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ABSTRACT 

Salmonella is an intracellular pathogen that infects a wide range of hosts. The infected host 

utilizes reactive oxygen species (ROS) and iron-restriction to eliminate the pathogen. We used 

proteogenomics to determine the candidate genes and proteins that have a role in resistance of 

S. Typhimurium to H2O2. For Tn-seq, a highly saturated Tn5 library was grown in vitro under 

either 2.5 (H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes that 

are required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were 

validated via phenotypic evaluation of 50 selected mutants. The enriched pathways for 

resistance to H2O2 included DNA repair, aromatic amino acid biosynthesis (aroBK), Fe-S 

cluster biosynthesis, iron homeostasis and a putative iron transporter system (ybbKLM), 

flagellar genes (fliBC), H2O2 scavenging enzymes, and DNA adenine methylase. Proteomics 

revealed that the majority of essential proteins, including ribosomal proteins, were 

downregulated upon exposure to H2O2. A subset of proteins identified by Tn-seq were analyzed 

by targeted proteomics, and 70 % of them were upregulated upon exposure to H2O2. Further, 

we assessed genomic of S. Typhimurium under gradient iron-restricted conditions using Tn-

seq. In addition to conditionally essential genes that mediate the pathogen survival under iron-

restricted conditions, we found ROS-dependent essential genes. Based on this, we expand 

ROS-antibiotic mediated killing model, which asserts that bactericidal antibiotics induce ROS 

formation and ultimately contributes to cell death. We show that impairment of many essential 

genes with transposons, without antibiotic interference, induce ROS formation and the death 

of these mutants can be ceased through an iron chelator. Tn-seq reveals that one-third of S. 

Typhimurium essential genome are ROS-dependent, far beyond antibiotic targets, as they can 

grow very slowly in iron-restricted conditions. Interestingly, majority of antibiotic target genes 

are ROS-dependent. We propose that ROS-independent essential genes may be better targets 

for antibiotic development because the cells die immediately following the disruption of the 



 

essential gene. This work expands our knowledge about mechanisms of S. Typhimurium 

survival in macrophages, the role of ROS in cell death following essential gene disruption, and 

provides novel targets for development of new antibiotics.  
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CHAPTER ONE 

1.1 Introduction  

Salmonella is an intracellular Gram-negative facultative pathogen that can infect a wide 

range of hosts. Salmonella classified into over 2,500 serovars based on the composition and 

structure of flagellar and lipopolysaccharide (Popoff et al., 2003), including typhoidal and non-

typhoidal serovars (NTS). While typhoidal Salmonella is human restricted, which causes 

typhoid fever, NTS infects humans and animals. Salmonella infections frequently cause by 

consumption of contaminated foods or water and result in diverse clinical symptoms. NTS 

typically causes diarrhea, abdominal pain, fever, and may disseminate systemically via blood 

(Coburn et al., 2006). Salmonella serovars Typhimurium, Enteritidis, Newport, and Javiana 

account for about half of human infection cases that reported by health laboratories (Scallan 

and Mahon, 2012). Recently, outbreaks of multidrug-resistant Salmonella Heidelberg and 

Kentucky infections have increased (Gieraltowski et al., 2016; Tasmin et al., 2017). The 

common drug-resistant NTS infections are due to serovars Enteritidis, Typhimurium, Newport, 

and Heidelberg; there are 6,200 resistant culture-confirmed infections in the United States 

yearly (Medalla et al., 2017). Illnesses due to Salmonella infection are common in the world. 

NTS strains, including Salmonella enterica serovar Typhimurium, cause 1.2 million cases, 

23,000 hospitalizations, and 450 deaths in the United States annually, this accounts for 11% of 

the total foodborne illnesses caused by different pathogens (Scallan et al., 2011). A study 

estimated that Salmonella accounts for 93.8 million infection cases of gastroenteritis which 

lead to 155,000 deaths globally per year (Majowicz et al., 2010). This pathogen is a constant 

threat to public health and food industry.     

During the course of infection, Salmonella encounters a variety of host arsenals such 

as reactive oxygen species (ROS) and iron-restriction. However, Salmonella developed its own 

defense systems to overcome these host stressors, particularly in macrophages, where S. 
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Typhimurium faces NADPH oxidase–dependent killing (Vazquez-Torres et al., 2000). 

Derivatives of ROS are Hydrogen peroxide (H2O2), superoxide anion (O2
.-), and the hydroxyl 

radical (HO.). The NADPH-dependent phagocytic oxidase reduces oxygen to superoxide anion 

which dismutates to H2O2 (Fang, 2004). Finally, H2O2 reduces to hydroxyl radical by ferrous 

iron through Fenton chemistry. The generated ROS can damage biomolecules, including DNA 

and Fe-S proteins (Imlay and Linn, 1998). H2O2 is an excellent oxidative stress agent for in 

vitro studies due to its stability. Nevertheless, there is no study on gene fitness measurement 

under H2O2 stress in bacteria using Tn-seq. 

Iron is a cornerstone for numerous cellular metabolisms and serves as a cofactor for 

some proteins. Iron involves in respiration, tricarboxylic acid cycle, synthesis of metabolites, 

enzyme catalysis, and other biochemical reactions. Therefore, iron is considered a virulence 

factor and a crucial metal for survival of bacterial pathogens (Weiss 2002; Ganz and Nemeth, 

2015). As iron accessibility is vital for intracellular S. Typhimurium virulence, the host uses a 

variety of mechanisms to sequester it from bacteria (Schaible and Kaufmann, 2005). Bacterial 

pathogens, including Salmonella, are employing aggressive acquisition processes to scavenge 

iron from hosts such as synthesize and excrete high-affinity iron chelators named siderophores 

(Raymond et al., 2003). Alternatively, it has been suggested that modulating host iron 

homeostasis may be a path to tackle multidrug-resistant intracellular bacteria (Kim et al., 2014). 

Experimentally, 2,2`-Dipyridyl (Dip) is the most commonly used iron chelator; it is a 

membrane permeable and a selective agent to chelate ferrous iron (Kohanski et al., 2007). 

Microarray has been used in bacteria to profile global transcriptional responses to iron 

limitation, using Dip as an iron chelator in E. coli (McHugh et al., 2003), Shewanella 

oneidensis (Yang et al., 2009), Actinobacillus pleuropneumoniae (Klitgaard et al., 2010), 

Leptospira interrogans (Lo et al., 2010), Acinetobacter baumannii (Eijkelkamp et al., 2011), 

and S. Typhimurium (Kim and Kwon, 2013). RNA-seq has also been applied for transcriptome 



 3 

profiling in response to iron chelation by Dip in Rhodobacter sphaeroides (Remes et al., 2014) 

and S. Typhimurium (Kroger et al., 2013). All these studies exposed bacteria to a fixed 

concentration of Dip for a short time. However, bacteria encounter a variety of niches with 

different iron contents. Essential genome can not be identified directly using transcriptomics 

and our understanding of the genes in S. Typhimurium that are required for survival in iron-

limited environments is not complete.    

The development of antibiotic resistance in bacteria imposed a critical threat to human 

health. The extensive use of antibiotics fueled the problem. Therefor, development of new 

antimicrobial agents is urgently needed (Neu, 1992; Bush et al., 2011). The developed new 

antibiotics have to be smart in order to prevent the pathogen to become resistant for the agent. 

However, the molecular mechanism action of antibiotics is enigmatic. Classically, it has been 

suggested that antibiotic mainly kill the bacteria through inhibiting the essential pathways, 

however 10 years ago a study suggested a new model for the mode of antibiotic action 

(Kohanski et al., 2007). The model asserts that in addition to drug-target interaction, antibiotics 

ultimately generate ROS which damages biomolecules in the bacterial cell and causes death. 

This model, common antibiotic ROS-mediated killing, points that tricarboxylic acid cycle 

(TCA) and iron-sulfur clusters are the main players for ROS generation. Plentiful studies 

supported this model in the context of antibiotic-target interaction, however we know nothing 

regarding disruption of these essential genes and pathways via DNA transposon elements.   

Genome-wide studies provided an important avenue for discovering functions of 

unknown genes in bacteria. Genome wide studies of bacterial gene expression have been 

shifting from microarray approach to RNA-sequencing (RNA-seq) employing next generation 

sequencing (Croucher and Thomson, 2010). Transposon sequencing (Tn-seq) is a combination 

of transposon mutagenesis in bacteria and next generation sequencing. Tn-seq is a powerful 
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technique to find gene fitness and function of unknown genes (Opijnen et al., 2010; Kwon, et 

al., 2016). Also, transcriptomics (RNA-seq) coupled with proteomics proved to be an excellent 

approach to quantify mRNA and protein abundances. Proteogenomics provides information 

about post-transcriptional, translational, and protein degradation (Vogel and Marcotte, 2012). 

To our best of knowledge there is no study combined Tn-seq with proteomics to study 

proteogenomics of a bacterium.  

1.2 Objectives 

In this study, at a system wide level, genomics of S. Typhimurium assessed under stress 

conditions. We used Tn-seq coupled with proteomics to identify the genes and proteins that are 

required for S. Typhimurium to resist H2O2 in vitro. We also identified ROS-dependent 

essential genes and genomic dynamics under gradient iron-restricted conditions in S. 

Typhimurium. We used S. Typhimurium and had the following main goals: 

1. Develop an in-house Tn-seq method.  

2. Identify the genes that are required for two concentrations of H2O2 resistance. 

3. Utilizing untargeted and targeted proteomics to elucidate the proteins that are required 

for H2O2 resistance. 

4. Identify the ROS-depended essential genes. 

5. Genomic assessment under gradient iron-restricted conditions to find the genes that 

mediate the pathogen survival in theses stressors.    
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2.1 Abstract 
 

Salmonella is an intracellular pathogen that infects a wide range of hosts and can 

survive in macrophages. An essential mechanism uses by the macrophages to eradicate 

Salmonella is production of reactive oxygen species. Here, we used proteogenomics to 

determine the candidate genes and proteins that have a role in resistance of S. Typhimurium to 

H2O2. For Tn-seq, a highly saturated Tn5 insertion library was grown in vitro under either 2.5 

(H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes that are 

required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were validated 

via phenotypic evaluation of 50 selected mutants. The enriched pathways for resistance to H2O2 

included DNA repair, aromatic amino acid biosynthesis (aroBK), Fe-S cluster biosynthesis, 

iron homeostasis and a putative iron transporter system (ybbKLM), flagellar genes (fliBC), 

H2O2 scavenging enzymes, and DNA adenine methylase. Proteomics revealed that the majority 

of essential proteins, including ribosomal proteins, were downregulated upon exposure to 

H2O2. A subset of proteins identified by Tn-seq were analyzed by targeted proteomics, and 70 

% of them were upregulated upon exposure to H2O2. The identified candidate genes will 

deepen our understanding about mechanisms of S. Typhimurium survival in macrophages, and 

can be exploited to develop new antimicrobial drugs. 
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2.2 Introduction  

Salmonella is a Gram-negative bacterium that infects humans and animals. Salmonella 

enterica has numerous serovars, which include typhoidal and non-typhoidal strains. In contrast 

to the typhoidal salmonellae which are human restricted pathogens, the non-typhoidal 

salmonellae (NTS), serovar Enteritidis and Typhimurium, are able to infect a wide range of 

hosts, causing gastroenteritis1. The NTS strains, including Salmonella enterica serovar 

Typhimurium, account for 11% (1.2 million cases) of the total foodborne illnesses caused by 

different pathogens in the United States2. It has been estimated that Salmonella is responsible 

for 93.8 million cases of gastroenteritis, leading to 155,000 deaths worldwide annually3. The 

pathogen remains a continuous threat to the food safety, and public health.  

To initiate an infection and survive inside the host, Salmonella needs to overcome a 

myriad of host defense mechanisms. As Salmonella reaches the intestine and breaches the 

epithelial tissue, it enters the macrophages and activates different virulence strategies in order 

to survive and replicate in them4. An essential mechanism uses by the phagocytes to kill and 

eradicate Salmonella is production of reactive oxygen species (ROS). Hydrogen peroxide 

(H2O2), superoxide anion (O2
.-), and the hydroxyl radical (HO.) are derivatives of ROS. The 

short-lived O2
.-, produced by the NADPH-dependent phagocytic oxidase, quickly dismutates 

into H2O2, which diffuses across semipermeable bacterial cell membranes. Eventually, Fe2+ 

reduces H2O2 to HO. via the so called Fenton Reaction5-7. The ROS, including H2O2, can 

damage DNA, iron-sulfur cluster-containing proteins, and other biological molecules in the 

bacterial cells8-10.  

Numerous genetic factors and proteins that are important for resistance of S. 

Typhimurium to H2O2 have been discovered and the underlying mechanisms have been 

explored11, 12. A various approaches and techniques have been employed to study global 
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response of Salmonella or related bacteria to H2O2 in vitro as a model system to simulate the 

bacterium’s response to ROS in phagocytic cells: (i) Two-dimensional gel electrophoresis 

identified H2O2-induced proteins in Salmonella13, (ii) DNA microarray identified H2O2 induced 

genes in E. coli14, and (iii) RNA-seq identified H2O2 induced genes in Salmonella15. Yet, the 

factors required for fitness under the given condition cannot be identified with high confidence 

based on the analysis of transcriptomics or proteomics data16. Microarray-based tracking of 

random transposon insertions was used to identify numerous genes in Salmonella that are 

required for survival in mice and macrophages17-18. However, the genetic factors responsible 

for resistance to ROS cannot be sorted out among all of the genetic factors identified in the 

study that are required for fitness in the presence of multiple host stressors.  

To shed more insights into the underlying mechanisms of Salmonella resistance to 

H2O2, more direct approach linking the gene-phenotype relationships in a genome-wide scale 

would be necessary. Tn-seq is a powerful approach to allow direct and accurate assessment of 

the fitness requirement of each gene on the entire genome of a prokaryotic organism19. In Tn-

seq method, a saturated transposon insertion library (input) is exposed to a selective condition, 

and the mutant population altered through the selection (output) is recovered. Then, the 

genomic junctions of the transposon insertions are specifically amplified and sequenced from 

both input and output pools by high-throughput sequencing. The gene fitness can be obtained 

by calculating the change in relative abundance of the sequence reads corresponding to each 

gene in the entire genome between the two pools. Tn-seq has been employed to assign gene 

functions to  Salmonella genomes in numerous studies: (i) Previously, our lab identified 

conditionally essential genes that are required for growth in the presence of bile, limited 

nutrients, and high temperature20, (ii) The genes required for intestinal colonization were 

identified in chickens, pigs, and cattle21, (iii) Candidate essential genes and genes contributing 

toward bile resistance were identified22, (iv) Core conserved genes for growth in rich media 
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were identified in serovars Typhi and Typhimurium23. In addition to Tn-seq, electrospray 

ionization liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) is a powerful 

approach for identifying and quantifying proteins in a large scale. The system-wide protein 

regulation can be determined using mass spectrometry signal intensities of tryptic peptides 

obtained from two different culture conditions24. The post-translational modification in 

proteins can be revealed by using proteomic analysis25. Many studies took advantage of 

proteomic analysis of Salmonella. However, to the best of our knowledge, this study is the first 

to investigate proteogenomics of a bacterium by combining Tn-seq and proteome analysis 

simultaneously to the same stressor.   

In this work, we used Tn-seq method and proteomic analysis in combination to 

determine system-wide responses of S. Typhimurium to two different concentrations of H2O2 

(H2O2L and H2O2H). We obtained a comprehensive list of 137 genes that are putatively 

required for the resistance of S. Typhimurium 14028 to H2O2. The role of 50 selected genes in 

resistance to H2O2 were determined by phenotypic evaluation of the individual deletion 

mutants. Also, we identified a set of 246 proteins that are differentially expressed in response 

to H2O2, using data-dependent acquisition (DDA) proteomics, which are largely overlapped 

with the genes identified by Tn-seq; targeted proteomics showed 70% of the proteins identified 

by Tn-seq were upregulated by H2O2. In addition to the genes of S. Typhimurium previously 

known to be important for resistance to H2O2, we identified approximately 80 genes that have 

not been previously associated with resistance to oxidative stress. The results of this study 

highlighted that the genes in aromatic amino acid biosynthesis, aroB and aroK, and iron 

homeostasis, ybbK, ybbL, and ybbM, are crucially important for growth fitness under H2O2 

stress. The identified candidate genes will expand our understanding on the molecular 

mechanisms of Salmonella survival in macrophages, and serve as new antimicrobial drug 

targets.  



 13 

2.3 Results and Discussion  

2.3.1 The H2O2 concentrations and the selections of Tn5 library 

First, we sought to determine the growth response of wild type S. Typhimurium 14028 

cells in LB media containing varying concentrations of H2O2. The wild type cells were grown 

in LB media that contain different concentrations of H2O2 in 96-well plates. After evaluating 

the growth rates for the cultures, 2.5 and 3.5 mM H2O2 were chosen for Tn-seq selections in 

our study, and termed H2O2L and H2O2H, respectively. In comparison to Salmonella grown in 

LB media with no H2O2, H2O2L and H2O2H reduced the growth rates by 10% and 28%, 

respectively (Fig 2.1A). The lag time increased by a 5.7-fold (0.5 vs. 2.9 hr), and an 11-fold 

(0.5 vs. 5.6 hr) in H2O2L and H2O2H, respectively. The maximum OD600 decreased by only 1% 

for the H2O2L and 2% for the H2O2H in comparison to LB media (Fig 2.1A).    

For the selection of Tn5 library, 20 ml cultures in 300 ml Erlenmeyer flasks containing 

LB, H2O2L, or H2O2H were inoculated with the same Tn5 library at the seeding CFUs of the 

library at 3.5×106. This seeding level provided ~10 CFUs for each Tn5 insertion mutant in the 

library. The cultures were grown until the mid-exponential phase, in which the CFUs reached 

1.17×108 (SE 0.01×108). It required 7.5 and 9.2 h to reach the cell density as measured by 

optical density for H2O2L and H2O2H, respectively, in contrast to 5 h for LB medium (Fig 

2.1B). We observed some differences in growth responses between the cultures in a 96-well 

plate and in a 300-ml Erlenmeyer flask. The optical density readings by the plate reader was 

different in comparison to those by Bio-photometer that we used to measure optical density of 

the culture in the flask. As a result, the growth curve in Fig 2.1A which was based on 96-well 

plate reader, dose not match exactly with the time required for the Tn5 library to reach the 

target mid-exponential phase in the flask cultures. In addition, we observed that the H2O2 is 

stable in LB media free of Salmonella during the window of time used for the library selection 

process (Fig. S2.1), which was also supported by Bogomolnaya et al.26.      
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2.3.2 Preparation of Tn5-seq amplicon library   

The Salmonella mutants were generated by using the delivery plasmid pBAM1 via 

conjugation. A total of 325,000 mutant colonies were recovered from 50 plates. Each mutant 

contained a single random insertion of Tn5 transposon in the chromosome or plasmid 

according to DNA sequencing of Tn5-junction sequences for a small set (n = 71) of randomly 

selected Tn5 mutants. We found a significant portion (~20%) of the mutants in the library that 

were not genuine Tn5 insertions, but the mutants generated as a result of pBAM1 integration 

into chromosome as determined by their ability to grow in the presence of ampicillin. To 

prevent the Illumina sequencing reads of being wasted on sequencing Tn5 junctions from these 

cointegrants, we digested genomic DNA of the input and output libraries with PvuII, which 

digests immediately outside the inverted repeats on both sides of Tn5. The digested DNA was 

then used to prepare Tn-seq amplicon library as described in Materials and Methods. Our Tn-

seq data analysis indicated that our strategy of removing the DNA sequences originating from 

cointegrants was effective because only 0.55% of the total HiSeq reads corresponding to Tn5-

junctions matched to pBAM1. It should be possible to remove them completely by ensuring 

complete digestion of genomic DNA with PvuII. The method for Tn-seq amplicon library we 

developed and used in this study has multiple advantages over other Tn-seq protocols, because 

our method requires only 100 ng of the genomic DNA, and the whole process can be completed 

in a day27. When the extension step in the protocol was performed using a conventional 20 

nucleotide primer, and the final products of exponential PCR were separated on agarose gel 

electrophoresis, even the negative controls (the wild type genomic DNA or mutant library 

genomic DNA without linear extension) showed smear patterns of nonspecific background 

amplification. However, when dual priming oligonucleotide (DPO) primer was used in place 

of the conventional primer for linear extension, non-specific background amplification was 

completely disappeared. Therefore, we adopted the DPO primer in linear extension step for all 



 15 

library samples in this study. Then, the single-stranded extension products were C-tailed, and 

used as templates for the exponential PCR step using nested primer specific to Tn5 and poly G 

primer that contain Illumina adapter sequences along with sample index sequences (Fig. S2.2). 

The final PCR products were separated on an agarose gel, and the fragments within the range 

of 325-625 bp were gel-purified. After pooling of multiple samples, the combined library was 

sequenced on a HiSeq 3000. 

2.3.3 Summary of Tn-seq DNA analysis  

After de-multiplexing and C-tail trimming of all sequence reads, ~72 million reads of 

Tn5- junctions with mean read length of 94 bp were obtained. The number of the reads mapped 

to the complete genome of S. Typhimurium 14028 were ~25, 15, and 19 million for LB, H2O2L, 

and H2O2H, respectively. The number of unique insertions on the chromosome were 125,449 

in the input library, excluding the plasmid (Table S2.1). On average, Tn5 was inserted in every 

39 bp. Number of raw reads per open reading frame (ORF) for H2O2L was plotted over the 

corresponding number of H2O2H, which yielded an R2 of 0.91, indicating the mutants in the 

input library quantitatively responded in a similar way for both H2O2L and H2O2H as expected 

(Fig. S2.3). The insertions were mapped to 5,428 genes or 8,022 genes/intergenic regions. 

Interestingly, the ORF STM14_5121, which is 16.7 kbp long, had the highest number of 

insertions (~700 insertions) and reads (0.25 M). 

2.3.4 Comparison of various bioinformatics pipelines for Tn-seq data analysis  

We used 3 different Tn-seq analysis tools to identify the genes and compare the results 

across the methods with the goal of comprehensive identification of “all” genes required for 

resistance to H2O2. The first tool, ARTIST28, created small non-overlapping genomic windows 

of 100 bp and the reads from each window were arbitrarily assigned into the middle of the 

window. The default normalization script of the tool was used. Then, the relative proportions 
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of insertion sites in the output library versus the input were tabulated. Mann-Whiney U (MWU) 

test was used to assess the essentiality of the locus. To consider a gene/intergenic region 

conditionally essential for growth in the presence of H2O2, p value had to be ≤ 0.05 in 90 of 

the 100 conducted MWU tests. Subsequently, 20 genes and 1 intergenic region were identified 

for H2O2L and 4 genes for H2O2H (Table S2.2). We speculate the reason that more genes were 

identified for H2O2L in comparison to H2O2H, was partially due to the lower number of total 

reads of H2O2L as compared to H2O2H, even though the read numbers of H2O2L was 

normalized to those of the input.  

The second tool, Tn-seq Explorer29, counted insertions in overlapping windows of a 

fixed size. Using a 550 bp window size, each annotated gene was assigned an essentiality index 

(EI) which is determined mainly based on the insertion count in a window in this gene. The 

bimodal distribution of insertion counts per window divided the essential genes to the left and 

the non-essential genes to the right. To find conditional essential genes, the EI of the output 

was subtracted from the EI of the input. The genes with negative ΔEI were ranked based on 

the change in read fold change (Log2 (H2O2L or H2O2H/Input)). We found 114 consensus 

genes between H2O2L and H2O2H that had at least four-fold reduction in H2O2H read counts 

as compared to the input. The four-fold reduction (Log2FC = -2) threshold was chosen based 

on our validation study of Tn-seq data by single mutant assays (Table S2.2).  

The third tool, TRANSIT30, determined read counts of genes in the input and output 

library. The differences of total read counts between the input and outputs were obtained. The 

insertion sites were permutated for a number that is specified by the user (we used 10,000 

sample). This sampling for each gene gave difference in read counts. The p value was 

calculated from the null distribution of the difference in read counts. We identified 8 and 21 

genes for the H2O2L and H2O2H, respectively, using a p value ≤ 0.05 (Table S2.2).  
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The combined list of the genes identified by the 3 Tn-seq analysis tools for both H2O2L 

and H2O2H included 137 genes (Table S2.2). All of the genes on this list are expected to have 

a role in conferring resistance to H2O2 and allow Salmonella to survive and replicate in the 

presence of H2O2 in vitro. Of the 21 genes identified by TRANSIT, 19 of these genes were also 

identified by Tn-seq Explorer, but only 3 out of this 21 were identified by ARTIST. The 19 

genes were hscA, rbsR, fepD, efp, oxyR, polA, ybaD, aroD, ruvA, xthA, dps, aroB, uvrD, tonB, 

uvrA, aroK, ybbM, lon, and proC. Two genes, fepD and xthA, were identified by the all 3 

methods and for both conditions.  

The 3 Tn-seq analysis tools are very valuable for Tn5 data analysis, but each tool has 

its own advantages and disadvantages. For ARTIST, (i) the user must know how to run scripts 

in Matlab software, (ii) the analysis is very slow on a personal computer with the HiSeq data, 

(iii) it has only one method for normalization, but (iv) it can search for essentiality in the 

intergenic regions. For Tn-seq Explorer, (i) there is no data normalization, and (ii) prediction 

on small genes is prone to be inaccurate, but (iii) its very user-friendly and runs fast. For 

TRANSIT, (i) the user should have some knowledge on running scripts on terminal, (ii) it may 

need some modification in its Python script according to the way the library was prepared for 

sequencing, and (iii) a few software packages should be installed on the computer as TRANSIT 

pre-requisites, but (iv) it does have 6 different methods for data normalization and it runs very 

fast on a personal computer. Although ARTIST and Tn-seq Explorer are very useful tools for 

Tn-seq data analysis, we prefer using TRANSIT in our future data analysis for conditionally 

essential genes. In the following sections, we continued the downstream analysis mainly based 

on the 137 genes that include all of the genes identified by all 3 methods.          

2.3.5 The enriched pathways for resistance to H2O2 

In order to categorize the identified genes that are required for Salmonella resistance to 
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the H2O2, the 137 genes were subjected to pathway enrichment analysis using DAVID 

Bioinformatics Resources 6.7, NIAID/NIH31. A total of 15 KEGG pathways32 were recognized 

for 69 genes on the list. The enriched pathways include homologous recombination (ruvC, 

polA, ruvA, ruvB, priB, recA, recR, holC, holD, recC, recG), nucleotide excision repair (uvrD, 

polA, uvrA, uvrC), mismatch repair (dam, uvrD, holC, holD), RNA degradation (pnp, hfq, 

ygdP), purine and pyrimidine metabolism (apaH, polA, pnp, arcC, spoT, holC, holD, cmk, dcd, 

pnp), phenylalanine, tyrosine and tryptophan biosynthesis (aroD, aroB, aroA, aroK, aroE_2), 

arginine and proline metabolism (proC, arcC), glycolysis and gluconeogenesis (crr, pgm, 

tpiA), oxidative phosphorylation (atpG, atpA, cydA), DNA replication (polA, holC, holD), and  

flagellar assembly (fliJ, fliD, flhD, fliC). Since KEGG was not able to recognize many genes 

on the list, we used SP_PIR_Keywords of functional categories, which recognized majority of 

the genes and categorized them into 55 functional categories (Table S2.3), excluding 15 

uncharacterized genes (ORFs). Among these categories were stress response (rpoE, lon, dnaJ, 

hfq, yaiB), iron (dps, entD, iscA, yjeB, yhgI), and transcription regulation (rcsA, oxyR, rpoE, 

yjeB, arcA, argR, rbsR, rpoS, fadR, rcsB, furR, flhD).  

2.3.6 Validation of Tn-seq results using individual mutants 

For the selected 50 genes among the 137 genes identified by Tn-seq, the growth 

phenotype was determined using individual single deletion mutants in LB, H2O2L, and H2O2H. 

The genes were considered to play a role in resistance to H2O2, if (i) lag phase time increased, 

(ii) growth rate reduced or (iii) maximum OD600 decreased in the presence of H2O2 in 

comparison to the wild type strain grown in the same conditions. Of the 50 single deletion 

mutants, 42 mutants were shown to have a role in resistance to H2O2 (Fig. 2.2 and Table S2.4). 

One gene, yhaD, was identified by all 3 analysis tools, but it did not show the expected 

phenotype. The fliD was also identified by ARTIST, but did not show any phenotype 

distinguishable from the wild type. The remaining 6 genes that did not show the phenotype 
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was identified by Tn-seq Explorer. Based on the results of the individual mutant assay, we 

conclude that 84% (42/50) of the genes identified by the Tn-seq analysis and tested using single 

deletion mutants have a role for resistance to H2O2. These results indicate that our Tn-seq 

analysis identified the genes in S. Typhimurium that are required for the wild type level 

resistance to H2O2 with high accuracy.    

2.3.7 Proteomics of H2O2 response  

With ESI-LC-MS/MS in data-dependent acquisition (DDA) mode, the protein 

regulation was determined using MS1 filtering technique that skyline software offers33. It uses 

signal intensities of tryptic peptides derived from the proteins of wild type strain grown in the 

presence of H2O2 in comparison to the control (LB). As described in Materials and Methods 

section, trypsin digestion of the protein extracts under different conditions generates tryptic 

peptides that are uniquely related to individual proteins. Tryptic peptides separated by liquid 

chromatography from the complex samples were first subjected to simple mass measurement 

(MS1) followed by intensity dependent fragmentation of these peptide ions to produce 

sequence specific fragment ions by collision-induced dissociation (MS/MS). Tryptic peptides 

were then identified using these sequence specific fragment ions via MASCOT database search 

software34, where the sequence specific fragment ions were matched to the proteins in S. 

Typhimurium 14028S reference proteome database24, 35. This method of protein analysis is 

normally referred to as data dependent analysis (DDA). At the beginning of data analysis, the 

H2O2L and H2O2H data were compared to LB separately, however it turned out that comparison 

was not sensitive enough to differentiate between H2O2L and H2O2H conditions. Hence, the 

data of H2O2L and H2O2H were combined for analysis in comparison to LB. We identified 

1,104 proteins of Salmonella for the 3 conditions (Table S2.5); of these, 246 proteins were 

differentially expressed in response to H2O2 with p values ≤ 0.05 and 90% CI. Proteomics 

analysis showed that 121 and 125 proteins were upregulated and downregulated in response to 
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stress by H2O2, respectively. Since Tn-seq revealed genetic requirements for fitness under the 

selection conditions, the identified genes are expected to express corresponding proteins under 

the conditions to perform their cellular functions. Often the proteins required for fitness under 

a given condition are overexpressed under the condition, but it may not be the case for some 

proteins. In this study, we had a unique opportunity to comparatively analyze both Tn-seq and 

the MS data to understand the relationship between genetic requirements and changes in 

expression level under the condition of interest, which was H2O2 in this study. We also obtained 

the list of essential genes based on our Tn-seq data, which could not tolerate insertions by 

definition, and if we were not certain about essentiality of a gene from our Tn-seq data, the 

gene was searched for essentiality in the previously reported list of Salmonella essential 

genes22. The comprehensive list of essential genes allowed us to study any correlation between 

the essentiality and the changes in protein expression. Among the 246 proteins, there were 78 

essential and 168 non-essential proteins. Among the 78 essential proteins, 25 were upregulated 

whereas 53 were downregulated. On the contrary, the majority (n = 96) of the detected non-

essential proteins were upregulated, while 72 non-essential proteins were downregulated. To 

further examine the quantitative relationships closely, 64 genes/proteins identified by both 

methods (Table S2.5) were focused on. Among the 64 genes/proteins, 57 genes showed 

negative Log2FC based on Tn-seq data, and 41 proteins among the 57 were upregulated at 

protein level. However, only 12 proteins had p values of ≤ 0.05 (AhpC, ArcA, Crr, DksA, FliC, 

IcdA, OxyR, Pgm, RecA, RpoS, SlpA, and WecE).   

Using KEGG pathway analysis, 150 proteins among the 246 were enriched in 21 

pathways (Table S2.6). Interestingly, of the all 59 30S and 50S ribosomal proteins in S. 

Typhimurium, 37 of these proteins (63%) were downregulated in response to H2O2. Moreover, 

of the 8 identified proteins in TCA cycle, 6 proteins were downregulated, including 2 essential 

proteins.  
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Although DDA method can be used to search for all proteins in a complex sample, it is 

prone to miss identification of important proteins due to the fact that fragmentation of tryptic 

peptides from these proteins may not be triggered as a result of lower peptide ion intensities 

compared to the threshold set. To quantify proteins expressed for the genes identified by Tn-

seq more precisely and accurately, we used targeted-proteomic approach by employing liquid 

chromatography coupled with triple quadrupole mass spectrometry (LC-QQQ-ESI-MS). Here, 

tryptic peptides of the protein were targeted for fragmentation (MS/MS) independent of their 

intensities, as described in Materials and Methods, and the observed sequence specific 

fragment ion intensities from three unique tryptic peptides were utilized for protein 

quantitation. Of the 137 Tn-seq identified genes, we selected 33 genes to quantify their proteins 

in response to H2O2 by using targeted proteomics (Table S2.5). Interestingly, 23 (70%) of the 

33 tested proteins were upregulated in response to H2O2. This shows a good agreement between 

the results of the Tn-seq and the targeted proteomics.     

2.3.8 Aromatic amino acid biosynthesis genes are required for H2O2 resistance      

Interestingly, our Tn-seq data revealed that the aromatic amino acid biosynthesis and 

metabolism pathway play a role in conferring resistance in Salmonella to H2O2 (Fig. 2.3A and 

2.3B). Five genes, aroB, aroD, aroE_2, aroK, and aroA in the aromatic amino acid 

biosynthesis pathway were identified by Tn-seq, and the fitness of the mutants were 

significantly reduced in the presence of H2O2. To confirm this, 4 of these genes were evaluated 

using individual mutant assays. The Salmonella aroK mutant showed the strongest phenotype, 

because it failed to grow in the presence of H2O2L or H2O2H during 24 h incubation time. Also, 

the aroB mutant exhibited a strong phenotype, significantly extending lag phase for both H2O2 

conditions. The aroE_2 mutant also exhibited an extended lag time, but the aroA mutant did 

not show any difference in growth phenotype in the presence of H2O2. In addition, targeted-

proteomics also showed that all these 5 proteins were upregulated in response to H2O2 (Fig. 
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2.3C and Table S2.5).        

ROS damages a variety of biomolecules via Fenton reaction, which consequently lead 

to metabolic defects, specifically auxotrophy for some aromatic amino acids 10. E. coli mutants 

that lack superoxide dismutase enzymes are unable to grow in vitro unless the medium are 

supplemented with aromatic (Phe, Trp, Tyr), branched-chain (Ile, Leu, Val), and sulfur-

containing (Cys, Met) amino acids36. We identified the genes in the aromatic amino acid 

biosynthesis pathway that are critically important for resistance to H2O2. In this pathway, aroK 

catalyzes the production of shikimate 3-phosphate from shikimate, which consequently leads 

to the production of tryptophan, phenylalanine, tyrosine and some metabolites from the 

chorismate precursor in E. coli. Further, aroK mutant in E. coli displays increased susceptibility 

to protamine, a model cationic antimicrobial peptide. It has been suggested that resistance to 

protamine is probably due to the aromatic metabolites and product of aroK gene, which act as 

a signal molecule to simulate the CpxR/CpxA system and Mar regulators37. In our Tn-seq data, 

cpxR/cpxA and marBCRT were in the list of non-required genes, but the proteomics data 

indicated that CpxR was upregulated. Also, aroK mutant in E. coli is resistance to mecillinam, 

a beta-lactam antibiotic specific to penicillin-binding protein 2. It has been concluded that the 

AroK has a secondary activity in addition to the aromatic amino acid biosynthesis, probably 

related to cell division38. In addition, aroK gene presents a promising target to develop a non-

toxic drug in Mycobacterium tuberculosis because aroK is the only in vitro essential gene 

among the aromatic amino acid pathway genes and blocking aroK kills the bacterium in vivo39. 

Moreover, aroK gene plays a general role in S. Typhimurium persistence in pigs40. The aroB 

is another gene in the pathway that was identified by Tn-seq, which encodes 3-dehydroquinate 

synthase in the Shikimate pathway, aromatic amino acid biosynthesis pathway. Salmonella 

lacking aroB showed a strong growth defect in the presence of H2O2. When this mutant grown 

in the presence of H2O2, it increased the lag phase time by a 114-fold for the H2O2L and a 347-
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fold for the H2O2H as compared to the mutant grown in absence of H2O2. S. Typhimurium 

mutant lacking the aroB gene is attenuated in BALB/c mice41. In addition to aroK and aroB, 

aroE_2 was also shown to be important for resistance to H2O2, because deletion of the aroE_2 

reduced the growth rate by 35% in the presence of H2O2 and increased the lag phase time, too. 

All these 3 genes in this pathway are required for systemic infection of Salmonella in BALB/c 

mice in a more recent study18. We observed that there was a strong correlation between the 

fitness based on Tn-seq data, growth rates measured by individual mutant assays, and 

upregulation of their proteins quantified via targeted proteomics. This demonstrates the power 

of proteogenomic approach in discovering and characterizing the genes that are required for 

growth under a specific condition.  

2.3.9 The ybbM, ybbK, and ybbL have a role in H2O2 resistance  

The mutants with single deletion in each of ybbK, ybbL, and ybbM genes on the same 

pathway showed a strong phenotype against the activity of H2O2 in a dose-dependent manner. 

Based on Tn-seq data, the fitness of ybbM was -1.16 and -1.79 for H2O2L and H2O2H, 

respectively (Fig. 2.4A). The ybbM mutant demonstrated decreased growth rate by 38% for 

H2O2L and 100% for the H2O2H as compared to the mutant grown in the absence of H2O2. This 

mutant also increased the lag time by a 126-fold and a 267-fold for H2O2L and H2O2H, 

respectively (Fig. 2.4B). Also, the fitness score of ybbK was -0.92 for H2O2L and -1.81 for 

H2O2H. The ybbK mutant showed decrease of growth rate for H2O2L and H2O2H by 85% and 

95%, respectively. The deletion increased the lag phase by a 46-fold and a 114-fold in the 

presence of H2O2L and H2O2H, respectively (Fig. 2.4B). Moreover, the fitness of ybbL mutant 

was -1.05 and -1.73 for H2O2L and H2O2H, respectively. Deleting the ybbL in Salmonella led 

to decrease in growth rate by 27% for H2O2L and 92% for H2O2H. The lag phase time for this 

mutant increased by a 22-fold and a 33-fold for H2O2L and H2O2H, respectively. In addition, 

YbbM, YbbL, and YbbK proteins were upregulated in response to H2O2; YbbM was the most 
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upregulated protein among the 3 proteins (1.46-fold), followed by YbbL (1.29-fold), and YbbK 

(1.25-fold) (Fig. 2.4C and Table S2.5). The fitness scores of the Tn-seq of these 3 genes are 

correlated strongly with the growth rate, lag time of their respective mutants, and upregulation 

of their proteins. As the number of reads depletes after the selection for a mutant, (i) there was 

more reduction in growth rate, (ii) the mutant stays longer in the lag phase, and (iii) the protein 

expression elevates. These observations clearly point to their role in conferring resistance to 

the H2O2-mediated stress. These genes were described in the Salmonella reference genome as 

follows: ybbM, putative YbbM family transport protein, metal resistance protein; ybbK, 

putative inner membrane proteins; ybbL, putative ABC transporter, ATP-binding protein 

YbbL. To the best of our knowledge, there is only one published study on the ybbM and ybbL42. 

Based on their findings, YbbL and YbbM have a role in iron homeostasis in E. coli and are 

important for survival when the bacterium was challenged with 10 mM H2O2 for 30 min; this 

putative ABC transporter transports iron and lessens ROS species formation that generates via 

H2O2. In this study, we identified an additional gene, ybbK, in the same pathway as the gene 

required for resistance to H2O2, strongly establishing the role of these 3 genes in resistance to 

H2O2.   

2.3.10 The H2O2 scavenging and degrading genes 

Salmonella employs redundant enzymes to degrade or scavenge ROS. The katE, katG, 

and katN genes encode catalases, which are involved in H2O2 degradation. The ahpCF, tsaA, 

and tpx genes encode peroxidases, which scavenge H2O2. The sodA, sodB, sodCI, and sodCII 

genes encode superoxide dismutases and these enzymes specifically scavenge O2
11, 12, 43-45. 

However, none of these were present in the list of genes identified by Tn-Seq. Even though 

katE, katG, ahpC, sodA, sodCI, and sodCII showed reduced fitness, they did not meet the 

statistical threshold. However, the proteomics data indicated that AhpC (1.48-fold), SodB 

(1.46-fold), and TpX (1.39-fold) were upregulated in the presence of H2O2 (Table S2.5) and 
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KatG was also upregulated, but its p value was 0.054. This reveals that these 4 proteins were 

the most important enzymes for H2O2 resistance under our experimental conditions. Salmonella 

containing an ahpC promoter-gfp fusion shows that expression of the ahpC is regulated by 

ROS that is generated from macrophages or exogenous H2O2 and the response to H2O2 is in a 

dose-dependent manner46. Salmonella mutant that lacks katE, katG, or ahpCF can degrade 

micromolar concentrations of H2O2. However, Salmonella mutant that has deletions in the all 

5 genes, katE, katG, katN, ahpCF and tsaA (HpxF), cannot degrade H2O2, is unable to 

proliferate in macrophages, and show reduced virulence in mice11. This emphasizes that ahpC, 

sodB, and tpx may be the primary players in scavenging and degrading H2O2 in our experiment. 

Why Tn-seq did not detect any of these genes, while proteomics detected only these 3 proteins 

among others? It may reflect the functional redundancy in the genetic network that prevented 

single deletions in one of these genes from exhibiting fitness defect. Alternatively, when these 

mutants were grown together with all other mutants in the library, the functional protein lacking 

in one mutant due to Tn5 insertion could have been compensated by the other mutants in the 

library.  

In addition to these genes, oxyR was detected by Tn-seq (Fig. 2.1C) and DDA 

proteomics. The oxyR was identified by all 3 analysis methods of Tn-seq data and it was on the 

top of the list, indicating a severe fitness defect of the mutant. The oxyR gene encodes H2O2 

sensor and transcription factor, which mediates protection against ROS. The katG and ahpCF 

are regulated by OxyR, peroxide response regulator13, 14. Although Salmonella OxyR regulon 

is induced in the Salmonella-containing vacuole in macrophage, the oxyR mutant was virulent 

in a BALB/c mouse and can grow well in human neutrophils in vitro47, 48. The fitness of oxyR 

mutant was reduced for both H2O2L and H2O2H with the respective fitness score of -4.96 and 

-5.94. Salmonella oxyR mutant exhibited a growth rate reduction by 24% and 40% for H2O2L 

and H2O2H, respectively. Comparing this reduction in growth rate to the other mutants such as 
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rpoS or aroK, we observed that the oxyR mutant did not show severe phenotype and the mutant 

escaped from the lag phase easily. Moreover, our targeted proteomics indicated that the OxyR 

was not upregulated significantly. Further studies are needed to uncover the exact role of OxyR 

in response to ROS. However, previous studies implied that OxyR plays an essential role in 

resistance to H2O2 by regulating other proteins. OxyR induces Dps in E. coli, a ferritin-like 

protein that sequesters iron49. Sequestering of iron impairs the Fenton reaction, which 

consequently provides protection against ROS and reduces the damage of biomolecules. The 

dps gene was identified by the Tn-seq and its fitness score was -2.48. However, the Dps protein 

was downregulated based on the DDA proteomic analysis. To confirm this unexpected finding, 

we conducted the proteomic assay twice and each time with at least 4 technical replicates, but 

the Dps protein was significantly downregulated with p = 0.001. Further, the targeted-

proteomics demonstrated the same result, pointing to the downregulation of Dps in response to 

H2O2. This is contrary to the previously reported works on Dps in Salmonella and the reason 

for the discrepancy is unclear.   

2.3.11 DNA repair system is important for H2O2 resistance  

The imposed exogenous H2O2 activates DNA repair system in Salmonella in order to 

repair or eliminate the damage that occurred on the nucleotides. The E. coli RecA protein 

repairs double-strand DNA lesions through recombination50. In our Tn-seq analysis, the fitness 

score of this mutant was -5.36 for both concentrations, and in proteomics, the RecA was 

upregulated (1.79-fold). Salmonella recA mutant decreased the maximum OD600 by 16% for 

H2O2L and 22% for H2O2H as compared to the same mutant grown in LB. Salmonella recA 

mutant was also sensitive to exogenous H2O2 in aerated rich medium26. Moreover, recG, 

recombination and DNA repair gene51, showed a stronger phenotype than recA mutant. The 

regG deletion in Salmonella caused the growth rate reduction by 52% for H2O2L and 60% for 

H2O2H. This disruption in recG also caused the cells to stay in lag phase for a longer time in 
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the presence of H2O2 as compared to LB; the lag time increased by a 62-fold and a 159-fold for 

H2O2L and H2O2H, respectively. In the blood of patients with Salmonella Typhi bacteremia, 

the proteins encoded by recA, recG, and xthA genes were detected, suggesting these proteins 

are actively expressed in the blood environment52. The XthA protein is another enzyme that 

participates in DNA repair mechanism induced by H2O2 and iron-mediated Fenton reaction. 

The xthA encodes exonuclease III, which repairs the damaged DNA. We found that the xthA 

gene was required based on the Tn-seq assay and its mutant had a reduced fitness score of -

3.06 for H2O2L and a -4.38 for the H2O2H. Further, Salmonella lacking the xthA increased the 

lag time by 8-fold and a 12-fold for H2O2L and H2O2H, respectively. Targeted-proteomics 

showed upregulation of XthA (1.64-fold) in response to H2O2. Salmonella enterica serovar 

Enteritidis defective in xthA is susceptible to egg albumin53. E. coli xthA mutant is 

hypersensitive to H2O2
54. The xthA is also required for Mycobacterium tuberculosis to infect 

C57BL/6J mice55. In addition to the aforementioned genes involved in DNA repair system, 

uvrA encoding Holliday junction DNA helicase motor protein, uvrC encoding exonuclease 

ABC subunit A, uvrD encoding DNA-dependent helicase II, and polA encoding DNA 

polymerase I were among top of the list of the genes identified by Tn-seq as required for 

resistance to H2O2. Collectively, DNA repair system is crucial for the survival of the 

Salmonella in a niche that contains H2O2.  

2.3.12 Flagellar genes have a role for H2O2 resistance 

Some flagellar genes, fliC and fliB, were shown to be important for resistance to H2O2. 

These two genes were identified by Tn-seq and their proteins were shown to be upregulated. 

Salmonella lacking either of these genes exhibited a strong phenotype in the presence of H2O2. 

During 24 h of incubation, fliC and fliB mutants could not grow in both H2O2 conditions. 

However, growth of fliD mutant was not affected by H2O2. The fliC was shown to have a role 

in Salmonella Typhi interaction with human macrophages and Salmonella Typhimurium fliB 
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mutant was defective in swarming motility56, 57. Currently it remains unclear how flagella genes 

can be involved in the resistance of Salmonella to oxidative stress, which warrants future study 

into this direction.   

2.3.13 Fe-S cluster biogenesis system is required for H2O2 resistance  

Salmonella requires the genes from Fe-S cluster biogenesis system in order to resist 

H2O2. Our Tn-seq analysis identified 5 genes in this system that are required for the resistance. 

In isc operon (Fe-S cluster), iscA, hscB, and hscA were among the genes required to resist H2O2. 

Particularly, the hscA is on the top of the gene list identified by Tn-seq.  In E. coli, this operon 

is regulated by iscR, iron sulfur cluster regulator58; in Salmonella the gene iscR encoding this 

transcription regulator is named yfhP. The HscB and HscA chaperones are believed to be 

involved in the maturation of Fe–S proteins59, 60. The second operon that is involved in Fe-S 

protein biogenesis is the suf, sulfur mobilization operon. Tn-seq found that two genes in this 

operon were required for Salmonella to resist H2O2; sufS and sufC. Salmonella mutant lacking 

sufS exhibited a strong phenotype in the presence of H2O2 and could not grow during the 24 h 

of incubation as compared to LB. The SufS with SufE in E. coli form a heterodimeric cysteine 

desulphurase and SufB, SufC, and SufD form a pseudo-ABC-transporter that could act as a 

scaffold60; this operon is regulated by OxyR14. The other known genes in these two operons 

that are present in Salmonella are iscA, sufA, sufB, and sufD; they showed a reduced fitness, 

while their p values were > 0.05. The damage of Fe-S clusters is not only problem for the 

defective proteins, but also it fuels the Fenton reaction via the released iron and H2O2
10. Thus, 

Salmonella uses Fe-S cluster repair system as an arsenal to overcome the damage imposed by 

H2O2. 

2.3.14 DNA adenine methylase is important for H2O2 resistance  

DNA adenine methylase genes, dam and damX, are involved in Salmonella resistance 
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against H2O2. Our Tn-seq data showed that fitness of dam and damX mutants were reduced in 

the presence of H2O2. To confirm this, Salmonella dam mutant was grown in both conditions. 

Under H2O2L, the growth rate was reduced by 42% as compared to the mutant in LB and the 

mutant could not grow under H2O2H during the 24 h of incubation. In addition, the lag time of 

the Salmonella dam mutant was extended by a 19-fold for H2O2L. While the Salmonella damX 

mutant displayed a moderate phenotype as compared to the dam mutant, the damX mutant also 

showed that the growth rate decreased by 23% and 33% for H2O2L and H2O2H, respectively. 

The lag time was extended for this mutant by a 25-fold and a 49-fold for H2O2L and H2O2H, 

respectively. The dam regulates virulence gene expression in S. Typhimurium61. The different 

levels of Dam affects virulence gene expression, motility, flagellar synthesis, and bile 

resistance in the pathogenic S. Typhimurium 14028S62. Dam methylation activates the gene 

that are involved in lipopolysaccharide synthesis63. Moreover, Salmonella defective in damX 

is very sensitive to bile64. Collectively, our study demonstrates the critical role of DNA adenine 

methylase in Salmonella resistance against H2O2.     

2.3.15 Other genes for H2O2 resistance  

Beside the important pathways described above, there were many additional genes also 

important for resistance to H2O2. Among those, the 3 unrelated genes, rpoS, pgm, and tonB, 

are important ones that deserve more attention. The rpoS mutant showed reduced fitness and 

its protein was upregulated in the presence of H2O2. Salmonella mutant defective in rpoS 

showed a strong phenotype when grown in the presence of H2O2. The rpoS encodes the 

alternative sigma factor σS, subunit of RNA polymerase; it is the master regulator of stress 

response65. This implies that rpoS is an important component of the genetic regulatory network 

that Salmonella employs in order to resist H2O2. Furthermore, the fitness of pgm mutant was 

reduced and its protein was upregulated in the presence of H2O2. Knock out of pgm in 

Salmonella caused a decrease in growth rate, increase the lag phase time, and reduce the 
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maximum OD600 in the presence of H2O2. The pgm encodes phosphoglucomutase which 

required for catalysis of the interconversion of glucose 1-phosphate and glucose 6-phosphate66.  

This gene contributes to resistance against antimicrobial peptides, is required for in vivo fitness 

in the mouse model, and participates in LPS biosynthesis67. Lastly, the fitness of tonB mutant 

was also reduced. Salmonella lacking tonB exhibited a strong phenotype in the presence of 

H2O2 as compared to the mutant grown in LB. The gene mediates iron uptake in the 

Salmonella45. In addition, seven of the genes identified in our study (proC, arcA, barA, exbD, 

flhD, fliC, and fliD) were previously shown to be important for interaction of Salmonella Typhi 

with human macrophages56.  

2.4 Conclusion  

In summary, we applied Tn-seq and proteomic analysis to find the genes and proteins 

that are required in S. Typhimurium to resist H2O2 in vitro. As the concentration of H2O2 

increased, the growth rate reduced, the lag time extended, the fitness of mutants decreased, and 

some proteins were differentially expressed. Validation of Tn-seq results with individual 

mutant assays indicated the accuracy of the identified genes in response to the two H2O2 

concentrations. The targeted-proteomics had a good agreement with Tn-seq. We found many 

genes that have not been associated to resistance to H2O2 previously and these genes will be 

focus of our future research. Salmonella employs multiple pathways to resist H2O2 and the most 

important ones are ROS detoxifying enzymes, amino acid biosynthesis (aroK and aroB), 

putative iron transporters (ybbK, ybbL, ybbM), iron homeostasis, Fe-S cluster repair, DNA 

repair, flagellar and DNA adenine methylase genes. The genes identified in this study will 

broaden our understanding on the mechanisms used by Salmonella to survive and persist 

against ROS in macrophages.    

Our unbiased system-wide approach, Tn-seq, was successful in identifying novel 
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genetic determinants that have not been implicated previously in Salmonella resistance to 

oxidative stress. Furthermore, the combined use of quantitative proteomic approach has 

provided additional insights on the function or mode of action of the identified genetic 

determinants in resisting oxidative stress. As expected, the majority of the proteins important 

for resistance to H2O2 were upregulated in response to the same stressor. However, the 

expression level did not increase for some proteins, in spite of their known roles in resistance 

to H2O2. Interestingly, the downregulation of Dps and other proteins was counterintuitive to 

the common mode of protein regulation and function, yet it may point to some unknown aspects 

of how Salmonella regulates the expression of those proteins to better cope with the oxidative 

stress during infection in macrophage. The genes identified in this study will broaden our 

understanding on the mechanisms used by Salmonella to survive and persist against ROS in 

macrophages.  

2.5 Methods  

2.5.1 Construction of Tn5 mutant library 

We mutagenized Salmonella enterica subsp. enterica serovar Typhimurium str. ATCC 

14028S (with spontaneous mutation conferring resistance to nalidixic acid (NA)), by biparental 

mating using Escherichia coli SM10 λpir carrying a transposon-delivery plasmid vector 

pBAM1 (Ampicillin (Amp) resistance) as a donor strain68. The plasmid pBAM1 was 

generously provided by Victor de Lorenzo (Systems and Synthetic Biology Program, Centro 

Nacional de Biotecnología, Madrid, Spain). The donor strain, E. coli Sm10 λpir (pBAM1), was 

grown overnight in LB with 50 µg/ml Amp and recipient strain was grown in LB with 50 µg/ml 

NA at 37°C. Equal volumes (1 ml) of donor and recipient were mixed, centrifuged, washed in 

10 mM MgSO4, and re-suspended in 2 ml PBS (pH 7.4). Then, the mating mixture was 

concentrated and laid on a 0.45-µm nitrocellulose filters (Millipore). The filter was incubated 

at 37°C on the surface of LB agar plate. After 5 h of conjugation, the cells on the filter was 



 32 

washed in 10 mM MgSO4, and resuspended in 1 ml MgSO4. The conjugation mixture was 

plated on LB agar containing 50 µg/ml NA and 50 µg/ml kanamycin (Km). After 

approximately 24 h at 37°C, we scraped the colonies into LB broth containing 50 µg/ml Km 

and 7% DMSO. The yield was approximately 68,000 individual colonies from each 

conjugation. Five independent conjugations were conducted to yield approximately 325,000 

mutants. The library was stored at −80°C in aliquots. To determine the frequency of the mutants 

that have been produced by integration of the entire delivery plasmid, the colonies were picked 

randomly and streaked on LB plates (Km) and LB plates (Km and Amp). It was shown that 

~20% of the cells in the library were resistant to Amp, indicating a significant portion of the 

Km-resistant colonies was not from authentic transposition events.  

2.5.2 Measuring growth responses of S. Typhimurium to H2O2  

To determine the effect of H2O2 concentrations on growth parameters, overnight culture 

of the wild type S. Typhimurium 14028s was inoculated into fresh LB broth media (1:200 

dilution) to give a seeding concentration corresponding to OD600 of ~0.1. The LB broth 

contained freshly prepared H2O2 to give the final concentrations ranging from 0.05 to 10 mM. 

The cultures were directly added into 96-well microplate (200 µl/well). The microplate was 

incubated in a Tecan Infinite 200 microplate reader at 37°C, with shaking duration 5 s, shaking 

amplitude 1.5 mm, and reading OD600 every 10 min. The number of replicates were at least 

three. The lag time, growth rate, and maximum OD600 were calculated using GrowthRates 

script69.  Growth Rate % decrease was calculated as follows70: Growth Rate % decrease = ((µPC 

– µS)/µPC) x 100; where µ = the maximum slope (growth rate), µPC = growth rate of positive 

control (without H2O2), µS = growth rate in the presence of H2O2. 

2.5.3 Selection of the mutant library for Tn-seq analysis 

The transposon library was thawed at room temperature and diluted 10-1 in fresh LB 
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broth. To activate the library, the diluted library was incubated at 37°C with shaking at 225 

rpm for an hour. Then, the culture was washed twice with PBS and resuspended in LB broth 

medium. The library was inoculated to 20 ml LB broth and LB broth supplemented with either 

2.5 or 3.5 mM H2O2 (H2O2L and H2O2H, respectively), seeding CFU was 3.5 x 106 per ml. 

Then, when the cultures reached mid-exponential phase, OD600 of 2.7 (~1.17 x 108 CFU/ml), 

the incubation was stopped, and the culture was immediately harvested by centrifugation, and 

stored at -20°C.  

2.5.4 Preparation of Tn-seq amplicon libraries  

Genomic DNA was extracted from the harvested cells using DNeasy Blood & Tissue 

kit (Qiagen), and quantified using Qubit dsDNA RB Assay kit (Invitrogen). As described 

above, 20% of the mutants in the library were the result of the integration of pBAM1 into 

chromosome. To remove the Tn5-junction sequences originated from the plasmid in the Tn-

seq amplicon libraries, genomic DNA was digested with PvuII-HF (New England Biolabs), 

which digests immediately outside the inverted repeats on both sides of Tn5 in pBAM1, and 

purified with DNA Clean & Concentrator-5 kit (Zymo Reaerch). Then, a linear PCR extension 

was performed using a Tn5-specific primer in order to produce single stranded DNA 

corresponding to Tn5-junction sequences. To increase the specificity in extending into Tn5-

junction sequences, the linear PCR was conducted with a dual priming oligonucleotide Tn5-

DPO (5'-AAGCTTGCATGCCTGCAGGTIIIIICTAGAGGATC-3') that is specific to Tn5 

end71. The PCR reaction contained 25 µl Go Taq Colorless Master Mix (Promega), 20 µM Tn5-

DPO primer, 100 ng gDNA, and 50 µl MQ-H2O. The PCR cycle consisted of the initial 

denaturation at 95°C for 2 min, followed by 50 cycles at 95°C for 30 sec, 62°C for 45 sec, and 

72°C for 10 sec. The PCR product was purified with DNA Clean & Concentrator-5 kit and 

eluted in 13 µl TE buffer. After that, C-tail was added to the 3' end of the single-stranded DNA. 

The C-tailing reaction was consisted of 2 µl terminal transferase (TdT) buffer (New England 
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Biolabs), 2 µl CoCl2, 2.4 µl 10 mM dCTP, 1 µl 1 mM ddCTP, 0.5 µl TdT and 13 µl purified 

linear PCR product. The reaction was performed at 37°C for 1 h and the enzyme was 

inactivated by incubation at 70°C for 10 min. The C-tailed product was purified with DNA 

Clean & Concentrator-5 kit and eluted in 12 µl TE. Next, the exponential PCR was performed 

with forward primer, P5-BRX-TN5-MEO, 5'-AATGATACGGCGACCACCGAGATCTACA 

CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAG-6 nt barcode-CCTAGGCGGCC 

TTAATTAAAGATGTGTATAAGAG-3' and reverse primer, P7-16G, 5'-CAAGCAGAAGA 

CGGCATACGAGCTCTTCCGATCTGGGGGGGGGGGGGGGG-3' to attach Illumina 

adapter sequences along with the sample barcodes. The PCR reaction contained 25 µl Go Taq 

Green Master Mix, 10 µM P5-BRX-TN5-MEO primer, 10 µM P7-16G primer, 1 µl purified 

C-tailed genomic junctions, and MQ-H2O to 50 µl; the PCR condition started with initial 

denaturation at 95°C for 2 min, followed by 36 cycles of 95°C for 30 sec, 60°C for 30 sec, and 

72°C for 20 sec, with the final extension at 72°C for 5 min. Then, the size selection of the DNA 

was performed using agarose gel electrophoresis. The 50 µl PCR products were incubated at 

60°C for 15 min and incubated on ice for 5 min, and immediately loaded on the 1% agarose 

gel in 0.5% TAE buffer. After running the gel, the DNA fragment of size 325-625 bp was cut 

and put in a microtube for each sample. The DNA was extracted from the gel using Zymoclean 

Gel DNA Recovery kit (Zymo Research). The prepared DNA libraries were quantified using 

Qubit dsDNA RB Assay kit. Since each library has its own barcode, the libraries were 

combined and sequenced on a flow cell of HiSeq 3000 using single end read and 151 cycles 

(Illumina) at the Center for Genome Research & Biocomputing in Oregon State University.    

2.5.5 Tn-seq data analysis  

The preliminary data analysis was conducted by using a super computer in the High 

Performance Computing Center (AHPCC) at the University of Arkansas. The libraries that 

were multiplexed for sequencing were de-multiplexed using a custom Python script. The script 
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searched for the six-nucleotide barcode for each library for perfect matches. In order to extract 

the transposon genomic junctions, we used Tn-Seq Pre-Processor (TPP) tool30 with some 

modifications in the script. The TPP searched for the 19 nucleotide inverted repeat (IR) 

sequence and identified five nucleotides (GACAG) at the end of the IR sequence, allowing one 

nucleotide mismatch. The Tn5-junctions that start immediately after GACAG were extracted 

and the C-tails at the end of junctions were removed. Tn5-junction sequences less than 20 

nucleotides were discarded and remaining Tn5-junctions were mapped to the Salmonella 

enterica serovar Typhimurium 14028S genome and plasmid using BWA-0.7.1272. To identify 

genes that are required for H2O2 resistance, the following three Tn-seq analysis tools were used 

for comparative analysis: (i) ARTIST28: the genomic junctions were mapped to the reference 

genome using Bowtie 2.2.773. The number of insertions and reads were determined for genes 

and intergenic regions. The data were normalized with default script in the ARTIST. Then, the 

relative abundance of Tn5 insertions in the output library versus the input were calculated. 

Later, the p values were calculated from a 100 independent Mann–Whitney U test (MWU) 

analysis that were carried out on input and output data for each gene. Finally, the genes were 

considered conditionally essential if the p values were ≤ 0.05 in the 90 of the 100 MWU tests. 

(ii) Tn-seq Explorer29: The output SAM files from the TTP were used as input to the Tn-seq 

Explorer. The unique insertions with less than 20 reads were removed from the input and 

outputs. Using the window size of 550 and excluding 5% of beginning of genes and 20% of 

the end of genes, Essentiality Index (EI), number of unique insertions, and total number of 

reads per gene were counted. The EI of more than 10 were removed from the input. Genes with 

less than 300 nucleotides were removed. Deferential EI were calculated from input and outputs 

(∆IE = output EI–input EI) and genes with ∆IE more than -1 were removed. Log2 fold change 

of reads were calculated from input and output (Log2FC = log2 (output reads/input reads)) and 

the genes were ranked based on the Log2FC value from least value to highest. The genes with 
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Log2FC value of less than -2 from the H2O2H and present in H2O2L were considered 

conditionally essential. (iii) TRANSIT30: The output wig files from the TTP was used as input 

data file for TRANSIT. The comparative analysis was conducted with Tn5 resampling option. 

The reads were normalized with trimmed total reads (TTR). Insertions outside the 5% and 10% 

sequences from 5'- and 3'- ends were removed, respectively. The genes were considered 

conditionally essential if p values ≤ 0.05.  

2.5.6 Phenotypic evaluation of individual deletion mutants  

The mutants were obtained from Salmonella enterica subsp. enterica, 14028s (Serovar 

Typhimurium) Single-Gene Deletion Mutant Library through BEI Resources 

(www.beiresources.org). The overnight cultures of S. Typhimurium mutants were added into 

fresh LB broth media containing freshly prepared H2O2 (2.5, or 3.5 mM/ml) (1:200 dilution) to 

give seeding OD600 of 0.1. The cultures were directly added into 96-well microplates and 

incubated in Tecan Infinite 200 at 37ºC for 24 h. The lag time, growth rate, and maximum 

OD600 were calculated using GrowthRates69.   

2.5.7 Sample preparation for proteomics and mass spectrometry analysis 

The overnight culture of the wild type S. Typhimurium 14028 was diluted 1:200 in 50 

ml LB medium, and LB containing either 2.5 or 3.5 mM H2O2 in a 300-ml flask. The cultures 

were grown until mid-exponential phase (OD600 of 2.7), and the 50 ml volume of cultures were 

used for a total protein extraction by using Qproteome Bacterial Protein Prep kit (Qiagen). 

Disulfide bonds within proteins were reduced with 2-Mercaptoethanol and separated by SDS-

PAGE gel electrophoresis. For each condition, there were three lanes with approximately 300 

µg of proteins. The gel then was stained via coomassie blue dye. The gel portions of 3 lanes 

for each condition were cut out and chopped into small pieces, pooled together, washed twice 

with 50 mM NH4HCO3, destained with NH4HCO3/ 50% Acetonitrile (ACN), and dried with 
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pure ACN. Then, the proteins were reduced using 10 mM Dithiothreitol in 50 mM NH4CO3 

and the alkylation was conducted with 10 mg/ml Iodoacetamide Acid in 50 mM NH4CO3. After 

that, the proteins were washed with NH4HCO3, and dried with pure ACN. Mass spectrometry 

grade Trypsin gold from Promega (~20 ng/µl in 50 mM NH4HCO3) was added to dried gels, 

and left it overnight for efficient in-gel digestion of the proteins at 37ºC. During the digestion, 

tryptic peptides diffused out into the solution. Gel pieces then were extracted three times by 

50% CAN/0.1% TFA solution and incubated at 37oC for 15 minutes. Later, these digests were 

analyzed by ESI-LC-MS/MS at State Wide Mass Spectrometry Facility, University of 

Arkansas at Fayetteville. Data dependent analysis (DDA) for the in-gel trypsin digested 

samples from each condition were performed by using an Agilent 1200 series micro flow 

HPLC in line with Bruker Amazon-SL quadrupole ion trap ESI mass spectrometer (QIT-ESI-

MS). All the ESI-MS analyses were performed in a positive ion mode using Bruker captive 

electrospray source with a dry nitrogen gas temperature of 200°C, with nitrogen flow rate of 3 

L/minute. LC-MS/MS data were acquired in the Auto MS(n) mode with optimized trapping 

condition for the ions at m/z 1000. MS scans were performed in the enhanced scanning mode 

(8100 m/z/second), while the collision-induced dissociation or the MS/MS fragmentation scans 

were performed automatically for top ten precursor ions with a set threshold for one minute in 

the UltraScan mode (32,500 m/z/second). Tryptic peptides were separated by reverse-phase 

high-performance liquid chromatography (RP-HPLC) using a Zorbax SB C18 column, (150 × 

0.3 mm, 3.5 µm particle size, 300 Å pore size, Agilent Technologies), with a solvent flow rate 

of 4 µL/minute, and a gradient of 5%–38% consisting of 0.1% FA (solvent A) and ACN 

(solvent B) over a time period of 320 minutes. Tryptic peptides were then identified by 

searching MS/MS data in S. Typhimurium 14028S reference proteome database24, 35 by using 

MASCOT database search software34. MS1 intensities of the integrated areas of these 

identified tryptic peptides were compiled and grouped in skyline software according to the 
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replicates/conditions to perform statistical analysis. Targeted protein work were performed 

using Shimadzu UPLC-20A coupled to 8050 triple quadrupole ESI-MS with heated probe. 

Sequence specific fragment ion intensities from at least three unique tryptic peptides from the 

protein of interest were used in the protein quantitation.  Multiple reaction monitoring (MRM) 

events corresponding to sequence specific fragment ions derived from the precursor tryptic 

peptides were targeted to operate at a certain specific retention time intervals predicted by in 

house retention time library. This library was generated using the correlation of relative 

hydrophobicity of the tryptic peptides with their retention times (RT) from highly common 

housekeeping proteins, for the UPLC method used in this analysis as described below.  While 

the RT were correlated well within 99% confidence, sufficient number of sequence specific 

fragment ions were used as basis for identification of the tryptic peptide by MS/MS alone. 

Specificity and the confidence was achieved by incorporating RT prediction.  In addition to the 

application of skyline in quantitation, skyline software was also used in predicting RT and 

optimizing parameters such as collision energies and voltages with the help of Shimadzu 

Labsolution software. Tryptic peptides were separated by reverse-phase ultra-high-

performance liquid chromatography (RP-UPLC) compatible Shimadzu C18, 1.9-micron 

particle size, 50x2.1 mm column (SN # 16041880T), with a solvent flow rate of 0.3 mL/minute, 

and a gradient of 5%–90% consisting of 0.1% FA (solvent A) and 0.1% FA in ACN (solvent 

B) over a time period of 10 minutes. 

2.5.8 Accession numbers 

Tn-seq sequencing data are available on NCBI Sequence Read Archive. LB: 

PRJNA352537; H2O2L: PRJNA352862; H2O2H: PRJNA352865.  
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Figure 2.1. Study design and identification of the genes required for H2O2 resistance using Tn-
seq. (A) The effect of H2O2 on the growth rate of wild type Salmonella Typhimurium. An 
overnight culture of bacteria was diluted 1:200 in the LB medium contains either 2.5 mM H2O2 
(H2O2L), 3.5 mM H2O2 (H2O2H), or LB without H2O2 was used as control. The cultures were 
incubated at 37°C for 24 h in a 96-well plate. The reduced growth rates for the H2O2 were in 
comparison to the control. In the all growth curve figures in this work, the blue color represents 
LB (no H2O2), the red is H2O2L, and green is H2O2H. (B) Schematic representation of the Tn-
seq study. The Salmonella transposon mutant library was inoculated into LB and LB contains 
H2O2L or H2O2H. The three cultures were grown until they reached mid-exponential phase. 
The DNA was extracted from each culture and subjected to library preparation, sequencing, 
and data analysis. (C) The Tn-seq profile of the three conditions. It shows 34 kb of the 
Salmonella genome which starts with metF gene and ends with rrsB, horizontal axis. The 
height of vertical axis represents number of reads which is 1500 sequencing reads. The 
highlighted genes in red are katG, catalase peroxidase, was tolerated insertions in the both H2O2 
conditions; oxyR was not tolerated insertions in presence of H2O2 and indicated that the gene 
is required to H2O2 resistance; murI, glutamate racemase, was not tolerated any insertions at all 
and it was considered an essential gene, murI is required for the biosynthesis of a component 
of cell wall peptidoglycan.  
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Figure 2.2. Growth curve of 50 mutants and a wild type Salmonella in LB, H2O2L and H2O2H. 
The lag phase time, growth rate, and maximum OD600 of the individual Salmonella 
Typhimurium mutants and the wild type in the growth conditions of LB (no H2O2), H2O2L and 
H2O2H. The overnight cultures of the mutants and wild type Salmonella were diluted 1:200 in 
the LB medium, and the LB contains either 2.5 mM H2O2 (H2O2L) or 3.5 mM H2O2 (H2O2H). 
The cultures were incubated at 37°C for 24 h in a 96-well plate and the OD600 was recorded 
every 10 min. The lag phase time, growth rate, and maximum OD600 were calculated and shown 
here as a graphical representation. The pale pink color indicates a short lag phase time, a high 
growth rate, and a high OD600.  The red color indicates that the bacteria was stayed in a lag 
phase, growth rate was close to a zero, and the OD600 of the culture was not raised in the 24 h 
time of assays. The data of this figure can be found in Table S2.4.   
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Figure 2.3. The role of aromatic amino acid biosynthesis genes in resistance to the H2O2. (A) 
Schematic representation of aromatic amino acid biosynthesis, adapted from the KEGG 
pathway database. The genes in red color were identified by the Tn-seq for H2O2 resistance in 
Salmonella. The red bold color genes were identified by the Tn-seq and the phenotypes were 
validated by the individual mutant assays. (B) The overnight cultures of the individual mutants 
were diluted 1:200 in the LB (no H2O2) and the LB contains either 2.5 mM H2O2 (H2O2L) or 
3.5 mM H2O2 (H2O2H). The cultures were incubated at 37°C for 24 h in a 96-well plate. The 
colors of growth curve figures are blue for LB, red for H2O2L, and green for H2O2H. In the 
ΔaroK growth curve, the red color is under the green color. (C) Differential expression of 
Salmonella proteins in response to the H2O2L compared to the LB. Wild type Salmonella was 
grown in LB, H2O2L, and H2O2H until mid-exponential phase. Targeted-proteomics was 
quantified AroB, AroE_2, AroK, and AroA protein expressions in response to H2O2L. The 
shown peaks represent a unique peptide of the three peptides that were used of protein 
expression analysis. 
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Figure 2.4. The ybbK, ybbL, and ybbM have a role in resistance to H2O2. (A) The Tn-seq profile 
of the LB (no H2O2), H2O2L (2.5 mM), and H2O2H (3.5 mM). It shows ~6 kb of Salmonella 
Typhimurium genome starts with ybbK and ends with ybbO, horizontal axis. The read scale for 
the conditions are 4000, vertical axis. (B) The growth curve of ΔyybK, ΔyybL, and ΔyybM. The 
overnight cultures of these three mutants were diluted 1:200 in LB, H2O2L, and H2O2H. The 
cultures were incubated at 37°C for 24 h in a 96-well plate. The growth curve colors are blue 
which represents LB, red is H2O2L, and green is H2O2H. (C) Wild type Salmonella was grown 
in LB, H2O2L, and H2O2H until mid-exponential phase. Targeted-proteomics was quantified 
YbbK, YbbL, and YbbM protein expressions in response to H2O2L. The shown peaks represent 
a unique peptide of the three peptides that were used of protein expression analysis. 
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2.9 Supplementary information  
 
 

 
Figure S2.1. Stability of H2O2 in LB medium during the experiments. LB broth media 
supplemented with freshly diluted 3.5 mM H2O2 at each of indicated time points. At 0 h, 
immediately after adding H2O2 to LB broth, the media inoculated with Salmonella 
Typhimurium. At 24 h, 24 hours before the inoculation media with bacteria H2O2 added to 
media, and at 11 d, 11 days before the inoculation media with bacteria H2O2 added. The media 
supplemented with H2O2 left at room temperature. LB was free of H2O2. The cultures were 
incubated at 37°C for 24 h in a 96-well plate with OD600 reading every 10 minutes.     
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Figure S2.2. Tn-seq library preparation diagram for Illumina sequencing. The genomic DNA 
extracted from the selected library and subjected to two PCR amplifications. First PCR was 
linear and specific forward primer used to capture and amplify Tn5 junctions. Second PCR was 
exponential and Illumina adaptors with a barcode added. The PCR product gel purified and 
sequenced on an Illumina platform.    
 
 
 

 
Table S2.1. Salmonella Typhimurium Tn-seq sequencing in numbers. Number of extracted 
reads, mapped reads, and unique insertions for LB (H2O2 free), H2O2L (2.5 mM), and H2O2H 
(3.5 mM) presented. Mean length of mapped genomic junctions and hits per nucleotide shown.  
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Figure S2.3. The reproducibility of Tn-seq. Correlation between reads per ORFs of Salmonella 
Typhimurium Tn-seq conditions, H2O2L (2.5 mM) and H2O2H (3.5 mM). Two ORFs excluded 
in this correlation, STM14_2422 and STM14_2428. 
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Functional Categories Count % Genes
dna repair 10 7.8125 ruvB, uvrC, ruvA, uvrD, uvrA, xthA, recR, ruvC, recA, polA
DNA damage 10 7.8125 ruvB, uvrC, ruvA, uvrD, uvrA, xthA, recR, ruvC, recA, polA

cytoplasm 22 17.1875
gidA, tpiA, uvrC, crr, uvrA, xerC, xerD, cmk, recA, gmhA, pnp, dps, 
argR, sufS, aroK, efP, fadR, aroB, dnaJ, aroA, yaiB, flhD

dna recombination 7 5.46875 ruvB, ruvA, xerC, xerD, recR, ruvC, recA
sos response 6 4.6875 ruvB, uvrC, ruvA, uvrD, uvrA, recA

atp-binding 20 15.625
atpA, sufC, ruvB, lon, uvrD, ruvA, uvrA, cmk, yjeA, recA, barA, fepC, 
recG, hscA, ybbL, aroK, arcB, phoL, phoR

hydrolase 21 16.40625
atpA, dcd, lon, ruvB, uvrD, ruvA, recC, hutG, rnt, xthA, polA, arcA, 
recG, apaH, yejM, endA, lepB, degS, ruvC, ygdP, spoT

nucleotide-binding 19 14.84375
atpA, sufC, lon, ruvB, uvrD, ruvA, uvrA, cmk, yjeA, recA, barA, fepC, 
recG, hscA, ybbL, aroK, arcB, phoR

dna-binding 23 17.96875
rcsA, rpoE, oxyR, lon, uvrD, ruvA, uvrA, xerC, xerD, yjeB, recA, acrR, 
arcA, polA, dps, argR, rbsR, rpoS, fadR, rcsB, fruR, priB, flhD

metal-binding 16 12.5
entD, iscA, uvrA, icdA, hutG, xthA, yjeB, dps, aroK, dksA, ruvC, recR, 
dnaJ, yhgI, pgm

aromatic amino acid 
biosynthesis

5 3.90625 aroK, aroE, aroD, aroB, aroA

stress response 6 4.6875 rpoE, lon, dnaJ, hfq, yaiB

signal 14 10.9375
yejE, fepD, barA, yejM, endA, mrdA, arcB, ybbM, degS, phoR, sthB, 
cysP, ompS, cbiM

amino-acid biosynthesis 7 5.46875 argR, aroK, aroA, aroD, aroB, aroA, proC
DNA binding 4 3.125 rcsA, argR, rpoS, fruR
zinc-finger 4 3.125 uvrA, dksA, recR, dnaJ

transferase 20 15.625
ybaZ, fliB, rfaF, entD, crr, slrB, cmk, barA, polA, pnp, otsA, sufS, aroK, 
arcC, holD, holC, arcB, dam, phoR, aroA

dna replication 5 3.90625 uvrD, dam, pola, dnaj, prib
activator 5 3.90625 rcsA, fadR, rcsB, fruR, flhD
exonuclease 4 3.125 rnt, recC, xthA, polA

transport 14 10.9375
atpA, entD, crr, yejE, fepD, corA, tonB, atpG, sapC, fliJ, exbD, sthB, 
cysP, ompS

protein transport 4 3.125 sapC, fliJ, exbD, tonB
nuclease 4 3.125 rnt, xthA, ruvC, polA
magnesium 6 4.6875 aroK, entD, xthA, corA, ruvC, pgm
flagellum 4 3.125 fliJ, fliD, fliC, flhD
repressor 4 3.125 argR, fadR, yjeB, fruR
phosphoprotein 5 3.90625 arcB, crr, rcsB, phoA, barA
helicase 4 3.125 ruvB, ruvA, uvrD, recG
nucleotidyltransferase 4 3.125 holD, holC, polA, pnp
ion transport 5 3.90625 atpaA, entD, corA, ompS, atpG
iron 6 4.6875 dps, entD, iscA, yjeB, yhgI
Isomerase 6 4.6875 slpA, rpe, tpiA, gmhA, pgm
excision nuclease 2 1.5625 uvrC, uvrA
capsule biogenesis/
degradation

2 1.5625 rcsA, rcsB

transcription regulation 13 10.15625
rcsA, oxyR, rpoE, yjeB, acrR, arcA, argR, rbsR, rpoS, fadR, rcsB, fruR, 
flhD

Transcription 13 10.15625
rcsA, oxyR, rpoE, yjeB, acrR, arcA, argR, rbsR, rpoS, fadR, rcsB, fruR, 
flhD

dna integration 2 1.5625 xerC, xerD
Chromosome partition 2 1.5625 xerC, xerD
Chaperone 4 3.125 sthB, dnaJ, hscB, hscA
kinase 7 5.46875 aroK, arcC, arcB, crr, cmk, phoR, barA
trna processing 3 2.34375 gidA, rnt, yhdG
cell membrane 12 9.375 atpA, rpe, yejE, lepB, sapC, fliJ, fepD, corA, tonB, ompS, yejM, atpG

membrane 13 10.15625
atpA, rpe, yejE, lepB, sapC, fliJ, fepD, corA, sthB, tonB, ompS, yejM, 
atpG

dna excision 2 1.5625 uvrC, uvrA
nadp 3 2.34375 icdA, aroA, proC
cf(1) 2 1.5625 atpA, atpG
Protease 4 3.125 lon, degS, lepB, araH
cell inner membrane 7 5.46875 atpA, lepA, sapC, corA, tonB, yejM, atpG
two-component regulatory 
system

4 3.125 arcB, rcsB, phoA, barA

Sigma factor 2 1.5625 rpoE, rpoS
rna-binding 3 2.34375 hfq, pnp
bacterial flagellum biogenesis 2 1.5625 fliJ, flhD
bacterial flagellum 2 1.5625 fliD, fliC
atp synthesis 2 1.5625 atpA, atpG
Hydrogen ion transport 2 1.5625 atpA, atpG

Unknown ORF 15

STM14_0196, STM14_1174, STM14_1758, STM14_1944, 
STM14_2358, STM14_2430, STM14_3007, STM14_3217, 
STM14_3219, STM14_3285, STM14_5452, STM14_5491, 
STM14_5494, STM14_5495, STM14_5517
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Table S2.3. List of functional categories required for Salmonella Typhimurium H2O2 
resistance. SP_PIR_Keywords used with default options for functional categories analysis of 
the 137 genes that were required for H2O2 resistance in S. Typhimurium. The gene recognition 
by the analysis tool based on official gene symbols.   
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Table S2.6. Deferentially expressed proteins of Salmonella Typhimurium in response to H2O2 
and their pathways. S. Typhimurium strain 14028S grown in LB (H2O2 free), H2O2L (2.5 mM), 
H2O2H (3.5 mM) till mid-log phase. KEGG pathway analysis used to categorize deferentially 
expressed proteins (p < 0.05). Blue for downregulated proteins, red for upregulated proteins 
and bold represents essential proteins.  
 

Pathways Proteins 

Ribosome RplB, RplC, RplD, RplE, RplI, RplJ, RplK, RplL, 
RplM, RplN, RplO, RplP, RplQ, RplR, RplT, RplU, 
RplV, RplW, RplX, RpmA, RpmD, RpmI, RpoA, 
RpoC, RpsA, RpsB, RpsC, RpsD, RpsE, RpsG, RpsH, 
RpsI, RpsJ, RpsK, RpsL, RpsM, RpsO, RpsS, RpsU

Glycolysis / Gluconeogenesis AdhP, Acs, AceF, Eno, AceE, PykF, Crr, GpmA, FbaB, 
LpdA, GlpX, Pgm, PfkB, Pgk

Pyruvate metabolism Acs, AceF, AceE, PykF, AccB, Mdh, Pta, Ppc, LldD, 
LpdA, GloA, PflB

Pentose phosphate pathway PrsA, TalB, FbaB, DeoB, RpiA, Eda, GlpX, Pgm, PfkB

Citrate cycle (TCA cycle) SucB, AceF, AceE, AcnB, IcdA, Mdh, LpdA, GltA

Amino sugar and nucleotide 
sugar metabolism

GalK, ManA, Crr, GalT, GalE, YfbG, ManX, Pgm, NagZ 

Propanoate metabolism Acs, AccB, Pta, PrpE, PflB, PrpC

Fatty acid biosynthesis FabI, FabG, AccB, FabF, FabB

Purine metabolism PrsA, GuaB, PykF, RpoC, Adk, RpoA, Hpt, Ndk, DeoB

Galactose metabolism GalK, GalT, GalE, Pgm, PfkB

Streptomycin biosynthesis RfbA, Pgm, RfbD

Riboflavin metabolism RibH, PhoN

Fructose and mannose 
metabolism

ManA, FbaB, GlpX, ManX, PfkB

Glyoxylate and dicarboxylate 
metabolism

AcnB, Mdh, Eda, GltA

Pyrimidine metabolism Upp, RpoC, PyrC, RpoA, Ndk

Glycine, serine and threonine 
metabolism

Asd, GcvP, LpdA, GlyA 

RNA degradation GroEL, Eno, Rho

Two-component system PhoN, ArcB, GlnB, CpxR, PhoP, ArcA, FliC

gamma-Hexachlorocyclohexane 
degradation

PhoN, DlhH

Fructose and mannose 
metabolism

ManA, GlpX, ManX, PfkB

RNA polymerase RpoC, RpoA

Red are upregulated proteins, blue are downregulated, and bold are essential proteins/genes 
(based on the Tn-seq). 
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Electronic files  
 
Table S2.2. Full list of Salmonella Typhimurium Tn-seq genome of the study. The list of 137 
Salmonella required genes for H2O2 resistance. The full data set of Tn-seq genome analysis 
with three tools, ARTIST, Tn-Seq Explorer, and TRANSIT for H2O2L (2.5 mM) and H2O2H 
(3.5 mM).  
 
Table S2.4. Lag time, growth rate, and maximum OD600 of Salmonella Typhimurium mutants. 
50 mutants and wild-type of S. Typhimurium grown in LB (H2O2 free), H2O2L (2.5 mM), 
H2O2H (3.5 mM). The cultures were incubated at 37°C for 24 h in a 96-well plate with OD600 
reading every 10 minutes. Lag time, growth rate, and maximum OD600 calculated for each 
mutant and compared to the wild-type.  
 
Table S2.5. Full list of Salmonella Typhimurium proteomic analysis in response to H2O2. S. 
Typhimurium strain 14028S grown in LB (H2O2 free), H2O2L (2.5 mM), H2O2H (3.5 mM) till 
mid-log phase. Proteome profiles analyzed by utilizing ESI-LC-MS/MS in data-dependent 
acquisition (DDA) mode and LC-QQQ-ESI-MS for targeted proteomics. 
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3.1 Abstract 

The molecular mechanisms underlying antibiotic actions on bacterial cells are complex 

and remain enigmatic. Uncovering these mechanisms is urgently needed to utilize last-resort 

antibiotics properly and develop novel antibiotics against which development of drug 

resistance is inherently suppressed. Recently, oxidative stress has been implicated as one 

common mechanism whereby bactericidal antibiotics kill bacteria. Here, we expand this model 

to a broader range of essential pathways far beyond the targets of currently used bactericidal 

antibiotics. This is based on our high-resolution Tn-seq experiment in which transposon 

mutants with insertions in “essential genes” were rendered non-essential in. S. Typhimurium 

under iron-restricted conditions for approximately one-third of previously known essential 

genes. The ROS-dependent nature of these essential genes is further validated by the fact that 

the relative abundance of the mutants increased with more severe iron restriction. Interestingly, 

the targets of most antibiotics currently in use clinically, whether bacteriostatic or bactericidal, 

are ROS-dependent essential genes. Our observation, taken together with the previous studies, 

suggests that targeting “ROS-independent” essential genes may be better strategy for future 

antibiotic development, because under iron-restricted host condition it is more likely that  (1) 

its antibiotic activity is not negatively influenced, and (2) development of drug resistance is 

reduced, due to the absence or reduced level of the ROS component in contrast to the most 

current antibiotics targeting “ROS-dependent” essential genes. This work expands our 

knowledge on the role of ROS in general essential pathways and provides novel insights for 

development of more effective antibiotics with reduced problem of drug resistance 

development.   
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3.2 Importance  

Due to the crisis of antibiotic resistance, development of novel antibiotics that can avoid 

drug resistance is urgently required. Recent studies have suggested that ROS formation is a 

common mechanism contributing to cell death by bactericidal antibiotics. Here we showed that 

this model is broadly applicable to approximately one-third of all essential genes in S. 

Typhimurium, far beyond currently known targets of bactericidal antibiotics. This conclusion 

is supported by our genome-wide study that the transposon mutants with insertions in these 

“ROS-dependent” essential genes escape antibiotic action partially and can multiply under 

iron-restriction condition. Our finding suggests that the targeting “ROS-independent” essential 

genes, in contrast to most current antibiotics targeting “ROS-dependent” essential genes,  may 

be an effective strategy to avoid weakening in antibiotic actions and development of antibiotic 

resistance in the iron-restricted host environment. The new insights from this study may be 

critical in developing novel antibiotics with reduced drug resistance.   
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3.3 Introduction  

Essential genes are required for cell viability and growth. These genes are pivotal 

targets for antibacterial drugs because blocking their proteins cause cell impairment and 

ultimately growth inhibition or death of bacterial cells. Thus, nearly all antibiotics in clinical 

use target these essential pathways. However, for many natural antibiotics, the molecular 

targets remain unknown (1) and even if the target is known in case of bactericidal antibiotics, 

the cellular events that follow in response to disruption of essential pathways leading to 

bacterial cell death remain puzzling.  

Numerous studies have shown the role of reactive oxygen species (ROS) in cell death 

for eukaryotes as well as prokaryotes. In eukaryotes, apoptosis and necroptosis are associated 

with ROS (2, 3); ferroptosis is an iron-dependent nonapoptotic form of oxidative cell death in 

mammalian cancer cells; these cells die as a result of ROS accumulation and the death can be 

prevented via iron chelators (4). In bacteria, contribution of ROS to cell death due to 

bactericidal antibiotics is supported by numerous studies. Kohanski et al., (5) proposed that 

bactericidal antibiotics regardless of their targets, induce ROS production which consequently 

damages biomolecules contributing to cell death, which can be averted via iron chelators. This 

model asserts that upon antibiotic-target interactions, consecutive specific intracellular events 

induce ROS formation, specifically hydroxyl radical, via Fenton reaction, through the process 

that involves TCA cycle-NADH depletion and destabilization of Fe-S clusters (5, 6). 

Furthermore, it was also shown that ROS generation elevates in bacterial cells by the attack of 

competitor bacteria or P1vir phage via type VI secretion system (7). Mammalian peptidoglycan 

recognition protein-induced bacterial killing requires ROS and the lethality of this protein can 

be inhibited via an iron chelator (8). Immune cells also produce ROS to kill bacterial pathogens 

(9). However, despite these numerous evidences on the role ROS in bacterial cell death, it is 

unknown if this role of ROS can be generalized to all death process of bacterial cells, and if 
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not, what is the scope of cellular processes to which this role is relevant.   

A pathogenic bacterium possesses a few hundred essential genes that are critical for 

maintaining cell viability. Empirically essential genes are defined by the genes that when 

inactivated lead to loss of cell viability. In E. coli Keio collection, single-gene deletions were 

made for all known open reading frames, excluding 302 genes which could not tolerate 

disruptions and these 302 genes were considered essential (10, 11). On the other hand, 

transposon insertion mutant libraries coupled with next generation sequencing (Tn-seq) is a 

powerful method to identify essential genes (12). Tn-seq experiment have shown that the 

number of essential genes are 353 in Salmonella Typhimurium SL326 (13); 461 in 

Mycobacterium tuberculosis H37Rv (14); and 227 in Streptococcus pyogenes (15). Recently, 

a team chemically synthesized Mycoplasma mycoid JCVI-syn3.0 based on 473 essential genes 

(16). Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi) was 

employed for phenotypic analysis of 289 essential genes in Bacillus subtilis that were identified 

by Tn-seq and confirmed that approximately 94% the  putative essential genes were genuine 

essential genes (17).  

Nearly all studies on defining essential genomes in bacteria have been conducted using 

stress-free nutrient-rich media for the given bacterial species under the assumption that a 

minimum set of the core essential genes would be best revealed under such “optimal” growth 

conditions. In this study, on the contrary, we analyzed our Tn-seq data to determine and 

characterize essential genes in S. Typhimurium under the restricted conditions created by 

different concentrations of iron chelator 2,2`-Dipyridyl (Dip) ranging from 0 to 400 µM. Our 

initial effort was to identify conditionally essential genes required for fitness under iron-

restriction conditions. However, we unexpectedly found that a considerable portion of the 

genes that are categorized as essential genes in LB media (no Dip) are rendered non-essential 
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under iron-restriction conditions. Furthermore, the relative abundance of the transposon 

mutants with insertions in those essential genes increased with the increasing severity of iron 

restriction. We reason that this finding has significant implications in the current crisis of 

antibiotic resistance and may provide valuable insights for future direction for antibiotic 

development. Therefore, this study will mainly focus on the analysis of the essential genes 

under iron-restricted condition, which we termed “ROS-dependent” essential genes, and 

discuss the implications of our discovery.  

3.4 Results and Discussion   

3.4.1 Tn-seq selection  

We constructed two genome-saturating Tn5 transposon libraries (Libraries –A and –

AB) in which 92.6% of all ORFs had insertions (Table S3.1). To track the relative abundance 

of mutants in the libraries in response to iron restriction, each library was inoculated into LB 

media supplemented with iron chelator 2,2`-Dipyridyl (Dip) at different final concentrations 

of 100 (Dip100), 150 (Dip150), 250 (Dip250), or 400 µM (Dip400) and three condition of Dip-

free, iron-replete, named LB-I, LBII, and LB-III, the detail in supplementary information (Fig. 

S3.1, S3.2, S3.3). The cultures were grown till the bacteria reached mid-log phase. We obtained 

273 million (M) sequence reads from Tn5 genomic junctions in the chromosome of S. 

Typhimurium for all conditions, and 185 M sequence reads were mapped to the genome (Table 

S3.2). The high number of read counts and length of mapped reads allowed us to define gene 

essentiality with a high precision. Our initial goal in this study was to elucidate the 

conditionally essential genes that are required for fitness under different levels of iron 

restriction using Tn-seq. We found the mutants for scores of genes (139 genes) whose fitness 

increased by iron restriction. This observation is contrary to the currently accepted working 

definition of essential genes as those that cannot tolerate disruptions. It required further detailed 

analysis before we could accept this interesting, yet unexpected finding. Therefore, we have 
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conducted a systematic analysis for essential genes and comparatively analyzed the results 

between iron-replete and iron-restricted conditions.   

3.4.2 Essential genome of S. Typhimurium in iron-replete and iron-restricted niches  

We used rigorous analysis algorithms for essential gene identification (Fig. S3.4). As a 

result, we identified 336 essential genes that are required for an aerobic growth of S. 

Typhimurium 14028S in LB broths and on LB agar plates (Table S3.3). We compared the 

essential genes in S. Typhimurium 14028s to those in S. Typhimurium SL3261 identified by 

TraDIS approach (13). Interestingly, out of 336 genes in our essential list, 265 (80%) 

orthologous genes in S. Typhimurium 14028s were also essential in S. Typhimurium SL3261 

(Table S3.4). This is a very significant overlap considering variations in genetic backgrounds 

of the two strains. Further, KEGG pathway analysis recognized 306 out of 336 genes and 

categorized them into 23 essential pathways (Fig. S3.5).    

We also analyzed the essential genes from the Tn-seq data obtained from iron-restricted 

conditions using the same rigorous algorithms. Surprisingly, the number of essential genes 

under iron-restricted conditions decreased to 215 genes, which indicated that 121 genes (36%) 

of the 336 essential genes are not considered essential under iron-restriction conditions (Table 

S3.5). The number of insertions and reads in these 121 genes significantly increased under 

iron-restricted conditions: the average read counts in the 121 genes were 4.3 in LB-III whereas 

this elevated to 68 in Dip400 (Table S3.6). This is a clear evidence that the mutants of the 121 

genes not only did not die but also multiplied slowly in iron-restricted conditions. In other 

words, chelation of iron in the media allowed the mutants of these 121 genes to escape 

immediate killing and to multiply.  

3.4.3 Validation of the reduced number of essential genes under iron-restricted conditions   

When transposon mutants grow in liquid media, the rapidly growing mutants out 
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compete the slowly growing ones (18, 19). As a result, Tn-seq sequencing reads cannot be 

obtained for these slowly growing mutants and the genes disrupted in these mutants would be 

considered important for fitness under that condition. To check how significant this 

phenomenon in our Tn-seq and whether the sequencing read counts we obtained from Dip 

conditions resulted from minor competitions of mutants because the growth rate in Dip400 

decreased 26.4% compared to LB (Fig. S3.3). We utilized LB-I Tn-seq data. Library was 

recovered on agar plates following mutagenesis and colonies had enough space on the plates 

in order to not compete for nutrients. Although the trend showed increase of insertions in genes 

in LB-I compared to broth culture, LB-II, the number of essential genes to be called non 

essential were slight. The average read counts in the 336 essential genes (always, excluding 

5% 5’ end and 10% 3’ end) in LB-I and LB-II were 5.1 and 2.1, respectively, while this number 

was 30.6 in Dip400 (Table S3.7). Therefore, this emphasizes that increasing of insertions and 

read counts in many essential genes in Dip conditions are not result of reduced competitions 

and it is likely having a connection with iron.  

We next asked whether increase of insertions and read counts in essential genes of Dip 

conditions were due to a bias in the Tn-seq approach. We conducted analysis for identification 

of essential genes without data normalization and there were differences in read counts in Tn-

seq conditions (Table S3.2). For instance, the total read counts in ORFs of LB-III was ~30 

millions (M) versus ~16 M in Dip400, excluding intergenic regions. Two mutants, 

STM14_2422 (umuC) and STM14_2428, consumed 8.7% of reads in LB-III and 27% in 

Dip400. Consequently, on average an insertion in LB-III had chance to get 227 reads while in 

Dip400 the chance was dropped to only 100 reads for an insertion (Table S3.8). This indicates 

that the bias in read counts was in favor to not see insertions and read counts in essential genes 

in iron-restricted conditions. Even though with this bias in read counts which partially produced 

by these two mutants, the read counts in the 121 genes were higher in Dip compared to LB. 
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This is a strong evidence that these 121 mutants, specifically 33 genes, are genuine slowly 

growing mutants in iron-restricted conditions.    

3.4.4 Fitness of slowly growing mutants of essential genes increased 

We next measured fitness of the 121 genes in Dip250 and Dip400 (outputs) and LB-III 

(input). Strikingly, fitness of 97 out of 121 genes (78%) were increased in Dip400, the rest of 

the 121 genes were either had increased fitness in Dip250-I, or Dip250-II. Further analysis 

indicated that number of essential genes with increased fitness in presence of Dip were 33 

including gyrA, gyrB, and ileS, p values < 0.05 (Table 3.1). gyrA, gyrB, and ileS were not in 

the list of 121 genes, whereas fitness of their mutants increased significantly. This is another 

strong evidence that the genes with positive fitness in iron-restricted conditions are slowly 

growing mutants and the iron chelator cased their death. 

3.4.5 Essential genes are not condition-specific  

We next hypothesized that the essential genes are operationally defined depending on 

the specific growth conditions, and the essential gene set was changed under iron-restricted 

conditions. To test this hypothesis, we looked at Tn-seq that generated for other stress 

conditions such as H2O2 (20) and H2O2 coupled with Dip (unpublished), but we could not find 

any similar patterns that significant portion of the essential genes in LB medium are rendered 

non-essential under stress conditions. Lee et al (19) used Tn-seq to identify essential genes in 

Pseudomonas aeruginosa under 6 different conditions, and found that the essential genes were 

largely overlapped, but there were also condition-specific essential genes. However, in the 

study, the essential genes unique to each condition was a relatively small portion, which was 

not the case in our study in which 36% of genes became non-essential under iron-restricted 

conditions. These make it difficult to consider that the hypothesis is correct. 
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3.4.6 ROS-dependent and ROS-independent essential genes 

We finally came to a conclusion that iron-restriction allowed the growth of the mutants 

of essential genes and ceased or slowed down the killing process. This hypothesis is related to 

the ROS-mediated common killing mechanisms of bactericidal antibiotics. Since its first 

proposal by Kohanski et al. (5), this hypothesis has been substantiated by numerous studies 

using different bacterial species and bactericidal antibiotics. Traditionally, the mechanisms of 

antibiotic action have been studied largely in terms of antibiotic-target interactions. However, 

numerous researches supporting the ROS-mediated killing mechanism and have shown that 

the interaction of antibiotic-target leads to production of ROS, contributing to the killing 

activity mediated by direct blocking of the basic pathways for living cells. We believe that 

similar processes occurred by disruption of genes of essential proteins with transposons. Thus, 

mutants of essential genes that grow slowly in iron-restricted conditions are ROS-dependent 

essential genes which are 121 genes (Table S3.6) and mutants of essential genes that do not 

grow in iron-restricted and iron-replete conditions are ROS-independent essential genes which 

are 215 genes (Fig. 3.1, Table S3.5).  

Until now this proposed mechanism has been discussed with focus on the genes that 

have been exploited as targets of a limited number of bactericidal antibiotics. Interestingly, our 

Tn-seq data show that the majority of targets of the bactericidal antibiotics are ROS-dependent 

essential genes (Fig. 3.1), which implies that lethal effect of the knockout of the antibiotic 

target genes were reduced to varying extent by restriction of available iron in the media. Our 

Tn-seq data show that this ROS-mediated killing mechanism is linked to about one-third of the 

essential genes, far beyond a limited number of genes encoding targets of bactericidal 

antibiotics, thereby expanding the “common” nature of the ROS-mediated lethal pathway as a 

universal mechanism connected to a broad range of basic essential pathways for life. By our 

definition, based on Tn-seq, ROS-independent essential genes, 215 genes, are required for a 
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robust growth and viability, the cells die upon disruption of the genes, chelation of iron can not 

rescue their mutants from death, and their average read counts are 9.6 in Dip400. While ROS-

dependent essential genes, 121 genes, are required for a robust growth and viability, the cells 

do not die directly upon disruption of the genes, chelation of iron can cease the death process 

of their mutants, they grow very slowly in iron-restricted conditions but not in iron-replete, and 

their average read counts are 67.9 in Dip400 (Fig. 3.2). Further, we show that these ROS-

dependent essential genes are part of 9 essential pathways (Fig. 3.3). 

3.4.7 Fitting ROS-dependent essential gene in ROS-mediated antibiotic killing model  

ROS-mediated antibiotic killing model has a few components: (i) antibiotic-target 

interactions (disruption or blockage of an essential pathway), (ii) induce NADH oxidation via 

the electron transport chain which depends on TCA cycle, (iii) induce superoxide formation 

via the electron transport chain, (iv) superoxide damages Fe-S clusters and the released ferrous 

iron fuels Fenton reaction, (v) the consequence of Fenton reaction is hydroxyl radical formation 

which leads to damage of biomolecules and ultimately cell death. Juxtaposing our work to this 

model, we impaired the essential gene or pathway by disrupting the gene with Tn5 transposon, 

no antimicrobial interference. Regarding the role of TCA cycle in this model, Kohanski et al., 

(5) deleted the genes in TCA cycle that produce NADH and they found that E. coli lacking 

either acnB or icdA had increased survival following antibiotic treatment, however, other genes 

in TCA cycle pathway that follow acnB and icdA such as sucB and mdh did not have protective 

effect following antibiotic treatment because NADH already formed in the pathway by acnB 

and icdA. Astonishingly, we found that fitness of acnB and icdA increased in iron-restricted 

conditions (Table 3.2); S. Typhimurium lacking acnB or icdA can grow better in iron-restricted 

conditions, whereas the fitness of other mutants in TCA cycle did not change in iron-restricted 

conditions. This emphasizes the role of NADH and TCA cycle in ROS formation and bacterial 

cell death. Evidence for the contribution of TCA cycle in ROS-mediated killing has increased. 
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A dysfunctional TCA cycle in Staphylococcus epidermidis enhanced survival following β-

lactam treatment (21). It has been shown in Staphylococcus aureus that bactericidal activity of 

gramicidin A is through depletion of NADH in TCA cycle (22). Previously, we showed that 

icdA required for S. Typhimurium survival under hydrogen peroxide and IcdA upregulated in 

this condition (20).  We believe that acnB and icdA mutants can grow better in iron-restricted 

conditions because on the one hand NADH formation decreased and on the other had the iron 

chelator minimized amount of ferrous iron in the cell which led to diminishing of Fenton 

reaction. Collectively, the result demonstrates that when cell produces less NADH via TCA 

cycle and the intracellular ferrous iron is short, the cell grows better due to less ROS formation. 

Fenton reaction requires ferrous iron and the evidence indicates that source of the iron 

is intracellular Fe-S clusters for ROS generation (5). As we assessed dynamics of conditionally 

essential genes that mediate S. Typhimurium survival in different iron-restricted conditions, 

we identified the genes that import iron from extracellular and genes that provide intracellular 

iron (Fig. 3.4). When iron restriction severity was low, at Dip100 and Dip150, a siderophore 

gene fepD (iron-enterobactin transporter membrane protein) was required to import iron. At 

Dip150 and Dip250, tonB was also required. It has been suggested that siderophore complexes 

depend on TonB to energize the active transport across membrane via TonB-ExbB-ExbD 

complex (23). NAD(P)H-flavin reductase, fre, was also required in Dip 400 and it is likely that 

fre reducing the ferric iron of siderophores to ferrous iron (24). However, in severe iron 

restriction conditions, Dip250 and Dip400, these three genes became dispensable, specifically 

at Dip400 and the only source of iron was intracellular Fe-S clusters, sufABCDES (Fig 3.4).  In 

iron-restricted conditions E. coli utilizes suf operon (25) and the operon is controlled by iscR 

(26). In agreement with this, we found that Salmonella utilizes suf system in iron restricted 

conditions and protein-protein interaction networks indicate that suf operon is under the control 

of iscR (Fig. S3.6). Further, γ-glutamyltranspeptidase, ggt, is an important enzyme in 
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glutathione metabolism and it is required in Dip250 and Dip400. It has been suggested that ggt 

plays a role in Fe-S cluster biosynthesis in eukaryote Saccharomyces cerevisiae (27). We 

speculate that ggt is participated in Fe-S cluster biosynthesis in S. Typhimurium in Dip250 and 

Dip400. Collectively, this demonstrates the role of Fe-S clusters and other genes in homeostasis 

of iron that directly or indirectly fuel Fenton reaction.  

The fitness of the subunits of DNA polymerase V, umuDC, increased in iron-restricted 

conditions which is an indicator that S. Typhimurium lacking umuDC was grown better in iron-

restricted conditions. In E. coli, a mutant strain lacking dnaE911, DdinB, and DumuDC is more 

resistant to killing by bactericidal antibiotics than wild-type; DNA polymerase III, IV, and V 

contribute to ampicillin-mediated cell death. Particularly, the generated ROS (hydroxyl 

radicals) following antibiotic treatment oxidizes guanine nucleotide pool to a mutagenic 8-oxo- 

deoxyguanosine (8-oxo-guanine) which results in lethal outcomes because incorporation of 8-

oxo-guanine into DNA causes double-strand breaks (28). The essential genes dnaEX which 

encode subunits of DNA polymerase III and the conditionally essential genes umuDC which 

encode subunits of DNA polymerase V had increased fitness based on Tn-seq in iron-restricted 

conditions. The uncharacterized ORF STM14_2428 is a neighbor of STM14_2422 (umuC) had 

also increased fitness (Table 3.2), but it is unclear how STM14_2428 deletion is in favor S. 

Typhimurium growth in iron-restricted conditions. Interestingly, two important conditionally 

essential genes, guaB and purA had increased fitness. These two genes catalyze the first step 

in the de novo synthesis of guanine and adenine from inosine 5'-phosphate (IMP). These genes 

may have a connection with 8-oxo-guanine, however we are devoid of evidence to support the 

role of guaB and purA in ROS pathways. Tn-seq shows that S. Typhimurium was grown better 

in iron-restricted conditions when guaB or purA deleted. These findings emphasize the role of 

DNA polymerases in ROS-mediated killing as deleting of these genes results of a better 

bacterial growth in iron restricted conditions.  
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We have several other genes that identified by Tn-seq with either increased or 

decreased fitness (Table 3.2 and Fig. 3.4). Some of theses genes may have connections with 

ROS formation and we briefly mention important ones. Entner-Doudoroff aldolase, eda, has a 

central role in sugar acid metabolism and detoxification of metabolites in E. coli (29). There 

are 6 mutants with increased fitness in bacterial membrane, outer membrane protein assembly 

(nlpB, rfbB, and rfbH), transmembrane transports (sapA and smvA), and a putative integral 

component of membrane (STM14_0726). RNA polymerase sigma-E factor, rpoE, and the 

serine endoprotease, degS, had reduced fitness and required for S. Typhimurium survival in 

Dip250 and Dip400. In E. coli, rpoE and degS are essential genes; rpoE is an extracytoplasmic 

factor that activates in response to envelope stress. The activation starts by unfolding outer 

membrane proteins (OMPs) and ends with proteolysis of anti-sigma-E factor by degS to free 

rpoE and initiate transcription (30, 31). This emphasizes the role of membrane in the process 

but uncovering connection between membrane and ROS generation requires future research.  

3.4.8 ROS-independent essential genes may be better targets for antimicrobials  

We believe that our finding will have a profound implication for the current antibiotic 

in clinical use and development of new antibiotics. We propose that ROS-independent essential 

genes may be better targets for antibiotics because of two main reasons. First, it has been shown 

that there are two opposing aspects of ROS-mediated killing mechanism. When ROS 

production is high, it would lead to facilitated killing of bacterial cells. On the contrary, when 

ROS production is low, it would lead to production of resistant mutants through mutagenic 

action of ROS on DNA (32). When Salmonella infects the host, the iron-restricted host niches 

would suppress the ROS-mediated killing mechanism and reducing overall killing effect by the 

antibiotics. However, depending on the iron restriction levels, it might allow production of low 

amount of ROS, facilitating bacterial survival through development of antibiotic resistant 

mutants. In contrast, there might be essential genes without ROS pathway contributing to 
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lethality (215 genes), and we speculate that these genes might serve as better targets for 

antibiotic development, because ROS production is not a part of their lethal processes and 

blocking the pathways will lead to killing, and the chance to develop resistant population via 

ROS action can be eliminated. Second, Tn-seq shows clearly that mutants of ROS-dependent 

essential genes can grow very slowly in iron-restricted conditions and the same phenomenon 

may happen in host because iron-restriction by host is a vital mechanism to combat the 

pathogen. As a result, it may be hard to completely eliminate and kill the bacteria by targeting 

ROS-dependent essential genes. Conversely, mutants of ROS-independent essential genes die 

immediately in iron-restricted or iron-replete conditions following the gene disruption. Thus, 

the possibility will be higher to eradicate a pathogen by targeting the ROS-independent genes.      

A mechanism that bacteria exploits for antibiotic resistance is alteration of drug 

interaction site. Our results emphasize that the majority of genes of drug targets are ROS-

dependent genes (Fig. 3.1). Prevalence of antibiotic resistant bacteria from clinical isolates due 

to mutations in drug targets have been rising. Mutations in a peptidoglycan synthesis gene fts 

which is target of β-lactams in Haemophilus influenzae cause resistance to antibiotics (33,  34). 

E. coli strains harboring mutations in murA are resistant to fosfomycin (35). UDP-N-

acetylglucosamine enolpyruvyl transferase (MurA) is catalyze reaction in first step 

biosynthesis of peptidoglycan in bacterial cell wall and the protein is target of fosfomycin (36). 

Our Tn-seq shows that murA mutants did grow very well in iron-restricted conditions and the 

mutant had 14,981 reads in Dip400 but there were only 5 reads of this mutant in LB-III (Table 

3.1). It has been reported that Pseudomonas putida develops intrinsic fosfomycin resistance 

due to present of a salvage pathway that bypasses de novo biosynthesis of MurA (37). Since 

murA is a ROS-depended essential gene, we reason that almost all murA mutants died in LB-

III because of contribution of ROS in death process. However, in Dip400, reduced ROS 

formation and the salvage pathway biosynthesis of MurA caused S. Typhimurium to grow well. 
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Further, Fluoroquinolone-resistant bacteria are also present in clinical isolates due to mutations 

in drug targets, gyrA, gyrB, parC, parE, such as Shigella flexneri (38), Salmonella Typhi (39), 

and group B Streptococcus (40). Rifampin-resistant Mycobacterium tuberculosis isolates are 

associated with mutations in their targets, rpoB and rpoC (41,  42). Mutations in rplC contribute 

to Staphylococcus aureus resistance to linezolid in a clinical isolate (43). Because of mutations 

in rplB, S. aureus resistant-isolates detected in vitro (44). All together, these ROS-dependent 

essential genes, antibiotic targets, can mutate and alter the structure of corresponding proteins 

in order to evade lethal interactions with the antibiotics. Based on the algorithms that were used 

in this study for analyses, gyrA and gyrB were acted as ROS-depended and ROS-independent 

genes. However, there were a few ribosomal ROS-independent genes, usually do not interact 

with the drugs directly, contribute to antibiotic resistance via mutations in these genes including 

rplD (45), rplV (46), rpsE (47), and rpsJ (48).   

An example of ROS-independent genes and target for antibiotic is colistin. Colistin 

(polymyxin E) is a last resort antibiotic for treatment of infections caused by multidrug resistant 

Gram-negative bacteria (49). This bactericidal drug interacts with the lipid A moiety of 

lipopolysaccharide (LPS) and ultimately causes membrane lysis (50). We show that colistin 

target genes are ROS-independent, lpxABCDHK. Over the last 60 years, colistin has been using 

for fighting the infectious diseases with some hesitation of its use due to toxicity. Thus, it has 

been believed that colistin is still active and bacterial resistance is low because of its infrequent 

use. Our Tn-seq indicates that disruption of LPS is lethal in S. Typhimurium and there is no 

contribution of ROS in death process via LPS protein damage. However, a study demonstrated 

that colistin induce Acinetobacter baumannii killing through ROS production (51). This takes 

us back to the first point of the model, common antibiotic killing mechanism via ROS. 

Although this model is widely accepted, a few studies challenged it (52, 53). Thus, contrary to 

our findings will be expected due to differences in applied methodology. Our used method in 
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this work is unique and incomparable to the methods of the studies engaged in ROS 

experiments. The precession and specificity of our Tn-seq is very high. The genomic DNA 

extracts from the exposed conditions amplified by a linear PCR and followed by an exponential 

PCR. This PCR product amplified again on the flow cell of Illumina sequencing to form 

clusters and the DNA sequence of a strand will be utilized if passed the DNA sequencing 

quality control. We tried to reproduce and confirm our findings either with PCR or CFU 

measurements, but there was no success. Tn-seq indicates that mutants of ROS-dependent 

essential genes were not die following disruption; they can not form visible colonies on agar 

plates and their optical density indiscernible. We generated these mutants on a filter paper put 

on an agar plate followed by 24 h growth on agar plates contain appropriate antibiotics. After 

several month of storage in 7% DMSO at -80°C, the mutants were not dead and getting read 

counts with Tn-seq in iron-restricted conditions are indicator that these mutants grow very 

slowly. However, mutants of ROS-dependent genes die when iron is replete due to ROS.       

3.5 Conclusion 

In this work we exploited Tn-seq to elucidate the genes that are ROS dependent. Our 

powerful Tn-seq approach indicated that when transposon mutant cultures treated with an iron 

chelator, the mutants of one-third of essential genome of Salmonella Typhimurium did not die 

and could grow slowly, however these mutants died in absences of the iron chelator. Based on 

this observation, we concluded that the iron chelator minimized ROS formation via 

downregulation of Fenton reaction, as a result, one-third of essential genes did grow likely 

because ROS is present in their death process. Eventually, we call this one-third of essential 

genome ROS-dependent essential genes, and the rest of essential genome is ROS-independent 

essential genes. The result is fitting to known model of common ROS-mediated antibiotic 

killing in bacteria and we further expand this model beyond antibiotic target genes. Strikingly, 

the targets of almost all antibiotics in clinical use are ROS-dependent essential genes. We 
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propose that ROS-independent essential genes are better targets to develop new antimicrobials, 

as the cell die immediately following gene disruption. In addition to these, we identified the 

dynamics of conditionally essential genes that mediate S. Typhimurium survival in a gradient 

iron-restricted conditions. The finding is exclusively based on a high resolution Tn-seq. We 

are planning to study phenotype of essential genes through a combination of Tn-seq and 

CRISPRi in future research.    

3.6 Materials and Methods  

3.6.1 Measurement of S. Typhimurium growth under 2,2`-Dipyridyl  

A single colony of S. Typhimurium was inoculated into 2 ml LB broth medium in a 5 

ml tube and incubated overnight (~16 h). Freshly prepared LB broth media supplemented with 

different concentrations of Dip were inoculated with S. Typhimurium overnight culture at a 

1:200 dilutions. The cultures were immediately added into a 96-well microplate (200 µl/well) 

and incubated in a Tecan Infinite 200 microplate reader at 37°C, with shaking amplitude of 1.5 

mm, and shaking duration of 5 s, and OD600 was measured every 10 min. After 24 h incubation, 

the data were collected from which lag time phase, growth rate, and maximum OD600 were 

calculated for each concentration using GrowthRates script (54). 

3.6.2 Construction of Tn5 mutant libraries 

Transposon mutant libraries were prepared as previously described by Karash et al., 

(20). Briefly, Salmonella enterica serovar Typhimurium ATCC 14028S were mutagenized by 

biparental mating using Escherichia coli SM10 λpir carrying a pBAM1 transposon-delivery 

plasmid vector (55) as the donor. An equal volume of overnight growth cultures of the donor 

and recipient bacteria (S. Typhimurium 14028s) were washed with 10 mM MgSO4 and 

concentrated on the nitrocellulose filter, which was then incubated for 5 h at 37°C on a surface 

of LB agar plate. After the conjugation, the cells were washed with  10 mM MgSO4 and plated 
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on LB agar plates contain appropriate antibiotics. The plates were grown at 37°C for 24 h. 

Then, colonies were scrapped off, added into LB broth supplemented with 7% DMSO, and 

stored at −80°C in aliquots. We constructed two mutant libraries, A and B. Each library contain 

approximately 325,000 mutants.   

3.6.3 Mutant library selection for Tn-seq  

An aliquot of transposon library was thawed at room temperature and diluted 1:10 in 

LB broth. The library was incubated at 37°C with shaking at 225 rpm for an hour and then 

washed twice with PBS. The library-A was inoculated to 20 ml LB broth in a 300 ml flask and 

LB supplemented with either 100 or 150 µM Dip (LB-I, Dip100, and Dip150, respectively), 

seeding CFU was 3.5 x 106 per ml. We also had a condition without growth (LB-II), the library-

A was directly subjected to Tn-seq after activation and washing.  To make a super saturated 

mutant library, library-A was combined with library-B and called library-AB. Library-AB 

treated as mentioned above and was inoculated to 20 ml LB broth in a 300 ml flask and LB 

supplemented with either 250 or 400 µM Dip (LB-III, Dip250-I, Dip250-II, and Dip400, 

respectively), seeding CFU was 8 x 106 per ml. The Dip100, Dip150, Dip250-I, Dip250-II, and 

Dip400, were incubated at 37°C with shaking at 225 rpm in a dark and humidity controlled 

incubator until the cultures reach mid-log phase, OD600 of ~2.7. Then, the cultures were 

immediately centrifuged and stored -20°C for downstream analysis.     

3.6.4 Preparation of Tn-seq libraries for HiSeq sequencing  

Tn-seq libraries preparation were performed as previously described by Karash et al., 

(20). Briefly, genomic DNA was extracted for each of selected conditions using DNeasy Blood 

& Tissue kit (Qiagen), and quantified using Qubit dsDNA RB Assay kit (Invitrogen). To 

remove the cointegrates, genomic DNA was digested with PvuII-HF (New England Biolabs), 

and purified with DNA Clean & Concentrator-5 kit (Zymo Research). Then, a linear PCR 
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extension was performed using Tn5-DPO (5'-AAGCTTGCATGCCTGCAGGTIIIIICTAGAG 

GATC-3'). The PCR reaction was performed in a 50 µl contained Go Taq Colorless Master 

Mix (Promega), 20 µM Tn5-DPO primer, 100 ng gDNA, MQ-H2O. The PCR cycles were 

consisted of 95°C for 2 min, followed by 50 cycles at 95°C for 30 sec, 62°C for 45 sec, and 

72°C for 10 sec. The PCR product was purified with DNA Clean & Concentrator-5 kit. The C-

tailing reaction was conducted with terminal transferase (TdT) buffer (New England Biolabs), 

CoCl2, dCTP, ddCTP, TdT and the purified linear PCR product. The mixture was incubated at 

37°C for 1 h and followed by 10 min at 70°C. The C-tailed product was purified. Next, the 

exponential PCR was performed with P5-BRX-TN5-MEO primer, AATGATACGGCGACCA 

CCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNAG-BARCOD-

CCTAGGCGGCCTTAATTAAAGATGTGTATAAGAG and P7-16G primer, CAAGCAGA 

AGACGGCATACGAGCTCTTCCGATCTGGGGGGGGGGGGGGGG. The PCR reaction 

was performed in a 50 µl contained Go Taq Green Master Mix, P5-BRX-TN5-MEO primer, 

P7-16G primer, purified C-tailed genomic junctions, and MQ-H2O; the PCR cycles were 

consisted of 95°C for 2 min, followed by 30 cycles of 95°C for 30 sec, 60°C for 30 sec, and 

72°C for 20 sec, with the final extension at 72°C for 5 min. Then, the 50 µl PCR products were 

run on an agarose gel and the DNA fragment of size 325 – 625 bp was cut the DNA was 

extracted using Zymoclean Gel DNA Recovery kit (Zymo Research). The DNA libraries were 

quantified using Qubit dsDNA RB Assay kit. The libraries were combined and sequenced on 

a flow cell of HiSeq 3000 using single end read and 151 cycles (Illumina) at the Center for 

Genome Research & Biocomputing in Oregon State University.    

3.6.5 Analysis of Tn-seq data  

The Hi-Seq sequence results were downloaded onto High Performance Computing 

Center (AHPCC) at the University of Arkansas. The libraries were de-multiplexed using a 

custom Python script. The script searched for the six-nucleotide barcode for each library and 
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mismatch did not allowed. The transposon genomic junctions were extracted by using Tn-Seq 

Pre-Processor (TPP) tool (56). The TPP searched for the 19 nucleotide inverted repeat (IR) in 

a fixed sequence window and identified five nucleotides (GACAG) at the end of the IR 

sequence, one nucleotide mismatch was allowed. The genomic junctions that start immediately 

after GACAG were extracted and the C-tails were removed. The junction sequences of less 

than 20 nucleotides were removed and remaining junction sequences were mapped to the 

Salmonella enterica serovar Typhimurium 14028S genome and plasmid using BWA-0.7.12 

(57). The TPP was counted number of total sequences reads after filtering, number of mapped 

read, and number of unique insertions in the library.    

3.7.6 Identification of essential genes 

LB-I, LB-II, and LB-III were analyzed to identify the essential genes in S. 

Typhimurium. We used two different tools for Tn-seq essential gene analysis. First, TRANSIT 

(56) analysis of essentiality on gaps in entire genome was used, tn5gaps algorithm. The 5% of 

N-terminal and 10% of C-terminal of open reading frames (ORF) were removed and even 

insertions with only one reads were considered for the analysis. The gene was considered 

essential if its p value ≤ 0.05. Second, Tn-Seq Explorer (58), was used for essential gene 

analysis by applying a 550 window size. The 5% of N-terminal and 10% of C-terminal ORFs 

were removed and even insertions with only one reads were considered for the analysis. The 

gene was considered essential if its Essentiality Index was ≤ 2. Then, the essentiality analysis 

results by both methods were combined. Finally, to consider a gene essential for growth on LB 

agar or LB broth should has these three criteria: (i) the gene is essential in LB-III by Tn-Seq 

Explorer analysis (ii) the gene is essential in LB-III by TRANSIT analysis (iii) the gene is 

essential in at least 5 of the 6 analysis that was performed for the LB-I, LB-II, and LB-III by 

the two analysis tools (Fig. S4). We made an exception of 17 genes to be considered essential. 

Instead of 5 essential requirements, we changed to 4. This exception was based on the other 
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analysis for the same libraries but under different growth conditions.          

3.6.7 Identification of conditionally essential genes (gene fitness measurement)  

The conditionally essential genes for all iron-poor conditions were analyzed by using 

TRANSIT, resampling option. The LB-I was input for Dip100 and Dip150; the LB-II was input 

for Dip250-I, Dip250-II, and Dip400. The normalization method was Trimmed Total Reads 

(TTR) and 10,000 samples were used for the analysis. The 5% of N-terminal and 10% of C-

terminal of ORFs were removed and the gene was considered conditionally essential if the its 

p value was ≤ 0.05. Each iron-poor condition has its own set of genes that were required for to 

resist the condition. To make a comprehensive list the S. Typhimurium that are required for 

iron poor condition, specifically for Dip400 and including Dip250-I, Dip250-II, Dip-150, and 

Dip100, the gene was considered required if its p value was ≤ 0.05 in Dip400 or other Dip 

conditions and its log2 fold change (log2FC) was negative.  
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Table 3.1. Salmonella Typhimurium transposon mutants were grown in iron-replete (LB) and 
iron-restricted conditions (Dip). Tn-seq identified these genes as essential in LB but not in Dip 
conditions. Dip is abbreviation of iron chelator 2,2`-Dipyridyl in µM. As the concentration of 
Dip increased, the insertion and read counts increased. The fitness of these 33 genes increased 
in Dip400, 400 µM of iron chelator. Gene fitness is Log2 fold change in sequence reads, 
Dip400 vs LB.   
 

Essential genes have increased insertions and read counts in iron-restricted conditions 
(LB: iron-replete, Dip: iron-restricted, I: insertion, R: read count, fitness: Log2 fold change) 

    LB-III Dip250 Dip400 
Biological Process Gene I R I R I R Fitness p value 

Cell division mukB 3 9 6 184 5 120 3.73 0.025 
Cell membrane  yfiO 1 3 4 129 6 180 5.9 0.0015 

Cell wall biosynthesis  ftsI 1 1 1 0 5 210 7.71 0.0137 
Cell wall biosynthesis  mrdB 0 0 5 24 5 98 4.36 0.0087 
Cell wall biosynthesis  murA 1 5 3 45 4 14981 11.55 0.0008 

Coenzyme A biosynthetic process dfp 0 0 1 0 6 152 4.33 0.0001 
Coenzyme A biosynthetic process coaA 0 0 5 185 5 125 4.45 0.0021 

DNA replication dnaE 0 0 3 9 8 155 4.35 0.0004 
DNA replication dnaX 0 0 2 2 5 65 3.81 0.0085 
DNA replication nrdA 0 0 4 141 6 286 5.39 0.0006 
DNA replication parC 1 1 1 15 4 98 6.61 0.0458 
DNA replication parE 0 0 4 22 4 125 5.01 0.0287 

Fatty acid metabolic process fabH 0 0 3 42 5 74 3.97 0.006 
Glutamine metabolic process glmS 0 0 4 126 4 98 4.36 0.0058 
Glutamine metabolic process pyrG 1 7 4 5744 4 185 4.72 0.0462 

Phospholipid biosynthetic process pssA 1 7 4 88 5 139 4.31 0.016 
Protein transport secY 1 1 5 49 5 19 4.25 0.0139 
Protein transport yidC 1 1 6 165 4 144 7.17 0.0241 

Transcription  gyrA 0 0 2 2 3 106 4.78 0.0253 
Transcription  gyrB 0 0 2 0 3 152 5.29 0.0308 
Transcription  rpoB 0 0 12 164 13 392 4.96 0.0000 
Transcription  rpoC 1 1 9 186 10 150 7.23 0.0000 
Translation glyS 0 0 2 31 7 250 5.2 0.0007 
Translation ileS 0 0 1 2 4 84 4.47 0.0284 
Translation infB 0 0 2 12 5 57 3.64 0.0057 
Translation proS 0 0 2 0 5 71 3.92 0.0088 
Translation rplB 0 0 3 134 6 74 3.97 0.0074 
Translation rplC 1 1 1 6 4 38 5.25 0.046 
Translation rpsD 0 0 1 13 3 242 5.94 0.0284 
Translation thrS 2 4 6 5855 10 207 5.69 0.0001 
Translation valS 2 3 4 2446 7 147 5.61 0.0031 
Translation glyQ 0 0 2 55 3 133 4.79 0.0071 
Unknown  yfgM 1 2 3 7 5 98 5.61 0.0077 
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Fig 3.1. ROS-dependent essential genes, ROS-independent essential genes, and antibiotics 
targets. Salmonella Typhimurium transposon mutants were grown in LB media (iron-replete) 
and LB supplemented with an iron chelator Dip (2,2`-Dipyridyl). Mutants of ROS-dependent 
genes have significant read counts in iron-restricted. Gene fitness was calculated based on Tn-
seq read counts of iron-replete and iron-restricted condition. The genes of some mutants with 
increased fitness are antibiotic targets.  
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Fig 3.2. Identification of ROS-dependent essential genes by Tn-seq. Salmonella Typhimurium 
Tn5 mutants generated and the library inoculated to iron-replete media (LB broth) and iron-
restricted media (LB supplemented with an iron chelator 2,2`-Dipyridyl). The cultures were 
grown till mid-log phase and then Tn-seq was identified essential and conditionally essential 
genes as well as fitness of all genes. The essential genes with increased fitness in iron-restricted 
conditions are ROS-dependent. The genes that do not tolerate insertions in both conditions are 
ROS-independent essential genes. The numbers on right (0-200) are read counts and each red 
line represent a unique insertion.  
 

 
Fig 3.3. ROS-dependent essential pathways in Salmonella Typhimurium identified by Tn-seq. 
Transposon libraries were grown in iron-replete and iron restricted conditions. Essential genes 
identified for both conditions. The genes that were essential in iron-replete condition but not 
in iron-restricted conditions were considered ROS-dependent. KEGG pathway analysis was 
used for pathways description.    
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Table 3.2. Salmonella Typhimurium transposon mutants were grown in iron-replete (LB) and 
iron-restricted conditions (Dip). Tn-seq identified conditionally essential genes with increased 
fitness in Dip conditions. Dip is abbreviation of iron chelator 2,2`-Dipyridyl in µM. As the 
concentration of Dip increased, the insertion and read counts increased. The fitness of these 16 
genes increased in Dip400, 400 µM of iron chelator. Gene fitness is Log2 fold change in 
sequence reads, Dip400 vs LB.   
 

 

 

 

 

 

 

 

 

 Conditionally essential genes with increased fitness in iron-restricted condition 
  Read Count Gene Fitness  

Biological Process Gene LB-III Dip400 Log2FC p value 

Amino-acid biosynthesis trpE 1,930 3,991 1.05 0.047 
DNA repair, SOS response umuD 131 542 2.05 0.0343 
DNA repair, SOS response umuC 1,492,158 6,078,627 2.03 > 0.05 

hypothetical protein STM14_2428 1,061,042 5,444,922 2.36 > 0.05 
Gluconeogenesis STM14_2709 2,286 4,939 1.11 0.0256 

Nucleotide biosynthesis guaB 559 1,359 1.28 0.021 
Nucleotide biosynthesis purA 410 1,585 1.95 0.0444 

Integral component of membrane STM14_0726 22 330 3.9 0.0329 
Outer membrane protein assembly nlpB 296 997 1.75 0.0221 
Outer membrane protein assembly rfbB 6,652 10,723 0.69 0.0412 
Outer membrane protein assembly rfbH 3,962 8,777 1.15 0.0184 

Transmembrane transport sapA 349 874 1.32 0.0175 
Transmembrane transport smvA 1,862 3,624 0.96 0.0239 

TCA cycle acnB 1,925 4,873 1.34 0.0193 
TCA cycle icdA 19 474 4.64 0.0000 

Carbohydrate metabolism eda 25 308 3.62 0.0279 
Translation tuf_1 58 450 2.95 0.0255 

Putative regulator STM14_3217 22 229 3.38 0.018 
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Fig 3.4. Dynamics of conditionally essential genes that mediate Salmonella Typhimurium 
survival in iron-restricted conditions. Transposon libraries were inoculated to LB broth media 
supplemented with 100 µM iron chelator 2,2`-Dipyridyl (Dip100), 150 µM Dip (Dip150), 250 
µM Dip (Dip250), or 400 µM Dip (Dip400). The cultures were grown till mid-log phase. Tn-
seq calculated gene fitness by comparing Dip conditions with a Dip-free condition. 
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3.10 Supplementary Information  
 

 

Table S3.1. Transposon inoculum densities and CFUs at mid-log phase. The seeding CFUs of 
all cultures counted following inoculation at time zero and at the mid-log phase when the 
growth stopped. OD600 measurements were used to monitor the growth. LB is broth free of 
Dip. Dip is abbreviation of iron chelator 2,2`-Dipyridyl in µM. The number with Dip is 
concentration of Dip. 

 

Fig S3.1. Schematic representation of study design. Transposon library-A inoculated to LB 
broth (LB-II) or the LB contained either 100 µM iron chelator Dip (Dip100) or 150 µM Dip 
(Dip150). LB-I was library-A that subjected to Tn-seq without growth. Transposon library-B 
inoculated to LB broth (LB-III) or the LB contained either 250 µM Dip (Dip250) or 400 µM 
Dip (Dip400). The cultures were grown till mid-log phase and then subjected to Tn-seq. 
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Fig S3.2. Effect of 2,2`-Dipyridyl (Dip) on S. Typhimurium growth. An overnight culture 
diluted 1:200 in LB broth supplemented with 100 µM Dip (Dip150), 150 µM Dip (Dip150), 
250 µM Dip (Dip250), 400 µM Dip (Dip400), or Dip free (LB). The cultures were added to a 
96-well plate and directly incubated at 37oC in a plate reader, reading OD600 every 10 minuets.   
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Fig S3.3. Effect of 2,2`-Dipyridyl (Dip) on S. Typhimurium growth rate and cell density. An 
overnight culture diluted 1:200 in LB broth supplemented with 100 µM Dip (Dip150), 150 µM 
Dip (Dip150), 250 µM Dip (Dip250), 400 µM Dip (Dip400), or Dip free (LB). The cultures 
were added to a 96-well plate and directly incubated at 37oC in a plate reader, reading OD600 
every 10 minuets. The maximum OD600 reduction is shown as a percentage.  
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Table S3.2. Sequence read counts used in this study. Total reads with Tn5 represent the 
sequence reads that passed the quality control and had sequence of Tn5.  Extracted reads > 20 
bp represent sequence reads that had trimmed C-tail (if present) and their length were above 
20 nucleotides. Number of mapped reads, unique insertions in chromosome with mean length 
of mapped reads are shown. LB is broth free of Dip. Dip is abbreviation of iron chelator 2,2`-
Dipyridyl in µM. The number with Dip is concentration of Dip.  
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Fig S3.4. Algorithms utilized for essential gene identification. Two tools were used for 
essential gene analysis, TRANSIT (Gumbel) and Tn-Seq Explorer. LB-I, LB-II, and Lb-III 
were analyzed separately by both tools for identification of essential genes. The gene was 
considered essential if 5 out of 6 analyses were essential (E) or essentiality index (EI) < 3. LB-
I was transposon library inoculum subjected to Tn-seq without growth. LB-II and LB-III were 
grown in LB broth till mid-log phase. Dip is abbreviation of iron chelator 2,2`-Dipyridyl in 
µM. The number with Dip is concentration of Dip. 
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Fig S3.5. Required essential pathways of Salmonella Typhimurium in rich media. Tn-seq 
libraries were grown in LB broth media till mid-log phase and on LB agar. The total number 
of essential genes were 336 and KEGG pathway analysis categorized them to 23 essential 
pathways.  
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Table S3.8. Bias in read sequencing is in favor of LB (iron-replete) conditions. Total 
sequencing reads and insertions in ORFs are shown. Sequencing reads consumed by two 
mutants, umuC and   STM14_2428 are also shown. An insertion in iron-replete (LB) has a 
chance to get 227 sequence reads but this reduced to 100 reads in iron-restricted condition 
(Dip400).     
 

 

 

 

 

 

 

 

 

Fig S3.6. Protein-protein interactions of conditionally essential genes that mediate Salmonella 
Typhimurium survival in iron-restricted conditions. Transposon mutant libraries inoculated to 
LB (free of iron chelator Dip) and LB supplemented with various concentrations of Dip. The 
cultures were grown till mid-log phase. The gene fitness measured by Tn-seq. The interaction 
analysis conducted by using default settings of STRING.  
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Fig S3.7. Tn-seq essentiality index (EI) correlation between LB and iron-restricted conditions. 
(A)  EI correlation between two nonidentical transposon libraries, LB-III was grown in LB 
broth till mid-log phase but LB-I did not grow in LB broth (R2: 0.95). (B) EI correlation 
between two identical transposon libraries, LB-II was grown in LB broth till mid-log phase but 
LB-I did not grow in LB broth (R2: 0.98). (C) EI correlation between LB-III and an iron-
restricted condition Dip250, 250 µM 2,2`-Dipyridyl (R2: 0.37), cultures were grown till mid-
log phase. (D) EI correlation between LB-III and an iron-restricted condition Dip400, 250 µM 
2,2`-Dipyridyl (R2: 0.00), cultures were grown till mid-log phase.  
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Selection conditions and summary of Tn-seq 

We had two transposon Tn5 mutant libraries. The first library was named library-A 

which composed of 325,000 mutants. To identify essential genes with a high-confidence, the 

transposon library has to be hyper-saturated. Although 90% of ORFs in library-A had insertion, 

we constructed another transposon library to make sure that no gene left without insertions. 

The second library was combined with library-A and named library-AB which composed of 

650,000 mutants. In library-AB, 92.6% of ORFs had insertions. Always, excluding the 5% of 

5' and 10% of 3' of genes as disruption in the beginning of N-terminal and end of C-terminal 

may not affect function of the proteins. Library-A was inoculated into Luria-Bertani (LB) broth 

media supplemented with either 100 or 150 µM Dip, named Dip100 and Dip150, respectively, 

and LB free of Dip named LB-II. Then, we inoculated library-AB into LB media supplemented 

with either 250 or 400 µM Dip, named Dip250 and Dip400, respectively, and LB-III with no 

Dip. We also had a condition of library-A without growth, named LB-I. For LB-I, the inoculum 

was directly subjected to Tn-seq without inoculation to a growth medium (Fig. S3.1). The 

cultures were grown till the bacteria reached mid-log phase. LB-II and LB-III required ~5 h to 

reach mid-log phase, but Dip250 required 10 h. Since the growth of Dip400 was slow, we 

allowed the culture to grow for 24 h in order to its cell density to be close to other conditions 

(Table S3.1). The Dip400 culture was still in log-phase in the 24 h time of experiment (Fig. 

S3.2). As the concentration of Dip increased, the growth rate and maximum OD600 of cultures 

decreased (Fig S3.3). In this work, we used 273 million (M) sequence reads from Tn5 genomic 

junction in chromosome of S. Typhimurium for all conditions and 185 M sequence reads 

mapped to the genome. The number of unique insertions in chromosome were 125,499 in 

library-A and 193,728 in library-AB (Table S3.2). The high number of read counts and length 

of mapped reads allowed us to define gene essentiality with a high precision. Our initial goal 

in this study was to elucidate the conditionally essential genes that mediate survival of S. 
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Typhimurium in a gradient iron-restricted conditions using Tn-seq. However, we found 

mutants of scores of genes with increased fitness in iron-restricted conditions. Surprisingly, the 

majority of the genes with increased fitness are essential genes. This is contrary of all 

observations on essential genes because these genes should not tolerate disruptions or they can 

barely tolerate disruptions. However, we found significant insertions with many read counts in 

essential genes in iron-restricted conditions. Thus, we reasoned that the iron chelator ceased 

the death of cells that are defective in an essential gene and allowed these mutants to grow very 

slowly.    

 

Essential genome of S. Typhimurium in iron-replete niches   

To make sure our identified essential genes are critical for growth in LB broths and on 

LB agar plates, we used LB-I, LB-II, and LB-III for identification genes. Although Tn-seq data 

from these non-identical selection conditions are sufficient for essential genome analysis, 

robust Tn-seq analysis tools are required for essential gene identification. Several tools were 

developed for Tn-seq analysis such as Essentials, ARTIST, Tn-Seq Explorer, TRANSIT and 

each tool applies a distinctive algorithm in order to identify essential ORFs or regions in 

genome of bacteria. Our experience with Tn-seq analysis denotes that non of these tools are 

error-free. Eventually, we integrated analysis results of Tn-Seq Explorer and TRANSIT for the 

three LB conditions to find essential genes. Tn-Seq Explore calculates essentiality index (EI) 

based on number of insertions in genes, while TRANSIT applies extreme-value distribution to 

determine unusually long consecutive sequences lacking insertions. As the three conditions 

were analyzed by two tools, each gene had 6 calls. The gene was considered essential if it was 

essential in 5 out of 6 calls, with exception for a few genes (Fig. S3.4). As a result, we found 

336 genes that are required for an aerobic robust growth of pathogenic S. Typhimurium 14028S 

in LB broths and on LB agar plates under laboratory conditions (Table S3.3). Because this is 
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the first report of essential genes in S. Typhimurium strain 14028S, we compared our essential 

gene list to the only reported essential genes in S. Typhimurium strain SL3261 by TraDIS 

approach. S. Typhimurium SL3261 is a derivative of SL1344 and an attenuated strain in mouse 

de to deletion of a few genes in the genome background. Interestingly, out of 336 genes in our 

essential list, 265 (80%) orthologous genes in S. Typhimurium SL3261 were also essential 

(Table S3.4). This is a very good match which obtained for bacteria across strains. The rest of 

non matched genes may be due to strain specific genes or variations in applied techniques. In 

addition, 205 (61%) of our identified essential genes have the same official gene symbol in the 

E. coli Keio collection. This implies the accuracy of our Tn-seq method and analysis for 

essential gene identification. KEGG pathway analysis recognized 306 out of 336 genes and 

categorized them into 23 essential pathways (Fig. S3.5).    

 

Essential genome of S. Typhimurium in iron-restricted niches   

Almost all of reported essential genes based on Tn-seq in bacteria are conducted in 

stress-free conditions. However, we were curious to assess the essential genome under iron-

restricted conditions that mimic the niches Salmonella confronts in the host. We selected 

transposon libraries in gradient iron-restricted conditions and we applied the same analysis 

strategies that were used for iron-replete conditions to identify essential genes for Dip250, and 

Dip400 (Fig S3.5). Before essential gene identification, we calculated EI correlation between 

conditions. Albeit transposon libraries were not identical and LB-I was not grown for selection, 

but LB-II and LB-III, EI correlation between LB-III and LB-I was 0.95; LB-II and LB-I was 

0.98 (Fig. S3.7 A and B). Remarkably, as the concentration of iron chelator elevated, the EI 

correlation between LB and Dip dropped.  EI correlation between LB-III and Dip250 was 0.37 

(Fig. S3.7 C) and the correlation became zero between LB-III and Dip400 (Fig. S3.7 D). That 

was a clue and an indicator that the mutants died or survived in LB were not the same in Dip 
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conditions. Surprisingly, we found only 215 essential genes of S. Typhimurium in iron-

restricted conditions, Dip250 and Dip400 combined (Table S3.5). Thus, essential genome of 

S. Typhimurium in iron-restricted conditions decreased to 215 genes, 36% (121 genes) 

reduction compared to essential genome in iron-replete conditions. The number of insertions 

and reads in these 121 genes significantly elevated in iron-restricted conditions, consequently, 

the Tn-seq analysis algorithms did not consider them essential anymore. The average read 

counts in the 121 genes were 4.3 in LB-III whereas this elevated to 68 in Dip400. This is a 

clear evidence that the mutants of the 121 genes did not die and they grew slowly in iron-

restricted conditions. In other words, chelation of iron in the media protected mutants of 121 

genes and they grew either very slowly. The growth of these mutants are not viable but our Tn-

seq approach was successfully identified them. This reduction of essential genes was very clear 

in Dip250 and Dip400, but not in Dip100 and Dip150. This is because iron was not limited 

enough by the applied concentrations of Dip100 and Dip150 and even their growth rates were 

not affected much as compared to LB conditions (Fig S3.3 and Table S3.3). The 215 genes 

were also essential under iron-restricted conditions in combined Dip250 and Dip400. The 121 

genes are still essential for a robust growth but Tn-seq shows that their mutants can grow very 

slowly in iron-restricted conditions.   

 

Electronic files  

Table S3.3. Full list of Salmonella Typhimurium essential genes in iron-replete conditions 
identified by Tn-seq. 
 
Table S3.4. The overlapped essential genes that identified by our Tn-seq method of Salmonella 
Typhimurium 14028S in iron-replete conditions and essential genes that identified by TraDIS 
method in S. Typhimurium SL3261.  
 
Table S3.5. Full list of Salmonella Typhimurium essential genes in iron-restricted conditions 
identified by Tn-seq (ROS-independent essential genes). 
 
Table S3.6. Full list of Salmonella Typhimurium essential genes in iron-restricted conditions 
identified by Tn-seq (ROS-dependent essential genes). 
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Table S3.7. Average sequencing read counts in essential genes of Salmonella Typhimurium in 
iron-replete and iron-restricted conditions identified by Tn-seq. 
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CHAPTER FOUR  

Conclusion   

In this work we utilized proteogenomics to elucidate the conditionally essential genes 

and proteins that are required for Salmonella Typhimurium resistance against H2O2. A robust, 

fast, and cost-effective Tn-seq method was developed. Validation of Tn-seq results with 

individual mutant assays indicated the accuracy of the identified genes in response to the two 

H2O2 concentrations. The coupled Tn-seq with targeted proteomics had a good agreement. 

Numerous genes were identified to have a role in resistance against H2O2. We found many 

genes that have not been associated for resistance to H2O2 previously. Salmonella employs 

multiple pathways to resist H2O2 and the most important ones are ROS detoxifying enzymes, 

amino acid biosynthesis (aroK and aroB), putative iron transporters (ybbK, ybbL, ybbM), iron 

homeostasis, Fe-S cluster repair, DNA repair, flagellar and DNA adenine methylase genes. 

Moreover, we identified the dynamics of conditionally essential genes that mediate S. 

Typhimurium survival in a gradient iron-restricted conditions. Surprisingly, our powerful Tn-

seq approach indicated that when transposon mutant cultures treated with an iron chelator, the 

mutants of one-third of essential genome of Salmonella Typhimurium did not die and can grow 

slowly, however these mutants died in absences of the iron chelator. Based on this observation, 

we concluded that the iron chelator minimized ROS formation via downregulation of Fenton 

reaction, as a result, one-third of essential genes did grow likely because ROS is present in 

their death process. Thus, we divided essential genes into ROS-independent and ROS-

dependent essential genes. The result is fitting to known model of common ROS-mediated 

antibiotic killing in bacteria and we further expand this model beyond antibiotic target genes. 

Strikingly, the targets of almost all antibiotics in clinical use are ROS-dependent essential 

genes. We propose that ROS-independent essential genes are better targets to develop new 

antimicrobials, as the cell die immediately following gene disruption. Altogether, this work 
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expands our knowledge about the genetic determinants that Salmonella operates to evade the 

host stressors.   
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