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ABSTRACT 

 

 Human gene network is much more complex than just pairwise interaction among the 

genes. Zhang et al. [6] extracted microarray data from International Genomics Consortium 

(IGC), and presented the detection of three-way gene interactions in their paper using Fisher’s z-

transformation test. Three-way gene interactions are closer than pairwise correlations in 

representing the complex gene structures. Additionally, it was more tractable than assessing four 

or more gene interactions. In this paper, we are simulating different models where Fisher’s test 

might not be as effective. Zhang et al.’s approach utilized Pearson’s correlation coefficients and 

involved detection of linear interactions only. Since gene interactions could show any kind of 

behavior, their evaluation approach might not work most of the time. Therefore, we are utilizing 

the dataset Zhang et al. provided in order to detect the three-way gene interaction using non-

parametric tests like Kolmogorov-Smirnov and Cross-Match.  
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1. INTRODUCTION 

A Human Genome provides a vast amount of information about a human being. It is a 

complete set of nucleic acid sequence, encoded as DNA with 23 chromosome pairs in cell nuclei 

as well as in a small DNA molecule found within individual mitochondria. Human genome 

consists about 19000-20000 protein-coding genes. The human genome sequence determines the 

human development and physiology. It also aides in the advancement of medicine and in 

understanding evolution. It contains the blueprint of human life [1]. Genetic variations influence 

different attributes of human body such as eye color, hair color or height, but most importantly, 

proneness to hereditary diseases like color blindness, cystic fibrosis, or diabetes.  

 Genetic diseases like Down syndrome, and Hemophilia are cases of chromosomal 

abnormality whereas, diseases like Type 2 diabetes or cancer could be the result of family history 

or environmental factors. Cystic Fibrosis is induced by mutation of both of the copies of CFTR 

(Cystic fibrosis transmembrane conductance regulator) gene, and the presence of BRCA1 and 

BRCA2 genes give rise to breast cancer. Gene-gene interaction has been attributed to 

understanding the causes of complex disease traits [2].With genome sequencing, such gene 

interactions can be detected and the genetic abnormalities managed, if not treated.  

In the mid to late twentieth century, genome sequencing was done manually using 

methods like Maxam-Gilbert sequencing and Sanger sequencing. Manual sequencing of even 

microscopic organisms took years to complete. The manual method was simply writing down all 

the base pairs in a DNA molecule. It took scientists about 10 years to identify the CFTR gene 

that mutates and causes cystic fibrosis. Besides being time-consuming, this method also posed a 

high risk of erroneous data sequencing.  It was in the 1990s that the transition of genome 

sequencing methods from manual to the much faster, automated sequencing was made. Shortly 

https://en.wikipedia.org/wiki/Maxam-Gilbert_sequencing
https://en.wikipedia.org/wiki/Sanger_sequencing
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after that, the Human Genome Project was proposed in order to record the entire human genome. 

Thus, the largest undertaking in the history of biological science started in 1990 and was 

conducted in a number of universities all around the world until its completion in 2003 [3]. In the 

meantime, a parallel project was carried out by Celera Genomics from 1998 and continued 

through 2003. The improved sequence was then published and has been made freely available 

for researchers ever since. 

Gene Interaction or Epistasis is the influence that a gene has in the presence of one or 

more controller genes. Steen [4] mentions that gene-gene interaction on traits of interest presents 

an exponential growth in terms of methodological development as well as translation of 

statistical gene interactions to biological. Furthermore, gene interactions and genomic 

complexity are correlated i.e. with more complex gene interaction, the mutational effects tend to 

strengthen each other rather than cancel out like in the cases of less complicated epistasis. The 

existence of complex epistasis results in genetic variation in complex diseases like asthma, 

cancer, diabetes, hypertension, and obesity [2]. It is essential for researchers to model complex 

gene-gene interactions so as to understand the joint genetic effects that lead to complex diseases.  

In her paper, Cordell [5] brings into attention that in most genome-wide association 

studies, only single-locus analysis strategy is utilized where each variant is tested individually for 

a specific phenotype. Those studies are often unsuccessful because they fail to account for any 

interaction between different loci. If complex diseases occur as a result of complex mechanisms 

that involve multiple genes and environmental factors, then studying each gene in isolation may 

lead us to miss those genetic interaction effects. In addition, Zhang et al. [6] stresses pairwise 

correlation to extract gene network information is too simplistic to express the complex 

relationships among real genetic structures. In their paper, they introduced a three-way 
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interaction model where they employ a controller gene to demonstrate the dynamic nature of co-

expression in gene pairs. They evaluated three-way interactions in each gene triplet by 

computing Pearson correlation coefficient of the log-scale values between the controlled genes, 

followed by Fisher’s z-transformation to transform the correlation coefficients to a test statistic z.  

In this paper, we use the same microarray dataset preprocessed by Zhang et al. that 

comprised of 1000 genes containing 678 cancer samples. For the gene expressions, instead of 

targeting linear interactions as in Zhang et al. [6], we have decided to assess the three-way gene 

interactions in the gene triplets using non-parametric approaches like Kolmogorov-Smirnov and 

Crossmatch tests. Due to the high-dimensionality of the data as well as high time complexity of 

the tests, we will evaluate the gene triplets for the first 50 genes of the 1000 genes included in the 

microarray dataset. We will take log-scale values of all gene expressions and cluster them into 

low and high expressions before conducting the two tests.    

In Chapter 2, we will further discuss the paper by Zhang et al. [6] .After that, in Chapter 

3, we will simulate the Fisher’s z-transformation, Kolmogorov-Smirnov, and Crossmatch tests 

for different models and discuss in detail the implementation of the K-S and C-M tests on the 

microarray dataset. Results for the two non-parametric tests are interpreted in Chapter 4, 

followed by the Conclusion in Chapter 5. 
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2. BACKGROUND/LITERATURE REVIEW 

2.1 Data pre-processing and clustering 

 According to Zhang et al. [6], pairwise correlation does not record the dynamic 

characteristic of genetic co-expression relationships because a gene pair may be co-expressed 

only in a specific organ or in a particular disease state. Zhang et al. proposed an alternative 

approach to identify co-expression gene network by introducing a third ‘controller gene’ that can 

affect such co-expression associations. Therefore, this approach focuses on three-way gene 

interactions in lieu of pairwise correlations or two-way interactions. 

The human gene network is much more complex than just three-way interactions among 

the genes. More than one gene and environmental factor may affect the co-expression 

relationship among a gene pair. Since models that involve more than three genes have higher 

number of combinations or gene triplets, it is less tractable than three-way interaction models. 

Hence, assessing interaction among gene triplets is a reasonable compromise between 

authenticity and tractability. 

 Zhang et al. [6] obtained the raw microarray data from Gene Expression Omnibus 

database whereas, the data was generated by International Genomics Consortium (IGC) in its 

Expression Project for Oncology using Affymetrix human genome array HG-U133 plus 2.0. 

They used data in IGC batches excluding the batches that showed significant difference from the 

samples in other batches. The samples were derived from cancer tissues or cell lines. According 

to Hansen and Irizarry [22], the RNA-sequence data contains some distortions and require data 

normalization. They proposed a normalization method that improved the precision without loss 

of accuracy. The normalization method also removed systematic bias brought about by 

deterministic features such as Guanine-Cytosine content. Quantile Normalization can be defined 
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as a technique to make two distributions identical in statistical properties so they can be 

compared efficiently. Quantile Normalization Method was used to normalize the probe level data 

followed by Positive Dependent Nearest Neighbor (PDNN) Model to obtain the gene expression 

values. After the application of quantile normalization again to reduce biases, the samples were 

divided into training and testing sets. 

 The processed data was then subjected to MCLUST, a software package for cluster 

analysis. MCLUST implements parameterized Gaussian hierarchical algorithms and EM 

algorithm (Farley and Raftery[7]). MCLUST also provides a function ‘bic' to compute the 

Bayesian Information Criterion or BIC given the data and a model along with conditional 

probability estimates [7]. This model-based clustering algorithm is used to check if the 

distribution of log-scale values of a gene is a single normal or a mixture of two normal 

distributions (Zhang et al. [6]) 

Using the function for BIC, Zhang et al. [6] found out that the logarithmic gene 

expressions were a mixture of two normal distributions. MCLUST was then used to compute a 

threshold value to T in order to divide the samples into two subgroups. Only subgroups with at 

least 60 samples were selected for analyses to ensure sufficient sample size for the subsequent 

assessments. 

2.2 Evaluating three-way gene interactions 

 Zhang et al. [6] decided on assessing three-way gene interactions because they are 

closer, in characteristic, to the actual gene networks than two-way interactions or pairwise 

correlation. In addition, evaluating gene triplets is much more feasible than four or more genes 

because the number of combinations for three genes is much smaller. While considering three 

genes for analysis, they supposed the genes in a triplet as A, B, and C where C is the controller 
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gene. After the pre-processing and clustering of the data, the threshold T was noted for each of 

the controller genes in the training dataset. Zhang et al. [6] then divided the 339 samples in the 

training set to low expression group of n1 sample size and high expression group of n2 sample 

size according to the threshold obtained for a particular controller gene C.  

Once the samples are divided into low and high expression subgroups, Pearson 

correlation coefficient of the log-scale values between gene A and gene B are computed for each 

of the subgroups. Robert [8] defines correlation as a statistical measure of how closely two 

variables are related. Correlation can either be positive or negative and the degree of correlation 

strong or weak. Pearson Product Moment Correlation or Pearson correlation is a statistic ‘r’ that 

measures the strength of a linear association between gene A and gene B expressions and is 

calculated using the following formula: 

 

 

 

In the above equation, Sab is the covariance between gene A and gene B expressions 

whereas, Saa  is the variance within gene A and Sbb  is the variance within gene B. Using the 

formula for r, two Pearson correlations coefficients r1  and r2 for log-scale values between gene A 

and gene B are computed for n1 and n2 samples respectively. Since the variances of gene A and 

gene B expressions are small, the Pearson correlation coefficients tend to be unstable. Hence, all 

the triplets with either variance of gene A or gene B less than 0.1 are discarded in either of the 

low expression or high expression subgroups. 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{r %3D /frac{S_{ab}}{/sqrt{S_{aa}S_{bb}}}}
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 The computations of Pearson correlation coefficients is followed by Fisher’s z-

transformation to convert r1 and r2 correlation coefficients into a z1 and z2 values. According to 

Fisher and Belle [9], the Fisher z-transformation is used to transform responses whose range is 

between -1 and 1. The z-transformation was developed especially for the Pearson product-

moment correlation coefficient. The standard normal transformation is used mostly in 

nonparametric analyses. This method is used mostly for testing purposes rather than estimation. 

One of the most important benefits of this transformation is that the tables, procedures, and 

software algorithms for normal transformation procedures are already available. For a particular 

controller gene C, the low and high expression subgroups of the training set each have the 

correlation coefficients r1 and r2. These coefficients r1 and r2 are first transformed into z1 and z2 

using the following formulas: 

 

 

 

 

After transforming the two correlation coefficients, for each controller gene C, Zhang et al. [6] 

determined the z-statistic using two sample z-test and the formula for the statistic is as follows: 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{z_{1}%3D 0.5* /ln{ /bigg /[ /frac{1%2Br_{1}}{{1-r_{1}}} /bigg ]}}
https://www.codecogs.com/eqnedit.php?latex=/mathrm{z_{2}%3D 0.5* /ln{ /bigg /[ /frac{1%2Br_{2}}{{1-r_{2}}} /bigg ]}}
https://www.codecogs.com/eqnedit.php?latex=/mathrm{z%3D /frac{z_{1}-z_{2}}{/sqrt{/frac{1}{n_{1}-3}%2B/frac{1}{n_{2}-3}}}}
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Where, z1 and z2 are previously computed values and n1 and n2 are the low expression and high 

expression subgroup sizes respectively. The z-statistic is then used to assess whether there are 

significant pairwise interaction among Gene A and Gene B when there is a high expression level 

of controller gene C.   

Using MCLUST, Zhang et al. [6] determined that out of the 1000 genes they had 

previously selected, 796 genes possessed a bimodal expression distributions in the training set. 

These 796 genes were used as the controller genes and separated into low and high expression 

subgroups. They tested 0.4 billion possible three-way interactions among 1000 genes that 

comprised of 796 controller genes. In theory the 0.4 billion z-statistics obtained from the triplets 

are supposed to have a standard normal distribution. However, Zhang et al. [6] discovered that 

the z values showed a variance of 1.88. This inflation in the variance indicates that the z-values 

are not independent of each other and cannot be regarded as resulted from null data. The heavy 

tails of the distributions of z-statistics also suggested the prevalence of significant gene 

interactions. 
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3. METHODOLOGY 

3.1 Data Preparation 

The data we utilized is obtained from the Zhang et al. [6] resources. The data provided 

was split into training and testing sets. We combined the two sets and used log-scaled gene 

expression data. The initial data includes 1000 genes. However, we are only including 50 genes 

in our study because of the large number of combination of gene triplets and the high time 

complexity of the tests. Parallel computing technique such as GPU computing will be needed in 

order to analyze the whole set of 1000 genes. Minimizing the number of genes from 1000 to 50 

decreased the number of three gene combinations from 498501000 to 58000 and the processing 

time from several years to a few days. After that, we applied MCLUST function (discussed in 

Chapter 2.1) using built in ‘mclust’ package in R so as to cluster the sample data into low 

expression and high expression sub-groups for all the genes. For each of the controller genes, we 

generated and saved all the different cutoffs that separated the two sub-groups. After clustering, 

for any particular controller gene C, we applied the Kolmogorov-Smirnov and Cross-Match tests 

and recorded their statistics.  

 

3.2 Data Simulation 

Before carrying out the Kolmogorov-Smirnov(K-S) and Cross-Match(C-M) tests to 

check for three-way gene interactions in the dataset, we simulated the Fisher’s z-transformation, 

K-S and C-M tests on various models to inspect the instances when Fisher’s z transformation test 

is not as effective as K-S and C-M tests in comparing two distributions. First, we generated a 

logarithmic and an exponential model in order to run the three different detecting methods for 
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the two distributions. We followed it by generating two bivariate-normal models in order to carry 

out the same goodness-of-fit tests. And lastly, different polynomials were produced to repeat the 

same procedure. For the three sets of simulations, three different statistics i.e. p-values of z-

transformations, p-values of cross-match test and K-S statistics were documented.  

 

3.3 Kolmogorov-Smirnov Test 

 Goodness-of-fit tests have been described by Lopes et al. [10] as statistics that measure 

the likeliness of a dataset or sample to some theoretical probability distribution. One of the most 

commonly used goodness-of-fit tests is Pearson’s Chi-square correlation test where we take the 

distribution of an observed data and compare it to the expected probability distribution. We are 

trying to assess the effect of low and high expression of controller gene in the interaction of gene 

pairs in the dataset obtained by Zhang et al. [6]. Therefore, as our first approach to extract three-

way gene interactions, a goodness-of-fit test known as Kolmogorov-Smirnov (K-S) test is 

performed. K-S test is much like the chi-square test except it is exclusively used for continuous 

data and powerful than the usual Pearson chi-square test [11]. There is also no loss of data in K-S 

test unlike the chi-squared test. 

 Kolmogorov-Smirnov (K-S) test is a non-parametric hypothesis test [12]. The test is 

named after Andrey Kolmogorov and Nikolai Smirnov. The classical one-dimensional K-S test 

measures the probability that a particular sample distribution is drawn from the same parent 

population as a continuous reference model whereas, the two-sample K-S test compares the 

probability distribution functions of one sample dataset to a second sample dataset. In any case, 

one of the first things to obtain is the empirical distribution of the sample datasets by taking the 

integral of their probability density functions. The empirical distribution function (EDF) simply 
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gives the cumulative probability of a random variable. The K-S test depends on the K-S statistic 

which measures the greatest distance between the EDF of the dataset and reference model, in 

case of one-dimensional K-S, or the supremum distance between EDF of dataset one and dataset 

two in case of the two-dimensional K-S test. Evans et al. [13] mentioned in their paper that, the 

EDF Fn(x) is the proportion of the observations X1,X2,...,Xn that are less or equal to x and is 

defined as: 

 

 

 

where, n is the size of the random sample and I(x) is the number of Xi’s less than or equal to x. 

For the purpose of our study, we will exclusively discuss a two-dimensional K-S test as 

the genetic interactions involve two genes in low or high expression of controller gene C. Lopes 

et al. [10], defined two independent stochastic variables X and Y whose cumulative distribution 

functions F and G are unknown. X1,X2,...,Xn are the observed samples for low controller gene C 

and Y1,Y2,...,Yn are the observed samples for high controller gene C. After that, they proposed 

the hypotheses for the K-S test as follows: 

 

 

 

 

Where, H0 is the null hypothesis that suggests that the two distributions are almost identical and 

H1, the general alternative hypothesis, indicates that the two distributions are different for some 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{F_{n}(x)%3D/frac{I(x)}{n}},
https://www.codecogs.com/eqnedit.php?latex=/mathrm{H_{0} : F(x) %3D G(x), for~every~x~/epsilon~R^{d}}
https://www.codecogs.com/eqnedit.php?latex=/mathrm{H_{1} : F(x) /neq G(x), for~some~x~/epsilon~R^{d}}
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random variable x. In our research study, however, null hypothesis states that the low or high 

expression of controller gene had no effect in the interaction of gene A and gene B, while the 

alternative hypothesis indicates that there are some samples with gene A and gene B interactions 

for low or high expression of controller genes.  

 The K-S test is applicable to continuous, unbinned data samples and uses the supremum 

absolute difference between sample distributions with the low expression gene C and high 

expression gene C functions [10]. When comparing the two distribution functions F(x) and G(x) 

where x is a random sample observation, the K-S statistic is defined as: 

 

 

 

The K-S statistic for a two-dimensional space is difficult to obtain because unlike the one-

dimensional K-S test, the direction of the ordering of the data would have to be considered [10]. 

Therefore, Peacock has put forth the idea of making K-S statistic independent of the any sort of 

ordering [14]. The same Peacock test was utilized in our research. Even though this method is 

very efficient, it is also very demanding. Performing the test on 218 points on a 4GHz processor 

would require several days to execute [10]. It is due to high time complexity that we only 

consider using the first fifty out of 1000 genes in the dataset. 

 The Peacock test only outputs K-S statistics but not the p-values. Hence, the hypotheses 

was tested using only K-S statistics. Based upon a significance level α=0.05, a critical value Dα 

is found from the standard K-S table. When the sample size is greater than 35, the K-S statistic 

can be computed by dividing 1.36 by square root of sample size(n) for α=0.05. In our case, using 

50 genes, the critical value can be set as (1.36/√50) = 0.19. Once the K-S statistic (DKS) is 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{D_{KS}%3Dmax/left | {F(x)-G(x)} /right |}
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obtained from the Peacock test, it is compared with the Dα = 0.19 in order to draw conclusions 

about the K-S test. If DKS < Dα, we fail to reject the null hypothesis that the expression level of 

controller gene has no effect on the interaction between gene A and gene B. On the other hand, 

if DKS > Dα we reject the null hypothesis and conclude that the low/high expression of a 

particular controller gene has a significant effect on the two-way gene interactions. For the 50 

genes, we computed 58800 K-S statistics and sorted them in descending order so as to extract the 

top-five significant three-way gene interactions. 

 In [12], Feigelson and Babu mention that the K-S test is used in over 500 articles every 

year. It is very convenient to use because it is distribution-free, there is no restriction on the size 

of the sample, the critical values are widely available and it is easy to understand graphically. 

The article then puts forward instances where KS-test might not be the most sensitive. KS-test is 

sensitive when the EDFs differ in the center of the distribution. However, in case of repeated 

deviations in the distributions when the curves cross each other multiple times, the measured 

deviations is reduced. The Anderson-Darling (AD) test is better because other than center and 

deviation, AD test is also sensitive to the differences between the curves at the beginning as well 

as end of the two EDFs. Nevertheless, since we are not much concerned about the tails (outliers), 

we assess the hypotheses using the K-S test. 

 

3.4 Cross-Match Test 

 Heller et al. [15] define the Cross-Match (C-M) test as “an exact distribution-free test of 

no treatment effect on a high-dimensional outcome in a randomized experiment”. C-M test 

compares two multivariate distributions by using distances between observations [16]. This 

comparison is done by using optimal non-bipartite matching to pair 2I subjects into I pairs based 
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on similar outcomes. Rosenbaum [16] introduced optimal non-bipartite matching in his paper as 

matching the sample data into disjoint pairs to minimize the total distance within pairs. In other 

words [15], we are concerned about the number of times that a subject from a low expression 

gene C was paired with the one from a high expression gene C sub-group. The cross-match 

statistic A is the total number of times such a cross-match is made. Test statistics A indicates the 

total number of pairs that include one observation from a low expression controller gene sub-

group and another observation from a high expression sub-group. 

 One of the most powerful tools in statistical design and analysis is ‘Matching’ [17]. 

While bipartite matching is most commonly used, it is limited to simpler designs. Hence, a non-

bipartite pairing can be introduced to take care of multiparty matching situations and to find sets 

of pair such that they minimize the sum of distances based on a given distance matrix. Non-

bipartite matching provides options like multi-group comparisons which brings about greater 

flexibility than the bipartite matching. The goal of our study is to evaluate the causal effect of 

low expression of controller gene C versus high expression. One of the best methods of carrying 

out causal inference is randomized experiment [18]. However, we have no control over whether 

a sample consists of low expression of controller gene or high and we would have to execute 

observational studies instead. Therefore, in order to manage any selection bias in the study, 

utilizing pairing methods is a good choice [19]. Lu et al. [17] mentions a number of benefits of 

utilizing pairing methods. Well-paired datasets provide easy to understand analyses. Also, some 

paired analyses do not require parametric assumptions. Additionally, non-overlapped pairs 

enables the proper use of existing inference models and the method of pairing does not involve 

the outcome variable information, thus, preventing any data manipulation. 
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Even though bipartite pairing is the most popular pairing procedure, non-bipartite is a 

better alternative to perform causal inference in observational studies and carrying out an exact 

distribution-free test between two multivariate distributions [17]. Lu et al. further mention that 

optimal pairing is the pairing that minimizes the total distance among all pairs. Bipartite and 

Non-bipartite pairing algorithms can be determined by the number of disjoint groups in the 

graph. In bipartite graph, the disjoint pairs are produced from only two disjoint groups, whereas, 

in non-bipartite graph, there are multiple groups that provide disjoint pairs. The optimal non-

bipartite matching has not gained much attention partly because of the complex algorithm. In 

observational studies like the one we have, there is no control over whether a sample contains 

low or high expression of controller gene C and carrying out a bipartite pairing is not satisfactory 

at all. Hence, we cannot replace non-bipartite pairing by the simpler bipartite method. According 

to Papadimitriou and Steiglitz [20], one of the well-known algorithms of optimal non-bipartite 

matching is based on Derig’s shortest augmentation path algorithm.  

Non-bipartite matching is beneficial mostly because it generates unbiased treatment 

effect estimation in complicated observational studies. Optimal non-bipartite pairing can also be 

used to construct a distribution-free assessment for comparing two multivariate distributions 

[17]. Rosenbaum [16] used the optimal non-bipartite pairing to come up with an exact test to 

check whether two different distributions follow the same parent distribution. The two 

distributions can either be the treated and controlled groups or like in our case, it can be the low 

and high expression of controller gene C groups. The hypotheses for the test can be set as 

follows: 
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where, FL is the distribution of observations with low expression of controller gene and  FH is the 

distribution of observations with high expression of controller gene C. First, the observations 

from the two groups are pooled while ignoring the grouping information. Then, optimal non-

bipartite matching was carried out to create matched pairs among all observations. These 

matched pairs can include observations with low expressions only, ones with high expressions 

only, or pairs with one low and one high expressions of gene C. If the third category, with pairs 

containing both low and high expression observations, have really low number of pairs then, it 

provides significant evidence against the null hypothesis. Hence, suggesting that the two 

distributions of low/high expressions are not the same and that the controller gene could have 

some influence on the observations. This test proposed by Rosenbaum is known as the Cross-

Match (C-M) test. Rosenbaum also derived the normal approximation version of the C-M test 

and compared it to the Kolmogorov Test [17].  

In [15], Heller et al. have provided a definition of the Cross-Match Statistics as follows: 

If there are 2I subjects, m= 1, 2,..., 2I, where subject m has low expression of controller gene C if 

indicator Um = 0 and has high expression of gene C if Um = 1. The number of observations with 

high expression gene C is given by n = ∑ Um from m = 1 to 2I whereas, the number of 

observations with low expression gene C is simply 2I-n. According to Rosenbaum [16], a 2I ✕ 

2I symmetric distance matrix is defined with row k and column m giving a distance between 

observations. Then, the 2I subjects are paired into I non-overlapping pairs to minimize the 

distances within pairs. Non-overlapped pairs are pairs that are matched without replacement [21]. 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{H_{0}:~F_{L}(x)%3DF_{H}(x)}, for~every~x~/epsilon~R^{d}
https://www.codecogs.com/eqnedit.php?latex=/mathrm{H_{1}:~F_{L}(x)/neq~F_{H}(x), for~some~x~/epsilon~R^{d}}
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In [15], the subjects are renumbered, j= 1,.., 2I so that subjects 2i are paired for i=1,..,I. As 

mentioned before test statistic A is the total number of pairs that contain one observation with 

low expression of gene C and one observation with high expression. The formula for test 

statistics A is given as follows:  

 

 

 

where, A is the C-M statistic and a small value of A would suggest that the two distributions are 

different [16]. If instead of 2I subjects, there happened to be an odd 2I+1 number of subjects 

then, a pseudo-subject is added to the distance matrix at zero distance from everyone else. After 

that, I+1 pairs are formed and the pair containing the pseudo-subject is discarded. This is done to 

ensure that the least matchable subject is being discarded. 

In order to carry out the C-M test on the 50 genes, for the assessment of three-way gene 

interactions, we used the data obtained upon clustering by the MCLUST function in R. The 

observations were clustered into low expression of controller gene and high expressions. For 

each of the controller gene, using the cutoff obtained from MCLUST, we applied the C-M tests 

using the ‘crossmatch’ package in R and obtained 58800 different p-values for all possible gene 

triplets with 50 genes. Then, these p-values were sorted in ascending order so as to find the top 5 

significant three-way gene interactions in our dataset. We assessed it further by looking at the 

plots of each of the significant gene triplets we obtained. 

 

 

https://www.codecogs.com/eqnedit.php?latex=/mathrm{A%3D /sum_{i%3D1}^{I}/left /bigg [ U_{2i-1}(1-U_{2i})%2B(1-U_{2i-1})U_{2i} /right ],}
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4. RESULTS AND DISCUSSIONS 

4.1 Results 

 A data simulation process preceded the research analysis. Before conducting the K-S and 

C-M tests on the data obtained from Zhang et al. [6], we used three different sets of models to 

simulate low expression and high expression data. Using these models, we checked the instances 

where K-S and C-M tests were more effective than Fisher’s z-transformation. The models used 

were logarithmic, bivariate normal, and polynomial and had two variations that produced two 

different sets of data to simulate low and high expressions. Figure 4.1.1 demonstrates the three 

simulation models:  

 

Figure 4.1.1. Sets of simulation models 
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 The three different models and their low and high expressions were simulated using the 

following equations: 

 

Logarithmic Model 

lowA1 = seq(1,100,1) 

lowB1 = log(lowA1)+rnorm(100,0,1/16) 

 

highA1 = log(lowA1)+rnorm(100,0,1/16) 

highB1 = lowA1 

 

 

Bivariate Normal  Model 

lowa2=rnorm(100,0,1) 

lowb2=2*lowa2+rnorm(100,0,2) 

lowgc2 = cbind(lowa2,lowb2) 

 

higha2=rnorm(100,0,1) 

highb2=1/2*higha2+rnorm(100,0,1/2) 

 

Polynomial Model 

lowa3= seq(0.1,10,0.1) 

lowb3=(lowa3)^4+rnorm(100,0,1/8) 

 

higha3 = (lowa3)^4 

highb3= lowa3+rnorm(100,0,1/8) 

Table 4.1.1. Equations for Data Simulation Models 

 

In R, using the Peacock.test and crossmatch packages, we obtained the Fisher’s p-value, 

K-S statistic and C-M p-value within low-high expressions of each of the simulation models. We 

have discussed the hypotheses for the three tests in Chapter 3.  Low p-values for the Fisher’s, 

and C-M tests as well as high K-S statistics for the gene triplets suggest that we reject the null 

hypothesis i.e. the distribution of low expression gene C and high expression gene are not from a 

same parent distribution. On the other hand, if the p-values were higher and the K-S statistics 

lower, it would suggest acceptance of the null hypothesis, thus, suggesting that the controller 
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gene had no effect on the gene-gene interaction. For the three models, we computed the 

following results: 

 

Simulated Models Fisher’s p-value K-S statistic C-M p-value 

Logarithmic 0.9478169 0.99 5.920000 × 10-24 

Bivariate Normal 0.6874768 0.38 4.517735 × 10-06 

Polynomial 0.9752655 0.89 3.105823 × 10-22 

Table 4.1.2. Test Results for the simulated models 

 

 In Data Simulation Results, using α=0.05 and Dα=0.19, high p-values for Fisher’s z-

transformation tests, high statistics for K-S tests and  low p-values of C-M tests suggested that 

there were instances were K-S and C-M tests were better than the Fisher’s test. It is easier to 

verify this through simulation because we simulated variations of different models and there is 

no way the test statistics should have led us to high p-values. The high p-values for Fisher’s z-

transformation suggests that the test only targets detection of linear correlations and fails to 

detect non-linear interactions among variables or genes. Therefore, for the 50 genes in the actual 

data, we applied the MCLUST clustering functions and obtained the various cutoffs for the 

controller genes. After that, we performed the K-S tests and saved 58,800 K-S statistics using the 

‘peacock2’ command in R. We sorted the K-S in descending order and noted the top-5 

significant gene triplets and statistics as follows:  
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Gene C Gene A Gene B K-S statistics 

31 29 30 0.95958082 

31 2 30 0.95750182 

31 5 30 0.95750182 

31 13 30 0.95750182 

31 14 30 0.95750182 

Table 4.1.3. Top-5 significant Gene Triplets based on K-S statistics 

 

 The top-5 significant gene triplets have the highest KS-statistics, thus, leading us to reject 

the null hypothesis i.e. H0: The Expression level of Controller Gene has no effect on the 

interaction been Gene A and B, when critical value Dα=0.19. Following are the graphs for the 

significant Gene A and Gene B interactions: 
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Fig 4.1.2. Gene A-Gene B interaction for K-S stats ranks 1 to 5, & 58800 for comparison 
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As one can notice in the graphs, top-5 ranked K-S statistics have gene A- gene B 

interaction graphs that are completely different for low and high expression controller genes C, 

whereas, in case of the interaction graph for the smallest K-S statistics the expression of 

controller genes has no effect on the gene interaction. 

Similarly, we used the same data as in K-S test in case of C-M test. Cutoffs were 

generated from MCLUST to determine the high and low expressions of controller gene. After 

clustering, ‘crossmatch’ was used in R to compute and save all possible 58800 p-values for the 

C-M test. There p-values were then sorted in ascending order to gain the top-5 significant gene 

interactions which are presented in the table below: 

 

Gene C Gene A Gene B C-M p-values 

30 31 38 2.864951 × 10-65 

30 10 31 1.537875 × 10-63 

31 30 48 4.329318 × 10-63 

30 1 31 7.813794 × 10-62 

30 2 32 7.813794 × 10-62 

Table 4.1.4. Top-5 significant Gene Triplets based on C-M p-values 

 

 Based on the lowest p-values, using α=0.05, we reject the null hypothesis, H0 : The 

Expression level of Controller Gene has no effect on the interaction been Gene A and B, just like 

in the case of K-S test. The graph of gene-gene interactions in case of low and high expression 

are included below: 
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Fig 4.1.3. Gene A-Gene B interaction for C-M p-vals ranks 1:5, & 58800 for comparison  
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In the graphs, Gene pairs ranked on the top-5 have different interaction graphs for low 

and high expression of gene C, whereas, the gene pair ranked 58800 shows no difference. 

 

4.2 Discussions 

The Data simulation process involved generating separate distributions to simulate 

low/high distributions of different models and carrying out the three different tests. From the 

results listed in Table 4.1.2., using critical value Dα=0.19 and significance level α=0.05, the high 

K-S statistic and low C-M p-values lead us to reject the null hypothesis and conclude that the 

low/high expressions of each models have different distributions. However, it is only in the case 

of Fisher’s z-transformation test that a high p-value is observed and there is strong evidence to 

support the null hypothesis. Therefore, this suggest that Fisher’s z-transformation test only 

targets linear associations and was not effective in detecting the non-linear associations in the 

simulated models and it might be appropriate to perform a different hypothesis test. 

This brings us to the actual data analysis part. For each of the triplets, we adjusted the 

two-way interactions between gene C-gene A and gene C-gene B using linear regression model. 

The top-5 most significant gene triplets for the Kolmogorov-Smirnov tests were mentioned in 

Table 4.1.3. We considered the 50 genes as controller genes one at a time and carried out the K-S 

test a total of 58800 times which is the number of all possible three-way gene interactions for 50 

genes. Once the 58,800 K-S statistics were computed, we saved and sorted them as mentioned in 

4.1 Results. K-S statistics is simply defined as the supremum difference between the empirical 

distributions of the sample distributions with low and high expressions of gene C. A high K-S 

statistic supports the null hypothesis whereas, a low K-S statistics is against it. Therefore, we 

sorted the K-S statistics in descending order and this arranges the top-5 gene triplets to be the 
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most significant ones. As per the K-S test results, gene 31 as a controller genes presents the most 

significant gene A- gene B interactions. The graph for the various ranks of K-S statistics were 

provided in Figure 4.1.2. The graphs serve as a visual representation that if a controller gene C 

were to affect the gene A- gene B interaction, then the graphs of sample distributions are 

different in case of low and high expression gene C. However, if the controller gene C had no 

effect in the pairwise gene correlation and the K-S statistic were very small, then the graphs are 

very similar if not exact.  

Table 4.1.4 presents the top-5 most significant three-way Gene interactions based on the 

Cross-Match test. Just like in the case of the K-S test, 50 genes were utilized instead of 1000 in 

order to minimize time complexity. Also, for each of the triplets, the two-way interactions 

between gene C-gene A and gene C-gene B were adjusted using linear regression model. We 

used 'crossmatch’ in R to compute 58,800 C-M p-value and sorted them in ascending order this 

time. The test statistic of a C-M test is denoted by A and mentioned in [15], and is simply the 

total count of disjoint sample observations during non-bipartite pairing. A low p-value and high 

A statistic suggests a specific controller Gene C encourages pairwise interaction among other 

two genes whereas, a high p-value/ low A statistic indicates that presence of high expression of 

Gene C makes no change in gene-gene interaction. Based on the top-5 significant Gene triplets, 

Gene 30 seems to be the most effective controller Gene and Gene 31 makes a close second. 

Figure 4.1.3 shows graphs for the Gene A- Gene B interaction for the significant triplets. We 

also included a rank 58800 Gene triplet so as to show how the low p-value is an indicator that 

low or high Expression of Gene C causes no effect to the pairwise interaction of the other two 

genes.  
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5. CONCLUSIONS 

5.1 Summary 

In data simulation process, three different models were simulated in order to carry out the 

Fisher’s z-transformation, Kolmogorov-Smirnov and Cross-Match tests. The simulated sets of 

models were logarithmic, bivariate normal and polynomial models with low and high expression 

variations. We obtained high Fisher’s p-values, high K-S statistics, and low C-M p-values for all 

of the simulated models. This led us to fail to reject the null hypothesis for the Fisher’s test and 

reject the null hypotheses in case of K-S and C-M tests. Thus, demonstrating that K-S and C-M 

are more relevant tests for detection of three-way gene interactions. 

From the data obtained from Zhang et al. [6], 50 out of 1000 genes were utilized for data 

analysis in order to decrease the processing time from several years to a few days. The number of 

gene triplets assessed also decreased from approximately 4.985 billion to 58,800. For each of the 

controller gene C, we generated cutoffs by clustering them into low and high expression groups. 

After that, for each controller gene C, the K-S and C-M tests were executed within the two 

expression groups. In case of K-S test, we generated and saved the statistics, whereas, for C-M 

test p-values were recorded. The 58800 K-S statistics were sorted in descending and the C-M p-

values were arranged in ascending order. These sorted lists gave us the top five significant gene-

interaction triplet for both the tests (Table 4.1.3, Table 4.1.4). We followed it by generating the 

low/high expression graphs (Fig 4.1.2, Fig 4.1.3) for the top 5 most significant gene triplets and 

comparing it to the least significant gene triplet at rank 58800. From the graphs, it can be 

perceived that high expression of gene C in top five cases affect the pairwise gene interactions 

between gene A and gene B.  
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Therefore, Zhang et al.’s approach only targets the linear association of gene A and gene 

B. However, with K-S and C-M tests, we will be able to assess gene- interactions more 

efficiently.  

 

5.2 Future Work 

In our research, we only included 50 genes instead of 1000 provided in Zhang et al. [6]. 

We only took part of the sample so as to decrease the total possible gene triplet combinations we 

needed to test. Decreasing the number of genes decreased the total number of combinations from 

498501000 to 58800, which is almost 99.9% reduction in the total number of gene triplets. The 

reason to do so was mostly to bring down the time complexity. The time to carry out the K-S as 

well as C-M tests shows an exponential growth. If we were to execute the tests in a personal 

computer, the processing time for the test could take several years. Therefore, we chose only 50 

genes in our data analysis which conveniently took only about a few days for the K-S test and 

few hours for the C-M tests. 

The study would provide the best results if we were able to include all 1000 genes. Since, 

we are processing a high volume data, it would be more efficient to utilize ‘parallel computing’ 

in our study. Parallel Computing is a computational method in which a number of processes can 

be executed simultaneously. According to Eugster et al. [23], the statistical programming 

language R provided parallel computing within computer and also in multicore systems using 

different packages. A few of the available packages that facilitate parallel computing in R 

language are multicore, snow, snowfall, and nws. 

Parallel computing is a high-performance computing which is very useful in processing 

high-volume datasets like genomic data, and complex methodologies like bootstrapping. In [23], 
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the four packages Eugster et al. mentioned, present three different kinds of parallel computing 

scenarios provided below: 

1. Multi-core environment: combines two or more CPUs in one machine 

2. Cluster environment: connects a set of computers 

3. Cluster environment with huge amounts of data for calculation 

Eugster et al [23] also mentioned what scenario the different packages are used for. The 

‘multicore’ package is used for multi-core environment, the ‘snow’ or enhanced ‘snowfall’ 

packages are used in case of computer cluster and computer intensive calculations, and ‘nws’ is 

utilized if there is a huge amount of data to be processed at each computer.   

 The large volume of our data might ask for the usage of the ‘nws’ package. The nws 

package uses the “NetWorkSpaces” server (NWS) [24]. The package acts as a client for the 

NWS technology. Both the package and NWS server are open source, commercial product from 

REvolution Computing. In order to run the NWS server application, several other software 

components would have to be installed. However, efficiency of a computation method often 

comes with the price of code-clarity. Further work needs to be done on how to apply the parallel 

computing method in our dataset so that we can include all 1000 genes and compare the results 

to the ones obtained in Zhang et al. [6].  
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