mentioned before they have access to one another’s

resources through the enterprise supervision.

• Multiple connections exist between the enterprise supervision and every social network site.

Every connection has been assigned a relationship type such as “PartOf”. If a social network

site generates a request to access a resource supervised by another social network site (i.e.

target), the request must be routed to the enterprise supervision before received by the target

social network site.

In the enterprise model, all policies and inquiries are in natural language. Hence, we require

defining a process to transform policies to rules and inquiries to requests. By using the policy

language definition, the transformation process will be accomplished.

109

4.4 Relationship Type Basic Notation

In the enterprise model, every social networking site has a set of relationship types, which

has been comprehensively described in Chapter 3. Furthermore, the enterprise model includes a

relationship type such as “PartOf” established between enterprise supervision and each social

networking site. This relationship type is neither symmetric nor transitive.

Similar to the fundamental PBAAC model described in Chapter 3, we require keeping

information for this relationship type. This information is called relationship metadata, and

stored under the enterprise supervision section. The structure storing relationship metadata is

identical to the structure storing relationship metadata described in the Chapter 3. The enterprise

supervisor is the owner of this relationship metadata.

4.5 Graph Model

As shown in Figure 17, the enterprise model is a combination of two types of graphs.

• The first type is a connected graph. This graph shows the enterprise supervision including

one or more repositories and environment condition. The enterprise supervision is connected

to every collaborated social networking sites.

• The second type is a disconnected graph, which is a set of many connected graphs such as

social networking sites or organizations. These social networking sites are completely

independent and disconnected from one another. Each social networking site is a directed

graph as explained in Chapter 3.

The graph of the enterprise model is a set of graphs, which has at least four items.

G= {EG, G1, G2, ……, Gn}, such that ∀ ⍺ ϵ G, ⍺ = <N, E, Ʃ, W>

∀ Gi ϵ G, Gj ϵ G: ∃ EG → Gi, EG → Gj, ∄ Gi → Gj

110

• N is union of a finite set of subjects (S) and a finite set of objects (O) in the system,

represented as nodes on the graph.

• Ʃ is a finite set of relationship types, represented as labels for connections on the graph.

• W is a number that is attached to a relationship connecting a subject to another subject. This

number shows the percentage of trust one user has in another user in a social network site.

• E ⊆N × N × Ʃ × W denotes graph edges and might be a set of existing connections such as

subject→ subject, subject→object and object→object relationships.

Figure 20 represents a graph for the EPBAAC model. For developing the graph model, a

graph database management system may be used as ideal solution.

Figure 20 – Enterprise PBAAC Graph

4.6 Enterprise Policy-Based Attribute Access Control Method Description

Under the EPBAAC model section, like the fundamental PBAAC model, every element is

allowed to define policies to protect individual information and resources. Once an element

generates a policy, this policy is routed to the decision engine. The decision engine transforms a

policy into a rule. Afterwards, the rule will be stored in the repository associated with the

element generating the rule. This element is not allowed to determine a policy to protect

associated resources on behalf of another entity existing on other social networks.

111

Some elements, namely accessing users, may generate a request for accessing or doing an

operation on an object. In order to investigate how our approach processes a request, as

mentioned before, we identify two different types of architecture for the EPBAAC model. One

architecture describes a set of independent social networking sites, and the other describes the

enterprise supervision. Regarding these two architectures, the EPBAAC model includes two

types of operations:

• The first set of operations is internal operations, which performs on a social network locally;

accomplishment of these operations is completely autonomous. This means that each social

networking site is responsible for processing the received internal request and then deriving a

result. The whole process is the same as the whole process explained in Chapter 3.

• The other set of operations is external operations, which are generated by the other social

networks in the enterprise model. These operations are mainly accomplished by enterprise

supervision. In other words, when a request is generated by a specific social networking site,

it is delivered to the enterprise supervision. Since the basic information (i.e. metadata) of

every social network is stored in the repository of enterprise supervision, the enterprise

supervision compares the basic information to the received request in order to obtain the

address of the receiver, and then sends the request to the social networking site destination

(i.e. receiver). The enterprise supervision includes various items such as enterprise

supervisor (ESpUser), environment conditions (EEnvCond), and the repository (ERep) for

saving various metadata. So we have

∃ ERep ϵ ESN, ∃ ESpUser ϵ ESN:

ESpUser ----------:FullOwner----------> ERep

∃ EEnvCond ϵ ESN, ∃ ESpUser ϵ ESN:

112

ESpUser ----------:ControlledBy---------> EEnvCond

Based upon having two sets of operations, there exists two groups of inquiries in our model as

follows:

• Inquiry for accessing or running an operation on a local object

• Inquiry for accessing or running an operation on a non-local object

The decision engine accommodated in each social network site distinguishes between these two

groups of inquiries. Chapter 3 thoroughly explained all required operations for the first group of

inquiries. The first group of inquiries will not be sent outside, but the second group will be sent

outside of the local social network.

The second group will be subject to the following processes:

• A request is created by the transformation engine. The request is attached to the addresses of

the source social network and the address of the destination social network. Because no

social network in the enterprise model has information about another social network, the

source social network sends the request to the enterprise supervision. Earlier, we showed that

every social network existing in the enterprise model connects to the enterprise supervision

under the relationship type “PartOf”. Within an enterprise social network model (ESN), there

is an enterprise supervisor (ESpUser) and one or more social networking sites (SNS) which

are related to ESpUser as follows:

ESN = {SNS 1, SNS 2, ……., SNS n} ⋃ ESpUser, ∀ ⍺i ϵ { SNS 1, SNS 2, ……, SNS n} :

ESpUser -----:PartOf-----> ⍺i

• The enterprise supervision processes the request; based on the addresses attached to the

source social networking site’s request, the enterprise supervision sends the request to the

particular destination social networking site. If a request wishes to access a resource of a

113

destination social network site, which does not exist in the enterprise supervision repository,

this request will be rejected.

• In the final step, the decision engine existing on the destination social networking site

receives the request. The request combines several items. The first item shows the original

request and the rest of the items represent the addresses of the source and destination social

networking site. The format of the request will be described under the decision engine

section. The decision engine collects all rules and attributes of entities, which contribute to

the request, and evaluates the request. Those rules may come from the target user, target

resource, local supervisor of the target social networking site. Besides, the decision engine

needs values of various attributes belonging to the local and external elements included in the

request. An external element is the accessing user who is a member of the source social

networking. The decision engine is also responsible to recognize contradictions between

rules and removes them. Chapter 3 described the method for fixing rules contradictions.

4.7 Decision Engine

The decision engine is the principal part of the proposed enterprise model and consists of two

major engines: the transformation engine and the request engine. Like the PBAAC, each social

network participating in the enterprise PBAAC has its own decision engine. Under the PBAAC

and the enterprise PBAAC models most functions defined in the decision engine are similar

except the request engine. The decision engine within the enterprise PBAAC model performs

various types of inquiries, which require adding some new functions in addition to the PBAAC

model. This section explains these new functions.

4.7.1 Transformation Engine

114

The transformation engine receives policies, inquiries, and queries, converts polices into

rules, and inquiries into queries. This section describes the processes of receiving an inquiry or a

query.

If the transformed engine receives an inquiry, it generates a request, which is in a well-

formed format. If this engine receives a request, this engine does not process this request and

send it to the request engine for further processing.

Due to have a robust transformation engine, this engine runs its task in two phases, listed as

follows:

• First phase: the transformation engine receives an input, which has a subject, a verb, and an

object. The object may be either internal or external, defined as follows:

o Internal object: if an inquiry contains an object located in the current social network, the

object is an internal object. In this case, the subject (i.e. accessing user), the object (i.e.

target user or target resource), and the input (i.e. inquiry), which is generated by internal

subject and performed by the local decision engine are in the same social network.

o External object: if an inquiry consists an object located in another social network, so that

object is an external object. In this case, the social network where the requested object is

located is not the same as the social network where the requestor is located and inquiry

has been generated.

The input could be an internal inquiry or external inquiry. The following describes both.

o Internal inquiry is created by a subject (i.e. accessing user) located in a social network

where the inquiry will be initiated and accomplished. This inquiry is in natural language

format, so NLP process is called as described in Chapter 3 to convert the inquiry into the

well-formed format. This inquiry may hope to access either an internal or an external

115

object. For both scenarios, a request will be generated and sent to the request engine

settled on the source or destination social network.

o External inquiry is received by a social network (i.e. destination social network) which is

different from a social network (i.e. source social network) where the original inquiry has

been generated. Because external inquiry is in well-formed format, so the transformation

engine will be skipped and the external inquiry, which it may be assumed as request will

be sent to the request engine settled on the destination social network.

In order to process the internal inquiries, this phase starts by calling Natural Language

Parsing (NLP) process, which addressed completely in Chapter 3. As mentioned previously,

NLP uses two process, namely tokenize and keyword recognition process. The output of the

tokenize and the keyword recognition process might be like the following:

<word1, word2, ……. , wordn >

< (<word1, (parts of speech1 (major), parts of speech1 (detail), negative or positive

meaning1)>, ……….. , <wordn, (parts of speechn (major), parts of speechn (detail), negative

or positive meaningn) >) >

Knowledge extraction process adds extra information to the list in addition to the same

process, which has been addressed comprehensively in Chapter 3. The list generated by the

knowledge extraction process in the enterprise model includes identification of either source

or destination or both social network. The following shows the format of the list generated by

knowledge extraction. The list includes several items such as the list of words and their

associate basic information, which provides remarkable knowledge for corresponding word

as follows:

116

o First item T defines the date and time when the input is fed into system. It will be called

timestamp.

o Second item X defines type of the input, “0” for policy, “1” for inquiry, or “2’ presents

attributes list.

o Third item S defines source of the input, “0” represents internal input, or “1” represents

external input.

o Fourth and fifth items address source social network and destination social network.

o Last item is a list of several elements, one of each might be such as follows:

<word, (entity type, quantifier, entity, negative or positive meaning)>

The following describes detailed information for every item of the list:

� Word: it might be a token or concatenation of more tokens of the input sentence.

� Entity type, based on the definition addressed previously in this document, this might

be subject, object, relationship type, action, or label.

� Quantifier is a symbol and indicates the scope of a term or determines the quantity to

which it is attached. Two famous examples of quantifier might be “∀” that represents

“for all entities” or “∃” that represents “there exists an entity” [5].

� Entity, based on the components of our model, which we defined earlier, this may be

accessing user, target user, target resource, relationship type, or action type.

� Negative or positive meaning: this is a symbol. If the word carries negative meaning,

either explicitly or implicitly, symbol “¬ “will be used. Otherwise symbol “-“will be

used for showing positive meaning.

Subsequently, knowledge extraction process creates a list by collecting items described

above. Therefore, we have:

117

{(T, X, S), (SourceName, DestinationName), (<word1, (entity type, quantifier, entity, negative

or positive meaning)>, ……..……, <wordn, (entity type, quantifier, entity, negative or

positive meaning)>) }

To clarify the functionality of these processes, pursuing the following example would be

helpful. For instance, a sentence “A wants to poke B who is a member of social network site

2” generates an inquiry in social network site 1. The following shows the output of each

process:

Output of the tokenize process might be such as: < A, wants, to, poke, B, who, is, a, member,

of, social_ network_site2>

Output of the keyword recognition process might be such as: {(<A, (noun, subject, -)>,

<wants, (verb, main, -)>, <to, (preposition, -, -)>, <poke, (verb, main, -)>, <B, (noun,

object, -)>, <who, (pronoun, object, -)>, <is, (verb, auxiliary, -)>, <a, (determiner, object, -

)>, <member, (noun, object, -)>, <of, (preposition, object, -)>, <social_network_site2,

(noun, object, -) >)}.

Finally, output of knowledge extraction might be such as: {(t1,’1’, ’0’), (SNS1, SNS2), (<A,

(subject, ∀, accessing user, -)>, <wants to poke, (action, poke, -)>, <B, (object, ∃, target

user, -)>)}

• Second phase: if the input is an internal inquiry, the request maker process receives a list of

words and related information extracted from inquiry input. Regarding the action existed in

the list, this process generates request under one of the following format.

o If the inquiry is doing an operation against target user’s individual information, the

request might be as follows:

118

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …….,

(attribute_name2: attribute_value2)]), (action (attribute_name: attribute_value)),

([quantifier] target_user [(attribute_name1: attribute_value1), ……., (attribute_namen:

attribute_valuen)]), [([quantifier] environment_conditions (attribute_name1:

attribute_value1)[, ……., (attribute_namen: attribute_valuen)])]} - T - S, (Sname, Dname)

o If the input is doing an operation against controlling user’s resource, the request might be

as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …….,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_resource [(attribute_name1: attribute_value1), …….,

(attribute_namen: attribute_valuen)]) [quantifier] controlling_user [(attribute_name1:

attribute_value1), ……., (attribute_namen: attribute_valuen)]), [([quantifier]

environment_conditions (attribute_name1: attribute_value1)[, ……., (attribute_namen:

attribute_valuen)])]} - T – S, (Sname, Dname)

Besides, each entity is supposed to protect their information by defining policies, which are

transformed to rules and saved in the corresponding repository. Under the enterprise model,

rule must mention which user from which social network is allowed to have access to this

information. Rule maker generates a well-formed format for the rule. Target users and target

resources are allowed to save their rules into the rule repository. These rules will be used when

the target user or the target resource receives the inquiry.

The rule identifies access control for internal, external, or both accessing user. Based upon the

object, which could be a target user or a target resource included in the list, this step generates

a rule under one of the following formats.

119

o If the policy is protecting target user’s individual information, the rule might be as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)]), (action (attribute_name: attribute_value)), ([quantifier] target_user

[(attribute_name1: attribute_value1), ….., (attribute_namen: attribute_valuen)]),

[([quantifier] environment_conditions [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)])]}- T[, (Sname, Dname)]

o If the policy is protecting user’s resource, the rule might be as follows:

{([qualifier] accessing_user [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)]), (action (attribute_name: attribute_value)),

([quantifier] target_resource [(attribute_name1: attribute_value1), …..,

(attribute_namen: attribute_valuen)] [quantifier] controlling_user [(attribute_name1:

attribute_value1), ….., (attribute_namen: attribute_valuen)]), [([quantifier]

environment_conditions [(attribute_name1: attribute_value1), ….., (attribute_namen:

attribute_valuen)])]}- T[, (Sname, Dname)]

4.7.2 Request Engine

As shown in Figure 14, Chapter 3, a request engine receives a request and then makes a

decision whether or not to grant permission to an accessing user who may then access or run an

operation on an object. Two types of request exist:

• Internal request: this request is generated by the decision engine located in the source

social network site and received by the same social network site. Internal request may

wish to access either an internal or an external object. Accessing to an internal object was

described in the PBAAC model, Chapter 3. By the assumption of accessing to external

120

object, this request will be sent to the enterprise supervision to route to the destination

social network site.

• External request: this request is generated by the decision engine located in the source

social network site and received by the decision engine located in the destination social

network site. The destination social network site extracts different sets of rules and

attributes associated to the accessing user who is a member of the source social network

site.

In the enterprise PBAAC model, there are two groups of rules.

• The first group is associated with the target users or target resources to protect their

assets.

• The second one is associated with the local supervisor located in each social network site,

which governs all local events.

A request, which accesses an external object, traverses a longer path than a request, which

accesses an internal object. The request may pass, be accepted, or may not pass, be rejected, by

several sets of rules: the enterprise supervisor, the destination supervisor located in the

destination social network site, and the destination object located in the target social network

site.

The transformation engine certifies that the request is in the well-formed format and passes it

to the request engine. The request engine collects all necessary parameters. These parameters

might come from the internal entity or the external entity. The main parameters are attributes of

the accessing user, the environmental condition, or the rules of the destination supervisor, and

resources. The request engine evaluates the request and then accepts or rejects the request. The

request engine consists three processes as follows:

121

• The first process or selecting rules process is responsible to choose appropriate rules from

large number of rules defined by entities contributing in accessing control evaluation. These

entities could be internal, external, or both.

• The second process or selecting attributes is responsible to collect all required parameters

from entities, which might be internal, external, or both. Receiving a request, this process

recognizes required parameter.

• The third process or deriving result is responsible to conclude result from collected

information. Moreover, in case of conflicts among rules, this process provides a solution as

well.

The three processes will be described in detail as follows:

Selecting rules

A target user or target resource has various rules, each of which confines access to that target

user or target resource in terms of the type of operation, environmental condition, target user’s

attributes, target resource’s attribute, and accessing user’s attribute (or a group of which the

accessing user is a member). The selecting rules process selects related rules from different sets

of rules. The two sets of rules could be as follows:

• The first set of rules was defined by the target user or owner of the resource to protect that

target user or resource against illegal access.

• The second one might be selected from a large number of rules defined by the local

supervisor existing on each social network site. These are defined as general rules to dictate

policy to control the resources for the entire social network site.

Generally, a process of the decision engine burdens the reasoning system, which is defined

for selecting appropriate rules. As we mentioned before, the request engine receives the request,

122

which may be pretended as goal. This term is used in rule engine system. Hence, the goal is

specified and selecting rule process must find a way to achieve this specified goal. A backward-

chaining system accomplishes this goal. This process was explained comprehensively in Chapter

3, so we do not explain it here. Finally, the selecting rule looks for the rules that match the

specified goal. Chapter 3 described how rules are selected.

Selecting attributes

This process provides a mechanism for searching attributes corresponding to the entity,

which participated in accessing control evaluation and could be internal or external entity. For

extracting internal entities, Chapter 3 provided a comprehensive explanation. If this process

requires more attributes of the external entity, this process generates a list of these attributes.

Through the enterprise supervision, this process sends the list to the particular social network

site, which has generated the request (i.e. source social network). This list may have the

following format:

{(-,2, -), (Sname, Dname), (subject, (attribute_name1: -), …………., (attribute_namen: -))}

In this list, Sname represents the social network site generating the list of required attributes,

and Dname represents the social network site hosting the specific entity and associated attributes.

The social network site hosting the entity and its attributes, extracts the data from the attributes

of the entity, updates the list (i.e. adding value for each attribute in the list) and through the

enterprise, supervision returns the list to the social network site, which has started this process.

{(-,2, -), (Sname, Dname), (subject, (attribute_name1: attribute_value1), ………….,

(attribute_namen: attribute_valuen))}

123

In this list, Sname represents the social network site updating the list (or the social network

site generating the access request), and Dname represent the social network site generating the

list (or hosting the specific object, which is given the request).

Similar to the PBAAC model, after choosing appropriate rules provided by the selecting

rules process and by knowing the format of every rule, determining who are allowed to access or

doing the operation on the object under particular circumstances, (i.e. environment condition) is

accomplished. The detail information about this process will not be offered here, since the entire

process has been addressed in Chapter3. Defining adjacent user and trusted user is completely

out of the scope of the enterprise PBAAC model.

Ultimately, list of accessing user who are allowed to do operation on the object will be

created. Besides, the last item of list denotes the environment condition of the enterprise social

networking site. Environmental conditions as its name presents will be computed based on each

social network site conditions and the enterprise conditions which usually might been changed

time by time. Every social network site and enterprise model store the values of the

environmental conditions. Without any doubt, for extracting entities and their associated

attributes, we require to traverse the entire social network graph existing in the enterprise

PBAAC model and by using functions provided in attribute-base function specification section

we are able to extract the entities and related information.

Deriving result

Sometimes rules defined by controlling user clash with rules defined by the supervisor of the

social networking site or the supervisor of the enterprise model. To solve this issue, we require to

compare two sets of rules considering the criteria addressed in this chapter earlier. Solving issues

124

is accomplished by a process which is called fixing clashes. Fixing clashes engine uses three

criteria to remove the conflict.

• The first criterion is the timestamp, which has been explained in Chapter 3.

• The second criterion defines rules, which overrides other rules.

• The third criterion comes from the policy metadata defined by the supervisor and the

enterprise supervisor. This determines who dominates who. For instance, the supervisor of

the enterprise model dominates the supervisor of each social networking site and supervisor

of each social network site dominates other users on the social networking site. There is a

hierarchal model for defining who dominates others.

Fixing clashes process selects a rule of the first list and compares to corresponding rule of the

second list. Comparison may be achieved based on one or more criterion. This means if fixing

clashes process found several conflicting rules having the same timestamp, then fixing clashes

process uses the second or third criteria for comparison. For simplicity our model was tuned for

the first criteria, so Fixing clashes process sorts sets of rules in ascending order, and selects the

rule of the first list and compare to the corresponding rule of the second list. Fixing clashes

process performs this step until finds a rule that overrides another rule which means conflict will

be removed, or reaches at end of the lists and does not find any rule overrides others which

means conflict will not be removed. In former case, the selected rule is able to provide an

answer for the request which could be accepted or rejected. In the latter case, due to using

conservative approach, the request will be rejected.

4.8 Examples

In order to describe how the enterprise model evaluates a request, the following example

helps to denote all steps.

125

Example 1: An enterprise model includes two social network sites, social network A and B. A

user “x” of social network B would like to read a document which is an asset under management

of social network A and belongs to the user “y”. The related inquiry might be like: “x wants to

read document1 belonging to y of social network A” The user “y” determined a policy that only

local user is allowed to access her resources. So it is expected that this inquiry will be rejected.

By pursuing the proposed method, output of each step would be as follows:

• tokenize process : < x, wants, to, read, document1, of, y, on, social, network, A>

• keyword recognition process: (<x, (noun- concrete, subject,-)>, <wants, (verb, main, -)>,

<to, (preposition, -, -)>, <read, (verb, , -)>, <document1, (noun, singular, -)>, <y, (noun-

concrete, object,-)>, <A, (noun- concrete, object,-)>)

• knowledge extraction process: {(t1,’1’, ’1’), (B, A), (<x, (subject, ∃, accessing user, -)>, <

read, (action, read, -)>, <document1, (object, ∃, target recourse, -)>, <y, (object, ∃,

controlling user, -)>)}

• request maker process: < ∃ ua (name:y), Ac (action: read), ∃ tr (name: document1) >- (t1,

(“1”), (B, A)

• request engine receives the request, because this request tries to access a resource located on

another social network, so the request is sent to enterprise supervision. Enterprise supervisor

searches in the repository, and then routs the request to the final destination.

• Social network A receives the request and local request engine makes decision like what we

showed in chapter 3. Due to stored rule belongs to user y, this request will be rejected and

then send the result to social network B through enterprise supervision.

126

5. Evaluation

5.1 NIST Standard

In any given social network, the number of users might be significant, the number of

resources that must be protected might be in millions, and hence the number of access control

policies that need to be defined might be in billions. If only one permission is incorrectly

granted, a user will be given unsupervised access to information and resources which could

jeopardize the security of the entire given social network.

Presently, security of information is an indispensable responsibility for all media keeping and

sharing information with others. In practice, all applications employ access control methods to

protect their information. Access control identifies activities of legal users and governs every

attempt performed by these users to access a resource.

Access control systems are built upon three fundamental concepts: policies, models, and

mechanisms. Access control policies are the first crucial requirement that define a method for

managing access, and a user who is allowed to access information. Access control mechanisms

translate a user access request to a system defined format like the well-formed format, which was

defined early in this document. Access control models stand between policy and mechanism, and

describe the security properties of an access control system.

The quality of access control policies affects the level of the security generated for the social

network, so it is reasonable to define various metrics to evaluate the quality of access control

systems and verify the access control properties.

Hence, four categories of metrics are defined by NIST [91]:

• Administration: defines cost, efficiency, and performance of an access control system.

127

• Enforcement: defines mechanisms and algorithms used in access control systems to enforce

the embedded access control models and rules. These functions affect the access control’s

decision-making efficiency.

• Performance: defines the efficiency of the access control system.

• Support: defines the usability and portability of the system, although these are not essential.

Based on the definition provided by NIST [92], this chapter presents several metrics for

evaluating the fundamental or enterprise PBAAC methods which we use in our approach to

implement access control methods in a social network.

Hence, the following metrics are classified based upon the four categories mentioned above:

1. Ability to combine several related rules. The PBAAC decision engine is able to collect

different access control rules, consolidate similar rules and derive a result under the specified

condition. These rules can be defined by the controlling user, the target user, and the

supervisor of the social network.

2. Ability to combine access control models. Under our approach, two access control models

are combined, namely ABAC and PBAC models. By using the ABAC model, access

constraints will be defined for each entity, and by using PBAC, policies enforcing access to a

resource will be defined. Under our model, policies will be defined by controlling user, the

target user, or the supervisor of the social network.

3. Ability to enforce the least privilege principle. Our model includes an entity as supervisor

who is the administrator of the social network. The minimum privilege principle will be

provided by rules defined by the supervisor. Our model accepts new users with various

associated attributes. In order to access control mechanisms supporting the principle of the

minimum privileges, constraints are saved as the attributes of a user.

128

4. Ability to resolve conflict rules. Rule conflicts appear when multiple access control rules are

involved granting and denying permission simultaneously. They provide different results in

terms of accepting or rejecting a demand to do an operation on an object. This means that

rules clash over granting a user’s access. To support conflict resolution, the decision engine

provides a solution for removing conflicts and chooses the rule which fulfils the given

request.

5. Ability to define rule-specific language. Every user is able to feed policies and inquiries in a

natural language. The decision engine uses a specific syntax and schema to represent policies

and inquiries which is much more efficient for disclosing information existing in them.

6. Ability to integrate or support identification and authentication of social networks. Under our

approach, the attributes of users can be presented as the identification of the users.

7. Ability to decrease response time for granting or rejecting an access request. The next section

of this chapter shows performance of the system based upon the response time of computing

a request and generating a result. In order to achieve this, we run the application for different

numbers of simple rules, different numbers of complex rules, and different numbers of

attributes associated to entities. This section provides the analysis of several scenarios using

different types of rules, the collecting results, and the drawing a graph.

8. Steps required for assigning and denying user capabilities into a social network. Under our

approach, users can be granted new capabilities by adding extra attributes associated to the

user or by defining new rules, which generally could be generated by the controlling user,

target user, or the supervisor of the social network. Furthermore, these capabilities could be

revoked by erasing the attributes or removing the rules from the social network.

129

9. Steps required for assigning and denying object access control entries into a social network.

If an object is added to the social network, the owner of the object is allowed to define

multiple policies to govern that. Moreover, the supervisor can add one or more policies to its

repository to control the object. During the lifetime of the object, the owner of the object

might require creating new rule(s), erasing some old rules, or updating the existing rule(s).

10. Support for separation of duty. One of the most fundamental access control methods is to

protect information from unintended accesses. Some users are allowed to access an object

and some users are not. Users who are duty-related to the objects are able to access the

objects. This duty might be determined by the user’s attributes or the object’s policy. Our

approach supports both mechanisms for defining the user’s duty and how this duty can be

related to a specific object.

11. Number of relationships to create an access control policy. Under our approach, there might

exist several numbers of rules. Each rule includes the essential access control elements such

as subject, action, and object; this is a simple form of rule. Sometimes we need to define a

complex rule which does not fit the simple format. The complex rule includes a nested

logical phrase of essential elements. This means that each element, except action element,

can be a logical phrase. For instance, the subject might be a logical phrase including subject,

action, and object. Access control rules are built by converting the user’s policy. The

decision engine converts natural language to a logical expression. If a user defines a complex

policy, the rule will be complex as well.

5.2 Implementation

To validate our solution, the model was implemented based on various assumptions for two

social networks including different number of members, the first social network with 20

130

members and the next with 50 members. The first assumption compares running time when the

resource owner has been given a request for access a particular resource. The resource owner

defined several rules having no-attribute, one, two, or five attributes to protect his resource. In

Figure 21 and Figure 22, linear graph shows result of running time for each set of rules, where

there are 20 and 50 members in the social network.

Figure 21 – Rules with/without Attributes for 20 Members in Social Network

Figure 22 – Rules with/without Attributes for 50 Members in Social Network

As can be seen from two graph, we have the best running time when no rules exist for the

particular resource. It can clearly be seen that when rules do not include any attribute, the

running time will be slightly increased. Compared to the previous case, the linear graph shows a

small increase if every rule includes only one attribute. Rules with two or five attributes need

extra running time, notably when the number of rules will be increased. This graph presents

131

nearly rapid rise in case of having rules from fifteen to twenty. The following graphs compare

running time of different assumptions for two social networks. The following graphs show a

little increase where there are 50 members in the social network.

Figure 23 – Rules without Attribute for 20 vs. 50 Members

Figure 24 – Rules with One Attribute for 20 vs. 50 Members

Figure 25 – Rules with Two Attributes for 20 vs. 50 Members

132

Figure 26 – Rules with Five Attributes for 20 vs. 50 Members

Figure 27 and Figure 28 show running time of the model with or without rules having

conflict, for 20 and 50 members. Interestingly, the running time for conflicting rules increases

sharply. This trend continues for up to twenty conflicting rules.

Figure 27 - Conflicting vs. Non-Conflicting Rules for 20 Members in the Social Network

Figure 28 - Conflicting vs. Non-Conflicting Rules for 50 Members in the Social Network

Figure 29 compares conflicting rules with non-conflicting rules for two social networks

having 20 and 50 members. This graph shows increase in the running time for conflicting rules.

133

Figure 29 - Conflicting vs. Non-Conflicting Rules for 20 vs. 50 Members

Figure 30 and Figure 31 present running time when resource owner defines complex rules in

two social networks having 20 and 50 members. As shown before, running times are not affected

by the type of the rules (simple versus complex) for cases of one to five rules. For more number

of rules, there is a dramatic difference in running time between the two types of rules.

Specifically, running time increases sharply when there are 20 or more complex rules. Figure 32

gathers result derived from two social networks and shows in one graph.

Figure 30 – Simple vs. Complex Rules for 20 Members

Figure 31 – Simple vs. Complex Rules for 50 Members

134

Figure 32 – Simple vs. Complex Rules for 20 vs. 50 Members

In summary, all graphs shown from Figures 21 to Figure 32 indicate that in order to have a

better running time, resource owner should define simple rules including minimum number of

attributes.

135

6. Policy-Based Attribute Access Control Functions and Algorithms

6.1 Functions

This section describes functions, which are used in our model particularly in the request

engine process for traversing the graph of the model and extracting required information from

the graph. The extracted information may be a specific user with attached attributes, a specific

group of users, a specific relationship type, a particular resource, a group of resources, or a set of

rules. The following describes these functions:

1) MemberOf: this function returns all users of the social network (SN). So this function will be

defined as follows:

MemberOf(SN) = ⋃ {user | user ϵ SN}.

For instance, user1, user2, … , and usern signed up into the social_network_site1 so they are

members of the social network site.

MemberOf (social_network_site1) = {user1, user2, …… usern}

2) Assets: this function returns all resources existing in a social network. So for a social network

site (SN), this function will be defined like:

Assets (SN) = ⋃ {resource | resource ϵ SN}.

Resources can be in various types like files, devices, and etc. There is no doubt that every

resource has an owner who defines access control policy for protecting that resource. So

access to a resource is accomplished under the resource owner’s supervision. A resource

owner is a subject and can be either a controlling user or a supervisor.

For instance, a set of assets existing in the social_network_site1 is reached as follows:

Assets (social_network_site1) = {res1, res2, ……, resn}

136

3) BelongingTo: this function returns all resources belonging to a particular controlling user or

supervisor on the social network. As mentioned earlier, controlling users and supervisors can

have one or more resources and they are the only members of the social network site who are

allowed to supervise their resources. Hence, for a social network SN, a user (u) may have

several resources. The following represents the definition:

BelongingTo (SN,u) = ⋃ {resource | (resource € u) ⋃ (u ϵ MemberOf(SN)) ⋃ (resource ϵ

Assets (SN)) }

 For instance, user1 shares associated resources such as book (book1), and photos (phot1) on

the social_network_site1, so BelongingTo returns all resources of user1:

BelongingTo (social_network_site1, user1) = {book1, phot1}.

4) ParticipantOf: this function returns all components in the enterprise model. Participants may

be either social network sites or organizations. Previously, we described that the information

of all participants are stored in the enterprise supervisor’s repository. So for the enterprise

model (ESN) consisting multiple social network sites such as SN1, SN2,……… SNn, this

function will be defined as follows:

ParticipantOf (ESN) = {SNi | SNi ϵ ESN}.

For instance, enterprise_PBAAC encompasses various social network sites such as

social_network_site1, social_network_site2, ……, social_network_siten so we have:

ParticipantOf(enterprise_PBAAC) = {social_network_site1, social_network_site2, ……,

social_network_siten}

5) RelationshipTypes: this function returns all relationship types among subjects (i.e. users)

existing on a social network. It is obvious this function does not return relations between

137

users and their resources. Hence, for a social network site SN, this function will be defined as

follows:

RelationshipTypes (SN) = ⋃ {relationship | (relationship ϵ SN) ⋃ ((user⋃user) ⋃ (user ϵ

MemberOf(SN))) }.

For instance, if “friend” and “parent” are the only relationship types in the

social_network_site1, So:

RelationshipTypes (social_network_site1) = {“frnd”, “frnd-1”, ”prnt “}

6) OwnershipType: this function returns the type of connection between subject and associated

resources. Again controlling users and supervisors are subjects who have resources.

Therefore, for a controlling user u and his resource (r) on the social networking site SN, this

function is defined as follows:

OwnershipType (SN, u, r) = ⋃ {Ownership | (r € user) ⋃ (u ϵ MemberOf(SN)) ⋃ (r ϵ

Asset(SN)) ⋃ (u⋃r) ⋃ (Ownership ϵ SN) }.

As mentioned earlier in Chapter 3, three types of ownerships (e.g. FullOwner, PartialOwner,

and CollectedBy) are determined and it would be possible to define more in terms of

requirements. For instance, user1 shared the associated book (book1) on the

social_network_site1, and user1 owns the book1 fully, so this function is as follows:

OwnershipType (social_network_site1, user1, book1) = "FullOwner"

7) AllianceWith: this function returns relationship type between two particular entities. As

mentioned earlier connection can connect subjects, objects, and subject and object. So the

function will be defined as follows: if in social network site SN, u1 and u2 are connected by a

relationship type, it can be shown like:

138

AllianceWith (SN, u1, u2) = ⋃ {relationship | (relationship ϵ RelationshipType(t)) ⋃ (u1⋃u2)

⋃ (u1 ϵ MemberOf(SN) ⋃ u2 ϵ MemberOf(SN)) }

For instance, if Alice is Bob’s friend, this function returns the relationship type between these

two entities as follows:

AllianceWith (social_network_site1, Alice, Bob) = {“frnd”, “frnd-1”}

8) ComposedOf: this function returns all resources which all together generate another resource.

As mentioned earlier, a resource may be composed of other simple resources. Hence, for a

social network SN, a resource (r) may include several simple resources like r1,r2, …., rk. The

following represents the definition:

ComposedOf (SN,r) = ⋃ {r | (r € u, r1 € u1 ,r2 € u2, …., rk € up) ⋃ (u, u1 , u2, ….,up ϵ

MemberOf(SN)) ⋃ (r, r1,r2, …., rk ϵ Assets (SN)) ⋃ (r ∁ (r1,r2, …., rk)) }

For instance, a book (book1) includes several chapters, these chapters belong to different

users in the social_network_site1, so ComposedOf returns all chapters existing in book1:

ComposedOf (social_network_site1, book 1) = {chapt1, chapt2, chapt3, ….., chaptk }.

9) ResourceToResource: this function returns relationship type between an including resource

and an included resource. So the function will be defined as follows: if in a social network

site SN, a resource r includes several simple resources like r1,r2, …., rk, it can be shown like:

ResourceToResource (SN, r, ri) = ⋃ {relationship | (relationship ϵ RelationshipType(t)) ⋃

(r⋃ri) ⋃ (r,ri ϵ Asset(SN) ⋃ (r ∁ (ri)) 1<=i<=k) }

For instance, if “chapt1” is a part of “book 1” and has a connection as “Revaggregation” in the

social_network_site1, this function returns the relationship type between these two entities as

follows:

ResourceToResource (social_network_site1, book 1, chapt1) = {“Revaggregation”}

139

10) Path_From__S_userToD_user: this function returns all paths between a source and a

destination user. One path includes identical relationship type and represents a list of users

existing in the path. Hence, for two users who S_user is a source user and D_user is

destination user and they are members of a social network, this function will be defined as

follows:

Path_From__S_userToD_user(S_user, D_user) = ⋃ {path | (path = ∑ relationshipi ϵ SN, ⋀

S_user⥤ user1 ⥤……….. ⥤ userj ⥤ D_user) ⋀ (S_user, D_user, userj ϵ MemberOf(SN)) ⋀

(relationshipi ϵ RelationshipTypes(SN)) 1<=i<=n, 1<=j<=m}.

11) Labels: this function returns all labels on the social network. Labels will be defined for

grouping entities in the social networking site. Labels' name must be started with "lbl". If

social network site SN has various labels such as l1, l2…… ln. So for all users and all

resources in the social network SN, we can define this function as follows:

Labels (SN) = ⋃ {l | ⋃ (⋃ (user ϵ MemberOf(SN)) ⋃ (user ϵ l)) ⋃ ⋃ (⋃ (resource € user)

⋃ (resource ϵ Asset(SN)) ⋃ (resource ϵ l)) }. For simplicity, a label is identified as an

attribute of an entity in our model.

For instance, if “person” is defined to classify many users and this label is the only one in the

social network site, so we have:

Label(social_network_site1) = {“person”}

12) GroupedBy: this function returns all entities grouped by a particular label. Under the social

network site SN, if label (l) groups users, the function will be defined as follows:

GroupedBy (SN, l) = {users | (user ϵ MemberOf(SN) ⋃ (l ϵ Label (SN)) }

If label lr groups resources, the function will be defined as follows:

GroupedBy(SN,lr) = ⋃ {resource | (resource ϵ Asset(SN)) ⋃ (lr ϵ Labels (SN)) }

140

One entity can belong to more than one group or have several different labels. In this case,

this label must group only either subjects or objects. This means that a particular label cannot

be used for labeling a resource and a user simultaneously. For more clarification, in

social_network_site1, a label “person” has been defined to group many users such as user1,

user2, user3, user4. So the result of this function may be as follows:

GroupedBy (social_network_site1, "person") = {user1, user2, user3, user4}

If there is a label “document” for grouping multiple resources associated with different users

in this social network site, this means these resources grouped by label “document” can be

book1, phot1. So the function returns the resources grouped by "document" as follows:

GroupedBy (social_network_site1, "document") = {book1, phot1}

13) AssociateWith: this function returns all labels grouping a particular user or a particular

resource. If social network site SN has a member (u) who may be in one or more group

labeled by l1, l2, …... ln, so this function will be defined as follows:

AssociateWith (SN, u) = ⋃ {li | (li ϵ Labels(SN)) ⋃ (u ϵ GroupedBy (SN, li)), 1<=i<=n}

If social network SN has a resource r which may be in one or more group labeled by l1, l2,

…., ln, so this function will be defined as follows:

AssociateWith (SN, r) = ⋃ {li | (li ϵ Label(SN)) ⋃ (r ϵ GroupedBy (SN,li)) , 1<=i<=n }

For more clarification, in social_network_site1 there is a member such as Alice who is in two

groups such as “manager” and “employee”. So this function returns a list of groups of which

Alice is member:

AssociateWith(social_network_site1, "Alice") = {"manager", "employee"}

If social_network_site1 consists resource photo1 which is in a group “image” the function

returns the name of the group as follows:

141

AssociateWith(social_network_site1, "photo1") = {"image"}

14) InquiryToRequest: Since the social network receives an inquiry for accessing to a particular

resource, this function will be performed. By performing several processes, which are part of

the transformation engine, this function converts an inquiry to a request.

15) RunRequest: this function receives a request and makes a decision about whether or not grant

permission to access a particular resource. This function implements the request engine.

16) RunInquiry: Since a user feeds an inquiry in social network to get access to a resource, this

function will be performed. This function calls InquiryToRequest to generate the query, and

RunRequest in order to either accept or reject the inquiry.

17) PolicyToRule: when a user defines a policy to govern associated resources, this function will

be performed. Running several processes, which are part of the transformation engine, this

function converts a policy to a rule and saves the rule into the repository associated with the

user who generates the policy.

18) AdjacentCompanion: this function checks whether a user is adjacent to a particular user or

not. By using Path_From__S_userToD_user, this function finds all paths between the source

user and the destination user, and then by considering the adjacent user definition, this

function reveals the destination user is either adjacent to the source user or not.

19) TrustworthyUser: this function determines whether a user is trustworthy by a particular user

or not. By using Path_From__S_userToD_user, this function finds all paths between the

source user and the destination user, and for each path, generates a result or value of

trustworthiness. The value of trustworthiness has been generated by multiplying weights

attached to each relation in the path. If the result meets the trusted user definition, then the

142

destination user is a trustworthy user for the source user, otherwise the destination user is not

a trustworthy user for the source user.

20) GetAccessingUser: this function which is a part of the request engine, extracts accessing user

from the request.

21) GetTargetUser: this function which is a part of the request engine, extracts target user from

the request.

22) GetTargetResource: this function which is a part of the request engine, extracts target

resource from the request.

23) GetAction: this function which is a part of the request engine, extracts action from the

request.

24) RulesOf: this function returns rules stored in a particular entity’s repository. The entity may

be target user, target resource, or supervisor. Hence, for a social network site SN, a subject S,

an object O, and an entity y, we have:

RulesOf(SN,y) = ⋃ {rule | ⋃ y: ((y ϵ S) ⋃ (y ϵ O)) ⋃ (rules € y) }

 For instance, user1 has several rules, namely rule1, rule2, rule3 on the social_network_site1, so

RulesOf returns rules as follows:

RulesOf (social_network_site1, user1) = {rule1, rule2, rule3}

25) RulesOfAction: this function returns rules that consider a specific action and are stored in an

entity’s repository. The entity may be a target user, a target resource, or the supervisor.

Hence, for a social network site SN, an entity y, a subject S, an object O, and an action a, we

have:

RulesOfAction (SN,y, a) = ⋃ {rule | ⋃ y: ((y ϵ S) ⋃ (y ϵ O)) ⋃ (rule € y) ⋃ (a ⊗ rule)}

143

26) RulesOfEnvironmentCondition: this function returns rules that consider a specific

environmental condition and are stored in an entity’s repository. The entity may be the

supervisor. Hence, for a social network site SN, an entity y, and an environment condition ec,

we have:

RulesOfEnvironmentCondition (SN, y, ec) = ⋃ {rule | ⋃ y: (rule € y) ⋃ (ec ϵ rule)}

27) AttributesOf: this function empowers us access to all attributes associated with a particular

entity on a social networking site. As mentioned earlier, supervisor, accessing users,

controlling users, target users, target resources, relationships, environmental condition, and

actions are allowed to have attributes. Hence, for a social network site SN, a subject S, an

object O, a relationship R, an action A, an environmental condition E, and an entity y, we

have:

AttributesOf(SN,y) = ⋃ {(attributeName:attributeValue) | ⋃ y: ((y ϵ S) ⋃ (y ϵ O) ⋃ (y ϵ R)

⋃ (y ϵ A) ⋃ (y ϵ E)) ⋃ (attribute ϵ Attr(S)) ⋃ (attribute ϵ Attr(O)) ⋃ (attribute ϵ Attr(R)) ⋃

(attribute ϵ Attr(A)) ⋃ (attribute ϵ Attr(E)) }

 For instance, user1 has several attributes such as userID, name, and age in the

social_network_site1, so AttributesOf returns as follows:

AttributesOf (social_network_site1, user1) = {(userID:value1), (name:value2), (age:value3)}.

28) ValueOfAttribute: this function provides access to the value of the specific attribute

associated with a particular entity in the social network site. Entities, namely accessing users,

controlling users, target users, target resources, relationships, environment condition, and

actions are allowed to have attributes. Hence, for a social network site SN, an entity y, a

subject S, an object O, a relationship R, an action A, an environmental condition E, and an

attribute a we have:

144

ValueOfAttribute(SN,y,a) = {attributeValue | (⋃attributeValue ϵ (attributeName:-)) ⋃ (⋃ y:

((y ϵ S) ⋃ (y ϵ O) ⋃ (y ϵ R) ⋃ (y ϵ A) ⋃ (y ϵ E))) ⋃ ((attribute ϵ Attr(S)) ⋃ (attribute ϵ

Attr(O)) ⋃ (attribute ϵ Attr(R)) ⋃ (attribute ϵ Attr(A)) ⋃ (attribute ϵ Attr(E))) }

For instance, user1 has an attribute attr1 such as userID in the social_network_site1, so

ValueOfAttribute returns a list as follows:

ValueOfAttribute (social_network_site1, user1, attr1) = {userID: ‘user 001’}.

29) RemoveRuleClashes: this function collects all rules, which conflict, and based on the policy

defined in the removing confrontation table, chooses one or more criteria. Based on the

criteria, this function compares the rules and then selects one of them, which fulfills the

request. For simulation, in order to remove conflicted rules, timestamp was chosen.

Algorithm result_inference provides a comprehensive description.

6.2 Algorithms

This section presents algorithms, which have been defined as analyzing the proposed model.

Decision engine

Decision engine is the main process of our approach. After receiving an input which may be

a policy or an inquiry, decision engine converts the input into a simpler format by running the

transformation engine process. If the input is a policy, the converted format will be a rule which

will be stored in the repository associated with an entity generating the policy. If the input is an

inquiry, the converted format will be a request and will be sent to request engine for either

accepting or rejecting.

Algorithm Decision_engine

Input: S: sentence

Output: answer: answer may be either “accepted” or “rejected”

1) Call transformation_engine

145

2) Call request_engine

3) Return answer

Transformation Engine

Transformation engine process receives a sentence which may be a policy or an inquiry. The

goal of defining this engine is converting input, which is a sentence in natural language, into a

format which is more recognizable and understandable by the rest of processes. Transformation

engine runs several processes.

The first step of this process creates a list of words in the input. Each word has been attached

to some grammatical points.

The next step defines a simple format to present the critical information encompassed in the

input. After performing various functions mentioned in this algorithm, the input is transformed to

the simpler format. This format looks like (subject, action, object, condition). A policy will be

converted to a rule and an inquiry will be converted to a request. The rule is saved on the

repository of the initiator or repository of the resource associated with the initiator. The request is

sent to the request engine for further processing.

Algorithm transformation_engine

Input: S: sentence

Output: Rule, Request: these are a list of subject, action, object, and conditions

1) Call NLP

2) Call knowledge_extraction

3) If input is policy

3.1) Call Rule_maker

3.2) Store Rule on the repository

4) Else

4.1) call Request_maker

4.2) return Request

146

Natural Language Process

NLP algorithm runs keyword_determination and keyword_recognition to generate a set. Each

item of the set presents a list including a word of the sentence S, and grammatical information

related to the word.

Algorithm NLP

Input S: sentence

Output W_info: list of elements in S, followed by parts of speech to each element

1) Call keyword_determination (input: sentence S, output: list of words existing in S W_list)

2) Call keyword_recognition (input: a list of words included in the sentence W_list, output:

list of elements in W_list, followed by parts of speech to each element W_info)

3) Return W_info

Keyword Determination Process

Keyword_determination extracts words from input, generates a list from these words. If

sentence S includes w1,w2,….., wn, so the format of output or W_list may look like: < w1,w2,…..,

wn>

Algorithm keyword_determination

Input S: sentence

Output W_list: list of words in S

1) Read a word from S, store into w

2) Do loop until w is not End-of-Line {

2.1) add w to W_list, separating with comma

2.2) read a word from S, store into w}

3) Return W_list

Keyword Recognition Process

Keyword_recognition attaches grammatical points to the word of the list, and creates a list of

words accompanied by parts of speech. There is a table, which has been stored on the supervisor

repository, describing syntactic and semantic features for a word. Each word will be attached two

grammatical definitions, major and minor parts of speech. The major parts of speech in English

147

are noun, pronoun, verb, adverb, adjective, determiner, preposition, conjunction, article, and

interjection. The minor parts of speech may describe the detail of major parts of speech: Noun

may be abstract, collective, common, and concrete. Pronoun may be possessive, objective,

subjective, reflexive, intensive, demonstrative, interrogative, and indefinitive. Adjectives may be

possessive. Verb can be auxiliary and main. Moreover, knowing basic grammatical terms such as

subject, object, and action helps to understand some of the principle words in the sentence.

Hence, this algorithm looks for words in the table and finds corresponding parts of speech, major

and minor. In addition, identifying negative and positive meaning for each word, helps us to

determine that this sentence will refuse or accept a request. Generally, all words have been

ordered in terms of basic grammatical terms. This means that each item of the list starts with a

subject, followed by an action and finally ended with an object of the sentence and perhaps one

or more conditions. Providing keyword_recognition receives W_list as input, the output or

W_new looks like:

{< w1,(parts of speech(major), parts of speech(minor), neg/pos meaning)>, <w2, (parts of

speech(major), parts of speech(minor), neg/pos meaning)>, ….., <wn, (parts of speech(major),

parts of speech(minor), neg/pos meaning)> }

Algorithm keyword_recognition

Input W_list: a list of words included in the sentence

Output W_info: list of elements in W_list, followed by parts of speech to each element

1) Read an element from W_list, store into w

2) Do loop until w is not End-of-List

2.1) look up w in keyword table

2.1.1) If found: fetch parts of speech (e.g. principle, major, minor, neg/pos

meaning), and attached to the word. Afterwards, add to the W_info as an element of the

list

2.1.2) Else: Error “wrong keyword”

3) Endloop

148

4) Return W_info

Knowledge Extraction

Knowledge extraction process uses the list generated by NLP process and consolidates some

elements of the list in order to generate a short and simple formatted list. Due to the order of

presenting elements on the list which is based on the principle grammatical terms of each word,

this process retrieves elements. Some elements placed side by side provides a common concept.

As a matter of fact, they complement one another. Hence, the knowledge extraction process

distinguishes these elements and integrates them. The knowledge extraction process compares

the parts of speech of elements. If both elements are subject, object, or action, then the process

compares the major information of parts of speech. Some elements such as preposition may be

deleted. Others like determiner may be used to distinguish that element is either singular or

plural. If one element presents an auxiliary verb and the next one presents the main verb, the first

element may be purged. Because this process uses natural language processing concepts to

generate the final list and it is out of the scope of this research, we don’t provide detail

explanation of this process. Occasionally, subject or object carries one or more conditions. These

conditions may be recognized by relative pronouns like who or whom in the original sentence. In

this case the condition part will be added to the element defined as subject or object. Finally, the

final list format looks like:

{(T,X), < w1,(entity type, ∀ ∃/ / ⋃/ - , entity, neg/pos meaning): condition>, <w2, (entity

type, - , entity, neg/pos meaning)>, ….., <wn, (entity type, ∀ ∃/ / ⋃/ -, entity, neg/pos meaning):

condition> }

Conditions have the following format:

(EnvCon: (time: date&time, cond:value))

149

Algorithm knowledge_extraction

Input: W_info: list of words and grammatical terms attached to each word.

Output: W_final: list of critical words and related grammatical terms

1) Read elements from W_info

2) Purge some elements like prepositions

3) Group elements which have been correlated based on the principle grammatical terms

and parts of speech, and select the element conveying the most valued information.

4) Collect metadata of correlated elements and choose the most appropriate metadata for the

selected element

5) Replace subject with accessing user, or controlling user

6) If there are auxiliary verb and main verb, delete the auxiliary verb. Replace verb with

action attached metadata to the selected element and store as one element.

7) Replace object with target user or target resource

8) Replace determiner with quantifier symbol like ∀ ∃and

9) Attach metadata information to the selected element and add to final list

Rule Maker

Rule maker process uses a predefined format to generate a rule. A rule may have the

following format:

{< ∀ ∃/ / ⋃/ - Ua [(att:value) … (att:value)] >, <action, [(att:valur), …… (att:value)] >, …..,

< ∀ ∃/ / ⋃/ - Tu/Tr [(att:value) … (att:value)] ∀ ∃/ / ⋃/ - UC [(att:value) … (att:value)] >,

[<environment condition: (att:value) [(att:value), ….., (att:value)]] }

Algorithm rule_maker

Input: W_final: list of critical words and related grammatical terms

Output: Rule: list of subject, action and object

1) Read elements from W_info

2) Replace accessing user with Ua, and controlling user with Uc

3) Replace target user with Tu, and target resource with Tr

4) Rewrite elements with particular format

5) Return Rule

150

Request Maker

Request maker process uses a predefined format to generate a request.

Algorithm request_maker

Input: W_final: list of critical words and related grammatical terms

Output: Rule: list of subject, action and object

1) Read elements from W_info

2) Replace accessing user with Ua and controlling user with Uc

3) Replace target user with Tu and target resource with Tr

4) Rewrite elements with particular format

5) Return Request

Request engine

Receiving request, request engine calls several processes to collect all rules in the social

network site, find the one, which fulfills the request perfectly, and ultimately either accept or

deny the request.

Algorithm request_engine

Input: Request: a formatted request

Output: answer: a sequence of character that may be “accepted” or “rejected”

1) Call selecting_rules

2) Call selecting_attributes

3) Call deriving_result

4) Return answer

Selecting Rules

This process collects rules from several repositories. Some rules are extracted from the

repository of the target user or target resource. Target user and target resource are included in the

request. Some rules are extracted from the repository associated with the supervisor. These

selected rules must be related to the action mentioned in the request. Moreover, if the request

includes environmental conditions, these rules must meet that condition also.

151

Algorithm selecting_rules

Input: Request: a formatted request

Output: rules: set of rules, UA: accessing user

1) Read Request

2) Extract target user or target resource

3) Extract action

4) Extract accessing user

5) Read all rules stored in the repository associated to target user or target resource

6) Select rules which are related to the specific action and environmental condition meets

the current condition of social network environment

7) Read all rules which are defined by supervisor and provided to protect the specific

target resource or target user in terms of the specific action and particular

environmental condition

8) Return rules, UA

Selecting Attributes

After passing rules collected by the selecting rules process into the selecting attributes

process, selecting attributes searches attributes associated with the accessing user of rules and

attributes associated with the accessing user of the request. Accessing users’ properties

mentioned in the rules may provide value for a name, relationship type, or label. In this case,

selection attributes process determines that the accessing user in the request has a particular

relationship with the target user or controlling user, or the accessing user in the request is a

member of the label mentioned in the rules or not.

Algorithm selecting_attributes

Input: rules: set of rules, UA: user initiated an inquiry

Output: yesrules: set of rules supported the request, norules: set of rules rejected the request

1) Extract attributes of UA

2) Loop read item from rules {

2.1) Extract accessing user from rules

2.2) Extract properties of accessing user from rules

2.3) Extract attributes of accessing user from rules

152

2.4) If UA.attributes = access user. Attributes under the defined environment

condition

2.4.1) yesrules.add(rules)

2.5) Else

2.5.1) norules.add(rules) }

3) Return yesrules

4) Return norules

Deriving Results

The main responsibility of result inference is accomplishing the final answer to a request

generated by an accessing user. This answer may accept or reject the inquiry. In order to achieve

the result, value of the two received lists (e.g. yesrules, norules) must be checked. The social

network site will not able to provide a subtle answer, if two lists are empty. If one list has value

the other does not, the answer could be accepted or rejected. Otherwise, there are several rules

which are not collaborated and are not able to derive a unique result. In this case, the algorithm

must be able to define a solution in order to generate a unique result. The algorithm would sort

the two received lists in terms of the time when the inquiry has been fed into social network site.

The items of both lists are sorted in a descending way. The first item of the two lists will be

compared. This means that recently added inquiry has the most priority for making a final result.

Hence, the algorithm chooses the greater time. If the time is equal, the algorithm checks which

rule dominates another rule. If the rule is chosen from yesrules, this means the rule from yesrules

dominates the rule extracted from norules. So the accessing user has given permission to run the

action against the resource which has been requested. Otherwise, the accessing user is not able to

do the particular action.

Algorithm deriving_result

Input: yesrules: set of rules, norules: set of rules

153

Output: Answer: a sequence of character that may be “accepted” or “rejected”

1) If yesrules is empty and norules is empty {

1.1) print “social network site is not able to make decision precisely, so the request

will be rejected”

1.2) Return answer = ‘rejected’}

2) If yesrules is not empty and norules is empty

2.1) Return answer = ‘accepted’

3) Else if yesrules is empty and norules is not empty

3.1) Return answer = ‘accepted’

4) Sort yesrules descending in terms of time when the rules have been inserted into

social network site.

5) Select the rules from yesrules which were the most recently added to the social

network site

6) Sort norules descending in terms of time when the rules have been inserted into social

network site.

7) Select the rules from norules which were the most recently added to the social

network site

8) Loop read (yesrules) is not End_of_list and read (norules) is not End_of_list {

8.1) If yesrules.Time > norules. Time

answer = ‘accepted’

8.2) Else if yesrules.Time < norules.Time

answer = ‘rejected’

8.3) Else if yesrules dominates norules

answer = ‘accepted’

8.4) Else if norules dominates yesrules

answer = ‘rejected’ }

9) If answer != ‘rejected’ and answer != ‘accepted’{

9.1) print “social network site is not able to make decision precisely, so the request

will be rejected”

9.2) answer = ‘rejected’}

 10)Return answer

154

7. Conclusions and Future Works

Conclusion

This work presents a new information security model to secure access to a resource or

individual data in a social network, from unauthorized users. This model, which is the PBAAC,

encompasses the ABAC model and the PBAC model. The PBAAC model enforces effective

access control in a single and distributed environment.

As mentioned before, the PBAAC fundamental model includes either one social network site

or one organization, and the PBAAC enterprise model (or distributed) includes either several

diverse social network sites or organizations. Under both environments, users might have various

resources and wish to share them with other legal users but not illegal users.

In the PBAAC method, every user can secure belongings by generating several policies in

natural language. Furthermore, users who intend to access or do an operation on a resource are

able to generate the inquiry in natural language. By defining policies or inquiries in natural

language, users are able to determine guidelines for controlling belongings in an efficient way,

and requestors are able to describe requirements with more clarification as well.

The PBAAC method offers a well-formed expression for storing policies and inquiries in the

social network. After receiving policies or inquiries, the PBAAC method converts them into a

new format. A policy is transformed to a rule and stored on the repository associated with a user

who created the policy. An inquiry is transformed to a query, which will be evaluated by the

proposed method.

Under this method, users are responsible to preserve their resources that could have one or

several different parts. Because a simple resource has only one owner, determining access

control to a simple resource is accomplished by a set of rules defined by only that owner. While

155

for a composed resource, enforcing access control is accomplished by several sets of rules; each

set of rules is defined by the owner of a particular part of the composed resource, and each set of

rules determines access to a part of the resource. This feature gives users the power to manage

resources in a highly secure way.

Also, a requestor is able to feed an inquiry into a social network by using natural language.

Using natural language provides users more flexibility and empowers users to protect assets in a

remarkably secure way.

A social network site or organization is governed by a super user who defines general

policies to enforce access control to all assets and resources existing in the environment. Hence,

under the PBAAC method, there are two classes of rules, the first is defined by ordinary users

and the second is defined by the super user, although it is assumed that a super user is able to

determine who is able to dominate others, and which rule overrides other rules.

When a request is generated to access or do an operation on a particular object, the request

will be evaluated, and then will be either accepted or rejected by using the access control

decision engine. The access control decision engine needs to collect several rules, several

attributes and environment condition. The several rules are defined to enforce access control of

the resource. The several attributes are attached to entities participating in the rules and query.

Afterwards, the access control decision engine evaluates them and derives a result. If the access

control decision engine finds conflicts among rules, it requires choosing one, which fulfills the

query perfectly.

The enterprise environment is designed for a homogeneous collection of social network sites.

In addition to the collection of social network sites, this model includes a supervision section to

make connections between other social network sites. The PBAAC provides an effective way for

156

sharing resources and enforcing access control, and it employs several independent graphs. The

supervision graph collaborates with the other graphs, each of which is a social network.

The PBAAC model utilizes rules and attributes to accept or reject a request. This model is a

compromise among having more basic rules including one attribute, fewer basic rules including

several attributes, and nested rules with or without attributes. The basic rule with one attribute

means that a rule addresses the entity directly by using the name of that entity. The basic rule

with several attributes means that a rule addresses the entity by using several attributes of that

entity.

The nested rule means that a basic rule may contain a subject which itself is a basic rule, or an

object which itself is a basic rule, or both simultaneously. The nesting of the subjects and

objects can continue indefinitely. The higher the number of basic rules, the better the

performance of the proposed model.

This PBAAC model or its subtypes, the fundamental model and the enterprise model, make

the following contributions:

• encompasses of the ABAC model and the PBAC model, enables users to define various

policies to govern their resources and to feed inquiries to social network in order to access or

perform an operation on a resource in the most effective way.

• enforces finer-grained access control in the basic and the enterprise social networks.

o The basic or fundamental model, which is designed for one social network, shares

resources and enforces access control. This model uses a specific data model, which captures

data from a directed graph format. This format allows an efficient way to extract information

through a graph search.

157

o The distributed or enterprise model, which is designed for a homogeneous collection of

social network sites, includes a supervision to make a connection between other social

network sites. Having an effective way for sharing resources and enforcing access control,

this model employs several independent graphs in which one graph connects to the other

graphs by the supervision graph.

• utilizes a language specification convertor to transform a policy or an inquiry to a well-

formed expression. This expression follows the format (subject, action, object, condition) to

present a rule or a request. By this definition, rules accept nested expressions, which means

the subject and the object could be a well-formed expression, as well.

• offers a technique to enforce access control to an object when it is composed of other objects.

Each composing object has its own rules to manage the access.

• determines a solution providing several rules that meet a received request, but all determined

rules cannot exist together and not all are true together. The proposed model uses three

criteria to choose a rule which fulfills the request perfectly.

• uses rules and attributes to accept or reject a request. Data analysis proves that higher

numbers of basic rules improve or speed up the performance of the system.

 Future works

As a future plan, the aforementioned model should be extended to cover several cases as listed:

• Define access user as a non-person, so the proposed model is able to utilize a social network

and the non-person generates an inquiry on behalf of a person.

• The supervisor generates an inquiry to access an object. Occasionally, the supervisor should

be able to generate various inquiries to ensure that the information security implemented for

a social network blocks all unmanaged requests.

158

• Under the enterprise model, the supervisor should be able to define policies to manage all

inquiries.

• Store all resources under one umbrella in the enterprise model. By implementing this feature,

we hope the performance of social networks will be improved. Moreover, saving all users’

rules and all supervisors’ rules in one location decreases the time of graph traversal in order

to reach the goal.

• Requesters should not be forced to be registered in the social network. Since the attributes

belonging to the requester meet the criteria for achieving entry, access will be granted. This

approach is definitely useful for social networks wherein resource owners wish unregistered

users to be able to have access if they have attributes that meet certain criteria. This method

empowers social networks to be free to have a predefined list of users who are approved for

accessing resources; this is critical for enterprise social networks where people might join or

leave the social network arbitrarily.

159

8. Bibliography

[1] Committee on National Security Systems: National Information Assurance (IA) Glossary,

CNSS Instruction No. 4009, 26 April 2010.

[2] A. Hickey, “Wireless security’s broken skeleton in the closet,”

http://searchnetworking.techtarget.com/news/1252992/WEP-Wireless-securitys-

brokenskeleton-in-the-closet, April 26, 2007.

[3] Jason Andress, “The Basic of Information Security-Understanding the Fundamental of

InfoSec in Theory and Practice,” Amsterdam: Synger Press, 2011.

[4] http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA,

November 2014.

[5] Ravi Sandhu, Pierangela Samarati, “Authentication, Access Control, and Audit,”. ACM

Computing Surveys, Vol. 28, No. 1, March 1996.

[6] Vincent C. Hu, D. Richard Kuhn, David F. Ferraiolo, “Attribute-Based Access Control,”

National Institute of Standard and Technology, Gaithersburg, MD, USA, February 2015.

[7] Ed Coyne, timothy R. Weil, “ABAC and RBAC: Scalable, Flexible, and Auditable Access

Management,”. IEEE computer society, IT Pro May/June 2013

[8] Wolfgang Emmerich, “Authentication, Access Control, Auditing, and Non-Repudiation,”

December 2015.

[9] Mike Chapple, Debra Littlejohn Shinder, Ed Tittel, “TICSA Certification: Information

Security Basics,” Pearson IT Certification, Nov 2002.

[10] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert

Miller, Karen Scarfone, “Guide to Attribute Based Access Control (ABAC) Definition and

Considerations,” NIST Special Publication 800-162, National Institute of Standard

Technology, January 2014. http://dx.doi.org/10.6028/NIST.SP.800-162

[11] L. Wang, D. Wijesekera, and S. Jajodia, “A Logic-based Framework for Attribute Based

Access Control,” in Proceedings of the 2004 ACM workshop on Formal Methods in

Security Engineering, FMSE ‘04, ACM, New York (October 2004) 45-55.

http://dx.doi.org/10.1145/1029133.1029140.

[12] I. F. Cruz, R. Gjomemo, B. Lin, and M. Orsini, “A Constraint and Attribute Based Security

Framework for Dynamic Role Assignment in Collaborative Environments,” in

Collaborative Computing: Networking, Applications and Worksharing, Lecture Notes of

the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, vol. 10, 322-339 (2009). http://dx.doi.org/10.1007/978-3-642-03354-4_24.

[13] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC) for Web Services,” in

Proceedings of the 2005 IEEE International Conference on Web Services, ICWS 2005,

160

IEEE Computer Society, Los Alamitos, California (2005) 561 - 569.

http://dx.doi.org/10.1109/ICWS.2005.25.

[14] Yuan Cheng, Jaehong Park, and Ravi Sandhu, “A User-to-User Relationship-based Access

Control Model for Online Social Networks,” In the proceedings of the 26th IFIP,

Conference on Data and Application Security and Privacy (DBSec ’12), 2012.

[15] Yuan Cheng, Jaehong Park, and Ravi Sandhu, “Attribute-aware Relationship-based Access

Control for Online Social Networks,” Institute for Cyber Security, University of Texas at

San Antonio. August 2014.

[16] Jennifer Golbeck, James Hendler, “Interfering Binary Trust Relationships in Web-Based

Social Networks,”, University of Meryland, College Park, 2006.

[17] Marsh, S, ”Formalizing Trust as a Computational Concept,”, PhD thesis. Department of

Mathematics and Computer Science, University of Sterling, 1994.

[18] Castelfranchi, C, and Falcon, R, “Principle of trust for MAS: Cognitive anatomy, social

importance, and quantification,". In Proceedings of the 3rd International Conference on

Multi Agent System. 1998.

[19] Castelfranchi, C, and Falcon, R, “Social trust: A cognitive approach. In trust and Deception

in Virtual Societies,” C. Castelfranchi and Y. Tan, Eds. Kluwer Academic Publishers.2002.

[20] Eric Yuan, Jin Tong, “Attributed Based Access Control (ABAC) for Web Services,” Booz

Allen Hamilton, Inc., McLean, Virginia, 2005.

[21] Yanjun Zuo, Brajendra Panda, “A trust-based Model for Information Integrity in Open

Systems,” Department of Information Systems and Business Education, University of

North Dakota, Grand Forks, ND,USA; Department of Computer Science and Computer

Engineering, University of Arkansas, Fayetteville, AR,USA, 2006.

[22] Shen Hai-bo, Hong Fan,”An Attribute-Based Access Control Model for Web Services,”

School of Computer, Huazhong University of Science and Technology, Wuhan 430074,

China, 2006.

[23] Ting Yu, “Negotiating trust in the Web,” IEEE Internet Computing· December 2002.

[24] Vladimir Kolovski, “Logic-based access control policy specification and management,”

Department of Computer Science, University of Maryland, College Park, USA, 2007.

[25] Thomas Y. C. Woo and Simon S. Lam, “Authorization in distributed systems: a new

approach,” Journal of Computer Security, 1993.

[26] David E. Bell, Leonard J. Lapadula, “secure computer system: unified exposition and

MULTICS interpretation,” Technical report MTR-2997, the MITRE Corporation, 1976.

161

[27] Nighui Li, Benjamin N. Grosof, and Joam Feigenbaum, “Delegation logic: a logic-based

approach to distributed authorization,” ACM Trans. Inf. Syst. Secure., 6(1):128-171, 2003.

[28] Marianne Winslett, Ckarles C. Zhang, and Piero A. Bonatti, “Peeraccess: a logic for

distribution authorization,” Proceeding of the 12th ACM conference on computer and

communications security, New York, NY, USA, 2005.

[29] Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmendilla, Kent Seamons, and Marianne

Winslett, “No registration needed: how to use declarative policies and negotiation to access

sensitive resources on the semantic web,” In European Semantic Web Symposium, May

2004.

[30] Joseph Y. Halpern and Vicky Weissman. Using _rst-order logic to reason about policies. In

In Proceedings of the Computer Security Foundations Workshop (CSFW'03), Los

Alamitos, CA, USA, 2003. IEEE Computer Society.

[31] Joseph Y. Halpern and Vicky Weissman. A formal foundation for xrml. In CSFW '04:

Proceedings of the 17th IEEE workshop on Computer Security Foundations, page 251,

Washington, DC, USA, 2004. IEEE Computer Society.

[32] Mart__n Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for

access control in distributed systems. ACM Transactions on Programming Languages and

Systems, 15(4):706{734, September 1993.

[33] C. A. R. Hoare. "Communicating sequential pr.ocesses," Commun. ACM, 21(8):666{677},

1978.

[34] Lujo Bauer, Scott Garriss, Michael K. Reiter “Distributed proving in access control

systems,” In SP '05: Proceedings of the 2005 IEEE Symposium on Security and Privacy,

pages 81{95, Washington, DC, USA, 2005. IEEE Computer Society.

[35] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. "Flexible

support for multiple access control policies,". Database Systems, 26(2):214{260}, 2001.

[36] Michael A. Harrison, Walter L. Ruzzo, and Je_rey D. Ullman. "Protection in operating

systems,". Commun. ACM, 19(8):461{471} 1976.

[37] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal role-based access

control model. ACM Trans. Inf. Syst. Secur., 4(3):191{233}, 2001.

[38] Carrie E. Gates. "Access control requirements for Web 2.0 security and privacy," In IEEE

Web 2.0 privacy and security work ship (W2SP’07), Oakland, California, USA, May 2007.

[39] Philip W. L. Fong, “relationship-based access control: protection model and policy

language,” department of computer science, university of Calgary, Calgary, Alberta,

Canada, 2011.

162

[40] Philip W. L. Fong, Ida Siahaan “Relationship-Based Access Control Policies and Their

Policy Languages,” In the proceedings of the first ACM conference on Data and

application security and privacy, New York, USA, 2011.

[41] Fahad T. Alotaiby, J. X. Chen, “A Model for Team-based Access Control (TMAC 2004),”

George Mason University, Fairfox, Virginia, USA, 2004.

[42] Roshan K. Thomas, “Team-based Access Control (TMAC): a primitive for applying role-

based access controls in collaborative environments,” Odyssey Research and Technology

Park 33 Thornwood Drive, Ithaca, NY 14850-1350, 1997.

[43] Isabel F. Cruz, Rigel Gjomemo, Benjamin Lin, Mirko Orsini, “A Constraint and Attribute

Based Security Framework for Dynamic Role Assignment in Collaborative Environments,”

ADVIS Lab – Department of Computer Science – University of Illinois at Chicago, 2009.

[44] Mohsen Saffarian, Qiang Tang, Willem Jonker, Pieter Hartel, ”Dynamic User-Role

Assignment in Remote Access Control, ” Faculty of EWI, University of Twente, the

Netherlands, Philips Research, the Netherlands, 2009.

[45] Ninghui Li John C. Mitchell, William H. Winsborough, “Design of a Role-based Trust-

management Framework,” Department of Computer Science, Stanford University, Gates

4B, Stanford, CA 94305-9045, and NAI Labs, Network Associates, Inc. 3060 Washington

Road Glenwood, MD 21738, 2002.

[46] Ninghui Li and John C. Mitchell, “Datalog with Constraints: A Foundation for Trust

Management Languages,” Department of Computer Science, Stanford University Gates

4B, Stanford, CA 94305-9045, December 2002.

[47] Ravi Sandhu, Pierangela Samarati, “Access Control: Principles and Practices,” IEEE

Communication Magazine 1994.

[48] Jaehong Park, Ravi Sandhu, Yuan Cheng, “A User-Activity-Centric Framework for Access

Control in Online Social Networks,” University of Texas at San Antonio, September 2011.

[49] Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and semantics of a

decentralized authorization language. Computer Security Foundations Symposium, 2007.

CSF '07. 20th IEEE, pages 3{15, 6-8 July 2007.

[50] Amirreza Masoumzadeh, James Joshi, “OSNAC: An Ontology-Based Access Control

Model for Social Networking System,” School of Information Science, University of

Pittsburgh, 2010.

[51] Vincent C. Hu, Karen Scarfone, “Guidelines for Access Control System Evaluation

Metrics,” http://dx.doi.org/10.6028/NIST.IR.7874, September 2012.

163

[52] Vincent C. Hu, David F. Ferraiolo, D. Rick Kuhn, “Assessment of Access Control

Systems,” Computer Security Division, Information Technology Laboratory, National

Institute of Standards and Technology, Gaithersburg, MD 20899-8930, Interagency Report

7316 September 2006.

[53] Summers R. C., “Secure Computing Threats and Safeguard,” McGraw-Hill, 1997.

[54] Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M., Haghighat, S. A., “Practical

Domain and Type Enforcement for UNIX,” IEEE Symposium on Security and Privacy,

1995.

[55] Atluri V., Huang W., “An Authorization Model for Workflows,” Proceedings of the Fifth

European Symposium on Research in Computer Security in Lecture Notes in Computer

Science, No 1146, 1996.

[56] National Computer Security Center (NCSC), “A Guide to Understanding Discretionary

Access Control in Trusted System,” Report NSCD-TG-003 Version1, 30 September 1987.

[57] Workflow Management Coalition, “Workflow Management Coalition Terminology &

Glossary”, http://www.wfmc.org/ Documentation number WFMC-TC-1011, February

1999.

[58] Pfleeger C. P., “Security In Computing,” Second Edition, Prentice-Hall PTR, 1997.

[59] Mohammad Al-Kahtani, Ravi Sandhu, “Induced Role Hierarchies with Attributes-Based

RBAC,” Goerge Mason University, USA, 2003.

[60] Zhong, Y., Bhargava, B., and Mahoui, M., “Trustworthiness based authorization on

WWW,” In IEEE workshop on Security in Distributed Data Warehousing, New Orleans,

October 2001.

[61] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. Rolebased, “access control model,”

IEEE Computer, 29(2), February 1996.

[62] Park, J., Sandhu, R., and Ahn, G. “Role-based access control on the web,”. ACM

Transactions on Information and System Security, Vol. 4, No 1, 2001.

[63] Herzberg, A., Mass, Y., and Mihaeli, J. ”Access control meets public key infrastructure, or:

assigning roles to strangers,” Proceedings of the IEEE Symposium on Security and

Privacy, 2000.

[64] Yao, W., Moody, K., Bacon, J., “A model of OASIS role-based access control and its

support for active security,” SACMAT’01, Chantilly VA, May 2001.

[65] Lightweight Directory Access Protocol (v3), RFC2251, December 1997.

[66] Dynamic Groups for LDAPV3 draft-haripriya-dynamicgroup-00.txt, October 2001.

164

[67] Al-Kahtani, M., and Sandhu, R., “A model for attribute-based user-role assignment,”

Proceedings of the18th Annual Computer Security Applications Conference, Las Vegas

NV, December 2002.

[68] Miao Liu, He-Qing Guo, Jin-Dian Su. “An Attribute and Role Based Access Control Model

for Web Services,” College of Computer Science and Engineering, South China University

of Technology, Guangzhou, China, August 2005.

[69] G. Saunders, M. Hitchens, V. Varadharajan. “Role-Based Access Control and the Access

Control Matrix,” Basser Department of Computer Science, University of Sydney,

Australia, and School of Computing & Information Technology, University of Western

Sydney (Nepan), Australia, July 2003.

[70] Xin Jin, Ravi Sandhu, Ram Krishnan, “RABAC: Role-Centric Attribute-Based Access

Control,” Institute for Cyber Security & Department of Computer Science, Institute for

Cyber Security & Dept. of Elect. And Computer Eng. University of Texas at San Antonio.

December 2012.

[71] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, “J. Karat, and A. Trombeta. Privacy-

aware role-based access control,”. ACM Trans. Inf. Syst. Secur., 13(3):24:1–24:31, July

2010.

[72] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. “Privacy-aware role based access control,”. In

Proceedings of the 12th ACM symposium on Access control models and technologies,

SACMAT ’07, pages 41–50, New York, NY, USA, 2007. ACM.

[73] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli. “Proposed NIST

standard for role-based access control,”. ACM Trans. Inf. Syst. Secur., 4(3):224–274,

August 2001.

[74] Sanjeev Arora, Eunjee Song, Yoonjeong Kim, “Modified Hierarchical Privacy-aware Role

Based Access Control Model,”. Dept. of Computer Science, Baylor University, Waco,

Texas, USA, Dept. of Information Security Seoul Women’s University Seoul, Rep. of

Korea. October 2012.

[75] Barbara Carminati, Elena Ferrari, and Andrea Perego, “Rule-Based Access Control for

Social Networks,” DICOM, Universit`a degli Studi dell’Insubria, Varese, Italy, 2006.

[76] Barbara Carminati, Elena Ferrari, and Andrea Perego, “Enforcing Access Control in Web-

Based Social Networks,” DICOM, Universit ‘a degli Studi dell.Insubria, October 2009.

[77] Philip W. L. Fong, Mohd Anwar, and Zhen Zhao, “A Privacy Preservation Model for

Facebook-Style Social Network Systems,” Department of Computer Science, University of

Calgary, Alberta, Canada, Department of Computer Science, University of Regina,

Saskatchewan, Canada, 2009.

165

[78] Philip W. L. Fong, “Relationship-Based Access Control: Protection Model and Policy

Language,” Department of Computer Science, University of Calgary, Alberta, Canada,

2011.

[79] Philip W. L. Fong, Ida Siahaan, “Relationship-Based Access Control Policies and Their

Policy Languages,” Department of Computer Science, University of Calgary, Alberta,

Canada, 2011.

[80] Hong Fan, Shen Hai-bo, “An Attribute-Based Access Control Model for Web Services,”

School of Computer, Huazhong University of Science and Technology, Wuhan 430074,

China, 2006.

[81] Mike Chapple, Debra Littlejohn Shinder, Ed Tittel, “TICSA Certification: Information

Security Basics,“ November 2002.

[82] Jonathon Tidswell, John Potter “An Approach to Dynamic Domain and Type Enforcement,”

Microsoft Research Institute, Department of Computing, Macquarie University, NSW

2109, June 2005.

[83] Yuan Cheng, Jaehong Park, Ravi Sandhu, “Attribute-aware relationship-based access

control for online social networks,” Institute for Cyber Security, University of Texas at San

Antonio, USA, 2014.

[84] Moritz Becker and Peter Sewell. “Cassandra: Distributed access control policies with

tunable expressiveness,”. In POLICY '04: Proceedings of the Fifth IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY'04), page 159,

Washington, DC, USA, 2004. IEEE Computer Society.

[85] https://en.wikipedia.org/wiki/Forward_chaining

[86] https://en.wikipedia.org/wiki/Backward_chaining

[87] https://en.wikipedia.org/wiki/Quantifier_linguistics

[88] https://en.wikipedia.org/wiki/Class_diagram

[89] https://en.wikipedia.org/wiki/Well-formed_element

[90] https://en.wikipedia.org/wiki/Well-formed_document

[91] Vincent C.Hu, Karen Scarfone, “Guidelines for Access Control System Evaluation

Metrics,” National Institute of Standards and Technology. Interagency Report 7874.

166

[92] Vincent C.Hu, David F. Ferraiolo, D. Rick Kuhn, “Assessment of Access Control Systems,”

National Institute of Standards and Technology. Interagency Report 7316.

[93] John DeTreville. “Binder, a logic-based security language,”. In SP '02: Proceedings of the

2002 IEEE Symposium on Security and Privacy, page 105, Washington, DC, USA, 2002.

IEEE Computer Society.

[94] Stuart J Russel, Peter Norvig, Ernest Davis “Artificial intelligence: a modern approach,”

Prentice Hall 2010.

[95] Namarta Kapoor, Nischay Bahl, “Comparative Study of Forward and Backward Chaining in

Artificial Intelligence,” Post Graduate Department of Computer Science, D.A.V. College,

Jalandhar. International Journal of Engineering and Computer Science, April 2016.

