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Abstract  

 

Present day genomic technologies are evolving at an unprecedented rate, allowing interrogation of 

cellular activities with increasing breadth and depth. However, we know very little about how the 

genome functions and what the identified genes do. The lack of functional annotations of genes 

greatly limits the post-analytical interpretation of new high throughput genomic datasets. For plant 

biologists, the problem is much severe. Less than 50% of all the identified genes in the model plant 

Arabidopsis thaliana, and only about 20% of all genes in the crop model Oryza sativa have some 

aspects of their functions assigned. Therefore, there is an urgent need to develop innovative 

methods to predict and expand on the currently available functional annotations of plant genes. 

With open-access catching the ‘pulse’ of modern day molecular research, an integration of the 

copious amount of transcriptome datasets allows rapid prediction of gene functions in specific 

biological contexts, which provide added evidence over traditional homology-based functional 

inference. The main goal of this dissertation was to develop data analysis strategies and tools 

broadly applicable in systems biology research. 

 Two user friendly interactive web applications are presented: The Rice Regulatory 

Network (RRN) captures an abiotic-stress conditioned gene regulatory network designed to 

facilitate the identification of transcription factor targets during induction of various environmental 

stresses. The Arabidopsis Seed Active Network (SANe) is a transcriptional regulatory network 

that encapsulates various aspects of seed formation, including embryogenesis, endosperm 

development and seed-coat formation. Further, an edge-set enrichment analysis algorithm is 

proposed that uses network density as a parameter to estimate the gain or loss in correlation of 

pathways between two conditionally independent coexpression networks.
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Chapter 1: Introduction 

The central goal of bio-molecular research is understanding how a genome functions and what 

cellular roles do the identified genes perform. With the advent of modern genomic technologies, 

the gap between the available DNA sequence and knowledge about the functions of these 

sequences is only widening. For example, using high-throughput sequencing technologies like 

RNA sequencing (RNA-seq), it is possible to quantify the regions of DNA that are transcribed, 

allowing one to measure the expression of genes and quantify their differences with varying 

experimental conditions.  If the functional roles of genes that differentially express under a certain 

treatment as compared to control are known, identification of biological pathways/processes 

implicated in the treatment become apparent. However, even the most widely studied organisms 

do not have majority of the genes mapped to corresponding cellular functions, hampering and 

limiting the interpretation of a high-throughput experimental output. For plant biologists, the 

problem is much severe: even in the model plant Arabidopsis thaliana, only about 30% of all the 

identified genes have functional annotations that could be determined using the current state of art 

in molecular biology and genetics. Crops like rice, maize and wheat have less than 20% genes with 

functional annotations, including the gene functions that were predicted using computational 

approaches. In rice, genes whose functions were experimentally determined are less than 1%,  and 

this number is still untraceable for other crops from information stored in public databases (Rhee 

and Mutwil, 2014).         

With the tools of bioinformatics at the disposal of experiments in molecular biology, 

several computational and statistical methods are applied to genomic data that aid in functional 

assignments of genes in a predictive but high-throughput manner. For example, in homology based 

methods, sequence of a gene with unknown function is compared with similar sequences from 
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other organisms for which the function is known, since function conservation of homologs is an 

accepted theory (Whisstock and Lesk, 2003). Similarly, functional protein domains available in 

databases like PFam and DcGO are also sought in newly characterized protein sequences (Finn et 

al., 2010; Fang and Gough, 2013). As the structure is generally thought to be more conserved than 

the sequence, structural similarity between orthologous proteins also serves as a good indicator of 

function conservation (Sleator and Walsh, 2010). However, these analytical methods pose several 

limitations in understanding of gene function. Despite sharing a great degree of similarity in 

sequence, genes can evolve for very dissimilar functions (Gerlt and Babbitt, 2000). Likewise, 

proteins with similar functions can have very different structures (Omelchenko et al., 2010). Such 

inherent idiosyncrasies of gene function cannot be readily dealt with by comparing proteins or 

genes at the sequence level. Nevertheless, sequence conservation models provide an added level 

of information to support evidence from more dynamic models of gene function prediction.       

The most reliable approach of function characterization follow sophisticated genetic 

screening protocols developed for several model organisms (Page and Grossniklaus, 2002; Kile 

and Hilton, 2005). Genetic screens are usually low-throughput, labor intensive and generally 

focusing on already established hypotheses surrounding a small number of genes or proteins 

known for involvement in a biological process. Moreover, it is an experimentally established fact 

that genes do not function in isolation, but groups of genes work together in an intricate network 

for a biological phenomenon/processes to occur. In such a functional group, disruption of a single 

gene might not always lead to an observable phenotype (White et al.; Bouche and Bouchez, 2001; 

Kok et al., 2015), due to genetic robustness acquired by dosage or genetic compensation (Tautz, 

1992; El-Brolosy and Stainier, 2017). Further, given the amount of gene duplications a eukaryotic 
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genome holds, and the associated likelihood that a non-precise, random mutagenesis (or similar) 

strategy will disrupt a gene whose function is non-compensable, is very low.  

The intricate network of genes is complex, multi-layered and changes with time, tissue and 

both endogenous and exogenous stimuli. The fundamental goal of systems biology is 

understanding the nature and dynamics of complex biological systems – how different components 

of the system work individually, and how they contribute to the functioning of the system as a 

whole. Network biology holds a key position in studies aimed at systems level understanding of 

an organism behavior, for example, in response to stress.      

 

Network guided gene function prediction  

A network – or graph in mathematical language – is composed of nodes and edges. In biological 

networks, a node can be any biological entity such as genes, proteins, a set of functionally coherent 

genes, diseases, traits etc., and edges are relationships or associations between these entities. In 

molecular datasets, nodes are most often genes or gene products, connected by edges if they 

interact/associate in a biological system. The edges can indicate a biophysical interaction, for 

example in protein interaction networks which are experimentally derived by yeast 2 hybrid assays 

or other similar in vivo large scale protein interaction assays (Schwikowski et al., 2000; Ding et 

al., 2009; Wu et al., 2010; Wei et al., 2014). The edges can also be associative, for example, genes 

exhibiting high degree of similarity in expression. A network of protein-DNA interactions can be 

modelled using high-throughput Chromatin immuno-Precipitation followed by sequencing (ChIP-

seq), or medium throughput yeast one hybrid assays and immuno-precipitation assays to monitor 

which proteins bind to specific fragments of DNA, for example, the promoter regions of genes 

(Taylor-Teeples et al., 2015; Fuxman Bass et al., 2016). 
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The topology of biological networks, i.e. the organization of nodes and edges, has been 

observed to be very similar to that of other naturally occurring networks. For example, social 

networks, network of the World Wide Web or the network of genes in a cell, all have an inherent 

scale free topology (Barabasi and Albert, 1999). In a network with scale free topology, there are 

few nodes with a large number of connections and a large number of nodes with very few 

connections. Biologically, this type of topology provides efficiency in signal propagation (Klemm 

and Bornholdt, 2005; Peter and Davidson, 2017), as well as renders the network robust in handling 

random perturbations and maintaining cellular wellness (Hu et al., 2016). Hypothetically, genes 

that are prone to random mutations, or the selectively neutral iso-alleles (King and Jukes, 1969), 

are more likely to have their functions compensated (e.g. by gene duplications), thus limiting the 

mutation effect from propagating across a larger part of the network. Owing to higher rates of 

duplication events in plants (Panchy et al., 2016), redundancy is one of the reasons for mutants of 

several genes showing no discernible phenotypes (Barbaric et al., 2007). On the other hand, 

disruption of highly connected nodes will have a larger effect on the network behavior when 

perturbed.  Hence, the ‘hub’ genes – genes with large number of connections in the network – are 

most sought after in network based gene prioritization in systems biology and translational 

research.   

 Network inference through integration of heterogeneous genomic datasets paints a more 

mechanistic picture of the working of the cell, and indicate the flow of biological information 

(Galperin and Koonin, 2000; Mostafavi and Morris, 2010; Davila-Velderrain et al., 2015). For 

example, heterogeneous networks (hetnets) developed from human knowledgebase represent 

different types of nodes (bio-molecular entities such as genes, tissues, disease etc.) and different 
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types of edges (carrying annotations about the specific biological relationship it represents) 

(Himmelstein and Baranzini, 2015).   

In plants, especially in all the crops, we still lack enough heterogeneity in available 

molecular datasets, with expression data the most abundant type of data available for integration. 

Thus, the most prevalent type of gene networks in plants currently belong to the form of gene 

coexpression networks modelled using correlation of gene expression in a large sets of integrated 

microarrays (Ruan et al., 2010; Childs et al., 2011; Sato et al., 2012; Takehisa et al., 2015) or 

RNA-seq (Iancu et al., 2012; van Dam et al., 2015). Several online platforms for gene network 

inference using ‘associalogs’ (conserved functional linkages) are available for plants (Katari et al., 

2010; Gu et al., 2011; De Bodt et al., 2012; Franceschini et al., 2013). However, there is still a lack 

in availability of ‘context-specific’ gene networks to generate credible hypothesis, considering 

versatility of homolog gene function in plants.     

 

Community detection and imputing functions from gene networks  

Biological networks are complex and possess remarkable amount of structure. Community 

detection, or clustering is the most powerful technique in network inference. Clustering offers a 

method to break down large networks into manageable groups. The groups are clusters which 

represent genes that connect with each other more than they connect to genes in other clusters, and 

can be thought of as part lists or modules with common functions that can be employed by the cell 

on need basis by selectively turning a module on or off according to the developmental phase or 

environmental cue. The biological function of a cluster can be determined by statistically testing 

its overlap with gene lists of known function (Castillo-Davis and Hartl, 2003). Hence, this cluster-

wide propagation of functional annotations, or ‘guilt-by association’, automatically provides 
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putative annotations to genes with no previous knowledge about their biological functions, but are 

in neighborhood of genes with known functions.       

Several graph clustering algorithms have been devised for detecting such gene 

communities in a network. The SPICi algorithm clusters a network based on density threshold 

(Jiang and Singh, 2010), assuming that the gene connections within a biological relevant 

community are denser as compared to connections between genes from different unrelated 

communities. The same concept is explored by the Louvain algorithm that optimizes modularity 

and reveals the best possible grouping in the data by a greedy search process (Vincent, 2008). The 

Topological Overlap Matrix detects modules based on the adjacency matrix (correlation matrix) 

and the topological features (weighted degrees) of each gene (Dong and Horvath, 2007). The 

Markov Cluster Algorithm (MCL) is an unsupervised algorithm based on stochastic flows in 

graphs, and controls the granularity of clusters using an inflation parameter I (van Dongen and 

Abreu-Goodger, 2012). Regardless of which clustering algorithm to use, different values of 

clustering parameters used by the algorithm should be first evaluated using a ‘gold-standard’ for 

their ability to cluster genes that are already known to work as a group. Such groupings can be 

obtained from functional annotation catalogs from different ontologies and pathway databases. 

Hence, an extensive data-driven approach to evaluate clustering could reveal the best parameter 

for the underlying dataset (Krishnan et al., 2017).       

 

Gene function prediction from integrated transcriptomes of similar biological context  

It is well documented that genes that are transcriptionally coordinated tend to be functionally 

related (Mutwil, 2011). This transcriptional coordination between genes can be estimated by 

integrating a diverse set of gene expression datasets to model a biological network. Such a network 



7 
 

is correlational, and connects gene-pairs if they have a high degree of correlation in their 

expression. Aptly termed ‘coexpression networks’ (CN), functional predictions from such 

networks can be traced back to the beginning of last decade and were based on assumptions that a 

statistically significant coexpressed gene-pair might possibly have shared regulatory inputs, and 

thus can be functionally related (D’haeseleer et al., 2000). ‘Guilt-by association’ using microarrays 

became a popular theory (Quackenbush, 2003; Wolfe et al., 2005) and gained wide popularity due 

to availability of gene expression data in large scale from the public domains like the GEO database 

(Barrett et al., 2007). Figure 1.1 depicts the typical steps involved in a standard coexpression 

network inference in systems biology. With certain limitations to the uses and interpretation of CN 

(Gillis and Pavlidis, 2012), numerous studies have used CN for gene function prediction in various 

organisms such as humans (Lee et al., 2004; Elo et al., 2007; Prieto et al., 2008), mouse (Menashe 

et al., 2013; Liu and Ye, 2014), bacteria (Jiang et al., 2016), yeast (van Noort et al., 2004) and a 

variety of other model systems (Stuart et al., 2003).  
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Figure 1.1: Coexpression network mining workflow. A coexpression network is derived using 

a large compendium of expression datasets. The datasets can be sampled from public repositories 

like the NCBI GEO, and should be chosen to represent a unifying biological context (e.g. response 

to abiotic-stress, specific tissues). Correlations in expression profiles of all possible gene pairs 

across all the samples is then calculated, typically using Pearson’s Correlation or Mutual 

Information based statistical models. Statistically significant edges (gene pairs) are selected and 

evaluated using a ‘gold standard’ or reference dataset to test the robustness of clustering or test the 

accuracy of predictions in regulatory network inference. The resulting network is a list of gene 

pairs with edge scores indicating the magnitude of their covariance or likelihood of their functional 

relatedness, depending upon the correlation measure used. The network is then scanned for 

occurrence of gene clusters that are dense, meaning genes that form a community and ‘interact’ 

with each other more than with genes outside their respective cluster. Such clusters represent genes 

with common cellular goals, and are most often coregulated by the same sets of TFs. The biological 

factor causing such functional coherence between genes in a cluster is determined by statistically 

calculating its overlap with gene lists of known functions (e.g. a list containing all the genes 

involved in photosynthesis, cell cycle etc.). Most often, not all genes within a predicted cluster 

have a functional annotation, but if the cluster is significantly associated with a biological process, 

the functions of these unknown genes can be imputed, thus adding additional genes to the original 

sets of functional gene lists. The data is presented to the scientific community under creative 

commons license via the web for free, and a community driven approach is taken to use the data 

to prioritize genes for experimental validations. Newly validated gene functions are then added to 

the gold standard for further refining the computational predictions in future experiments.                  
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Information content in coexpression networks 

The edges in a CN network are usually quantified using statistical models that generally fall in two 

categories: correlation and Mutual Information (MI). In correlation models, Pearson Correlation 

(PC) is the most popular statistical measure for associating gene pairs. However, one has to bear 

in mind that PC, by design, does not prove causality between variables, and in terms of gene pairs, 

it can only state the degree to which two genes associate with each other, calculated from their 

covariance in a bivariate Gaussian distribution. Moreover, PC can only model relationships that 

are linear, which is not always the case with genes. Some genes can relate with each other only in 

certain tissue/organs, stress conditions, developmental phases etc. Thus, the datasets chosen for 

integration with an aim of coexpression have to be close to a common biological context to make 

the interpretations more robust, and with sample size large enough to satisfy the underlying 

assumptions of this model.  

Another popular method of connecting genes on the basis of expression patterns is using 

Mutual Information (MI). MI is an information theoretic procedure useful in detecting genes that 

have a non-linear pattern of coexpression (e.g. genes correlated in a subset of samples and not in 

the rest), and states causality to some extent (Steuer et al., 2002). MI, however, is computationally 

expensive for the analysis of larger genomes, considering the fact that it requires a very large 

sample size for estimation as it involves data discretization (usually √𝑁 bins, where N is the sample 

size), and permutations to score for significance. While both PC and MI yield similar results, the 

range of scores is very different. PC scores range from -1 to 1, indicating negative and positive 

correlations, respectively. Absolute PC values close to 1 indicate stronger associations. On the 

other hand, MI scores can have only positive values ranging from 0 to infinity, with larger scores 
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indicating stronger likelihood of the two genes ‘interacting’. Comparatively, both PC and MI yield 

very similar results, and a high PC cannot yield a low MI and vice versa.   

Thus, CN can only be used to estimate associations between two genes in terms of their 

expression. Unlike protein-protein interaction networks, CN network do not explicitly state that 

the protein products of two highly correlated genes physically interact in vivo. The strength of CN 

analysis lies in its framework; besides expanding the available ontologies for functional 

enrichment analysis (Gupta et al., 2017; Krishnan et al., 2017), coexpression scores state the degree 

of functional coupling between genes for a weighted analysis framework that opens avenues for 

integration of CN with heterogeneous genomic datasets.            

There is no good consensus among scientists on which statistical models agree with the 

'true network', based on a ‘gold standard’ created from an existing knowledgebase. However, the 

'best' or most cited method might not work optimally for the dataset in hand, especially in cases 

when the software has never been tested for a broad range of organisms and datasets. A pioneering 

work at the Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts 

Institute of Technology (MIT), has shown that the best current solution is to use results of an 

ensemble of methods, and aggregate results in an unbiased manner (Marbach et al., 2012). This 

scheme has worked well in terms of accuracy of analysis shown in the evaluation plots for network 

analysis in subsequent studies.  

Chapter 2 focuses on using an ensemble of methods to predict an abiotic-stress specific 

transcriptional regulatory network of the crop model rice (Oryza sativa). A large sample size of 

~595 samples from ~29 different datasets was used for predicting the targets of TFs in the rice 

genome. Following the methods described by Marbach et al., the results from four distinct reverse-

engineering solutions were aggregated into a ‘consensus network’. In addition to that, using 

http://www.nature.com/nmeth/journal/v9/n8/full/nmeth.2016.html#abstract
http://www.nature.com/nmeth/journal/v9/n8/full/nmeth.2016.html#abstract
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benchmarking schemes, it was shown that removal of the worst performer increased the accuracy 

of the final aggregate predictions. Additionally, the same method was using to identify the best 

and worst performers for analyzing RNA-seq datasets. The CuffDiff, edgeR, limma and DESeq2 

algorithms were evaluated for their ability to detect a set of bonafide drought related genes. 

Further, of the seven new TFs predicted to regulate heat stress response in rice, the biological role 

of one was experimentally confirmed. The interactive webserver for this project is developed for 

flexible network mining of rice transcriptome datasets. 

Chapter 3 is a seed-specific transcriptional regulatory network referred to as SANe, for 

Seed Active Networks. The network was created using transcriptomic datasets generated from 

different stages of seed development in Arabidopsis, using a modified version of the best performer 

(CLR) algorithm from evaluations in rice. The algorithm correctly predicted TFs that are already 

known for their functional roles in development of different seed parts, such as the embryo, 

endosperm and seed coat regions, and further suggested new TFs for experimentation in vivo. 

Mutants of a few TFs of interest from the prediction set were acquired and tested for accumulation 

of seed storage compounds like starch, oil and proteins – the factors that contribute most to the 

economic potential of plants. The network is currently stored as a MySQL database with an 

interactive user interface accessible at https://plantstress-pereira.uark.edu/SANe/. The platform is 

integrated with several tools that will enable seed biologists to analyze their own new datasets and 

generate new testable hypothesis regarding genes involved in seed development 

Chapter 4 proposes a method for ‘differential networking’, in which a control network is 

compared to a drought-specific network in rice. The algorithm first calculates the coherence of 

known functional gene sets in both the networks, and estimates gene-pairs that have significantly 

rewired functional interactions, leading to network-density based pathway-level fold change 

https://plantstress-pereira.uark.edu/SANe/
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estimation rather than fold change of individual genes. The results suggests that the algorithm 

reveals several pathways that are truly associated with drought, but could not be retrieved by 

traditional methods, and further suggested drought candidates that are differentially coexpressed 

under drought but not differentially expressed.  
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Chapter 2: An abiotic-stress conditioned gene regulatory network of rice predicted using an 

ensemble of reverse engineering algorithms 

 

Abstract 

Drought and other environmental stressors trigger several metabolic and physiological changes in 

plants, and a part of this change is reflected in the transcriptome. It is known that a synergistic 

coordination of the gene-regulatory machinery senses, modifies and controls the desired metabolic 

state of the cell. The exploitation of genes that regulate stress response has been hampered by low 

genetic and phenotypic evidence. Hence, there is a critical need for innovative and complementary 

approaches to identify the components of gene regulatory networks that manifest during abiotic 

stress. In this study, a new web-application referred to as the Rice Regulatory Network (RRN) is 

presented. RRN reports regulatory interactions predicted using an ensemble of four reverse-

engineering algorithms and covers ~62% of all the identified genes models in rice. RRN was 

evaluated using the existing knowledgebase of rice, in which it consistently ranked known DNA 

binding sites of TFs and other experimentally validated TF-gene interactions towards the top of all 

the predicted ranks. RRN can be searched by aligning the differential expression values in new 

transcriptomes to a set of ‘coregulated’ clusters, or by searching a list of biologically coherent 

genes to prioritize TFs for further experimentation. 
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Introduction 

Plants, like all multicellular organisms, respond to environmental stimuli by complex mechanisms 

that regulate the transcription of thousands of genes. These changes in gene expression are 

controlled by regulatory proteins at multiple levels. A transcribed mRNA molecule can be 

selectively processed or degraded, or post-translation modifications can render a protein molecule 

active or inactive in accordance with the metabolic needs of the cell. These complex gene 

regulatory mechanisms which involve interactions and cooperation of several kinases, 

phosphatases and transcription factors (TFs) serve as an efficient mechanism for signal 

transduction for flexible metabolic states, while maintaining cellular hemostasis. Identifying such 

regulatory genes is the key to understanding the fundamentals of stress response in plants that can 

aid in molecular engineering of crops with economic importance. Rice, as an example of model 

for cereals, is an agriculturally important crop feeding almost half of the world population. 

However, the fraction of stress response genes known in rice is very small compared to validated 

genes in the model plant Arabidopsis. 

TFs are an important class of regulatory proteins and have a strong evidential support as 

regulators of stress and development (Charu et al.; Joshi et al., 2016). TFs regulate the expression 

of other genes, regarded as their targets, by binding to their promoters regions at specific sites 

known as cis regulatory elements (CRE). At the transcriptional level, some information about TF 

mediated gene regulation can be deduced from genome-wide expression profiles obtained using 

microarrays or RNA-sequencing (RNA-seq). Since TFs are themselves transcriptionally regulated, 

studying their expression patterns and the patterns of correlated genes often reveals a suite of their 

in vivo targets. An integrative analyses of large-scale gene expression datasets from multiple 

experimental conditions, typically in the form of coexpression networks, uncovers the dynamics 
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of gene activity that often remains hidden in an individual experiment. This technique has now 

become a useful and powerful approach in plant systems biology for prediction and validation of 

novel gene functions (Lee et al., 2009; Ficklin et al., 2010; Childs et al., 2011; Sato et al., 2012). 

Many online platforms are available that allow one to interrogate the biological roles of interesting 

genes using coexpression as the basis. Since functionally related genes have similar dynamics of 

expression, guilt-by association helps in associating functions to uncharacterized genes based on 

the known functions of their neighboring genes in an underlying network.  

Although coexpression networks provide a useful way to group functionally similar genes, 

edges (connected genes) in coexpression network merely represent the degree of similarity in their 

expression profiles. It has been observed that cascades of transcriptional interactions tend to 

correlate expression of many downstream genes, many of which may not necessarily interact 

physically. However, in a wet-lab setting, direct regulatory interactions are of most interest, 

especially those involving TFs capable of activating or repressing a functional program. Moreover, 

coexpression between genes can be non-linearly associated with time and growth stages. The 

regulatory potential of a gene can be over or underestimated if the phenomenon of indirect 

regulation is not taken into account (Gordân et al., 2009). Hence, gene regulatory networks (GRN) 

emerged as a class of biological networks where edges are solely between TFs and putative targets 

and indicate a possible causal relationship. Many statistical solutions for inference of regulatory 

networks from expression data have been proposed, which take into account known TF genes to 

infer regulatory interactions that are direct (Yu et al., 2004; Margolin et al., 2006; Faith et al., 

2007; Joshi et al., 2009). 

This study is an attempt to assemble an abiotic-stress conditioned GRN of rice. Expression 

data derived under the context of ‘abiotic-stresses’ were downloaded from public repositories and 
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integrated to calculate coexpression between genes using Mutual Information (MI) as the statistical 

measure of correlation. MI was used to maximize the estimation of causal dependency between 

genes. MI provides a generalized measure of correlation between genes and is more sensitive to 

non-linear relationships, unlike the Pearson’s Correlation (Steuer et al., 2002). Further, an 

ensemble of four published reverse-engineering methods was created, and each one supplied with 

MI scores to estimate the statistical likelihood of TFs directly interacting with potential target 

genes, i.e. filtering non-direct interactions. The resulting data served two main purposes; 

identification of potential ranked targets of TFs, and the discovery of TFs that potentially 

coregulate the common sets of targets genes. The latter was quantified on gene pair basis and used 

to perform a weighted clustering analysis to identify functionally coherent gene groups. The 

identified clusters were annotated with functional and regulatory information that greatly expanded 

upon the available functional annotations of rice genes. The Rice Regulatory Network (RRN) is 

developed to integrate the network data with analysis tools that can be used through the web, and 

provides an easy to use access to experimental biologists for functional analysis of their own 

datasets and prioritize genes for further experimentation. 

In rice and many cereals, the developing inflorescence with flowers that will bear seed after 

fertilization, and the flag leaf supporting the inflorescence with nutrition for development, are 

essential factors determining grain yield under drought and other stresses. To address the 

biological functions involved as an example, rice inflorescence and flag leaf tissues treated to 

drought that reveal drought responsive genes by RNA-seq analysis, are used to illustrate the 

network properties and applications of the network (Fig 2.1). 
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Figure 2.1: Workflow for mining transcriptional regulatory programs from an abiotic-stress 

expression compendium of rice. Top: Building and benchmarking a consensus network using an 

ensemble of four reverse-engineering algorithms to predict the targets of transcription factor genes. 

The toy-bars represent edges predicted by each of the four methods used in the ensemble, where 

each colored box represents the rank of a unique edge. ARACNE: Algorithm for Reconstruction 

of Accurate Cellular Networks, CLR: Context Likelihood of Relatedness, GENIE: GEne Network 

Inference Engine, PC: Pearson’s Correlation. Bottom: Evaluation of different software for the 

analysis of rice Flag leaf and Inflorescence drought response RNA-seq dataset, and integration 

with the predicted network model using a modified gene set analysis algorithm. The toy-bars 

represent genes predicted by each of the four methods used in the ensemble, where each colored 

box represent the rank of a unique gene.     
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Results 

Combining predictions from different algorithms to assemble the regulatory network  

A set of 29 publicly available Affymetrix based gene expression datasets of rice were downloaded 

from the Gene Expression Omnibus (GEO) database (Barrett et al., 2007). These datasets 

comprised of a total of 266 samples (595 Affymetrix GeneChips) from experiments performed 

under a specific biological context, ‘response to environmental stress’, which included 

experiments from drought, salt, heat and hormone stresses. Along with a list of 2304 genes known 

to function as TFs identified from three different databases (Yilmaz et al., 2009; Jung et al., 2010; 

Priya and Jain, 2013), expression values of 35,151 rice genes were supplied to four complementary 

reverse-engineering algorithms. Three of these methods are products of the DREAM5 challenge 

(Dialogue for Reverse Engineering Assessment Methods) and have been shown to accurately 

predict different parts of the underlying regulatory network (Margolin et al., 2006; Faith et al., 

2007; Huynh-Thu et al., 2010). Since these methods used MI to quantify coexpression, a linear 

correlation based method using Fisher’s Z transformed Pearson’s Correlation (PC) scores was also 

added to the ensemble (Huttenhower et al., 2006) for comparison of the prediction outcomes. From 

each of the four methods, the top 500,000 predicted edges (TF-target interactions) were selected 

and ranked based on the confidence weights. As expected, the union of top 500,000 edges of all 

the four methods showed very little overlap (< 1%) and resulted in a total of ~1.5 million edges 

(Fig. 2.2). This overlap was slightly better than that observed in the Arabidopsis consensus network 

(Vermeirssen et al., 2014). 
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Figure 2.2: Venn diagram illustrating the percentage of ~1.5 million edges predicted by each of 

the four network prediction tasks and their overlaps. ARACNE: Algorithm for Reconstruction of 

Accurate Cellular Networks, CLR: Context Likelihood of Relatedness, GENIE: GEne Network 

Inference Engine, PC: Pearson’s Correlation. 
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Integrating predictions from different methods have been shown to have a better predictive power 

as compared to using an individual method alone, as shown in bacteria and yeast (Marbach et al., 

2012). Therefore, an ensemble solution was computed based on the average of ranks for each edge, 

and the top 500,000 edges of the aggregate were selected (see “Methods”). The average rank 

aggregation method kept those edges on the top that were ranked higher by a larger fraction of 

individual methods in the ensemble. Hence, edges predicted by only a few methods were 

automatically suppressed towards a lower rank keeping the false positives to a minimum (Marbach 

et al., 2012). The average rank aggregation has also been recently used in the validated Arabidopsis 

cell wall regulatory network (Taylor-Teeples et al., 2015) and has been shown to perform better 

than other methods of aggregation, like the union and mean-reciprocal aggregation (Vermeirssen 

et al., 2014).  

 

Evaluating the biological significance of each algorithm and their ensemble 

A Gold Standard (GS) for evaluation of predictions is hard to create in plants other than the well-

studied model, Arabidopsis. Typically, the most stringent GS is created by using a set of functional 

annotations with experimental validation, which being sparse in rice, greatly limits the evaluation 

test on coverage of novel predictions. Since this study was aimed at predicting direct targets of 

TFs, the best possible GS for evaluation would be a set of experimentally validated TF-target 

interactions in the literature. Extensive manual and automated literature mining of such 

interactions (at the time the study was conducted, roughly till 2014) identified only 308 interactions 

between 114 TFs and 194 target genes, a number too low for evaluation of a large-scale genomic 

study like the one presented here.  
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This limitation of an effective GS in rice was in part overcome by building three 

independent non-expression-data based reference networks (RN) for evaluation of each prediction 

algorithm and their ensemble solutions. The first RN was a set of 308 experimentally validated 

edges mentioned above. The second RN was a combination of high-confidence edges in the 

RicenetV2 (Lee et al., 2015), the Predicted Rice Interactome Network (PRIN) database (Gu et al., 

2011) and the String database of protein interactions (Szklarczyk et al., 2015), resulting in a total 

of 213,523 edges between 2007 TFs and 20,518 target genes. For the third RN, the position weight 

matrices of rice TFs listed in the CIS-BP database (Weirauch et al., 2014) were obtained, and these 

TFs were linked to genes which harbored the corresponding motifs in their promoter regions (see 

“Methods”). Hence, a total of 219,460 edges between 587 TFs and 21,080 genes formed the third 

RN. Since a large fraction of the edges in all the three RNs represent interactions that were reported 

independent of gene expression, considering these as ‘known’ and evaluating overlaps with the 

edges predicted solely from expression data in this study served as benchmarks to estimate the 

performance of the algorithms.  

For benchmarking each prediction method and their ensemble solution against the RNs, an 

F-score was calculated from the values of precision (number of correctly predicted edges) and 

recall (number of known edges that were predicted) (see “Methods”). As expected, a very low F-

score was observed for all the evaluations (Table 2.1). Within this narrow range of F-scores, the 

CLR algorithm outperformed all other methods in the second and third RNs, including the 

ensemble solution, and covered a larger fraction of known edges in the first RN. This observation 

of CLR as the best performer in an ensemble is in agreement with the Arabidopsis study 

(Vermeirssen et al., 2014), and hence establishes itself as one of the most suitable method, at least 

for plant gene expression datasets. On the other hand, PC based method performed the worst in 
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any given RN, validating that TF and target genes are infact non-linearly associated.  Moreover, 

when interactions from PC method were removed from the ensemble and the aggregation re-

computed (Avg-sans-PC), the F score of the ensemble solution increased significantly in all the 

RNs, with a 2-fold increase for edges that were experimentally determined in the first RN (Table 

2.1).  
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Table 2.1: Benchmarking the predictions. Test in performance of the top 500,000 predictions 

from the four individual algorithms and their ensemble solution, on correctly predicting known 

regulatory edges. An F score was computed as F= 2*(Precision * Recall)/ Precision + Recall, 

where Precision = TP/ TP + FP, and Recall = TP/TP + FN. Higher F scores indicate a higher level 

of accuracy in predictions. Here, TP, TN, FP and FN stands for True Positives, True Negatives, 

False Positives and False Negatives, respectively.   

Reference   # Predicted TP Precision Recall F 

Experimentally validated (308 edges) 

ARACNE 5461 2 0.00649 0.00036 0.001 

CLR 34379 20 0.06 0.0005 0.001 

Genie 23299 14 0.045 0.0006 0.001 

PC 23309 2 0.006 8.00E-05 0 

Avg. Rank 22721 17 0.05 0.0007 0.001 

Avg-sans-PC 20927 16 0.0526 0.0007 0.002 

Predicted-string, PRIN, ricenet2 (213523 edges)     

ARACNE 298568 3082 0.0144 0.0103 0.012 

CLR 478824 16188 0.0758 0.0338 0.047 

Genie 398162 11249 0.0526 0.0282 0.037 

PC 395463 1404 0.0065 0.0035 0.005 

Avg. Rank 395437 11324 0.053 0.0286 0.037 

Avg-sans-PC 390208 12467 0.0583 0.0319 0.041 

Motif-association net (219460 edges)       

ARACNE 38101 1249 0.0056 0.0327 0.01 

CLR 130271 2273 0.0103 0.0174 0.013 

Genie 81832 1603 0.0073 0.0195 0.011 

PC 97663 1646 0.0075 0.0168 0.01 

Avg. Rank 89592 1980 0.009 0.0221 0.013 

Avg-sans-PC 85189 1944 0.008 0.0228 0.013 

Union network (432495 edges)         

ARACNE 305465 4321 0.014145647 0.009990867 0.012 

CLR 483924 18414 0.03805143 0.042576215 0.04 

Genie 402465 12825 0.031866125 0.029653522 0.031 

PC 401011 3045 0.007593308 0.007040544 0.007 

Avg. Rank 400107 13257 0.033133637 0.030652377 0.032 

Avg-sans-PC 395128 14360 0.036342654 0.033202696 0.035 
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Further, how much confidence a method placed in predicting an edge was evaluated on the basis 

of how well the edges were ranked. For this test, a union of 432,495 edges was taken by combining 

the edges in all the three RNs. Intersection of this union and the edges in each of the four prediction 

methods as well as their ensemble solution was evaluated for the rank-positions. It was observed 

that the median-rank of the edges in the Avg-sans-PC aggregation was the lowest, followed by the 

ensemble aggregation that still had interactions derived from the PC based method. The third 

quartile of ranks covered by Avg-sans-PC was just slightly over the top 50% of all the edges, with 

the median lying within the first three deciles of all the rankings (Fig. 2.3). This indicated that the 

Avg-sans-PC aggregate of predictions were robust and the most reliable aggregation to make 

biological interpretations. This aggregate, comprising of ~500,000 edges between 2282 TFs and 

33,876 target genes was chosen as the ‘consensus network’ and sorted by the ranks of TF-gene 

interaction predicted, with smaller ranks indicating high confidence edges. The consensus network 

is referred to as the ‘Rice Regulatory Network’ (RRN) and is made available on an online 

interactive browser available under open access at https://plantstress-pereira.uark.edu/RRN/ . 

 

https://plantstress-pereira.uark.edu/RRN/
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Figure 2.3: Evaluation of the network robustness. A set of known edges from three distinct 

reference networks was taken, and their ranks evaluated in each of the four prediction tasks and 

their ensemble (X axis). The overall ranks were plotted as boxplots and the center of the box 

corresponds to the median (2nd quartile; Q2) of the distribution of ranks (Y axis). The extremes of 

the box correspond to the 1st (Q1) and 3rd (Q3) quartiles. The whiskers denote Q2  1.5*IQR, where 

IQR is the interquartile range (Q3-Q1). The notches in each box extend to +/-1.58 IQR/n (n being 

the sample size), and indicate a 95% confidence interval for the difference in two means. The 

boxes of two ensemble solutions are shaded as grey for the average rank aggregation method and 

black for the average rank – sans – Pearson’s correlation (PC) based method. Lower medians 

indicate more robust predictions. 
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Clustering the coregulatory network to detect functionally coherent modules 

Clustering is a method of identifying ‘communities’ or clusters of functionally coherent genes 

(D'Haeseleer, 2005). In terms of biological networks, clustering detects genes that connect with 

each other more densely than other genes outside their respective clusters (Jiang and Singh, 2010). 

Known functional annotations of genes within a given cluster can then be propagated cluster-wide, 

automatically annotating uncharacterized genes within the cluster assuming a ‘guilt-by 

association’.  

To cluster the consensus network derived above (the RRN), which is essentially a 

regulatory network, coregulation between genes was first detected by computing overlaps in their 

predicted regulators (TFs). This method of clustering coregulated genes served an alternative to 

clustering based on coexpression. Since coexpressed genes can also be coregulated and shared 

targets of a TF can function in a similar cellular pathway (Yu et al., 2003), this method is expected 

to reveal genes that are under the control of same set(s) of TFs, adding an additional layer of 

regulatory information unlike coexpression based clustering methods. Coregulation between genes 

was computed using the Jaccard’s Index (JI) of similarity, and a threshold of JI 0.01 was set to 

connect 27,004 genes with each other. The Markov Cluster Algorithm (MCL) was then employed 

to find clusters of genes that are more densely connected to each other than with genes outside 

their clusters (van Dongen and Abreu-Goodger, 2012), using JI scores as edge-weights. MCL is 

based on stochastic flows in graphs assuming the natural property that random walks within a 

dense cluster will likely result in visiting most of the nodes within the cluster as compared to 

clusters that are not so dense. MCL requires a single inflation parameter I that controls the 

granularity of clusters. Instead of choosing an arbitrary value if I, clusters obtained at a range of I 

values were evaluated for biological process (BP) categories from the Gene Ontology (GO) 
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database (see “Methods”).   

While the total number of clusters with significantly enriched BP categories varied with 

different I values, the number of distinct BP enriched in the clusters gradually decreased with 

increasing values of I (Fig. 2.4 A). The overall accuracy, measured as geometric mean of Positive 

Predictive Value (PPV: the ability of a cluster to detect a BP) and Sensitivity (Sn: how well genes 

belonging to the same BP are grouped in the same cluster) decreased with increasing values of I. 

Cluster separation, indicating the bidirectional correspondence between a BP category and a given 

cluster, increased till I 2.25 and remained almost constant thereafter (Fig. 2.4 B). Apart from I 2.25 

indicating a slight better separation than I 2.0, all other parameters indicated that the biological 

information of the clusters is best preserved at I 2.0. Hence, an I value of 2.0 was set as the inflation 

parameter to obtain 881 clusters of coregulated genes. Coregulated clusters thus obtained were 

annotated with GO BP categories, pathways from the KEGG catalog of rice and known cis-

regulatory elements (CRE) of plants (see “Methods”). A TF was labeled as a regulator of a cluster 

if at least 50% of its predicted targets lie within the cluster (Vermeirssen et al., 2014).  
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Figure 2.4: Evaluation of inflation parameter I of the MCL algorithm for clustering. A range 

of inflation parameters (Y axis) required by the MCL algorithm were tested for: A) Total number 

of biological processes (BP) detected as significant, and the total number of clusters with at least 

one significantly enriched BP. The p-value of enrichment was computed under a cumulative 

hypergeometric test, and an FDR corrected p-value of < 0.05 was set as a significance threshold. 

B) Evaluation of different I values for the overall accuracy (calculated as the geometric mean of 

the positive predictive value and sensitivity in detecting functional complexes on the left Y axis) 

and separation (indicating how well the members of a BP are grouped into one cluster on the right 

Y axis).    
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Cluster 128 is a heat stress module dominated by the HSF regulon with evidence of post-

transcriptional regulation 

Cluster 128 (cl_128) comprises of a total of 37 genes significantly enriched with genes in GO BP 

category “protein folding”, “response to abiotic stimulus” and “response to heat”. Significantly 

overrepresented pathways in cl_128 were related to “Protein processing in endoplasmic reticulum” 

and “Spliceosome”, according to rice KEGG pathway annotations. 5 of the 7 predicted regulators 

of this cluster belong to the class of Heat Shock Factors: HSFA2A (LOC_Os03g53340), HAP2A 

(LOC_Os08g09690), HSFA2C (LOC_Os10g28340), HSFB2A (LOC_Os04g48030) and 

HSFB2C (LOC_Os09g35790), indicating an HSF dominated regulon triggered under heat stress. 

Interestingly, ~80% of all the predicted targets of one of the regulator designated as splicing factor 

U2af (LOC_Os09g31482) belong to this cluster, explaining the observation of KEGG term 

spliceosome. Another interesting regulator of this module is ethylene-responsive transcriptional 

coactivator/endothelial differentiation-related factor 1 (LOC_Os06g39240) with two known 

alternatively spliced isoforms. The Arabidopsis homolog of this gene is the Multiprotein bridging 

factor-1 (AT3G24500) that acts as a transcriptional coactivator.  

 

Geneset enrichment of RNA-seq data with coregulated gene clusters  

The typical protocol for analysis of an expression dataset leads to finding pathways or biological 

processes that are most highly associated with the observed response or phenotype in the 

experiment. This analysis is sometimes limited when the available functional annotations are 

sparse and incomplete, as in the case with rice. The main aim of clustering genes was to expand 

these available functional annotations, so that the identified clusters can be used in a geneset 
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enrichment analysis (GSEA) framework in contrast to directly using genesets from GO or KEGG 

annotations.  In the case of RRN, the enrichment analysis will also be helpful in finding the 

regulators of the clusters that are most significantly associated with the input expression data, a 

piece of information that is usually hidden in GO based enrichment analysis. The RRN webserver 

is integrated with an enrichment analysis tool  (Kim and Volsky, 2005) to detect clusters most 

highly associated with an uploaded transcriptome. An example of such an analysis is shown below.   

 

Querying RRN with RNA-seq data of rice Flag leaf and Inflorescence tissue in response to 

drought 

In rice and many cereals, the developing inflorescence with flowers that will bear seed after 

fertilization and the flag leaf supporting the inflorescence with nutrition for development (Li et al., 

1998), are essential factors determining grain yield under stress. RNA-seq analysis of Flag Leaf 

(FL) and Inflorescence (INF) tissue in response to drought was conducted to identify associated 

clusters and their regulators in the drought sensitive reproductive tissue. Reads obtained from the 

paired-end sequencing of two biological replicates for each of the control and drought treatments 

for both the tissue samples were aligned to the MSUv7 rice reference transcriptome using the 

Tophat  v 2.0.12 based Bowtie aligner (Trapnell et al., 2009). The concordance between two 

replicates of each sample was evaluated as the read coverage in bins of genomic regions (Ramirez 

et al., 2014). The Pearson’s correlation coefficient value between replicates of the FL tissue was 

0.94 and of the INF sample was 0.98. Since the ultimate goal was to correspond RNA-seq reads 

with network-data, reads were counted at gene level instead of isoform level (Liao et al., 2014).  

To evaluate the level of induction or repression in genes with drought treatment as a factor, 
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the four most widely used statistical models, Cuffdiff (Trapnell et al., 2013),  edgeR (McCarthy et 

al., 2012), deseq2 (Love et al., 2014) and limma (Ritchie et al., 2015) were evaluated for 

performance. Genes were first ranked on the basis of their p/q values obtained from each method. 

The performance of each method was then tested by detecting the ranks of 5419 bona fide drought 

genes (DG). This DG list was created by taking the intersection of differentially expressed genes 

in six independent drought microarray experiments available in rice (GSE21651, GSE24048, 

GSE25176, GSE26280 and GSE81253). Since these experiments covered a wide spectrum of 

different drought treatments and rice genotypes, an intersection of genes that differentially 

expressed in these experiments are guaranteed to be drought responsive. Under this framework, it 

was observed that all the methods were generally in agreement with each other for both the 

samples. However, the edgeR algorithm was found to perform better as the median ranks of DG 

was the lowest (Fig. 2.5). EdgeR even performed better than the ensemble solution computed using 

the ‘average ranks aggregation’ method, as done for the consensus regulatory network. Hence, FC 

values estimated using edgeR were uploaded into the RRN webserver to find the enrichment of 

coregulated clusters and associated functional and regulatory information in both the samples.  

A total of 56 clusters were found significantly enriched in at least one of the two samples 

(Fig 2.6). Of these clusters, 35 clusters had functional annotations that expand a wide variety of 

biological processes from the GO ontology database and pathways from the KEGG pathways (Fig 

2.7). A few of these clusters are described below.  
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Figure 2.5: Evaluation of four different RNA-seq analysis methods. Four different published 

software for analysis of differential expression in RNA-seq data (X-axis) were evaluated on the 

basis of how well they rank a set of ~5000 bona fide Drought Genes (DG; see the main text on 

how these genes were identified) on the Y-axis. All the assayed genes were ranked on the basis of 

their FDR corrected p-values resulting from each method. The distribution of overall ranks of DG 

were plotted as boxplots, leaving out outlier values above the whiskers for clarity. The center of 

the box corresponds to the median (2nd quartile; Q2) of the distribution and the extremes of the box 

correspond to the 1st (Q1) and 3rd (Q3) quartiles. The whiskers denote Q2  1.5*IQR, where IQR is 

the interquartile range (Q3-Q1). Two ensemble solutions were also computed by taking the average 

of ranks across all the methods (dark grey box) and leaving out the worst performer from the 

ensemble (light grey box). Lower medians values indicate better performance in detecting DE.   
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Figure 2.6: Coregulated clusters enriched in the drought transcriptomes of Flag leaf (FL) 

and inflorescence (INF) tissues. Log of fold change values upon exposure to drought computed 

using edgeR were used in the Parametric Analysis of Geneset Enrichment (PAGE) framework on 

the RRN webserver to detect clusters that are most significantly enriched in both the 

transcriptomes. The resulting table was downloaded and a heatmap of Z scores plotted in R. The 

heatmap shows two-tailed enrichment Z scores with red and grey gradient showing positive and 

negative enrichment, respectively.      
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Figure 2.7: Pathways and Biological Processes perturbed under reproductive stage drought. 

The first column shows the IDs of the clusters that were detected as significantly enriched in the 

FL and INF samples. The second and the third columns show Gene Ontology Biological Process 

terms (GO BP) and the KEGG pathway terms significantly enriched within these clusters, 

respectively. Only terms with the lowest p-values are shown. NA indicates that no term was 

detected significant under an FDR corrected p-value threshold of < 0.05.   

 

 

 

Cluster ID GO BP KEGG Pathway

cl_10 carboxylic acid catabolism PLANT-PATHOGEN INTERACTION

cl_104 polysaccharide metabolism NA

cl_11 lipid localization PENTOSE AND GLUCURONATE INTERCONVERSIONS

cl_128 response to heat PROTEIN PROCESSING IN ENDOPLASMIC RETICULUM

cl_129 membrane lipid metabolism NA

cl_13 chromatin modification SPLICEOSOME

cl_132 cellular nitrogen compound metabolism NA

cl_148 mRNA metabolism NA

cl_161 protein folding CIRCADIAN RHYTHM-PLANT

cl_163 purine nucleotide metabolism NA

cl_18 protein transport MRNA SURVEILLANCE PATHWAY

cl_182 cell cycle NA

cl_196 cellular nitrogen compound biosynthesis NA

cl_221 secondary metabolism NA

cl_24 translational initiation SPLICEOSOME

cl_25 response to drug NA

cl_28 response to water stimulus NA

cl_30 regulation of protein metabolism UBIQUITIN MEDIATED PROTEOLYSIS

cl_34 protein catabolism PROTEIN PROCESSING IN ENDOPLASMIC RETICULUM

cl_39 RNA modification PURINE METABOLISM

cl_4 response to oxidative stress PHENYLPROPANOID BIOSYNTHESIS

cl_42 response to light stimulus SULFUR METABOLISM

cl_47 programmed cell death NA

cl_63 protein catabolism NA

cl_7 aromatic compound catabolism PHENYLPROPANOID BIOSYNTHESIS

cl_72 metal ion transport GALACTOSE METABOLISM

cl_75 vesicle-mediated transport NA

cl_80 protein transport NA

cl_82 ubiquitin-dependent protein catabolism NA

cl_9 programmed cell death HOMOLOGOUS RECOMBINATION

cl_90 generation of precursor metabolites and energy NA

cl_93 homeostasis NA

cl_99 oligopeptide transport NA

cl_114 NA FATTY ACID METABOLISM
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Cluster 28 is a water stress module regulated by ABA  

Cluster 28 (cl_28) comprises of 220 genes, most of which are up-regulated in both the tissues 

exposed to drought (Fig. 2.6). The GO BP terms overrepresented in the cluster are “response to 

water stimulus” and “response to abiotic stimulus”, among others. The Abscisic acid responsive 

element identified in Arabidopsis ABREATRD22 (Iwasaki et al., 1995) and a calmodulin-binding 

GCGCBOXAT involved in stress signal transduction (Yang and Poovaiah, 2002) are significantly 

enriched in the promoters of genes in this cluster. 12 TFs were predicted as the regulators of this 

cluster: OsHSFA7, OsTZF8, HSFC2a, OsHOX24, OsERF95, OsTZF1, OsNAC88, OsABL1, 

OsHSF16, OsMYB7, LOC_Os12g06010 and LOC_Os11g06130. From these, OsHSFA7, 

OsTZF1 and OsABL1 are already known for their involvement in drought as suggested in the 

literature (Yang et al., 2011; Jan et al., 2013).  

 

Cluster 7 is downregulated specifically in the inflorescence tissue 

Cluster 7 is comprised of 133 genes and is enriched with genes annotated to “aromatic compound 

metabolism”, “glucan metabolism” and “cell wall” related processes in the GO categories, and 

“Phenylpropanoid biosynthesis” and “Starch and Sucrose metabolism” pathways from the KEGG 

pathways. Among the predicted regulators of this cluster, targets of OsMYB58/63, the secondary 

cell wall related NAC29, MYB86 and BTB8 had the highest overlap. The association of MYB 

family TFs with these pathways during reproductive development has been shown previously 

(Wilson and Zhang, 2009), which also suggests that this cluster may function in the development 

of reproductive structures by altering the phenylpropanoid  pathway, justifying its downregulation 

in the INF tissue.     
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Development of the RRN web application  

The RRN and the definitions of coregulated clusters along with their functional and regulatory 

annotations are stored in a MySQL database. The database can be accessed at https://plantstress-

pereira.uark.edu/RRN/ (Fig. 2.8). The current version of RRN incorporates two important features: 

the first feature allows users to enter a list of locus ID of interest and search coregulated clusters 

that are significantly represented in the list. The statistical significance of enrichment is calculated 

using a hypergeometric test (Castillo-Davis and Hartl, 2003) and clusters that stand a FDR 

corrected p-value > 0.05 are displayed to the user. The second feature allows one to upload a 

transcriptome to identify coregulated clusters that are significantly enriched with the phenotype. 

The significance of enrichment is computed using the Parametric Analysis of GeneSet Enrichment 

model (Kim and Volsky, 2005) as an integrated tool re-written in perl. Since the model uses 

parametric statistics to calculate p-values, phenotype values of all the genes assayed should be 

uploaded. The phenotype values can be either fold change of expression in response to a treatment 

for a two-sided enrichment test, or it can be p/q values of differential expression (DE) for a one 

sided enrichment test.  

The resulting clusters from these analyses are linked to their gene table along with all the 

functional and regulatory annotations. Genes within each of the resulting clusters are displayed as 

a graph using Cytoscape web (Lopes et al., 2010). Gene and edge attributes in the graph are set to 

highlight information encoded in the expression file uploaded by the user. For example, nodes are 

shaped according to their molecular function, i.e. triangle to represent a TF, diamond to represent 

a kinase and ellipse to represent other genes (Fig. 2.9). 

 

https://plantstress-pereira.uark.edu/RRN/
https://plantstress-pereira.uark.edu/RRN/
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Figure 2.8: Screenshot of the RRN webserver.   
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Figure 2.9: Screenshot of the cluster graph displayed on the RRN webserver.    
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Discussion 

This study was the first attempt to reverse-engineer a genome-wide regulatory network of rice. 

Four complementary statistical algorithms were used to predict interactions between TFs and 

target genes using publicly available expression data conditioned on abiotic stresses. A suitable 

balance between precision and recall was achieved implicitly by choosing a ‘belief based gold-

standard’ comprising of literature derived experimentally confirmed interactions, a set of known 

TF-DNA interactions, and high-confidence interactions predicted in other published rice networks,   

to benchmark the predicted regulatory network. Evaluations showed that an ensemble of these 

algorithms is more robust in predictions and provides a complete picture of the underlying 

regulatory landscape. The average rank aggregation method used to create the ensemble increased 

the accuracy of predictions overcoming the assumptions and biases introduced with use of a single 

method. Moreover, it was observed that removing the worst performer increases the accuracy of 

the ensemble solution even more, providing direct evidence against using linear models like the 

Pearson’s Correlations as a measure to infer TF targets from expression data. 

 Furthermore, it was observed that clustering genes based on their coregulatory patterns 

reveals an additional layer of regulatory information that is usually hidden in coexpression based 

clustering. The identified clusters of coregulated genes were annotated with functional and 

regulatory information which stands more informative in gene set enrichment analysis of 

additional RNA-seq or microarray data, in addition to providing information about TFs that likely 

regulate associated biological processes and pathways. This utility of the network was shown by 

using the coregulated clusters as gene sets in enrichment analysis of drought induced FL and INF 

transcriptomes. The pipeline revealed several biological processes and pathways that are usually 

observed to be perturbed under drought, in addition to revealing several TFs with known stress 
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responses. Exploration of a few of such functional clusters leads to hypothesis generation and 

prioritize genes for experimental validation. For example, Cluster 128 revealed five interconnected 

heat shock factors that regulate heat stress response, which might also be under post-

transcriptionally regulated as indicated by the prediction of the splicing factor U2af as one of the 

regulators.  

 It was observed that the average rank aggregation method cannot be generalized to analysis 

of any molecular datatype, as suggested by evaluations of an ensemble of RNA-seq data analysis 

methods on two stress-induced transcriptomes of rice. A logical reasoning surrounding this 

observation is based on the biological question itself and the underlying assumptions of the 

statistical models used. The statistical tests used for differential expression analysis simply state 

whether the change in the observed levels of gene expression in two samples is significant or not. 

While in network analysis, a large number of biological assumptions can be made but cannot be 

simultaneously integrated into a single statistical framework, hence taking the top confidence 

predictions from different methods into a consensus is more robust to inclusion of false positives.         

 Although using the consensus network scheme has been used before in plants (Vermeirssen 

et al., 2014; Taylor-Teeples et al., 2015) and other smaller organisms (Marbach et al., 2012), the 

study presented here has several distinguishing factors. There is not a single database available for 

analysis of additional newer expression data, as the existing network browsers are limited to 

gene/set query (Sato et al., 2012; Lee et al., 2015). The online interactive webserver of the RRN 

presented here is one of its kind and will be helpful in analysis of RNA-seq datasets for retrieving 

information about perturbed biological processes, pathways and most dominant TFs as regulators 

of the observed phenotype. Additionally, targets of a TF of interest can also be identified and 

validated using medium or high throughput protein-DNA binding in vivo assays (Basu et al., 2014) 
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for reconstruction of regulatory networks. 

 

Methods 

The abiotic-stress expression compendium  

A set of 29 microarray datasets comprising of 595 samples were downloaded from the GEO 

database. Raw .CEL files were background corrected, normalized and summarized using the 

Robust Multiarray Average algorithm in R (Irizarry et al., 2003). A custom rice Chip Definition 

Format (CDF) file was used to assign Affymetrix probes to individual genes in the MSU V7 

annotation, covering a total of 35,151 unique gene models. Replicates were averaged and 

individual expression matrices were combined to create an integrated expression matrix with 

35,151 genes in rows and 266 samples in columns, with each cell in the matrix representing the 

log of intrinsic expression value of the corresponding gene in the corresponding sample column.  

 

Ensemble solution for target-gene prediction.   

A list of 2304 rice genes identified as TFs was curated from online databases. This list along with 

the expression matrix was supplied as input to ARACNE (Margolin et al., 2006), GENIE (Huynh-

Thu et al., 2010) and CLR (Faith et al., 2007) algorithms to predict direct interactions between the 

TFs and target genes. The source code of ARACNE and GENIE software were downloaded from 

the published project pages, while the CLR version implemented in the R package minet (Meyer 

et al., 2008) was used. For the PC based model, correlation scores between all gene-pairs were 

mapped to Z scores and edges with at least one node as TF from the list were identified. For each 

of the four algorithms and the ensemble, edges were ranked based on the confidence scores and 
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the top 500,000 edges were selected. Next, the average of ranks for each edge was calculated. 

Ranks of edges that were not predicted by an algorithm was set to the total number of rankings +1 

(~500,001) as the lowest rank. A custom R script was written to rank-organize the data and 

aggregate the results into a consensus.  

 

Derivation of reference networks and benchmarking  

For the second RN, the RicenetV2, PRIN and String interactions were downloaded. From each of 

these independently inferred networks, transcriptional edges (edges with at least one node from 

the list of TFs used in this study) were identified. A union of all such edges was then computed.  

For the third RN (motif-association net), the PWM of ~600 TFs were downloaded from the cis-

BP database (Weirauch et al., 2014). Promoter sequences, comprising 1000 bp upstream of rice 

genes, were downloaded from AgBase (McCarthy et al., 2006). The promoters were then scanned 

for at least one or more occurrences of the cis-BP motifs using the FIMO tool in the MEME suite 

(Bailey et al., 2015). Motifs that were found in more than 50% of all the genes were treated as 

‘constitutive elements’ and removed. Genes harboring all the remaining motifs with a p-value < 

1E-10 were linked to the corresponding TFs and the motif association network was created for 

benchmarking.  

 

Benchmarking 

For each of the three reference networks, precision (P) of the top 500,000 edges was calculated as 

the ratio of correctly identified edges over total edges predicted, and recall (R) was calculated as 

the ratio of known edges that were correctly predicted over total number of predicted edges. The 
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overall accuracy score was calculated as the harmonic mean of P and R (F score) as: F= 2*(P * 

R)/ P + R, where P = TP/ TP + FP, and R = TP/TP + FN.  

 

Evaluation of MCL threshold for clustering 

The inflation parameter I required for clustering using MCL was evaluated as follows: For clusters 

obtained at each of I values within the range between 1.5 and 4.25 with increments of 0.25, a 

contingency matrix T was computed. Each column in T represented a functional class from the GO 

BP categories and rows represented observed clusters. The cell value Tij represented the number 

of genes found in common between the ith column and the jth row. Using T for every value of I, the 

Sensitivity (Sn) and Positive Predictive Value (PPV) was computed as   

 

              𝑆𝑛 =  
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Where 𝑆𝑛𝑖 =   
𝑚𝑎𝑥 (𝑇𝑖𝑗)

 𝑁𝑖
   and  𝑃𝑃𝑉𝑗 =   

𝑚𝑎𝑥 (𝑇𝑖𝑗)

 𝑀𝑗
   , and Ni corresponds to the size of the BP category 

and Mj corresponds to the size of the cluster. The geometric accuracy (ACCg) was then calculated 

as  

            𝐴𝑐𝑐𝑔 = √𝑃𝑃𝑉 ∙ 𝑆𝑛 . 

The separation between clusters, indicating how well each complex represents a functional 

category, was estimated row-wise as 
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𝑗=1   
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and column-wise as   

     𝑆𝑒𝑝𝑐𝑗
=  ∑ (

𝑇𝑖𝑗

∑ 𝑇𝑖𝑗
𝑚
𝑗=1  

.
𝑇𝑖𝑗

∑ 𝑇𝑖𝑗
𝑛
𝑖=1  

)𝑛
𝑖=1 .  

Then the overall separation was computed as the geometrical mean of row and column separation 

as  

𝑆𝑒𝑝 = √𝑆𝑒𝑝𝑐  ∙  𝑆𝑒𝑝𝑟  

The corresponding values of 𝐴𝑐𝑐𝑔 and 𝑆𝑒𝑝 were then plotted for each value of I in R.  

 

Processing RNA-seq reads and test of differential expression. 

Tophat version 2.0.12 was used to align raw paired-end reads from both the drought samples to 

the Oryza sativa cv. Nipponbare release 7 of the MSU Rice Genome Annotation Project. This is 

the latest release of the reference genome of rice and the General Feature Format (GFF) file 

contains a total of 55,987 loci as gene models, of which 4665 models were detected to have an 

alternatively spliced isoform. Correspondence between the replicates was computed by dividing 

the genome into 10 Kb bins and counting the reads that fell within each bin in each sample. The 

pairwise correlation values were then evaluated between read coverages and plotted as a scatter 

plot in R. The number of reads per gene-model were counted using featureCounts (Liao et al., 

2014) using ‘exons’ as features. Genes with 0 read counts across all the samples were removed 

from the further analyses. EdgeR, Deseq2 and limma as count based methods, and Cufflinks as an 

FPKM based method were evaluated for their performance in detecting DE. Replicates were not 

averaged, instead a condition factor was set in the contrast matrix for normalization in the three 

count based models using all the samples. Genes were then ranked based on their resulting p/q 
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values indicating how confident a method is in declaring a gene as differentially expressed. 

Performance was then evaluated by comparing the obtained ranks of the bona fide drought 

response genes identified from six independent microarrays. 

 A custom R script was written to automate the process of counting reads, detecting DE, 

ranking and performing the aggregation.  

 

Identification differentially expressed genes in microarray data 

For identification of DG list, DE was estimated in six drought experiments in rice downloaded 

from the GEO. Raw data was background corrected, normalized and scaled. Genes with very low 

variation were filtered based on the IQR range of the sample for reliable detection of DE. DE was 

tested using the limma model in R (Ritchie et al., 2015). The resulting p values were converted to 

q values to control for false discovery rate using the qvalue package in R. Genes with q value < 

0.01 were declared as significantly differentially expressed (DE) in each dataset. An intersection 

of DE genes in all the datasets represented the DG list used for evaluating RNA-seq analysis 

methods. 

 

Derivation of functional categories from online catalogs 

The GO graph .obo file was downloaded from the consortium database 

(http://www.geneontology.org/page/download-ontology). GO annotations of rice were 

downloaded from the plantGSEA database (Yi et al., 2013). Annotations were propagated from 

the leaves of the GO hierarchy towards the root, satisfying the parent-child relationships (true path 

rule) using a custom Perl script. Annotation categories were filtered to retain only those that 

http://www.geneontology.org/page/download-ontology
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possess more than 10 or less than 500 genes for enrichment analysis. Redundant terms were 

identified as those that had an overlap of more than 90% in their corresponding annotations, and 

the term with lesser number of annotations was removed. The KEGG pathways mappings for rice 

was downloaded from the plantGSEA database, and filtered for pathways that had a large number 

of genes (first three terms in the hierarchy).    

 

Geneset enrichment analysis 

For linking clusters to GO BP terms, KEGG pathways and CREs, overlaps between a given cluster 

and a given category were calculated and the significance of the observed overlap was determined 

used the cumulative hypergeometric test. The resulting p values were corrected for multiple testing 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995), and -1 log (q value) was 

reported as enrichment scores. For enrichment analysis of clusters in transcriptomes, PAGE model 

(Kim and Volsky, 2005) was implemented and log2 of fold change values were used. The p value 

of enrichment was calculated under the standard normal distribution for clusters larger than size 

10 and smaller than size 1000. 
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Chapter 3: SANe: The Seed Active Network For Mining Transcriptional Regulatory 

Programs of Seed Development in Arabidopsis.  

 

Abstract 

Seed development is an evolutionarily important phase of the plant life cycle that governs the fate 

of next progeny. Distinct sub-regions within seeds have diverse roles in protecting and nourishing 

the embryo as it enlarges, and for the synthesis of storage reserves that serve as an important source 

of nutrients and energy for germination. Several studies have revealed that transcription factors 

(TFs) act in fine coordination to regulate target genes that ensure proper maintenance, metabolism, 

and development of the embryo. Here, we present genome-wide predictions of seed-specific 

regulatory interactions between TFs and their target genes in the model plant Arabidopsis thaliana. 

The network is based on a panel of high-resolution seed-specific gene expression dataset and takes 

the form of a module-regulatory network. TFs that are well studied in the literature were often 

found at the top of the predicted ranks for the module that corresponds to their validated function 

role. Furthermore, we brought together a dedicated web resource for a systematic analysis of 

transcriptional-level regulatory programs underlying the development of seeds (https://plantstress-

pereira.uark.edu/SANe/). The platform will enable biologists to query a subset of modules, TFs of 

interest, as well as analyze new transcriptomes to find modules significantly perturbed in their 

experiment.   

 

 

 

https://plantstress-pereira.uark.edu/SANe/
https://plantstress-pereira.uark.edu/SANe/
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Introduction 

The evolutionary success of plants lies in their ability to produce seeds and their dispersal, which 

facilitates the progression of generation. Seeds are complex structures that help plants halt their 

life cycle under unfavorable conditions and resume growth once the environmental conditions 

become favorable. Like all angiosperms, in Arabidopsis, a double fertilization event marks the 

beginning of seed development that progresses into the development of embryo, endosperm and 

seed coat over a period of 20-21 days after pollination. These morphologically distinct sub-

compartments within a seed play diverse roles and function in concert during the entire phase of 

seed formation. During maturation, synthesis of storage reserves occur and traits like desiccation 

tolerance and dormancy are acquired. These seed storage reserves fuel for seedling emergence 

during germination.     

Several transcription factors (TFs) that regulate various aspects of seed development as 

well as germination have been revealed by genetic screens (Grossniklaus et al., 1998; Lotan et al., 

1998; Ogas et al., 1999; Johnson et al., 2002; To et al., 2006). Among these TFs, three members 

of the B3 super family, namely, LEAFY COTYLEDON 2 (LEC2), ABSCISIC ACID INDENSITIVE 

3 (ABI3) and FUSCA3 (FUS3), along with two members of the LEC1-type, LEC1 and LEC1-LIKE, 

that together form the ‘LAFL’ network (Jia et al., 2013), are the most prominent players of seed 

maturation. However, the existing LAFL network is still incomplete and represents only a subset 

of regulatory networks active during seed development. The functional roles of several other TFs 

that express in seed tissues remains largely unknown. Although genetic interactions, functional 

redundancy and cooperativity between TFs will be more accurately revealed by genetic 

perturbations, an underpinning of seed regulatory networks from a computational standpoint will 

provide tools for quick identification and prioritization of candidates for experimentation in vivo.           
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DNA microarrays have served as efficient experimental systems for simultaneously 

probing genome-wide transcriptional level activities of specific cellular states. In recent years, an 

upsurge in the availability of these high-throughput gene expression datasets motivated 

coexpression based approaches applied to understanding gene function. An integrative analysis of 

expression datasets enables estimating similarity in patterns of gene expression across a diverse 

set of experimental conditions. Genes with similar expression profiles are grouped into clusters of 

coexpressed genes. Functional (Castillo-Davis and Hartl, 2003) and genomic (Huttenhower et al., 

2009) annotations of these gene clusters then aid in making functional predictions of 

uncharacterized genes within these clusters (Childs et al., 2011). There are several such 

coexpression databases across many model organisms that are now being actively used in gene 

function prediction and gene prioritization for experimental essays in plants (Obayashi and 

Kinoshita, 2011; Sato et al., 2012; Yim et al., 2013; Aoki et al., 2016).   

 Coexpression networks, however, lack information about regulatory interactions encoded 

in the expression data. Genes encoding regulatory proteins (e.g., TFs) coordinately regulate the 

biological functions of multiple target genes by directly interacting with their promoters and 

activating or repressing their expression. Since TFs are themselves transcriptionally regulated, they 

can also be targets of other TFs, giving the network a hierarchical structure (Ma et al., 2004; Spitz 

and Furlong, 2012). Hence, a strongly coexpressed TF-gene pair might not necessarily mean a 

direct physical interaction, but can be observed as an indirect regulatory effect, even if they co-

occur in a single functionally related cluster. Moreover, the affinity of a TF for a target gene can 

be highly tissue-specific or according to the metabolic needs of the cell. Therefore, to deduce a 

regulatory network prioritizing TFs, the underlying expression data should have a unifying 

biological context (e.g. datasets for a specific tissue or condition) and coexpressed edges should 
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be filtered for indirect interactions to minimize false positives. However, inferring accurate 

regulatory networks using solely gene expression data requires a large number of empirical data 

points for each space and time combination, for a robust statistical and biological inference. 

Nonetheless, for plant biologists, accumulated datasets in Arabidopsis are large enough to 

elucidate specificity of coexpression and predict key functional roles of TFs. 

In recent years, several reverse engineering solutions have been brought forward that aim 

to model coexpression data in a way such that direct interactions involving known regulatory genes 

are given a priority (Basso et al., 2005; Faith et al., 2007; Huynh-Thu et al., 2010). These 

algorithms use a successive edge filtering step to recover potentially direct interactions between 

TFs and their targets. For example, the ARACNE algorithm assumes that in a triplet of connected 

nodes, the edge with lowest coexpression score is representative of an indirect interaction 

(Margolin et al., 2006). The GENIE method sets a feature selection problem for every gene to find 

the best subset of regulators from all the remaining genes (Huynh-Thu et al., 2010). The CLR 

algorithm aims to identify direct transcriptional interactions by using a background correction 

scheme that suppresses noise arising due to high correlations between indirect interactions (Faith 

et al., 2007). These algorithms have been successfully used for inferring plant gene regulatory 

networks (Yu et al., 2011; Chavez Montes et al., 2014; Vermeirssen et al., 2014).  

In the work presented here, we focused on a recently published gene expression dataset 

arising from the seed development phases of Arabidopsis (Belmonte et al., 2013), and dissected a 

regulatory network highly predictive of seed-specific functions of TFs (Fig. 3.1). First, we 

harnessed the power of coexpression and graph clustering to partition genes into functionally 

related modules and mapped the spatio-temporal activities of these modules. Simultaneously, for 

every identified TF in the Arabidopsis genome, we computed its partial coexpression score with 
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every possible target gene and used these scores as a parameter for gene set enrichment analysis 

using coexpressed modules as gene sets. In this way, we could identify the modules that were 

statistically-most-likely targets of each TF. Using systematic reduction of data points and prior 

knowledge from the literature to interpret the associations, we observed that several TFs that are 

known to have an aberrant seed phenotype were predicted as the top regulators of modules for 

which their function has been experimentally validated. For example, a recently discovered 

association between the TF AGL67 and desiccation tolerance (González-Morales et al., 2016), and 

MYB107 and suberin (Lashbrooke et al., 2016) was correctly predicted in our network. These and 

several other correctly predicted associations (described later in the text) motivated us to create an 

online resource for the community. Our network, which we termed the ‘Seed Active Network’ or 

SANe, is hosted at https://plantstress-pereira.uark.edu/SANe/ to provide a network-based 

understanding of seed development.  

https://plantstress-pereira.uark.edu/SANe/
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Figure 3.1: Pipeline for tissue-specific module regulatory network analysis. Two separate 

Arabidopsis gene expression compendiums (EC) were created: one from a seed-specific 

expression data series (GSE12404) and one from non-tissue-specific (global) 140 expression 

datasets. Datasets in both the EC were normalized individually using RMA algorithm in R. Z 

scores of Pearson’s Correlations (PC) were calculated for all gene-pairs in both the EC. From seed 

EC, gene pairs with PC >0.73 (Z > 1.96) were connected to create the Arabidopsis Seed 

coexpression network (ASCN). ASCN was then clustered using SPICi at a range of clustering 

thresholds (Td), and an optimal clustering parameter was chosen based on genome coverage and 

coherence of genes as a functional group. 1563 clusters obtained at Td  0.80 were tested for 

enrichment of biological processes from the gene ontology and known plant cis regulatory 

elements for multiple databases. A list of 1921 TFs was supplied to the CLR (context likelihood 

of relatedness) algorithm to predict their targets in both the EC. In the seed EC, the PAGE 

algorithm was used to score the enrichment of CLR-weighted targets in the ASCN clusters, and a 

TF-module association network was created. The network was queried with a list of genes 
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expressed predominantly in the seed as compared to other organs/tissues, and the Seed Active 

Network or SANe, was derived. Simultaneously, the seed-specific network was compared with the 

network created using the global EC and multiple other Arabidopsis regulatory networks 

downloaded from published studies.  
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Results 

Seed coexpression network 

To avoid implementing procedures of minimizing batch effects and the errors associated with 

microarray data integration (Chen et al., 2011; Nygaard et al., 2015), we chose Arabidopsis gene 

expression profiles from the data super series labeled GSE12404 in the gene expression omnibus 

(GEO) database (Barrett et al., 2007). This series is comprised of 87 samples derived from 6 

discrete stages of seed development, and 5-6 different compartments within each stage, reflecting 

the most comprehensive source of Arabidopsis seed-specific gene expression profiles. With a 

sample size large enough for statistical inferences, these datasets were also devoid of the 

ambiguities regarding due to the context under which the experiment was performed (intra-

laboratory bias), one of the major problems in context-driven integrative analyses of gene 

expression data. We normalized and summarized this expression data into an integrated gene 

expression matrix using a custom CDF file of Arabidopsis microarray to reduce off-target 

hybridizations (Harb et al., 2010). Pearson’s correlations (PC) scores between all gene-pairs in the 

gene expression matrix were then calculated and mapped to Z scores using Fisher’s Z-

transformation (Huttenhower et al., 2006). Gene pairs with significantly high correlation in 

expression (PC 0.753, Z-score >1.96) were connected and the rest filtered. We named this core of 

raw coexpression data with ~7.6 million edges as the Arabidopsis seed coexpression network 

(ASCN).  

Identification of clusters in coexpression data 

Identification of communities, or clustering, is the most prominent step in network based 

interpretation of genomic data. In terms of gene expression data, clustering provides a useful way 
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to group genes with similar expression profiles together. The need for gene grouping is based on 

the percept that expression similarity is indicative of similarity in function (Eisen et al., 1998). 

Therefore, clustering furthers an understanding of the function of a previously uncharacterized 

gene, based on known functions of other members of the same group. However, the choice of 

clustering method heavily influences the accuracy of functional predictions (Yeung et al., 2001). 

Clustering algorithms typically require either a predefined number of clusters, as in k-means 

clustering, or the process is semiautomatic (Langfelder and Horvath, 2008), and is sometimes 

computationally expensive.    

In our network framework, we used an unbiased data-driven method to cluster genes within 

the ASCN. The density of a cluster, measured as the ratio of the number of observed edges in a 

cluster to the total number of expected edges, reflects cohesiveness among the members of the 

same cluster. The SPICi algorithm evaluates density to group similar genes in a biological network, 

while considering the confidence weight on each edge (Jiang and Singh, 2010). We sought to 

identify an optimum density threshold (Td) that yields clusters at a granularity that delivers 

biological information, while preserving the inherent topological features of the network. A range 

of Td values were evaluated for performance in loss or gain of information, with a goal of 

separating genes into as many clusters as possible, without losing many genes originally present 

on the microarray. At Td 0.80, 84% of the ASCN genes formed 1563 clusters, after which a 

significant loss of information occurred, as indicated by a sharp fall in the fraction of total genes 

retained (Fig. 3.2 A).  At the same threshold of 0.80, the average modularity within clusters was 

also maximized (at a bearable cost of gene loss) (Fig 3.2 B). Modularity measures how functionally 

separable the clusters are, in the sense that how well genes within a clusters interact with each 

other as compared to genes outside the cluster (Albert, 2005).    
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For a function-level analysis, it is also important that genes within each cluster are 

representative of common biological functions, as grouping genes would not yield any functional 

predictions if at least one putative function of the group is not known. To further establish 

confidence in Td 0.80 as the best solution for partitioning, we evaluated each Td for its ability to 

categorize known information about Arabidopsis biological pathways derived from the Gene 

Ontology (GO) annotated gene sets in the biological process (BP) category. Full set of annotation 

terms satisfying the parent-child relationships were used to find overlaps with clusters obtained at 

every Td. The significance of overlap was tested under the hypergeometric distribution (see 

“Methods”). The functional coherence of the network, evaluated based on the total number of 

clusters with enriched BP terms, total number of distinct BP terms and the overall functional 

enrichment score, was also found to be best preserved at Td 0.80 (Fig 3.2 B and 3.2 C). 

Overall, the network lost its stability and collapsed at Td values exceeding 0.80, as indicated 

by all measured clustering parameters (Fig. 3.2). Hence, 1563 dense clusters obtained at Td 0.80 

were used for further analysis. The total number of genes in these modules amounts to 17,949 

(Supplemental Table S3.1). 
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Figure 3.2: Evaluation of clustering threshold (Td). Genes from the Arabidopsis seed 

coexpression network were clustered at a range of Td values shown on the X axis of all the figures. 

Each Td was examined by: A) A genome coverage plot measuring the number of clusters yielded 

and the fraction of original genes retained (orange line corresponding orange Y axis). B) Boxplots 

showing average edge segregation of all the clusters, indicating overall modularity of the network 

within each Td. C) A plot showing number of clusters enriched with atleast one BP term and the 

total number of BP terms retained (orange line corresponding orange Y axis) and D) Boxplots 

summarizing the enrichment scores [-1*log(FDR)] of the hypergeometric p-values obtained by 

BP-cluster overlap analysis.  

 

 

 

 

 

  



68 
 

Transcriptional regulators of seed modules 

Modules of coexpressed genes in ASCN retained information about possible functional 

interactions between genes and their responses during different stages of seed development. This 

greatly expanded upon the currently available functional annotations of Arabidopsis genes, as the 

genes that were lacking functional annotations now have atleast one putative function assigned 

based on their module participation. The next task was to leverage on this information in the 

coexpression data and identify key TFs that statistically associate with each of the ASCN modules. 

There are 1921 unique locus IDs in the Plant Transcription Factor Database (Jin et al., 2014), the 

AGRIS database (Yilmaz et al., 2011) and the Database of Arabidopsis Transcription Factors (Guo 

et al., 2005), corresponding to TF genes in Arabidopsis. We used this comprehensive list to obtain 

transcriptional regulators for our analysis.  

Simply associating genes as targets of TFs that they ‘highly coexpress’ with (first 

neighbors) is prone to the occurrence of false positives in a genome-scale analysis. This occurrence 

is mainly due to correlations arising from indirect regulation or coincidental coexpression of genes 

involved in different and unrelated processes that need to be active under the same circumstances. 

To minimize this effect, we calculated how likely a predicted TF-gene interaction was given the 

empirical background distribution of correlation scores of both the genes under consideration 

(Faith et al., 2007) (reported as a Z-score, see Methods) (Supplemental Table S3.2). Next, we 

sought to identify those modules that had higher enrichment of most probable targets for each TF. 

Instead of choosing an arbitrary cutoff for selecting targets, we used the entire set of predictions 

for each TF, weighted by Z-scores, and worked under the framework of Parametric Analysis of 

Gene set Enrichment (PAGE) (Kim and Volsky, 2005). The PAGE algorithm uses the normal 

distribution for statistical inference and states the degree of enrichment (here ‘association’) of a 
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given gene set (here module) amongst the most highly scored predicted targets of a given TF. This 

analysis is essentially similar to that of a two-tail enrichment test with GO BP terms (treated as 

gene sets) (Ambavaram et al., 2011). Here, the difference was that gene sets from coexpression 

clusters observed in a specific tissue was used. To provide a normal distribution for association 

scoring, we used only those modules that had more than 10 genes, as suggested by the authors of 

the PAGE algorithm. Using this robust formulation, 1819 TFs were linked to 278 modules 

comprised of 10,526 genes (cluster 1 with 1621 genes was considered an outlier cluster because it 

contained disproportional number of genes as compared to other clusters). We labeled this network 

core as ‘TF-Module Network’ (TMN). TMN is represented as a matrix with TFs in rows and 

modules in columns, with each cell in the matrix representing a TF-module association score given 

by PAGE (Fig. 3.3 A).  

 

 

 

 

 

 

 

 

 

 



70 
 

 

Figure 3.3: TF-Module Association Network (TMN).  A) Heatmap representing association 

scores of 1819 TFs as regulators in the rows, and 10526 genes grouped into 278 coexpression 

modules represented along the columns. Each grid in the heatmap is color coded according to the 

level of enrichment of predicted targets of each TF regulator in the corresponding module. The red 

gradient indicates a positive score and grey indicates a negative score, estimated using the PAGE 

algorithm. The seed compartment in which the module has maximum expression is color-coded 

and represented on top of the heatmap (first row), where CE is chalazal endosperm, ME is 

micropylar endosperm, PE is peripheral endosperm, CSC and GSC is chalazal and general seed 

coat, respectively, and EP is embryo proper. The development stage in which the module has 

maximum expression is color-coded and represented on top of the heatmap (second row), where 

bc is bending cotyledon, lc is linear cotyledon, pgs is pre-globular stage, ges is globular embryo 

stage, hs is heart stage and mg is mature green stages. B) Predictions for each of the 278 modules 

were ranked and the top 5 predicted regulators for each module were visualized as a network graph. 

Each grey circle in the network plot is a TF and each orange circle is a module. The size of the 

grey circle is proportional to the out-going degree of the TF. Size of the orange circle was set to a 

constant, except for 9 bigger circles showing the modules described later in the main text. The 

network was visualized using Cytoscape version 3.3.0. Node names are hidden for ease in 

visualization. The cytoscape sessions file is provided as supplemental table S3.3, which can be 

loaded into Cytoscape for node names and further exploration of the network. The heatmap was 

drawn using gplots package in the R statistical computing environment. 
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The TMN provides a regulatory map of seed transcriptional activities, in the form of a 

bipartite graph, with TFs as one set of nodes and sets of genes reduced to their ‘functions’ as 

another set of nodes, and edges weighted by the degree of association between the corresponding 

TF and the function. For visualization, we selected the top 5 predicted TF regulators for each 

module, ranked based on absolute association scores, and visualized TMN as a graph in Cytoscape 

(Fig. 3.3B; Supplemental Table S3.3). A total of 900 regulators were represented in top 5 

predictions for each of the 278 modules. Most the modules were found indirectly connected due 

to combinatorial links between their predicted TF regulators, forming a dense network while 11 

modules shared no common predicted TF regulators with other modules.    

 

Modules active during seed development 

Seed-specific genes were previously discovered as those that were present only in seed tissues, 

and not in other reproductive or vegetative parts of the plant (Le et al., 2010; Belmonte et al., 

2013). We sought for those modules that harbored at least one such gene and identified a core set 

of 120 modules comprised of 7414 genes. We called these modules as ‘active modules’. We 

reasoned that because these modules retained genes specific to seed development, their 

coexpression neighborhood – along with the top ranked regulators – will pave way to identification 

of transcriptional networks modulated specifically during seed development, or involved in 

important seed functions. Therefore, novel TFs that are already part of these modules, or emerge 

as the top regulators will automatically become the primary candidates for testing seed phenotypes, 

largely reducing the search space. Also, the strategy of probing TMN with a list of genes already 

prioritized had less chances of observing false positives from a gamut of predicted regulatory 

programs, while making the process of interpreting the regulation patterns easier. We labelled this 
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core of 120 active modules along with their scored TF regulators as the ‘Seed Active Network’ 

(SANe) (Supplemental Table S3.4). 

We simultaneously mapped the expression patterns of each module spatially and 

temporally (seed compartment wise and development stage wise), by averaging the expression of 

module genes in each seed-compartment irrespective of the development stage or within each 

development stage irrespective of the seed compartment. After interfacing the expression patterns 

of each module with BPs and known cis regulatory elements (CREs) (Supplemental Table S3.5 

and S6; see “Methods”) and predicted sets of top regulators, a few modules that had high 

expression in different seed compartments (embryo, endosperm and seed-coat regions) were 

visually examined using heatmaps (Fig. 3.4). These modules expand a wide variety of cellular 

processes, including flavonoid metabolism during seed coat formation, lipid storage and 

photosynthesis during endosperm development and auxin transport and tissue development from 

early to late stages of embryogenesis. Visualization of a few modules revealed that there is a high 

intra-module connectivity between modules that participate in the same developmental program 

in a tissue-specific manner, albeit with different biological goals (Fig. 3.5). A few such modules 

are described below. 
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Figure 3.4: Heatmap representation of a subset of the SANe. Modules with high relative 

expression in embryo, endosperm and seed coat regions were extracted from SANe. Modules are 

shown in columns and for each module, the top 5 predicted TF regulators are shown in rows. Each 

grid in the heatmap is colored according to the association score estimated using the PAGE 

algorithm. Positive and negative scores are shaded in red or black gradient, respectively, as 

indicated by the color key. Literature identified TFs with validated seed-specific phenotypes or 

phenotypes observed in other reproductive stages/tissues are marked with a red ellipse or a yellow 

ellipse, respectively. CRE, cell-type and functional annotations for each module are shown above 

the heatmap (top three rows; colored boxes). Modules annotated for embryo, endosperm and seed 

coat are indicated in blue, green and brown boxes, respectively, in the middle row. CRE and 

functional annotation for each module is color- coded uniquely in the top and bottom rows, 

respectively. 
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Figure 3.5: Visualization of seed modules. A graphical representation of seed coexpression 

modules. Each circle represents a gene. Each module is color coded uniquely. Modules are grouped 

according to the seed compartments (indicated by horizontal or vertical lines and text boxes), and 

labelled with the BP term most highly over-represented within each module. Genes are left 

unlabeled to facilitate visualization. The network was drawn in Cytoscape version 3.3.0. 
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Modules for early embryo development 

Three modules designated as M0089, M0200 and M0277 comprised 54, 31 and 33 genes, 

respectively, expressed at relatively high levels in the embryonic tissue when compared to other 

seed compartments (Fig. 3.6A). These genes are significantly enriched with BP terms like “organ 

development”, “tissue development”, “axis specification” and “auxin transport”. This is consistent 

with processes related to embryo development, involving morphogenesis-related and other cellular 

processes that govern gene activity related to cell division and expansion, maintenance of 

meristems and cell fate determination (Wendrich and Weijers, 2013).  

M0089 harbors genes related to reproductive tissue development and cell division. 

ATDOF5.8 (AT5G66940) was predicted as the top regulator of M0089. The ATDOF5.8 gene is 

most highly expressed in embryo and meristem cells (Supplemental Fig. S3.1A) based on the 

Genevisible tool in GENEVESTIGATOR (Zimmermann et al., 2004). It has been shown that 

ATFOD5.8 is an abiotic stress-related TF that acts upstream of ANAC069/NTM2 (AT4G01550) 

(He et al., 2015). Interestingly, the NTM2 gene resides at a locus adjacent to another NAC domain 

TF, NTM1 (AT4G01540), a regulator of cell division in vegetative tissues (Kim et al., 2006). Kim 

et al. did not detect NTM2 expression in leaves by RT-PCR. However, they indicated that because 

both NTM genes have similar structural organization, encoding proteins with a few differences in 

the protein chain, NTM2 could be involved in similar processes in other tissues. Our predictions 

suggest that NTM2 could be in the ATDOF5.8 regulon associated with modulating cell division 

activity in the seed. This leads to a new testable hypothesis pertaining to regulation of cell division 

during embryogenesis. Among other known regulators, BABY BOOM (BBM, AT5G17430) was 

predicted as one of the top ranked TF (rank 4) of M0089. BBM is an AP2 TF that regulates the 

embryonic phase of development (Boutilier et al., 2002).  
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YAB5 (AT2G26580) and ATMYB62 (AT1G68320) were predicted the top ranked 

regulators of M0200 and M0277, respectively. While the agreement of YAB5 as a determinant of 

abaxial leaf polarity (Husbands et al., 2015) and enrichment of M0200 with GO BP term “axis 

specification” (GO:0009798) justifies this association, the association of ATMYB62 with M0277 

indicates a hormonal interaction likely representing a transition between the growth stages. 

ATMYB62 encodes a regulator of gibberellic acid biosynthesis (Devaiah et al., 2009) and is 

expressed specifically during seed development (Belmonte et al., 2013). M0277 is enriched with 

“auxin transport” genes (GO:0009926). The ATMYB62 gene is preferentially expressed in the 

abscission zone and other reproductive tissues (Supplemental Fig. S3.1B). 

  

Modules for Endosperm Development  

The endosperm has a profound influence on seed development by supplying nutrients to the 

growing embryo (Portereiko et al., 2006; Chen et al., 2015). The importance of endosperm 

cellularization for embryo vitality has been shown through mutants deficient in endosperm-

specific fertilization events (Kohler et al., 2003). The overall seed size depends on endosperm 

development and is controlled through the relative dosage of accumulated paternal and maternal 

alleles (Luo et al., 2005).  

We found that genes in modules M0003 and M0011 had maximal expression levels in 

endosperm tissues (Fig. 3.6B). M0003 is significantly enriched with genes involved in lipid storage 

(GO:0019915) and fatty acid biosynthesis (GO:0006633). LEC1-LIKE (L1L, AT5G47670) 

emerged as the top regulator of this module. LIL is related to LEAFY COTYLEDON 1 (LEC1) 

and functions during early seed filling as a positive regulator of seed storage compound 

accumulation (Kwong et al., 2003). Interestingly, L1L is also part of this module indicating that, 
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apart from being a master regulator, its activity is also modulated during the late seed filling stages 

as observed previously (Kwong et al., 2003), which correlates with the overall expression pattern 

of genes within this module (Supplemental Fig. S3.2). The presence of 44 other TFs in this module, 

including FUS3 and ABI3, key regulators of seed maturation (Keith et al., 1994; Luerßen et al., 

1998; Yamamoto et al., 2009), points to the importance of this module in nutrient supply to the 

developing embryo. LDB18 (AT2G45420) is a LOB-domain containing protein of unknown 

function predicted as the second ranked regulator of this module. GENEVESTIGATOR analysis 

showed that both L1L and LDB18 are most highly expressed in the micropylar endosperm 

(Supplemental Fig. S3.3).   

M0011 is comprised of 357 genes including 7 TFs and is characterized by containing genes 

with high expression levels in the micropylar endosperm (ME) and the peripheral endosperm (PE). 

GO enrichment analysis showed the highest scores for photosynthesis (GO:0015979) for genes in 

this module.  Close examination of these genes revealed that virtually all aspects associated with 

chloroplast formation and function were represented, including chloroplast biogenesis and 

membrane component synthesis, chlorophyll biosynthesis, plastidic gene expression, 

photosynthetic light harvesting and electron transport chain, ATP production, redox regulation and 

oxidative stress responses, Calvin cycle and photosynthetic metabolism, metabolite transport, and 

retrograde signaling.  Interestingly, genes encoding photorespiratory enzymes (glycine 

decarboxylase, glyoxylate reductase, and hydroxypyruvate reductase) were also present in M0011.  

Developing oilseeds are known to keep extremely high levels of CO2 that would suppress 

photorespiration (Goffman et al., 2004), and the implications of expression of these genes on 

photosynthetic metabolism are not clear. 
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The presence of mostly photosynthetic genes in M0011 seems also unusual, but the results 

are consistent with findings of (Belmonte et al., 2013), showing that specific types of endosperm 

cells are photosynthetic, as they contain differentiated chloroplasts and express photosynthesis-

related genes.  Fully differentiated embryos at the seed-filling stages and the chlorophyll-

containing inner integument ii2 of the seed coat are parts of oilseeds that are also capable of 

photosynthesis (Belmonte et al., 2013; Sreenivasulu and Wobus, 2013).  Although seeds obtain 

the majority of nutrients maternally, Arabidopsis embryos remain green during seed filling and 

maintain a functional photosynthesis apparatus similar to that in leaves (Allorent et al., 2015).  As 

part of photoheterotrophic metabolism, photosynthesis provides at least 50% of reductant in 

oilseed embryos and CO2 is re-fixed through the Rubisco bypass that helps to increase carbon-use 

efficiency in developing oilseeds (Ruuska et al., 2004; Schwender et al., 2004; Goffman et al., 

2005; Fait et al., 2006). The roles for photosynthesis in ME and PE remain to be investigated and 

include (i) providing carbon and energy for storage compound accumulation in the endosperm and 

the embryo and (ii) increasing the availability of oxygen to the endosperm and differentiating, yet-

to-be photosynthetic, embryos in a high-CO2 environment. 

CRE analysis revealed the highest number of motifs enriched in the promoters of genes in 

M0011, suggesting extensive coordination between different regulators. Light-related motifs 

BOXIIPCCHS (ACGTGGC), IRO2OS (CACGTGG3), IBOXCORENT (GATAAGR) and the 

ABA-responsive element ACGTABREMOTIFA2OSEM are the most over-represented motifs in 

this module.  The highest ranked regulator of M0011 is a SMAD/FHA domain-containing protein 

(AT2G21530) that is most highly expressed in the cotyledons (Supplemental Fig. S3.4A).  The 

known seed-specific regulator of oil synthesis and accumulation WRI1 (AT3G54320) was 

identified as the sixth ranked regulator of this module and is suggested to be predominantly 
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expressed in the embryo and endosperm (Supplemental Fig. S3.4B). WRI1 encodes an AP2/ERF-

binding protein and wri1 seeds have about 80% reduction in oil content relative to the wild type 

seeds (Ruuska et al., 2002). Genetic and molecular analysis revealed that WRI1 functions 

downstream of LEC1 (Baud et al., 2007). Along with WRI1 itself, six other TFs are part of this 

module, including AT2G21530, a zinc finger (C2H2) protein (AT3G02970), NF-YB3 

(AT4G14540), PLT3 (AT5G10510), GIF1 (AT5G28640) and PLT7 (AT5G65510).    

 

Modules for Seed Coat development 

The seed coat has important functions in protecting the embryo from pathogen attack and 

mechanical stress. The seed coat encases the dormant seed until germination and maintains the 

dehydrated state by being impermeable to water.  M0034 is comprised of 149 genes with the 

highest expression in general, and specifically in chalazal seed coat relative to other tissues (Fig. 

3.6 C). This module is enriched with genes annotated under the GO BP terms “phenylpropanoid 

biosynthetic process” (GO:0009699) and “flavonoid biosynthesis process” (GO: 0009813). The 

AP2/B3-like TF AT3G46770 is highly expressed in seed coat (Supplemental Fig. S3.5A) and 

predicted as the top regulator in this module. B3 domain TFs are well known for functioning during 

seed development and transition into dormancy in Arabidopsis (Suzuki and McCarty, 2008) and, 

to some extent, their functions are conserved in cereals (Grimault et al., 2015).  The seed-coat-

specific expression of AT3G46770 is a compelling incentive for testing AT3G46770 mutants for 

seed-related phenotypes, which to the best of our knowledge, has never been considered. There 

were 21 other TFs belonging to this module, of which six are part of the MYB family. 

TRANSPARENT TESTA 2 (TT2), a MYB family regulator of flavonoid synthesis (Nesi et al., 

2001), was ranked fourth in our predictions for this module.  
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M0071 is composed of 77 genes encoding, surprisingly, only 3 TFs, ERF38 (AT2G35700), 

BEL1-LIKE HOMEODOMAIN 1 (BLH1, AT2G35940) and a C2H2 super family protein 

(AT3G49930). This module is enriched with genes involved in “xylan metabolic process” 

(GO:0045491), “cell wall biogenesis” (GO:0009834), and “carbohydrate biosynthetic process” 

(GO:0016051). KANADI3/KAN3 (AT4G17695) was predicted as the top regulator of this 

module. KANADI group of functionally redundant TFs (KAN1, 2, and 3) has been shown to play 

roles in modulating auxin signaling during embryogenesis and organ polarity (Eshed et al., 2004; 

McAbee et al., 2006; Izhaki and Bowman, 2007). In the case of another KANADI TF, KAN4, 

encoded by the ABERRANT TESTA SHAPE gene, the lack of the KAN4 protein resulted in 

congenital integument fusion (McAbee et al., 2006). It is reasonable to hypothesize that KAN3 

could be acting in a redundant manner with KAN4 to regulate seed coat formation during late 

stages of maturation, as the expression pattern of KAN3 is higher in seed coat than in other organs 

or cell types (Supplemental Fig. S3.5B). 
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Figure 3.6: Expression profiling of gene modules. Expression patterns of modules in embryo, 

endosperm and seed coat regions represented as heatmaps in A), B), and C), respectively. Seed 

compartments are represented as columns and genes as rows. Gene names are hidden for ease in 

visualization. Expression values of genes in each module were averaged across samples from the 

same tissue-type/seed-compartment (embryo, endosperm and seed coat). Average expression 

values were scaled and represented as a Z score in the heatmaps. Red indicates higher expression 

of a gene in a particular compartment and black gradient indicates lower expression relative to 

other compartments.  
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Module M0006 is related to seed desiccation tolerance 

M0006 is comprised of 220 genes expressed predominantly during the mature green stage (Fig. 

3.7A), and enriched with genes involved in “response to abscisic acid stimulus” (GO:0009737), 

“response to water” (GO:0009415) and terms related to embryonic development (GO:0009793), 

altogether suggesting an involvement of these genes in acquisition of desiccation tolerance (DT). 

We predicted AGL67 (AT1G77950) as a major regulator of this module, among 23 other TFs that 

are part of this module (Fig. 3.7B). AGL67 has been recently confirmed as a major TF involved 

in acquisition of DT (González-Morales et al., 2016), validating our prediction. Additionally, the 

authors of this study analyzed the mutants of 16 genes (TFs and non-TFs) that had reduced 

germination percentage, of which 12 are in our network and 7 of these are a part of M0006. These 

7 genes include PIRL8 (AT4G26050), ERF23 (AT1G01250), OBAP1A (AT1G05510), DREB2D 

(AT1G75490), AT1G77950 (AGL67), AT2G19320 and MSRB6 (AT4G04840).   
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Figure 3.7: Module M0006. A) Expression patterns of genes in module M0006. Seed 

development stages are represented as columns and genes as rows. Gene names are hidden for ease 

in visualization. B) Coexpression links between TFs in M0006. Nodes are labeled according to 

their corresponding gene symbols if present in TAIR, else labeled with their corresponding locus 

ID and the family the protein belongs to. 
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Characteristics of seed-specific networks 

The primary objective of this network analysis pipeline was to capture gene regulation information 

in a tissue-specific manner. To examine the effect of this approach and to identify the 

distinguishing characteristics of the seed regulatory network that differed from a global network 

(non-tissue specific regulatory network), we extended the seed expression compendium to 

incorporate an additional set of 140 datasets related to profiling gene expression from various 

organs of the Arabidopsis plant, including vegetative and seedling growth stages. Using the same 

reverse engineering approach as described above, we scored each TF-target pair on this extended 

expression compendium (EEC). Next, to delineate the distinguishing properties of seed networks, 

we compared the level of coregulation induced by TFs, measured as similarity in the predicted 

targets of each TF-pair, using Jaccard’s coefficient (JC), in both the seed-specific network and the 

global regulatory network created using EEC. As expected, a larger number of TFs have very few 

common targets, and this number is high for fewer TFs in both the networks (Fig. 3.8A). A larger 

number of TFs have similar targets in the seed network at any given JC bin, as compared to the 

global network.   

Although false positives and false negatives are part of any network based predictions, we 

suspected that the trends observed in comparison of the seed-specific and the global network could 

be trivial if there were correlated errors arising from the same network prediction pipeline for both 

networks. To overcome this uncertainty, we downloaded and analyzed the recently published 

Arabidopsis oxidative stress gene regulatory network predicted from a compendium of 

microarrays conditioned on abiotic stress (Vermeirssen et al., 2014). This abiotic-stress specific 

network is essentially a consensus network of an ensemble of reverse engineering algorithms, and 

performed remarkably well in validations (Vermeirssen et al., 2014). We then computed the 
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overlaps in the predicted targets of TFs in this network (as done for networks in this study) and 

observed that it follows a trend very similar to that of the global network (Fig. 3.8A), indicating 

that there was no major bias introduced by our approach. 

To extend the comparisons, we performed the same operation to the Arabidopsis thaliana 

Regulatory Network (AtRegNet) and the AraNet (Lee et al., 2010). AtRegNet harbors about 

17,000 direct edges validated for TFs and their target genes. AraNet is a co-functional network 

derived by integrating 24 -omics datasets from multiple organisms in a machine-learning 

framework.  Both networks showed a similar gradual decrease in fraction of TFs with similar 

targets with higher JC values (Fig. 3.8A), similar to trends observed in networks with a ‘functional 

context’ above. However, we used these networks for comparison only as a rough guide as the 

AraNet was not designed to prioritize regulatory interactions and holds only approximately 60,000 

such edges, and the AtRegNet harbors very few TFs when compared to those in our list. We 

assumed that both these limitations would make the analysis suffer from the extreme loss of 

transcriptional signal. However, the robustness of gene relationships predicted in the AraNet was 

clearly evident as more than 20% of the original TFs in the network presumably interacted even 

in the highest JC bin, larger than any other networks compared. Overall, the number of TFs 

observed at any given JC bin in all networks was significantly larger than in a random network. 

All TF-pairs with JC > 0.70 (arbitrarily chosen stringency) from the seed-specific network were 

connected and visualized as a graph in Cytoscape (Shannon et al., 2003) revealing many 

connections supported by multiple networks (Supplemental Fig. S3.6)  

About 59% of all genes (23% of all modules) in TMN have at least one known plant CRE 

enriched in their coexpression neighborhood, with a few modules harboring a large number of 

different CREs (e.g., Photosynthesis module described earlier) (Fig. 3.8B). Approximately 45% 
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of total edges in ASCN have an absolute PC score more than 0.9, indicating a highly cohesive 

network structured for a subtle developmental program. 

 For evaluation of ‘hubs’, we selected top 10 TF predictions for each active module in SANe 

(based on ranked association scores), and counted the number of modules associated with each 

TF. We observed that 41% of these TFs (552 out of 1339), likely regulate expression of genes in 

only one module each, while a single TF, NAP57 (AT3G57150), was predicted to be associated 

with the maximum number of modules (9 out of 120) (Fig. 3.8C). The NAP57 gene encodes the 

Arabidopsis dyskerin homolog involved in maintaining telomerase activity (Kannan et al., 2008). 

As expected, 5 out of 9 modules containing genes whose expression is predicted to be regulated 

by NAP57 are enriched in GO BP terms such as “DNA metabolic process”, “ribonucleoprotein 

complex biogenesis”, “RNA processing” and “ribosome biogenesis”. This association was true 

even on the level of individual targets predictions for majority of the other seed-hubs, in both, the 

seed and global networks (Table 3.1), indicating that these TFs are responsible for perpetual 

regulation of important basic processes like biogenesis of cell components, maintenance of cell 

shape and structure, nucleic acid metabolism etc. A weak but significant enrichment was found 

between WRKY13 (AT4G39410), a biotic and abiotic stress regulator (Qiu et al., 2007; Xiao et 

al., 2013), and the GO term ‘immune system response’ only in the seed network.  
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Table 3.1: Regulatory hubs of seed development. 23 regulators (transcription factors) that were 

found associated with the largest number of coexpressed modules in SANe were selected and listed 

in descending order according to the number of modules they regulate. Targets of these regulators 

in the seed and the global network, with absolute Z score > 3 were selected and tested for overlaps 

with BP terms in the GO database. The score columns represent (-1) * log (q-value) values from a 

cumulative hypergeometric test of enrichment. Only the most highly scored gene sets are reported 

in the table. 

Network Seed Global 

Transcription 

Factor 

Biological Process Enrichment 

Score 

Biological Process Enrichment 

Score 

NAP57 

AT3G57150 

ribonucleoprotein 

complex biogenesis 

57.05 ribosome biogenesis 72.07 

HDT3 

(AT5G03740) 

ribonucleoprotein 

complex biogenesis 

45.50 ribonucleoprotein 

complex biogenesis 

71.39 

AT4G37130 ribonucleoprotein 

complex biogenesis 

40.00 RNA metabolism 35.36 

EMB2746 

(AT5G63420) 

ribonucleoprotein 

complex biogenesis 

56.44 RNA metabolism 29.30 

C3H 

(AT5G60820) 

ribonucleoprotein 

complex biogenesis 

12.97 vesicle-mediated 

transport 

10.38 

JMJ22 

(AT5G06550) 

ribonucleoprotein 

complex biogenesis 

36.76 ribosome biogenesis 75.24 

WRKY13 

(AT4G39410) 

immune system 

process 

3.04 N.D NA 

TFIIIA 

(AT1G72050) 

ribosome biogenesis 49.90 RNA metabolism 49.30 

VOZ1 

(AT1G28520) 

ribosome biogenesis 13.30 cellular biopolymer 

catabolism 

4.77 

NFD1 

(AT4G30930) 

ribonucleoprotein 

complex biogenesis 

71.39 ribosome biogenesis 75.24 

KAN3 

(AT4G17695) 

jasmonic acid 

biosynthesis 

4.64 response to salicylic 

acid stimulus 

2.95 
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Table 3.1 (Cont.) 

Network Seed Global 

Transcription 

Factor 

Biological Process Enrichment 

Score 

Biological Process Enrichment 

Score 

HDT1 

(AT3G44750) 

ribonucleoprotein 

complex biogenesis 

41.25 ribosome biogenesis 72.44 

HAT3.1 

(AT3G19510) 

RNA metabolism 7.88 RNA metabolism 20.48 

FZF 

(AT2G24500) 

RNA metabolism 23.67 ribosome biogenesis 68.91 

IAA8 

(AT2G22670) 

polysaccharide 

metabolism 

5.33 transmembrane 

receptor protein 

tyrosine kinase 

signaling pathway 

10.47 

SMAD/FHA  

(AT2G21530) 

photosynthesis 54.25 photosynthesis 68.43 

AT1G78280 cellular biopolymer 

metabolism 

5.88 ribosome biogenesis 8.46 

ZFP4 

(AT1G66140) 

N.D. N.A. ion transport 4.40 

TRB1 

(AT1G49950) 

maintenance of root 

meristem identity 

2.33 protein modification 6.33 

SEUSS 

(AT1G43850) 

microtubule-based 

process 

2.71 negative regulation 

of gene expression 

8.25 

NAC017 

(AT1G34190) 

vesicle-mediated 

transport 

4.70 vesicle-mediated 

transport 

11.55 

ATU2AF35A 

(AT1G27650) 

RNA metabolism 20.60 RNA metabolism 15.07 

AT1G17520 proteolysis 3.39 RNA metabolism 12.81 
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Figure 3.8: Characteristics of seed networks. A) Comparison of the fraction of TFs possibly 

coregulating the same sets of genes, evaluated using the Jaccard’s Index (JI) of overlap between 

the predicted targets of each TF-pair, for 5 different regulatory networks and a random network. 

B) A histogram showing bins of number of motifs significantly over-represented in the promoters 

of genes within each module in TF-MAN. C) Distribution of TF-module edges in SANe follows a 

scale-free topology, with a large number of regulators associated with fewer modules, and a few 

regulators (e.g., NAP57, KAN3) associated with a large number of modules.     
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The SANe webserver  

The data generated in this study are represented on a web-based interactive platform available at 

https://plantstress-pereira.uark.edu/SANe/. The platform allows users to investigate seed 

development in three different modes (Fig. 3.9):1) Select modules with high expression in 

compartment – or stage-specific manner, 2) Using the ‘cluster enrichment tool’ to upload a 

differential expression profile (e.g. transcriptome of a TF mutant) and identify clusters that 

significantly perturb in their experiment and 3) enter the locus ID of a TF of interest to identify 

clusters that are likely regulated by that TF, enabling the user to gain a insight on its functional 

role prior to an in vivo validation. Furthermore, the webserver allows users to visualize the 

expression of resulting modules/clusters as publication-ready downloadable heatmaps, as well as 

plot gene connection graphs using Cytoscape (Lopes et al., 2010). 

 

 

 

 

 

 

 

 

 

https://plantstress-pereira.uark.edu/SANe/
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Figure 3.9: Screenshot of the SANe user interface. The SANe web platform (https://plantstress-

pereira.uark.edu/SANe/) allows users to identify modules active in distinct seed compartments in 

different stages of development, upload a new transcriptome in the cluster enrichment tool that 

uses the parametric analysis to identify enriched modules, and find the regulons of a TF of interest. 
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Discussion 

Plant seeds are complex structures and seed formation is perhaps the most important 

developmental phase of a plant life cycle, as it determines the fate of the next progeny. Distinct 

cell types and organs within a seed gradually develop during a period of 20-21 days after 

pollination in Arabidopsis. In addition, each organ is subjected to its own developmental program 

and has different, but equally important functions, from feeding and providing optimal growth 

conditions to protecting the embryo to ensure species propagation. These processes are tightly 

regulated by synergistically acting TFs (To et al., 2006).     

We devised a new methodology that relies on existing statistical methods that are widely 

accepted, for the discovery of a modular regulatory network. Using a seed-tissue specific 

expression dataset, this method facilitated identification of modules of coregulated genes, the 

corresponding development phases in which the modules express most, CREs that drive the 

biological functions encoded by the genes within modules, and TF regulators that likely govern 

the expression of the genes in the modules. Our method is limited to making functional predictions 

for TFs in a tissue-specific manner, and might not accurately predict individual targets of a given 

TF. This limitation is partly due to the use of a single data-type; a heterogenous approach should 

be undertaken (e.g. high-throughput DNA binding essays in conjunction with expression data) for 

studies aiming at specific individual targets. Nevertheless, the statistically significant functional 

associations predicted here are of superior quality, as seen in evidence from the literature, and can 

serve as the first step in selecting TFs for targeted downstream experiments. The network inference 

pipeline presented here can be used to enhance any coexpression based study.       

Previous studies have reported a few seed-specific genes, including TFs (Le et al., 2010; 

Belmonte et al., 2013). We prioritized these genes in our network to derive an active subnetwork, 
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referred to as Seed Active Network (SANe). We described selected modules containing genes with 

high expression in specific seed components, including embryo, endosperm and seed coat. We 

observed that, in most of the cases, the top predicted regulators of these modules are already known 

in the literature for their involvement in seed development, self-validating our approach. Several 

additional regulators are known to modulate other processes, including flower development, 

indicating conserved regulons of pre-fertilization events. Our results suggest that associating 

regulators to gene sets with a shared function, as opposed to individual genes, provides biologically 

plausible predictions that are worth for validating in planta phenotypes using reverse genetics. As 

a community resource, our network is accessible through an online platform supported with query 

driven tools to enable a network based discovery of seed regulatory mechanisms.     

 It appears that during seed development, photosynthesis and storage compound synthesis 

is tightly coordinated by several regulators acting coordinately. This was evident from CRE 

enrichment analysis, as two complementary methods detected the module annotated for 

photosynthesis and related processes (M0011) harboring genes with the largest number of known 

plant motifs in their promoters when compared to the rest of the modules. Coordinate regulation 

of photosynthetic carbon metabolism has been shown previously (Bailey et al., 2007; Ambavaram 

et al., 2014). Our analysis reveals that much of the processes related to embryo development are 

conserved throughout the plant life cycle such as cell division and differentiation, as observed by 

similar roles of regulatory genes in developing embryos and roots.  However, plants have 

developed intrinsic mechanisms that can modulate gene activity in specialized cells, perhaps as 

duplicated genes with similar functional roles. Such a phenomenon was evident in the case of two 

TF genes, NTM1 and NTM2 that are in close proximity to each other and possibly have similar 

biological roles in distinct parts of a plant.  
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The data generated by our work has the potential to further our knowledge of fundamental 

processes that regulate diverse specific aspects of seed development in Arabidopsis and can be 

extrapolated to related agriculturally important crops due to conservation of these basic processes  

(Magallón and Sanderson, 2002; Comparot-Moss and Denyer, 2009; Vriet et al., 2010). Based on 

our results, a cell- and developmental stage-specific network inference provides superior quality 

of predictions in the context of known information. Our network analysis pipeline can be further 

used to systematically increase this information-base for a variety of plant organs (e.g., parts from 

a post-germination stage network). Comparisons of different stage/tissue specific networks will 

throw light on the changing molecular mechanisms of a cell and reveal differentially modulated 

transcriptional networks during different growth stages.   

 

Materials and Methods 

Gene expression quantification 

Affymetrix ATH1 Arabidopsis gene expression data was downloaded from GEO, and 6 datasets 

were selected from the super series labeled GSE12404 for seed expression compendium. In 

addition, 140 other datasets were used in the EEC (Supplemental Table S3.7). All datasets were 

individually processed in R Bioconductor using a custom CDF file for Arabidopsis (Harb et al., 

2010). The re-annotated CDF assigns probe-sets to specific genes and increases the accuracy in 

expression quantification. Using Robust Multi-array average algorithm (RMA) (Irizarry et al., 

2003), probe level expression values were background corrected, normalized and summarized into 

gene level expression values. Values from replicate arrays were then averaged and assembled in 

an integrated expression matrix of genes as rows and samples as columns, with each cell in the 
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matrix representing log transformed expression value of genes in the corresponding samples. This 

procedure resulted in two expression matrices: a seed-specific expression matrix and a global 

expression matrix. 

 

Coexpression network and cluster identification 

Pearson’s Correlation (PC) were calculated for each gene pair using expression values in both gene 

expression matrices. PCs were Fisher Z transformed and standardized to a N(0,1) distribution, 

where a Z-score of a gene-pair represents the number of standard deviations the score lies away 

from the mean (Huttenhower et al., 2006). The following procedure was applied only to the seed 

network. Gene pairs with Z scores above 1.96 (PC 0.75) were retained and connected to create a 

coexpression network with 21,267 genes connected with approximately 7.6 million edges. SPICi, 

a fast clustering algorithm (Jiang and Singh, 2010), was used to cluster the network at a range of 

Td values ranging from 0.1 to 0.90, keeping a minimum cluster size of 3. Each Td value was 

evaluated on three criteria: i) total number of clusters yielded and the fraction of original genes 

retained in those clusters ii) average modularity following the (Newman and Girvan, 2004) 

algorithm and iii) functional coherence of clusters based on GO BP term annotations. At Td 0.80, 

expression values of each gene within each of 1563 clusters were averaged across the same parts 

of the seed and in different developmental stages, resulting in two expression profiles for each 

module. Expression values were scaled and plotted as heatmaps in R using the gplots package 

(https://CRAN.R-project.org/package=gplots).  
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Functional annotations of coexpression clusters 

The TAIR gene association file was downloaded from the plant GSEA website 

(http://structuralbiology.cau.edu.cn/PlantGSEA/download.php) (Yi et al., 2013). The .gmt files 

were filtered to remove generic terms that annotate more than 500 genes, and the remaining list of 

terms in the BP category were used for testing overlaps with clusters. The significance of overlap 

of a target gene set (e.g. a cluster) with BP terms was calculated using a cumulative hypergeometric 

test. The p-values obtained were adjusted for false discovery rate and converted to qvalues using 

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Enrichment scores were 

reported as (-1) * log (qvalue). 

 

Analysis of known CREs 

We used a pattern-based method to search for CREs over-represented in the promoters of co-

regulated genes. First, all known plant motifs were identified from PLACE (Higo et al., 1999) and 

AGRIS databases (Palaniswamy et al., 2006). Subsequently, 1000-bp upstream promoter regions 

of all Arabidopsis genes were downloaded from TAIR and scanned for occurrence of these motifs 

using DNA-pattern matching tool (Medina-Rivera et al., 2015), yielding a list of 403 motifs present 

at least once in the promoters of ~17000 genes. A few of these motifs, perhaps involved in 

functions common to all the promoters, are ubiquitously present in almost all the genes. To detect 

a reliable presence-absence signal in the context of our analysis, we removed motifs that were 

found in more than 50% of all the genes considered in the network. Thus, a list of 341 unique 

motifs were used for enrichment (overlap) analysis using a hypergeometric test as described above.  
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Module Regulatory Network analysis  

A list of 1921 Arabidopsis TF regulators was curated from the Plant Transcription Factor Database, 

the AGRIS database and the Database of Arabidopsis Transcription Factors (Guo et al., 2005; 

Yilmaz et al., 2011; Jin et al., 2014). For every TF-gene pair, a Z score representing specific 

correlation score was calculated using the CLR algorithm (Faith et al., 2007). The Parametric 

Analysis of Geneset Enrichment (PAGE) algorithm (Kim and Volsky, 2005) was used to evaluate 

enrichment of CLR scored targets of each TF within each module. P-values were calculated form 

Z scores of enrichment and corrected for FDR using the Benjamini and Hochberg procedure 

(Benjamini and Hochberg, 1995).  

 

Global regulatory network and comparison of different networks 

A global regulatory network was constructed the same way as the seed-specific network, except 

that EEC of 140 datasets was used. The Arabidopsis abiotic stress regulatory network was obtained 

from (Vermeirssen et al., 2014). Information on interactions reported in AtRegNet and AraNet 

was downloaded from http://arabidopsis.med.ohio-state.edu/downloads.html and 

http://www.functionalnet.org/aranet/download.html, respectively. Regulatory interactions (edges 

with at least one node as a regulator from our list) were identified from AraNet. For all three 

externally downloaded networks described above, and the global and seed-specific networks from 

this study, Jaccard coefficient (JC) of overlap in the predicted targets of each regulator pair was 

calculated using a perl script. JC scores were binned and the fraction of regulators retained from 

the original individual network within each bin was plotted in R. The random network was created 

by preserving the node degree and randomly reshuffling all the edges of the seed network. 

http://arabidopsis.med.ohio-state.edu/downloads.html
http://www.functionalnet.org/aranet/download.html
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Network data was parsed using the Sleipnir library (Huttenhower et al., 2008), Network Analysis 

Tools (NeAT) (Brohee et al., 2008) and scripts written in R and perl.  
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Chapter 4: Edge-set Enrichment Analysis based on Density: A New Paradigm for 

Identification of Genes and Pathways from Differential Coexpression.  

 

Abstract 

Analysis of differential expression from high-throughput expression data coupled with Gene Set 

Enrichment Analysis (GSEA) is a widely used metric to evaluate how biologically coherent sets 

of genes respond to a treatment, leading to identification of pathways and cellular processes 

directly affected. However, considering every gene individually and disregarding functional 

relationships between genes in traditional GSEA analysis methods underplay several truly 

associated biological processes. This study devised a new network-based enrichment analysis 

strategy that considers functional relationships between pairs of genes to score functionally 

coherent gene sets. The algorithm uses differential coexpression of gene pairs instead of 

differential expression of individual genes, and leverages on the change in network density for 

estimation of gain or loss in correlation of pathways and biological processes. The approach was 

tested by analyzing expression datasets pertaining specifically to drought or water deficit response 

in the crop model Oryza sativa. Comparing the drought network with an independent control 

network revealed several emergent properties of the rice drought responses, as well as biological 

processes and metabolic pathways that remained elusive in traditional differential expression 

analysis of singular datasets.  
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Introduction 

 Expression profiling of genes is one of most widely used molecular assay in modern genomics 

research. Besides providing information about the genes that are, for example, affected by stress 

or change in developmental stages, expression data also reveals key cellular pathways that are 

involved. It is increasingly evident that genes work as groups in pathways, and a change in 

expression of single individuals in the group might not have a significant perturbation on the 

associated pathway for an observable phenotype. Therefore, analysis of different gene sets (sets of 

genes with a unifying biological theme) is crucial for a holistic understanding of how different 

components of the cell organize and respond to a stimuli. Usually, for well-studied organisms, 

curated gene sets are available from computationally tractable catalogs such as the Gene Ontology 

(GO) (Harris et al., 2004) or metabolic pathway databases (Kanehisa et al., 2004; Caspi et al., 

2012). The overlap between these gene sets and the list of differentially expressed genes is 

computed (gene set enrichment analysis) to find pathways that contain a large proportion of 

perturbed genes. The gene sets can also be customized, for example, to expand on the sparsely 

annotated GO terms of the genome of interest (Krishnan et al., 2017).    

 Although analysis of Differential Expression (DE) has been very successful in identifying 

genes that respond to the experimental setup, not all genes that are responsible for the “trait” of 

interest are readily available through analysis of DE alone. An observed phenotype is the product 

of intricate interactions between specific genes (functional relationships that can be direct 

biophysical interactions or indirect interactions involving one or more intermediate genes), which 

is the fundamental principle of metabolic pathways and core enzymatic reactions in a biological 

cell. A subtle change in expression of a single gene can lead to altered relationships with its 

functionally interacting partners, which can have a profound effect on the ultimate output of the 
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underlying pathway(s) they together participate in. For example, in signal transduction cascades, 

small changes in the expression of a few genes – especially the ones with regulatory roles that 

participate higher up in the hierarchy of the gene network – might result in an amplified signal 

received by genes that process the signal further downstream in the hierarchy (Klebanov et al., 

2006). Hence, it is important to consider functional relationships between genes, and how these 

relationships change when subjected to change in biological conditions.  

A genome-wide coexpression network analysis is a popular approach conducive to 

estimating the probability of a gene pair being functionally related (D’haeseleer et al., 2000; Stuart 

et al., 2003; Childs et al., 2011; Yang et al., 2014; Krishnan et al., 2017). However, gene 

coexpression networks are usually ‘static’, in the sense that they are either assembled from any 

usable expression data that is available for the organism of choice (Atias et al., 2009; Childs et al., 

2011; Liang et al., 2014), or for a specific ‘context’ like a single tissue (Rosa et al., 2014; Pierson 

et al., 2015; Gupta et al., 2017) or environmental condition (Bassel et al., 2011; Shaik and 

Ramakrishna, 2013; Sircar and Parekh, 2015; Li et al., 2016; Krishnan et al., 2017). However, 

interactions between genes are ‘promiscuous’ and change dramatically between different 

biological contexts (Li, 2002), leading to changes in their relationships with other genes. For 

example, it is possible that a relationship between a gene pair is conditional, and if the data for this 

condition is not equally represented in the integrated dataset, the edge might be missed in statistical 

calculations. Nevertheless, with the right sampling of expression datasets from the ones being 

accumulated in public resources (Barrett et al., 2007), it becomes somewhat intuitive to compare 

two networks, for example, ‘control’ and ‘condition’ coexpression networks, and consider the 

differential coexpression of gene pairs, instead of estimating change in individual genes.  
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While DE examines the change of gene expression between experimental groups, 

‘Differential Coexpression’ (DC) investigates how coexpression between genes change in 

different conditions. Several statistical models have been proposed to evaluate differences in 

coexpression patterns between gene pairs (Lai et al., 2004; Lui et al., 2015; Gao et al., 2016; Liany 

et al., 2017) or differences in a functional module/cluster based inference setting (Chia and 

Karuturi, 2010; Tesson et al., 2010). Some of these methods have been successfully employed to 

gain insights into human diseases (de la Fuente, 2010; Walley et al., 2012; Gaiteri et al., 2014; Xu 

et al., 2015; Yuan et al., 2015), as powerful and useful approaches to complement traditional DE 

analysis. In plants, differential coexpression has been used to decipher defense response in biotic 

and abiotic-stresses in Arabidopsis (Ma et al., 2014; Jiang et al., 2016) and tissue-specificity in 

tomato (Fukushima et al., 2012). 

For identification of pathways from DC data, one proposed solution is the Edge Set 

Enrichment Analysis (ESEA) algorithm that considers a pathway structure and differential 

correlation among corresponding annotated genes (Han et al., 2015). The ESEA algorithm ranks 

edges (instead of genes) on the basis of change in correlation to evaluate the top ranked pathways 

and uses the Kolmogrov-Smirnov statistic to score for statistical significance. Several other edge-

centric methods have been proposed for identification of dysregulated pathways (Choi and 

Kendziorski, 2009; Zhang et al., 2009; Liu et al., 2012). Most of these computational methods use 

permutations and random shuffling of expression matrices to estimate the statistical significance 

of observed enrichments. Actually, the number of permutations dictate the stringency of the 

statistical test as the lowest p-value cannot be lesser than 1/n, where n is the total number of 

permutations.      
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Herein, a new strategy for identification of genes and pathways from coexpression data is 

proposed and tested in the crop model Oryza sativa (rice). First, the differences in coexpression 

relationships between gene-pairs was estimated using two conditionally independent coexpression 

networks. Edges (coexpressed gene pairs) that significantly changed between a control network 

and a drought network were extracted and genes that frequently participated in these rewired edges 

were identified as differentially coexpressed genes (DCG). Since the networks were created 

independent of each other, the current state of functional annotations in rice were leveraged upon, 

and the coexpression scores within each network were summarized to ‘function’ level association 

scores using two methods, each of which represented the strength of coexpression amongst genes 

co-annotated within a functional domain. Functional domains were cumulatively derived from 

annotations provided by the Biological Process (BP) category of the Gene Ontology (GO) 

consortium (Lewis, 2005), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database, together representing a broad spectrum of largely all the biological process and metabolic 

pathway level classes that were computationally tractable. The workflow is depicted in Figure 4.1. 
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Figure 4.1: The workflow for mining differentially coexpressed genes and pathways. The 

pipeline used to derive a differentially coexpressed network from two non-redundant rice gene 

expression compendia. From these, two conditionally independent coexpression networks were 

assembled and a differential of coexpression scores (∆Z) between the two networks was taken to 

derive the Drought Differentially Coexpressed Network (DDCN). The DDCN was examined for 

Differentially Coexpressed Genes (DCG) that had significantly large number of connections. 

Network density based measures were used to find the fold change of interaction between and 

within pathways in both the networks.      
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Results  

Comparison of networks  

Two independent coexpression networks were created from rice expression datasets available in 

the GEO. A drought network (DN) was assembled from samples pertaining to water stress 

conditions and the control network (CN) was assembled from samples with “non-stressed” labeled 

experiments (expression quantified in different tissues at various developmental stages). 

Normalized Pearson’s Correlation scores (Huttenhower et al., 2006) were used to compute the two 

coexpression profiles for each gene-pair. The resulting Z-score is the standard score, expressed as 

the number of standard deviations a coexpressed gene pair lies away from the mean of all scores 

of that dataset/network, and efficiently handles possible batch effects in the data (Cheadle et al., 

2003).  

 A gene-pair was classified as differentially coexpressed if there was a significant difference 

in their coexpression scores between the DN and the CN. The difference in pair-wise correlation 

scores was computed as a ∆Z score (see equation 2 in “Methods”). Since the ∆Z distribution will 

always follow a Gaussian distribution (Fukushima, 2013), p-values were calculated under the 

standard normal distribution, and ~3.1 million rewired edges with a stringent cutoff (|Z| > 5) were 

extracted. These edges are referred to as the Drought Differentially Coexpressed Network (DDCN) 

for the remainder of this paper.  

Differentially Coexpressed Genes (DCG) were then defined as those that frequently 

participated (enriched) at the edges of the DDCN. Specifically, first the number of connections per 

gene in the DDCN were computed. Then, for a gene i that participated in k differentially 

coexpressed gene-pairs, the probability of observing that gene k times was estimated using a 
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binomial probability model (Jiang et al., 2016). A total of 15163 genes were identified as DCG 

(FDR corrected p-value < 1 × 10-7) from the DDCN. These DCG, sorted by the number of 

connections, are listed in Supplemental table S4.1.  

The next question was identification of cellular pathways represented in the DDCN and the 

DCG. Since the study presented here dealt with two large networks, permutation of the two 

expression matrices, if not impossible, would be computationally expensive and extremely time-

consuming. Instead, to investigate drought mediated alterations on rice metabolism, the focus was 

set on evaluating and modifying different procedures and techniques traditionally used in 

enrichment analysis.  

 

Gene sets enriched in DCG reveal much more then DE genes    

The first question was whether the identified DCG were similar to the genes that could be detected 

on the basis of Differential Expression (DE). To evaluate the commonalities, rice drought samples 

of three development stages from the dataset GSE81253 were analyzed to identify genes that 

significantly DE. The overlaps between the DCGs and the DE genes at all the stages were then 

visualized using an UpSet plot (Conway et al., 2017). It was observed that the number of DCGs 

were significantly large in number (p <0.001) as compared to the number of genes with significant 

DE in any of the three developmental stages. The largest overlap between DCGs and a 

developmental stage was at the seedling stage with ~30% genes (3609) in common (Fig 4.2 A). A 

total of 4519 genes were identified as unique in the list of DCG, with only 726 genes common to 

all four lists. Even at the level of functional information, DCGs harbored the highest number of 

unique GO BP terms (41) as compared to any of the three individual lists of DE genes, as evaluated 
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using a Fisher’s exact test. Again, the largest overlap of BPs enriched in a DE gene list with DCG 

was at the seedling stage with 24 BPs commonly enriched, while 78 BPs were found common to 

all four lists (Fig. 4.2 B). 

Some of the BPs that were unique to the list of DCGs are well known drought responses, 

but could not be revealed from the list of DE genes at any of the three developmental stages tested. 

For example, the GO term “aromatic compound biosynthesis” was found enriched only in the list 

of DCGs (p-value 0.0366). The up-regulation of aromatic amino acids tryptophan, tyrosine and 

phenylalanine were found increased in maize and wheat leaves under drought stress (Bowne et al., 

2012; Witt et al., 2012). The enrichment of the term “iron-sulfur cluster assembly” (p-value 

0.0356) in DCGs is also attributed to drought stress as sulfur use efficiency has been previously 

linked with drought in Brassica napus (Lee et al., 2016). Some other known mechanisms, like 

“regulation of GTPase activity” (p-value 4.9 × 10-3), related to signal transduction under drought 

(Ferrero-Serrano and Assmann, 2016), could also be only revealed from enrichment analysis of 

DCG genes. The list of BPs terms unique to the list of DCGs are listed in table 4.1. Altogether, 

this indicated that differential coexpression indeed detected a larger number of genes and BPs that 

were responsive to drought, and could not be detected from DE analysis.  
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Figure 4.2: UpSet plots illustrating the overlaps between differential coexpression and 

differential expression analysis. A) Differentially coexpressed genes were identified from the 

DDCN and overlapped with differentially expressed genes from three stages of drought treatments: 

Reproductive, Vegetative and Seedling. B) The overlaps between significantly enriched GO BP 

terms in the list of DCGs and DE genes in all the three stages. The UpSet plots served as an 

alternative to Venn Diagrams for comparision of overlaps between a large number of sets. In both 

the plots depicted here, the bars on the lower left correspond to the total number of genes or BPs 

within the indicated sample name. The bars on the top indicate the intersection between sets. The 

sets being compared are illustrated by the matrix on the bottom where individual dots against the 

sample name indicate unique items in the sample and lines connecting the dots indicate the overlap 

between the corresponding sets, with the magnitude of the overlap indicated in the top bar plot. 

The number above each bar plot indicate the number of overlapping items.       
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Table 4.1: Biological processes that cannot be detected from the lists of differentially 

expressed genes but found enriched in the list of genes that are differentially coexpressed. A 

table of biological processes (first column) that were identified as unique in the list of differentially 

coexpressed genes in the DDCN, along with the false discovery rate corrected p-values obtained 

from the Fisher’s exact test (second column).   

GO BP Gene set p value 

mRNA metabolic process 9.92E-05 

glutamine family amino acid metabolic process 6.93E-04 

phospholipid metabolic process 8.78E-04 

protein targeting 1.61E-03 

cell wall organization 2.50E-03 

hydrogen transport 3.71E-03 

proton transport 3.71E-03 

regulation of GTPase activity 4.93E-03 

cellular protein complex assembly 7.82E-03 

chromatin assembly 0.0101 

nucleosome organization 0.0101 

protein-DNA complex assembly 0.0101 

Co-translational protein targeting to membrane 0.0104 

SRP-dependent co-translational protein targeting to membrane 0.0104 

cytoskeleton organization 0.0152 

protein polymerization 0.02 

RAS protein signal transduction 0.0213 

regulation of small GTPase mediated signal transduction 0.0213 

regulation of cell communication 0.024 

regulation of signal transduction 0.024 

cellular membrane organization 0.028 

membrane organization 0.028 

iron-sulfur cluster assembly 0.0356 

Metallo-sulfur cluster assembly 0.0356 

aromatic compound biosynthetic process 0.0366 

nucleoside triphosphate metabolic process 0.0454 
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Edge-set enrichment analysis using network density  

The density of a network reflects the cohesiveness between the underlying genes in the network, 

and is measured as the number of edges observed in a network divided by the total number of 

expected edges. Within a range of 0 and 1, density values near 1 indicates a fully connected 

network (majority of the genes interacting with each other) reflecting more coherence between 

genes as compared to a network with low density. In the context of differential coexpression 

analysis here, an interesting question was whether there were differences in the densities, meaning 

whether there is a gain of correlation or loss of correlation between the DN and the CN. Therefore, 

to evaluate how the loss of edges in the DN translated to functional pathways, the weighted 

densities of subnetworks induced by genes annotated in each of the rice KEGG pathways and GO 

BPs were vetted in both the networks. 

 Using this concept of network density, a new formulation was derived to score gene set 

coherence in an underlying network. The algorithm is referred to as Edge-set Enrichment Analysis 

based on Density (EsEAD; pronounced ‘assayed’). EsEAD starts by calculating a weighted density 

of each of the given gene sets within a network, where the resulting density scores indicated the 

overall coherence of the pathway as a whole. Next, EsEAD proceeds with estimating the fold 

change in empirically calculated densities between the two input networks (see Methods). Under 

this formulation, it appeared that genes functioning in the same functional class are expressed in a 

less cohesive manner in the DN as the average intra-pathway density (edges co-annotated to the 

same class) dropped slightly as compared to the CN, in both the annotation catalogs (Fig. 4.3 A 

and B). However, the differences in the median density of all classes was statistically insignificant. 

On the other hand, the average inter-pathway cohesiveness (edges with genes cross-annotated to 

different functional domains) was found to be higher in the DN as compared to the CN (Fig. 4.3 
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C and D). On closer examination of the pathway gene sets from KEGG, it was observed that 307 

new inter-pathway connections that were absent in the CN appeared in the DN. Some of these 

inter-pathway connections were obvious drought responses; the appearance of communication 

between the “Cutin, suberin and wax biosynthesis” pathway and “fatty acid metabolism” is 

suggestive of a drought resistance mechanism by increased wax biosynthesis to maintain water 

loss (Chen et al., 2011). Cytokinin mediated alteration of source/sink relationship under drought 

was also observed as the “Zeatin biosynthesis” pathway and “starch and sucrose metabolism” 

communicated only in the DN, validating previous drought response observation (Peleg et al., 

2011). Other such drought-specific and common inter-pathway connections, sorted by density, are 

listed in the Supplemental table S4.2 and Supplemental S4.3, respectively. 

In terms of intra-pathway cohesiveness, majorly all pathways had a decrease in the fold 

change of density in the DN (Fig. 4.4). The “Porphyrin and chlorophyll metabolism” and the “plant 

pathogen interaction” pathways showed almost 2-fold decrease in the density, followed by the 

“Glyoxylate and dicarboxylate metabolism” pathway and other pathways related to 

photosynthesis. In contrast, amongst the few pathways that were up-regulated, the “N-Glycan 

biosynthesis” pathway had the highest fold change increase in density (1.5 fold) as compared to 

CN. Glycans have been implicated under drought in a variety of plants under drought stress 

(Fracasso et al., 2016; Muthusamy et al., 2016). The “Valine, leucine and isoleucine degradation” 

pathway was also found upregulated in the DN, supported by the increased levels of branched 

chain amino acids in response to drought stress that has been previously detected in other cereals 

like wheat (Bowne et al., 2012). The full list of intra-pathway densities, sorted by fold change 

values, are listed in Supplemental table S4.4. 
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Figure 4.3: Comparison of the network densities within the two functional annotation 

catalogs of rice considered in this study. The coherence between genes within a functional class 

was evaluated using density, where a higher density indicates more cohesiveness between genes 

of a pathway. The overall densities were plotted as boxplots and the center of the box corresponds 

to the median (2nd quartile; Q2) of the distribution of densities (Y axis). The extremes of the box 

correspond to the 1st (Q1) and 3rd (Q3) quartiles. The whiskers denote Q2  1.5*IQR, where IQR is 

the interquartile range (Q3-Q1). The left panel shows the intra-pathway densities of A) 117 KEGG 

annotations and B) 634 GO BP terms, in both the networks compared. The right panel show the 

inter-pathway density of the same C) KEGG annotations and D) GO BP terms.  
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Figure 4.4: Bar plot depicting the fold change in density of KEGG pathways. The subnetwork 

density of each of the 117 KEGG pathways were computed in the control network as well as the 

drought network. Fold change was the calculated as log2 (NDd/NDc), where NDd and NDc 

represents the density in the drought network and the control network, respectively, of each of the 

pathways labeled on the vertical axis. 
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Edge-set enrichment analysis using mean coexpression in the DDCN 

The strength of coexpression among gene pairs within a given functional domain, was next 

evaluated for high or low significance, compared to all other domains in the DDCN. Specifically, 

the mean of coexpression within each functional class was computed, and divided by the standard 

deviation of the all mean scores to derive a Z score as the enrichment score. Following the central 

limit theorem, since the sampling size was large enough (about ~600 categories in GO BP terms 

and 117 KEGG pathways), the statistical significance could be estimated under the standard 

normal distribution, a procedure similar to the parametric analysis of gene-set enrichment 

algorithm (Kim and Volsky, 2005).  

Under this framework, functional categories that had significantly higher or lower mean 

coexpression in the DDCN represented 30% of the 117 KEGG pathways (-log q-value > 2), and 

12% of the 634 GO BP terms tested (-log q-value > 3). Among the KEGG annotations, the 

ribosome pathway was found to achieve the highest positive enrichment score (Table 4.2). The 

ribosome pathway is composed of genes engaged in the biogenesis of ribosomes which involves 

production of proteins and is responsible for growth. The second most cohesive pathway was the 

spliceosome, which is composed of 157 genes that largely participate in the removal of introns 

from mRNA and for generation of alternatively spliced isoforms, a phenomenon that is of much 

interest in plant abiotic-stress response research (Ding et al., 2014; Guerra et al., 2015; Thatcher 

et al., 2016). Of the 23 genes that function as splicing factors in the spliceosome pathway, 18 

showed significantly altered expression levels in the drought microarray in at least one 

development stage of the three tested (Supplemental table 4.5). A closer examination by 

visualization of unfiltered coexpression between these splicing factors revealed that under drought, 

large alterations in the regulation of these genes occur, as most of the positively coexpressed 
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splicing factors in the CN switched to negative correlations in the DN (Fig. 4.5A). Similarly, the 

photosynthesis pathway also showed a large number of genes with altered correlation patterns 

(Fig. 4.5B). Interestingly, in the photosynthesis pathway, an iron-sulfur binding domain containing 

protein (LOC_Os01g64120) had an apparent increase in the number of negative correlations in the 

DN than the CN. This gene is a homolog of the recently discovered OsFdC2 gene that functions 

in the photosynthesis pathway by regulating electron transfer and chlorophyll content in rice (Zhao 

et al., 2015).  

In addition to ribosome and spliceosome pathways, most KEGG pathways that are 

composed of genes encoding parts of a large protein complex also appear to be significantly 

enriched, and these correspond well with the GO BP terms that were found enriched in the edges 

of DDCN (Supplemental table S4.6). Altogether, the enrichment results point toward the fact that 

water stress has considerable effect on the ‘translatome’, as observed with other abiotic stresses 

(Sormani et al., 2011; Wang et al., 2013). Additionally, as expected, the cell-wall related GO BP 

terms were also found significantly enriched in the DDCN. The implication of cell wall 

metabolism under abiotic-stress is well known (Tenhaken, 2014), such as the role of pectins in 

drought tolerant wheat (Leucci et al., 2008). 
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Table 4.2: GO BP terms enriched in the DDCN. The mean coexpression score of each gene set 

in the GO BP annotations was divided by the standard deviation of the distribution to derive a Z 

score signifying whether the gene-set was significantly high or low in coexpression in the DDCN. 

Pathway  # Genes # Edges Mean Score Z Score 

ribosome 217 7254 11.71 35.464 

spliceosome 157 1255 13.421 19.555 

RNA transport 118 768 13.567 15.62 

oxidative phosphorylation 91 499 13.344 12.195 

proteasome 58 341 13.651 10.531 

ribosome biogenesis in eukaryotes 68 454 12.364 9.977 

pyrimidine metabolism 87 255 13.246 8.594 

purine metabolism 103 287 12.49 8.102 

nucleotide excision repair 54 182 13.3 7.318 

mRNA surveillance pathway 90 204 12.429 6.762 

RNA degradation 75 165 12.949 6.61 

protein processing in endoplasmic reticulum 148 240 11.826 6.593 

aminoacyl-tRNA biosynthesis 54 195 12.342 6.514 

phenylpropanoid biosynthesis 75 150 12.881 6.237 

phagosome 62 108 12.965 5.361 

ubiquitin mediated proteolysis 94 135 12.214 5.302 

phenylalanine metabolism 65 96 12.881 4.99 

mismatch repair 33 79 13.511 4.97 

RNA polymerase 30 73 13.745 4.936 

plant-pathogen interaction 73 66 13.401 4.472 

DNA replication 43 186 10.536 4.409 

base excision repair 33 59 13.591 4.344 

homologous recombination 33 65 13.115 4.255 

porphyrin and chlorophyll metabolism 33 71 12.62 4.117 

endocytosis 78 90 11.872 4.072 

basal transcription factors 33 47 13.14 3.632 

citrate cycle (TCA cycle) 47 64 11.832 3.408 

n-glycan biosynthesis 34 32 13.798 3.292 

starch and sucrose metabolism 108 88 10.783 3.216 

amino sugar and nucleotide sugar metabolism 84 44 12.503 3.179 

glycolysis / gluconeogenesis 106 104 10.314 3.117 

snare interactions in vesicular transport 33 19 14.85 2.9 

photosynthesis-antenna proteins 14 65 1.915 -2.905 

pyruvate metabolism 66 57 1.375 -3.044 

photosynthesis 37 421 1.39 -8.248 
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Figure 4.5: Rewiring of gene interactions in response to drought. Genes annotated as “splicing 

factors” were identified from the KEGG annotations and coexpression between them visualized 

using Cytoscape (Shannon et al., 2003) in the A) the control network and B) the drought network. 

Similarly, coexpression between the photosynthesis genes were visualized in C) the drought 

network and the D) the control network. Green and red lines (edges) connecting two genes 

represent positive and negative coexpression, respectively.    
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Discussion 

The work described here used differential coexpression (DC) analysis to identify genes and 

pathways affected by water stress in rice. The method described deviates from the traditional 

norms of using a single expression dataset for identification of candidate genes based on 

differential expression (DE). Instead of focusing on the expression value of every gene 

individually, this method focuses on using the coexpression value of gene-gene pairs for analysis. 

Instead of DE, the gain or loss in correlation between gene pairs is calculated. The small overlap 

(maximum 30%) between ‘drought responsive’ genes identified through DE and DC analysis was 

surprising. The 4519 genes uniquely identified by DC represent genes that were not perturbed by 

drought, but still associated with genes that were affected.  A stringent criteria to computationally 

evaluate whether these are truly drought associated or not would require evaluation of drought 

datasets from different genotypes, at least the ones that were represented in the underlying 

networks used for comparison. However, this evaluation was not possible at the current stage, as 

majorly all the available drought specific datasets were used in building the networks, and reusing 

the datasets would lead to correlated statistical biases and associated errors.     

  In an alternative approach to evaluate whether DC detected truly drought associated genes, 

the DCG set was evaluated computationally in a gene set enrichment analysis framework. The 

overlaps between gene lists from all the four sets (DCG and DE in seedling, vegetative and 

reproductive stages) and functional knowledgebase of rice (GO and KEGG annotations) were 

computed. The Fisher’s exact test was used to evaluate the overlaps for statistical significance 

(Tian et al., 2017). This test revealed several drought associated pathways mentioned in the 

literature that could be recovered only from the enrichment analysis of DCG and not any of the 

other list of DE genes. However, a stringent experimental evaluation of the predictions would a 
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double blind test in which top n% genes are selected (based on p-values) and mixed with the same 

number of randomly selected genes from the pool of genes not detected by DC but only DE, as 

well as genes not detected by any method, and conducting a qPCR assay for drought response, 

possibly with different genotypes.  

The limitation of this method of expression data analysis lies in the calculation of various 

enrichment tests. In parametric analysis (e.g. esea) it is assumed while calculating p values that the 

variables are independent of each other. This is obviously not true in the case of genes, as they 

depend on each other to function, and this becomes even more pronounced when dealing with 

edges. Whether this should be considered in a typical gene set enrichment analysis – given the 

computational costs involved in permutations and randomizations – has always been debated upon 

since the early days of GSEA and methods with similar concepts (Tamayo et al., 2016). However, 

it has also been shown that both parametric and non-parametric methods that consider the 

dependency between genes perform similarly and their outputs are not significantly different from 

each other (Kim and Volsky, 2005). In the light of this debate, the actual biological interpretation 

of gene set coherence in the model presented here is based on network densities, simply stating 

whether coexpression between member genes of a functional category increases or decreases under 

drought, as well as evaluation of coexpression strength between genes from different functional 

categories. This essentially means that in order to gain a strong biological inference from DC 

analysis, the underlying data sets used to create the coexpression networks should be as close to 

the biological condition in question as possible, even better if tissue specificity is accounted for.  

 The rewiring of biological processes and metabolic pathways in response to drought stress 

was examined on the basis of changes in the network densities. It was observed that drought 

triggers a massive system-wide transcriptional reprogramming, breaking communications between 
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genes functioning in same pathways while increasing communication between different pathways, 

indicating increased drought signaling. The loss of links in the DN was unexpected and counter-

intuitive; a network under stress is expected to become more modular, meaning that 

communication between genes that participate in the same pathways is expected to increase and 

that between distantly related pathways is expected to decrease. This phenomenon has been 

observed in the coexpression network as well as the protein interaction network of yeast cells under 

oxidative stress (Lehtinen et al., 2013). However, in the analysis of rice datasets here, the opposite 

pattern was observed as the inter-pathway density increased and the intra-pathway density 

decreased in the DN as compared to the CN. This pattern could not be attributed to the selection 

of underlying datasets used for calculation of expression correlations, as several different control 

networks created using non-overlapping developmental phase datasets showed the same patterns 

of increase in inter-pathway and decrease in intra-pathway densities (data not shown). Overall, this 

indicated that in response to drought, the rice gene network significantly rewires and coordination 

of several pathways is required to overcome the stress, perhaps as a strategy of a coordinated stress 

resistance mechanism.     

The change in network densities of biological processes and metabolic pathways has not been 

explored before in rice, as observed by our extensive literature survey. Hence, whether the 

observed patterns of pathway level cohesiveness can be generalized for all abiotic stresses or 

specific for drought stress remains untested, and calls for an in detail examination using datasets 

from different stresses in varying plant species. Nevertheless, the emergent properties of the rice 

drought network – that could not be determined using DE analysis – represent known mechanisms 

of drought response in rice and sheds light into several novel genes and pathways implicated under 

drought.   
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Methods 

Estimation of coexpression  

A total of six individual Affymetrix based rice expression datasets (GSE21651, GSE24048, 

GSE25176, GSE26280, GSE41647 and GSE81253) were used for the drought network (DN), and 

the dataset GSE19024 were used for the control network (CN). The data were downloaded from 

the Gene Expression Omnibus database (Edgar et al., 2002). Within each dataset, data were 

background corrected, normalized using the RMA algorithm in R (Irizarry et al., 2003) and the 

replicates averaged, yielding a total of 34 samples for the DN and 76 samples for CN. Individual 

probes were assigned to gene models using a custom CDF file of rice, retaining a total of 35,151 

gene models for which expression could be estimated. To remove bias caused by genes expression 

at very low levels, both the expression matrices were filtered to retain only those genes that had 

an expression value above the 75th percentile of the dataset in at least one sample. Pearson’s 

Correlation between the expression profiles of each gene-pair was calculated and Fisher’s Z-

transformed to a N(0,1) distribution (Soper et al., 1917). An absolute Z score of 2.58 was set as 

cutoff to declare a gene-pair as coexpressed (top 1% edges). 

  𝑍 =  
1

2
 𝑙𝑛 

1+𝑅

1−𝑅
           (1)         

Where R is the PC coefficient score of a gene pair.        

                   

Estimating Differential coexpression  

Differential coexpression was computed as the difference in the absolute Z-scores of the static 

networks using the formula (de la Fuente, 2010; Jiang et al., 2016)  
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                ∆𝑍 =  
|𝑍𝑑−𝑍𝑐|

√
1

𝑁𝑑−3
+

1

𝑁𝑐−3

                (2) 

Where Zd and Zc are the Z scores of the drought network and the control network, respectively, 

calculated using equation (1). Nd and Nc are the number of samples in the drought network and the 

control network, respectively. Since the ∆Z scores followed a Gaussian distribution, p-values were 

calculated under the standard normal distribution (Fukushima et al., 2012). 

 

Estimating differential expression from microarrays 

Raw data from GSE81253 were background corrected, normalized and summarized using the 

RMA algorithm in R (Gentleman et al., 2004). To reliably detect differential expression, genes 

with low variations were filtered if the IQR (interquartile range) was less than the median IQR. 

The limma model (linear models for microarray) was then used to detect differential expression of 

the retained genes (Smyth, 2004). The resulting p-values of the t-tests were converted to q-values 

to correct for multiple hypothesis testing (Storey and Tibshirani, 2003). Genes that had a q-value 

< 0.01 were declared as differentially expressed in each of the three samples.     

 

Obtaining Molecular pathways and functional categories  

Catalogs of genesets were downloaded from the PlantGSEA website. For GO ontologies, 

annotations from two servers were used. The first set was downloaded from the agbase server in 

September 2012 and was later updated in August 2016 with annotations from the plant GSEA 

server. Following transitive closure, genes in ‘child’ terms were annotated to all the ‘parent’. 

Terms with less than 1500 annotations were retained to prevent statistical biases caused by non-
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informative terms that annotate an overly large proportion of genes. Terms that annotated less than 

10 genes were removed from statistical analysis. Since some of the terms in agbase are now 

considered obsolete, terms that were not present in the newer version of plantGSEA were discarded 

from the agbase server and the rest merged with plant GSEA server genesets. Further, terms that 

had very large overlaps in their corresponding annotations, estimated by calculating the Jaccard 

Index (JI) of overlap between all term-pairs, and removing the term with lower number of 

annotations for JI > 0.9 with a difference of at least 5 genes. This retained a total of 64312 

annotations of 14384 genes by 683 specific and informative terms. For KEGG pathways, the top 

3 terms of the canonical pathway categories were removed. 

 

Parametric analysis of the edge-set enrichment of DDCN  

The mean of coexpression within a given functional class (GO or KEGG) was calculated within 

each static network. A Z score was derived for each category as follows. First, from each static 

network (DN and CN), the mean of total coexpression scores (µ) and standard deviation of total 

coexpression scores (σ) was calculated. Then, for each functional class, the Z score was calculated 

as (Kim and Volsky, 2005) 

     𝑍 =
(𝑆𝑚− µ)∗𝑚

1
2

σ
                 (3) 

Where Sm is the mean of coexpression of the functional class (a gene set) and m is the size of the 

gene set. Both the networks were treated as fully connected where an edge not passing the 

significance threshold was taken as a Z of 0. P-values were obtained under the standard normal 

distribution and corrected for multiple testing with the Benjamini-Hochberg procedure (Benjamini 

and Hochberg, 1995).  
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Calculation of Network Density  

Density of a weighted undirected graph is calculated as  𝐷 =
2∗ ∑𝑣∊𝑉,𝑢∊𝑉,𝑢≠𝑣𝑤𝑒𝑖𝑔ℎ𝑡 (𝑢,𝑣)

𝑉∗(𝑉−1)
 , where u 

and v are vertices (Liu et al., 2009), and weight in this context is the coexpression weight. Since 

this calculation required weights to range between 0 and 1, absolute values of Z scores of a given 

network (and subnetworks) were transformed to the required range. Calculations were done using 

a custom Perl script.   

All network data was parsed using the Sleipnir library (Huttenhower et al., 2008), Network 

Analysis Tools (Brohee et al., 2008) and customized Perl and R scripts. Plots were made in R using 

the ggplot2 package (Wickham, 2009). 
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Chapter 5: Conclusions and General Discussions  

The present study described the development of two bioinformatics applications for network-based 

predictions of plant gene functions. The Rice Regulatory Network (RRN) captures an abiotic-stress 

conditioned gene regulatory network designed to facilitate the identification of Transcription 

Factor (TF) targets that manifest during abiotic stresses. The network is essentially a consensus of 

predictions aggregated from three reverse-engineering algorithms applied to a large compendium 

of publicly available expression datasets in rice. The Arabidopsis Seed Active Network (SANe) is 

a gene regulatory network that encapsulates various aspects of seed formation, including 

embryogenesis, endosperm development and seed-coat formation. SANe is highly predictive of 

seed-specific gene function and further enhances our knowledge about regulatory mechanisms that 

underlie aforementioned processes of seed development. Both SANe and RRN are interactive web 

applications integrated with network analysis tools designed for use by experimental biologists.  

Both the web tools introduce two new features to the current-state-of-art in gene network 

analysis methods: First, the enrichment analysis tool uses coexpressed gene clusters as gene sets 

to overcome the limitations of sparse functional annotations faced by knowledge-based approaches 

in interpreting genome-wide expression profiles. Second, apart from providing information about 

the biological processes and pathways perturbed in the uploaded transcriptome, the TFs that are 

statistically most relevant to the dataset are revealed. This result provides an intuitive framework 

for hypothesis generation and efficacious experimental design subsequently.  In the development 

of these networks, some of the key observations are described as follows. 

Integrating transcriptomes reveal much more than what was originally expected of each 

individual dataset. While a single microarray or RNA-seq experiment captures transcript 

accumulation from a static cellular state, an integrated analysis captures responses and variations 
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in a dynamic range of biological conditions, reflecting on the essentiality of genes, for example, 

in maintaining basic cellular processes (e.g. housekeeping genes). By design, microarrays cover 

about 65%-70% of all the identified gene models, limiting the genomic coverage in network 

inference. However, this can be overcome by integrating RNA-seq datasets that cover a larger 

fraction of genes and provide additional information like alternatively spliced isoforms. Statistical 

models for assembling a coexpression network using RNA-seq datasets are currently being 

developed and evaluated (Ballouz et al., 2015; Yu et al., 2017), and will be the standard norm for 

coexpression network inference in the future as the datasets accumulate in public repositories.  

 The choice of algorithms and statistical models for network inference available in 

published literature is large. As found by the DREAM challenge (Dialogue for Reverse 

Engineering Assessment and Methods) (Stolovitzky et al., 2007), an aggregate score of predictions 

from a large set of methods significantly increases the accuracy of network inference (Marbach et 

al., 2012). In chapter 2 – that is claimed to be the largest effort of integrating rice expression 

datasets till date – this study explored the concept of ‘consensus network’ on a compendium of 

595 publicly available microarray samples of rice using Mutual Information (MI) as the underlying 

statistical model of coexpression. By evaluating and aggregating three algorithms and a Pearson’s 

Correlation based method, it was shown that while the consensus network yields edges with larger 

overall accuracy scores, removing the worst performer increases this accuracy even more. In 

voting schemes, for example the Borda counts – a consensus approach similar to that described by 

DREAM – it is intuitive to think that larger the number of ‘members’ available for voting, larger 

will be the final accuracy of prediction. However, if the sampling of the members considered is 

biased, the accuracy will greatly vary. In the case of gene network inference, where a belief-based 

gold standard is usually available, the number of algorithms used in the ensemble is not the major 
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objective, but getting minimum false positives is.  Hence, extensive evaluations of the consensus 

network is needed before proceeding with biological inferences from the network data. To make 

this process fast and easy, an attempt to automate the process will be made, and in future, the 

outcome will be released as a package in R (Team, 2012), with several reverse-engineering 

algorithms integrated into a single computational workflow.  

Clustering is the most prominent step in network based assignment of gene functions. 

Several studies have used clustering methods that require a predefined number of clusters, for 

example in k-means clustering (Hartigan and Wong, 1979), the algorithm used for modeling uses 

a predefined parameter to obtain clusters, such as in the WGCNA methods (Langfelder and 

Horvath, 2008). However, it was observed that the parameter largely depends on the underlying 

datasets used for integration and the density of the obtained network. An extensive data-driven 

approach should be undertaken to define a clustering parameter that best reveals the clusters 

inherent in the network data. The method presented here used two popular clustering algorithms 

(SPICi and MCL) and evaluated the parameter required by these algorithms against a GO based 

gold standard. This led to the evaluation of a range of clustering parameters to determine the 

threshold which best preserves the functional and topological properties of the network.     

At the present time, high dimensional data analysis in bioinformatics is a routine in 

molecular biology labs, and most often biologists are faced with little or no programming 

experience required to analyze such datasets. This calls for the development of more sophisticated 

computational workflows that can be easily integrated in labs with researchers who routinely 

analyze high throughput genomic datasets. To foster such an environment, the data and workflows 

developed during the entire course of the research presented here are made available in easy to use 

web-based platforms with manuals and demonstration links. Although the databases presented 
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here deal with two specific biological questions, seed development and stress response in plants, 

the range of biological queries that can be answered using the approaches devised here are widely 

applicable to other datasets with varying biological themes (e.g. biotic stress response, post-

germination stage network) as well as on datasets from different organisms. In future, the methods 

implemented for the construction of the seed network described in chapter 3 will be re-used for 

different tissues/cell-types/organs of the Arabidopsis plant (e.g. roots, flowers and leaves) and 

presented to the user with a choice of networks to select and analyze their dataset.        

Functional interactions between genes is the fundamental principle of metabolic pathways, 

and this phenomenon is overlooked in current state of gene expression analysis methods that 

consider expression variation of every gene individually. For example, non-heritable expression 

changes arising due to epigenetic factors (Seo et al., 2016), genes that do not perturb in expression 

but have a significant role in the underlying phenotypes, or genes that do change in expression but 

the magnitude is so small that they fail to pass the user-defined statistical thresholds (Cheng et al., 

2004). In a ‘differential networking’ analysis framework, a novel network-density based algorithm 

is proposed to detect gain or loss in correlation amongst genes annotated to specific functional 

domains within two conditionally independent networks. The algorithm leverages on known 

pathway genes and two edge-weighted gene networks that it takes as input. The output is a list of 

genes with significantly rewired connections and a list of pathways that have significantly changed 

their cohesiveness between the two input networks. The workflow was tested on control and 

drought coexpression networks of rice, showing that several well-known drought response 

pathways could not be detected on the basis of differential expression, but resurfaced only in the 

light of differential coexpression. 
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Integration of coexpression networks with GWAS data 

The current state of outcome of a Genome Wide Association Study (GWAS) is a set of SNPs that 

reach a genome-wide significance level, which requires a stringent p-value cutoff. This strategy of 

deriving associations excludes many genuinely associated SNPs that have a weak or moderate 

association signal with the trait of interest, hence overlooking joint effect of multiple SNPs/genes. 

In humans, gene set enrichment analysis has been used to boost the power of GWAS data (Wang 

et al., 2010; Weng et al., 2011). These gene sets come in the form of ontologies such as the Gene 

Ontology and the Trait Ontology and canonical pathways such as the CYC pathways, KEGG 

pathways and Mapman terms (Ashburner et al., 2000; Ware et al., 2002; Kanehisa et al., 2004; 

Thimm et al., 2004). In plants, the information in these pathways has been increasing rapidly with 

frequently sequenced newer genomes, and completely new ontologies are being developed (e.g. 

abiotic stress ontology). Several statistical models and algorithms have been brought forth that can 

be used to overlay this pathway-level information onto the GWAS data, essentially revealing those 

variants/genes that are functionally coupled and jointly associated with the trait of interest, hence 

keeping the false negatives to a minimum. 

One of the common limitation of gene set enrichment analysis is that the current 

knowledgebase regarding functional annotations of genes has many missing parts. This sparsity in 

functional annotations is overcome by network-guided approaches to increase the flexibility of 

genesets. Network data, such as the protein-protein interaction network, coexpression networks 

and regulatory networks can be used as a reference network, and p-values of gene-SNP 

associations can be directly superimposed on the network. The jActiveModules plugin (Trey 

Idekar Lab, UCSD) available in Cytoscape (Shannon et al., 2003), directly uses the network 

topology and association p-values of each gene to extract meaningful ‘active modules’ of highly 
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interconnected genes that are also associated with relevant SNPs for a trait of interest. This 

algorithm has been applied to a human multiple sclerosis GWAS data using a PPI network as guide 

(Baranzini et al., 2009).  In plants, a few studies have examined the integration of genomic data 

with gene coexpression data to find small effect genes for traits, such as for Glucosinolates in 

Arabidopsis (Chan et al., 2011), seed development traits in Brassica napus (Korber et al., 2015), 

and using publicly available SNPs for traits in rice (Ficklin and Feltus, 2013). 
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