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Abstract 

 As smart thermostat adoption rates continue to increase, it becomes worthwhile to 

explore what unanticipated outcomes may result in their use. Specific attention was paid to 

smart thermostat impacts to deep setback and normal occupancy states in a variety of 

conditions while complying with the ventilation and temperature requirements of ASHRAE 90.2-

2013. Custom weather models and occupancy schedules were generated to efficiently explore a 

combination of weather conditions, building constructions, and occupancy states. The custom 

modeling approach was combined with previous experimental data within the Openstudio 

graphics interface to the EnergyPlus building modeling engine. Results indicate smart 

thermostats add the most value to winter deep setback conditions while complying with 

ASHRAE 90.2. Major potential humidity issues were identified when complying with ASHRAE 

90.2 during cooling season. It also appears smart thermostats add little value to occupants 

when complying with ASHRAE 90.2 during cooling season across multiple climates and building 

constructions. Further exploration into humidity issues identified are required, as well as refining 

the energy model and moving towards real-world validation.  
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1 – Introduction 

 A smart thermostat can be defined as “a thermostat or measuring device that is enabled 

by Wi-Fi or another (home area network) communications protocol to gather and transmit in-

home temperature data in a two-way format that can be accessed remotely via a web portal or 

mobile application…with a robust backend platform and enhanced data gathering and analytics 

functionality that optimizes HVAC settings for efficient and automated energy consumption” [1]. 

The basic goal of a smart thermostat is to improve energy savings by using “enhanced data 

gathering and analytics” to reduce energy consumption, and improve user comfort compared to 

other environmental control approaches. Examples of smart thermostats currently on the market 

include offerings from Nest Labs, Honeywell, EnergyHub, Ecobee, and Schneider Electric. 

Although smart thermostats (which will henceforth be referred to simply as ST’s) have been in 

the market since the turn of the millennium, their usage has exploded in the last three years. 

Research predicts a global market annual revenue expansion from $143.6 in 2014 to $2.3 billion 

in 2023 with the largest growth occurring in the US and Asia/Pacific markets [1].  

 
Figure 1.1: Communicating/Smart Thermostat Devices Revenue by Region, World 
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Figure 1.1 highlights the market breakdown by region, and indicates North America and 

the Asia Pacific regions are expected to see the greatest growth of the ST market. The bulk of 

this growth is expected to be driven by residential adoption of ST’s and associated services [1].  

Focusing on the United States, the primary factors driving market growth include utilities, 

state and federal regulations, and an aggressive marketing approach by market leaders. 

Several utilities have implemented subsidies and other incentives to encourage consumers to 

implement ST’s. 

2 – Justification of Research 

 In 2014 the United States consumed 98.4 quadrillion BTU of energy. Figure 2.1 shows 

how US energy consumption was distributed to various uses in 2014. 

   

Figure 2.1: US Energy Consumption Breakdown 

Considering buildings consume 48% of all energy and 76% of all electricity in the US, reducing 

building energy use would go a long way towards increasing energy independence, reducing 

greenhouse gas generation, and lightening the load on aging and increasingly stressed energy 

infrastructure. An additional factor not accounted for in the above figure is the fact most of those 

98.4 quad are lost as waste heat.  
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Figure 2.2: 2012 US Energy Use and Waste Tracking 
 

In 2012, when US use was approximately 95.1 quad, over 58.1 quad was eventually 

rejected and wasted as shown by 2.2 above. Of particular interest within the scope of ST 

research is the 3.72 quad of wasted energy from residential energy consumption. Assuming 

consumption to waste ratios still hold true, nearly 35% of energy still is wasted in the residential 

market. While improved building materials and increasingly efficient HVAC systems have an 

opportunity to contribute to reducing waste, HVAC controls will also play a major part.  

Based on reported benefits from manufacturer research, energy savings due to 

implementing an ST can be as much as 31% less than a baseline thermostat, with documented 

average annual savings in the 10-15% range for most Nest users based on a February 2015 

white paper released from the manufacturer [2]. 10-15% savings could translate to 30-50% of 

the wasted residential energy being saved. Additionally, the majority of reports by the individuals 

participating in the Nest studies indicated that comfort was also increased with the 
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implementation of an ST [2]. Therefore, it appears there is mounting evidence to support the 

case for smart thermostat utilization.  

There are however outstanding questions about the outer limits of Smart Thermostat 

use, and what kinds of unexpected impacts may result from the adoption of ST’s across a wide 

variety of climates, building constructions, and HVAC equipment pairings when used for 

aggressive energy savings. What are the deepest setback temperatures allowed when factors 

such as infiltration, ventilation and energy code fore a variety of climate and building 

construction combinations? Answering these questions and developing a series of 

recommendations will be the primary objective of this thesis.   

3– Background and Literature Review 

 Before the actual literature is discussed it is critical to have a general understanding of 

the history of building environmental control. Building environmental control can be broken up 

into four primary phases. These phases are primarily chronological; however all phases are in 

current use across the world today. 

3.1– Background 

3.1.1– Human Reactive Control 

The first phase of building environmental control is human reactive control. Simply put, 

human reactive control is humans controlling their built environment by reacting to its current 

state. An individual engages in physical activity to change the temperature in their space to suit 

their comfort. This can be as simple as opening a window, stoking a fire, or putting on a coat. To 

a degree human reactive control is not in fact building environmental control at all, but simply 

people doing what people always do, just inside. 
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3.1.2 – Physical Control 

Physical control is based on manipulating various physical phenomena in an engineered 

manner to dictate a specified output. Physical control focusing on building environmental 

comfort can date back as far as the 17th century when Cornelius Drebbel invented a device that 

contained mercury as a temperature sensor which actuated a lever arm to control the draft to a 

furnace for heating (REF). The majority of automated physical control systems prior to the early 

20th century dealt with pressure, temperature, and rotational speed in mechanical systems, and 

were not directly utilized in a building environmental control application. 

The next major innovation to physical control was the definition of PID control in 1911 by 

Elmer Sperry. PID control involves proportional control, integral control, and derivative control. 

Proportional control is actuating the control mechanism based on the actual current position of 

the mechanism compared to the desired position. Integral control is the amount of reset 

required to correct an amount of error. Derivative control is an attempt to look at how far a set 

point has historically been from the desired point in anticipating what correction will need to be 

made in the future. With the foundations of the modern PID loop defined scientists and 

engineers could then move forward in advancing control mechanisms to include electrical 

systems. 

3.1.3 – Electrical and DDC Digital Control 

As electronic relays began to become more commercially available throughout the 20th 

century electronic sensors were more frequently tied into physical control systems to give a 

more complete PID loop. Initially, with simple on-off relays only binary control was available, 

where the systems were either on or off. As modern circuitry advanced, electronic automatic 

controls became readily usable with much of the research being spurred on through weapons 

and instrumentation development during World War II. At this point however, electrical controls 

were still directly tied to specific mechanical systems. For example, a thermostat would be 
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directly tied back to mechanical actuators on the furnace it was controlling. With the advent of 

increased computing power and reduced costs through the availability of semiconductor-based 

systems, direct digital control came to the fore. Direct digital control programs interface a 

physical sensor, a (often user customizable) computer logic controller, and analog and digital 

outputs to control the transport medium (liquid, gas, etc.). Today, nearly all new and existing 

commercial building environmental control equipment is based on some level of DDC control. 

DDC control is not limited however to just one to one ratio of control. Rather, it is a hierarchy 

where the DDC system can be multi-tiered. It can control one system, or monitor parallel 

systems and control them. It can also control a source plant (heating, cooling, ventilation, water, 

etc.) as well as the parallel systems the source plant supplies.  

3.1.4 – Building Environmental Control Today 

Today building environmental control systems take three primary forms; single set point 

control, multi-point set point control, and adaptive control. Single set point control takes a single 

physical variable and reports that value back to the control system moderating the HVAC 

system. The physical variable can be a temperature, humidity, airflow, or pressure set point. 

Typically, it is a temperature set point and the mechanical system is modulated in an on-off 

fashion, or with some sort of PID loop to try reach and maintain the set temperature.  

Multi point set point control can take one of two forms, and the two forms are in fact 

capable of being used at the same time. The first form (MP-I) takes multiple inputs of various 

parameters and tries to meet all or most of them based on a schedule of priorities. Multi point 

control is what allows an air handler to separately modulate humidity, airflow rate, and 

temperature of an airstream. The second form of multi point control is scheduled control (MP-II). 

In this approach, the user inputs set points (either a single or multiple points per time period) 

across discrete time intervals for the system to try and meet during different parts of the day.  
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The third form of environmental control available is adaptive control. Based on a variety 

of user inputs and environmental sensors an adaptive control mechanism utilizes a combination 

of PID loop as well as other algorithms to create and schedule its own set points without active 

user input. Nest Smart thermostats are an example of adaptive control mechanisms.  

3.1.5 – Residential Environmental Control Demands 

Residential space have unique requirements in providing satisfactory indoor 

environmental control. Residential spaces are utilized in a wide variety of occupancy patterns 

ranging from morning evening use, to constant use, to sporadic use throughout the day. 

Additionally, residential spaces have traditionally been served by a single thermostat placed in 

the middle of a home, and are served by single zone air-conditioning system. This reality 

necessitates the entire occupied space be conditioned to meet the needs of even a single 

occupant in a small space. It is important to note the bulk of residential HVAC systems are 

controlled by (and has equipment designed to handle) indoor dry bulb temperature set point, 

with limited to no concern for humidity or outside air effects.  

3.2 – Literature Review 

3.2.1 – Building Thermal Mass 

 Building thermal mass is the heat energy stored and released by the structure of the 

building itself. The source of energy stored in building thermal mass can be mechanical (pre-

cooling), or natural (radiant loads). Building thermal capacitance, the quantity of, and rate of 

absorption/release of thermal energy is dependent on construction materials, and building 

geometry. The concept of utilizing the thermal mass of the building to offset the cooling loads 

was first explored in detail by Ruud in 1990 [3]. Utilizing a live building experiment on the 

Independent Life Insurance building in Jacksonville, Florida, Ruud found it was possible that by 

pre-cooling the entire building during the weekend and at night, cooling energy could be 

reduced by up to 18%. Building on Ruud’s research and moving into the computational arena 
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Balaras identified various parameters affecting the performance of building thermal mass 

including material properties, thermal mass location and distribution, and the role of ventilation 

and occupancy patterns [4]. Balaras also tabulated parameters for describing thermal mass, 

and a selection of those definitions is shown below. 

Table 3.1: Thermal Mass Contributing Factors 

Parameter Physical Meaning 

Admittance Factor Represents the extent to which heat enters the surface of materials 
in a 24h cycle of temperature variation 

Capacitance Accounts for the ability of the external and internal materials to 
store heat 

Comprehensive 
transfer functions 

Describes heat flows in building elements, combining individual wall 
transfer functions for an enclosure 

Conduction transfer 
functions 

Expresses decay of temperature throughout the material 

Cooling load 
temperature difference 

Includes the effect of time lag in the propagation of heat through the 
material, due to thermal storage.  

Dirunal heat capacity Measures the effectiveness of the material for heat storage during a 
continuous 24h cycle 

Effective heat capacity Accounts for the effects of the building’s materials’ thermal 
properties and design factors on the long term energy performance 

Effective heat storage Accounts for the effects of thermal transmittance of the material 
along with heat transfer rate due to infiltration 

Heat Capacity Introduces the effect of heat storage  

Thermal Capacity Determines the heat flow in unit time by conduction through unit 
thickness of a unit area material, across a unit temperature 
gradient, defined as the product of density by specific heat 

Thermal Effusivity Accounts for the response of a surface temperature to a change of 
the heat flow density at the surface 

Total Thermal Time 
Constant 

The heat stored in a whole enclosure per unit of heat transmitted to 
or from the outside through the elements surrounding the enclosure 
and by ventilation 

 Additional research followed in 2003 from two different labs. In a joint experiment 

between the University of Nebraska-Lincoln, and the technical University of Dresden Henze et. 

al. explored optimal building control for both active and passive building thermal storage [5]. The 

study highlighted a major determining factor of utility cost savings based on time-of-use rate 

differentials is highly accurate weather forecasting for effective predictive control. At the same 

time Braun was also exploring load control utilizing thermal mass [6]. The model was developed 

to optimize zone temperature set points based on utility rates, load profile, equipment 

characteristics, building storage characteristics, and the weather. Modeling was performed both 
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in field studies as well as in controlled experimental conditions at the National Institute of 

Standards and Technology test facility. Important features for optimal building control based on 

thermal mass included a networked digital thermostat system for large buildings, easy global 

configuration of thermostats, and site-specific control technology for each given building [6]. 

Braun and Lee followed up this research in 2006 working on demand limiting control using 

building thermal mass and identified methods not only to reduce energy consumption but 

specifically target peak demand periods and how to avoid them using set point control [7]. The 

steps to do so are listed in Table 3.2 below 

Table 3.2: Steps for Demand-Limiting Control with Buildings Thermal Mass [7]. 

Step Description 

1. Enable 
demand-limiting 
control 

Demand-limiting control is enabled three hours prior to occupancy 
on days when critical peak pricing is expected. Some utilitites are 
experimenting with automatically sending CPP signals at midnight 
of the day on which they will be invoked. If this information is not 
available, then it would be necessary to anticipate the occurrence of 
CPP through forecasting. 

2. Precooling Precooling should begin about three hours prior to occupancy at 
around 70°F to provide an appropriate balance between comfort 
and peak load reduction potential. This setpoint should be 
maintained until the onset of CPP (critical peak pricing) rates.  

3. Demand limiting The zone temperature setpoints should be adjusted upward from 
the precooling temperature (70°F) to an upper limit dictated by a 
balance between comfort and demand-reduction potential (e.g. 
78°F). The setpoint trajectory during this period should be designed 
to achieve maximum demand reduction for the air-conditioning 
equipment. 

4. Setpoint return At the end of the demand-limiting period, the setpoint can be 
returned to a normal value. If the end of the demand-limiting period 
corresponds to the end of occupancy, then the setpoint can be set 
to a higher value 

 Based on this approach Braun was able to realize “between a 30 and 100% reduction in 

baseline peak air-conditioning power depending primarily on the climate” [7].  

While work discussed above added value to the field by establishing baseline building 

data and knowledge, it was not directly applicable to the residential environment. That changed 

in 2006 when Katipamula and Lu explored similar demand response control strategies in a 

residential environment [8].  Multiple residential HVAC control approaches were explored, and 
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results indicated while curtailment control provided the most demand relief it also caused a 

reduction in comfort. Compared to curtailment control pre-cooling appeared to reduce demand 

costs nearly as much, but consumed more energy, and cost more overall although it did not see 

the same comfort loss that curtailment did. It is also important to note that unlike in commercial 

settings, residential utility rate schedules in most of the United States typically have a fixed 

demand charge, and do not vary the usage charge rate throughout the day. This is changing in 

some locales however, particularly during peak cooling season during the peak cooling hours of 

the day.  

 Further work by Yang and Li in 2008 explored using thermal mass and night ventilation 

to reduce cooling loads in air-conditioned office buildings [9]. Their work indicates there is a 

balance between thermal mass quantity, environmental factors (shading, urban density, trees, 

etc.), climate, and internal loads which is required for precooling thermal mass to be truly 

effective as a control mechanism for energy (or cost) reduction. In 2010 Yin et. al. explored 

precooling strategies specifically in hot California climate zones, and utilized a building 

simulation tool and a variety of field test buildings to show that accuracy of simulation models 

has the potential to be greatly enhanced by calibrating them with measured data, and once 

calibrated the models can be used to accurately predict load reductions on automatic demand 

response days [10]. This research would indicate the value of a “self-learning” thermostat that 

can calibrate its initial model based on environmental responses, and shows an ST has the 

potential to have a major impact energy and cost reduction. However, when paired with the 

work of Yang and Li, it is possible that in residential environments there is an imbalance 

between the envelope, building thermal mass, and internal loads to such a degree that 

precooling may not be effective. This is particularly possible in buildings with high ratios of 

envelope to internal/occupancy driven loads – as many residential buildings are.  
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3.2.2 – Control Algorithms and Associated Thermostat Performance 

Equally important to understanding how building thermal mass contributes to 

environmental conditions within a building l is the performance of thermostat control algorithms. 

As early as 2001 Maheshwari et. al identified the value of programmable thermostat settings in 

an effort to provide energy savings [11]. While focusing on hot air in countries such as Kuwait 

they identified the importance of time of day control for energy conservation in three distinct 

occupational environments (a kindergarten, polyclinic, and a mosque). The results indicated 

what is now recognized fact; scheduled temperature setbacks based on known occupancy 

profiles are an easy and effective manner for reducing energy consumption. 

 Another approach previously mentioned while discussing building thermal mass is 

demand control response. The work of Motegi et. al. highlights commercial building control 

strategies for demand response [12]. At a high level demand response is controlling building 

temperature set points and load utilization based on utility demand rates to minimize peak 

demand and costs, as well as energy consumption. Methods for demand response and HVAC 

systems include global temperature adjustment, passive thermal energy storage (building 

thermal mass), increasing supply air temperatures, and increasing chilled water temperatures 

[12].  

 Because thermal comfort in buildings is not determined purely based on temperature but 

also other factors such as on humidity and air velocity, one control algorithm proposed in 2007 

by Donaisky et.al. is the use of a Predictive Mean Vote [13]. A PMV model takes a broader 

array of inputs of what “matters” to the occupants and then produces a control signal for the 

HVAC system based on those inputs as well as terminal constraints. While PMV may do a 

better job of increasing occupant comfort it does not necessarily also focus on energy reduction. 

Freire et. al. also did PMV research at the same time as Donaisky but with two different focuses 

[14]. They developed one algorithm with the intent of optimizing comfort, and a second that 
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includes energy consumption minimization while still satisfying indoor thermal comfort needs. 

The most important conclusions from their study were PMV controllers are most successful 

when there is at least an approximation of occupants in the space available, temperature set 

points are highly related to thermal comfort sensation, and it is possible to either increase or 

maintain occupant comfort while reducing energy consumption.  

 Work by Moon and Han published in 2010 focusing on thermostat strategies energy 

consumption in residential spaces demonstrated the impact that three parameters (setback 

period, set point, setback temperature) have on energy consumption in both cold and hot-humid 

climate zones [15]. The results indicate in both climate extremes energy savings can be realized 

by modifying control strategies. The research indicates cold climates are particularly suitable to 

gaining energy savings with proper thermostat control. As discussed previously occupancy 

control is an important part in determining internal loads and modulating temperature set points 

accordingly. Additional residential thermostat research was conducted by Surles and Henze 

exploring automatic thermostat control based on residential time of use utility tariffs. This is 

similar to demand response control in large commercial buildings but applied in a residential 

setting [16]. Again, total savings were highly dependent on both the climate and home location.  

 Benzeth et. al explored a different manner of occupancy detection from the typical 

ultrasonic or infrared sensors most commonly used [17]. They developed a visual sensing 

algorithm combined with video cameras which attempt to more effectively “count" the actual 

number of occupants in a space while avoiding “ghosting issues" when occupants sit still in a 

single position for a long period of time. The NEST thermostat line does have the ability to 

integrate with other NEST products including a security system, so the opportunity to integrate 

video occupancy recognition is on the horizon.  

 Most recently, NEST has released a series of white papers as well as partnered studies 

detailing the savings their smart thermostat is capable of providing. A 2013 study on seasonal 
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savings indicated using the Seasonal Savings feature in NEST thermostats allowed users to 

use 5 to 10% less heating and cooling on average when compared to the standard NEST 

control algorithm [18]. Seasonal Savings were determined by the smart thermostat by 

automatically “adjusting temperatures in the setback and set point schedule over a period of 

several weeks based on the thermostat learning each customers’ preferences and occupancy 

patterns” [18]. NEST reported 80% of people kept the new changes, and only 9% reported a 

decrease in comfort. Heating energy savings were realized by reducing runtime of heating 

equipment by 5 to 10.4% depending on the climate, and 6.1 to 12.1% for cooling equipment 

runtime. These values included users readjusting the schedules after the thermostat created, 

and these user driven set point adjustments contributed to a 24% reduction in energy savings 

compared to allowing the thermostat to govern itself.  

In 2014 NEST released the Enhanced Auto-Schedule control algorithm for its 

thermostat. The primary difference between the new control algorithm and the old one is an 

increased level of attention to user inputs and lack of user inputs. The thermostat not only pays 

attention to occupancy throughout the week at a more detailed level, but also “consider(s) lack 

of interactions (indicating satisfaction with the current temperature)" which provides “a more 

holistic view of user preference and was considered previously” [19]. Based on in-house 

simulations the new scheduling system appears to be capable of providing a 5.6 to 6.1% 

increase in savings over the original NEST algorithm. Additionally it appears to provide more 

satisfied users, based on a reduction in user generated temperature adjustments. NEST does 

acknowledge at the end of the report that “actual savings will vary with a number of factors, 

including weather, energy use, utility rates and plan" which does indicate there are other 

parameters to consider including in future control algorithms and predictive modeling 

simulations. 
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NEST’s February 2015 white paper delves further into these other contributing factors 

and identifies conditions and behavior with smaller or larger savings potentials. Table 3.3 below 

highlights these factors which appear to match commentary made in other building thermal 

mass and controls papers discussed already. 

Table 3.3: Factors Associated with Higher or Lower Thermostat Savings [2] 
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3.2.3 – Computational Building Simulation Modeling 

 In the last 15 years building simulation modeling has progressed greatly in level of detail 

and complexity. In 1999 Medina developed a quasi-steady a balance model for residential walls 

[20]. He looked at steady-state models for estimating total energy transfer, and transient models 

for incorporating energy storage, building structures, and moisture transfer. These would 

become recognized as the major forces that needed to be dealt with in the future building 

simulation modeling. The model accounted for shape factors, radiation coefficients, convection 

coefficients, convective heat transfer, forced convection coefficients, solar radiation and then it 

overall heat balance equation. Conclusions of the research indicated the model was validated 

using a test house in the South United States. Recommendations were made to further develop 

transient models, including improving the characterization of windows, moisture, and desorption 

components for higher level of accuracy [20]. 

 In 2001 Mendes et. al. released the first paper on using Matlab/Simulink the model 

building thermal performance. This first paper focused on creating a dynamic model for heating 

mode only. It is highly simplified and had two distinct advantages over previous simulation 

research. First Matlab/Simulink is widely available, user friendly, and very fast to implement. 

Secondly even with the relatively uncomplicated multimodal capacitive nonlinear model, 

nonlinear phenomena such as radiation exchange is able to be analyzed, and as computational 

power would grow the level of complexity available to end-users would increase dramatically 

[21]. 

 Mendes et. al. followed up this research in 2003 by exploring specific control strategies 

using the Matlab model they already created and refined. Another advantage of the Matlab 

system is the ability to create a block-based structure and then tying them together within the 

software package. Blocks can include the building, an HVAC system, a sensor, weather, and 

internal loads. Simple energy consumption models and runtime reports can be developed for 
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each of the five control methods (on-off control, PID, robust control, adaptive control, and 

intelligent control), and research noted that while the models were effective and relatively 

accurate the addition of hygrothermal exchange would likely increase the accuracy in the future 

[22].  

 In 2004 Weitzman’s dissertation explored modeling two types of heat transfer equipment 

in a residential simulation in both a 1D and two-dimensional model [23].  Of particular interest 

from his research was the indication that a simple RC-thermal network model yielded results 

very similar to the significantly more complicated two dimensional model, which may indicate 

that if sufficient accounting of the primary contributed factors is able to be accomplished via an 

RC network, more complex models may not necessarily be required for high-level energy 

consumption investigations. 

 In 2005 El Khoury et. al built on the research of the Mendes group and utilized Matlab as 

well as the SIMBAD building HVAC toolbox within Simulink to attempt to create a multi-zone 

building model. The model included components for air zones, walls, windows (component 

missing from previous models), infrared heat exchange, and solar radiation [24]. Simplified 

model structure of both the internal model as well as the building envelope are shown below in 

Figure 3.1. 
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Figure 3.1: Matlab/SIMULINK Internal and Building Envelope Block Diagrams [24] 
 

 A main problem that many building simulation models had and continue to suffer is a 

lack of highly dynamic reporting because their time steps are typically limited to the order of an 

hour or greater. To explore control strategies a finer level of resolution is desired, and in 2005 

Schijndel and Steskens proposed the utilization of the system identification approach within 

Matlab to reduce computation time and improve sample frequency rate [25].  Unfortunately the 

method is limited in practical applications, and is only truly possible and effective in modeling 

continuous free-floating indoor air temperatures.  
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 Another component to building simulation models which had been considered but not yet 

implemented was the use of the moisture transport hygrothermal model. Barbosa and Mendes 

continue their progress in building simulation modeling in 2006 by releasing an updated building 

model that included hygrothermal considerations of vapor and liquid transfer [26].   The model 

was based on a chilled water loop and included HVAC systems for a chiller, cooling tower, 

pump, mixing box, cooling and dehumidification coil, humidifier, and fan. Although this level of 

complexity is greater than what is needed for residential modeling it was interesting to see the 

conclusion that disregarding moisture transport has the potential to cause up to a 13% over size 

of an HVAC system to satisfy loads, and up to 4% underestimate in energy consumption [26].  

Zhong made further explorations into hygrothermal modeling in his dissertation in 2008. Of note 

his research was focused primarily on residential buildings, although the motivation was not 

necessarily energy savings but rather indoor relative humidity from an occupant safety and 

comfort standpoint [27]. His research moved simulation modeling forward by integrating 

“1) weather data treatment including wind driven rain and solar radiation, 2) air infiltration and 

inter-zonal air flow, 3) indoor heat and moisture generation, 4) heat transfer through slab-on-

ground floors, 5) indoor moisture storage within furnishings and other soft materials, and 6) 

HVAC equipment” [27].  

Although results regarding energy savings and thermostat control were not directly discussed 

this is a useful model for exploring the inclusion of more complex factors to yield more detailed 

output reports. 

 While developing exploring new simulation models and approaches it is also important to 

standards with which to validate the effectiveness of known software packages. In 2007 

Szewczuk and Conradie published a comparison of 12 different commercial or research-based 

simulation packages against ASHRAE 140-2007 [28].  The standard based on a test matrix that 

evaluates whether or not simulation software is capable of handling a variety of building thermal 
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mass conditions as well as shading and orientation. Table 3.4 below shows evaluation matrix 

utilized. 

 
Table 3.4: ASHRAE 140-2007 evaluation matrix [28] 

Low mass building High Mass Building 

Annual heating energy – MWh Annual heating energy – MWh 

Annual cooling energy – MWh Annual cooling energy – MWh 

Peak heating loads – kW Peak heating loads – kW 

Peak cooling loads – kW Peak cooling loads – kW 

Case 600 Base Case Case 900 Base Case 

Case 610 As case 600, South shading Case 910 As case 900, South shading 

Case 620 
As case 600, East/West wind 
orientation 

Case 920 
As case 900, East/West wind 
orientation 

Case 630 As case 600, East/East shading Case 930 As case 900, East/East shading 

 

The researchers found that three software packages fully satisfy the standard, and one 

was found to have substantial differences in high mass modeling while also being incapable of 

modeling low mass buildings.  

  In 2011 Hensen published a summary report highlighting current tools for HVAC design 

analysis, as well as known issues and proposed solutions. A major opportunity posed in 

examining existing software packages was co-simulation. Co-Simulation is simply coupling 

multiple existing software packages and align them to communicate in a manner which best 

leverages each packages strengths diminishing the weaknesses each would have by being 

used individually. As Hensen puts it:  

“It facilitates reuse of state of the art BPS tools by taking advantages of existing 

models…allows combining heterogeneous solvers and modelling environments of specialized 
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tools…It enables fast model prototyping of new technologies…facilitates collaborative model 

design and development process…(and) makes immediate access to new model 

developments” [29].  

Of particular note with regard to co-simulation is the potential for using an advanced 

building simulation model that is well-vetted such as EnergyPlus or TRYNSYS in conjunction 

with the development of a control algorithm in a Matlab environment which would allow a much 

more advanced control algorithm and more detailed reporting interval to be developed than 

EnergyPlus is capable of its own. 

 Bernal et. al took the idea of co-simulating using a Matlab toolbox and EnergyPlus as the 

motivation for creating MLE+. MLE+ is a Matlab toolbox which pairs with EnergyPlus to leverage 

the strengths of both models. MLE+ uses a Simulink based block workflow to interface with 

EnergyPlus which is outlined in Figure 3.2 below.  

 
Figure 3.2: MLE+ Workflow [30] 
 

An additional benefit of MLE+ is the ability to integrate with BACnet communication 

devices to test actual building control models in real life environment. This allows a control 

algorithm to be tested in simulation, and then immediately rolled into a building space if the 

simulation outputs indicate positive results. Additionally, it shortens the calibration loop between 

simulated control algorithm, and actual results.  
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 One critically important component of building simulation is the utilization of real world 

experimentation to calibrate and validate the computational model. Lu et. al. did so in 2010 

when developing a smart thermostat based on occupancy sensors in a home [31]. The research 

team developed a control method based on public smart home occupancy data, as well as data 

from 8 sample houses, and a survey of 41 homes. After implementing the control method in 

EnergyPlus they built two model homes to calibrate and validate the simulation they were using 

to develop their results. Doing so builds to confidence in the resulting data, and provides a 

baseline from which future models can be developed. Similar approaches have been taken by 

researchers at NREL and other DOE sponsored programs.  Simulation approaches and 

previously experimentally validated building constructions, equipment models, and thermal 

models will be the basis of all simulations conducted as a part of this study. Attention will also 

be paid to meeting the necessary energy, construction, and ventilation codes such as ASHRAE 

90.2, ASHRAE 60.2 and IBC codes.   

3.2.4 – Current Smart Thermostat Market Information 

 While an academic literature review in its own right, before moving on to the most recent 

research and fleshing out a specific thesis question it is important to understand the current 

capabilities of smart thermostats that are on the market today. Present smart thermostats are 

available with the wide range of capabilities. The table below identifies the leading competitors 

in the smart thermostat market as well as the various sensing, control, and adaptation abilities 

each possess. 
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Table 3.5: Current Smart Thermostat Market Overview 

Thermostat 
Name 

Features Approximate 
Cost 

Ecobee3  Multiple temperature/occupant sensors for single thermostat 

 Home/Away overrides 

 “Smart Recovery” develops time to temp model  

 Free cooling mode 

 Humidity Control (when available) 

 AC overcool to dehumidify 

 Performance alerts/monitors 

 Fan dissipation for max cooling gain 

 Multi-stage heating and cooling 

 Mobile app  

$249.99-
$313.00 

Emerson 
Sensi 

 C-wire not required in most cases, allows for broader installation 
with existing HVAC equipment 

 Mobile app for schedule control 

 7 independent schedule days 

 9 preset schedules to choose from and customize 

 Does not have a smart or learning mode, 100% user designed  

$129.99  

Nest  Auto Schedule learns user preferences and occupancy and then 
programs itself 

 Seasonal Savings slowly shifts temp schedules up or down 
seasonally to reduce energy consumption while adjusting user 
comfort zone 

 Auto away turns down when no occupants detected 

 Mobile app to control temp 

 Nest Leaf shows user instant feedback when they set an energy 
saving temperature.  

 Integration with Nest Camera  

$249.99  

Ecobee 
Smart Si 

 Same as the Ecobee3, minus: 
- free cooling capability 
- remote sensors 
- tsat proximity sensors 
- Smart home/Away over rides 
-touchscreen control 

$179  

Honeywell 
Wi-Fi 
Smart 
Thermostat 

 Seven day programmable schedule 

 Energy Saving mode 

 Smart Response learning mode 

 Remote Access through mobile app 

$229.99  

Honeywell 
Lyric 

 Geofencing allows the ST to know when user is returning based 
on smart phone GPS location 

 Intelligent temperature control based on humidity and OAT  

 Mobile app remote access/geofencing 

 Ties to a water freeze and leak detector for added confidence in 
home integrity while away 

 Also links to Apple Homekit for added mobile/IOT connectivity 

$249.99  
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Again, it must be noted that while some of the units have the capability to sense 

parameters other than temperature, the HVAC equipment it is tied to may not be designed for 

the operating intervals that controlling for other parameters may generate. Issues such as 

frozen cooling coils, or short-cycling equipment may result.  

3.2.5 – Deep Setback 

 Based on a combination of building simulation research, an understanding of the 

functionality of building thermal mass and controls method investigations, the concept of deep 

setback has been presented as an ideal method of conserving energy via a smart thermostat. 

Lu et first discussed the concept in their 2010 paper proposing a smart thermostat controlled by 

an array of occupancy sensors to compete against reactive and traditional thermostats. 

Conclusions based on their simulations included the assertion that  

“deeper setbacks have a larger impact on energy savings than longer setback periods; a 

five degree increase in setback temperature has the same effect as an additional five hours of 

setback time that uses the normal setback temperature, even in a moderate climate like 

Washington, D.C.. Since the smart thermostat is designed to preheat the home or quickly 

respond to occupant arrivals, it can exploit the large energy savings made possible by deep 

setbacks without sacrificing occupant comfort” [31] 

The statement regarding a five degree increase in setback for an hour saving the same 

energy as five hours at typical setback was not provided with any data or qualifying specific 

situation to back it up. While certainly possible, the advantage a deep setback has over a 

standard setback is dependent on climate, building thermal mass, capacity and efficiency of the 

HVAC system, and the total load in the building and what its sources are. It is therefore an 

indefensible statement in its current form and raises interesting questions about what the true 

value of deep setback in various situations. That being said, the experimentally validated results 

of the research did show the energy saving potential of deep setbacks (50F heating mode and 
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104F cooling mode in Charlottesville, VA climate, an ASHRAE climate Zone 4A city) when used 

in combination with an occupancy sensor driven smart thermostat controller paired to a multi-

stage heat pump HVAC system. Deep setback was shown to be able to save 8.6% more energy 

than the shallow setback smart thermostat control, and 27% more than a standard manual 

home thermostat. However, no mention was made of the potential issues that could arise from 

using such deep setbacks in a home, other than to state that they “are safe temperatures which 

do not cause damage to a house in real life.” 

The same research group continued to explore methods of saving energy and 

maintaining occupant comfort, and in 2013 Whitehouse et. al. published a discussion of new 

approaches to operating buildings. The driving concept which they recognized is that the 

existing residential (and some commercial) building and HVAC controls/equipment stock is 

based on the design paradigm of steady state operation [32]. That is to say residential buildings 

and the equipment/controls we select to condition them are inherently designed to go to a set 

point temperature and just operate in an effort to maintain that set point constantly. We know 

that paradigm is directly in conflict with the current move towards energy savings while 

maintaining occupant comfort. The new paradigm requires a building and its equipment to be 

able to react quickly to changes in occupancy, while also doing so in an efficient manner which 

best uses available energy. Whitehouse titles this approach “dynamic response” to occupancy. 

It is an integrated approach which in the long term entails a paradigm shift about the way 

buildings are designed, controlled, and equipped. In the short term it includes methods such as 

smart zoning, dynamically responsive (variable volume/variable load) equipment, and smart 

thermostat control.  

While dynamically responsive HVAC equipment, systems, and design approaches are 

commonplace for medium to large commercial HVAC systems they have not yet made serious 

inroads into the residential market. Doing so will be expensive with long payback periods, so for 
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the time being a reasonable assumption is that the best way to move towards an occupancy-

driven dynamic building approach is to (relatively) inexpensively retrofit with smart thermostats 

paired to buildings and HVAC equipment originally designed for steady state operation.  

In an effort to test this approach further, Pisharoty et.al. continued the Whitehouse 

group’s work by comparing the energy saving potential of a manual thermostat, a NEST smart 

thermostat, and an updated software-based thermostat system based on the 2010 smart 

thermostat model proposed by Lu et. al. The software package-called ThermoCoach-uses a 

combination of occupancy monitoring as well as energy consumption reports from a connected 

NEST thermostat to make recommendations to the homeowner via email about modifications 

they could make to their set point schedule based on comfort, balancing comfort and energy, for 

targeting exclusively energy savings. Three groups were established for the study; homes used 

a NEST thermostat with all scheduling capabilities disabled to represent a manual thermostat, a 

NEST thermostat left to operate as intended, or a NEST thermostat with automatic control 

disabled but schedule control enabled to allow the homeowner to use ThermoCoach to set the 

set point schedules. All three user groups received weekly energy use reports generated by 

their NEST thermostats and the manual group and ThermoCoach groups made changes based 

on these reports while the standard NEST group simply ran their homes. The results at the end 

of the test indicated ThermoCoach homes saved an average of 4.7% more energy than homes 

manually changing their schedules, and 12.7% more energy than homes with a NEST operating 

on it’s own.  

 While the results are certainly encouraging from a standpoint of furthering the case for 

deep setback, they did have some limitations and issues worth noting. First, all the homes were 

confined to one geographic location, and data acquisition was limited to one three-month 

seasonal period. Additional locations and seasonal ranges need to be considered. Also, two 

story homes with bedrooms on the second floor had the lowest adoption rate and energy 
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savings of the ThermoCoach homes. This supports the 2016 report released by the DOE’s 

NREL assessment indicating that when attempting to maintain uniform temperature across an 

entire house, two story homes (and especially two story homes with a basement) are nearly 

impossible to control in such a manner with a single HVAC zone and thermal stratification of the 

house is almost certain to occur. Additionally, two households had their cooling coils freeze over 

after the NEST thermostats were installed and could not be included in the final results. 

 These results add real-world credence to the question of what are the unintended 

consequences of the implementation of smart thermostats seeking deep setbacks with the goal 

of energy savings. How deep of a setback can we sensibly recommend or allow in heating and 

cooling conditions? What is the impact of local climate and weather fluctuation on these setback 

points? What are the impacts of building tightness? How do current ventilation, construction, 

and energy codes impact the ability to reach deep setback points? These are the questions we 

hope to answer, and in doing so hope to provide recommendations on setback limitations and 

best practices regarding smart thermostat use for a variety of residential occupancy 

combinations.  

4 – Methodology 

4.1 – Software Package Selection 

Modeling was conducted using the OpenStudio platform. Openstudio (OS) is an open-

source, highly developed GUI for the DOE’s EnergyPlus energy modeling engine. OS permits 

users to generate building geometry using the widely available Google Sketchup software 

package. It then imports and converts the 3D model into a gbxml file and allows the user to 

define a wide array of physical envelope conditions, weather conditions, HVAC systems, HVAC 

control approaches, scheduled internal and external loads. The user then determines which 

modeling packages in EnergyPlus are to be run, what outputs are required, and then OS 

translates all of that information into an EnergyPlus model. This is similar to the co-simulation 
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described by Hensen [29]. After internally running the model in E+, OS reports the requested 

results in both an SQL file, as well as specific data streams as .csv files if configured to do so.  

4.2 – Setpoint Selection Basis 

The three major factors explored were comfort, energy savings, and building integrity. 

These factors were assessed while varying representative ST accuracy and unoccupied 

setback depth of a dry-bulb-based smart thermostat. Both short and long term unoccupied 

cycles were modeled. Table 4.1 describes in matrix format the factors explored, variables and 

metrics used to explore those factors, and the questions to answer based on the results.  

Table 4.1 – Study Design Matrix 

Factors to Consider Transient Variables/Metrics  General Questions to 
Answer 

Building Integrity Indoor Wet Bulb/Dry Bulb 
Temperatures  

Deep Setback Temp 
Setpoints in heating and 
cooling season? 

Outdoor Wet Bulb/Dry Bulb 
Temperatures 

Impacts of geography? 

Infiltration and Exfiltration 
Rates 

Impacts of Building 
Construction? 

Energy Moisture generation sources 
and rates 

Impacts of Ventilation 
Requirements? 

HVAC Equipment Run Time What limitations must be 
considered? 

“Unmet Hours” What operational best 
practices may be 
recommended? 

Occupant Comfort Building envelop insulation  
ratings 

What issues may arise that 
require future exploration and 
consideration? Building envelope infiltration 

tightness 

 

Since Openstudio does not have an integrated smart thermostat function one had to be 

designed. A smart thermostat is no more than a programmable thermostat which has some 

advanced logic to determine when to change the setpoint based on anticipated knowledge of 

occupancy. The easiest way to replicate that logic in Openstudio was to create a standard 
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occupancy schedule which demonstrated the various absence intervals and occupancy rates 

which we wanted to explore, and then simply set heating and cooling setpoint schedules around 

those occupancy schedules which replicated a high performing, ideally performing, and poorly 

performing smart thermostat. Figure 4.1 through Figure 4.34.3 below show the difference in ST 

accuracy predicting occupancy on the standard occupancy schedule which was used for the 

majority of the test.  

 
 Figure 4.1: 100% Occupancy Match Setback Schedule  
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Figure 4.2: 85% Occupancy Match Setback Schedule 
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Figure 4.3: 50% Occupancy Match Setback Schedule 
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schedules, paired with different occupancy profiles every model used to run its simulations. It 

should be noted there are weekly gaps during normal occupancy mode. This was done to allow 

the space to recover after each run, and let it start from the same point without creating a 

stacking effect of the model conditions running back to back.  

Table 4.2: Annual Thermostat Setpoint Schedule 

Heating Mode   Cooling Mode 

Weeks Setpoint  Weeks Setpoint 

1-2 35 F  27-28 110 F 

3 ASHRAE 90.2 Recovery  29 ASHRAE 90.2 Recovery + 
Dehumidification 

4 100% Setback match to 
65F 

 30 100% Setback match to 85F 

6 85% Setback match to 
65F 

 32 85% Setback match to 85F 

8 50% Setback match to 
65F 

 34 50% Setback match to 85F 

10 100% Setback match to 
55F 

 36 100% Setback match to 95F 

12 85% Setback match to 
55F 

 38 85% Setback match to 95F 

14 50% Setback match to 
55F 

 40 50% Setback match to 95F 

16 100% Setback match to 
45F 

 42 100% Setback match to 105F 

18 85% Setback match to 
45F 

 44 85% Setback match to 105F 

20 50% Setback match to 
45F 

 46 50% Setback match to 105F 

22 100% Setback match to 
35F 

 48 100% Setback match to 110F 

24 85% Setback match to 
35F 

 50 85% Setback match to 110F 

26 50% Setback match to 
35F 

  52 50% Setback match to 110F 

 
With the above approach a model can explore a total of 24 discrete setback and 

occupancy match behaviors during normal occupancy mode as well as a two week period 

during each season to see what would happen if the house were allowed to drift as high or low 

as possible given zero occupancy in the space and no temperature control as long as it remains 

within the highest and lowest bounds listed above (35-110F). During heating season the 
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recovery week setpoints were compliant with ASHRAE 90.2-2014 (60F 0000-0600, 68F 0600-

2300, 60F 2300-2400), and during cooling season the recovery weeks were set to 74F (below 

the ASHRAE recommended 78F) and controlled for humidity as well with a target RH of 40%. 

This was done to ensure each cooling season test week would see the same opportunity for a 

cool and dry initial space condition.  

4.3 – Custom Weather File Creation 

The above approach to leveraging Openstudio’s control of schedules is only valuable if 

the user can also look at the same weather conditions cyclically so each test run gets the same 

weather profile. To create the two week deep setback periods, a three day period of .epw data 

(centered on the heating or cooling design day) was captured using NREL’s System Advisor 

Model (SAM) weather data viewer package for a given locale. The data was then repeated 

seven times in MS EXCEL to create a three week period of “worst case scenario” for the given 

weather station. The first two weeks were used as a long unoccupied test period, and the third a 

recovery week before the short term testing periods.  Next, SAM was used to capture a one 

week period of .epw data (again centered on the heating or cooling design day) which was then 

repeated 23 times in MS EXCEL to create the weekly test periods outlined in Table 4.2 above. 

Once a full “year” of weather cycles was developed, the data was inserted into Elements .epw 

customization tool, and written as a custom weather file with the necessary header information.  

The above process was repeated for the weather stations at; Minneapolis International 

Airport, Fayetteville Drake Field, and Miami International Airport to provide a varied cross-

section of both worst case temperature and humidity conditions across the country. Selecting 

locations that were not in the dry or marine ASHRAE regions was intentional as exploring the 

issues surrounding high outdoor humidity was a primary question to be answered, and as 

discussed in the literature review, there is a significantly greater portion of the US population in 

this regions of the country represented by the selected weather conditions.  
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4.4 – Floorplan Selection Basis and Creation 

Based on the survey data discussed in the literature review surrounding the makeup of 

US residential single family homes, it was decided that a single story home with an attached 

garage, attic, and built on a slab with approximately 1500 square feet of floor area would be a 

suitable representative model. The same floorplan as Poershke et al used in their research was 

selected [33].  A floorplan is included in Figure 4.4 below.  

 

Figure 4.4: House Floorplan 
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4.5 – Internal Loads and Scheduling 

The 2014 Build America house simulation protocols contain a load sizing and scheduling 

spreadsheet which creates maximum internal (latent and sensible) loads and percentage of total 

load schedules based on occupancy and equipment tailored to the building profile that it 

receives as an input. Additionally, it will create custom heating and cooling season hourly 

lighting schedules based on the variable availability of natural light. Using these tools, schedules 

and maximum values were input into the Openstudio models where they generated internal load 

values to run in EnergyPlus. The spreadsheet calculates the likely peak occupancy of the 

space. This was one variable generated by the spreadsheet which was not used. It was decided 

the home would have a maximum of four instead of three occupants. This was done to generate 

additional latent load, and to account for an average American family, rather than a statistical 

people-per-square foot model. 

Based on both the 2014 Build America house simulation protocols, as well as to reflect 

the NREL work done by Poershke et al. the new construction and renovation construction 

models were built to have R-values matching the 2009 ICC. The table used to select new 

construction R-values is shown in Table 4.3 below.  

Table 4.3: Insulation Design Values use for New and Renovation Construction Houses 

 
 
 

 Miami, Fayetteville, and Minneapolis are located in ASHRAE zones 1,4, and 6, 

respectively, so those are the lines which were used from the table. For old construction 
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models, per the 2014 Build America house simulation protocols for 1980-1989 construction 

buildings with 2x4 wall construction and 2x6 Attic cavity insulation Tables 29 and 30 were 

referenced (shown below in Table 4.4). 

 
 
Table 4.4: Old Construction Wall and Ceiling Insulations 

 
 

 Because a primary focus of the research was to explore the impacts smart thermostats 

had on the most prevalent existing building construction and equipment the decision was made 

to not include any controlled mechanical outdoor air ventilation (outdoor air dampers/coils on the 

HVAC systems). ASHRAE 90.2 recommends if no constant outdoor air mechanical ventilation is 

provided in the HVAC system that the minimum natural infiltration rate be no less than 0.35 Air 

Changes per Hour (ACH). Therefore the new construction and renovation models were 

specified with 0.35ACH of infiltration. Based on common data and reports, the old construction 

models were specified with 0.5ACH to reflect a looser, more settled-in home. Additionally, since 

to no latent loads associated with bathing were built into the internal loads, no exhaust fan 

operations matching such loads were scheduled.  
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4.6 – Data Outputs 

Openstudio contains a set of functions which allows a user to export .csv information at 

whatever time step they choose for any EnergyPlus output variable they may specify. However 

for computer stability and total run time it was discovered that at a one minute time step the 

maximum number of data files that a single model could run was limited to 10. Therefore the 

nine base models each had to be copied, and both copies run with different reporting outputs. 

One run focused on air side outputs and the other on energy side outputs. Additionally, each 

location required a single model run focusing simply on reporting weather data in a minute by 

minute format since that was the most efficient manner for translating the .epw files into minute 

by minute (instead of hourly) data for comparison with the rest of the results. Table 4.5 below 

shows all the initial simulations (numbered) conducted for this experiment. 

Table 4.5: Model Number Reference Table 

  Minneapolis Fayetteville Miami 

Weather File 1 8 15 

New Air 2 9 16 

New Energy 3 10 17 

Renovation Air 4 11 18 

Renovation Energy 5 12 19 

Old Air 6 13 20 

Old Energy 7 14 21 

 
Data was then queried directly from the Openstudio SQL Viewer when only a single 

variable was required, or pulled and processed from the CSV files in MS excel if calculations or 

transformation of the information was necessary. 

5 – Experimental Results and Discussion 

5.1 – Moisture Issues 

Before the results of either the deep setback or normal occupancy periods of the models 

are discussed, it is important to note what may be a major issue in all of the models. Even with 

the humidity and air temperature “reset weeks” discussed in the methodology, all models had 
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major issues with humidity control during cooling season deep setback and normal occupancy 

modes. Every model had extended periods of time sustained at 100% RH within the occupied 

zone. This understandably raised questions.  

The first question was could these results be manifesting something other than a 

properly functioning energy model. First, hand calculations were performed to assess whether 

indoor and outdoor air conditions matched the moisture loads generated from internal latent 

loads, and infiltration/exfiltration of moisture with the air. These were conducted at discrete time 

intervals across several models as a “sanity check”, and came up very close to the internal 

moisture loads the model results were indicating. Once those results were confirmed to at least 

be within the realm of possibility, further examination of the capabilities of the computational 

model itself was conducted. It was realized that the heat transfer model does not account for 

material moisture transport, particularly absorption / desorption by the building mass. This could 

play a critical role in dampening moisture load reactivity, similarly to how building thermal mass 

dampens temperature fluctuations. EnergyPlus has the capability to model buildings using 

either a Heat and Moisture Transfer (HAMT) or Effective Penetration Depth Model (EPDM) to 

add building moisture interfacing into consideration. The downside is both models require 

additional access and parameter definitions within EnergyPlus to sufficiently characterize the 

building material properties which the Openstudio interface does not natively provide. As noted 

by both Medina and Mendes, adding moisture factors into the model has the potential to 

increase the accuracy of the model has a whole.  

Given the open ended nature of the moisture issue, consideration was taken that the 

model was in fact correctly representing the activity taking place, and what that meant from a 

building systems perspective. These issues match those identified by Zhong in 2008 with 

hygrothermal factors being considered. As will be discussed further in later sections, the use of 

the ASHRAE 60.2 cooling season setpoint of 78F led to very little air conditioning run time in all 
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climates and all constructions. This was magnified in the new construction models versus the 

old construction models. Because even the best insulated models were limited to a minimum of 

0.35ach per hour of infiltration per ASHRAE for naturally ventilated buildings for OA (as most 

homes do not have dedicated OA control), there was too much moist air infiltrating with not 

enough load generated to exceed the 78F dry-bulb setpoint and run the AC long enough to 

effectively pull moisture from the air. Furthermore, higher insulation requirements in northern 

climate zones designed to combat colder winter conditions led to similar humidity issues that 

warmer climates saw, but at less extreme summer conditions. That is to say that improving 

insulation for heating season may have detrimental effects during cooling season if moisture 

issues are not also considered. It appears once insulation and infiltration is optimized in a 

residence, humidity control, and not temperature control may become the driving concern in 

terms of occupant comfort and building integrity, particularly when complying with energy code 

setpoint and outdoor air rate recommendations with standard residential HVAC equipment.  

5.2 – Deep Setback 

5.2.1 – Heating and Cooling Recovery Results 

 

 This first factor examined in the deep setback results for both heating and cooling 

seasons was recovery time at the end of each two week setback period. During heating season 

Minneapolis had the coldest winter design day temperatures, and so it should come as no 

surprise that the old construction model in that locale took the longest to recover from deep 

setback mode as shown below in Figure 5.1 
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Figure 5.1: Minneapolis Old Construction Heating Season Deep Setback Recovery  
 

We can see the time to recover to the unoccupied non-deep setback mode takes 

approximately 7 minutes. Similar times were seen in the other Minneapolis Models. Even after 

two weeks with the lowest quality insulation and the highest infiltration in the coldest climate, the 

“worst case” house still never got lower than 7C air temp. Daily radiant and equipment loads 

maintained enough heat to temper the occupied space as shown in Figure 5.2 below  



 

40 
 

 
Figure 5.2: Minneapolis Old Construction Heating Season Deep Setback Period 
 

While it is possible uninsulated pipes may have frozen at a 7C air temperature, further 

data on internal and external wall temps would be needed to determine the risks to building 

integrity during such a setback.  

The Fayetteville models showed most pronounced differences in minimum temperatures 

seen across construction types as shown in Figures 5.3-5.5 below.  
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Figure 5.3: Fayetteville New Construction Heating Season Deep Setback Recovery 
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Figure 5.4: Fayetteville Renovation Construction Heating Season Deep Setback Recovery 
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Figure 5.5: Fayetteville Old Construction Heating Season Deep Setback Recovery 

 
Moving from new to old construction reflects a trend of decreasing thermal stability 

(resistance to temperature change). This matches what is generally accepted; old drafty houses 

get colder faster than newer tighter houses. That being said, the total difference in minimum 

temperature reached across the three models was only 1.4C, but said difference was the most 

noticeable of all locales.  

Another point to note during heating season deep setback is that none of the Miami 

models ever hit the deep setback or normal setback setpoints. This is not particularly surprising 

given the outdoor air dry bulb (OA DB) temperature was above the heating setpoint the entire 

time. 
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Figure 5.6: Miami Old Construction Heating Season Deep Setback Recovery 

 
Transitioning to examining the deep setback cooling season data, even at the design 

cooling week the heat was still coming on with an ASHRAE cooling setpoint in all the 

Minneapolis models during the two week deep setback period at night/early in the morning. 
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Figure 5.7: Minneapolis Old Construction Cooling Season Deep Setback Air Conditions 
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Figure 5.8: Minneapolis Old Construction Cooling Season Entire Deep Setback Energy Usage 

 
In a real house the heat would probably be turned “off” during the summer so even lower 

daytime temps may be reached than those seen here if the unneeded heating was avoided. The 

house would have additional potential to act as a thermal sink and reduce energy consumption 

on during the daytime, also reducing the need for cooling ventilation during deep setback. Also, 

neither the indoor temperatures in Fayetteville or Miami was ever greater than 25C-still within an 

ASHRAE 90.2 compliant cooling season setpoint range. This result was independent of 

construction method in both locales as shown in the figures below.  
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Figure 5.9: Fayetteville Old Construction Heating Season Deep Setback Recovery 

Cooling Season Deep Setback Recovery 
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Figure 5.10: Miami Old Construction Heating Season Deep Setback Recovery 

 
While all the construction methods stayed below the ASHRAE setpoint, construction 

method did align with the magnitude of the dry bulb total range, but even the largest ranging 

changes were still within the ASHRAE standard occupied limit.  

5.2.2 – Energy and Comfort Discussion 
 

A primary concern with the effectiveness of a smart thermostat is balancing energy 

savings through setbacks with an acceptable recovery rate to a comfortable occupied 

temperature. The recovery interval will be referred to as “time to temp.” In cooling season, the 

time to temp was zero for all models, because the indoor temperature was never greater than 

the occupied mode setpoint while in deep setback mode. Given that fact, the rest of the 

discussion surrounding deep setback will focus on heating season.  

Cooling Season Deep Setback Recovery 
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 In heating season, the longest time to temp was 7 minutes, predictably in the 

Minneapolis old construction model. Assuming the ASHRAE 90.2 heating season setpoint is 

comfortable, 7 minutes does not seem to be an unreasonable time to wait for a space to heat up 

in pursuit of energy conservation during extended non-occupation. Whether the ASHRAE 90.2 

heating season setpoint is in fact comfortable for occupants is not within the scope of this 

research. Additionally, this time to temp assumes the building furnace is appropriately sized for 

the building geometry, and the expected heating season design-day conditions. An under-sized 

furnace or poor quality air distribution within an actual home could significantly impact the real-

world time to temp.  

The next question arises from an energy conservation and control algorithm perspective. 

That is, what can be considered a “deep setback” period of time. By defining what constitutes a 

deep setback interval, smart thermostats can more effectively determine which setpoints to use. 

Based on the results of this research, deep setback time is primarily climate driven with building 

envelope playing a secondary role.  Even in the Minneapolis old construction model, it took only 

three days for the building to reach its minimum temperature and a diurnal thermal equilibrium 

between external conditions, internal loads, and radiant loads. It should also be noted this point 

of equilibrium was still above the allowed setpoint in the model, so there was no heat ever 

coming on to temper the space; ie: 100% energy conservation compared to maintaining the 

occupied setpoint. Therefore, the longest period recommended as a deep setback threshold 

would be three days. Granted, these results were generated using a custom weather file based 

on the 0.4% design condition, so often conditions will be milder, and the time to temp (and 

minimum space temp reached while un-occupied) shorter.  

With short time to temps throughout the designed outdoor condition range deep setback 

mode could effectively be engaged any time the smart thermostat expects the user to be gone 

long enough that the energy expended to temper the unoccupied space will be greater than the 
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energy expended to bring the space back to the occupied setpoint from whatever it drifted down 

to. If the building occupant pays only a usage charge for their energy this strategy will save the 

user both energy and money. If the occupant pays a demand charge as well then things get 

more interesting. If the peak usage rate while recovering from deep setback is less than or 

equal to any other peak usage rate during the billing period the user still saves money. If 

however peak usage rate during recovery from deep setback is higher than any other peak 

usage rate the user experiences on their billing cycle, it is possible the increased demand 

charge would override cost savings earned with a lower setpoint during deep setback. This is 

where integration of ST’s into utility information and tracking, as well as integration with other 

energy loads in the home may help ST’s make more informed control decisions. Traditionally 

however, demand charges are only incurred by some electric utilities, not gas utilities, and so 

would only impact those users running an electric furnace or heat pump in their homes.  

The next question to answer once a deep setback period is defined is of course what 

that setpoint should be.  A major focus of this research was to explore the limits of what setback 

temperatures could be used in different climates and with different construction quality/vintage. 

Based on the results of the models it appears possible to make national recommendations 

independent of construction style.  

 Assuming the water piping is properly insulated, and that weather/radiant loads are no 

more severe than those modeled, past 7.5C indoor Dry Bulb there is no further a house this size 

will cool even in extended periods of extremely cold weather. Therefore 7.5C could be a heating 

season deep setback setpoint. Of course radiant loading may vary greatly with different building 

geometries and external factors, all of which may change the “safe setback” for a given home.  

As mentioned above, based on these models, even bad insulation appears “good 

enough” in most summer conditions to keep homes within the occupied ASHRAE dry bulb limits 

for extended periods of absence. The air conditioning can be turned off, or to the ASHRAE 
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setpoint when the occupant departs. The caveat to this statement is the moisture issue with the 

models discussed in the first section of the results and discussion is still outstanding, and if it is 

indicative of a real world issue when explored further, then humidity control during cooling 

season deep setback will be a major concern, the resolution of which has the potential to eat 

into setback energy and cost savings.  

5.3 – Normal Occupancy 
  

5.3.1 – Heating and Cooling Recovery Results 

 

After deep setback normal occupancy mode is the next occupancy behavior where the 

impacts of a smart thermostat are worth exploring. As an initial method of drilling into the 

massive amount of data in search of interesting results, the unmet hours (time the space is both 

occupied, and out of the allowable temperature range) were tallied for each model. A 

spreadsheet compared the zone dry bulb with the occupancy status, and if the space was 

occupied, and the zone was outside the allowed temperature range, that minute was tallied to 

the count. The table below shows the total time, and longest single interval each model did not 

meet the heating and cooling setpoints while the space was occupied.  

Table 5.1: Heating and Cooling Unmet Hours Summary 

 City 

MIA-
New 

MIA-
Reno 

MIA- 
Old 

MPLS- 
New 

MPLS- 
Reno 

MPLS- 
Old 

FAY-
New 

FAY - 
Reno 

FAY -
Old 

Total Unmet 
Heating Hours 

0 
 

0 0 
 

122.5 122.9 122.6 117.3 118.6 119.4 

Longest unmet 
heating period 
(minutes) 

0 11 18 43 43 43 41 42 42 
 

Total Unmet 
Cooling Hours 

0 0 
 

0 0 0 0 0 0 0 

Longest unmet 
Cooling period 
(minutes) 

0 0 0 
 

0 0 0 
 

0 0 0 
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It should be noted that across all models, four weeks of heating season and five weeks 

of cooling season were discovered to be modeled inconsistently with the rest of the data. As 

such the data for these weeks was discarded. Fortunately the weeks lost were not at the 

extremes, and so were not the sources of any of the data above. A major point that follows the 

trends initially noted during deep setback modeling is with an ASHRAE cooling setpoint as the 

acceptable cutoff, only in old drafting buildings was being outside the cooling setpoint ever an 

issue while the space was unoccupied. Upon further investigation the intervals that did not meet 

the setpoint were within the weeks with incorrect schedules discussed above. That is to say that 

in all the cooling season weeks modeled similarly, the temperature was never above the 

ASHRAE setpoint when the space transitioned from occupied to unoccupied or vice versa. 

During heating season the longest “miss time” designed in the occupancy schedule was 45 

minutes, which matches with both Fayetteville and Minneapolis longest unmet times. It took 

several minutes for the space to begin cooling off, after which point the space remained in an 

unmet comfort state until the occupants “left”.  

Similarly to determining the deep setback cutoff temperature, the point at which heating 

and cooling setback yields no additional “miss time” for each model was examined. During 

heating season, similar unmet “premature setback” times occurred with all setbacks 

temperatures, just increasing distance from setpoint was reached up through a 55f setpoint in 

Fayetteville, 65f setpoint in Miami, and 45F setpoint in Minneapolis. Again matching the deep 

setback results, the maximum deviation from the setpoint was more driven by weather than 

building envelope, however the rate at which the setback temperature is reached is driven by 

building construction. Once again, in cooling season based on this model the ASHRAE 90.2 

setpoint of 78F is satisfactory for all climate/construction combinations explored. 

When specifically comparing Unmet Hours v. Construction during heating season, the 

trend in all climates was for increased total unmet hours as construction quality decreased. With 
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a higher thermal reactivity the buildings are more likely to experience a large enough drop in 

temperature over the shorter periods of time that add to the total unmet hours.  

5.3.2 – Energy and Comfort Discussion 

 

With the ASHRAE setpoints used, heating season weather and occupant behaviors are 

the driving factors in total energy consumption. It will be interesting so see what role humidity 

control will play during cooling seasons in reducing the energy savings hoped to be realized by 

a higher occupied setpoint. Insulation quality appears to have a greater effect on thermal 

stability than infiltration rate does. Additionally, because tighter/better insulated buildings are 

more thermally stable, they are less likely to have uncomfortable miss time, and the recovery 

times will be smaller with than a poorly insulated building with equally sized equipment. So, 

there will likely be a less significant relationship between smart themostat accuracy and energy 

savings as building envelope performance increases. Such relationships have already been 

identified in Nest white papers. However, the above statement does not consider the impact of 

humidity control during cooling season in tight buildings, a factor to be assessed in future 

research. 

During cooling season the ASHRAE occupied setpoint all the times appears sufficient. 

For heating season recovery times in all models are not substantial so setback can be set as far 

back as the occupant is comfortable walking in to down to 45F. Depending on the occupants’ 

occupation, previous activity prior to entering the house, and what their thermal sensitivity is 

their heating setback point will vary. Additionally a real house can and will have a different size 

furnace and time to temp which could impact the decision. Given there is no setback for cooling 

season, and short recovery times in heating season in all models conducted, setback points can 

be considered independently of actual ST accuracy in predicting occupancy.  
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With respect to the impact of climate on setpoints, the coldest weather modeled had a 

much larger impact than hottest weather modeled. Intuitively this makes sense since the 

temperature difference between indoor and outdoor conditions is much greater during winter 

than summer. When factoring construction type into the mix, old construction appears to benefit 

the most from winter setbacks due to a higher energy loss rate at all times making the “payback 

period” to reheat from setback v. maintaining the occupied temperature a shorter interval. 

6 – Conclusions and Recommendations for Future Work 

6.1 – Future Work 

While the above results and discussion provide an interesting starting point in exploring 

the value of smart thermostats as well as the issues that may be generated by them, there is 

still much left to be explored. The next step is to refine the modeling process and include either 

a Heat and Moisture Transfer (HAMT) or Effective Penetration Depth Model (EPDM) moisture 

transport/capacitance model to better understand role of humidity. Given the severity of the 

issues observed, as well as the supporting hand calculations and previous research by Zhong, 

Medina, and Mendes, this should prove to be an interesting path to follow. As noted in the 2017 

ASHRAE Fundamentals Handbook, moisture management is a prime concern of increasing 

importance as building envelopes become tighter. Proper vapor barriers and their presence (or 

absence) in a house’s construction may have a large impact on the latent load and indoor 

humidity conditions. Follow on research is important because moisture’s impact on comfort 

increases as cooling coil run times (and therefore moisture removal rates) decrease. Run times 

decrease when setpoints are based on dry bulb temperature control as ASHRAE compliant 

setpoints are used.   

 Another major question is what the changes in the results are when non-ASHRAE 90.2 

compliant occupied setpoints are used. It is likely a large number of users would find either the 

heating setpoint too low or the cooling setpoint too high. If that is the case it would be important 
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to know what added value a smart thermostat provides or issues that may arise in those 

conditions.  A simple test model conducted with the Fayetteville weather file and renovation 

construction profile reflected the impact non 90.2-compliant behaviors may have on energy and 

comfort. Instead of running with the “smart themostat” model used for all other runs during 

cooling season, the energy model operated at a fixed 72F cooling setpoint for the entire year. 

Humidity control was still engaged in “recovery weeks” to be consistent with other models. The 

result was a total annual cooling energy consumption of 4435.31KWh, compared to 

3221.92KWh of cooling energy used by the identical construction/weather file combination 

operating with the “smart themostat” setpoint schedule. The difference in consumption reflects a 

30% increase in cooling energy compared to a smart thermostat setpoint schedule, which at 

$0.15/KWh is over $180/year in added costs to the homeowner. Put differently, that could be the 

cost of the thermostat itself. Also of note in the sample test, indoor relative humidity was an 

average of 20% lower at all times in the 72F run compared to the smart thermostat model. This 

result appears to confirm the conclusion that lower setpoints increase equipment runtime, 

thereby increasing dehumidification and lowering indoor humidity levels.  

Next, the role of system sizing and its impact on time to temperature should be 

considered. We assumed properly sized equipment in each zone for each construction based 

on auto sizing in Openstudio on the design-day conditions in each model. It is possible that with 

oversized or undersized equipment opposing issues may occur. With undersized cooling 

equipment, energy costs will increase due to added run times, but it is possible humidity issues 

will be reduced due to those same increasing run times in cooling season. Conversely, 

oversized equipment could result in short cycling (impacting equipment performance and 

operational life), as well as increased humidity issues.  

Other factors which may impact both humidity issues and overall energy usage include 

the impact of the mechanical exhaust and latent heat scheduled from shower/bath use, 
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modeling natural ventilation through windows (not just infiltration through the building structure), 

multi zone systems, multi-story homes, and (although they are not yet prevalent in home HVAC 

installations) the impact of mechanically conditioned outdoor air ventilation and reduced building 

infiltration. Once more of these questions can be defensibly answered, real world modeling with 

full or scale-models may be appropriate. 

6.2 – Conclusions 

 An initial investigation into the value added and issues observed with ST’s was 

conducted in single family homes across three climate zones and three construction types using 

EnergyPlus models developed in the OpenStudio interface. Results suggest ST’s have the most 

potential for savings in cold heating season climates when used for deep setback energy 

savings with an observed minimum setback temperature of 45F. Given the short recovery time 

to an ASHRAE 90.2-compliant heating season occupied setpoint, comfort was not considered a 

major concern. It was also observed that using the ASHRAE cooling season setpoint caused no 

significant additional increase in space temperature regardless of occupancy status; thus, a ST 

is not recommended for users who are comfortable during the cooling season at this 

temperature. However, further work is still required to explore the potential for moisture issues 

observed while using ASHRAE setpoints during the cooling season. 

When considering a ST’s value from an energy and comfort perspective in comparison 

to programmable or single setpoint thermostats, model application yielded varying results when 

running the recommended ASHRAE 90.2 setpoint. No value was added in cooling mode at a 

78F setpoint for the conditions explored in this simulation. A regular single setpoint at 78F will 

suffice, and the building can be left as is assuming moisture issues are resolved independently. 

Conversely, possible benefits may be obtained in heating season with a 68F/60F ASHRAE 

setback schedule. However, this will be dependent on the occupant’s tolerance to in-home 
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temperatures below 68F for a period of time upon returning home. This is not anticipated to vary 

greatly with ST occupancy prediction accuracy. 

If the question is “is installing a smart thermostat the first thing to do from an energy 

consumption reduction perspective? No. Insulate the house, replace the HVAC equipment with 

more efficient, potentially smaller sized units, use ASHRAE setback points, and then use an ST 

for an incremental improvement upon that setup. If the question is what can be done that may 

save a little energy quickly, and insulating, new equipment, or living an ASHRAE setpoint is not 

an option then a Smart Thermostat may be a way to save some money/energy each month if 

the climate and building cooperate. The challenge is, as identified by Whitehouse in 2013, 

moving through a paradigm shift to focus on a dynamically operating residential structure. 

Depending on both user behaviors and external conditions, smart thermostats may be a good 

stepping stone along that path.  
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