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Abstract 

 Fissured rice kernels break during milling, leading to head rice yield (HRY) reductions. 

Conventional fissure detection instruments cannot be used to observe fissures in rough rice 

kernels, the form in which rice in normally dried and stored. X-rays can penetrate hulls allowing 

visualization of the internal structure of a rough rice kernel. This study evaluated the capability 

of X-ray imaging to adequately detect fissures in rough rice and established a correlation 

between HRY and the fissured kernel percentage (FKP) in a rough rice sample. Fifteen long-

grain rice cultivars, harvested in Arkansas in 2015 and 2016 were dried using heated air at 60ºC, 

10% relative humidity (RH) for various combinations of drying durations and post-drying 

treatments that resulted in varying degrees of fissuring and HRYs. Fissure detection was 

conducted using an X-ray system with rough rice and compared to that of a grainscope, a 

conventional fissure detection instrument, with brown rice. A strong correlation (R2 = 0.95) was 

shown to exist between sample HRY and the FKP of the rough rice sample after drying, resulting 

in a regression equation that could be used to estimate HRY. Having confirmed the impact of 

fissured kernels on HRY, the X-ray system, with an augmented drying apparatus, was used to 

evaluate the impact of kernel thickness and moisture content (MC) on rice fissuring. Two long-

grain rice cultivars were harvested in Arkansas in 2016, each at two MC levels (high and low), 

and fractionated into three thickness fraction sub-lots (thin, medium, and thick). The fissuring 

susceptibility of kernels from each sub-lot was evaluated during drying. Generally, with increase 

in kernel thickness, the FKP increased for high-MC lots. In regards to MC, high-MC had greater 

FKPs than the low-MC lots. Overall, these findings show the importance of kernel fissuring to 

the rice industry, and highlights the role of kernel properties on fissuring during drying.  
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I. INTRODUCTION 

Head rice yield (HRY) is an important parameter used to determine the milling quality of 

rice. The United States Department of Agriculture (USDA) defines HRY as the mass percentage 

of rough rice that remains as head rice after milling, where head rice comprises kernels and 

kernel fragments that are at least three-fourths of their intact length. Rice kernels with fractures 

of the endosperm are classified as fissured and are known to break during milling leading to 

HRY reductions. Therefore, understanding and minimizing rice kernel fissuring is an important 

goal of the rice industry.  

Fissures are known to form in rough rice kernels while in the field, during drying or 

during storing. Yet, conventional fissure detection instruments and methods can only detect 

fissures in brown and milled rice kernels. This study utilized X-ray imaging to detect fissures in 

rough rice, the form in which rice is most often dried and stored.  

This study was conducted in two parts: the first part evaluated the ability of X-ray 

imaging to detect fissures in rough rice kernels and how the fissure detection capability of an X-

ray system compares to that of a grainsope, a conventional fissure detection instrument, in brown 

and milled rice. Additionally, a correlation between sample HRY and the proportion of fissured 

kernels in the sample was established.  

The second part of the study utilized an X-ray system with an augmented apparatus to 

enable drying and tempering of rough rice kernels within the X-ray system. The X-ray system 

and the augmented drying apparatus together referred to as a drying system, was used to 

determine the impacts of kernel thickness and moisture content (MC) on fissuring. Two long-

grain rice cultivars were each harvested from the same field at two different MC levels. Each 

MC-lot was fractionated into three thickness fractions resulting in six sub-lots per cultivar, then 
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the fissuring susceptibility of each sub-lot evaluated during the drying process. Drying 

experiments were conducted using the drying system by exposing kernels to drying air, 

tempering and storing for predetermined durations followed by fissure detection. 
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II. X-RAY DETECTION OF FISSURES IN ROUGH RICE KERNELS 

 

A. Abstract 

 
X-ray imaging is a viable method of fissure detection in rough rice kernels owing to the 

ability of X-rays to penetrate hulls, thus allowing visualization of internal rice kernel structure. 

Traditional methods of fissure detection are only applicable for brown and milled rice, and 

therefore cannot be used to study fissures developed during rough rice drying. In this study, the 

fissure detection capability of an X-ray system was evaluated and the relationship between head 

rice yield (HRY), as measured through laboratory milling, and the percentage of fissured rough 

rice kernels was determined. Long-grain rice lots of various cultivars were dried using heated air 

at 60ºC, 10% relative humidity (RH) for five drying durations to produce different degrees of 

fissuring, and then milled to determine HRY. A strong linear correlation (R2 = 0.95) between 

HRY and the percentage of fissured rough rice kernels after drying was determined. This 

correlation confirms the substantial impact that kernel fissures have on milling yields. Overall, 

these findings show the effectiveness of X-ray imaging in rough rice fissure detection, which 

could allow for in-situ drying research that may provide a better understanding of kernel 

fissuring kinetics. 
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B. Introduction 

 Fissures in rice kernels are fractures of the endosperm that can either be perpendicular to 

the long axis of the kernel (Kunze and Calderwood, 2004) or in no specific alignment (Stermer 

1968; Bautista et al., 2000). During milling, rice kernels tend to break at the fissure sites. The 

resulting kernels that are less than three-fourths of an intact kernel are referred to as brokens; the 

remaining kernels are referred to as head rice. Head rice yield (HRY) is defined as the mass 

percentage of rough rice that remains as head rice after milling (USDA, 2009). Brokens have a 

reduced commercial value, typically between 60% - 80% of the value of head rice 

(Siebenmorgen et al., 2008). Therefore, minimizing kernel fissuring is an important goal of the 

rice industry.  

 Fissures can occur in the field due to rapid moisture adsorption by low-moisture content 

(MC) kernels (Kondo and Okamura, 1930; Kunze, 2008) or after harvest due to improper drying 

and/or tempering (Kunze, 1979; Schluterman and Siebenmorgen, 2007). Extensive research has 

been conducted to understand rice fissuring mechanism(s). Banaszek and Siebenmorgen (1990), 

in a study to determine the effects of moisture adsorption on HRY, observed that exposure of 

rice at 9% MC1 to a high relative humidity (RH) of 90% resulted in HRY reductions of over 20 

percentage points. Inter-kernel MC differences during storage and/or transportation can also lead 

to kernel fissuring. Calderwood (1984) observed that mixing of rough rice at 8% MC with rice at 

≥17% MC caused severe HRY reductions. Cnossen and Siebenmorgen (2000) presented a 

hypothesis that addresses rice kernel fissuring during drying and tempering. This hypothesis 

identifies the role of intra-kernel material state differences on fissure formation. Similarly, Steffe 

                                                      
1
 All moisture content values are expressed on a wet basis. 
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and Singh (1980) and Iguaz et al. (2006) observed that tempering minimized fissured kernel 

percentage and resulting HRY reduction. 

 Fissures in brown and milled rice kernels can be detected using laboratory instruments 

such as video microscopy systems (Bautista et al., 2000), grainscopes (Cao et al., 2004; 

Siebenmorgen et al., 2005), and fissure inspection boxes (Iguaz et al., 2006; Bautista et al., 

2009). However, these instruments are not applicable for fissure detection in rough rice kernels, 

the form in which rice is most often dried and stored. X-rays have the capability to penetrate the 

hull, thereby enabling fissure detection in rough rice kernels. Henderson (1954), using X-ray 

imaging, showed that the length of small fissures increases as kernels are dried. Kumar and Bal 

(2007) used X-ray imaging to detect fissures in rough rice kernels and developed a graphical user 

interface that could enumerate fissures in a rice kernel. Menezes et al. (2011) used X-ray 

imaging to correlate the extent of fissuring in rice seeds with germination and sprout 

development. X-ray imagining has equally been used to study defects in other grains. Haff and 

Slaughter (2004) compared a real-time digital X-ray system to a film-based X-ray system in 

detection of insect infestation at different insect developmental stages in wheat kernels. The 

study showed that the film-based X-ray system yielded greater infestation detection percentages 

from the egg through the 3rd instar stages, with no significant differences being observed in the 

two instruments from the 4th instar and beyond. 

  Grainscopes have been widely used as a method of fissure detection due to low cost and 

portability. Using a grainscope, Cao et al., (2004) showed that electric field treatment of rough 

rice at 25ºC did not lead to fissuring. Likewise, Siebenmorgen et al. (2005) showed that as drying 

temperatures increased, fissured kernel percentages increased, with most fissures appearing 

within 24 h after drying had ceased. Similarly, Hayashi et al. (2015) used a grainscope to 
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develop a method for evaluating differences in fissuring resistance among cultivars. However, to 

use a grainscope, the hulls have to be removed from kernels, which is a time-consuming process. 

It is thus appropriate to determine if eliminating the dehulling process by using an X-ray system 

to detect fissures in rough rice is as reliable as using a grainscope to detect fissures in brown rice.      

 Currently, laboratory milling is the only method used for measuring HRY, yet, there is an 

increasing demand for an instrument that can rapidly estimate this parameter. The process of 

milling and separating head rice from brokens in laboratory milling operations is time-

consuming, and therefore, there is a need for a method that can provide rapid HRY estimates 

without having to mill samples. Research has shown good correlations between the number of 

fissured brown rice kernels and HRY reduction using a grainscope (Bautista et al., 2009). 

However, as aforementioned, the use of a grainscope for fissure detection is limited to brown and 

milled rice kernels. It is thus relevant to determine if X-ray detection of fissures in rough rice 

improves the prediction of HRY.  

 The goal of this research was to evaluate X-ray imaging as a method for fissure detection 

in rough rice kernels. The objectives of this study were: 

(1) to develop a method for fissure detection in rough rice kernels using an X-ray system, 

(2) to compare the fissure detection capabilities of X-ray imaging in rough rice kernels to that of a 

grainscope in brown rice kernels, and 

(3) to establish a relationship between the percentage of fissured kernels in a rough rice sample 

and the sample HRY. 
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C. Materials and Methods 

Rice Samples 

Fifteen rough rice samples, comprising long-grain cultivars grown in Arkansas, were 

harvested at MCs ranging from 16% to 24% from the locations indicated in table 1. All samples 

were cleaned using a dockage tester (XT4, Carter-Day, Minneapolis, Minn.) to remove material 

other than grain. Each sample was then placed in sealed plastic bags, which were contained in 

sealed tubs, and stored in a walk-in cooler at 4°C until when used for the experiment. 

Table 1. Summary of harvested rice samples.    

Year Location Cultivar 

 

Harvest MC (%, w.b.) 

 

2015 Keiser, Ark LaKast 18.2 
 Keiser, Ark XL753(a) 17.0 
 Keiser, Ark CL152 20.8 
 Pocahontas, Ark XL760 20.0 
 Pocahontas, Ark XL753(b) 19.0 

2016 Harrisburg, Ark Aura115 15.9 
 Harrisburg, Ark Cheniere 18.2 
 Harrisburg, Ark CL151 17.9 
 Harrisburg, Ark CLXP766 17.5 
 Harrisburg, Ark XL753 16.6 
 Harrisburg, Ark CLXL745 19.9 
 Harrisburg, Ark CL111 17.0 
 Harrisburg, Ark XL760 16.4 
 Harrisburg, Ark XL723 19.2 
 Keiser, Ark Roy J 23.6 

 

 

In order to create samples with a range of fissured kernels, rough rice from each cultivar 

lot was dried for varying durations. Approximately 1 kg of rough rice from each of the 15 lots 

was removed from the cooler and allowed to equilibrate at room temperature (21 ± 2ºC) before 

drying. From each 2015 cultivar-lot, four 200-g sub-lots were each dried using air at 60ºC, 10% 

RH in thin layers on 318 x 227 mm trays with perforated bottoms for two drying durations: 30 
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min for two sub-lots and 60 min for the other two sub-lots. Similarly, from each 2016 cultivar-

lot, five 200-g sub-lots were dried for three drying durations: 0 min for one sub-lot, 20 min for 

two sub-lots, and 40 min for the remaining two sub-lots. The drying air conditions were 

maintained by an environmental chamber (ESL 4CA Platinous Temperature and Humidity 

Chamber, Espec, Hudsonville, Mich.). The chamber is capable of maintain temperature in the 

range of -35°C to 150°C (±0.5°C) and RH in the range of 6% to 98% (±1%) at an airflow rate of 

0.38 m3 s-1. One of the two sub-lots from each drying duration was tempered in a sealed bag at 

60ºC for 2 h immediately after drying and before cooling, whereas the other sub-lot was cooled 

immediately after drying by exposing the kernels to air at room temperature (21 ± 2ºC). These 

drying/post-drying treatments are known to produce drastically different degrees of fissuring 

consequently, a range of HRYs (Schluterman and Siebenmorgen, 2007; Ondier et al., 2012). 

These treatments are included in the experimental layout diagram in figure 1. Thereafter, all 70 

sub-lots were slowly dried to a MC of 12.5 ± 0.5% in a climate-controlled chamber (26ºC, 56% 

RH) regulated by a standalone conditioner (5580A, Parameter Generation and Control, Black 

Mountain, NC). 
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Figure 1. Layout of the experimental design for fissure detection in dried kernels.  

 

Magnification Level 

As with most imaging systems, it is important to have a field of view that allows 

observing a maximum number of kernels. However, there is a tradeoff between the field of view 

and the degree of magnification, which provides a suitable image resolution for fissure detection. 

The X-ray system used in this study (UltraFocus 60, Faxitron Bioptics LLC., Tucson, Ariz.) and 
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shown in figure 2a features seven magnification levels, as shown in figure 2b. In order to 

determine a suitable magnification to provide high-resolution fissure detection, approximately 

350 rough rice kernels were placed within the X-ray system on an acrylic sample shelf provided 

with the system. X-ray images of the kernels were then taken at each available magnification 

level at 32 KeV energy, 0.34 mA current, and 5.5 s exposure duration by placing the sample 

shelf in the various slots indicated in figure 2b. All seven images were then visually analyzed 

and a suitable magnification selected based on image resolution and number of kernels that could 

be visualized at each magnification. 

 

     

Figure 2. An image of the Faxitron UltraFocus 60 X-ray system (a) and a schematic illustration 

showing the position of each level of magnification (b). As magnification increases, the field of 

view decreases.  

 

Kernel Orientation 

Identification of an appropriate orientation of rough rice kernels that would allow 

complete fissure detection was achieved by randomly selecting five fissured rice kernels. The 
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identified kernels were X-rayed at a dosage of 32 KeV, 0.34 mA, and 5.5 s with the kernels 

placed on the width side (figure 3a), then on the thickness side (figure 3b). The resulting two 

images were then compared using photo-editing software (Microsoft Paint, Microsoft 

Corporation, Redmond, Wash.) and an appropriate orientation identified based on visual 

observation. 

 
Figure 3. Illustration of the width-side (a) and thickness-side (b) views of a rough rice kernel. 

 

Fissure Detection in Non-dried Kernels 

A grainscope detects fissures in brown and milled rice kernels, whereas an X-ray system 

can detect fissures in rough rice kernels as well. In order to determine how both instruments 

compare when viewing high-MC, pre-dried kernels, a 100-kernel sample, at MCs near the 

harvest MCs shown in table 1, was randomly selected from each of the 15 cultivar lots before 

drying. Each 100-kernel sample was divided into five 20-kernel sub-samples. Fissured kernels 

were then enumerated using the X-ray system by placing a 20-kernel sub-sample at the 3X 

magnification position shown in figure 1b at a dosage of 32 KeV, 0.34 mA, and 5.5 s. The same 

20-kernel sub-sample was then dehulled by hand to produce brown rice kernels and fissures 

detected using both the X-ray system, at 3X magnification as above, and a grainscope (TX-200, 
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Kett Electric Laboratory, Tokyo, Japan). This procedure was repeated for the other four sub-

samples of the cultivar lot, and then the entire procedure was applied to the remaining 14 

cultivar-lots of table 1. For this study, a kernel with a visible fracture of the endosperm was 

considered a fissured kernel, irrespective of the fracture length. 

Fissure Detection in Dried Kernels 

Fissures can readily occur due to the drying process. It was thus relevant to determine 

how the X-ray system and the grainscope compared in detecting moisture desorption fissures. 

For each sub-lot from each cultivar lot that had been exposed to the various drying and post-

drying treatments and then conditioned to 12.5% MC, a 100-kernel sample was selected and 

divided into five 20-kernel sub-samples. Fissure detection was then conducted using the X-ray 

system at a dosage of 32 KeV, 0.34 mA, and 5.5 s in rough rice and brown rice, and the 

grainscope in brown rice for each of the five 20-kernel sub-samples; the experimental layout is 

shown in figure 1.  

Milling Analysis 

After the 200-g samples from the drying/post-drying treatments had been dried to 12.5% 

MC, HRYs were determined by milling a 150-g rough rice sample from each of the sub-lots. 

These 150-g milling samples were taken from each of the four sub-lots of the five cultivar-lots 

harvested in 2015 and from the five sub-lots from each of the 10 cultivar-lots harvested in 2016; 

thus, a total of 70 HRY determinations were made. Of these 70 combinations, 47 were randomly 

selected and used in deriving an equation relating fissured kernel percentage to HRY, and 23 for 

validating the ability of the derived equation to predict HRY.  

The milling procedure consisted of first dehulling 150 g of rough rice using a laboratory 

dehuller (Rice Machine THU, Satake Engineering Co., Tokyo, Japan) with a clearance of 0.48 
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mm between the rolls. The resulting brown rice was then milled for 30 s using a laboratory mill 

(McGill No. 2, Rapsco, Brookshire, Texas) with a 1500-g mass placed on the lever arm 150 mm 

from the centerline of the milling chamber. Head rice was then separated from brokens using a 

shaker table (Grain Machinery Mfg. Co., Miami, Fla.).  

Data Analyses 

 Data analysis was conducted using a statistical package (JMP Pro release 12.0.1, SAS 

Institute Inc., Cary, NC) to determine a possible correlation between HRY and fissured rough rice 

kernel percentage detected by the X-ray system. Significant differences among fissure detection 

capabilities of an X-ray system in rough rice and brown rice, and a grainscope in brown rice were 

established using Tukey-Kramer Honestly Significant Difference procedure (HSD P < 0.05). 

D. Results and Discussion 

The effect of increasing magnification on image resolution is shown in figure 4, whereas 

the effect of magnification on the available field of view is shown in table 2. Figure 4 and table 2 

show the tradeoff between the number of kernels that can be viewed and the resulting image 

resolution. As expected, with an increase in magnification, the image resolution increases and the 

available field of view decreases. The 3X to 6X magnification produced high-resolution images 

at 32 KeV energy, 0.34 mA current, and 5.5 s exposure duration in which fissures in rough rice 

kernels could be detected (figure 4), corroborating findings by Kumar and Bal (2007) that 

showed the potential of X-ray imaging to detect fissures in rough rice. Due to the biological 

variability among individual rice kernels, having a greater field of view is desired to provide a 

more representative sample. Thus, the 3X magnification was deemed the optimal magnification, 

yielding high-resolution images that clearly show fissures, yet with an adequate field of view that 

allows observation of 50 to 70 rough rice kernels per X-ray image.   
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Table 2. Field of view dimensions and number of kernels that can be viewed for each 

magnification level in the X-ray system. 

 

Magnification level Field of view (mm × mm) Number of kernels 

6X 17 × 25 10 - 20 

5X 20 × 30 20 - 30 

4X 25 × 37.5 30 - 40 

3X 33 × 50 50 - 70 

2X 50 × 75 150 - 160 

1.5X 67 × 100 180 - 250 

1X 100 × 150 >350 
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Figure 4. X-ray images of rough rice kernels at 1X, 2X, 3X, 4X, 5X, and 6X magnifications. 

Each image contains the same set of rice kernels. 
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Fissures in rough rice kernels were detectable in both the width and thickness 

orientations. Figure 5 shows an X-ray image of five rough rice kernels positioned in both 

orientations. All fissures detected in the thickness orientation were also detected in the width 

orientation. However, not all fissures in the width orientation were detected in the thickness 

orientation. The fissures that could only be detected on the width side of the kernel are 

considered surface fissures; this could be the reason why they were not detected on the thickness 

side. Therefore, placing kernels to allow exposure to the width side when presented for X-ray 

imaging was deemed appropriate for detecting both surface and internal fissures in rough rice 

kernels. 

 
Figure 5. X-ray images of five rough rice kernels placed to be viewed in the width (a) and 

thickness (b) orientations. 
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Table 3 shows comparisons among the fissured kernel percentages detected in rough rice 

and in brown rice by the X-ray system, and in brown rice by the grainscope, for rice at 

approximately the harvest MCs of the lots listed in table 1. The percentage of fissured kernels 

detected in rough rice and brown rice by the X-ray system, and in brown rice by the grainscope 

for the same rice lot were not significantly different, across all cultivar lots as determined by 

Tukey’s HSD procedure. The slight variations in fissured kernel percentages were attributed in 

part to the biological variation that exists between individual rice kernels within a 20-kernel sub-

sample and the capability differences of the X-ray system and a grainscope. Therefore, fissure 

detection in high-MC rough and brown rice by the X-ray system and in high-MC brown rice by 

the grainscope were deemed similar. This finding has implications for conducting field research 

aimed at assessing fissuring levels in high-MC rice; the use of a highly portable grainscope in 

field applications appears to be comparable to using an X-ray system, which is a more elaborate, 

laboratory approach.  
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Table 3. Comparisons among fissure detection capabilities of the X-ray system in rough rice and 

brown rice, and the grainscope in brown rice for 15 rice lots at various harvest moisture. Each 

value represents the mean fissured kernel percentage of five 20-kernel sub-samples. Using 

Tukey’s Honestly Significant Difference procedure, there were no significant differences in 

fissured kernel percentages determined by the three approaches within each cultivar lot. 

    Fissured kernel percentage (%) 

Year Cultivar 
Rough rice  

(X-ray) 

Brown rice  

(X-ray) 

Brown rice  

(Grainscope) 

2015 LaKast 8 6 4 
 XL753(a) 2 2 2 
 CL152 4 4 2 
 XL760 3 5 5 
 XL753(b) 16 18 19 

2016 Aura115 15 13 10 
 Cheneire 2 2 2 
 CL151 4 5 2 
 CLXP766 6 7 8 
 XL753 6 6 6 
 CLXL745 10 10 11 
 CL111 3 4 6 
 XL760 6 5 5 
 XL723 2 3 3 
 Roy J 4 5 5 

 

 

Figure 6 shows the fissure detection comparison between the X-ray system and the 

grainscope, both using dried brown rice kernels. Figure 6 shows a slope of 1.04 which implies 

that the two approaches are similar. The root mean square error (RMSE) of 8 percentage points, 

which is equivalent to 1-2 kernels per 20-kernel sub-sample, indicate that there are marginal 

differences between the X-ray and grainscope methods of fissure detection in brown rice kernels. 

There is a general trend, however, showing that the X-ray system detected slightly more fissured 

kernels than the grainscope, as indicated by the slope of the fitted line which is greater than 1. 

This trend may be due in part to the different operating principles of an X-ray system and a 

grainscope; as opposed to an X-ray system that uses ionizing radiation, a grainscope uses visible 
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light and thus, a slight variation in kernel orientation when using a grainscope could make a 

fissure(s) non-detectable by the human eye. 

 
Figure 6. Comparison between fissure detection capabilities of an X-ray system and a grainscope 

using dried brown rice kernels. Most fissures were created by varying degrees of drying severity 

and post-drying treatments. R2 is the coefficient of determination and RMSE is the root mean 

square error. 

Figure 7 compares the fissure detection capabilities of the X-ray system using rough rice 

and the grainscope using brown rice. Analogous to figure 6, figure 7 shows a slope of 1.03 which 

implies that the two approaches are similar with few cases where there are great deviations from 

the fitted line. As was the trend in figure 6 using brown rice kernels, figure 7 indicates a trend 

that the X-ray system detected more fissured rough rice kernels than was detected in brown rice 

kernels using a grainscope. At fissured kernel percentages less than 20%, the data points fit 

closer to the fitted line than when the fissured kernel percentages were greater than 20%. This 

trend implies that the two instruments have similar fissure detection capabilities at <20% than at 

>20% fissured kernel percentages. 
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Figure 7. Comparison between fissure detection capabilities of an X-ray system using dried 

rough rice kernels and a grainscope using dried brown rice kernels.  Most fissures were created 

by varying degrees of drying severity and post-drying treatments. R2 is the coefficient of 

determination and RMSE is the root mean square error. 

 

Figure 8 shows the relationship between HRY and the percentage of fissured rough rice 

kernels detected in dried samples using the X-ray system. The plot shows that HRY is an inverse, 

linear function of the fissured kernel percentage with a correlation coefficient (R) of -0.97. These 

findings corroborate those of Iguaz et al. (2006) and Siebenmorgen et al. (2007) wherein an 

increase in HRY reduction was observed with an increase in the percentage of fissured brown 

rice kernels observed using a fissure inspection box and a grainscope, respectively. The 

regression equation relating, HRY to the percentage of fissured rough rice kernels in a dried 

sample is;  

y = 63.124 – 0.603x           (1) 

where, y = predicted head rice yield (%) and x = percentage of fissured rough rice kernels in a 

dried sample as detected using an X-ray system (%). 
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Figure 8. Correlation between head rice yield and fissured rough rice kernel percentage detected 

by an X-ray system. R2 is the coefficient of determination and RMSE is the root mean square 

error. 

 

The coefficient of determination (R2) (figure 8) implies that 95% of the variability in 

HRYs can be attributed to the percentage of fissured rough rice kernels in a dried sample. The 

remaining variability in HRYs can be explained by other factors such as kernel maturity (Lu and 

Siebenmorgen, 1995), chalkiness (Webb, 1985; Bautista et al., 2010), and insect damage (Arthur 

et al., 2012). Immature, chalky, and insect-damaged kernels are known to be mechanically-

weaker than completely sound kernels and are likely to break during milling. Breakage from 

these kernels would further reduce HRY than what fissured kernels alone would. 

The observed correlation coefficient (-0.97) between HRY and the percentage of fissured 

rough rice kernels, was greater than the value of 0.87 observed by Bautista et al. (2009) as the 

correlation between HRY reduction and the percentage of fissured brown rice kernels detected 

using a grainscope. The improved correlation observed in the current study is attributed to the 

ionizing-radiation capabilities of the X-ray system, which allowed for more accurate fissure 

detection, even in rough rice kernels. 
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In order to validate the ability of equation 1 to predict HRY from the fissured kernel 

percentage, the HRYs predicted using equation 1, for each of the 23 sub-lots that were allocated 

as a validation set, were compared to the HRYs determined through laboratory milling. The 

comparison, shown in figure 9, indicates that equation 1 provided satisfactory HRY predictions 

since the difference in RMSE of figure 8 (4.20) and that of figure 9 (4.92) is not large. Most data 

points in figure 9 are above the y = x reference line, an indication that the HRY value predicted 

using the X-ray-based equation was greater than the value actually measured through a milling 

analysis by an average of 5 percentage points. Thus, the validation procedure yielded similar 

trends to the correlation results of figure 8 that produced equation 1. Therefore, the HRY 

obtained through milling would be expected to be less than that predicted by the equation (eq. 1). 

This is interpreted to mean that the fissured kernel percentage alone is not the only relevant 

factor in determining HRY; other kernel imperfections, as mentioned above, could play varying 

roles in reducing HRY. In spite of this overestimation, equation 1 is still deemed useful in 

providing rapid estimates of expected HRY without having to de-hull or mill a rough rice 

sample. 
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Figure 9. Head rice yield (HRY) predicted using equation 1 (y = 63.124 – 0.603x) vs HRY 

determined through laboratory milling for the 23 sub lots allocated as a validation set. R is the 

correlation coefficient and RMSE is the root mean square error. 

E. Conclusions 

 Experiments were performed to evaluate the ability to observe fissures in rough rice 

kernels using an X-ray system. A 3X magnification provided a 33 × 50-mm field of view 

allowing 50 – 70 rough rice kernels to be observed per X-ray image. The 3X magnification was 

deemed sufficient to provide an optimal balance between image resolution for fissure detection 

and the available field of view. Placing rough rice kernels on the width side, which is the manner 

in which rice kernels typically orient due to kernel shape and density, was found to provide a 

better representation of fissures present in kernels than on the thickness side when using the X-

ray system. There was an overall trend to detect more fissured kernels with the X-ray system in 

rough rice kernels than a grainscope in brown rice kernels, particularly when the fissured kernel 

percentages were greater than 20%. For fissured kernel percentages less than 20%, the X-ray 

system and the grainscope were similar. 
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 Head rice yield was strongly correlated with the percentage of fissured rough rice kernels, 

as indicated by a correlation coefficient (R) of -0.97 and a coefficient of determination (R2) of 

0.95. The existence of such a strong correlation is a valuable consideration for designing 

instruments that can rapidly estimate HRY by evaluating the percentage of fissured rough rice 

kernels in a rice lot. 

 Validation of this correlation equation was conducted. The correlation equation 

overpredicted HRYs by an average of 5 percentage points; the difference between predicted 

HRYs and those determined through milling were attributed to factors other than fissured 

kernels, such as the presence of immature, chalky, and insect-damaged kernels, which are likely 

to break during milling, further reducing HRY than what fissured kernels alone would. However, 

the equation derived in this study is still deemed useful in providing rapid estimates of expected 

HRY without lengthy milling analyses.  

 This study has shown the ability of X-ray imaging to adequately detect fissures in rough 

rice kernels, the form in which rice is most often dried and stored. Such detection capabilities 

provide opportunities for in-situ rough rice drying research aimed at better understanding of 

kernel fissuring kinetics. 
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III. RELATIVE IMPACT OF KERNEL THICKNESS AND MOISTURE CONTENT 

ON RICE FISSURING DURING DRYING  

A. Abstract 

 Individual kernel thickness and moisture content (MC) vary within rice panicles. These 

variations affect the drying characteristics of rice kernels and consequently, the milling yield. This 

study utilized an X-ray system augmented with an in-situ rice drying apparatus that enabled fissure 

detection in rough rice kernels during drying and tempering. Rough rice kernels of two long-grain 

cultivars (Roy J and CL XL745), each at two MC levels (20% and 16%, w.b.), were fractionated 

into three thickness fractions (thin <1.98 mm, medium 1.98 - 2.03 mm, and thick >2.03 mm). 

Kernels from each of the 12 sub-lots were dried and tempered under controlled air conditions. 

Fissured kernel percentages (FKP) were determined from X-ray images taken during, before, and 

after drying and tempering. Kernel thickness and MC both affected moisture desorption fissuring. 

Generally, as kernel thickness increased, the FKP increased for high-MC lots. In regards to MC, 

high-MC lots were more prone to fissuring than the low-MC lots. Overall, these findings highlight 

the role of kernel properties on fissuring during drying.  
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B. Introduction 

Fissures in rice kernels are fractures of the endosperm that can either be perpendicular to 

the long axis of the kernel (Kunze and Calderwood, 2004) or can be in an irregular alignment 

(Stermer 1968; Bautista et al., 2000). During milling, rice kernels tend to break at fissure sites, 

resulting in kernels that are classified as either head rice or brokens. Head rice represents kernels 

that are at least three-fourths of an intact kernel, while the remaining fragments are referred to as 

brokens (USDA, 2009). Brokens have a reduced commercial value, typically between 60% - 

80% of the value of head rice (Siebenmorgen et al., 2008). Therefore, minimizing kernel 

fissuring is an important goal of the rice industry.  

Research has shown that fissures can be incurred either pre-harvest or post-harvest. Pre-

harvest fissures are usually due to rapid moisture adsorption by low-moisture content (MC) 

kernels (Kondo and Okamura, 1930; Kunze, 2008), whereas post-harvest fissures are mainly 

caused by improper drying and/or tempering (Kunze, 1978; Schluterman and Siebenmorgen, 

2007). Kunze and Hall (1965) explained the mechanism of rice kernel fissuring due to moisture 

adsorption, proposing that the surface of the kernel expands when it adsorbs moisture hence 

experiencing compressive stress while the inner core incurs tensile stress. When the tensile stress 

exceeds the kernel tensile strength, fissuring initiates at the inner core and typically results in a 

transverse fissure. Cnosssen and Siebenmorgen (2000) presented a hypothesis that addresses rice 

kernel fissuring that occurs during drying and tempering. This hypothesis identifies the role of 

intra-kernel material state differences on fissure formation and has been applied in several drying 

studies (Schluterman and Siebenmorgen, 2004; Schluterman and Siebenmorgen, 2007; Ondier 

and Siebenmorgen, 2012). 
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The duration after drying when kernel fissuring becomes evident has been studied. 

Craufurd (1963) and Ban (1971) proposed that in rapid drying of rough rice, fissures do not 

develop until after drying had ceased. Similarly, Sharma and Kunze (1982) reported that fissures 

formed exclusively within 48 h after drying rice kernels at 60ºC for 2 h. Li et al. (1998) indicated 

that the fissured kernel percentage (FKP) increased rapidly during the initial 4 h after drying. 

Likewise, Siebenmorgen et al. (2005) showed that fissures visually appeared almost exclusively 

within the first 24 h after drying had been terminated and the fissuring process was completed 

within 48 h of drying termination.  

Fissures in brown and milled rice kernels can be detected using video microscopes 

(Bautista et al., 2000), grainscopes (Cao et al., 2004; Siebenmorgen et al., 2005; Hayashi et al., 

2015), and fissure inspection boxes (Iguaz et al., 2006; Bautista et al., 2009). However, these 

instruments are not applicable for fissure detection in rough rice kernels, the form in which rice 

is most often dried and stored. X-rays have the capability to penetrate hulls, thereby enabling 

fissure detection in rough rice kernels. X-ray imaging thus has great potential for providing a 

better understanding of rice fissuring kinetics.  

Bulk rice lots usually contain kernels of various thicknesses, and thickness distributions 

can vary across locations, years, and harvest MCs (Bautista et al., 2007). Lu and Luh (1991) 

showed that during accumulation of starch in the rice endosperm, kernels first attain full length, 

then full width, and lastly full thickness; thus, within a single panicle, the most mature kernels 

are likely to be thicker than the least mature kernels.  

Rice kernels of different thicknesses have been shown to have different degrees of 

fissuring susceptibility. Jindal and Siebenmorgen (1994) observed that thicker kernels were more 

susceptible to fissuring than thinner kernels when subjected to rapid moisture adsorption. 
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Similarly, Grigg and Siebenmorgen (2015) showed that the FKP of thickness-graded rice lots 

increased with increasing kernel thickness, a concept corroborated by Siebenmorgen et al. 

(1998). Additionally, both milled rice yield (MRY) (Grigg and Siebenmorgen, 2013) and HRY 

(Sun and Siebenmorgen, 1993) were shown to improve when thin (<2.00 mm) kernels were 

removed from bulk lots prior to milling; an indication that thinner kernels tend to have a weaker 

structural integrity than the thicker, bolder kernels.  

In addition to thickness variation within rice panicles, the asynchronous kernel 

maturation process also produces inter- kernel MC variation within panicles. Chau and Kunze 

(1982) reported that the most mature kernels are at the top of the panicle and the least mature 

kernels at the bottom. These differences in maturation can cause individual kernel MCs within a 

panicle to vary by up to 10 percentage points (McDonald, 1976; Kocher et al., 1990; Bautista et 

al., 2009).  

Previous research assessing the impacts of kernel thickness and/or MC on rice quality 

have mainly focused on milling operations. The fissuring susceptibility of rice kernels during the 

drying process has not been conclusively reported in terms of different kernel thicknesses and 

MCs. Using X-ray imaging, fissures can be detected in rough rice kernels, thus enabling 

quantification of fissures before, during, and after drying. The objective of this study was to 

determine the role of kernel thickness, MC, and the interaction thereof, on fissuring susceptibility 

of rough rice kernels.  

C. Materials and Methods 

Sample Procurement 

Two long-grain rice cultivars, Roy J and CL XL745, were each harvested at two MCs 

from the University of Arkansas Northeast Research and Extension Center near Keiser, 
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Arkansas. Roy J was harvested at 23.2% MC and then later from the same field at 19.0% MC, 

whereas CL XL745 was harvested at 23.5% MC and subsequently at 17.9% MC. The rice was 

cleaned using a dockage tester (XT4, Carter-Day Co, Minneapolis, Minn.) to remove material 

other than grain. During the cleaning and handling processes, some drying occurred, such that 

the two high-MC lots were measured to be approximately 20% and the two low-MC lots to be 

approximately 16% using a moisture meter (AM5200, Perten Instruments, Hägersten, Sweden). 

The lots were stored in a walk-in cooler at 4°C until experiments were conducted. 

 

Figure 1. Flow diagram and experimental layout of the study. 
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Thickness Grading 

From each of the four rice lots (2 cultivars × 2 MCs), 1 kg of rough rice was graded into 

three thickness fractions using a precision sizer (Model ABF2, Carter-Day, Minneapolis, Minn.) 

equipped with rotary screens (30-cm diameter) with 30-mm long slots of either 1.98- or 2.03-mm 

width. For each screening, the precision sizer was operated at 90 rpm for 4 min (Grigg and 

Siebenmorgen, 2015) using the 2.03-mm screen first, which retained the thick kernels, followed 

by the 1.98-mm screen, which retained the medium-thickness kernels. The resulting thickness 

fractions comprised thin (<1.98 mm), medium (1.98 mm << 2.03 mm), and thick (> 2.03 mm) 

kernel sub-lots. Individual kernel MCs of 100 kernels from each sub-lot were measured using a 

single kernel moisture meter (CTR-500E, Shizuoka Seiki Co., Ltd., Tokyo, Japan). The 

experimental layout is shown as part of figure 1. The resulting 12 sub-lots were then placed in 

the walk-in cooler at 4°C until drying.   

Experimental Setup 

The experimental setup comprised an environmental chamber (ESL 4CA Platinous, 

Espec, Hudsonville, Mich.), capable of automatically maintaining temperature in the range of -

35°C to 150°C (±0.5°C) and relative humidity (RH) in the range of 6% to 98% (±1%), that 

provided conditioned air for drying. The conditioned air was suctioned from the chamber using a 

fan (3566 GPH, Sunlight Supply, Inc. Vancouver, Wash.), then passed through an in-line heater 

(AHP-7561, Omega Engineering, Inc. Stamford, Conn.) that was controlled with a voltage 

regulator (3PN1010B, Staco Energy Products Co., Miamisburg, Ohio) to augment the 

environmental chamber in maintaining the desired drying air temperature. The conditioned air 

was ducted into an X-ray system (UltraFocus 60, Faxitron Bioptics LLC., Tucson, Ariz.) within 

which a rice drying apparatus (figure 2) was positioned. The drying apparatus was equipped with 
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a data sensor (Hobo Pro V2 U23-002, Onset Computer Corporation, Bourne, Mass.) to measure 

and record air temperature and RH during the drying and tempering experiments.  

The rice drying apparatus, constructed using an acrylic material and polyethylene ducts, 

was used for positioning rough rice kernels inside the X-ray system for imaging while being 

dried and then tempered. The apparatus comprises two compartments, the interior compartment 

measuring 88.9 × 50.8 × 25.4 mm and the exterior compartment 254.0 × 152.4 × 38.1 mm. 

During drying, air from the environmental chamber was ducted through the interior 

compartment, which contained rough rice kernels. After a desired drying duration, the two three-

way valves were turned to allow air from the environmental chamber to circulate through the 

exterior compartment, which maintained the interior compartment at a desired temperature, thus 

simulating post-drying tempering. 
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Figure 2. Schematic of the rice drying apparatus, designed to allow drying and tempering studies 

to be conducted within the X-ray system. 

 

Experimental Layout 

The experimental procedure is shown in figure 1. Prior to drying experiments, rice 

samples from each sub-lot were taken out of the walk-in cooler and allowed to equilibrate at 21 ± 

2ºC. Thereafter, a 21-kernel sample was randomly selected from one of the 12 sub-lots to be 

used for a drying run, and the individual kernel mass for each of the 21 kernels was measured 

using a precision analytical balance (AB204-S, Mettler-Toledo LLC., Columbus, Ohio). The 21 

kernels were then placed in the drying apparatus with each kernel secured in place on an acrylic 

plate using a 2-mm wide, double-sided adhesive tape (Double-sided adhesive, 3M Global 
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Gateway, Maplewood, Minn.). The drying apparatus was then positioned within the X-ray 

system at 4X magnification. This magnification was greater than the 3X magnification proposed 

in a previous study (Odek et al, in press) in order to compensate for the reduction in image 

resolution caused by the addition of the augmented apparatus. In using the 4X magnification, the 

field of view of the X-ray system was limited to 25 mm × 37.5 mm, which allowed for 21 

kernels to be simultaneously observed at any given time. An initial X-ray scan was performed to 

identify initially-fissured, broken, and deformed kernels; only non-fissured, intact, and non-

deformed kernels were monitored and included in the subsequent drying and FKP calculations. 

The 21-kernel sample was then dried using heated air at 60°C, 30% RH for 30 min and then 

tempered at 60°C for 2 h. Following drying and tempering, the acrylic plate along with the 

kernels secured, was placed in a ziplock bag for 24 h at room temperature (21 ± 2°C). A 24-h, 

post-drying storage duration is known to be the duration within which most fissures visually 

appear after drying (Siebenmorgen et al., 2005). A final X-ray scan was thus performed 

immediately after the 24-h storage duration had elapsed. The mass of each kernel was then 

measured and each kernel dried at 130°C for 24 h in a convection oven (Model 1370FM, 

Sheldon Mfg. Inc., Cornelius, Ore.). The final kernel MC, along with the initial and final kernel 

mass, were used to determine the kernel MCs before drying, as was used by Banaszek and 

Siebenmorgen (1993). The 21-kernel drying, tempering, and fissure detection procedure was 

replicated five times for each of the 12 sub-lots, thus generating 60 experimental units.  

Enumeration of fissured kernels was performed by visually inspecting the X-ray images 

from each drying experiment. Fissured kernel percentage (FKP), defined as the number 

percentage of kernels that fissured due to the drying process, was calculated as the number of 

kernels with visible fissures after the drying process as a percentage of the initially non-fissured, 
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intact, and non-deformed kernels. For this study, the initial MC of each individual kernel dried 

was determined but the thicknesses were only known to be within one of the three rough rice 

thickness fractions. 

Statistical Analysis 

The least square (LS) means of the FKPs due to the effects of kernel thickness and MC 

were compared using Tukey’s Honestly Significant Difference procedure and Student’s t-test at 

α<0.05 using a statistical package (JMP Pro release 12.0.1, SAS Institute Inc., Cary, NC) to 

determine significant differences. 

D. Results and Discussion 

Mass and Moisture Content Characteristics of Rice Sub-lots 

Table 1 shows the mass and MC characteristics of the thickness-fractionated sub-lots. For 

all lots, the thick-fraction sub-lot (>2.03 mm) comprised the greatest proportion of the lot mass. 

There was a moderate trend showing thin-fraction sub-lots to have slightly greater MCs than that 

of the medium- and thick-fraction sub-lots, particularly so for CL XL745, thus corroborating the 

studies by Lu et al. (1995) and Siebenmorgen et al. (1997) that showed most high-MC kernels 

tend to be thin and immature. The individual kernel MC standard deviations of the sub-lots 

indicated that the thin-fraction sub-lots had the greatest standard deviations, whereas the 

medium-fraction sub-lots had the least. This trend in turn indicate that inter-kernel MC 

uniformity was greater in the medium-fraction sub-lots than the thin- and thick-fraction sub-lots.   
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Table 1. Characteristics of Roy J and CL XL745 rough rice lots at two initial moisture contents 

each fractionated into three thickness fraction sub-lots.  

 

Cultivar 

Lot 

moisture 

content 

(%w.b) 

Thickness 

fraction 

(mm) 

Mass 

retained 

(%) 

Sub-lot 

MC 

(%w.b) 

Individual kernel 

MC standard 

deviation (Percentage 

points)  

Roy J 

16 

<1.98 33.8 16.9 0.98 

1.98<<2.03 27.5 16.7 0.70 

>2.03 38.7 16.9 0.70 

20 

<1.98 30.5 20.1 1.43 

1.98<<2.03 24.7 19.9 0.92 

>2.03 44.8 20.1 0.96 

CL XL745 

16 

<1.98 26.1 16.7 0.91 

1.98<<2.03 34.3 16.0 0.64 

>2.03 39.6 16.1 0.74 

20 

<1.98 16.9 19.9 1.44 

1.98<<2.03 22.7 19.1 0.92 

>2.03 60.4 19.2 1.00 

 

Individual Kernel Moisture Content Distributions 

Figure 3 shows individual kernel MC frequency distributions of the 12 rice sub-lots. 

There is a general trend showing a multi-modal distribution for the thin-fraction sub-lots, 

corroborating the greater standard deviation values of the thin kernels given in table 1. 

Additionally, most of the high-MC kernels in a rice lot tended to be within the thin-kernel 

fraction, corroborating observations by Wadsworth et al. (1982) and Lu et al. (1995). 
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Figure 3. Individual kernel moisture content frequency distributions of thin (<1.98 mm), medium 

(1.98<<2.03 mm), and thick (>2.03 mm) kernel sub-lots of Roy J (a and b) and CL XL745 (c and 

d) rice cultivars, each at a low (≈16%) and a high (≈20%) bulk moisture content. 

 

Overall Impact of Moisture Content on Fissure Formation 

To illustrate the overall impact of MC on the FKP of rice lots at low- and high-MC, the 

weighted mass averages of FKPs from the three sub-lot thickness fractions of each cultivar/MC 

lot were calculated. Figure 4 displays these FKPs; a significantly greater percentage of kernels 

from the high-MC lots fissured as compared to kernels from the low-MC lots for both Roy J and 

CL XL745 cultivars.  
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Figure 4. Effect of initial moisture content (MC) on rough rice fissured kernel percentage (FKP) 

after drying (60°C, 30% RH; 30 min), tempering (60°C, 2 h), and storing (24 h) each of the 12 

thickness-fraction sub lots. Each bar represents the weighted average of the FKPs of the three 

sub-lot thickness fractions from each cultivar/MC lot. At the start of drying, each sub-lot was at 

either a low (≈16%) or a high (≈20%) initial MC. Values followed by the same letter within each 

cultivar are not significantly different (P>0.05). 

Cnossen and Siebenmorgen (2000) proposed the use of material state properties, 

particularly those involving glass transition to explain kernel fissuring that occurs during the 

drying process. Figure 5 shows paths that high-MC kernels (a) and low-MC kernels (b) would 

hypothetical follow during drying. As indicated by these paths, high-MC kernels are more likely 

to transition from a glassy to a rubbery state during the drying process. If, during prolonged 

drying, sufficient portions of the kernel periphery of these high-MC kernels then transition back 

to the glassy state (figure 5a), intra-kernel material state differences could be created that could 

possibly lead to fissure initiation (Schluterman and Siebenmorgen, 2007). Most low-MC kernels, 

on the other hand, are likely to have remained in a glassy state throughout the drying process 

(figure 5b), thus intra-kernel material state differences would not be experienced by those kernels 

(Yang et al., 2003; Schluterman and Siebenmorgen, 2007) and fissuring would not be as likely to 

occur. As such, more kernels within the high-MC lots are reasoned to have fissured due to drying 
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than those in the low-MC lots, thus leading to the trends shown in figure 4; these trends 

corroborate findings by Milner and Shellenberger (1953) in wheat kernels.   

Following the above explanation, during drying, low-MC lot kernels are expected to 

remain non-fissured whereas high-MC lot kernels are expected to fissure. However, due to the 

individual kernel MC distributions shown in figure 3, some high-MC kernels within the low-MC 

lots fissured thus increasing the FKPs of the low-MC lots (figure 4), whereas some low-MC 

kernels within the high-MC lots did not fissure. 

 

Figure 5. Hypothetical drying path of a high-MC (a) and a low-MC (b) rice kernel during high-

temperature drying. Adopted from Schluterman and Siebenmorgen (2007). 

 

Interactive Impact of Moisture Content and Kernel Thickness on Fissure Formation 

Figure 6 shows the interactive effects between kernel thickness and MC on rice kernel 

fissuring due to the drying procedure of figure 1. Within the high-MC sub-lots of each cultivar, 

as kernel thickness increased, the FKP increased, although for Roy J, the apparent trend of 

increased FKP as kernel thickness increased was not significantly different across thickness 

fractions. The trend of increased FKP with increased kernel thickness did not exist for the low-

MC sub-lots of both cultivars, as there were no significant differences in FKPs across thickness 

fractions for these sub-lots. This lack of trend for the low-MC sub-lots could have been 

associated with the overall low levels of fissuring that took place in the low-MC sub-lots, due to 

the glass transition impacts described previously. 
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Figure 6. Kernel thickness and moisture content interactive effects on fissured kernel percentage 

after drying (60°C, 30% RH; 30 min), tempering (60°C, 2 h), and storing (24 h) 21-kernel sets of 

rough rice from each cultivar/moisture content/thickness fraction sub-lot. Each bar represents the 

average of fissured kernel percentage from five 21-kernel replications. At the start of drying, 

each sub-lot was either at a low (≈16%) or a high (≈20%) initial moisture content, and comprised 

a thin (<1.98 mm), medium (1.98<<2.03 mm), or thick (>2.03 mm) fraction. Values followed by 

the same letter within each cultivar lot are not significantly different (P>0.05). 

 

Research has shown that kernels of various thicknesses have varying effects on resulting 

quality attributes (Wadsworth et al, 1979; Sun and Siebenmorgen, 1993; Chen and 

Siebenmorgen, 1997). Jindal and Siebenmorgen, (1994) showed the effects of kernel thickness 

on HRY reduction due to moisture adsorption. The study observed that thicker (>1.93 mm) 

kernels had greater HRY reductions than thinner (<1.78 mm) kernels when exposed to the same 

moisture adsorption conditions. However, such thickness trends on fissuring due to moisture 

desorption were not found in the literature. As earlier stated, when drying at 60°C, most low-MC 

kernels are reasoned to have have remained in the glassy region, below the rice glass transition 

line, and thus would not be expected to incur intra-kernel material state differences, which are 

known to contribute to rice kernel fissuring (Cnossen and Siebenmorgen, 2000). Therefore, the 

FKP trends due to thickness fractions were not apparent for the low-MC lots as shown in figure 
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6. This interactive effect between kernel thickness and MC on fissuring during drying shows the 

complexities involved in understanding and isolating the individual roles of kernel thickness and 

MC on fissuring. However, in general, when significant amounts of fissuring did occur, as kernel 

thickness increased, the FKP increased. It is hypothesized that during drying, the thicker kernels 

experienced greater intra-kernel, surface to core, MC and material state gradients than thinner 

kernels. Without apparent knowledge of state gradient formation within kernels, Arora et al. 

(1973) stated that MC gradients within rice kernels during drying contributed to fissure 

formation, thus thicker kernels are reasoned to be more susceptible to fissuring than thinner 

kernels. 

E. Conclusions 

Kernels from high-MC lots had significantly greater FKPs than kernels from the low-MC 

lots for both Roy J and CL XL745 cultivars. An interactive effect between kernel thickness and 

MC on fissuring during drying showed that the thick-fraction kernels of high-MC lots had 

greater FKPs than medium- and thin-fraction kernels for both cultivars, significantly so for CL 

XL745, with a trend of increased FKP with increased kernel thickness.  

This study identified the impact of MC on fissuring susceptibility of rice kernels during 

drying, thus supporting the application of glass transition principles in minimizing kernel 

fissuring during drying. Additionally, the relative contribution of rice kernel thickness to 

fissuring was identified, thus reinforcing conclusions from previous studies that have proposed 

thickness grading of rice lots as a means to improving milling yields. Some complexities 

involved in understanding the individual roles of kernel thickness and MC on fissuring were 

highlighted.  
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IV. CONCLUSIONS 

This study evaluated an X-ray system as a method of fissure detection in rough rice 

kernels. Fissures were created by exposing kernels to various drying and post-drying treatment 

combinations that are known to result in a broad range of fissuring degrees and head rice yields 

(HRYs). Fissured kernel percentages (FKPs) were determined using the X-ray system in rough 

rice and brown rice, and compared to those detected by a grainscope in brown rice. Additionally, 

a correlation between HRY and FKP was established. Further, the X-ray system was augmented 

with a drying apparatus, together referred to as a drying system, which enabled fissure detection 

in rough rice kernels during drying. The drying system was then used to determining the relative 

impact of intrinsic kernel properties, specifically thickness and moisture content (MC), on 

fissuring during drying. 

Magnification levels greater than 2X provided high-resolution images that allowed 

fissures to be detected in rough rice kernels. A 3X magnification level provided a 33 × 50-mm 

field of view that allowed approximately 50 – 70 rough rice kernels to be simultaneously 

observed. Increasing the magnification further increased the image resolution at the expense of a 

reduced field of view. When using the drying apparatus, the 4X magnification level used 

provided a 25 × 37.5-mm field of view that allowed for 21 kernels to be simultaneously 

observed. 

Even with hulls intact, the X-ray system detected more fissured rough rice kernels than a 

grainscope did in brown rice, resulting in a strong, inverse and linear relationship between HRY 

and the FKP, with R2 = 0.95. Such a correlation yielded an equation that could be considered in 

designing instruments that may estimate HRY by evaluating the FKP of a sample. This 
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correlation confirmed the impact of kernel fissuring on milling yields, and the importance of a 

need to understand and minimize rice kernel fissuring. 

The drying system comprising the X-ray system and the drying apparatus was used to 

conduct in-situ rice drying experiments that showed kernel thickness to have a significant impact 

on fissures formed during drying of high-MC lot kernels. For kernels at a high MC, FKPs 

increased with increased kernel thickness. For the low-MC kernels, there were no significant 

differences within thickness fractions. Moisture content was also shown to have an impact on 

FKP during drying. High-MC kernels had greater FKPs than low-MC kernels, a trend that was 

explained in part using the principles of the glass transition hypothesis. 

This study forms a basis for further research aimed at providing a deeper understanding 

of rice fissuring kinetics, which may provide better rice drying procedures that could minimize 

milling yield reductions that are caused by kernel fissuring.  
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