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Abstract 

 The original microwear texture baseline for South African hominins was done by Scott et 

al. (2005) and concluded that Paranthropus robustus exhibited higher complexity values (Asfc) 

that are seen in occasional hard object feeders.  Australopithecus africanus has higher anisotropy 

values (epLsar) consistent with consuming tough objects.  This study expands upon this baseline 

by increasing the sample size from n = 9 for P. robustus and n = 10 for Au. africanus to n = 66 

and n = 44, respectively.  Additionally, this study incorporates multiple different sites and 

deposits.  The P. robustus sample includes Drimolen, Kromdraai, and an expanded sample from 

Swartkrans, incorporating samples from Member 1 Hanging Remnant, Member 1 Lower Bank, 

Member 2, and Member 3.  The Au. africanus sample expands the Sterkfontein sample and also 

incorporates Makapansgat.   

 White-light confocal microscopy in conjunction with scale-sensitive fractal analysis 

quantifies microwear texture variables.  In addition, ISO parameters are also incorporated to 

further elaborate on specific attributes of texture patterns.  ANOVA and MANOVA tests assess 

differences among central tendencies between taxa as well as among deposits.  Pairwise tests 

assess differences in dispersion among P. robustus bearing deposits.  Between taxa, the same 

complexity and anisotropy patterns seen in the previous study are also seen in this study.  Among 

the P. robustus bearing deposits, there were no significant differences among central tendencies, 

but there were differences in dispersion.  This suggests that while there is variation in textures 

among P. robustus samples, these differences are not outside the overall range seen for the 

species.  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Introduction 

 Reconstructing the diet of an extinct animal is imperative to understanding its behavior, 

environmental context, and evolutionary history.  Concerning early hominins, the genus 

Paranthropus is an evolutionary oddball, exhibiting a hyper-robust masticatory complex that 

presents an interesting conundrum between morphology and diet.  Both the eastern African 

variant, Paranthropus boisei, and the South African variant, Paranthropus robustus, share large, 

thick facial and mandibular features in addition to exhibiting large, flat postcanine teeth with 

thick enamel (Rak 1983; Olejniczak et al. 2008).  These adaptations are traditionally associated 

with hard object feeding, as robust cranial and facial bones along with thick enamel are seen in 

primates that eat hard foods as primary parts of their diet or as fallback foods (Rak 1983; 

Lambert et al. 2004; Wood and Strait 2004; Strait et al. 2008; Lambert 2009; Ungar and 

Daegling 2013).  Jolly (1970) put forth the Seed-Eating hypothesis, where the upright posture 

used during seed eating drives selection for bipedalism.  Additionally, wide, flat postcanine teeth 

with thick enamel provide a larger, more resilient surface area to crack harder outer casings and 

small hard objects while also still maintaining the ability to process other softer foods (Rak 1983; 

Kay 1985; Strait et al. 2004; Altmann 2009; Rabenold and Pearson 2011). Finite-element 

analysis of the face of Au. africanus sees stresses being higher in critical points of the face during 

heavy loading of the posterior teeth, which is also seen in a model of Macaca fasicularis.  These 

sections of the face are more robust both in Au. africanus as well as both species of 

Paranthropus (Rak 1983; Strait et al. 2008; Strait et al. 2012).  These assessments of the 

morphology of Paranthropus lead to the conclusion that the genus must be engaging in chewing 
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behaviors that require massive amounts of force to process hard objects.  This hypothesis even 

lends itself to the nickname for P. boisei, the “Nutcracker Man.” 

 With the incorporation of non-adaptive methods of dietary reconstruction, such as dental 

microwear and stable isotope analysis, dietary reconstruction becomes more complicated and is 

seemingly in conflict with conclusions drawn from functional morphology.  Stable carbon 

isotopes in tooth enamel demonstrate that Au. africanus, and P. robustus share similar mixed C3/

C4 dietary signals while P. boisei has an almost exclusively C4 dietary signal (Sponheimer et al. 

2006; Cerling et al. 2011; Ungar and Sponheimer 2011).  Microwear textures also reflect dietary 

behaviors by examining the record of features left on the enamel surface of the tooth that are 

indicative of crushing harder objects (pitting) or shearing tougher materials (striations) (Scott et 

al. 2006).  Among the South African species, Grine (1981) found that the molars of Au. africanus 

have higher cusps with more scratches and more polishing, while P. robustus has lower, rounded 

cusps and more pitting (Ungar 2007).  Building upon this, Scott et al. (2005) report microwear 

texture signatures for these South African hominins, suggesting a separation between Au. 

africanus, which has more variable anisotropic scratches, and P. robustus, which has more 

complex pitting.  While there is overlap in textures, this suggests that Au. africanus had a 

tougher diet on average, and that P. robustus had more hard objects in its diet.  Particularly, the 

pattern of pitting for P. robustus suggests that hard objects were not consumed as a staple food, 

but only occasionally throughout the year.  Additionally, carbon isotope data and microwear data 

for P. boisei reflect a diet almost exclusively comprised of C4 resources, possibly grasses or 

sedges, and there are even suggestions of termite foraging for both variants of Paranthropus 

(Sponheimer et al. 2005; Cerling et al. 2011). 
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 These dietary reconstructions come into conflict with conclusions drawn from functional 

morphology and creates an interesting conundrum.  These hominins are seemingly adapted for 

hard object feeding, but the non-adaptive “foodprints” (Ungar, 2017) are not consistent with a 

diet dominated by such items.  There are three possible explanations for the evolution of these 

robust morphologies:  1) hard object food primary adaptation; 2) hard object food fallback 

adaptation; and 3) sub-optimal adaptation for grinding tough foods.    

Hard-object preference   

 The traditional interpretation of the Paranthropus form-function relationship involves the 

incorporation of hard objects as a preferred, regularly consumed food.  According to this model, 

morphological adaptations such as large masticatory muscles, robust facial buttressing, and large, 

flat postcanine teeth with thick enamel caps are selected for because of habitual hard object 

feeding (Rak 1983; Lucas et al. 2008).  An early overview of hominin dentition done by 

Robinson (1954b) concluded that the teeth of Paranthripus was best suited for crushing and 

grinding vegetation, as opposed to the more omnivorous diet of Australopithecus.  An analysis of 

enamel thickness also points to thicker enamel and decussaation of enamel prisms being an 

adaptive response to resist cracks, especially when consuming hard objects (Lucas et al. 2008).  

Further, Wood and Constantino (2007) detail fifty years of research on the eastern African variant 

of the genus, P. boisei.  The hyper-thick enamel, megadont and bunodont molars, and large 

muscle attachments of P. boisei point to the mastication of either very hard or very tough objects, 

and its small anterior teeth suggest P. boisei is eating foods that do not require incisal preparation 

(Hylander 1975).  Because of the close evolutionary relationship posited between P. boisei and P. 
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robustus, both species were presumed to be engaged in hard object feeding based on morphology 

and tooth enamel (Kay 1985; Wood and Constantino 2007; Lucas et al. 2008).  Studies using 

finite element analysis also point to hard object feeding being the selective pressure behind the 

facial robusticity seen in hard object feeding primates and purported hard object feeding 

hominins (Strait et al. 2009).  However, these studies do not explain why isotopic and microwear 

signatures are so disparate with functional morphology.  Proponents of this model dismiss the 

microwear evidence and postulate that the C4 isotopic signature is reflecting a C4 hard object 

food for P. boisei (Strait et al. 2013).  Additionally, Constantino et al. (2010) argue that enamel 

chipping more closely reflects the bite forces needed for hard object feeding that microwear and 

isotopic analysis may miss.  In contrast, Daegling et al. (2013) suggest that morphological 

adaptation frame what an organism is capable of eating while microwear and isotopes provide 

snapshots of individual behavior in a small window of time. 

Fallback food adaptation  

 Another explanation for Paranthropus cranio-dental functional morphology involves an 

adaptation for fallback foods.  Fallback foods are critical resources used only preferentially when 

favored resources are unavailable, especially during times of resource stress. These items can 

also provide a selective pressure on morphology (Altmann 2009; Constantino and Wright 2009; 

Constantino et al. 2009).  Liem’s Paradox explains how an animal is adapted for processing 

critical food resources that are only utilized during times of resource stresses.  Their morphology 

is then adapted for effectively finding and processing these critical resources that are only eaten 

when the preferred staple food of the animal is unavailable, similar to how gorillas have sharp 
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shearing crests and large chewing muscles that are effective for processing fibrous vegetation, 

but will prefer to eat fruit first when it is available (Remis, 2002; Harrison and Marshall, 2011).  

This is consistent with both the adaptive evidence and the microwear and isotope signatures for 

eurytopy in P. robustus – but not the foodprint evidence for stenotopy in P. boisei (Wood and 

Strait, 2004).  However, character displacement may account for some of the differences seen in 

sympatric primate species, leading to diverging behaviors (Hansen et al. 2000; Nun and Barton 

2001).  Chimpanzees and gorillas have considerable overlap in their diets, but have dietary 

adaptations that diverge and result in both different morphologies and behaviors, which includes 

what fallback foods are utilized during times of resource stress (Remis 2002; Harrison and 

Marshall, 2011) 

Suboptimal adaptation   

 Finally, the last explanation proposes that Paranthropus, in particular P. boisei, has 

suboptimal occlusal morphology – lacking sharp shearing crests but rather, developing a large, 

flat occlusal surface for processing tough, fibrous foods, and requiring significant development 

of the jaw and chewing muscles to make up for the lack of occlusal relief to shear items 

(Daegling et al 2011, 2013, Ungar and Hlusko 2016; Daegling and Grine 2017).  This last 

hypothesis is consistent with both the adaptive evidence and the microwear and isotope 

signatures in P. boisei – but not the foodprint evidence in P. robustus. 

 Evaluation of these hypotheses are predicated on the accurate and complete 

characterization of diets of these hominins by both adaptive and non-adaptive lines of evidence.  

And while there are hundreds of individual fossil specimens known for some of these taxa, 
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including South African species of hominins such as Au. africanus and P. robustus, sample sizes 

have been limited in some analyses. Dental microwear presents a case in point.  Texture analysis 

is an analytical method that utilizes microscopic wear evidence to provide data on both the 

material properties of the foods consumed as well as the angle of attack of chewing behaviors.  

Analyses of primate diets are able to distinguish between hard and tough food properties in the 

diet (Scott et al. 2005; Scott et al. 2006; Scott et al. 2012).  Microwear texture analysis is also 

utilized in a wide array of mammalian and fossil studies for both dietary and environmental 

assessment.   

 Nevertheless, analyses of dental microwear textures on P. robustus from Swartkrans and 

Kromdraai and Au. africanus from Sterkfontein involved a smaller sample of fossils in 

comparison with a known baseline of primate microwear textures, verified with dietary 

observations (Scott et al. 2005; Scott et al. 2012).  However, larger samples of these early 

hominins are known from these three sites, with more recent excavations also incorporating the 

sites of Drimolen (P. robustus) and Makapansgat (Au. africanus).  The principal goal of this 

thesis are to expand upon the previous hominin microwear texture analysis by including all 

available specimens of P. robustus (Scott et al. 2005).  This includes a broad sample of molars 

spanning Kromdraai, Drimolen, and all the hominin bearing deposits at Swartkrans This 

effectively increases the sample size of P. robustus microwear from n = 9 from Swartkrans 

Member 1 Hanging Remnant and Kromdraai, to n = 68 from three sites, including more deposits 

from Swartkrans:  Member 1 Lower Bank, Member 2 and Member 3.  With a larger sample, the 

question becomes whether the pattern of textures evinced by P. robustus, as described by Scott et 

al., (2005) is preserved, and can still be distinguished from that of Au. africanus.   
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 The larger sample also allows consideration of variation within P. robustus but between 

deposits from which samples were recovered.  The previous sample of n = 9 specimens, n = 8 

specimens from Swartkrans Member 1 Hanging Remnant and n = 1 specimen from Member 3 of 

Kromadraai.  Expanding the sample size for P. robustus and incorporating more individuals from 

multiple sites  creates a more robust sample size in order to assess variation in microwear, and by 

extension, diet between the samples for the species.  This will allow us to better assess 

hypotheses concerning whether the microwear textures of P. robustus are indicative of a form-

function relationship consistent with a preferred food adaptation for hard objects, a fallback 

adaptation for hard objects, or a suboptimal adaptation for tough, abrasive foods.  This will help 

to assess whether food preferences varied between samples and environments represented by the 

various sites and deposits in which P. robustus has been found. 

 The remainder of this introduction will present an historical background to P. robustus, a 

description of the sites and their habitat reconstructions, and a brief review of microwear texture 

analysis to put the current study in context. 
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Historical Review 

Paranthropus History and Morphology 

 The genus Paranthropus is an evolutionary oddball, with its three species exhibiting large 

cranial and dental features argued early on to be adapted for specialized dietary behaviors.  The 

holotype specimen of Paranthropus robustus (TM 1517) described by Broom (1938) exhibited a 

skull larger than an ape, a flat face, and large postcanine teeth almost double the size of teeth in 

Homo.  Rak’s (1983) comprehensive work detailing the the morphology of the face in early 

hominin species further explains the large muscular attachments for the masticatory muscles and 

the facial buttressing seen in Paranthropus that is argued to reinforce sections of the face during 

chewing (Strait et al. 2009, Strait et al. 2010).  The dentition of Paranthropus is characterized by 

its postcanine megadontia.  The premolars are molarized and the molars have low, bunodont 

cusps and are large in size (Broom 1938; Robinson 1954b; Rak 1983).  These big, flat teeth are 

seen in primates that consume harder objects and are used to crack the outer casing of objects 

and grind up foods (Kay 1985; Lucas et al. 1984; Strait 1993).   

 While Kromdraai yielded the type specimen of Paranthropus robustus, there are several 

prolific sites that also have produced fossils.  Subsequent discoveries at the site of Swartkrans 

were originally named Paranthropus crassidens, and they exhibited the similar robust teeth and 

jaws to P. robustus at Kromdraai, but were argued to be a larger morph (Robinson and Broom 

1952; Grine 1988).  Broom (1938) thought initially that the South African hominins consisted of 

three separate genera divided into five species, with the two Paranthropus species from 

Kromdraai and Swartkrans separated into P. robustus and P. crassidens, respectively.  This was 

reassessed by Robinson (1954a) who recognized two genera, Australopithecus and 
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Paranthropus, while additionally maintaining a subspecies distinction between Paranthropus 

robustus robustus (Kromdraai) and Paranthropus robustus crassidens (Swartkrans) (Grine 

1981).  A morphometric analyses of crania from Kromdraai and Swartkrans by Cofran and 

Thackery (2010) was unable to conclusively determine differences between the two sites.  In 

total, there are five South African sites that have yielded P. robustus fossil material:  Kromdraai, 

Swartkrans, Drimolen, Gondolin, and Cooper’s Cave. 

 Looking to evolutionary relationships, arly phylogenetic assessments of the South 

African material placed Au. africanus as the stem hominin, with Homo and Paranthropus 

diverging into separate lineages (Johanson and White 1979).  With the discovery of 

Australopithecus afarensis, Johanson and White (1979) argued that Au. africanus is ancestral to 

the “robust” lineage based on similar craniodental adaptations, while A. afarensis was considered 

ancestral to Homo (Kimbel et al. 1998).  The discovery of P. aethiopicus further complicated 

matters.  The “Black Skull “(KNM-WT 17000) shares cranial features with P. boisei, including 

its incredibly large size and dished midface (Walker et al. 1986; Suwa et al. 1997; Kimbel et al. 

1998).  Paranthropus aethiopicus is the purported ancestral taxon that gives rise to the two later 

forms, the eastern African Paranthropus boisei and the South African Paranthropus robustus 

(Walker et al. 1986; Strait et al. 1997; Suwa et al. 1997; Kimbel et al. 1998).  While there is 

evidence that Paranthropus is a monophyletic clade (Strait et al. 1997), some scholars disagree 

about the placement of P. aethiopicus in relation to the other two species (Skelton and McHenry 

1998).  This phylogenetic relationship becomes significant when looking at the diets of each 

species in comparison to the morphological adaptations seen in their masticatory system and 

dentition. 
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 Dietary Hypotheses and Ecology of Paranthropus 

 As already mentioned, the cranial, facial, and dental adaptations of the genus 

Paranthropus were originally considered to be adaptations for hard object feeding.  Robinson 

(1954a, 1954b) proposed a dietary split between Australopithecus and Paranthropus, where the 

former was an omnivore and the latter a strict herbivore (Grine 1981).  However, cave sites in 

South Africa have several examples of hominins being prey to large bodied carnivores, calling 

into question the hypothesis that early hominins (specifically species of Australopithecus) were 

hunters (Grine 1981; Brain 1981).  Then, Jolly (1970) proposed a model of hominin evolution 

based on seed predation, where the large, flat molars of Paranthropus were thought to have 

evolved to facilitate grinding small hard seeds.  Grine’s (1981) work on the trophic differences 

between Au. africanus and P. robustus concluded that both were primarily vegetarian, with P. 

robustus consuming the harder, more fibrous objects.  Work done by Lucas et al. (1984) point to 

a relationship between increasing tooth size and the amount of abrasives in food items.  They 

conclude that the diet of P. robustus consists of small, hard objects like seeds as well as fibrous 

objects like roots.  Chipping of the enamel is also seen in hard object feeding animals, but the 

chipped areas are polished, further reflecting how the structure of the tooth maximizes the 

continued use of the tooth (Constantino et al. 2010).  During times of resource stress, animals 

will access less preferred objects in order to sustain themselves through lean times, such as 

chimpanzees supplementing their frugivorous diet with less appealing leaves (Constantino and 

Wright 2009).  Specifically with hard objects, this provides a selective pressure for larger teeth 

with thicker enamel that is more resistant to cracking and large cranial and facial features that 
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can withstand forces generated through biting (Lambert et al. 2004; Lambert 2009; Constantino 

and Wright 2009; Altmann 2009; Strait et al. 2010; Smith et al. 2014). 

 Additionally, cranial and facial buttressing are argued to be adaptations to withstand 

stress in the face during mastication, both in Paranthropus and in Au. africanus (Rak 1983; Strait 

et al. 2007; Strait et al. 2008; Strait et al. 2010).  Finite element analysis on the face of Macca 

fascicularis and Au. africanus suggest to Strait et al. (2009) that the architecture of their faces are 

adapted to withstand force generated by biting hard objects on the premolars, possibly to exploit 

harder fallback foods.  Sagittal cresting in male specimens and large, deep mandibular corpora 

also indicate that large masticatory muscles that can generate large amounts of force (Rak 1983). 

 These adaptations for hard object feeding have been characterized as an adaptive 

response to a changing environment.  Whereas the genus Homo broadens their dietary niche with 

tools and the incorporation of animal protein, Paranthropus was characterized as branching off 

into more stenotopic adaptations, specializing in hard object feeding in response to increasing 

aridity (Wood and Strait 2004).  Grine (1981) explains the differentiation between Au. africanus 

and P. robustus in a similar fashion, with more xeric environments driving adaptations for molar 

morphology better at crushing objects, while molars adapted for shearing are better for mesic 

environments.  Lucas et al. (1984) also highlight the distinction between Homo and 

Paranthropus using dietary distinctions.  While the euryotopic dietary adaptations of Homo 

facilitated more group sharing and the acquisition of higher quality foods, like meat, 

Paranthropus diverged in the opposite direction, developing a large masticatory apparatus to 

process low quality items.  This characterization of Paranthropus provides an image of a genus 

of early hominin that specialized to consume harder, lower quality foods, and this eventually led 
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to its extinction while the genus Homo was better able to adapt because of its dietary flexibility 

(Potts 1998; Wood and Strait 2004) 

 However, dietary studies incorporating microwear analysis and stable isotope analysis 

paint a different picture of dietary and ecological adaptations for Paranthropus, especially when 

examining the eastern African P. boisei.  Carbon isotopic evidence for early hominins reflect a 

mixed C3/C4 signature (Ungar and Sponheimer 2011).  Specifically looking at the C14 evidence 

for P. robustus, Sponheimer et al. (2006) see more variation among the carbon signatures, 

indicating a more variable diet. C3 plants include plants associated with browsing and more 

closed environments, while C4 plants involve more grasses, though there are C3 grasses and other 

C4 plants (Sponheimer et al. 2007).  Overall, there is a general trend during the Plio-Pleistocene 

of increasing incorporation of C4 resources into the hominin diet (Lee-Thorp et al. 2007; Lee-

Thorp et al. 2010).  However, South African early hominins have a mixed C3/C4  carbon isotope 

signatures, with P. robustus sharing a similar mixed diet to Au. africanus, with some evidence for 

short term changes in diet, either seasonal or yearly (Sponheimer et al. 2006; Ungar and 

Sponheimer 2011).  There is also evidence to suggest that there were seasonal changes to diet, so 

far as plants with different photosynthetic pathways goes, among P. robustus individuals 

(Sponheimer et al. 2006).  This mixed signature is quite different from P. boisei in eastern Africa, 

which has an almost exclusively C4 diet that possibly incorporates sedges and C4 herbs 

(Sponheimer et al. 2005; Sponheimer et al. 2006; Cerling et al. 2011). 

 Microwear studies have also been utilized to piece together the diet and behavior of fossil 

hominins, and a review of dental microwear studies is provided below. 
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Dental Microwear and Dietary Analysis  

The earliest microwear studies focused on the relationship of chewing movement and the 

striations left on the enamel from the movement of food across the occlusal surface (Simpson 

1933; Butler 1952; Mills 1955).  Baker et al. (1959) further looked at sheep microwear and 

proposed that it was caused by a combination of chewing and the phytoliths and exogenous grit 

on the foods themselves.  It was not until Dahlberg and Kinzey (1962) examined a sample of 

human teeth with a low-magnification light microscope that microwear was applied to questions 

in Anthropology, however.  Their conclusions highlighted the importance of food particles per se 

in forming scratches in enamel.  Later researchers further explored microwear with other 

mammal groups and fossils, while also incorporating more advanced technology (see Rose and 

Ungar 1998, for review). 

 The first advanced technology used in microwear analysis was scanning electron 

microscopy (SEM).  The SEM bombards the surface of an object with electrons in order to 

produce high resolution, two-dimensional images.  This technology was a great asset to 

microwear studies, as microwear features were easily distinguished on the surface images and 

could then be quantified.  However, initial SEM microwear studies were mostly qualitative in 

natures (Walker 1981; Grine 1981).  Early attempts to quantify features required hand counting 

and measuring of features (Grine 1986; Walker and Teaford 1989).  Semi-automated attempts to 

standardize quantification methods facilitated comparisons among researchers, but observer 

measurement error was still an issue (Ungar 1995; Grine et al. 2002).  Nevertheless, numerous 

studies did have success using SEM scans to assess differences among both australopiths and 

members of Homo.  Studies of A. afarensis anterior dental microwear reflected a similar pattern 
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of features to both baboons and gorillas, suggesting that they were stripping leaves using their 

incisors (Ryan and Johanson 1989).  Ungar and Grine (1991) compared incisor microwear 

patterns of Au. africanus and P. robustus, showing higher concentrations of wear striations in the 

former, leading to the conclusion that the larger incisors of Au. africanus made it able to process 

more large, perhaps abrasive items than P. robustus.  Concerning molar microwear, as already 

mentioned, SEM micrographs show that Au. africanus has a higher predominance of scratches 

on its surface, while P. robustus has more pitting, suggesting that the later ate more hard objects 

(Grine 1986).  Feature-based SEM microwear studies on A. afarensis and A. anamensis also 

show utilization of occasional hard object fallback foods for A. anamensis, but that neither of 

their diets appeared in any way dominated hard object feeding (Grine et al. 2006; Ungar et al. 

2010). 

 Hominin studies utilizing microwear analyses also reflect a more complex relationship 

between the morphology of Paranthropus species and its actual diet. Initial studies of the 

deciduous cheek teeth of “gracile” and “robust” species of Australopithecus point to a 

fundamental difference between P. robustus and Au. africanus diets.  Australopithecus africanus, 

the more “gracile” of the South African hominin species, was suggested to have a microwear 

pattern dominated by parallel striations, which was attributed to grinding softer, tougher foods.  

In contrast, P. robustus has a more pitted surface texture associated with crushing hard objects 

(Grine 1981).  A follow-up study of permanent molars using scanning electron microscopy by 

Grine (1986) further explored microwear textures on a sample of n = 9 P. robustus individuals.  

Grine found a higher rate of pitting than seen in a sample of n = 10 Au. africanus specimens.  

The features observed on P. robustus teeth were on average shorter but wider than those found on 
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Au. africanus teeth; and they were found on both the Phase I and Phase II facets, which occur 

when the tooth comes into occlusion at different parts of the chewing cycle (Grine 1981; Krueger 

et al. 2008).  

 Scott et al. (2005) later applied dental microwear texture analysis (DTMA) using scale 

sensitive fractal analysis to compare the same specimens of South African hominin as Grine 

(1986), both to one another, and to a sample of modern Cebus apella and Alouatta palliata 

individuals.  For DMTA analysis, higher complexity values seem to correspond to higher degrees 

of hard object feeding, while anisotropy values are often found in tough object eaters (Scott et al. 

2006; Scott et al. 2012).  Scott et al.’s (2005) interpretations were consistent with those of Grine 

(1986). Australopithecus africanus was still said to have predominance of scratches, as suggested 

by low complexity and higher anisotropy averages, which again was proposed to imply a diet 

including some tough foods.  In contrast, P. robustus has higher average complexity and lower 

anisotropy on average, consistent with more pitting on its surface and the consumption of more 

hard objects. In addition, Scott et al (2005) underscored the overlap between these two species in 

microwear complexity and anisotropy, and suggested that the distribution of data (i.e., the 

dispersion) is important for interpreting food preferences and foraging strategies.  Specifically, 

they suggested that these two hominins likely had overlapping diets, but “fell back” in different 

directions, with P. robustus supplementing their diets with more hard foods, and Au. africanus 

consuming more tough ones, consistent with differences in occlusal morphology (Ungar, 2007).   

That said, the microwear samples used by Scott et al. (2005) were small, with a total sample size 

for P. robustus being n = 9 and the total for Au. africanus of n = 10.   
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 Further complicating the dietary picture for Paranthropus, the microwear textures for a 

sample of n = 7 specimens of P. boisei exhibited no evidence for hard object feeding, appearing 

to directly contradict conclusions drawn from the species robust “Nutcracker” morphology 

(Ungar et al. 2008).  In this instance, if P. boisei is “falling back” on hard objects, that feeding 

behavior is not seen in the microwear textures.  This implies that if P. boisei is relying on hard 

objects as a fallback resource, it is inhabiting an environment where it does not engage in 

fallback food use often enough to leave a microwear pattern on the teeth.  This is distinctly 

different from the textures seen in P. robustus, which has a pattern similar to primates that 

consume hard objects as fallback resources (Scott et al. 2005).  An additional interpretation 

involves the use of suboptimal resources.  The large, flat molars of P. boisei are not an ideal 

platform for consuming tougher resources, but are an exaptation useful for repetitive grinding of 

vegetation (Bock and von Wahlert 1965; Ungar and Hlusko 2016).  This would explain both the 

presence of a large morphology, possibly originally adapted to hard object feeding, and the 

isotopic and microwear signatures. 

However, with such small samples in analyses for both species of Paranthroups, it is 

possible that these data are not representative of the species as a whole.  Increasing the sample 

size would allow for more robust statistical analyses, as well as incorporate more sites, which has 

the potential to increase the variation among the total sample.  In this context, it is important to 

understand site contexts and what they can tell us about food availability to the individuals 

represented in the samples. 

 The current method of DMTA analysis was developed because of the measurement error 

and the time and expense inherent to SEM-based studies.  The DTMA approach uses three-
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dimensional point clouds to represent the topography of the enamel surface and scale-sensitive 

fractal analysis (SSFA) for a quantitative characterization of that topography.  Various aspects of 

the surface roughness, including size, shape, and depth of features both across the surface and at 

varying scales (Ungar et al. 1991; Ungar et al. 2003; Scott et al. 2006).  While individual texture 

measures are largely automated, reducing observer measurement error, researchers still require 

training to distinguish antemortem microwear from taphonomic artifacts.  

 This study endeavors to expand the microwear baseline previously done by Scott et al. 

(2005).  With an expanded sample, this increases the chance of sampling a wider array of 

behaviors than previously.  If P. robustus has a wider range of dietary behaviors than what is seen 

sampled by the previous study, this larger sample should exhibit more variability in textures.  

This variation in microwear textures would also be seen if there were differences among samples 

from different deposits.  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Materials and Methods 

Samples and Casting Procedure  

 All microwear replicas were created from dental impressions of P. robustus molars taken 

from original specimens by Peter Ungar, Fred Grine, Mark Teaford, and Alejandro Pérez-Pérez 

in the collections of the Ditsong Museum in Pretoria and the University of the Witwatersrand in 

Johannesburg.  Teeth were first cleaned with acetone-soaked cotton swabs, then molds were 

prepared with President’s Jet regular body polyvinylsiloxane material (Coltene-Whaledent 

Corp.).  All available permanent molars attributed to P. robustus in both collections were molded.   

The Swartkrans material makes up the bulk of the analyzed sample with a total of 93 

specimens available, representative of four different stratigraphic deposits:  Member 1 Hanging 

Remnant, Member 1 Lower Bank, Member 2, and Member 3.  These newly sampled specimens 

were added to the original n = 9 used by both Grine (1986) and Scott et al. (2005). The Drimolen 

sample makes up the other significant portion of the specimens with a total of 22 individuals 

available for analysis (following Moggi-Cecchi et al. 2010).  The Kromdraai sample consists of 6 

specimens.  Resulting data were compared with those for an enlarged sample of Au. africanus (n 

= 44) from both Sterkfontein and Makapansgat collected by Elicia Abella.   The Au. africanus 

sample is presented and analyzed here for comparison with the P. robustus data collected for this 

thesis (see Appendix Tables 1 and 2). 

 Microwear quality replicas were made using high-resolution epoxy resin (Epoxy 

Technologies Corp.).  Epoxy was poured into prepared molds and then the mold is spun in a 

centrifuge to remove air bubbles from the surface.  Remaining casting material was added to the 
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molds using a pipette to minimize air bubble creation.  Casts are then allowed to cure for twenty-

four hours before being carefully removed from the molds. 

Site Context 

 The specimens examined in the current study come from the sites of Kromdraai, 

Swartkrans, and Drimolen.  The contexts of each of these sites are summarized here. 

Kromdraai  

 The site of Kromdraai has two main deposits - Kromdraai A and Kromdraai B.  While 

Kromdraai A has a larger sample of mammalian remains, all hominins derive from Kromdraai B 

(Vrba 1981).  These two deposits appear to have been deposited at different times (Brain 1981).  

McKee et al. (1995) suggest that both Kromdraai A and B are quite similar, but due to the 

presence of P. robustus in the assemblage, Kromdraai B may be slightly older, though both are 

suggested to be deposited prior to Swartkrans Member 1.  Alternatively, Herries and Adams 

(2009) argue that the faunal assemblage at Kromdraai A is contemporaneous with Member 1 at 

Swartkrans and has a reconstructed age range of 1.89 to 1.63 mya based on the age ranges of 

species.  Kromdraai B has undergone several studies to assess its dating, as the context is crucial 

to the hominin fossils found in this deposit.  Biochronological assessments of the faunal 

assemblage of Kromdraai B are more difficult as there are less time sensitive taxa present than in 

Kromdraai A (McKee et al. 1995; Herries and Adams 2009).  Paleomagnetic dating of the 

context of TM 1517 are consistent with a date of 1.9 mya (Thackeray et al. 2002). 
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 Assessments of the sedimentological context of Kromdraai B indicate a higher average 

annual rainfall than today at the site, which is supported by the presence of Hippopotamus and 

wet adapted micromammals (Brain 1958; Partridge 1985; Vrba 1981).  The site also has an 

abundance of primate and large bodied carnivore remains (Vrba 1981).  Given that the number of 

woodland adapted fauna are greater than the grassland adapted fauna, de Ruiter et al. (2008) 

concluded that Kromdraai had more woodland, with the site being fed by the Blaaubank River as 

a permanent water source, though it did likely have some grassland components (Vrba 1981).  de 

Ruiter et al. (2008) hence argued that P. robustus was exploiting both the grassland and the 

woodland, making it an environmental generalist. The micromammalian record also indicates the 

presence of both forested and grassland adapted species (Avery 1995).   

Kromdraai’s paleoenvironment is different from many of the other South African sites 

given its higher rainfall and larger component of riparian forest (de Ruiter et al. 2008; Vrba 

1981).  That said, not all studies are consistent with a forest setting.  Pollen studies suggest more 

open adapted vegetation (Carrion and Scott 1999). 

Swartkrans   

 The nearby site of Swartkrans has produced the largest sample of P. robustus fossils, with 

material coming from several distinct stratigraphic units.  The most fossiliferous deposit is 

Member 1, which is divided into the Hanging Remnant and the Lower Bank.  The Hanging 

Remnant is attached to the northern wall of the cave, while the Lower Bank is made up of more 

sandy and decalcified sediment that is separated from the Hanging Remnant (Brain 1989; Brain 

1993a; Brain 1993b; Gibbon et al. 2014).  The site was initially excavated by Broom and 
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Robinson, and the bulk of the P. robustus material comes from Member 1 Hanging Remnant 

(Brain 1981).  Smaller samples of P. robustus also derive from the Lower Bank as well as 

Members 2 and 3.     

 While early reconstructions of Member 1 inferred the paleoenvironment to have been 

open savannah, Reed (1997) reconstructed a more closed to mixed habitat using the 

morphological characteristics of fossil fauna.  Paranthropus was said to inhabit similar a mix of 

more closed settings and open grasslands.  de Ruiter (2003) also examined the faunal record for 

Member 1, concluding that Members 2 and 3 are roughly contemporaneous, being dated to 

approximately 1.6 mya, and also representative of a more closed, forested environment.  On the 

other hand, isotopic studies show a general trend toward more C4 plants in the diets of present 

fauna, indicative of a more open grassland (Lee-Thorp et al. 2007).  In Member 2, the faunal 

assemblage also reflects a mixed environment, with a dedicated water source or wetland area 

being common to several reconstructions (Reed 1997; de Ruiter 2008; Avery 2001).  The 

Member 3 habitat has been reconstructed to be similar to Members 1 and 2 (Reed 1997).  

Interestingly, Brain and Shipman (1993) note the presence of bone tools, presumably used for 

digging or hide preparation. 

  

Drimolen   

 Drimolen is further north than both Kromdraai and Swartkrans and was discovered in 

1992 by Andre Keyser, yielding a number of P. robustus remains and a large number of faunal 

remains from the Main Quarry (Keyser 2000; Keyser et al. 2000; Moggi-Cecchi et al. 2010).  

Among the faunal remains, Drimolen has a lower incidence of porcupines and hyraxes than other 
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South African sites while having unique single occurrences of giraffe, elephant, and aardvark.  

Despite this diversity, there are no ecologically specific species that are distinctly different from 

other karst sites (Adams et al. 2016).  Time specific macromammalian species indicate the site 

represents a period of time from 2.0-1.5 mya, though it was possibly deposited as early as 2.33 

mya, based on the presence of Equus in the deposit (Keyser et al. 2000; Adams et al. 2016).   

Of particular note are both the large presence of P. robustus individuals as well as a large 

sample of other primate fossils that represent 554 specimens (Adams et al. 2016).  There are, in 

addition, a number of carnivore specimens, specifically Felidae, that are comparable to those 

from other South African sites, though the sabertooth Dinofelis appears to represent a more 

primitive form (Adams et al. 2016; Rovinsky et al. 2015).  The nearby Makondo deposit is about 

55 meters west of the Main Quarry and, while there is some overlap among the 

macromammalian record of both deposits, there is a higher proportion of hyaenid and canid 

remains, in addition to more carnivore-related taphonomic damage on the other fossils.  The 

Makondo deposit unfortunatley lacks the biochronologically distinct taxa necessary to estimate 

an age range for the site (Rovinsky et al. 2015).  Like Swartkrans, Drimolen has a record of bone 

tools and termite foraging (Backwell and d’Errico 2001; Backwell and d’Errico 2008). 

DMTA Scanning Protocol 

 Replicas were examined for microwear using a white light confocal profiler and Sensofar 

PLm imaging software (Solarius, Inc.).  Three dimensional point clouds are generated of areas on 

the Phase II chewing facets of each molar, which provide dietary signals (Kay 1977; Krueger et 

al. 2008).  Scanning preference was for facet 9 on the second molars, consistent with protocol 
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used in the original microwear studies (Grine 1986; Scott et al. 2005).  In the case where second 

molars are unavailable, or if microwear is not preserved or is taphonomically altered, first and 

third molars were used.  Where facet 9 was not preserved, the surface did not preserve 

microwear, or the surface is taphonomically damaged, facet 10n is used.  There is no 

demonstrable difference in microwear signatures between facet 9 and facet 10n, or among tooth 

types (e.g., maxillary or mandibular first, second, or third molars).  In addition, specimens that 

do not preserve antemortem microwear on any Phase II facet were excluded from analysis (see 

below). 

 The occlusal surface was leveled on the stage of the confocal profiler so the facet to be 

sampled was parallel to the plane of the base.  An area representative of the pattern seen on the 

entire facet surface and is free from casting defects or taphonomic damage was selected. Imagery 

from the original Scott et al. (2005) study was used as a guide for site selection.  All 

taphonomically altered specimens are removed from the study sample prior to analysis.  Studies 

by King (1999) and Teaford (1988) have found that surfaces damaged due to taphonomic 

processes, such as acid etching, are demonstrably different in appearance from surfaces that 

preserve microwear created through dietary behaviors.  While taphonomic damage can often be 

confused for microwear features, the damage is often clearly identifiable, as taphonomic 

processes impact the surface of the whole tooth and is not limited to wear facets (King 1999).  

This kind of pattern can produce what appears to be a surface-wide texture that acts like a film 

over the microwear, or obscures/obliterates the microwear entirely.  

 Once an appropriate surface has been identified, four adjacent scans of 138 x 102 mm 

were made, with a lateral point spacing of 0.18 mm, a vertical step of 0.2 mm, and a resolution of 

!23



<5 nm.  This means a total sampled area of 276 x 204 mm for each tooth surface.  When the four 

scans are generated, any small defects on the surface can be erased digitally using 

MountainsMap software (Digital Surf).  Removed areas are registered as non-measured points, 

and do not impact the scale-sensitive fractal analysis (SSFA) protocols. 

 Because specimens that do not preserver antemortem microwear were removed from the 

study before analysis, this greatly reduced the number of specimens analyzed.  There were the 

total of n = 93 specimens available to scan.  The largest sample came from Swartkrans Member 1 

Hanging Remnant, in which n = 42 available specimens preserved microwear, including the 

original n = 8 previously scanned from the deposit.  From Swartkrans Member 1 Lower Bank, n 

= 6 specimens preserved microwear, while n = 3 came from Member 2, and n = 1 came from 

Member 3.  The Kromdraai sample also had a small sample size of n = 5, including the single 

specimen from the site included in previous microwear studies.  The Drimolen sample consisted 

of n = 12 specimens. 

Scale-Sensitive Fractal Analysis 

 Scans are then processed using Toothfrax and Sfrax analytical software programs.  Scale-

sensitive fractal analysis uses fractal geometry to assess the texture of a surface, considering 

areal, length, and volume at varying scales of observation.  At a coarse scale, a surface may 

appear to be relatively smooth, but upon closer inspection shows a rough, uneven surface (Scott 

et al. 2006; Brown and Seigmann 2001).  Five SSFA texture variables were used in this study, 

following convention for microwear texture analysis. 
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 Complexity, or Area-scale fractal complexity (Asfc), is the measure of the changes in 

roughness over the surface at a given scale.  A virtual tiling algorithm uses different sizes of 

triangles to fill in the surface at increasingly finer scales, from 7200 mm2 to 0.02 mm2.   The 

steepest part of the slope is then fit to a log-log plot that places relative area over range of scales, 

and is then multiplied by -1000 (Scott et al. 2006).  Simply put, complexity values are indicative 

of the change of roughness on a surface with scale of observation.  In previous studies, hard 

object feeding primates have been suggested to average higher complexity values, indicating 

microwear features that vary in both size and shape (Scott et al. 2005; Scott et al. 2006).  Scale of 

maximum complexity (Smc) is the steepest part of the complexity curve and represents the finest 

scale at which the surface is most complex (Scott et al. 2006).  High Smc values reflect larger 

microwear features seen at coarser scales. 

 Exact proportion length-scale anisotropy of relief (epLsar) measures the orientation of 

texture across the surface.  The relative lengths of line segments at different scales measured at 

different directions vary if there is a distinct directionality to surface texture (Scott et al. 2006).  

A highly anisotropic surface consists of regular features oriented in the same way, such as many 

parallel striations.  A surface with lower anisotropy values tends to lack this directionality.  This 

high anisotropy is seen in primate samples that incorporate tougher foods into their diets (Scott et 

al. 2005, Scott et al. 2006). 

 Textural fill volume (Tfv) measures surface volume and is calculated by filling in features 

with cuboids of two and ten microns in diameter. The difference in volume between the two 

cuboid sizes sampled can provide information about feature size (Scott et al. 2006).  The higher 

the relative volume of cuboids, the more features in the range between 2 -  10µm in diameter. In 
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this sense, large Tfv values may be seen with hard object feeding, as the harder objects are 

pressed into the occlusal surface of the tooth and deform or carve out the enamel (Scott et al. 

2006). 

 The final variable is heterogeneity of area-scale fractal complexity (HAsfc), which 

measures how much variation is present in complexity (Asfc) across the surface.  Each scan is 

divided into a grid made of equal numbers of rows and columns that increase in number until an 

11 x 11 grid is formed.  Complexity is subsampled from each grid, and HAsfc is defined as 

heterogeneity in Asfc across subsampled areas. The heterogeneity values used most frequently in 

microwear analyses are 3x3 (HAsfc9) and 9x9 (HAsfc81).   

 Additionally, International Organization for Standardization (ISO) parameters (ISO 

25178-2) were incorporated into this study, as these are becoming increasingly popular for 

microwear texture characterization.  There are ten ISO variables commonly used in microwear 

texture analysis today to detail parameters that assess different aspects of roughness (Calandra et 

al. 2012; Purnell et al. 2012; Schulz et al. 2013; Delezene et al. 2016).  ISO variables considered 

here and their descriptions are listed in Table 1.  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Table 1:  ISO values used in this study, with a brief description. 

 ISO measurements were made using MountainsMap (Digital Surf) software.  Individual 

point clouds required further processing prior to analysis for ISO attributes because these 

measurements are affected by overall surface form and missing data. As such, surface form was 

removed using the default polynomial of order 5<13 to adjust for facet shape, and missing data 

were filled using a nearest neighbor algorithm in MountainsMap following standard protocols. 

Soft Filter Protocol 

 A soft filter protocol was also applied prior to both SSFA and ISO data collection, 

following that developed by Arman et al. (2016).  This soft filter is designed to mitigate 

comparability issues among confocal instruments.  One of the principal goals of microwear 

texture analysis is comparability of results among studies and the development of a large 

database to which fossils of numerous taxa can be compared with one another and with data for 

Parameter Desctiption Type of Parameter

Ssk Skewness Height

Sp Maximum Peak Height Height

Sz Maximum Height Height

Sxp Extreme Peak Height Functional

Sdq Root Mean Square Gradient Hybrid

Sdr Developed Interfacial Area Ratio Hybrid

Vvv Pit Void Volume Functional (Volume)

S5v Five Point Pit Height Feature

Sda Mean Dale Area Feature

Sdv Mean Dale Volume Feature
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extant species.  Arman et al. (2016) found variation in results obtained for the same specimens 

when using different instruments in different laboratories.  Indeed, even instruments with 

comparable specifications can provide lead to somewhat different results given varying 

tolerances for data spikes, light source intensity, objective characteristics, etc.  That said, soft-

filtering applied to a surface in MountainsMap (Digital Surf) removes outliers, removes form, 

and fills in non-measured points to reduce measurement “noise” introduced by the vagaries of 

individual instruments and results in more comparable surfaces.  The soft filter was applied to 

the raw data files prior to being run through the Toothfrax and Sfrax software and before 

generating ISO values.  Soft filtered results are the median values of the four sampled areas, 

which is the same as other microwear studies.  Results reported are the soft filtered data results, 

seen in Appendix tables 1 and 2.  A complete list of all specimens available for this study is also 

reported in Appendix table 3. 

Statistical Protocol 

 General linear models were used to assess differences between Au. africanus and P. 

robustus, and differences among Paranthropus samples from the various deposits.  Separate 

protocols were used to assess variation in central tendencies and variation in distribution 

dispersion among samples using Systat 12.  The single specimen from Swartkrans Member 3, 

SKx19892, was not included in comparisons between deposits given that n  =1 is not amenable 

to analyses of variance.   

Central tendencies were assessed following rank transformation to mitigate effects of 

violation of assumptions inherent to parametric statistics (Conover and Iman 1981).  ISO and 
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SSFA attributes were considered together for both the between species and between deposit 

models.  MANOVAs were used to determine/establish significance in the models (i.e., whether 

the samples differed in their microwear textures), and individual ANOVAs were used to 

determine the sources of significant variation as necessary (i.e., how the samples differed in their 

microwear textures). 

 To determine whether the species differed in dispersion, conventional pairwise two-

sample variance tests were used on each of the variables considered in this study.  For 

assessment of dispersion variation among the sites, both Bartlett’s and Levene’s equality of 

variance tests were used.  Additional pairwise two-sample variance tests were used to assess the 

sources of significance (i.e., which pairs of deposits differed from one another in texture 

dispersion for specific variables).  It should be noted that the number of tests included here does 

make Type I errors possible. However, experiment-wide error rates were not used, as this would 

surely increase Type II errors (Perneger 1998). 

!29



Results 

 A total of 66 out of 93 specimens examined yielded microwear data.  The largest sample 

comes from Swartkrans Member 1 Hanging Remnant with n = 33 specimens preserving 

microwear, bringing the total known sample of microwear from the Hanging Remnant to n = 41.  

The Lower Bank sample yielded n = 5, while Member 2 yielded n = 3 and Member 3 yielded n = 

1.  Because Member 3 only had a single individual preserve microwear, the statistical analyses 

will not include the Member 3 specimen (SKX 19892).  For Kromdraai, n = 4 specimens yielded 

microwear.  Drimolen yielded n = 12.  Descriptive statistics for SSFA and ISO data are presented 

in Tables 1-2, along with a comprehensive list of all the P. robustus specimens used and which 

ones yielded microwear in Appendix Table 1.  All scans have surfaces that has a combination of 

pits and scratches and representative scans from each deposit are depicted in Figures 1-5. 

Figure 1:  Photosimulations of two specimens from Drimolen:  DNH 22a (Left) and DNH 3 
(Right). 
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Figure 2:  Photosimulation of a specimen from Kromdraai:  KB 5222. 

Figure 3:  Photosimulation of a specimen from Swartkrans Member 1 Hanging Remnant:  SK 52. 
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Figure 4:  Photosimulation (Top) and 3D topographic image (Bottom) of a specimen from 
Swartkrans Member 1 Hanging Remnant:  SK 31.   
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Figure 5:  Photosimulation of a specimen from Swartkrans Member 1 Lower Bank:  SKX 5014. 

Figure 6:  Photosimulation of a specimen from Swartkrans Member 2:  SKX 4446.  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Table 2:  Scale-sensitive fractal analysis descriptive statistics (epLsar data reported as x10-3) 

SSFA Descriptive Statistics

Asfc epLsar Smc Tfv HAsfc9 HAsfc81

P. robustus n = 66

Mean 0.957 2.983 x 10-3 9.240 6738.884 0.456 0.797

Median 0.846 2.743 x 10-3 4.675 6239.505 0.417 0.727

SD 0.459 1.219 x 10-3 16.782 4752.536 0.180 0.280

Drimolen n = 12

Mean 1.126 2.901 x 10-3 17.180 9162.150 0.441 0.760

Median 1.031 2.683 x 10-3 5.490 9382.899 0.476 0.726

SD 0.518 1.150 x 10-3 34.634 5170.237 0.135 0.188

Kromdraai n = 4

Mean 0.950 2.698 x 10-3 8.095 4132.784 0.625 1.143

Median 0.948 2.668 x 10-3 8.775 3616.081 0.471 0.901

SD 0.247 0.279 x 10-3 4.675 2287.666 0.315 0.626

Swartkrans M1 
HR n = 33

Mean 0.952 3.154 x 10-3 6.088 6250.454 0.439 0.762

Median 0.834 2.841 x 10-3 3.920 5413.003 0.405 0.713

SD 0.496 1.377 x 10-3 4.920 4728.558 0.175 0.221

Swartkrans M1 LB n = 5

Mean 0.589 2.421 x 10-3 21.266 3947.893 0.537 0.937

Median 0.652 2.246 x 10-3 9.530 3695.852 0.516 0.642

SD 0.160 0.579 x 10-3 22.789 1927.569 0.298 0.579

Swartkrans M2 n = 3

Mean 1.102 2.324 x 10-3 3.897 11388.441 0.402 0.751

Median 1.091 2.421 x 10-3 3.650 11371.875 0.413 0.829

SD 0.090 0.183 x 10-3 1.140 5089.983 0.049 0.215
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Table 2 (Cont.):  Scale-sensitive fractal analysis descriptive statistics (epLsar data reported as 
x10-3). 
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SSFA Descriptive Statistics

Asfc epLsar Smc Tfv HAsfc9 HAsfc81

A africanus n = 44

Mean 0.689 4.527 x 10-3 6.994 2386.292 0.387 0.699

Median 0.638 3.830 x 10-3 4.500 1208.628 0.360 0.695

SD 0.307 2.092 x 10-3 7.601 3076.133 0.129 0.162

Makapansgat M3 n = 9

Mean 0.636 5.319 x 10-3 11.413 2384.671 0.401 0.732

Median 0.650 3.717 x 10-3 6.370 1501.830 0.401 0.687

SD 0.149 2.532 x 10-3 10.804 2089.375 0.092 0.120

Sterkfontein M4 n =  35

Mean 0.702 4.323 x 10-3 5.858 2386.709 0.384 0.691

Median 0.573 3.894 x 10-3 4.210 1132.828 0.356 0.696

SD 0.336 1.954 x 10-3 6.253 3307.601 0.138 0.171



Table 3:  International Organization for Standardization texture parameter descriptive statistics. 

ISO Descriptive Statistics

Ssk Sp Sz Sxp Sdq Sdr Vvv S5v Sda Sdv

P. robustus n = 66

Mean -0.601 1.340 3.310 1.255 0.108 0.616 0.077 0.691 520.538 10.383

Median -0.580 1.264 3.197 1.156 0.102 0.516 0.071 0.659 505.903 8.817

SD 0.357 0.477 1.006 0.416 0.028 0.327 0.026 0.252 150.571 6.297

Drimolen n = 12

Mean -0.670 1.500 3.868 1.471 0.117 0.725 0.090 0.781 526.191 9.879

Median -0.534 1.505 3.936 1.403 0.112 0.629 0.088 0.745 504.491 9.065

SD 0.397 0.520 1.238 0.504 0.032 0.389 0.030 0.277 164.516 3.886

Kromdraai n = 4

Mean -1.031 1.063 3.323 1.380 0.111 0.611 0.086 0.798 618.261 15.783

Median -0.830 1.011 3.254 1.410 0.110 0.610 0.088 0.634 673.488 15.465

SD 0.650 0.154 0.444 0.117 0.017 0.175 0.009 0.357 224.043 10.432

Swartkrans M1 HR n = 33

Mean -0.558 1.300 3.161 1.201 0.108 0.618 0.073 0.669 492.361 9.777

Median -0.584 1.271 3.114 1.137 0.103 0.534 0.066 0.641 464.859 7.822

SD 0.312 0.445 0.986 0.415 0.029 0.337 0.027 0.249 137.435 6.549

Swartkrans M1 LB n = 5

Mean -0.600 1.126 2.936 1.080 0.086 0.378 0.067 0.550 653.415 12.687

Median -0.649 1.199 3.042 1.012 0.092 0.420 0.065 0.563 696.891 9.999

SD 0.203 0.177 0.493 0.311 0.013 0.100 0.016 0.135 159.648 7.141

Swartkrans M2 n = 3

Mean -0.344 1.974 3.974 1.415 0.118 0.696 0.089 0.767 530.287 8.755

Median -0.467 1.811 4.126 1.408 0.123 0.742 0.091 0.715 600.850 8.812

SD 0.232 0.872 0.868 0.160 0.007 0.082 0.010 0.112 131.111 0.947
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Table 3 (Cont.):  International Organization for Standardization texture parameter descriptive 
statistics. 

 To address concerns about potential differences concerning tooth position and the 

inclusion of facet 10n, box plots of  Asfc, epLsar, and Tfv data for P. robustus results was done by 

A. Peterson and a three-factor MANOVA examining tooth number (first, second, and third 

molars) and jaw (maxillary and mandibular) was done by P. Ungar on the Swartkrans Member 1 

Hanging Remnant and Sterkfontein Member 4 samples (Table 4).  There are no significant 

effects with either tooth number or jaw.  The only significant effect was taxon.  This means there 

is no significant difference among different teeth in the mouth.  Additionally, the boxplots (Fig. 

7) shows that the use of facet 10n as a Phase II facet provides the same information as facet 9, 

confirming what was also seen in a study of Phase I and Phase II facets by Krueger et al. (2008).  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ISO Descriptive Statistics

Ssk Sp Sz Sxp Sdq Sdr Vvv S5v Sda Sdv

Au. africanus n = 44

Mean -0.606 0.926 2.355 0.900 0.088 0.398 0.055 0.584 461.814 7.906

Median -0.467 0.865 2.192 0.856 0.085 0.353 0.053 0.540 433.416 6.483

SD 0.382 0.313 0.697 0.294 0.020 0.184 0.018 0.204 159.194 5.619

Makapansgat M3 n = 9

Mean -0.536 0.966 2.426 0.956 0.088 0.374 0.056 0.606 591.103 6.478

Median -0.405 0.872 2.205 0.858 0.087 0.375 0.054 0.499 670.915 6.404

SD 0.235 0.212 0.485 0.230 0.010 0.083 0.013 0.217 186.808 2.312

Sterkfontein M4 n =  35

Mean -0.624 0.916 2.337 0.886 0.088 0.404 0.055 0.578 428.568 8.274

Median -0.467 0.814 2.179 0.806 0.084 0.348 0.051 0.552 406.894 7.004

SD 0.412 0.336 0.747 0.309 0.021 0.202 0.019 0.203 135.195 6.164



Table 4:  Three-factor MANOVA comparing tooth types by site/taxon.  Results reported for rank-
transformed SSFA data (variables), jaw (maxillary, mandibular), tooth number (first, second, 
third molar), and site (Sterkfontein Member 4, Swartkrans Member Hanging Remnant). 

Figure. 7: Boxplots showing the comparison of facet 10n and facet 9 for P. robustus specimens 
for the variables Asfc, epLsar, and Tfv. 

MANOVA Results for Tooth Types

Effect Wilk’s λ F-ratio df p-value

Jaw 0.986 0.156 6, 68 0.987

Tooth number 0.841 1.024 12, 136 0.431

Site (taxon) 0.737 4.035 6, 68 0.002

Number x site 0.928 0.434 12, 136 0.947

Jaw x site 0.972 0.323 6, 68 0.923

Number x jaw 0.839 1.042 12, 136 0.414

Number x jaw x site 0.820 1.185 12, 136 0.300
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Bivariate Plots - Taxon Differences (Au. africanus vs. P. robustus) 

Figure 8:  Bivariate plots showing comparisons of SSFA variables between taxa in central 
tendencies.  A principle component analysis is also included comparing P. robustus and Au. 
africanus. 
  

 Scatter plots comparing soft filtered microwear variable differences between taxa (Fig. 8) 

appear to show a wider range of epLsar values for Au. africanus, ranging from .001 to .009, 

while P. robustus anisotropy values have a range between 0.001 and 0.007.  In contrast, P. 

robustus has a wider range of complexity values.  Au. africanus values are all under 2.0 in Asfc 

numbers.  Complexity values for P. robustus extend past 2.0.  Higher complexity values are seen 

in primates that exhibit some degree of hard object feeding, as the force of crushing these objects  

score the enamel and cause pitting (Scott et al. 2005; Altmann 2009).  Higher anisotropy values  
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reflect textures having a particular direction, such as parallel striations (Scott et al. 2005; Scott et 

al. 2006).  While there is significant overlap between Au. africanus and P. robustus for these two 

variables, P. robustus is more variable in its complexity and Au. africanus is more variable in its 

anisotropy.  Overall, Au. africanus has a higher anisotropy average and P. robustus has higher 

complexity average.  This larger hominin sample is reflecting the same pattern as the previous 

study by Scott et al. (2005) and reflects a difference in diet between the two South African taxa.  

These bivariate plots also show Tfv values for P. robustus have a larger range, with Au. africanus 

textural fill numbers clustering in the lower range.  The larger Tfv values reflect more or deeper 

features in the 2 – 10 µm size range.  However, Smc appears to have a comparable range for the 

two taxa.  The scatter plot comparing both heterogeneity variables show similar clustering for 

both taxa, but P. robustus has the larger range in both instances. 

 ISO parameters reflect similar aspects to surface textures for both taxa, but the range of 

Au. africanus is contained within the range of P. robustus (Fig. 9).  Height parameters Sz and Sp 

(maximum height and maximum peak height, respectively) reflect a linear pattern in the bivariate 

plot.  The values for P. robustus extend past the range seen for Au. africanus, suggesting that the 

height parameters are can reach a larger values in the microwear textures for P. robustus.  

Comparison of volume and area ratio parameters (Vvv and Sdr, respectively), extreme peak 

height and the root mean square gradient (Sdq and Sxp, respectively), and feature parameters 

measuring pit height and mean volume (S5v and Sdv, respectively) also follow this same general 

pattern.  However, in all these instances, there is still significant overlap of both Au. africanus 

and P. robustus values.  Au. africanus falls within the range seen for P. robustus, but the latter 

demonstrates a relatively larger range. 
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Figure 9:  Bivariate plots comparing ISO parameters between taxa in central tendencies.  Ssk and 
Sda are not included among the bivariate plots. 
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Statistical Tests 

Table 5:  MANOVA and ANOVA results comparing rank-transformed texture data for species. 

Attribute Wilk’s λ F-ratio df p-value

MANOVA 0.525 5.261 16, 93 0.000

MS F-ratio df p-value

Asfc 11458.333 12.444 1, 108 0.001

epLsar 17003.788 19.556 1, 108 0.000

Smc 527.424 0.516 1, 108 0.474

Tfv 26918.523 34.618 1, 108 0.000

HAsfc9 6745.606 6.994 1, 108 0.009

HAsfc81 3454.697 3.472 1, 108 0.065

Ssk 267.273 0.261 1, 108 0.611

Sp 23520.606 29.069 1, 108 0.000

Sz 25531.856 32.298 1, 108 0.000

Sxp 22986.402 28.236 1, 108 0.000

Sdq 17309.697 19.973 1, 108 0.000

Sdr 18826.705 22.082 1, 108 0.000

Vvv 22692.273 27.782 1, 108 0.000

S5v 5970.038 6.144 1, 108 0.015

Sda 3830.455 3.863 1, 108 0.052

Sdv 7200.606 7.499 1, 108 0.007
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Table 6:  MANOVA and ANOVA results comparing rank-transformed texture data between the 
sites for each species. 

MANOVA Wilk’s λ F-ratio df p-value

A. africanus 0.388 2.667 16, 27 0.012

P. robustus 0.278 1.077 64, 178 0.346

A. africanus

ANOVA MS F-ratio df p-value

Asfc 7.857 0.047 1, 42 0.830

epLsar 186.092 1.131 1, 42 0.294

Smc 882.829 5.979 1, 42 0.019

Tfv 113.457 0.683 1, 42 0.413

HAsfc9 156.759 0.949 1, 42 0.336

HAsfc81 105.635 0.635 1, 42 0.430

Ssk 38.029 0.226 1, 42 0.637

Sp 186.092 1.131 1, 42 0.294

Sz 121.559 0.732 1, 42 0.397

Sxp 176.035 1.069 1, 42 0.307

Sdq 64.568 0.386 1, 42 0.538

Sdr 38.029 0.226 1, 42 0.637

Vvv 53.114 0.317 1, 42 0.577

S5v 18.473 0.110 1, 42 0.742

Sda 905.178 6.142 1, 42 0.017

Sdv 4.225 0.025 1, 42 0.875
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Table 7a-b:  Levene tests for equality of variance comparing taxa, and comparing deposit 
grouped specimens by taxon.  Swartkrans Member 3 specimen excluded from the P. robustus 
study because n = 1.  
A. MANOVA on ranked Levene-transformed data. 

B. Post-hoc Levene tests for individual variables. 

Wilks λ F-ratio df p-value

Taxon comparison 0.484 6.120 16, 92 0.000

A. africanus deposits 0.340 3.272 16, 27 0.003

P. robustus deposits 0.047 3.299 64, 178 0.000

Taxon A. africanus P. robustus

Statistic p-value Statistic p-value Statistic p-value

Asfc 7.569 0.007 4.021 0.051 2.015 0.104

epLsar 19.119 0.000 2.591 0.115 2.350 0.064

Smc 1.484 0.226 4.126 0.049 5.472 0.001

Tfv 14.136 0.000 0.640 0.428 1.884 0.125

HAsfc9 1.370 0.244 0.339 0.563 2.322 0.067

HAsfc81 3.577 0.061 0.363 0.550 6.888 0.000

Ssk 0.081 0.776 0.855 0.360 1.884 0.125

Sp 7.588 0.007 1.341 0.253 2.770 0.035

Sz 5.078 0.026 1.554 0.220 2.214 0.078

Sxp 5.187 0.025 0.680 0.414 1.862 0.129

Sdq 6.098 0.015 4.527 0.039 1.656 0.172

Sdr 9.875 0.002 5.177 0.028 1.721 0.157

Vvv 5.484 0.021 1.166 0.286 1.756 0.150

S5v 1.043 0.310 0.015 0.903 1.091 0.369

Sda 0.029 0.865 3.112 0.085 0.588 0.673

Sdv 0.115 0.736 7.230 0.010 2.319 0.067
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Table 8.  Pairwise Levene tests of significant variables (see Table 6) for P. robustus deposits. 

Australopithecus africanus vs. Paranthropus robustus 

 Mutivariate tests are all significant, reflecting that there are significant differences 

between the two South African taxa (Table 5).  ANOVA tests with central tendencies show 

significant variation between taxa for Asfc (p = 0.001), epLsar (p = 0.000), Tfv (p = 0.000), and 

HAsfc9 (p = 0.009) (Table 4).  HAsfc9 divides the surface of the scan into a 3x3 grid in order to 

assess how similar each of those areas are to one another (Scott et al. 2006).  At this coarser 

scale, there are significant differences between taxa.  epLsar values are significantly different, 

with Au. africanus exhibiting the higher anisotropy numbers when looking at the raw medians.  

P. robustus deposits Smc HAsfc81 Sp

Statistic p-value Statistic p-value Statistic p-value

Drimolen x Kromdraai 1.256 0.281 9.160 0.009 2.880 0.112

Drimolen x Swart M1 HR 13.775 0.001 0.225 0.637 0.067 0.797

Drimolen x Swart M1 LB 0.000 0.989 7.808 0.014 2.805 0.115

Drimolen x Swart M2 1.302 0.274 0.034 0.856 1.186 0.296

Kromdraai x Swart M1 HR 0.011 0.918 15.996 0.000 4.484 0.040

Kromdraai x Swart M1 LB 21.375 0.002 0.019 0.893 0.423 0.536

Kromdraai v. Swart M2 6.670 0.049 2.256 0.193 6.380 0.053

Swart M1 HR x Swart M1 LB 81.693 0.000 15.227 0.000 4.230 0.046

Swart M1 HR v. Swart M2 1.959 0.169 0.160 0.691 2.944 0.094

Swart M1 LB x Swart M2 22.846 0.003 1.887 0.219 7.341 0.035
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These results suggest that the microwear textures seen on P. robustus specimens have larger 

features seen at coarse scales, and exhibit less directionality than Au. africanus.  

 ISO parameters were also significantly different in all but two variables (Table 5).  Ssk 

reflects the density of scratches on the surface and Sda measures the area of features (Delezene et 

al. 2016).  Neither of these variables were significantly different, showing that the amount of 

scratches and the area of surface textures are not significantly different.  Height parameters Sp 

and Sz measure the maximum peak height and the maximum height of the surface, the latter 

being the difference between the highest and lowest points of the surface (Schulz et al. 2013).  In 

both cases, P. robustus exhibits larger values that are significantly different from Au. africanus (p 

= 0.000 for both parameters).  Functional parameters Sxp and Vvv measure extreme peak height 

difference and void volume, respectively (Schulz et al. 2013).   Both parameters are also 

significantly difference with p-values of p = 0.000 for each parameter.  These parameters further 

show different peak heights between taxa, as well as differences among the volume of features 

(Delezene et al. 2016). 

 Both hybrid parameters also have significant p-values (p = 0.000).  Sdq is the root mean 

square gradient, which is calculated by taking the root mean square of all the slopes on the 

surface (Blateyron 2013).  Sdr is the developed interfacial area ratio and is a measure of 

complexity (Delezene et al. 2016).  Finally, feature parameters S5v, or the five-point pit height, 

and Sdv, or mean dale volume.  S5v is a measure of the depth of features, measuring the height of 

pits, while Sdv is a volume measurement, specifically measuring the dale, or the volume of a 

closed off feature (ie. a pit) (Schulz et al. 2013; Delezene et al. 2016).  S5v is significant at p = 

0.015 and the numbers are higher in P. robustus, indicating that the depth of features are 
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significantly deeper in P. robustus.  Sdv is also significant at p = 0.007, and suggests that the 

areas are larger for P. robustus. 

 Looking at dispersion between the two taxa, there are significant differences for Asfc (p = 

0.007) and epLsar (p = 0.000), as well as Tfv (p = 0.000).  Smc and both heterogeneity variables 

are not significantly different.  The Levene’s tests are also significantly different for the 

following ISO parameters:  Sp (p = 0.007), Sz (p = 0.026), Sxp (p = 0.025), Sdq (p = 0.015), Sdr 

(p =0.002), and Vvv (p =0.021) (Table 8).  All the feature parameters were not significantly 

different.  Additionally, Ssk (skewness) is not significantly different.   

 So, for complexity, anisotropy, and textural fill, there were significant differences in both 

central tendencies and dispersion.  Additionally, all the ISO parameters that were significantly 

different in dispersion were also significantly different in central tendencies.   

Paranthropus robustus Site Comparisons 

 The multivariate test results show no significant differences among central tendencies 

among the sites for P. robustus (Table 6).  Interestingly, there are significant differences among 

Au. africanus sites, reporting a significant result (p = 0.012) in the MANOVA results.  The 

ANOVA results show differences in Smc (p = 0.019) and Sda (p = 0.017) for Au. africanus 

central tendencies.  However, there are some differences in dispersion for both Au. africanus 

sites as well as P. robustus sites.  The MANOVA results are significant for sites within both taxa 

(Table 7a). For dispersion among Au. africanus sites, Smc (p = 0.049) is the only SSFA variable 

that is significantly different.  Sdq (p = 0.039), Sdr (p = 0.028), and Sdv (p = 0.010) are the ISO 

parameters that are significantly different (Table 7b).  For dispersion among P. robustus sites, 
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Smc (p = 0.001) is also significantly different.  HAsfc81 (p = 0.000) is also significantly different, 

as is Sp (p =0.035) (Table 6b).   

 Because the Levene tests for equality of variance were significant for Smc, HAsfc81, and 

Sp, further pairwise Levene tests were conducted between each pair of P. robustus bearing sites.  

Significant pairwise tests are highlighted in Table 7.  Of note is the test between the Hanging 

Remnant and Lower Bank samples of Swartkrans Member 1, which were significantly different 

for all three variables considered.  Additionally of note are the tests between Swartkrans Member 

2 and Drimolen, as well as Swartkrans Member 2 and Member 1 Hanging Remnant, which are 

not significantly different.  

!48



Discussion 

 There were two principal aims of this project:  1) to expand the sample of P. robustus to 

include as many deposits as possible in order to assess whether we still see the same pattern as 

was reported in initial studies based on more limited samples (Grine 1986; Scott et al. 2005) and 

2) to assess if there are significant differences among P. robustus bearing sites.  Those 

differences can then be assessed to determine if they are consistent with feeding behaviors 

associated with dietary hypotheses involving fallback or suboptimal food processing.  

Expanding the Paranthropus robustus sample 

 The original microwear texture baseline analyzed by Scott et al. (2005) demonstrated a 

higher proportion of anisotropic textures and lower average complexity in Au. africanus while 

there was a higher proportion of complex textures and lower average anisotropy in P. robustus.  

It was also noted that there was considerable overlap in the complexity-anisotropy bivariate 

space between the two species.  This pattern holds true in our expanded sample.  There are 

differences in complexity and anisotropy for each taxon, with P. robustus having the more 

complex textures and Au. africanus having the higher anisotropy values.  Additionally, the same 

complexity-anisotropy overlap can also be seen in bivariate plots of the expanded samples.  

There is some separation of Au. africanus and P. robustus, but also a considerable amount of 

overlap. This suggests that while Au. africanus and P. robustus may have differing adaptations 

for different dietary extremes, their everyday foods are similar.  This is similar to how 

chimpanzees and gorillas have considerable overlap in diet (Remis, 2002; Harrison and Marshall, 

2011). 
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 Overall, Au. africanus microwear textures reflect more tough object feeding, with higher 

anisotropy values and lower complexity values, while P. robustus reflects hard object feeding 

with lower anisotropy and higher complexity.  Among ISO textures, P. robustus values were 

significantly larger among variables that were significantly different, reflecting features that 

characterize a rougher topography.  This increased complexity associated with pitting and deep 

features with taller peaks on the surface is consistent with hard object feeding, which makes 

these impressions on the tooth (Scott et al. 2005; Scott et al. 2012; Calendra et al. 2013).   

 The significant differences for Asfc and HAsfc9 evidently reflect differences in features at 

coarser scales.  The combined P. robustus sample shows high average HAsfc9 values, meaning 

that on a 3x3 grid, the features in each of the boxes are more heterogenous.  This is also in line 

with the significantly different Asfc values, which are higher in P. robustus than in Au. africanus.  

This is consistent with more pitted, larger and more variability in microwear features for P. 

robustus than for Au. africanus.  Thus, the differences between the textures of these two species 

becomes apparent, with P. robustus having a surface dominated by deep features, often pitting, 

creating a surface that is highly irregular, presumably from crushing hard foods, whereas Au. 

africanus likely ate foods that cause more regular, anisotropic features, such as aligned striations, 

in comparison to P. robustus.  This is also supported by the significant differences in dispersion.   

Paranthropus robustus bearing sites 

 There were no significant differences in central tendency for among P. robustus site 

samples, but there were significant differences in dispersion.  This seems to imply that while the 

P. robustus food preferences are relatively consistent between the samples, there is some 
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variation in microwear textures, which might suggest variation in the range of foods (at least in 

terms of fracture properties responsible for microwear texture pattern) consumed at the times and 

places represented by these different deposits.  It should be noted, though, that the sample sizes 

for the different deposits are quite different, and some of the variance seen in dispersion might be 

an artifact of this.  This is especially so given that all the deposits are reconstructed as having a 

mixed woodland and grassland habitat to some degree, which will inevitably have a wide range 

of foods with variable material properties (Wood and Strait 2004).  While there was some 

differences in dispersion among sites, there was no consistent pattern of difference.  Interestingly, 

the Hanging Remnant sample and the Lower Bank sample are significantly different from one 

another.  Both deposits are part of Member 1, with Member 2 cutting in-between the eroded 

space between the deposits (Brain 1981).  This may suggest that there are some differences 

between the two deposits, though weather it is a record of changes in dietary behaviors through 

time is not conclusive. 

 Early studies of Paranthropus made the distinction between Paranthropus and Homo, 

characterizing Paranthropus as a stenotopic species adapted for hard object feeding, while Homo 

was considered a generalist able to exploit a wider range of habitats and foods within them 

(Wood and Strait 2004).  This dichotomy between the stenotopic Paranthropus and the 

euryotopic Homo was used to explain why Paranthropus eventually went extinct while Homo 

flourished (Potts 1998; Constantino and Wood 2004; Wood and Strait 2004).  The microwear 

evidence suggests that this model may be an oversimplification.  In an examination of criteria 

associated with stenotopy and euryotopy, taking into consideration population dynamics, dietary 

evidence, and morphological characteristics, Wood and Strait (2004) suggested that only tooth 
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morphology showed a narrow specialization (a broad, flat surface for crushing harder objects).  

Ten other criteria suggested a more euryotopic species, implying that the genus Paranthropus is 

more generalized that originally thought (Wood and Strait 2004).  

 While it has been cautioned that there may be no one-to-one correspondence between 

dietary variability and microwear texture dispersion (Schulz et al., 2013), it is most parsimonious 

to suggest that the broad range of values for most microwear texture attributes seen for P. 

robustus reflects access to a food supply that was variable in its material properties.  Scott et al. 

(2005) proposed that the variation in texture complexity seen in P. robustus reflects occasional 

hard object feeding, either as a part of the daily or seasonal diet or as a fallback resource.  The 

larger sample continues to show those patterns.  This inferred flexibility in diet further supports 

the idea that P. robustus was a euryotopic species (Wood and Strait, 2004), and consumed a wide 

range of foods with varying fracture properties and mechanical challenges.  These differences 

may also be attributed to seasonal variation, but a conclusive reconstruction is not clear based 

solely on microwear (Gogarten and Grine 2013).  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Conclusions 

 This project expands upon the microwear texture work done by Scott et al. (2005) on 

Paranthropus robustus and Australopithecus africanus.  The study increases the sample size of P. 

robustus microwear textures from n = 9 to n = 66 and incorporates larger samples from 

Kromdraai and Swartkrans, as well as a new sample from Drimolen.  The Au. africanus sample 

has been expanded to include more specimens from Sterkfontein and new material from 

Makapangsgat, done by E. Abella.  This larger sample shows the same pattern of differences 

between P. robustus and Au. africanus originally identified with the smaller sample.  It also 

expands the constellation of attributes considered for a more comprehensive characterization of 

microwear textures. 

 Paranthropus. robustus has a higher complexity average and lower anisotropy, consistent 

with a diet involving some degree of hard object feeding.  Australopithecus africanus has a 

higher anisotropy average and lower complexity average, reflecting a diet with more tough 

objects.  Tfv values are also higher in P. robustus, reflecting deeper features than seen in Au. 

africanus.  Additionally, at a course scale, P. robustus exhibits more heterogenous textures than 

Au. africanus.  Considering ISO parameters, only Ssk and Sda were not significantly different.  

The remaining parameters were all larger for P. robustus, indicating that features for P. robustus 

textures were had deeper pits with larger volumes, and higher peaks.  These roughness 

parameters show more topographic relief for the textures of P. robustus, especially concerning 

pitting, and further support the conclusion that P. robustus was engaging in occasional hard 

object feeding.  Additionally, the large sample size increases the variation seen in complexity 

textures for P. robustus overall. 
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 Among P. robustus bearing deposits, there are no significant differences among central 

tendencies, but there are differences between sites when considering dispersion.  There are no 

consistent patterns in the differences in pairwise tests between individual sites for both SSFA and 

ISO values.  So, while these differences do suggest some degree of dietary variation among 

different deposits, particularly in the toughness and hardness of the objects, the variation is not 

overtaking the overall variation seen in the species.  Currently, it is unclear as to the extent to 

which differences in dispersion reflect variation in environments, particularly because the current 

paleoenvironmental reconstructions for all South African hominin sites lack any significant 

differences (Wood and Strait 2004; Grine in press).  

 Overall, the microwear textures for P. robustus continue to reflect occasional hard object 

feeding while increasing the known variation seen in microwear textures for the species. Within 

species variation is also seen in dispersion, but these differences are not outside the possible 

range of variation seen in P. robustus, and central tendencies are not different among sites.  

While there are still unanswered questions regarding exactly what is causing the differences in 

dispersion among various deposits, whether it is dietary or environmental changes driving the 

different dispersion ranges, it does suggest that P. robustus is consuming a wider variety of food 

items with variable mechanical properties.  This further lends evidence to support P. robustus 

being a more euryotopic species rather than a dietary specialist focus on hard objects (Wood and 

Strait 2004).  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Appendix 

Appendix Table 1:  Complete list of P. robustus specimens used in this study. 

Specimen Species Microwear Preserved

DNH 1 Paranthropus robustus Y

DNH 3 Paranthropus robustus Y

DNH 10 Paranthropus robustus Y

DNH 14 Paranthropus robustus N

DNH 15 Paranthropus robustus Y

DNH 18 Paranthropus robustus N

DNH 19 Paranthropus robustus Y

DNH 21 Paranthropus robustus Y

DNH 22a Paranthropus robustus Y

DNH 40 Paranthropus robustus Y

DNH 46 Paranthropus robustus N

DNH 47 Paranthropus robustus N

DNH 51 Paranthropus robustus Y

DNH 54 Paranthropus robustus Y

DNH 57B Paranthropus robustus N

DNH 60 Paranthropus robustus N

DNH 67 Paranthropus robustus N

DNH 68 Paranthropus robustus Y

DNH 74 Paranthropus robustus N

DNH 75 Paranthropus robustus N

KB 5063 Paranthropus robustus Y

KB 5083 Paranthropus robustus N

KB 5222 Paranthropus robustus Y

SK 1 Paranthropus robustus Y

SK5 Paranthropus robustus Y
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Appendix Table 1 (Cont.):  Complete list of P. robustus specimens used in this study. 

Specimen Species Microwear Preserved

SK 6 Paranthropus robustus Y

SK 10/1648 Paranthropus robustus Y

SK 11 Paranthropus robustus Y

SK 12 Paranthropus robustus N

SK 13 Paranthropus robustus Y

SK 16/1591 Paranthropus robustus Y

SK 17 Paranthropus robustus N

SK 21 Paranthropus robustus Y

SK 22/880 Paranthropus robustus N

SK 23 Paranthropus robustus Y

SK 25 Paranthropus robustus Y

SK 31 Paranthropus robustus Y

SK 34 Paranthropus robustus Y

SK 36 Paranthropus robustus N

SK 37 Paranthropus robustus N

SK 41 Paranthropus robustus N

SK 42 Paranthropus robustus Y

SK 46 Paranthropus robustus Y

SK47 Paranthropus robustus N

SK 48 Paranthropus robustus Y

SK 49 Paranthropus robustus Y

SK 55 Paranthropus robustus Y

SK 57 Paranthropus robustus N

SK 61 Paranthropus robustus Y

SK 63 Paranthropus robustus Y

SK 74 Paranthropus robustus Y
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Appendix Table 1 (Cont.):  Complete list of P. robustus specimens used in this study.  

Specimen Species Microwear Preserved

SK 75 Paranthropus robustus N

SK79 Paranthropus robustus N

SK 81 Paranthropus robustus N

SK 83 Paranthropus robustus N

SK 89 Paranthropus robustus Y

SK 98 Paranthropus robustus N

SK 102 Paranthropus robustus N

SK 104 Paranthropus robustus N

SK 105 Paranthropus robustus Y

SK 826 Paranthropus robustus Y

SK 826A/877 Paranthropus robustus N

SK 826B Paranthropus robustus N

SK 829 Paranthropus robustus N

SK 831A Paranthropus robustus Y

SK 832 Paranthropus robustus Y

SK 834 Paranthropus robustus Y

SK 835 Paranthropus robustus N

SK 836 Paranthropus robustus N

SK 837 Paranthropus robustus Y

SK 838 Paranthropus robustus Y

SK 839 Paranthropus robustus N

SK 840 Paranthropus robustus N

SK 841B Paranthropus robustus Y

SK 844 Paranthropus robustus Y

SK 846A Paranthropus robustus Y

SK 849 Paranthropus robustus N
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Appendix Table 1 (Cont.):  Complete list of P. robustus specimens used in this study. 

Specimen Species Microwear Preserved

SK 851 Paranthropus robustus N

SK 855 Paranthropus robustus N

SK 858 Paranthropus robustus N

SK 862 Paranthropus robustus Y

SK 870 Paranthropus robustus Y

SK 871 Paranthropus robustus N

SK 872 Paranthropus robustus N

SK 876 Paranthropus robustus Y

SK 877 Paranthropus robustus N

SK 1587 Paranthropus robustus N

SK 1588 Paranthropus robustus Y

SK 1590 Paranthropus robustus N

SK 3974 Paranthropus robustus Y

SK 3975 Paranthropus robustus N

SK 3976 Paranthropus robustus N

SK 3977 Paranthropus robustus N

SK 10642/10643 Paranthropus robustus N

SK 10645 Paranthropus robustus N

SK 14000 Paranthropus robustus Y

SK 14003 Paranthropus robustus Y

SK 14133 Paranthropus robustus N

SKW 5 Paranthropus robustus N

SKW 8 Paranthropus robustus N

SKW  10 Paranthropus robustus N

SKW 11 Paranthropus robustus Y

SKW 14 Paranthropus robustus Y
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Appendix Table 1 (Cont.):  Complete list of P. robustus specimens used in this study. 

Specimen Species Microwear Preserved

SKW 29 Paranthropus robustus N

SKW 3114 Paranthropus robustus N

SKW 4767 Paranthropus robustus N

SKW 4769 Paranthropus robustus N

SKX 334 Paranthropus robustus Y

SKX 3355 Paranthropus robustus Y

SKX 3601 Paranthropus robustus Y

SKX 4446 Paranthropus robustus Y

SKX 5002 Paranthropus robustus Y

SKX 5013 Paranthropus robustus N

SKX 5014 Paranthropus robustus Y

SKX 5023 Paranthropus robustus Y

SKX 19892 Paranthropus robustus Y

SKX 21841 Paranthropus robustus N

TM 1517 Paranthropus robustus Y

TM 1536 Paranthropus robustus N

TM 1600 Paranthropus robustus Y

TM 1603 Paranthropus robustus N
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