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Abstract 

Numerous studies have tried to determine the survivability and proliferation of microorganisms under 

simulated Martian conditions. Furthermore, most of them have been focused on the ability of these 

microbes to cope with high brines’ salt (NaCl) concentrations inherent of the Martian surface. However, 

there are not studies related to the ability of bacteria to survive on subsurface environments that have 

increasing concentrations of sulfate compounds. For this research, a group of microorganisms known as 

sulfate-reducing bacteria or simply sulfate reducers were chosen due to their ability to use sulfate 

compounds as terminal electron acceptors to produce metabolic energy, their tolerance to low 

temperatures (psychrophilic microbes) and their anaerobic metabolism. Moreover, the principal purpose 

of this study was to determine the ability of sulfate reducers to carry active metabolism under conditions 

similar to those present on Mars subsurface (low temperature, high concentration of sulfate compounds, 

anoxic atmosphere-95% carbon dioxide, low nutrients availability, among others). Furthermore, we 

cultivated strains of Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum 

arcticum using different concentrations of minerals. The latter (CaSO4, MgSO4, FeSO4 and Fe2(SO4)3) are 

normally found as part of the Martian subsurface components and they can act as terminal electron 

acceptors in sulfate respiration. Moreover, PCR amplifications of the 16S rDNA gene and the dsrAB 

genes were performed in order to determine the growth and survivability of the three microorganisms 

tested. Finally, we were able to determine that they were metabolically active at the different types and 

mineral concentrations under study. 
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I. Introduction 

Nowadays, the ability of microbes to grow, replicate and proliferate under Martian surface environmental 

conditions is unknown. The latter involve low temperatures, low pressure, high oxidant soils, ultraviolet 

(UV), cosmic, and mineral irradiations, high desiccation rate, low water activity, anoxic atmosphere and 

high minerals content. Moreover, current studies have focused on the detection of survival of dormant 

spores, vegetative cells and terrestrial contamination under surficial Martian conditions. However, there 

are not studies that have evaluated the same parameter on subsurface environments or determined the 

ability of sulfate/sulfite reducers to undergo metabolic activity under Martian 

physicochemical/environmental conditions. As it was suggested by Berry et al., (2010) microorganisms 

could potentially survive on the subsurface and the Martian surface UV soil protected areas due to the 

possible presence of habitable niches. Therefore, the presence of life in Mars environments should be 

analyzed not only in terms of detection, but also in terms of microbial survival, replication and proliferation 

(Berry, Jenkins, & Schuerger, 2010). 

In the other hand, it has been demonstrated that formation of transient liquid water on the Martian 

subsurface is also possible. Furthermore, its presence in subglacial-type environments is increased by 

the presence of high mineral concentrations. The most abundant minerals on the Martian 

surface/subsurface are composed of a sulfate component. The latter can be used by a group of 

microorganisms known as sulfate reducing-bacteria to generate energy for replication and proliferation. 

Basically, these microbes can use hydrogen (H2) as an electron donor, carbon dioxide (CO2) as a carbon 

source and sulfate compounds as terminal electron acceptors due to their metabolic versatility in the 

production of energy (Berry et al., 2010; Crisler, Newville, Chen, Clark, & Schneegurt, 2012; Des Marais 

et al., 2008; KARKHOFF-SCHWEIZER, BRUSCHI, & VOORDOUW, 1993a; Ollivier, Caumette, Garcia, & 

Mah, 1994; Skidmore, Foght, & Sharp, 2000; Squyres et al., 2006). 

Another feature of sulfate reducers is the presence of a highly conserved region of DNA known as the 

dsrAB operon (dsr genes) which encodes the genes that are required for the formation of the dissimilatory 

sulfite reductase (DsrAB). This enzyme intervenes in the reduction of sulfate compounds specifically in 

the last reaction of sulfite reduction to sulfide  (Karkhoff-Schweizer, Huber, & Voordouw, 1995a, 1995b; 
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Klein et al., 2001a; Laue, Friedrich, Ruff, & Cook, 2001; Muller, Kjeldsen, Rattei, Pester, & Loy, 2015; 

Zverlov et al., 2005). 

In this research, we used a combination of culture and Molecular Biology techniques to detect the 

survival, proliferation and metabolic activity of three different bacterial strains that are considered 

“psychrophilic/mesophilic anaerobic and chemoorganotrophic/autotrophic microbes” under an anoxic 

atmosphere (H2/CO2) and increasing concentrations of different sulfate compounds. Furthermore, we 

detected the ability of these microorganisms to use hydrogen as an electron donor, carbon dioxide as a 

carbon source and sulfate compounds as terminal electron acceptors by detecting these microbes’ 

survival using molecular techniques such as PCR amplification of the 16 S rDNA gene and the dsrAB 

operon. 
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A. Hypothesis and Research Objectives 

Hypothesis: 

We hypothesize that three strains of sulfate-reducing bacteria: Desulfotalea psychrophila, Desulfuromusa 

ferrireducens and Desulfotomaculum arcticum, are able to undergo survival and proliferation under 

Martian simulated atmospheres and soil composition (using H2, CO2 and different sulfate compounds as 

electron donor, carbon source and terminal electron acceptors respectively). We hypothesize that their 

survivability and especially their proliferation under the Martian conditions tested are directly proportional 

to the expression of the dsrAB operon which encodes the dissimilatory sulfite reductase responsible for 

anaerobic sulfate reduction. 

Objective 1: 

Contrast growth patterns of D. psychrophila, D. ferrireducens and D. arcticum at different culture 

conditions: in a complex medium in which the electron donor and carbon source are represented by 

complex molecules such as lactate and yeast extract versus a minimal medium (simulating Martian 

atmospheric conditions) in which the electron donor and the carbon source are H2 and CO2. 

Objective 2: 

Evaluate the ability of D. psychrophila, D. ferrireducens and D. arcticum to use different types of sulfate 

compounds at increasing concentrations as terminal electron acceptors (simulating Martian soil 

conditions) in the generation of metabolic energy through anaerobic sulfate reduction in minimal medium 

(simulating Martian atmospheric conditions). 

Objective 3: 

Detect the survival of these microorganisms under Martian atmospheric and soil conditions by amplifying 

the 16S rDNA gene and the dsrAB genes as indicators of active microbial growth. 
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B. Literature Review 

B.1 Mars Explorations and Discoveries 

Astrobiology explorations address three principal topics: the origin of life and its evolution, the presence of 

life in other planets and the future of terrestrial life on Earth and space. Furthermore, Des Marais et al., 

(2008) defined the term habitability as the ability of a planet to sustain life that is originated there or to 

sustain life that is carried there by other means. Moreover, the authors also emphasized the 

environmental conditions that the planet needs to have in order to sustain life. Among them, the presence 

of liquid water is the most important because it triggers the assembly of energetic and organic molecules 

of increased complexity. The latter are necessary for the maintenance of metabolism and ultimately life  

(Des Marais et al., 2008). 

Life on Earth has evolved from biogeochemical processes that resulted from interactions of the crust with 

the atmosphere and oceans (biogeochemical component). Furthermore, these constant processes were 

developed within organized microbial ecosystems (biological component) subjected to constant changes 

in environmental conditions. The understanding of the interactions between the biogeochemical 

component and the biological component that originated today’s Earth complex ecosystems will help us 

to determine the future and past states of terrestrial environments. Furthermore, it is fascinating how 

terrestrial life has developed different mechanisms that allow individual microorganisms to survive under 

difficult/extreme environments. These mechanisms have permitted their survival and adaptation to 

environments with extreme low temperatures, high desiccation rates, exposition to irradiation, low 

nutrients availability among other physical and chemical conditions. However, the evolution of life on 

Earth represents just one of the multiple pathways that could originate life. Thus, the origin of it in other 

planets remains unresolved. Nevertheless, the understanding of the mechanisms implied by these 

microbes to survive and adapt to extreme conditions will allow us to understand the basic mechanisms 

that trigger the formation of life and how it evolved not only on Earth, but also in other planets.  Moreover, 

the presence of life in other planets will ultimately depend on the ability of microorganisms to use 

extraterrestrial resources and their adaptation/evolution to those environments (Des Marais et al., 2008). 
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One of the principal goals of Mars explorations is the discovery of organic compounds that can relate to 

present or past life. Although the principal compound used to determine the presence of life in other 

planets is water, some other markers have been used for the same purpose. Moreover, these 

measurable indicators are known as biosignatures or signatures of life which indicate the presence of 

biological processes. Some examples of the latter are the presence of complex physical and chemical 

structures, inorganic minerals (produced by life forms), carbonaceous debris, organic matter, chiral 

molecules, isotropic fractionation of carbon, utilization of energy, production of biomass and waste 

compounds. However, these biosignatures should be rigorously interpreted because some of them are 

the result of planets’ non-biological mimics (created by non-biological processes/abiotic or inanimate 

processes) (Des Marais et al., 2008; Parnell et al., 2007). 

For almost four decades, the National Aeronautics and Space Administration (NASA) has been sending 

spacecrafts and robotic devices to the Red Planet in order to recover information about the 

physicochemical conditions, presence of life and biosignatures of this planet (Crisp et al., 2003). The first 

NASA’s operations on Mars were based on basic flyby manoeuvres which have the principal goal to 

collect simple pictures of the planet. Later, the development of new technology made possible the study 

of the Martian atmosphere using orbiters and finally, with the great advances in robotic of this century, 

most International agencies started the use of landers and rovers to study the surface’s physical 

properties and chemical composition (Circi, Ortore, Bunkheila, & Ulivieri, 2012). 

The first orbiters launched to Mars were the Mariner 3 and Mariner 4 in 1964. Mariner 3 failed on its 

mission to reach the Martian atmosphere while the second one successfully orbited it in1965. It was the 

first time in which the NASA got images of the Martian surface. Subsequently, in 1971 this same agency 

sent the Mariners 8 and 9. The first one failed on its mission while the second one reached the Martian 

orbit. As a result of this hard work, the orbiter captured close to 7000 images that were useful in 

determining the possible presence of water and flood events that modelled the surface of this planet 

(Naderi, McCleese, & Jordan, 2006). 

Later, the Viking landers and orbiters were launched (1976). Furthermore, the orbiters were designed to 

patrol the Martian atmosphere looking for the best descend locations for the landers. Once the best 
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positions for landing were determined, the Viking Landers 1 and 2 were positioned. Basically, they 

crossed the Martian atmosphere and soft landed into the surface of the Red Planet. Therefore, the Viking 

landers were the first robotic devices that successfully landed on the Martian surface (1992) (M. P. 

Golombek et al., 1997; Matthew P. Golombek, 1997; Naderi et al., 2006) 

Twenty years later, another rover was delivered into the Martian surface by the NASA’s Mars Pathfinder 

mission (1997). The rover named Sojourner recollected information about the rocks composition, 

specifically the rock known as “Barnacle Bill”. The principal objective of this rover was to accurately 

confirm the information collected previously by orbiters. Furthermore, this rover detected areas with high 

amounts of silica (indicator of past thermal activity). Moreover, the Sojourner analyses about soils’ 

dynamic identified the presence of “conglomerates” (formed by the pushing of components from different 

types of soils) which suggested the presence of water (past catastrophic floods) (M. P. Golombek et al., 

1997; Matthew P. Golombek, 1997). 

NASA’s orbiters – Mars Odyssey (2001), Mars Reconnaissance (2005) and MAVEN (2013)- have 

contributed with a high quantity of information about the atmospheric conditions, presence of water and 

biosignatures in this planet. Furthermore, the Mars Global Surveyor (launched in 1997) and the Mars 

Odyssey determined the geological composition of the rovers (Opportunity and Spirit) landing sites and 

atmospheric characteristics of the Red Planet. These rovers, Opportunity (launched on 2003, operating 

for 14th years) and Spirit (launched in 2003 and replaced by Curiosity in 2012) have contributed with 

information about the physical and chemical conditions in the surface of the Red planet such as soils’ 

conditions and composition (minerals), but their principal goal was to identify present or past forms of life 

and evidence of water (Crisp et al., 2003; Dooling, 2017; Maki et al., 2003; Witze, 2016). As it was stated 

before, the clear identification of this compound along with the presence of life in the Red Planet is still 

inconclusive (Berry et al., 2010). For this reason, Exobiologists and Astrobiologists had relied on the use 

of Martian simulated experiments. The latter are developed on Earth and they recreate the Martian harsh 

environmental conditions to determine the possibility of survival and proliferation of bacterial cells and 

other organisms. The interest to identify actual or past microbial life on Mars increased soon after the 

rovers Spirit and Opportunity recollected evidence of a liquid past environment (ancient body of salty 
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water). (Arvidson et al., 2014; Crisp et al., 2003; Gasda et al., 2015; Maki et al., 2003; Mars Exploration 

Rover, 2017; Naderi et al., 2006; Witze, 2016). Moreover, other space agencies such as the European 

Space Agency, United Arab Emirates, India and China have been interested in the exploration of the Red 

Planet especially after the discovery of the Mar’s Reconnaissance Orbiter which described the presence 

of transient liquid water (and not only evidence of past water presence) under the Martian surface 

(subsurface-regolith interface) and methane (CH4) emissions (Witze, 2016).  Therefore, as it is mentioned 

in Valdivia-Silva, Karouia, Navarro-Gonzalez, & Mckay, (2016), Mars is one of the planets that contains 

possible habitable niches for the proliferation of extraterrestrial microbes (Valdivia-Silva et al., 2016). 

B.2 Mars Physicochemical/Environmental conditions 

The principal physicochemical characteristics of Mars’ environments are high mineral (salinity) content, 

presence of heavy metals perchlorates, oxidants (volatiles and in the soil), extreme desiccation, low water 

activity, extreme low temperatures and high rate of irradiation (UV, solar particle events, galactic cosmic 

rays, mineral irradiation). These conditions limit the survival, proliferation and development of any form of 

life at the Martian surface. However, the subsurface of the planet can potentially offer a habitable 

environment for microbial proliferation. Furthermore, the possible presence of microbial life on the Martian 

subsurface is even more palpable if we take into consideration the existence of terrestrial microorganisms 

that can survive and proliferate under extreme environments (such as those associated with the Earth’s 

subsurface). It has been suggested that similar organisms (with the same capabilities) can proliferate in 

planets that have extreme physicochemical conditions as the Red Planet (A. Schuerger & Nicholson, 

2006;  B.C. Clark et al., 2005; Benton C Clark, 1993; Berry et al., 2010; Clark, 1998; Crisler et al., 2012; 

Des Marais et al., 2008; McEwen et al., 2011; Valdivia-Silva et al., 2016; Wänke, Brückner, Dreibus, 

Rieder, & Ryabchikov, 2001). 

Furthermore, it has been shown that environmental factors such as low temperature, low pressure and 

high CO2 content are bacteriostatic and not bactericidal for some species of bacteria (endospore 

formers). However, interactive effects of these environmental factors can inhibit the growth and 

germination of different bacterial strains. Moreover, the effects of these factors are always dependent on 

the bacterial specie (A. Schuerger & Nicholson, 2006). 
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B.2.1 UV Irradiation 

The UV irradiation at the Martian surface is approximately 3.6 W/m2 (wavelength of 200 to 280 nm) for a 

day period of 8 hours (Berry et al., 2010). Although, the solar UV is lower than that experienced on our 

planet (due to a greater distance between the Red planet and the Sun), it is the most important type of 

radiation that affects life on Martian environments. This phenomenon can be explained based on the 

absence of a dipole field which could deviate the direct exposition to UV (as in the case of Earth). 

Despite, it only penetrates 500 μm in the Martian soil, it can destroy organic molecules, cells and spores 

within minutes to hours. Nevertheless, UV biocidal effects diminish proportionally to increasing soil 

depths.  In addition, cosmic radiation and solar energy particles can affect all other UV-resistant organic 

molecules producing free radicals which increase the oxidizing potential of the Martian soils (aromatic 

molecules for example). Thus, microbial life and any kind of organic material cannot persist at the Martian 

surface. However, they can potentially survive and proliferate at deeper strata where cosmic radiation, UV 

irradiation and solar energy particles cannot affect them. In the other hand, we need to take into 

consideration mineral radiation which normally does not affect vegetative cells or spores as a result of 

direct exposition, but it can affect them by cumulative effects (spores’ DNA damage previous to 

germination or DNA damage in vegetative cells) (Berry et al., 2010; Parnell et al., 2007; Velasco, Usero, 

Jiménez, Aguirre, & Vázquez, 2015). 

Furthermore, the UV light irradiation at the soil’s surface generates volatile oxidants that can eventually 

diffuse into deeper strata. However, studies on the production of these compounds (such as H2O2
-, OH-, 

O2
-) and their influence on the survival of microorganisms under Martian conditions have suggested that 

they do not represent a source of biocidal activity (Berry et al., 2010). 

B.2.2 Low Water Availability (Low Water Activity) 

The low temperatures present on the Red Planet prevent the formation of high amounts of liquid water 

(extreme low water activity). This phenomenon increases the desiccation state of the Martian surface and 

subsurface. As a consequence of these environmental conditions, most forms of life cannot survive and 

proliferate (Berry et al., 2010). 
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However, orbiters and rovers have collected evidence of presence of water or transient liquid water. 

Furthermore, two specific sites of the Red Planet that have been extremely studied are Gusev Crater and 

Meridiani Planum. These locations were selected due to their distinctive geological features. In 2004, 

Spirit landed on Gusev crater and it identified the presence of rocks that were basically composed of 

olivine-bearing basalts (high chromium contents). Moreover, a softness comparison between these rocks 

and basaltic rocks from Earth revealed the occurrence of thin layers of water and antient water floods 

(Arvidson et al., 2006; Mars Exploration Rovers, 2013). These findings were confirmed by the Spirit’s 

identification of hematite and sulfates (indicators of the presence of past water activity, specifically in 

Columbia Hills). The second site, Meridiani Planum, was explored by the rover Opportunity in 2004. It 

found an environment similar to those exposed to shallow water on Earth. Opportunity identified the 

presence of hematite and abundant deposits of jarosite and sulfates, which indicated the presence of past 

water on Mars surface and/or below it. The principal goals of both rovers were to study the mineral 

composition of Mars and look for evidence of actual or past presence of water. These goals were 

accomplished by both of them (Berry et al., 2010; Crisler et al., 2012; Des Marais et al., 2008; Kuchynka 

et al., 2014; Mars Exploration Rovers, 2013; Squyres et al., 2006). 

Nowadays, it is known that the surface and shallow subsurfaces of Mars were once partially covered by 

liquid water which was probably sustained by aquifers and atmospheric precipitation. Furthermore, model 

simulations of the Martian surface have suggested the presence of a groundwater reservoir that probably 

have cooperated to maintain subsurface life forms (evidence also supported by CH4 gas emissions that 

were detected at the Martian atmosphere) (Des Marais et al., 2008). 

Also, it has been suggested the possible presence of transient liquid water at the surface of the Martian 

polar caps (surface melting). These transient watercourses could be potentially accumulated at Martian 

subglacial microenvironments. Furthermore, its terrestrial counterparts have been identified as parallel 

models for Martian cold environments in which bacterial growth and survival could be accomplished due 

to the protective effects that this type of environments can offer (protection from low temperatures and UV 

irradiation). Moreover, the thermal protection effect could eventually produce transitory basal-melting of 
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the polar caps generating more liquid water that further increases the chances of development of life 

(Skidmore et al., 2000). 

Furthermore, it is known by modelling and simulations that the layer of ice that surrounds the surface of 

the planet does not reach the water’s melting temperature under any condition. This event occurs due to 

high dryness of the surface which allows the ice to sublimate without melting. Nevertheless, the presence 

of high concentration of minerals on the soil’s regolith can potentially drive the process of melting (Mellon 

and Phillips, 2001). 

The melting point of ice water is 0º C. Furthermore, the combined actions of the Sun´s heat, soil´s heating 

distribution and the presence of high concentrations of minerals in the Martian soils could increase the 

sublimation rate of ice, increase the minerals’ concentrations and lower the water´s melting temperature 

leading to the stable presence of transient liquid water. Although, this scenario is chemically and 

physically possible, the melting point is normally decreased just a few degrees. However, the structure of 

the Martian soil pore spaces in the regolith triggers the contact between particles of ice or between 

particles of ice and particles of soil.  This phenomenon induces the formation of thin films of liquid water 

at temperatures under the water´s melting point. This event has been demonstrated multiple times in 

studies based on the behavior of water molecules at subfreezing temperatures (Crisler et al., 2012; 

Jakosky, Nealson, Bakermans, Ley, & Mellon, 2003). 

Although the presence of transient liquid water is a remarkable discovery, the production of high amounts 

of it can be harmful rather than beneficial for the proliferation of microorganisms in soil environments due 

to their high oxidant states. Furthermore, Valdivia-Silva et al., (2016) found that soils with an increased 

oxidant activity were correlated with low or absent bacterial populations. Moreover, they suggested that 

low water content in environments with low oxidant activity can be beneficial, but extremely harmful in 

environments with high oxidant activity (Valdivia-Silva et al., 2016). 

B.2.3 Mineral Content 

The presence of brines with high concentration of minerals seems to be the result of water evaporation of 

antient dry lakes (Komatsu, 2012). This phenomenon resulted in the formation of hydrated minerals 
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deposits that could/can be potentially colonized by microbial communities. Furthermore, sulfate rich veins 

were located at the Matijevic formation and the Copper Cliff breccias. These sulfate rich veins are formed 

principally of calcium sulfate (CaSO4) and they are present in the form of gypsum which is the hydrated 

form of calcium sulfate (evidence of past water activity-Curiosity findings at the veins of the west region of 

Cape York) (Arvidson et al., 2014). In concordance with this discovery, the principal goal of the NASA´s 

most recent landed rover Curiosity is to identify evidence of salty habitable past environments in the Red 

Planet (such as gullies, layered salt deposits or hydrated salts, among others)  (Gasda et al., 2015; 

Naderi et al., 2006). 

Furthermore, as it was reported by the Mars Exploration rover Opportunity in 2004, the Martian surface 

contains high concentrations of siliciclastics and sulfates. This last group has compounds such as 

magnesium sulfate (MgSO4), calcium sulfate (CaSO4) and jarosite which can be used as terminal 

electron acceptors in the production of energy by sulfate reducers (Berry et al., 2010; Crisler et al., 2012; 

Des Marais et al., 2008; Squyres et al., 2006). 

As it was stated before, the presence of a high mineral content (without taking into consideration which 

type of salt) can depress the freezing point of water and make it available on liquid form at low 

temperatures. This phenomenon increases the water activity and it influences the bacterial resistance to 

desiccation (Berry et al., 2010). Furthermore, the presence of sulfates in Martian-like brines could 

potentially be more favorable for the development of life in comparison with brines that have higher 

chloride’s content (NaCl for example on Earth-like brines). This event can be explained taking into 

consideration that sulfate-like brines show an increased water activity in comparison with Earth-like brines 

(Crisler et al., 2012; Marion, Fritsen, Eicken, & Payne, 2003). 

In any case, the effects of a high mineral content environment over bacterial cells survival, metabolism 

and proliferation are different for different bacterial species (It is a specie specific stressor), which means 

that two different strains of bacteria have a different reaction to a high mineral content environment (Berry 

et al., 2010). 
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B.2.4 Low Nutrients 

As it is mentioned in Parnell et al., (2007), the Red Planet receives organic material from space in the 

form of dust particles, cometary matter and meteorites. These reservoirs of organic material contain a 

variety of organic compounds that include aminoacids, carboxylic acids and aromatic structures (at the 

Martian surface they are degraded by UV irradiation). However, the most interesting carbon molecules 

present in Mars atmosphere are CO2 and CH4, which can be associated to the presence of active 

metabolism of methanogenic microbes/sulfate reducers or to a series of abiotic processes. Furthermore, 

the CH4 half live is short and its presence in the Martian atmosphere is constant. The latter indicates its 

probable biologic replenishment after atmospheric short residence (Des Marais et al., 2008; Parnell et al., 

2007). 

In addition, it is important to mention that the inability to find organic compounds at the Martian surface or 

subsurface does not necessarily mean they are absent. As it is mentioned in Parnell et al., (2007), 

organic molecules might be converted directly to CO2 due to extremely oxidant conditions of the soil, but 

some intermediates might be originated and accumulated over time at the Mars regolith (Parnell et al., 

2007). 

Furthermore, as it is mentioned in Parnell et al., (2007), the search of organic molecules at the Martian 

subsurface can eventually lead to the finding of biota that could show metabolic activity due to the stability 

of liquid water at those depths and the inability of UV irradiation and oxidizing soil’s conditions to 

decompose organic matter (Parnell et al., 2007). 

B.2.5 Extreme low temperatures 

The typical temperature in the Red Planet ranges from 20 (during austral summer) to -50º C (day/night 

diurnal period). Although, the Viking landers never experienced temperatures lower than -10º C (daytime), 

the average global temperature of Mars is of -61º C (Berry et al., 2010). However, the composition of the 

Martian dust affects directly the composition, behavior and evolution of the planet’s atmosphere which 

can result in an increase in temperatures in both the atmosphere and the surface of the planet. This 

phenomenon can increase the probability of microbial survival and proliferation (Lemmon et al., 2015). 
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Although, the ability of microorganisms to proliferate and be metabolically active (active uptake and 

processing of nutrients) at subfreezing temperatures (-10º C) has been demonstrated, microorganisms 

adapted to cold environments (temperatures from -17º C to -20º C) have a slow metabolism, which can 

be proved by their slow growth rate on cultures (Carpenter, Lin, & Capone, 2000; Marion et al., 2003; 

Priscu et al, 1998; Rivkina, Friedmann, McKay, & Gilichinsky, 2000). 

B.2.6 Low Pressure 

Under normal conditions, the Mars global pressure is approximately 5.17 torr while the surface’s pressure 

is approximately 7 torr (Berry et al., 2010; Gasda et al., 2015). Although, normally this variable does not 

affect microbial growth, as it is mentioned in Berry et al., (2010), it has shown to slightly reduce bacterial 

populations of spore formers and non-spore formers (Berry et al., 2010). The same findings were 

obtained in a study of replication/germination of Bacillus species and their endospores under simulated 

Martian conditions. Furthermore, they found out that vegetative cells were more resistant than spore 

forms to reduced pressures (active replication) (A. Schuerger & Nicholson, 2006). Thus, Martian low 

pressure is another environmental variable that can affect the development of life (Gasda et al., 2015). 

B.2.7 Martian Atmosphere 

The Martian atmosphere´s gas composition is composed mostly of CO2 (95%). The rest 5% of its 

components is represented by nitrogen (N2), argon (Ar) , oxygen (O2) and water vapor (H2O) (Gasda et 

al., 2015). 

B.3 Sulfate/Sulfite Reducers 

There are some natural environments on Earth that resemble certain characteristics of the Red Planet. 

Locations with high minerals content such as Hot and Basque Lakes (Pacific Northwest), Guerrero Negro 

salterns, The Great Salt Plains (Oklahoma), the Orca Basin (Mexico), the dry Valleys of Antarctica or Don 

Juan Pond, the Artic Polar Desserts, Mono Lake, Lake Magadi, the Atacama Desert, the Dead Sea and 

Yellowstone National Park represent the natural habitat of extreme microorganisms that could potentially 

survive and proliferate under Martian conditions (Javor, 1984; Kilmer et al., 2014; Marion et al., 2003; 

Navarro-Gonzalez et al., 2003; Valdivia-Silva et al., 2016). However, it is necessary to take into 
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consideration that the brines present on Earth are different from those present in Mars. In the latter, the 

predominant mineral specie is magnesium sulfate (MgSO4) while on Earth it is sodium chloride (NaCl) 

(Berry et al., 2010; Crisler et al., 2012; A. Roychoudhury, 2004). Furthermore, other terrestrial habitats 

have combinations of environmental conditions that are similar to those present on Mars environments. 

Terrestrial habitats with low temperatures and brines with high minerals content (for example in Artic 

glaciers, Lake Vostok in Antarctica, Precambrian shields of Canada and Finland, the Witwatersrand Basin 

in South Africa) have been used to demonstrate and evaluate the ability of some microorganisms to 

survive and replicate under extreme conditions. These studies have found the presence of different cell 

morphologies and even dividing cells (metabolically active) that are not necessarily extremophile 

microbes (Sherwood Lollar et al., 2007; Skidmore et al., 2000). 

In concordance with the previous statement, numerous studies have concluded that a few common 

microbes (such as human bacteria, sporulating and non-sporulating microorganisms, salt-tolerants, 

anoxigenic bacteria, etc.) are viable under simulated Martian conditions. Moreover, they were able to 

resist factors such as low temperature, low pressure, high UV irradiation, low water availability and anoxic 

gas composition (Crisler et al., 2012; A. C. Schuerger, Mancinelli, Kern, Rothschild, & McKay, 2003; A. 

Schuerger & Nicholson, 2006; Skidmore et al., 2000). This finding suggests that some microbes present 

on Earth environments could potentially undergo active metabolism, survive and proliferate under real 

Martian environments. Therefore, if terrestrial common and extreme microorganisms can resist those 

conditions, it might be possible that microbes of Martian origin (present in Mars) had been able to survive 

and proliferate, but we have not been able to detect them. (B.C. Clark et al., 2005; Benton C Clark, 1993; 

Clark, 1998; Crisler et al., 2012; McEwen et al., 2011; A. Schuerger & Nicholson, 2006; Valdivia-Silva et 

al., 2016; Wänke et al., 2001). 

Also, it is important to mention that any microorganism of terrestrial origin that could survive in Mars 

should be able to adapt to low concentrations of carbon sources. In concordance with this last comment, 

subsurface Earth environments have provided the required conditions that trigger the development of 

autotrophic forms of life. Furthermore, some of them are represented by autotrophic/chemoorganotrophic 

terrestrial bacteria that undergo active metabolism using H2 and CO2 as their only sources of carbon an 
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energy (both gases present on Mars atmosphere) (Aullo, Ranchou-Peyruse, Ollivier, & Magot, 2013; A. 

Roychoudhury, 2004). 

As we already know, water in liquid form could be present in the deep subsurface of the Red Planet. 

Basically, warmer temperatures from the Planet’s core and the Sun’s radiation can potentially melt the ice 

that surrounds the rock allowing the production of geochemical energy (reactions between water and the 

rock). Added to this, Mars’s surface and subsurface’s minerals content is composed of high 

concentrations of sulfate compounds (magnesium, calcium and iron). Thus, the presence of these salts 

and the possibility of generation of melted water could potentially create high sulfate content brines (Berry 

et al., 2010; Crisler et al., 2012). Therefore, the potential formed liquid water along with the soil’s high 

minerals content and the available energy can be used by terrestrial dormant microorganisms that might 

be colonizing these areas. However, Mar’s subsurface explorations have not been successful due to 

limited technology that can lead us to determine if this hypothesis (determined by modelling) is accurate 

(Crisler et al., 2012; Jakosky et al., 2003; Mellon and Phillips, 2001; A. Roychoudhury, 2004; Sherwood 

Lollar et al., 2007; Shock, 1997; Varnes, Jakosky, & McCollom, 2003). 

Moreover, sulfate reducers are a clear example of bacteria that can undergo survival and metabolic 

activity under extreme conditions. These microorganisms use sulfate/sulfite as the principal electron 

acceptors in their anaerobic metabolism (Ollivier et al., 1994). Although, these bacteria are difficult to 

enrich in synthetic media because it renders an extremely low number of cells, sulfate reducers are 

known for their versatility in the use of different nutritional sources and metabolic pathways to generate 

energy. The latter suggest the existence of different Genera with a unique enzymatic complexity (different 

types of enzymes responsible for sulfate reduction – different dissimilatory sulfite reductases) (Brandt, 

Vester, Jensen, & Ingvorsen, 2001; KARKHOFF-SCHWEIZER et al., 1993a; A. N. Roychoudhury & 

McCormick, 2006). 

Moreover, as it is cited on Skidmore et al., (2000), psychrophilic sulfate reducers are one of the types of 

microorganisms that can proliferate under Martian conditions due to their ability to persist in environments 

with limited carbon sources and low temperatures. Therefore, as it was indicated in this study and in our 

research, subsurface and/or sedimentary microenvironments can offer a suitable scenario for the 
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development of microbial metabolic activity due to its protective effect (subglacial environments) and the 

presence of specific electron donors and terminal electron acceptors (Skidmore et al., 2000). 

Although, sulfate reducers can tolerate high salinities (high sodium chloride-NaCl concentrations), this 

condition is not required for growth. Most microbes acquire resistance to high mineral concentrations by 

either accumulating salts in their cytoplasm and modifying their proteins to an acidic structure (adaptive 

mechanism in low substrate environments) or by producing organic compounds that can osmoregulate 

and compensate intracellular concentrations (in environments where substrate availability is not limited). 

Although energetically expensive, most Archaea and anaerobic fermenting Eubacteria have adopted this 

last mechanism producing and/or taking (from their environment) organic compounds such as glycine and 

betaine  (Oren, 2008; Porter, Roychoudhury, & Cowan, 2007). 

Most sulfate reducers identified are slight (Optimal growth: 2 - 5 % NaCl) or moderate (Optimal growth: 5 - 

20% NaCl) halophiles (as mentioned in Porter et al., 2007). Unfortunately, most studies have focused on 

their biologic response to increasing concentrations of NaCl and just a few of them have focused on the 

microbial response to increasing concentrations of the final electron acceptor: sulfate/sulfite compounds. 

Thus, the sulfate reducers used in this research were chosen because they represent known sulfate 

reducers, halophilic, anaerobic and facultative members of the Bacteria Domain. Furthermore, due to 

their ability to resist high concentrations of minerals and low temperature, they can potentially survive and 

undergo active metabolism at conditions present in other planets (Porter et al., 2007). Moreover, as it is 

mentioned in Sørensen, Canfield & Oren (2004) and in Roychoudhury (2004), the understanding of the 

mechanisms implied in the survival of these bacteria could potentially increase our understanding of the 

evolution of life on Earth and the limiting environmental factors that affect it in other planets (A. 

Roychoudhury, 2004; Sorensen, Canfield, & Oren, 2004). 

B.3.1 Desulfotalea psychrophila 

D. psychrophila is a member of the Bacteria Domain, Phylum Proteobacteria, Class Deltaproteobacteria, 

Order Desulfobacterales, Family Desulfobulbaceae, Genus Desulfotalea (extracted from My RDP 

Genome Desulfotalea psychrophila LSv54). It is a Gram negative non-spore former rod-shaped 

flagellated chemoorganotrophic microorganism (respiratory and fermentative metabolism) that was first 
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isolated from cold marine sediments (Coast of Svalbard). Furthermore, it is a strict anaerobe with a 

duplication time of 27 hours at optimal temperature (10-18º C) although it can survive below 0º C. This 

microorganism can break down sulfur due to the presence of dsr genes. Moreover, it has a genome of 

3,523,383 bp (circular chromosome), two circular plasmids (121,586 bp and 14,663 bp) which constitute 

3118 predicted genes. In addition, they can use a wide variety of carbon sources/electron donors such as 

acetate, propionate, glycine, propanol, butanol, alanine, serine, pyruvate, fumarate, malate, ethanol, 

butyrate, lactate and hydrogen. Furthermore, they can use a variety of terminal electron acceptors such 

as sulfate, sulfite, thiosulfate and ferric citrate. Moreover, this microbe does not need vitamins. Its optimal 

pH range is 7.2-7.9 and it requires NaCl (1%) and MgCl2 for growth (Knoblauch, Sahm & Jorgensen, 

1999; Rabus et al., 2004). 

B.3.2 Desulfuromusa ferrireducens 

D. ferrireducens is a member of the Bacteria Domain, Phylum Proteobacteria, Class Deltaproteobacteria, 

Order Desulfuromonadales, Family Desulfuromonadaceae, Genus Desulfuromusa (extracted from the 

Encyclopedia of Life). It is a Gram negative strict anaerobe rod-shaped (0.7-1 x 3-5 μm) flagellated 

(monopolar lophotrichous) bacterium that was isolated from marine sediments in the west coast of 

Svalbard. Furthermore, it is a psychrophilic microbe (it can survive at temperatures of -2º C) although its 

optimal temperature range is 14-17º C (it cannot grow above 23º C). Moreover, this microbe can use 

acetate, lactate, fumarate, formate, succinate, pyruvate, ethanol, propanol, butanol, propionate, proline 

and hydrogen as electron donors and Fe3+, fumarate, sulfur and Mn4+ as electron acceptors (Greene, 

2014; Vandieken, 2006b). 

B.3.3 Desulfotomaculum arcticum 

As it is mentioned in Aullo, Ranchou-Peyruse, Ollivier & Magot (2013), Desulfotomaculum species are 

phylogenetically clustered in the Phylum: Firmicutes, Class Clostridia, Order Clostridiales, Family 

Peptococcaceae, Genus Desulfotomaculum. They are Gram positive rods and sulfate reducers that have 

obtained the genes that encode the dissimilatory sulfite reductase through a process of lateral gene 

transfer (Aullo et al., 2013; Zverlov et al., 2005). Furthermore, these microbes can survive in extreme 

environments (especially those associated with deep subsurface) due to their ability to produce 
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resistance structures (endospores, which are normally round or oval and positioned central to terminal in 

bacterial cell) and autotrophic growth (they can use H2 and CO2 to produce energy and sulfide). They are 

mesophilic to thermophilic anaerobic bacteria that can reduce sulfate to sulfide (using it as the terminal 

electron acceptor in anaerobic respiration). Moreover, they can use other electron acceptors such as 

elemental sulfur, thiosulfate, sulfite, and/or metals such as manganese (IV), iron (III), chromium (VI) or 

uranium (V). In addition, they can oxidize organic acids, glucose, formate, propionate, fructose, pyruvate, 

malate, fumarate, succinate, lactate, aromatic hydrocarbons, butyrate, ethanol, methanol, propanol, 

butanol, aminoacids (proline, alanine and glycine) and hydrogen. Finally, this microorganism tends to live 

in anoxic environments with low sulfate concentration. However, it grows better in environments where 

sulfate is not a limiting factor (Aullo et al., 2013; Vandieken, 2006a). 

D. arcticum was isolated from sediments of the west coast of Svalbard. It can use H2 as a source of 

energy and it grows optimally at 42º C (Vandieken et al., 2006). One of the principal features that allowed 

the survival of this type of microbe in extreme environments is the production of endospores. This 

characteristic allows bacterial strains to resist changing/unfavorable temperatures and redox conditions, 

nutrients deprivation, etc. (Aullo et al., 2013; Krieg et al., 2011). 

B.4 Sulfate Reduction Process 

Microbial sulfate reduction has been targeted as one of the principal mechanisms that needs to be 

studied by the field of Astrobiology. This interest in sulfate reduction increased when habitable sulfate-rich 

sediments were discovered at Meridiani Planum (Parnell et al., 2007). Furthermore, these niches can be 

exploited by sulfate reducers which generate metabolic energy through the action of the DsrAB. This 

enzyme catalyzes the anaerobic reduction of sulfite to sulfide (last step of the dissimilatory sulfate 

reduction) using sulfate, sulfite or organosulfonates as terminal electron acceptors (Karkhoff-Schweizer et 

al., 1995a; Laue et al., 2001; Muller et al., 2015). 

Besides the DsrAB, other enzymes intervene in the reduction of sulfate. Furthermore, the ATP sulfurylase 

catalyzes the reaction from sulfate to adenosine-5-phosphosulfate and the adenylyl-sulfate reductase 

catalyzes the reaction of adenosine-5-phosphosulfate to sulfite (Muller et al., 2015). 
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As it is mentioned in Porter et al  (2007), the enzymatic process of sulfate reduction occurs in the 

cytoplasm of these microorganisms specifically in the inner leaflet of the cell membrane. In fact, sulfate 

reducers use active ABC transporters to deliver the negatively charged sulfate anion across the cell 

membrane (Crisler et al., 2012; Porter et al., 2007). Moreover, under high salinity concentrations, these 

microbes maintain a cell membrane gradient (using a Na+/H+ antiporter) that facilitates the transport of 

sulfate through their electroneutral Na+/SO4
2- symporter. Together, they globally expel Na+ and introduce 

SO4
2-. However, in low water activity environments, they introduce and accumulate K+ in their cytoplasm 

or produce osmoprotectants (low-molecular weight organic compounds) (Galinski & Truper, 1994; Kreke 

& Cypionka, 1994; Porter et al., 2007).  Thus, the reduction of sulfate by microorganisms is a process that 

occurs in a wide range of salinities due to the bacterial cell membranes inherent features (Porter et al., 

2007). However, it is also known that sulfate reduction rates are higher in environments with an excess of 

sulfate compounds and low carbon sources (Porter et al., 2007). In this regard, this type of 

microorganisms spend a high amount of metabolic energy to maintain homeostasis (Crisler et al., 2012; 

Oren, 1999). 

Thus, the behavior and metabolic activity of different microorganisms in brines with high content of 

sulfates can be measured through the detection of sulfate reduction. The latter depends on the microbial 

composition and their adaptations/mechanisms to survive under extreme environments (Porter et al., 

2007). As it was stated before, Porter et al., (2007) found out that environments with low carbon content 

and high sulfate content, as those present in sediments of coastal pans, increase the rate of sulfate 

reduction in bacterial communities adapted to live in high salinity environments. Furthermore, these can 

be the principal factors that could potentially increase the chances of bacterial survival and metabolic 

processing under Mars conditions (low carbon sources and high sulfate concentrations). Furthermore, 

they mentioned that sulfate reducers that produce osmoprotectants under high NaCl content 

environments, such as Desulfovibrio vulgaris, tend to upregulate the expression and translation of F-type 

ATPases which normally suggests an increase in sulfate reduction. Basically, this upregulation represents 

the bacterial cell response to the energy required for the transport of ions to the extracellular medium and 

osmoprotectants from it. However, it is important to take into consideration that these microbes are 

present in environments with low carbon sources, which indicates low energy production. Furthermore, 
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their presence in high salt content environments does not favor their proliferation because they need to 

use extra energy to osmoregulate. All of these factors added to a low water activity (as present in Mars 

environments) make it even more difficult for these cells to survive or duplicate  (Mukhopadhyay et al., 

2006; Porter et al., 2007). However, microbial sulfate reduction under Martian environments is possible. 

Furthermore, it has been suggested that it might be the result of bacterial consortia with a complex 

metabolic network. As it is known nowadays, the presence of CH4 as a biosignature of metabolic activity, 

has been detected at the Martian atmosphere. In this regard, it has been hypothesized that sulfate 

reducers and methanogens coexist and cooperate to produce metabolic energy. This hypothesis has 

been elaborated by comparisons with the occurrence of the same phenomenon on Earth subsurface 

microenvironments. Moreover, it was demonstrated by Scholten et al., (2005) on their studies of sulfate 

reducers and methanogens in a terrestrial environment (meromictic soda lake). They attributed this 

phenomenon to a process known as sulfate-dependent CH4 oxidation or SDMO in which anaerobic 

oxidation of methane is coupled to sulfate reduction (methanogens and sulfate reducers coexisting) 

(Muller et al., 2015; Scholten, Joye, Hollibaugh, & Murrell, 2005). 

B.5 dsrAB operon and DsrAB Protein 

Archaea and Bacteria (anaerobes) are the only microorganisms that reduce sulfate to sulfide (using 

sulfate or sulfite as terminal electron acceptors) to produce metabolic energy by means of the DsrAB. As 

it is mentioned in Klein et al., (2001), the genes encoding this enzyme are highly conserved among 

bacterial sulfate reducers. Furthermore, they are clustered in an operon that weights approximately 1.9 kb 

(Figure 8). The latter is composed of multiple subunits, but the most important are dsrA and dsrB. In 

addition, there is another sequence portion of the operon known as the dsrD which encodes a small 

polypeptide of unknown function (rich in lysine residues). Moreover, the two genetical subcomponents 

dsrA and dsrB emerged from a common ancestor followed by a vertical evolution among highly divergent 

prokaryotes. This characteristic is important in the molecular identification of these microorganisms 

because it can be used to group together different species of sulfate reducers that are non-related 

phylogenetically (belong to different bacterial divisions). Therefore, the simple use of specific primers that 

PCR amplify a DNA fragment contained within the dsrAB genes (in any of its two subcomponents dsrA or 
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dsrB genes) is a helpful tool that can be used to determine the presence of sulfate reducers in a bacterial 

culture. In addition to vertical evolution, multiple lateral gene transfer events among the Bacteria and 

Archaea Domains have been documented. Nevertheless, these genes remained conserved through 

evolution within sulfate reducing bacteria (Karkhoff-Schweizer et al., 1995b; Klein et al., 2001b; Laue et 

al., 2001; Zverlov et al., 2005). Based on phylogenetic analysis, thirteen bacterial Families that carry the 

dsrAB genes have been classified. However, most microbes of this group have not been cultivated and/or 

identified/characterized (Ghosh & Bagchi, 2015; Muller et al., 2015). 

It is universally acknowledged that the dsrAB operon encodes 15 different proteins, but the principal ones 

involved in the oxidation-reduction of sulfur compounds are DsrA and DsrB. However, it is also important 

to mention that DsrC is the portion of the complex that establishes direct contact with the sulfur anions in 

the oxidative and reductive pathways (Ghosh & Bagchi, 2015). Under normal conditions, the dsrAB genes 

are translated into a functional protein with two different polypeptidic subunits α2β2 (no frameshift or 

nonsense mutations) with an approximate molecular weight of 180 - 220 kDa (α subunit: 50 kDA and β 

subunit: 40 kDa). These subunits contain two sirohemes and approximately four sulfur clusters (Fe4S4 

type). However, some possible changes of the N-terminal dsrB portion of the dsrAB genes (beta subunits) 

in a few bacterial strains, as Thermodesulfobacterium commune, T. mobile and Desulfovibrio 

desulfuricans, are responsible for the modification of the siroheme-(Fe4S4) binding sites which allows the 

binding of four siroheme cofactors per α2β2 molecule, in contrast with the typical sulfate reducers which 

have two binding sites (KARKHOFF-SCHWEIZER, BRUSCHI, & VOORDOUW, 1993b; Karkhoff-

Schweizer et al., 1995a; Klein et al., 2001a; Laue et al., 2001; Muller et al., 2015). 

Nowadays, it is known that the DsrAB evolved primarily as a reductive enzyme. This phenomenon was 

clarified by Muller et al., (2015) in their analysis of dsrAB sequences and DsrAB proteins, in which their 

phylogenetic trees associated the dsrAB genes of the bacterial strain  Moorella thermoacetica and the 

reductive archaeal type DsrAB enzyme as the most probable common ancestor that originated the 

dissimilatory sulfite reductase (Muller et al., 2015). 

Until today, the mechanisms associated with the sulfur anion oxidation and reduction by the dsrAB 

operon are not fully understood. However, the sequence of aminoacids (most of them of basic nature) 



22 

 

involved in the interaction with the sulfur anions (to be reduced or oxidized) are conserved in microbes 

that have the dsrAB Operon (Ghosh & Bagchi, 2015). 

As it is mentioned on Ghosh & Bagchi (2015), the DsrA is a helical protein composed of 15 helices 

separated by 6 β strands, while the DsrB is an αβ protein composed of 13 helices and 11 β strands 

connected by loops. Furthermore, in their studies they found out that the secondary structures of the 

DsrAB proteins, for both the oxidizing and reducing bacteria, are similar with the exception that the DsrA 

component of the reducing bacterial strains has two extra helices which are absent at the oxidizing 

bacterial strain (Ghosh & Bagchi, 2015). 

As both sulfur oxidizing and reducing bacteria have the same dsrAB operon (with slight differences), the 

DsrAB protein has similar composition. Therefore, both types of bacteria have binding sites for sulfate, 

sulfite, sulfide and thiosulfate.  Furthermore, the portion of the DsrAB complex that binds sulfur 

compounds in oxidizing bacteria is composed of positively charged aminoacids (which helps in the 

interaction with negatively charged sulfur compounds such as thiosulfate). However, some differences 

have been found for the sulfide binding site. The latter has uncharged polar aminoacids instead of 

positively charged aminoacids. This phenomenon is overcome by the high surface charge density of 

sulfide which induces its binding to the DsrAB protein. In the other hand, the binding site for sulfate and 

sulfite in reducing bacteria is composed mostly of hydrophobic aminoacids which makes it difficult for 

these sulfur compounds to bind. However, they interact strongly with their binding sites due to presence 

of positively charged aminoacids (in comparison with thiosulfate or sulfide binding sites in the reducing 

bacteria). In general, oxidizing bacteria binding sites interact better with thiosulfate and sulfide because 

their binding sites have more positively charged aminoacids in comparison with those present in the 

binding sites of sulfate and sulfite. The same is true for reducing bacteria binding sites. They have more 

positively charged aminoacids in the binding sites for sulfate and sulfite in comparison with the binding 

sites of thiosulfate and sulfide (Ghosh & Bagchi, 2015). 

In addition, the dsrB gene of some sulfate reducers can be expressed as a fusion protein of dsrB and 

dsrD (i.e. Bilophila wadsworthia, which is uncappable of sulfate reduction, but it is able to reduce sulfite). 

In this microorganism, the dsrA and dsrB encode nucleotides that are translated into 438 aminoacid 
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residues/49kDa (α subunit) and 483 aminoacid residues/53kDa (β subunit + γ subunit, from which 11kDa 

corresponds to the γ subunit). Furthermore, the presence of a promoter sequence upstream of the dsrA 

gene translational start site (approximately 123 bp) and a terminator sequence downstream of the dsrB 

stop codon suggest that even though the dsrB encodes a fusion protein, the whole operon is transcribed 

as a single unit (Laue et al., 2001). 

It is interesting that the dsrAB operon along with the 16S rDNA gene have been used to determine 

phylogenetic relationships among different species of sulfate reducers and the evolutionary traits of this 

microbial group. Moreover, the authors found out that vertical-divergence (for example in Desulfobacula 

toluolica or Desulfobacter latus) and lateral gene transfers (between non-phylogenetic related bacterial 

strains for example Desulfobacterium anilini with Desulfotomaculum species and even more distant 

between Bacteria and Archaea) have occurred (Zverlov et al., 2005). As it was expected, none of the 

bacterial strains that received these genes through lateral transfer clustered with species that received 

them by vertical transfer. This finding suggests that the dsrAB common ancestor has not been described 

yet or it is non-existent nowadays (Muller et al., 2015; Zverlov et al., 2005). All these findings support the 

idea that the dissimilatory sulfite reductases are ancient enzymes that have been affected by multiple 

evolutive pressures (Muller et al., 2015; Zverlov et al., 2005). In fact, they have been selected through 

three principal mechanisms: divergence by speciation (vertical gene transfer), functional diversification 

and lateral gene transfer (horizontal gene transfer) (Muller et al., 2015). Consequently, the dsrAB gene 

cluster has been used as a phylogenetic marker to determine the presence of sulfate reducers across 

different environments (Muller et al., 2015). 
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II. Materials and Methods 

D. psychrophila, D. arcticum and D. ferrireducens obtained from the Leibniz-Institut DSMZ-Deutsche 

Sammlung von Mikroorganismen und Zellkulturen were inoculated in two different types of medium: A 

complex medium (Table Nº 1-Lactate medium) in which the terminal electron acceptor (MgSO4) was 

replaced for Na2SO4 and a minimal medium (Table Nº 2) in which the final electron acceptor (Na2SO4) 

was replaced for different types of sulfate compounds at increasing concentrations (Table Nº 10 and 

Table Nº 11). 

A. Complex culture medium 

All the components of the complex culture medium were weighed separately (Table Nº 1). Subsequently, 

they were mixed in a beaker containing 987 mL of distilled water under stirring (the terminal electron 

acceptor MgSO4 was replaced for Na2SO4). Once all the components were mixed properly, the medium 

was aliquoted into test tubes (4 experimental test tubes and 1 growth negative control per microbe, 9 mL 

of medium per test tube). Then, they were subjected to a gas flow of 100% N2 until reaching anoxigenic 

conditions. As soon as the latter was achieved, the test tubes were sealed with rubber stoppers. 

Subsequently, the gas head spaces of the test tubes were oxygen evacuated using a 100% N2 gas 

delivery system (formed by a 100% N2 gas tank connected through plastic hoses to syringes and 

needles). Furthermore, the medium was autoclaved at 121º C for 15 min. The inoculations were 

performed on ice and under an anoxigenic atmosphere. Moreover, each strain was inoculated in 4 test 

tubes by means of 2 mL sterile syringes and needles. Once all test tubes were inoculated, each strain 

was incubated close to its optimal temperature (D. psychrophila and D. ferrireducens at 4º C and D. 

arcticum at 42º C). 

B. Martian conditions Minimal culture medium 

All different solutions (Tables Nº 2, 3, 4, 5, 6, 7, 8 and 9) were prepared separately. First, every 

component was weighed and mixed in stock solutions. Subsequently, smaller proportions were aliquoted 

into smaller vials. The latter were subjected to a H2/CO2 (80%:20%) gas flow until reaching anoxigenic 

conditions. Immediately, these vials were sealed with rubber stoppers and the gas head space of each 
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one was replaced with H2/CO2 (80%:20%) using a delivery system (formed by an 80%:20% H2/CO2 gas 

tank connected through plastic hoses to syringes and needles). All solutions, except vitamins-containing 

solutions (Table Nº 6, 7 and 8) were autoclaved at 121º C for 15 min. Moreover, vitamins-containing 

solutions were sterilized by filtration using microdisc filters of 0.2 μm under an anoxigenic atmosphere. 

Once all solutions were sterilized and cooled down, we proceeded to use the anoxigenic chamber to mix 

specific volumes of the sterilized solutions (Trace elements, selenite-tungstate, NaHCO3, vitamins, Na2S 

and sulfate compounds-Tables Nº 3 to 10) into sealed bottles containing 50 mL of anoxic basal medium 

for sulfate reducers (Table Nº 2). As it is shown in Table Nº 11 the sulfate compound (terminal electron 

acceptor) Na2SO4 was replaced in some cultures for increasing concentrations of different sulfate 

compounds (Table Nº 10). Furthermore, the cultures A2, A4 and A6 (Table Nº 11) were used to contrast 

growth patterns of the three microbes tested in the minimal medium (using H2, CO2 and Na2SO4) versus 

the complex medium (using lactate, yeast extract and Na2SO4). Likewise, the same cultures A2, A4 and 

A6 were used as positive controls for the experiments with increasing concentrations of different sulfate 

compounds (Table Nº 11). 

All procedures and inoculations (Table Nº 11) were performed on ice and under an anoxigenic 

atmosphere. Every 2 weeks the head space of every culture was replaced with fresh H2/CO2 gas mixture. 

C. DNA Extractions 

Genomic DNA of every culture was extracted using the MOBIO Microbial DNA Isolation kit. We 

introduced some modifications in order to increase the genomic DNA concentration and purity. 

Furthermore, we used proteinase K (20 mg/mL, VWR) and RNase A (10μg/mL, Akron Biotech) following 

the manufacturers’ instructions. 

D. PCR with 16 S rDNA primers and dsrAB primers 

We used the primers 27F and 16S R1 in order to amplify a portion of the bacterial 16 S rDNA gene. In 

addition, we used the primers specific for the dsrAB operon of D. psychrophila: DSR1FD and DSR4RE, 

the dsrAB operon general primers for D. ferrireducens: DSR1F and DSR4R and finally for D. arcticum, we 

used the primers dsrA_FWD and dsrA_REV which amplify a portion of the dsrA gene. 
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The 16 S rDNA gene primers have the sequence 

1. 27 F 5’- AGAGTTTGATCMTGGCTCAG - 3’ 

2. 16S R1 5’ - GGYTACCTTGTTACGACTT – 3’ (a small modification of 1492R primer) 

Amplicon size: approximately 1465 bp 

The dsrAB primers used for D. psychrophila amplifications were 

1. DSR1FD 5’ – ACTCACTGGAAGCACG- 3’ 

2. DSR4RE 5’ – GTGTAACAGTTACCACA- 3’ 

Amplicon size: approximately 1900 bp (Figure 8) 

The dsrAB primers used for D. ferrireducens amplifications were 

1. DSR1F 5’- ACSCACTGGAAGCACG- 3’ 

2. DSR4R 5’- GTGTAGCAGTTACCGCA- 3’ 

Amplicon size: approximately 1900 bp (Figure 8) 

The dsrA primers used for D. arcticum amplifications have the sequence 

1. dsrA_FWD 5’- TTATCGATCTGTGCCCTT-3’ 

2. dsrA_REV 5’- TTCTGCCTTCTTCCATCC-3’ 

Amplicon size: approximately 285 bp (Figure 9) 

Furthermore, we used the PCR mixture described in Table Nº 12 with the enzyme Gold Taq 2X MM 

(GoTaq Green). All reactions were prepared on ice. Moreover, PCR tubes containing the reaction mixture 

described in Table Nº 12 were subjected to DNA amplification using the thermocycler and the programs 

described in Tables Nº 13, 14 and 15 according to the set of primers and microorganisms tested. The 

thermocycler used was the model Primus 96 plus of MWG-BIOTECH (Greensboro). 
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E. Agarose Gel Electrophoresis 

The amplifications of the 16S rDNA gene of the three microbes and the dsrAB operon of D. psychrophila 

and D. ferrireducens were run in 0.9% regular agarose gels. They were prepared by solubilizing 0.36 g of 

regular agarose in 40 mL of TAE (1X) under heating conditions. Once agarose crystals were solubilized 

and the temperature of the mixtures was close to 45º C, 4 μL of SYBR Safe DNA gel stain (Invitrogen) 

was added. Subsequently, the gels were poured in gel electrophoresis molds. Then, we let them solidify 

for 20 min and finally, we placed the gels in electrophoresis cells containing the running buffer (TAE 1x). 

The PCR products of the dsrA gene of D. arcticum were run in 2.5 % low melting agarose gels. The latter 

were prepared by solubilizing 1.0 g of low melting agarose in 40 mL of TAE (1X) under heating 

conditions. The rest of the preparation was performed as it was explained for the 16S rDNA gene and the 

dsrAB operon PCR products. 

Furthermore, we loaded 5-10 μL of the PCR products and 3 μL of each of the ladders (1Kb Gibco or 1X 

ROCHE and 25 bp DNA step Promega). Subsequently, we run the samples at 100 V for approximately 30 

min (16 S rDNA and dsrAB operon) or 50 V for approximately 45 min (dsrA of D. arcticum). Once the run 

was done, the gels containing separated bands were visualized and analyzed under an UV 

transilluminator (ULTRA.LUM). 
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III. Results 

The 16S rDNA gene band amplification, which indicates bacterial presence/proliferation, was absent in 

the cultures prepared with complex components for the three sulfate reducers tested in this research: D. 

psychrophila, D. ferrireducens and D. arcticum (Table Nº 1, Figure 1). However, the 16S rDNA gene 

amplification from the minimal cultures prepared with H2, CO2, Na2SO4 and different types and 

concentrations of sulfate compounds showed evidence of active growing (Figure 2-lanes Nº 12 and 13, 

Figure 4-lanes Nº 3, 6, 7 and 11 and Figure 6-lanes Nº 3, 4, 5, 6, 7, 8 and 13). The latter indicates their 

incredible plasticity and adaptation to environments with low nutrients and increased concentrations of 

sulfate compounds. Moreover, these microbes were able to carry active metabolism under conditions 

similar to those experienced in Mars atmosphere (presence of CO2 and H2). 

As we can observe in Figure 2 (lanes 12 and 13), cultures of D. psychrophila showed evidence of 16S 

rDNA amplifications in the presence of two different concentrations of Fe2(SO4)3 (40 and 48 wt %). 

However, the bands (faint bands) suggested its growing was relatively low. In addition, an interesting 

phenomenon registered is the absence of growing in the presence of Na2SO4 (lane 3, Figure 2) which is 

the most common terminal electron acceptor used for the cultivation of sulfate reducers under laboratory 

conditions. As it is shown in Figure 3, D. psychrophila cultures did not showed amplification of the dsrAB 

operon using the specific primers DSR1FD and DSR4RE (Figure 3). 

Furthermore, in Figure 4, D. ferrireducens showed evidence of 16S rDNA amplification in three different 

types and concentrations of sulfate compounds (lanes 6, 7 and 11) from which lane 6 presented the best 

amplification (Figure 4, lane 6, D. ferrireducens in MgSO4 18 wt %).  In addition, as it was expected this 

microbe was able to grow using Na2SO4 as terminal electron acceptor (lane 3, Figure 4) although the 

band of the 16S rDNA gene amplification was relatively faint in comparison with the one present in 

MgSO4 18 wt %. Moreover, there was active growing in the presence of two different iron sulfate 

compounds, FeSO4 and Fe2(SO4)3, at concentrations of 10 and 30 wt % respectively. However, the 

amplification of the dsrAB operon using the general primers for detection of sulfate reducers (DSR1F and 

DSR4R) was absent (Figure 5). 
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Finally, in Figure 6,  D. arcticum showed evidence of amplification of the 16S rDNA gene in five different 

sulfate compounds. The latter suggested its broad metabolic plasticity spectrum. As we can observe, it 

was able to grow in Na2SO4 (as it was expected), CaSO4 (0.1 wt %) which presented one of the best 

amplifications and MgSO4 (10 and 18 wt %). Furthermore, its best growing was registered with FeSO4 at 

10 wt % although it was also detected at 14 wt % (at a lower intensity). Moreover, growth was also 

detected with Fe2(SO4)3 48 wt %, but this amplification resulted in a faint band. Congruent with our 

expectations, the amplification of the dsrA portion of the dsrAB operon of D. arcticum using the primers 

drsA_FWD and drsA_REV was positive in the same samples that resulted positive for the amplifications 

of the 16S rDNA gene. Interestingly, the bands for samples in the lanes 3 (Na2SO4), lane 5 (MgSO4 10 wt 

%) and lane 6 (MgSO4 18 wt %) showed a better amplification of the dsrAB operon in comparison with the 

amplifications of the 16S rDNA gene. However, lane 8 (FeSO4 14 wt %) showed a faint band for both 

types of analysis while lane 13 (Fe2(SO4)3 48 wt %) which showed a faint band on the 16S rDNA 

amplification totally disappeared in the dsrAB analysis (Figure 7). 
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IV. Discussion 

Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum arcticum in 

complex medium (16S rDNA amplifications). 

The proliferation analysis of D. psychrophila, D. ferrireducens and D. arcticum in the presence of complex 

substrates such as lactate and yeast extract (Table Nº 1) pointed out their inability to degrade/utilize 

complex molecules in our experiments (Connon & Giovannoni, 2002; Russell et al., 1990; Vartoukian, 

Palmer, & Wade, 2010). The latter was demonstrated with the amplification of the 16S rDNA gene which 

showed no evidence of active growing (Figure 1). However, amplifications of this gene were registered in 

the minimal medium which was composed of H2 and CO2 as electron donor and carbon source (D. 

ferrireducens in Figure 4-lane 3 and D. arcticum in Figure 6-lane 3). Nevertheless, it has been reported 

that the three microbes tested can use lactate as their electron donor and carbon source (Aullo et al., 

2013; Greene, 2014; Knoblauch, Sahm & Jorgensen, 1999; Rabus et al., 2004; Vandieken, 2006a, 

2006b). A possible explanation for our inability to amplify the 16S rDNA gene in complex medium comes 

from the fact that these microbes are adapted to metabolize small molecules as substrates (adaptation to 

low nutrients environments) instead of complex molecules such as lactate or yeast extract. This finding 

suggested their capability to metabolize small molecules such as H2 and CO2 faster than complex 

molecules such as lactate (Aullo et al., 2013; Connon & Giovannoni, 2002; Russell et al., 1990; 

Vartoukian et al., 2010). Interestingly, D. psychrophila did not show evidence of active growing in any of 

the media used (Figure 1-lane 2, and Figure 2-lane 3) which indicated its inability to metabolize complex 

or small molecules in our experiments. However, a possible explanation for this phenomenon is that this 

psychrophilic microbe has a high duplication time. In addition, it was subjected to temperatures (4º C) 

below its optimal growth temperature (10 – 18º C) because it has been reported that they can carry out 

active metabolism below 0º C (Greene, 2014; Knoblauch, Sahm & Jorgensen, 1999; Rabus et al., 2004; 

Vandieken, 2006b). Therefore, our experimental conditions (lower temperature than optimal) probably 

rendered an increased duplication time and a slower growth rate. As a result, it might be possible that the 

DNA extractions were performed before there were enough cells to render a good quality DNA template 

for downstream PCR amplifications. 
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In summary, this part of this research pointed out that the proliferation of D. psychrophila was affected by 

a combinatory effect of the type of nutrients present in culture (lactate and yeast extract in comparison 

with simple nutrients such as H2 and CO2) and temperature (lower than optimal) while for D. ferrireducens 

and D. arcticum the substrate type (lactate and yeast extract in comparison with simple nutrients such as 

H2 and CO2) affected its growth (Connon & Giovannoni, 2002; Russell et al., 1990; Vartoukian et al., 

2010). 

Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum arcticum in 

minimal medium with different types and concentrations of sulfate compounds (16S rDNA and 

dsrAB amplifications). 

The low presence of the 16S rDNA gene amplification product in cultures from the minimal medium with 

D. psychrophila and D. ferrireducens and the high products of amplification of D. arcticum (Tables 2 to 9, 

Figures 2, 4 and 6) suggested their ability to utilize small molecules to undergo active metabolism 

(Connon & Giovannoni, 2002; Russell et al., 1990; Vartoukian et al., 2010). This feature is one of the 

principal requirements to proliferate under Martian environments in which the substrates’ availability is 

relatively low  (Des Marais et al., 2008; Parnell et al., 2007). Furthermore, the microorganisms’ failure to 

degrade complex molecules illustrated a possible mechanism of adaptation to environments with low 

nutrients. Moreover, their active growing under this condition pointed out their inherent advantage to 

utilize gaseous molecules such as H2 (electron donor) in the production of energy and CO2 as their 

source of carbon for biomass production (Aullo et al., 2013; A. Roychoudhury, 2004; Skidmore et al., 

2000). 

Furthermore, as we can observe in Figure 2, D. psychrophila in minimal medium showed a relatively low 

amplification of the 16S rDNA gene (lanes 12 and 13, Figure 2). The terminal electron acceptor tested in 

these lanes was Fe2(SO4)3 40 wt % and 48 wt % respectively. Although it might seem that this microbe 

was growing in a high concentration of Fe2(SO4)3, the reality is that this mineral is almost insoluble in 

water. Therefore, the concentration of sulfate anions available to use as terminal electron acceptors can 

be close to minimal due to solubility constraints at 4º C. However, it is maximal if we take into 

consideration that an increased concentration of the mineral will maximize the number of anions that can 
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be available for sulfate reduction. Nevertheless, the presence of these amplification products indicated 

the competence of this psychrophilic strain to survive and proliferate in environments that contain sulfate 

compounds. Moreover, it used H2 as the electron donor in anaerobic sulfate reduction and CO2 as the 

only source of carbon. In the other hand, we expected to detect microbial growth at lower concentrations 

of sulfate compounds. A possible explanation for this phenomenon is the inherent effect of low 

temperatures in cellular processes and nutrients uptake. As it is mentioned in Pomeroy & Wiebe (2001), 

low temperatures (near limiting temperatures) affect a variety of cell processes that reduce the growth 

rate of any microorganism as well as its ability to access different carbon sources (Pomeroy & Wiebe, 

2001; Russell et al., 1990). Furthermore, in our experiments D. psychrophila was subjected to 

temperatures (4º C) below its optimal growth temperature (10-18 ºC) which could affect/decelerate the 

uptake of nutrients and the terminal electron acceptors. This scenario turns out to be more restraining for 

bacterial proliferation if we take into consideration that the only nutrients present (H2 and CO2) were 

gaseous molecules and their diffusion rate into water molecules (culture medium) is decreased at lower 

temperatures (Callister, 2010; Carpenter, Lin, & Capone, 2000; Jähne, Heinz, & Dietrich, 1987; Marion et 

al., 2003; Priscu et al, 1998; Rivkina, Friedmann, McKay, & Gilichinsky, 2000; Tan, 2014). 

Interestingly, it seemed that the microbe’s proliferation was inhibited at lower concentrations of minerals. 

This feature is congruent with the discoveries of Aullo et al., (2013) who indicated that sulfate reduction is 

higher in cold environments where sulfate sources are not limiting (Aullo et al., 2013; Mukhopadhyay et 

al., 2006; Porter et al., 2007; Skidmore et al., 2000). 

Although the proliferation of D. psychrophila was detected through the 16S rDNA amplifications, the 

dsrAB operon PCRs that targeted the whole dsrAB operon (primers DSR1FD/DSR4RE) showed no 

evidence of active growing. This phenomenon was expected as the two bands generated with the 16S 

rDNA gene amplification were relatively faint. Furthermore, this outcome can be explained based on the 

suggestion of Aullo et al., (2013) and Scholten et al., (2005) who mentioned that cultivation techniques 

employed in the growing of sulfate reducers adapted to anoxic environments are normally tedious and 

most of the cases unsuccessful in comparison with cultivation techniques used for faster growing 

bacterial species (Aullo et al., 2013; Carpenter, Lin, & Capone, 2000; Marion et al., 2003; Priscu et al, 
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1998; Rivkina, Friedmann, McKay, & Gilichinsky, 2000; Scholten et al., 2005). The latter pointed out the 

inability of this microbe to proliferate in a high number of cells (due to the same temperature and 

substrates’ availability constraints mentioned above) which is translated in our inability to extract a good 

quality DNA template for the PCRs of the 16S rDNA or the dsrAB operon. Furthermore, the same 

phenomenon occurred with the dsrAB operon amplifications of D. ferrireducens using the primers 

DSR1F/DSR4R. However, we were able to detect its proliferation through 16S rDNA amplifications in 

different types and concentrations of sulfate compounds MgSO4 18 wt % (solubility of 26.9 wt % at 0º C), 

FeSO4 10 wt % (solubility of 15.6 wt % at 0º C) and Fe2(SO4)3 30 wt % (almost insoluble in water) (Figure 

4). Interestingly this microbe was able to proliferate in the apparent high concentration of Fe2(SO4)3 as it 

was registered for D. psychrophila (Figure 2). As a matter of fact, the same explanation can be extended 

to the proliferation of D. ferrireducens at that high concentration. Furthermore, it showed a 16S rDNA 

amplification product at MgSO4 18 wt % in which the 100% of the sulfate anions were in solution and 

available for anaerobic reduction (solubility higher than 26.9 wt %, at 4º C). This is congruent with the 

discoveries of Crisler et al., (2012) which find out that sulfate reducers can grow at MgSO4 

concentrations of 24 wt % (Crisler et al., 2012). The same explanation can be extended to the 16S rDNA 

amplification product of this microbe in FeSO4 10 wt % in which 100 % of the sulfate anions were in 

solution (solubility higher than 15.6 wt % at, 4º C). In any case, these low amplification products of the 

16S rDNA gene and the absence of them with the dsrAB operon again suggested the need of a better 

template for DNA downstream PCR amplifications (better DNA extraction or a culture with higher 

biomass/bacterial cells production) (Brandt et al., 2001; KARKHOFF-SCHWEIZER et al., 1993a; A. N. 

Roychoudhury & McCormick, 2006). 

As it was mentioned for the 16S rDNA amplifications of these microbes in complex medium, another 

explanation for our inability to detect the presence of bacterial active growing (through dsrAB 

amplifications) in minimal medium is that these microbes might be replicating at a slower rate due to the 

low availability of the electron donor and carbon source (H2 and CO2 decreased diffusion due to low 

temperature) although both have been reported in the literature as normal substrates for these microbes’ 

proliferation. If this is the case, the detection of its presence with conventional molecular techniques such 

as PCR amplifications will render unsuccessful results. In other words, it might be possible that the 
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number of vegetative cells present at the moment of the DNA extraction was too low to render a good 

quantity and quality DNA template. As it was suggested by Schuerger & Nicholson (2006) more sensitive 

techniques should be used to determine the presence of active bacterial metabolism (Brandt et al., 2001; 

KARKHOFF-SCHWEIZER et al., 1993a; A. N. Roychoudhury & McCormick, 2006; A. Schuerger & 

Nicholson, 2006). 

In the other hand, D. arcticum exhibited impressive metabolic capabilities. As it was shown in Figure 6, 7 

and 10, this microbe was able to survive, proliferate and undergo anaerobic sulfate reduction under 

simulated Martian atmospheric conditions. Furthermore, it used three of the four terminal electron 

acceptors tested in this research (CaSO4 0.1 wt %, MgSO4 10 wt % and 18 wt %, FeSO4 10 wt % and a 

low rate was registered for FeSO4 14 wt %; all of these mineral species had a sulfate anion 100 % 

solubility at 42º C). However, the 16S rDNA and dsrA patterns of amplifications suggested a possible 

constraint in its metabolic activity at higher sulfate compounds concentrations. Moreover, a 

decrease/arrest on its metabolic activity/growth is obvious at sulfate salt concentrations higher than 14 wt 

% (for FeSO4). The latter indicated an inability to cope with increased mineral concentrations and its 

failure to maintain cellular homeostasis through mechanisms of osmoregulation (Mukhopadhyay et al., 

2006; Porter et al., 2007). However, the presence of a weak amplification product of the 16S rDNA at 

Fe2(SO4)3 48 wt % again illustrates the same phenomenon that occurred with D. psychrophila in which 

this mineral had an apparent high concentration, but its solubility in water indicated that the sulfate anions 

available for sulfate reduction are actually really low (see Figure 3 and Figure 6). This data suggested that 

it might be possible for D. arcticum to proliferate in Martian microenvironments that are rich in sulfate 

compounds such as CaSO4, MgSO4 and FeSO4. However, other observations pointed out this scenario is 

unrealistic. First, the high UV irradiation is bactericidal for the vegetative form of this microbe while the 

endospore form will eventually degenerate due to cumulative DNA damage. Second, the extreme low 

temperatures will decrease its metabolism due to its requirement of warmer temperatures to carry out 

active growth and metabolic activity (it is a mesophilic/moderate thermophilic microbe). However, its 

survival under Martian subsurface physicochemical conditions is possible. The latter turns to be more 

logic, if we take into consideration that this microorganism is an endospore former and the UV light does 

not affect biological forms more than 500 μM in the soil’s depth. Furthermore, these conditions provide it 
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with a niche that increases the chances of survivability (Arvidson et al., 2014; Berry et al., 2010; Brandt et 

al., 2001; Crisler et al., 2012; Des Marais et al., 2008; KARKHOFF-SCHWEIZER et al., 1993a; Parnell et 

al., 2007; A. N. Roychoudhury & McCormick, 2006; Squyres et al., 2006; Velasco et al., 2015). In the 

other hand, the microbe’s proliferation in subsurface environments is extremely affected by low 

temperatures similar as it is affected in the Martian surface (it will render extreme low/absent metabolic 

activity).  Therefore, temperature is the principal constraint for the microbe’s proliferation even though the 

electron donor and the carbon source are not limiting factors (abundant CO2 almost 95 % and traces of 

H2 from UV photodissociation of transient liquid water) (Bhattacharyya, 2016). 

Finally, some difficulties associated to this study were the extraction of representative samples of DNA 

and subsequent amplifications of the dsrAB genes. Furthermore, the same problems were experienced 

by Scholten et al., (2005) in their studies of sulfate reducers in a meromictic soda lake (Scholten et al., 

2005). This inability to extract DNA comes from the fact that in sedimentary environments, such as those 

present in Mars, the concentration of cells is normally low. Therefore, low concentrations of nucleic acids 

are recovered after DNA extractions. Nevertheless, this disadvantage has been overcome through the 

modification of various extraction techniques that include the use of freeze-thawing cycles, mechanical 

lysis, specific buffers and specific chemical lysis procedures. Also, it has been reported that 

microorganisms adapted to harsh environments (such as those present at the Earth´s subsurface) 

develop structures that interfere with the mechanical lysis steps or with the DNA extraction in general 

(different composition of cell membrane and cell wall) (Alain et al., 2011; Valdivia-Silva et al., 2016). 
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V. Conclusions 

In this research work we can conclude that: 

1. We were able to determine that microbes adapted to low nutrients environments (in which the 

electron donors and carbon sources are limiting) can metabolize small substrates’ molecules 

such as H2 and CO2 faster than complex molecules such as lactate and yeast extract. This finding 

is the result of our analysis/detection of the 16S rDNA gene amplification in cultures that were 

prepared with complex (no amplification) and with minimal substrates (low/detectable 

amplifications). 

2. Active growth of D. psychrophila and D. ferrireducens (psychrophilic microbes) was detected at 

Martian atmospheric (H2 and CO2 content) and soil conditions (different types and concentrations 

of sulfate compounds) through the amplification of the 16S rDNA gene. Although the amplification 

process was constrained by low quality DNA templates due to low availability of cells, we were 

able to detect the growth of D. psychrophila at two concentrations of Fe2(SO4)3 (40 and 48 wt %) 

and D. ferrireducens with three types of sulfate compounds MgSO4, FeSO4 and Fe2(SO4)3 (18, 10 

and 30 wt % respectively). These findings pointed out the incredible metabolic capabilities 

inherent of these microbes. 

3. We were able to determine that in order to amplify the dsrAB operon in psychrophilic microbes, 

better DNA quality should be extracted. However, the latter depends on the microbial growth 

present in each culture. In our case, different conditions such as low nutrients availability and 

diffusion, low temperatures, and increasing concentrations of minerals (sulfate compounds) 

constrained the microbial growth. Consequently, amplifications of the dsrAB operon in these 

strains were inconclusive. 

4. D. arcticum was the only microbe of this study that showed high metabolic and survival 

capabilities. Furthermore, we detected active growing with the four sulfate compounds tested 

CaSO4, MgSO4, FeSO4 and Fe2(SO4)3 according to 16S rDNA amplifications and in three of them 

CaSO4, MgSO4 and FeSO4 according to dsrA amplifications. Moreover, we were able to detect its 

presence at sulfate concentrations of 48 wt % (similar to D. psychrophila) which indicates their 



37 

 

impressive osmoregulation mechanisms. However, the proliferation of this microbe under surface 

and subsurface microenvironments in the Red Planet is unrealistic due to its requirement for 

warmer temperatures. 

5. The detection of active growth in each of these cultures through amplifications of the 16S rDNA 

gene and the dsrA component of the dsrAB operon suggested the active expression of the 

dissimilatory sulfate reductase (DsrAB). Moreover, this study is just the beginning of future 

studies in which we have planned to measure the expression of the DsrAB. 
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VII. Appendix 
 

Table 1. List of components of complex culture medium (Lactate medium adopted from Butlin, Adams & 
Thomas, 1949 and Postgate, 1963). 

Component         Quantity 

60% sodium lactate        4 mL 

Yeast extract         1.0 g 

Ascorbic acid         0.1 g 

*Magnesium sulfate (MgSO4. 7H2O)      0.2 g 

K2HPO4          0.01 g 

Fe(SO4)2 (NH4)2. 6H2O        0.2 g 

NaCl          10.0 g 

dH2O          987 mL 

pH          7.3 

*Terminal electron acceptor was replaced for Na2SO4 (0.2 g/L). 

 

 

Table 2. Basal medium for sulfate reducers (Minimal medium adopted from Widdel and Bak, 1992). 

 Component         Quantity 

NaCl          1.0 g 

MgCl2. 6H2O         0.4 g 

CaCl2. 2H2O         0.1 g 

*Na2SO4         4.0 g 

NH4Cl          0.25 g 

KH2PO4          0.2 g 

KCl          0.5 g 

Trace elements solution        1.0 mL 

Selenite-tungstate solution       1.0 mL 

NaHCO3 solution        30.0 mL 

Vitamin mix solution        1.0 mL 

Thiamine solution        1.0 mL 

Vitamin B12 solution        1.0 mL 
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Table 2. Basal medium for sulfate reducers (Minimal medium adopted from Widdel and Bak, 1992) 
(Cont.). 

Na2S solution         7.5 mL 

Resazurin soltn. (0.1% w/v)       0.50 mL 

dH2O          1000 mL 

ph          7.0-7.3 

*Terminal electron acceptor was replaced for different concentrations of sulfate compounds. 

 

 

 

Table 3. Trace Elements solution 

 Component        Quantity 

HCl (25% = 7.7 M)       12.5 mL (100 mM) 

FeSO4. 7H2O        2100 mg (7.5 mM) 

H3BO3         30 mg (0.5 mM)  

MnCl2. 4H2O        100 mg (0.5 mM) 

CoCl2. 6H2O        190 mg (0.8 mM) 

NiCl2. 6H2O        24 mg (0.1 mM) 

CuCl2. 2H2O        2 mg (0.01 mM) 

ZnSO4. 7H2O        144 mg (0.5 mM) 
Na2MoO4. 2H2O        36 mg (0.15 mM) 

dH2O         987 mL 

 

 

 

Table 4. Selenite-Tungstate solution 

 Component        Quantity 

NaOH         0.4 g (10mM) 

Na2SeO3. 5H2O        6 mg (0.02 mM) 

Na2Wo4. 2H2O        8 mg (0.02 mM) 

dH2O         1000 mL 
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Table 5. NaHCO3 solution 

 Component        Quantity 

 NaHCO3        84 g 

dH2O         10000 mL 

 

 

 

 Table 6. Vitamin Mix solution 

 Component        Quantity 

Biotin         2 mg 

Folic acid        2 mg 

Pyridoxine-HCl        10 mg 

Thiamine-HCl. 2H2O       5.0 mg 

Riboflavin        5.0 mg 

Nicotinic acid        5.0 mg 

D-Ca pantothenate       5.0 mg 

Vitamin B-12        0.10 mg 

p-aminobenzoic acid       5.0 mg 

Lipoic acid        5.0 mg 

dH2O         1000 mL 

 

 

 

Table 7. Thiamine solution 

 Component        Quantity 

 Thiamine chloride dihydrochloride     10 mg 

25 mM Sodium Phosphate pH 3.4     100 mL 
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Table 8. Vitamin B12 solution 

 Component        Quantity 

 Cyanocobalamine       5 mg 

dH2O         100 mL 

 

 

 

Table 9. Na2S solution 

 Component        Quantity 

 Na2S. 9H2O (0.20 M)       48 g 

dH2O         1000 mL 

 

 

 

Table 10. Sulfate compounds (Replacement of terminal electron acceptor on Basal medium for sulfate 
reducers). 

 Sulfate compound       Concentration 

CaSO4         0.1 wt % 

MgSO4         10 wt % 

MgSO4         18 wt % 

Fe(SO4)2        10 wt % 

Fe(SO4)2        14 wt % 

Fe2(SO4)3        10 wt % 

Fe2(SO4)3        20 wt % 

Fe2(SO4)3        30 wt % 

Fe2(SO4)3        40 wt % 

Fe2(SO4)3        48 wt % 
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Table 11. Experimental Design for inoculation of cultures under Martian conditions. H2/CO2 carbon source 
and different sulfate compounds as terminal electron acceptors.  

 Control   Experimental     Microorganism      Sulfate Compound              pH       Temperature 

 ID                ID 

A1 A2 D. psychrophila Na2SO4 7.0-7.3 4º C 

A3 A4 D. ferrireducens Na2SO4 7.0-7.3 4º C 

A5 A6 D. arcticum Na2SO4 7.0-7.3 42º C 

B1 B2 D. psychrophila CaSO4 0.1 wt % 7.0-7.3 4º C 

 C1 D. ferrireducens CaSO4 0.1 wt % 7.0-7.3 4º C 

 C2 D. arcticum CaSO4 0.1 wt % 7.0-7.3 42º C 

B3 B4 D. psychrophila MgSO4 10 wt % 7.0-7.3 4º C 

 C3 D. ferrireducens MgSO4 10 wt % 7.0-7.3 4º C 

 C4 D. arcticum MgSO4 10 wt % 7.0-7.3 42º C 

B5 B6 D. psychrophila MgSO4 18 wt % 7.0-7.3 4º C 

 C5 D. ferrireducens MgSO4 18 wt % 7.0-7.3 4º C 

 C6 D. arcticum MgSO4 18 wt % 7.0-7.3 42º C 

B7 B8 D. psychrophila FeSO4 10 wt % 7.0-7.3 4º C 

 C7 D. ferrireducens FeSO4 10 wt % 7.0-7.3 4º C 

 C8 D. arcticum FeSO4 10 wt % 7.0-7.3 42º C 

B9 B10 D. psychrophila FeSO4 14 wt % 7.0-7.3 4º C 

 C9 D. ferrireducens FeSO4 14 wt % 7.0-7.3 4º C 

 C10 D. arcticum FeSO4 14 wt % 7.0-7.3 42º C 

B11 B12 D. psychrophila Fe2(SO4)3 10 wt % 7.0-7.3 4º C 

 C11 D. ferrireducens Fe2(SO4)3 10 wt % 7.0-7.3 4º C 

 C12 D. arcticum Fe2(SO4)3 10 wt % 7.0-7.3 42º C 

B13 B14 D. psychrophila Fe2(SO4)3 20 wt % 7.0-7.3 4º C 

 C13 D. ferrireducens Fe2(SO4)3 20 wt % 7.0-7.3 4º C 

 C14 D. arcticum Fe2(SO4)3 20 wt % 7.0-7.3 42º C 

B15 B16 D. psychrophila Fe2(SO4)3 30 wt % 7.0-7.3 4º C 
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Table 11. Experimental Design for inoculation of cultures under Martian conditions. H2/CO2 carbon source 
and different sulfate compounds as terminal electron acceptors (Cont.).  

  C15 D. ferrireducens Fe2(SO4)3 30 wt % 7.0-7.3 4º C 

  C16 D. arcticum Fe2(SO4)3 30 wt % 7.0-7.3 42º C 

B17 B18 D. psychrophila Fe2(SO4)3 40 wt % 7.0-7.3 4º C 

  C17 D. ferrireducens Fe2(SO4)3 40 wt % 7.0-7.3 4º C 

  C18 D. arcticum Fe2(SO4)3 40 wt % 7.0-7.3 42º C 

B19 B20 D. psychrophila Fe2(SO4)3 48 wt % 7.0-7.3 4º C 

  C19 D. ferrireducens Fe2(SO4)3 48 wt % 7.0-7.3 4º C 

  C20 D. arcticum Fe2(SO4)3 48 wt % 7.0-7.3 42º C 

 

Control= Non-inoculated medium 

 

Table 12. PCR Mixture 

 Reagent       Volume 

Molecular H2O       6.5 μL 

Master Mix (Enzyme)      12.5 μL 

Forward Primer       1 μL (4 μM) 

Reverse Primer       1 μL (4 μM) 

Template       4 μL 

Total Volume Rxn.      25 μL 

 

Table 13. Thermocycler program for 16 S rDNA gene 

 Steps     Temperature    Time 

 Activation    95º C     5 min 

 Denaturation    95º C   1 min (Open 30 cycles) 

 Annealing    52º C     1 min 

 Extension    72º C   9 min (Close 30 cycles) 

Final Extension/Elongation   72º C     10 min 
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Table 14. Thermocycler program for D. psychrophila (DSR1FD and DSR4RE) and D. ferrireducens 
(Primers: DSR1F and DSR4R). 

 Steps     Temperature    Time 

 Activation    95º C     5 min. 

 Denaturation    95º C   1 min (Open 30 cycles) 

 Annealing    54º C     1 min 

 Extension    72º C   9 min (the 30 cycles) 

Final Extension/Elongation   72º C     10 min. 

 

 

Table 15. Thermocycler program for D. arcticum (Primers: dsrA_FWD and dsrA_REV). 

 Steps     Temperature    Time 

 Activation    95º C     5 min 

 Denaturation    95º C   1 min (Open 30 cycles) 

 Annealing    52º C     1 min 

 Extension    72º C   9 min (Close 30 cycles) 

Final Extension/Elongation   72º C     10 min 

 

 

 

 

 

 

 

 

 

 



52 

 

 

 

 

 

Figure 1. 16S rDNA gene amplification of cultures prepared in complex medium. The PCR amplification 
was made with the primers 27F and 16S R1 which render an amplicon size of approximately 1465 bp. 
These samples were run in a regular agarose gel (0.9 %) submerged in TAE (1X) at 100 volts. 
Furthermore, the lanes represent samples, 1: Ladder 1X ROCHE, 2: D. psychrophila amplification, 3: D. 
ferrireducens amplification, 4: D arcticum amplification, 5: 25 bp step ladder. 

 

 

 

 

 

 

Primer dimers 
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Figure 2. Amplification products of bacterial small ribosomal subunit gene (16S rDNA) of D. psychrophila. 
The primers used were 27F and 16S R1 which render an amplicon of approximately 1465 bp. The 
samples were run in a regular agarose gel (0.9%) submerged in TAE (1X) at 100 volts. Furthermore, the 
lanes represent samples, 1: Ladder 1Kb; 2: A5, medium negative control; 3: A6, growth control with 
Na2SO4; 4: C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: C8, FeSO4 10 wt %; 8: 
C10, FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: C16, Fe2(SO4)3 30 wt 
%; 12: C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive control, 15: PCR negative 
control, 16: 25 bp step ladder. 
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Figure 3. Gel electrophoresis of dsrAB PCR products from D. psychrophila subjected to different sulfate 
compounds. The primers used were DSR1FD and DSR4RE which render an amplicon of approximately 
1.9 Kb. The samples were run in a regular agarose gel (0.9%) submerged in TAE (1X) at 100 volts. 
Furthermore, the lanes represent samples, 1: Ladder 1X (ROCHE); 2: A5, medium negative control; 3: 
A6, growth control with Na2SO4; 4: C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: 
C8, FeSO4 10 wt %; 8: C10, FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: 
C16, Fe2(SO4)3 30 wt %; 12: C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive 
control, 15: PCR positive control, 16: PCR negative control. 
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Figure 4. Amplification products of bacterial small ribosomal subunit gene (16S rDNA) of D. ferrireducens. 
The primers used were 27F and 16S R1 which render an amplicon of approximately 1465 bp. The 
samples were run in a regular agarose gel (0.9%) submerged in TAE (1X) at 100 volts. Furthermore, the 
lanes represent samples, 1: Ladder 1Kb; 2: A5, medium negative control; 3: A6, growth control with 
Na2SO4; 4: C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: C8, FeSO4 10 wt %; 8: 
C10, FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: C16, Fe2(SO4)3 30 wt 
%; 12: C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive control, 15: PCR negative 
control, 16: 25 bp step ladder. 
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Figure 5. Gel electrophoresis of dsrAB PCR products from D. ferrireducens subjected to different sulfate 
compounds. The primers used were DSR1F and DSR4R which render an amplicon of approximately 1.9 
Kb. The samples were run in a regular agarose gel (0.9%) submerged in TAE (1X) at 100 volts. 
Furthermore, the lanes represent samples, 1: Ladder 1X ROCHE; 2: A5, medium negative control; 3: A6, 
growth control with Na2SO4; 4: C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: C8, 
FeSO410 wt %; 8: C10, FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: C16, 
Fe2(SO4)3 30 wt %; 12: C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive control, 15: 
PCR positive control, 16: PCR negative control. 
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Figure 6. Amplification products of bacterial small ribosomal subunit gene (16S rDNA) of D. arcticum. The 
primers used were 27F and 16S R1 which render an amplicon of approximately 1465 bp. The samples 
were run in a regular agarose gel (0.9%) submerged in TAE (1X) at 100 volts. Furthermore, the lanes 
represent samples, 1: Ladder 1Kb; 2: A5, medium negative control; 3: A6, growth control with Na2SO4; 4: 
C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: C8, FeSO4 10 wt %; 8: C10, 
FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: C16, Fe2(SO4)3 30 wt %; 12: 
C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive control, 15: PCR negative control, 
16: 25 bp step ladder. 
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Figure 7. Gel electrophoresis of dsrA PCR products from D. arcticum subjected to different sulfate 
compounds. The primers used were dsrA_FWD and dsrA_REV which render an amplicon of 285 bp. The 
samples were run in low melting agarose gel (2.5%) submerged in TAE (1X). Furthermore, the lanes 
represent samples, 1: Ladder 1Kb; 2: A5, medium negative control; 3: A6, growth control with Na2SO4; 4: 
C2, CaSO4 0.1 wt %; 5: C4, MgSO4 10 wt %; 6: C6, MgSO4 18 wt %; 7: C8, FeSO4 10 wt %; 8: C10, 
FeSO4 14 wt %; 9: C12, Fe2(SO4)3 10 wt %; 10: C14, Fe2(SO4)3 20 wt %; 11: C16, Fe2(SO4)3 30 wt %; 12: 
C18, Fe2(SO4)3 40 wt %; 13: C20, Fe2(SO4)3 48 wt %; 14: PCR positive control, 15: PCR negative control, 
16: 25 bp step ladder. 
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Figure 8. dsrAB operon of D. psychrophila that indicates the position of primers DSR1FD, and DSR4RE. 
Amplicon size of approximately 1900 bp. D. psychrophila genome portion obtained from GenBank 
(accession number NC_006138, Primers’ matching performed with CLC Genomics Workbench 10.1.1). 
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Figure 9. dsrA portion of D. arcticum dsrAB operon that indicates the position of primers dsrA_FWD and 
dsrA_REV. Amplicon size of approximately 285 bp. D. arcticum genome portion obtained from GenBank 
(accession number FOOX01000011.1, Primers’ matching performed with CLC Genomics Workbench 
10.1.1). 
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Figure 10. Samples of sulfate reducers producing sulfide (black precipitate) as part of their metabolic 
activity (sulfate anaerobic respiration). 
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