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Abstract 

Global importance of forests is difficult to overestimate, given their role in oxygen production, 

ecological roles in nutrient cycling and supporting numerous living species, and economic value 

for industry and as recreational zones. Fitness of the forest-forming trees strongly depends on 

microbial communities associated with tree roots. In particular, fungi impact tree fitness: 

mycorrhizal species provide water and nutrients for the trees in exchange for C, endophytic fungi 

play key roles in host defense against pathogenic organisms, and saprotrophic fungi decompose 

dead organic matter and facilitate nutrient cycling. In addition, pathogenic fungal species 

strongly affect forest fitness. Despite their importance, fungal communities associated with forest 

trees are largely unknown because the typical morphological assay takes into consideration a 

scarce portion of fungal diversity: species that produce visible fruiting bodies at relatively 

frequent intervals. A more accurate assessment of fungal diversity in forests has become possible 

with the development of next-generation sequencing, where fungal species are being identified 

based on the presence of their DNA in the sample. In this work, DNA-metabarcoding was 

utilized to assess the diversity of fungi associated with roots of forest-forming trees within the 

families Fagaceae and Betulaceae (Europe), and Fagaceae, and Juglandaceae (North America). 

The data obtained provided unprecedented insight into hidden richness of root-associated fungi, 

which approached 1756 OTUs (a proxy for species) in the European dataset, and 2769 – in the 

North American dataset. Variation in fungal community composition was largely explained by 

geographical location (ca. 30%). However, the effect of host specificity (ca. 9-15% of variation) 

was significant as well. DNA-based data revealed strong positive and negative patters in fungal 

co-occurrence (e.g., a positive relationship was observed between Cenococcum geophilum and 

species of Russulaceae), which could indicate interactions between fungal species.  In addition to 



diversity assays, fungal responses to acid precipitation were quantified, and revealed strong 

declines in fungal richness and abundance, including ectomycorrhizal species. I conclude that 

compositional shifts in root-associated fungal communities could be particularly suitable for 

monitoring of forest ecosystems, given an optimal response time in fungi (not too slow as in 

wooded plants and not as high as in bacteria). 
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I. Introduction 

A. Forests and Fungi 

Globally, forests account for approximately 4 billion hectares (31%) of terrestrial land cover 

(Keenan et al., 2015) and contribute vital habitat for wildlife, resources for human industrial and 

leisure activities, food, shelter, and performance of other necessary ecosystem services such as 

carbon sequestration. These forests include those located in polar/boreal, temperate, subtropical, 

and tropical regions of the world. Among these classifications, subtropical and tropical forests 

have been in decline, polar/boreal forests showed no significant change between 1990 and 2015, 

and temperate forests were found to be increasing in extent (FAO, 2015). Temperate regions in 

the northern and southern hemispheres have a variety of forest types: coniferous, mixed 

coniferous/deciduous, and deciduous forests are broad categories of temperate forests found in 

these regions around the globe (Archibold, 2012). In temperate deciduous forests of the northern 

hemisphere, canopy-level members of these forest communities include species in the families 

Betulaceae, Fagaceae, and Juglandaceae among a number of other families. Eastern North 

American deciduous forests are populated by large numbers of oak species (Quercus) and 

American beech (Fagus grandifolia Ehrh.), both members of the Fagaceae (Braun, 1950). 

Another common group of forest trees in the Central Appalachian Mountains and Ozark 

Mountains of Eastern North America are species of hickory (Carya) of the family Juglandaceae 

(Pell and Bukenhofer, 1999). Across the Atlantic Ocean, on the mainland of the European 

continent, temperate deciduous forests consist largely of species related to those found in their 

North American counterparts. These forests often contain the canopy-forming species European 

beech (Fagus sylvatica L.) and European oak (Quercus robur L.) in the Fagaceae, as well as 

members of the Betulaceae, including silver birch (Betula pendula Roth) and the European 
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hornbeam (Carpinus betulus L.) (Svenning, 2002). These dominant tree-forming plant families 

form an important part of diverse temperate deciduous forest canopies, a diversity that is linked 

to significant increases in ecosystem services (Gamfelt et al., 2013).  

The importance of this diversity and habitat availability is not limited to above-ground forest 

communities. Below the leaf litter, in the rhizosphere, there occurs a rich diversity of microbial 

communities. One group of these belowground inhabitants consists of the root-associated fungi, 

consisting of taxa that make their home on and in the roots of host plants. Lifestyles of these 

fungi vary in functionality and include pathogens, commensals, symbionts, and saprotrophs. 

Pathogenic fungi have a negative impact on their host organisms while commensal fungi such as 

root and foliar endophytes have no apparent cost to their host plants. Saprotrophic fungi are 

essential as decomposers, providing carbon cycling for the ecosystem they inhabit (Hanson et al., 

2008). Among the approximately 390,000 terrestrial vascular plants (Kew, 2016), an estimated 

86% are associated with symbiotic mycorrhizal fungi in their root systems (Brundrett, 2009), 

including the dominant canopy-members of temperate deciduous forests in the northern 

hemisphere.  

Mycorrhizal associations provide increased access to soil water and nutrients for host plants in 

exchange for photosynthates. These associations include arbuscular, ectomycorrhizal, ericoid, 

and orchidaceous lifestyles. Arbuscular mycorrhizae exchange nutrients with host plants across 

the cell membrane of root cells that have been colonized by hyphae forming branched structures 

called arbuscules (Parniske, 2008), this is the most common mycorrhizal association in vascular 

plants (Brundrett, 2009). Ectomycorrhizae form associations with plant roots by exchanging 

nutrients in the intercellular spaces of roots where they form a hyphal network called a Hartig net 

(Blasius et al., 1986), which anchors the outer sheath of hyphal cells to the plant root. Ericoid 
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mycorrhizae, so named due to their close association with members of the family Ericaceae, 

develop coils of intracellular hyphal cells in the epidermis of plant roots that, like arbuscular 

mycorrhizae, do not penetrate the plant cell membrane but provide a location for nutrient 

exchange (Read, 1996). Mycorrhizal associations involving orchids include a wide variety of 

fungi with different nutritional modes that are found in and on orchid roots, providing essential 

nutrition for the germination of orchid seeds (via mycoheterotrophy of hyphal cells) as well as 

increased access to nutrients in the nearby environment of the orchid (Rasmussen, 2002). 

Identification and characterization of fungi associated with roots has changed over time as a 

wider variety of techniques have become available. Morphological assays involving the 

examination of colonized roots, isolation and culturing of fungi on media, and identification of 

species from fruiting bodies collected on and around suspected host plants represent the majority 

of efforts to describe root-associated fungal communities. In recent decades, the continuing 

development of molecular tools has allowed for the increased identification of fungal taxa using 

DNA sequence information in place of traditional morphological assessments, opening up the 

black box of uncultured/unknown fungi in environmental samples. 

B. Next Generation Sequencing 

Sanger sequencing (chain termination sequencing) of the Internal Transcribed Spacer (ITS) 

region of the fungal ribosomal RNA gene (Scooch et al., 2012) has made possible the DNA-

based identification of fungi. This particular locus provides accurate identification for most 

fungal taxa, provided there are adequate correctly-identified and curated reference sequences in 

available DNA databases, but Sanger sequencing is still limited by the need for isolated DNA 

from a single organism for sequencing. Most recently it has become possible to assess fungal 
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communities in environmental samples containing multiple species using Next Generation 

Sequencing (NGS) techniques.  

As DNA sequencing technology has changed, so too has our capacity to ask questions about the 

communities of organisms we can sample. NGS technologies offer an opportunity to examine 

communities of fungi that are present in an environmental sample without necessarily being able 

to isolate and grow them on media or to observe their morphology for traditional taxonomic 

identification (Shokralla et al., 2012). This has led to an increase in our understanding of the 

diversity of fungi in aerial (Núñez et al., 2017), aquatic (Zinger et al., 2012), and soil samples 

(Buée et al., 2009). Several platforms are available for high-throughput sequencing of 

environmental samples. Notable examples of NGS platforms include Roche 454 

(pyrosequencing), Illumina MiSeq (sequencing by synthesis), and Ion Torrent Personal Genome 

Machine (PGM) (semiconductor sequencing). Liu et al. (2012) conducted a comparative analysis 

of these and other NGS technologies in addition to new Third Generation sequencing 

technologies. A cost to output quality assessment for these platforms shows a variety of trade-

offs between selected technologies with no clear winner in terms of both cost effectiveness and 

quality of data (Liu et al., 2012). Roche 454 offers read lengths up to 700 bp and high accuracy 

while being more expensive than other platforms. Illumina MiSeq provides paired-end 

sequencing of reads which provides read lengths up to 600 bp (300 x 2) depending on the kit 

purchased for library preparation. Ion Torrent PGM provides high quality reads up to 400 bp in 

length, and there is some additional flexibility in library preparation costs for sequencing when 

compared to the proprietary consumables required for the Illumina platform.  

Biodiversity studies have benefitted greatly from the use of NGS sequencing by allowing the 

rapid assessment of organismal diversity from a variety of environmental samples. NGS 
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technologies are a set of useful tools providing data on communities of organisms inhabiting a 

variety of plants (Sun and Guo, 2012; Kemler et al., 2013) and animals (Yoon et al., 2015), soils 

(Tedersoo et al., 2014), and waterways (Tan et al., 2015). These NGS tools provide information 

useful for a variety of land, animal, and forest management challenges, including potential 

biological controls of plant pathogens by endophytic fungi (Berg et al., 2008), and the evaluation 

of the health and genetic diversity of animal populations (Waits and Paetkau, 2005). Community 

analysis of NGS data has also recently been used to assess the impact of more pressing 

anthropogenic factors such as climate change (Geml et al., 2016) and environmental pollution 

(Yergeau et al., 2012) on microorganisms.  
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C. Acid Deposition & Ecosystems 

 

Figure 2. The cycle of anthropogenic acid deposition from industrial source air pollution to wet 

and dry deposition (Source: https://environmental-chemistry.wikispaces.com/Acid+Deposition). 
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Environmental pollution is a concern for its effect not only on the wellbeing of humans, but also 

due to the impact on ecosystems and the species of wildlife that inhabit them. One area of 

concern in human caused environmental pollution is acid deposition (Figure 1). This can take the 

form of either dry or wet deposition depending on whether the pollution consists of particulates 

spread on the wind and fog or acidic compounds falling to the surface in precipitation, thus 

linking air pollution to terrestrial and aquatic ecosystems. The first reports of acid deposition in 

North America come from data collected in an experimental forest in New Hampshire in the 

1960s (Likens et al., 1972). The composition of wet and dry acid deposition consists of gasses 

and particulates containing nitrogen oxides (NOx), ammonia (NH3), and sulfur dioxide (SO2) 

(Driscoll et al., 2001). In the United States, controls on emissions of SO2 began in the 1970s with 

amendments to the Clean Air Act, and continued in 1990 with passage of portions of the Acid 

Deposition Control Program which called for further reduction in SO2 emissions and the control 

of NOx emissions from utility services (Driscoll et al., 2001). This has had a positive impact on 

acidification, but nitrogen deposition remains an active area of interest for those concerned about 

the effects of acid rain (Dentener et al., 2006). Acidity in precipitation can be measured using the 

pH scale, which is the negative logarithm of the concentration of hydrogen ions in a solution. 

The scale ranges from 0 to 14, with 7 being neutral and lower numbers corresponding to 

logarithmically higher concentrations of hydrogen ions. On the acidic side of the scale, a pH 

measurement of 6 contains 1 µeq/l of H+ ions, a pH measurement of 5 contains 10 µeq/l, a 

measurement of 4 contains 100 µeq/l and so on (Likens et al., 1979). In wet deposition, or acid 

rain as it is otherwise known, acidic compounds are present in precipitation and lower the pH of 

the terrestrial and aquatic systems where they are deposited, thus causing a host of cascading 

effects (Likens and Bormann, 1974).  
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Various ecosystems have differential responses to acid rain. In freshwater aquatic ecosystems, 

acid rain has been linked to the reduction or disappearance of fish populations (Haines and 

Baker, 1986), increases in N concentrations and disruption of nutrients for animal and plant 

communities leading to eutrophication (Lepori and Keck, 2012), along with richness reduction 

(Baldigo et al., 2009) and shifts in communities of aquatic invertebrates based on acidity (Lepori 

et al., 2003). In recent years, pollution abatement strategies have led to reduction in aquatic 

ecosystem acidification and an improvement in the chemical quality of surface waters in North 

America and Europe (Garmo et al., 2014). Terrestrial ecosystems have also been negatively 

impacted by wet acid deposition. Grasslands have experienced loss of species (Clark and Tilman, 

2008), changes in community composition (Duprè et al., 2010), and reduction of diversity 

(Stevens et al., 2010) due in large part to nitrogen deposition and acidification caused by 

nitrogen deposition. Recent efforts in Europe to reduce environmental pollution of nitrogen 

compounds from emissions or fertilizers have led to evidence of grassland biodiversity recovery 

(Storkey et al., 2015). Forest responses to acid deposition are complex and vary depending on the 

plant species involved and the chemistry of the underlying soil and bedrock. In the Hubbard 

Brook Experimental Forest of New Hampshire, a mixture of deciduous and coniferous trees has 

been found to respond to acidification with reduction in overall forest biomass, likely due to 

changes in available soil nutrients (Likens et al., 1996). In the Fernow Experimental Forest of 

West Virginia, all measured growth metrics of Japanese larch have shown reduced growth in 

response to ammonium sulfate treatment, while some deciduous species experienced early 

growth increases and later slowed growth due to acidification treatment over a 14-year period 

(DeWalle et al., 2006). In Maine, 10 years of ammonium sulfate treatment showed an increase in 

growth of sugar maple, but no growth response by red spruce (Elvir et al., 2003). Experimental 
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addition of ammonium nitrate over a 9-year period to a pine forest and deciduous broadleaf 

forest in Massachusetts also resulted in decreased growth in pines and some increased growth in 

the hardwood deciduous broadleaf trees (Magill et al., 2000). These growth trends are presumed 

to be related to changes in soil chemistry and exchangeable cations in forest soils caused by 

artificial acidification, and these changes appear to result in differential responses by deciduous 

and coniferous species (Magill et al., 2000; Elvir et al., 2003; De Walle et al., 2006). Aquatic and 

terrestrial ecosystems respond in a variety of ways to wet deposition, and among terrestrial 

ecosystems the visible above-ground changes appear to be related to changes in the soil.  

Soil chemistry and soil microbial communities change and shift in response to artificial 

acidification. Acid rain causes increased leeching of cations out of soils, which is mediated at 

least partially in locales where soil formation from underlying bedrock replaces lost cations 

(Johnson et al., 1990). In addition to leeching of Ca++, Mn++, and other important ions in the soil 

(Adams et al., 2007), nitrogen saturation and Al3+ increases in soil are suspected of causing 

changes in aboveground communities (De Walle et al., 2006) and soil microbial communities 

(Adams and Angradi 1996; Pennanen et al., 1998; DeForest et al., 2004). Our understanding of 

acidification effects on soil microbes is growing but remains limited. Shifting microbial 

communities in forest soils could play a role in the responses of plants to acidification, but little 

is known about the impact of acid rain on root-associated fungal community structure and 

function. A comprehensive understanding of the effect of acidification on soil microbial 

communities in general—and root-associated fungi in particular—would be of great benefit to 

our understanding of the effects of acidification on forest ecosystems as a whole.  
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D. Objectives 

Root-associated Fungal Communities in Two European Deciduous Forests 

In this first research chapter, the communities of fungi associated with the roots of members of 

the families Fagaceae and Betulaceae (Fagus sylvatica and Quercus robur, Betula pendula and 

Carpinus betulus, respectively) in a temperate deciduous forest located in Wassenaar, South 

Holland, Netherlands and another sampling site near Baden-Württemberg, Southwest Germany 

(Figure 2) are described. In addition to describing community richness and diversity, the 

distribution of taxa on the four selected host species, the level of specificity in the relationship of 

fungus to each host, and the potential fungal-fungal interactions at the root using statistical 

analysis to determine if fungal presence/absence patterns are related to those of other fungi are 

discussed.  



11 

 

 

Figure 3. Location of field sampling sites in the Netherlands (N) and Germany (G). Image source 

(By Alexrk2 - Own workData from/Données issues de http://naturalearthdata.com/, Scale: 1:10 

Mio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9701652) 

  

N 

G 



12 

 

Root-associated Fungal Communities in Deciduous Forests of Eastern North America 

This chapter details the communities of fungi associated with roots of members of the families 

Fagaceae (Fagus grandifolia and Quercus rubra L.) and Juglandaceae (Carya ovata [Mill.] K. 

Koch) from roots of host trees sampled at sites in Arkansas, Virginia, and West Virginia (Figure 

3). Fungal community taxonomy, species richness, distribution across different host species and 

locales, and the level of host specificity are described. In addition, this chapter describes the root-

associated fungal community found on Carya ovata, which represents, to the best of my 

knowledge, the first attempt to characterize of the root-associated communities of this host tree 

species.  
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Figure 4. Locations of field sites in North America include four sites in AR (Pea Ridge National 

Military Park, Ozark National Forest, Lake Wilson Park, and Lost Valley Park), one site in WV, 

and one site in VA. Image adapted from original source: By Theshibboleth - own work, based on 

Electoral map.svg, inspired by BlankMap-World.png, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=941237 
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Effects of Acid Deposition on Root-associated Fungal Communities 

The final research chapter in this dissertation examines the effect of artificial acid deposition 

treatments in the Fernow Experimental Forest near Parsons, West Virginia (Figure 4) on 

communities of fungi associated with the roots of Fagus grandifolia, Quercus alba L., and Q. 

rubra. In this chapter, the impact of anthropogenic activities resulting in acidification of forested 

areas is quantified with respect to root-associated fungal communities. The influence of a 

treatment with ammonium sulfate fertilizer on community composition (abundance and 

richness), taxonomy, and functional guilds across different host tree species are assessed.  
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Figure 5. Map of the watershed boundaries in the Fernow Experimental Forest near the town of 

Parsons in West Virginia. WS3 is treated with ammonium sulfate fertilizer tri-annually. Adjacent 

watersheds contain comparable vegetation but are not treated.  
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A. Abstract 

 

Temperate mixed deciduous forests are economically and ecologically important ecosystems. 

Ectomycorrhizal fungi and other root-associated fungi play an important role in the maintenance 

of these ecosystems. Knowledge of the diversity and distribution of fungi associated with 

specific tree species in these forests is incomplete. The focus of this research was to assess 

diversity, distribution, host specificity, and species co-occurrence patterns of root-associated 

fungi to better understand the ecology of underground microbial communities of the dominant 

tree species Fagus sylvatica, Quercus robur, Betula pendula, and Carpinus betulus in two 

European forests.   DNA from root-tips of host trees was used to identify fungi using ITS meta-

barcoding on the Ion Torrent NGS platform. This resulted in 1756 OTUs across 40 sampled 

trees. Mean richness was lowest for Q. robur, and highest for C. betulus. Root-associated fungi 

were found to represent more than 50 taxonomic orders. The distribution of root-associated fungi 

was largely driven by locality, with host family and host genus also playing a significant role. 
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OTUs were distributed across different hosts unequally, with 27.3% of all OTUs found only on 

C. betulus. Fifty-six point five percent of all fungal OTUs occurred on only one host tree species, 

while 63.4% were restricted to host families, suggesting some level of host specificity. Fungal 

co-occurrence analyses of all identified OTUs, saprotrophic OTUs, and ectomycorrhizal OTUs 

showed that within and among ecological functional groups, there are positive and negative 

fungal-fungal interactions. 

Keywords: meta-barcoding, fungal diversity, co-occurrence, host specificity 
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B. Introduction 

 

Temperate forests make up one of the most important biomes on Earth, covering an area of more 

than 570 million hectares (FAO & JRC 2012). In the European Union, approximately 42% of 

land coverage consists of forests and woodlands, and these areas are continuously increasing due 

to on-going forestation programs (www.ec.europa.eu). The importance of forests is difficult to 

overestimate, given their key roles in oxygen production and air filtering, as habitats for 

numerous species, their importance for watershed protection, prevention of soil erosion, and as a 

source of wood for various industries. Forests are of particular importance for the global carbon 

(C) budget; according to FAO estimations, in 2005 C content in European forests approached 

nearly 180 Gt, including 110 Gt stored in forest soils (ftp.fao.org). Due to their importance as a C 

sink, forests play key roles in mitigating climate change (Pan et al., 2011). 

Fungi are also an important and diverse component of forest ecosystems. Saprotrophic fungi 

regulate forest C cycling through decomposition, and some species are the only organisms able 

to decompose lignin (de Boer et al., 2005). Mycorrhizal fungi mediate belowground allocation of 

C (Clemmensen et al., 2013) by accessing C compounds from roots of the forest trees in 

exchange for soil-derived nutrients. Many woody plants in temperate forests form obligate 

symbioses with ectomycorrhizal (ECM) fungi that are essential for the development of a large 

proportion of woody plants. Across Western Europe, dominant tree species of mixed deciduous 

forests such as Fagus sylvatica L., Quercus robur L., Betula pendula Roth, and Carpinus betulus 

L. are involved in biotic interactions with ECM fungi. 

Although the importance of ECM fungi for establishment of forests is well known, our 

knowledge of their diversity remains limited. Particularly little is known of the factors that affect 

diversity and distribution of ECM fungi. It is generally assumed that ECM assemblages reflect 
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soil nutrient availability and water content, soil texture and forest type, as well as factors that 

impact the above-mentioned parameters, such as geographic zone or forest management 

activities (Wubet et al., 2012). However, there is no clear understanding regarding the relative 

impact of these factors. For example, the impact of host specificity has been estimated from 

being almost negligible (Horton & Bruns 1998; Kennedy et al., 2003; Tedersoo et al., 2008; 

Richard et al., 2009; Kennedy et al., 2012) to strongly important (Smith et al., 2009). Given the 

high variation in biology of ECM fungi, it is difficult to provide any generalizations regarding 

the extent of host specificity; however, there is evidence for particular ECM genera to grow in 

symbiosis with representatives of specific taxonomic families or genera of trees (Molina et al., 

1992; Newton and Haigh 1998; Massicotte et al., 1999). Assessments of ECM fungal diversity 

across various habitats, including different forest types or edaphic gradients, became possible 

with the recent advancement of next-generation sequencing techniques. In addition, deep 

sequencing data provided a potential for unraveling fungal-fungal interactions using species co-

occurrence data to reveal possible examples of cooperation and competition in fungi 

(Ovaskainen et al., 2013). 

DNA-based studies have dramatically increased our knowledge of fungal diversity and species 

richness in the dominant ECM genera. In European mixed forests, however, the majority of 

studies have been carried out on fungal communities isolated from soil. To our knowledge, no 

studies have focused on root material gathered directly from the ECM root-tips of trees in 

European forests, and this may limit our ability to build conclusions with regards to ECM 

diversity, host-association, and community structure. In the present study we collected ECM 

colonized root-tips of four tree species growing in two mixed deciduous forests, the first located 

in the Netherlands and the second in Germany. Our objectives were to address the following 
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research questions: (1) What is the diversity of fungi inhabiting roots of Fagus sylvatica, 

Quercus robur, Betula pendula, and Carpinus betulus in temperate European mixed deciduous 

forests? (2) What is the extent of host-specificity in fungal community compositions; if apparent, 

does the host-specificity occur in spatially disparate forests? (3) Are there any patterns in fungal 

species co-occurrence indicative of fungal-fungal interactions (cooperation or competition)? 

C. Methods 

 

Study sites and root sampling 

Root-tip samples were taken from host tree taxa at collecting sites in the Netherlands and 

Germany in June and July 2015, respectively. The Netherlands sampling site consisted of a 

mixed deciduous forest area in Wassenaar, South Holland (Lat. 52° 7'44.70"N, Lon. 

4°23'19.63"E) dominated by Fagus sylvatica L., Quercus robur L., and Betula pendula Roth. 

The sampling site in the Netherlands was ca. 314,453 m2 in total extent. The German sampling 

site (Lat. 48°54'44.77"N, Lon. 8°28'43.53"E) consisted of a mixed deciduous forest area in 

Baden-Württemberg, Southwest Germany. Prominent deciduous tree species at this site included 

the same taxa represented in the Netherlands sample site. The sampling site in Germany was 

approximately 809,698 m2. The linear distance between sample sites was 460.5 km. 

We assessed fungal communities associated with roots of four tree species belonging to two 

taxonomic families. These species were: Fagus sylvatica and Quercus robur in the Fagaceae, 

and Betula pendula and Carpinus betulus L. in the Betulaceae. Five replicates of each host tree 

were sampled at each site, resulting in a total of 20 trees sampled per site. Trees were 

opportunistically sampled on both sites at a distance of at least 10 m from one another to avoid 

sampling the same genet repeatedly and minimize same-community resampling (Dahlberg and 

http://www.mycologia.org/content/103/4/722.full#ref-11
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Stenlid 1990, 1994; Bonello et al., 1998; Gherbi et al., 1999; Zhou et al., 1999, 2001; Fiore-

Donno and Martin 2001; Kretzer et al., 2004).  

The upper soil and litter layers were removed prior to root sampling, and roots were visually 

inspected to verify that they were emerging from the tree of interest. Sampling was carried out at 

90° increments around the base of each sampled tree, and collected roots were combined and 

placed in 15 ml screw-top tubes containing 7 ml of 2% CTAB solution. Sample tubes were kept 

frozen in -20°C until processing for DNA extraction in the laboratory within two weeks of 

collection. Root samples were washed with distilled water to remove soil and organic 

particulates. The material was then examined under a dissecting scope and root-tips were 

carefully collected from each sample with heat sterilized forceps. Collected root-tips were placed 

in 2 ml microcentrifuge tubes and lyophilized. Root material was then lysed with sterile 3 mm 

glass beads in a Tissue Lyser (QIAGENTM), and thoroughly mixed prior to DNA extraction. 

DNA extraction, PCR and sequencing 

For each of the samples, two independent DNA extractions were carried out using a total of ca. 

50 mg of homogenized root tissue. DNA was extracted using a Macherey-Nagel NucleoSpin 

Plant II DNA extraction kit, following the manufacturer’s protocol for PL1. Extracted DNA was 

eluted twice in 30 µl of PE buffer solution. Prior to PCR, replicate DNA extractions for each 

sample were pooled together. Subsequent 40 µl PCR reactions were carried out as in Geml et al. 

(2014) and contained 1 µl of DNA template, 4 µl of 10X buffer, 1.5 µl of dNTP solution (2.5 

mM), 1.5 µl each of forward and reverse primers (10 mM), 0.5 µl BSA (10 mg/ml), 4 µl MgCl2 

(50 mM), 0.4 µl BIOTAQ polymerase (5 U/µl), and 25.6 µl of MQ water. Primers used were 

fITS7 (Ihrmark et al., 2012) and ITS4 (White et al., 1990) labeled with sample-specific 

Multiplex Identification DNA (MID) tags (Table S1) to amplify ca. 250-450 bp of the ITS2 

http://www.mycologia.org/content/103/4/722.full#ref-11
http://www.mycologia.org/content/103/4/722.full#ref-12
http://www.mycologia.org/content/103/4/722.full#ref-6
http://www.mycologia.org/content/103/4/722.full#ref-20
http://www.mycologia.org/content/103/4/722.full#ref-49
http://www.mycologia.org/content/103/4/722.full#ref-18
http://www.mycologia.org/content/103/4/722.full#ref-18
http://www.mycologia.org/content/103/4/722.full#ref-31
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region (Toju et al., 2012). PCR reactions were carried out under the following conditions: one 

cycle of 95°C for 5 min, followed by 25 cycles of 95°C for 20 sec, 54°C for 30 sec, and 72°C for 

1.5 min, ending in a terminal elongation at 72°C for 7 min. Three replicate PCR reactions and a 

negative control consisting of MQ water instead of template were carried out for each sample. 

PCR products were verified via agarose gel electrophoresis, and the resultant products were 

pooled for each sample.  

Pooled PCR products were assessed for DNA concentration and amplicon size distribution using 

a Bioanalyzer 2100 (Agilent Technologies Inc., Santa Clara, CA, USA). Short fragments and 

reagents were removed using 0.9X Ampure® beads (Beckman-Coulter, Beverly, MA, USA). 

Equimolar concentrations of PCR product were achieved by dilution with MQ water, and all 

products were pooled for subsequent sequencing. Emulsion PCR of 250 µl of the pooled samples 

was carried out in accordance with the protocol for the Ion PGM™ 200Xpress™ Template Kit. 

The resultant library was sequenced using the Ion 318™ Chip on an Ion Torrent Personal 

Genome Machine (PGM) (Life Technologies, Guilford, CT, USA), at the University of 

Arkansas. 

Bioinformatics 

Ion Torrent sequencing resulted in 9,396,405 total raw sequence reads, with a modal read length 

of 276 bp and a median length of 199 bp. Raw sequencing data were cleaned-up  using the online 

platform Galaxy (https://main.g2.bx.psu.edu/root), in which the sequences were sorted according 

to samples, and adapters (identification tags) were removed. Poor-quality ends of the sequences 

were trimmed off based on 0.02 error probability limit in Geneious Pro 5.6.1 (BioMatters, New 

Zealand). Subsequently, sequences were filtered using USEARCH v.8.0 (Edgar, 2010) based on 

the following settings: all sequences were truncated to the length of 200 bp and sequences with 

https://main.g2.bx.psu.edu/root
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expected error > 1 were discarded. The resulting high-quality sequences were grouped into 4,637 

operational taxonomic units (OTUs) by UPARSE algorithm in USEARCH at 97% sequence 

similarity, as in other fungal metabarcoding studies (e.g., Bjorbækmo et al., 2010; Geml et al., 

2010; Bellemain et al., 2013; Tedersoo et al., 2014). Simultaneously, 4,658 putative chimeric 

sequences were excluded. We assigned sequences to taxonomic groups based on pairwise 

similarity searches against the curated UNITE fungal ITS sequence database containing 

identified fungal sequences with assignments to Species Hypothesis groups (Kõljalg et al., 

2013). After discarding global singletons and OTUs that did not have at least 80% similarity 

(across at least 100 bp) to any fungal sequence in UNITE, the final dataset contained 1,756 

OTUs. Representative sequences of fungal OTUs were submitted to GenBank with the accession 

numbers KY413820-KY415572. 

Statistical analyses 

We quantified the depth of sequencing coverage by rarefaction curve and coverage estimators. 

Rarefaction analysis, Good’s coverage, Shannon’s (H) and Simpson’s diversity indexes, OTU 

richness (S) and evenness (H/ln S) was carried out and/or calculated using the “rarefy” function 

in the Vegan package (Oksanen et al., 2012) in R software for statistical computing (R Core team 

2013). The distribution of fungal OTUs among the four host tree species was visualized using 

Venny 2.1 (Oliveros 2015) to determine the extent of OTUs associated with each host species. 

We also assessed the number of OTUs for specific ecological groups found on/in the root tissue 

of each host tree, using the dataset of Tedersoo et al. (2014) for ecological guild assignment. 

Criteria for ecological guild assignment consisted of taxonomic identification to the species level 

where possible or to genus where ecological role was consistent for that taxon level. The 

difference in fungal community compositions of tested host trees was visualized using Non-
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metric Multidimensional Scaling (NMS) in PC-ORD v. 5.32 (McCune and Grace 2002) using 

two different approaches. Initially, we compared the data for both the German and the 

Netherlands sampling sites, and then analyzed fungal community compositions separately for 

German and Netherlands sample sites. The latter allowed us to visualize the extent of host 

fidelity in the communities of fungi associated with different tree species in each site. The 

primary matrix consisted of sampled trees by OTU presence-absence data (i.e., fungal 

community composition). Following recommendations of other fungal metabarcoding studies 

(e.g., Lindahl et al., 2013; Morgado et al., 2016), presence was set as ≥3 sequences on a per 

sample basis. The secondary matrix consisted of sampled trees by number of OTUs belonging to 

specific taxa (richness of fungal taxa). The dataset was subjected to 500 iterations per run using 

the Sørensen similarity (Bray-Curtis index) and a random starting number. To quantify the extent 

of host specificity of fungal community compositions, we carried out a permutation-based 

nonparametric MANOVA (Anderson 2001), also in PC-ORD. This software was also used to 

identify fungal species characteristic for a particular tree using indicator species analysis 

(Dufrêne and Legendre 1997). Fungal species co-occurrence was analyzed in R using the co-

occur package for 86 OTUs identified to species. OTUs were chosen based on 97% or greater 

sequence identity to known sequences in the UNITE database and occurrence on at least three 

sampled trees. Where OTUs were defined as conspecific, they were collapsed if the species 

hypothesis was identical and retained if the species hypothesis was different. This analysis aimed 

at revealing possible examples of positive and negative fungal-fungal interactions (Ovaskainen et 

al., 2010; Ottosson et al., 2014).  
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D. Results 

 

Diversity of root-associated fungi 

The following values were obtained for Good’s coverage: Fagus sylvatica (99.7±0.1%), Quercus 

robur (99.7±0.1%), Betula pendula (99.7±0.1%), and Carpinus betulus (99.7±0.2%). These 

values indicated equally deep OTU recovery across the treatments (Fig S1). Rarefaction analysis 

for all samples approached a plateau, suggesting that almost all the fungal species in the sampled 

plots were sequenced (Fig S2). 

DNA-metabarcoding of fungal communities revealed a high diversity of fungi associated with 

roots of four model tree species. Mean fungal OTU richness obtained per host tree was lowest in 

Fagus silvatica (136±45 OTUs) and highest in Carpinus betulus (216±67OTUs), although 

richness of fungi associated with model trees was not significantly different among trees within 

each locality (Fig 1). We observed fungal OTUs belonging to more than 50 taxonomic orders 

(Fig 2); however, of these, more than 35 orders were characterized by very low OTU richness 

(fewer than 10 OTUs). On the ordinal level, diversity ranking was dominated by species in the 

Agaricales for all model trees; however, subsequent orders with highest richness varied 

depending on the tree species. For example, the Helotiales and Mortierellales had high richness 

in fungal communities associated with Betula pendula, while in C. betulus we observed high 

OTU richness in the Hypocreales and Chaetothyriales; in Querqus robur, the Russulales 

followed the Agaricales in the diversity ranking. Similar variation was observed on the level of 

taxonomic genera (Fig 3); for example, in B. pendula, the highest OTU richness was found in the 

ascomycete dark septate endophytic (DSE) genus Meliniomyces (16 OTUs) and another DSE 

ascomycete, Cladophialophora, was also present (3 OTUs), the basidiomycete ECM genus 

Lactarius (8 OTUs) and the zygomycete Umbelopsis (4 OTUs).  In Q. robur, we observed high 
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richness in the ECM genera Lactarius (11 OTUs), Russula (9 OTUs) and Cortinarius (9 OTUs). 

Interestingly, we observed a number of OTUs in the genus Mycena which is generally 

considered saprotrophic -- 4 OTUs in the roots of B. pendula and 4 OTUs associated with Q. 

robur.  

  

  

Figure 1. Community richness and diversity of fungal OTUs associated with model tree species 

in sample sites. No significant differences in mean richness or diversity were found on 

conspecific trees between sites.  
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Figure 2. Diversity of root-associated fungi. Numbers of OTUs in fungal orders found on root 

material from four tree species in European mixed deciduous forests are indicated in each 

instance. 
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Figure 3. Richness of OTUs in the top 29 fungal genera occurring on four model tree species in 

two European forests. Genera with three or more OTUs on one or more tree species are included. 

The ECM genus Leccinum was found only on B. pendula among the sample sites, while the 

saprotrophic Psathyrella and entomopathogenic Metarhizium appeared in Carpinus betulus 

samples but no others. Mycelial exploration types as defined in Agerer (2001).   
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Factors affecting communities of root-associated fungi 

Variation in community composition of root-associated fungi of the four model trees was 

depicted on a NMDS plot (Fig 4). Ordination analysis resulted in a 3-dimensional solution with a 

final stress of 12.08, final instability of 0, and axis 1: r2=0.550, axis 2: r2=0.188, axis 3: r2=0.122. 

Ordination analysis revealed the strong effect of forest location (Germany versus Netherlands) 

on the communities of root-associated fungi. According to MANOVA, forest location explained 

21.38% of the variation in fungal community compositions (F=6.44, P<0.0002). However, as 

revealed by MANOVA, both host tree family and host tree species had significant effects on 

fungal community composition: tree family explained 4.8% of the variation in fungal 

communities (F=2.01; P=0.007), and 5.52 % of this variation was explained by the tree species 

(F=1.58; P=0.002).  
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Figure 4. Two-dimensional NMDS ordination of fungal communities associated with trees at 

sample sites in Netherlands and Germany. Communities of root-associated fungi appear 

distinctly separate by sample site.  

 

 A second set of NMS ordinations conducted for each site independently, revealed the significant 

(r≥0.5) distribution of fungal taxa among host species (Fig 5, Table S4). Significant fungal taxa 

in Germany included OTUs in 22 orders and 48 genera, while in the Netherlands the significant 

fungal taxa were in 10 orders and 9 genera. Permutation-based nonparametric MANOVA for 

Germany showed that host tree species were responsible for ca. 15% of the variation in fungal 

assemblages, while in Germany host trees were responsible for ca. 9.13% of variation. The 

number of significant taxa in Germany were much larger than that found in the Netherlands.  
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Figure 5. Non-metric Multidimensional Scale ordination of sampled trees by fungal OTUs 

present. Vectors represent the distribution of fungal taxa (orders and genera) in ordination space. 

Fungal taxa in Germany are more strongly correlated with Carpinus betulus than fungal taxa in 

the Netherlands.  

 

Host specificity of fungi 

Fungal OTUs associated with the roots of the four host tree species were assessed for the 

possibility of host-specific associations using a number of analyses. Venn diagram of the OTU 

distribution across the four tree species (Fig 6) showed that ca. 15% of the OTUs were present in 

all of the host trees. Proportions of the OTUs specific for the host trees varied largely, from a few 

percent in Quercus robur and Fagus sylvatica, to almost 30% of the OTUs specific for Carpinus 

betulus (Fig 6).  
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.  

 

Figure 6. Four-way Venn diagram of OTU distribution across four host species in two families. 

Approximately half (46.3%) of all fungal OTUs were restricted to Betulaceae, while 17.1% 

occurred only on Fagaceae.  

 

Indicator species analysis was conducted to assess the potential for fungal OTUs to be occurring 

on hosts with a frequency greater than that expected by chance (Table S2). Indicator species 

analysis revealed 27 OTUs characteristic for Betula pendula, among them a few were identified 

to species of DSE - Phialocephala fortinii C.J.K. Wang & H.E. Wilcox, and Meliniomyces 

variabilis Hambl. & Sigler , and a yeast frequently isolated from nutrient rich soils - 

Cryptococcus podzolicus Babeva & Reshetova (Mestre and Fontenla 2014). Among 19 

indicators revealed for C. betulus, we observed Clathrus archeri (Berk.) Dring – a species that is 
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generally considered saprotrophic, and the plant parasite Hyphodontia radula (Pers.) Langer & 

Vesterh. Two OTUs indicated for Q. robur included ectomycorrhizal Russula nigricans Fr., and 

among 5 OTUs characteristic for F. sylvatica, we observed Lopadostoma fagi Jaklitsch, J. Fourn. 

& Voglmayr, which occurs frequently on the bark of the trees. The complete list of the indicator 

OTUs and their taxonomic affinities is presented in Table S5.   

Fungal co-occurrence patterns 

Eighty-six fungal OTUs identified to the species level were selected for pairwise species co-

occurrence test. Of the 3655 possible species pair combinations, 1261 were omitted due to 

expected co-occurrence <1. The remaining 71 OTUs (2394 pair combinations) revealed 181 

positive and 42 negative correlations between the fungal species (Fig 7). The maximum number 

of positive correlations with other fungi (23) was revealed for Hypoxylon fragiforme (Pers.) J. 

Kickx f., an ascomycete species frequently colonizing dead wood. Another species of Hypoxylon  

(H. rubiginosum (Pers.) Fr.) was also characterized by a high number of positive correlations 

(17), implying a relation between the fungal genus and co-occurrence with other fungal species. 

However, we did not observe any similarity in the correlations of four OTUs belonging to the 

genus Trichoderma: one of the OTUs identified as T. pubescens Bisset formed 3 negative co-

occurrence patterns, while another OTU identified as the same species, showed 12 positive 

correlations with other fungi in our dataset.  The species characterized by the maximum negative 

co-occurrence instances was Luellia cystidiata Hauerslev, a corticoid basidiomycete species, 

although another species in the same genus (L. recondita (H.S. Jacks.) K.H. Larss. & Hjortstam) 

showed 19 positive and 4 negative correlations. There was no significant difference in positive 

and negative correlations shown by ECM, DSE and saprotrophic ecological groups (not shown). 

Among the 18 ECM species with significant interactions there were 18 positive interactions and 
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one negative interaction. Interestingly, the negative interaction was found between the common 

ectomycorrhizal ascomycete Cenococcum geophilum Fr. and a hypogeous ascomycete, 

Hydnotrya tulasnei (Berk.) Berk. & Broome. Scleroderma citrinum Pers. and S. areolatum 

Ehrenb. appear to be positively associated, as well as several Cortinarius spp. and Russula spp. 

(Figure S3). Among 35 identified saprotrophic fungal species retained in analysis (having 

significant interactions) there were 93 positive interactions and 16 negative interactions (Figure 

S4). 
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Figure 7. Species co-occurrence matrix of 86 fungal species found across 40 sampled trees. Out 

of 3655 species pair combinations, 1261 pairs (34.5 %) were removed from the analysis because 

expected co-occurrence was < 1. The remaining 71 species (2394 pairs) were included in the 

analysis.  
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E. Discussion 

 

Temperate mixed deciduous forests are characterized by a high diversity of below-ground fungal 

communities, as revealed by DNA-metabarcoding of soil samples (Tedersoo et al., 2014). 

Determining the extent of diversity on specific hosts in mixed forests directly from root tissue 

would further clarify the relationships between fungal taxa and associated trees. The purpose of 

this study was to examine that diversity on four tree species in European mixed deciduous 

forests, assess patterns in the distribution of root associated fungi based on locality and host 

fidelity, and determine patterns in fungal species co-occurrence suggestive of fungal-fungal 

interactions.  

Our data showed a major effect of geographical position on root-associated fungal communities, 

as communities associated with trees in the Netherlands were clearly separated from the ones in 

Germany. This effect, however, cannot be entirely attributed to geographic distance itself, and 

rather represents a combined effect of various factors, including such things as distance decay 

(community interactions decrease as geographic distance increases), soil chemistry and texture, 

and climate variables. For example, soil pH across the tested Netherlands and German sites 

differed by one unit, and even such a moderate variation has been shown to strongly affect root-

associated fungal communities (e.g., Toljander et al., 2006; Martinova et al., 2015; Barnes et al., 

2016). Variation in soil texture (more clay at the Netherlands site and more loam at the German 

site) could also account for variation in community compositions of root-associated fungi 

(Goldmann et al., 2016). Higher organic carbon content in German soils most likely contributed 

to observed difference in Netherlands and German communities, as well as explained higher 

species richness of the majority fungal taxa in German communities. In comparison to soil 

parameters, the effect of geographic position on root-associated fungi was shown to be relatively 
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subtle, because the habitat provided by the host tree for its symbiotic fungi buffers the effect of 

the surrounding environment (McCormack and Guo 2014). An example of this buffer effect was 

described recently: in German beech-dominated forests geographic location accounts for 

approximately 8% of the variation in root-associated fungal communities (Goldmann et al., 

2016).  

Fungal community compositions were different in the two forests, and segregating the data of 

German and Netherlands communities for NMDS analysis revealed a significant effect of the 

host tree species on fungal community composition. Host specificity explained approximately 

9% of fungal community variation in the Netherlands communities and ca. 15% in German 

communities, and this effect was observed in fungi on host trees at both genus and family level 

(Betulaceae vs Fagaceae). In that respect, our results were in agreement with previous research 

showing strong effect of host-tree species on its associated fungal communities (Massicotte et 

al., 1999; Wehner et al., 2014) but disagreed with other research where this effect was not 

confirmed (Dean et al., 2015; Roy-Bolduc et al., 2016). Host specificity in root-associated fungi 

is often attributed to the niche-effect, (i.e., the ability of a particular tree and fungal species to 

live in a specific habitat that leads to the formation of distinct communities). For example, high 

levels of host-specificity in fungi associated with Alnus sp. were shown to result from 

adaptations to high soil acidity and nitrate conditions (Tedersoo et al., 2009; Huggins et al., 

2014). On the other hand, host specificity in root-associated fungi may result from fungal 

adaptations to living with a particular host tree (e.g., fungal communities may be shaped by tree 

root exudates) (Broeckling et al., 2007). Our results suggest that both host traits and the 

surrounding environment had an impact on root-associated fungal communities in our study and 

contributed to the observed level of host-specificity. We observed stronger host specificity in the 
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German forest compared to the Netherlands forest, possibly due to a variation in levels of forest 

disturbance. Our Netherlands sampling site was situated closer to the city, suggesting possible 

effects of urbanization such as altered pH, soil salinity and concentrations of heavy metals that 

influence species turnover, richness and community composition in root-associated fungi 

(Newbound et al., 2010). Forest disturbance of the Netherlands site could also explain observed 

higher OTU richness of fungal communities associated with trees in Germany, even though this 

trend was not significant due to high standard deviations obtained for the richness estimators. 

Fungal communities associated with the roots of model tress were characterized by relatively 

high OTU richness (100-200 OTUs per tree replicate), comparable with similar data reported in 

other studies (e.g., Lang et al., 2011; Lankau and Keymer 2016). However, we did not observe 

lower richness in communities associated with Carpinus betulus compared to Fagus sylvatica in 

German mixed deciduous forest as reported previously by Lang et al. (2011) and explained by 

limited carbohydrate allocation to the C. betulus root system leading to lower diversity of 

ectomycorrhizal species. On the contrary, in our dataset C. betulus had the highest richness of 

associated fungi, and had significantly higher (nearly double) richness compared to F. sylvatica 

in the German site. Nearly one third of the OTUs in our dataset were associated solely with C. 

betulus, including species of ectomycorrhizal fungi in the genera Inocybe, Tomentella and 

Russula. This could be indicative of host specificity or host preference. However, it is possible 

that richness in tree-associated communities is not specific for particular tree taxa but may be 

locally controlled by other factors unrelated to tree taxonomy, such as the surrounding plant 

community (Kennedy et al., 2003). Among the traits specific for the tree species, the level of 

shade-tolerance seemed to correlate with the richness of root-associated fungal species with the 

long-distance type of mycelium. In fungal communities associated with shade-intolerant Betula 
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pendula we observed 16 taxa (OTUs) with long-distance mycelium (e.g.; Scleroderma, 

Leccinum, Rhizopogon) (Agerer 2001), and 6 species were found in intermediate shade-tolerant 

Quercus robur. The tree species with higher shade-tolerance, F. sylvatica and C. betulus, were 

mostly associated with fungi having medium, short-distance, and contact mycelium. Because 

fungal species with long-distance mycelium may transfer water and nutrients over greater 

distances, they could be particularly well-suited for trees growing in less shaded, and therefore 

drier, areas. 

In addition to environmental filtering and host-specificity, our results show that root-associated 

fungal communities could be influenced by fungal-fungal species interactions. The known 

examples involve competition between arbuscular mycorrhizal fungi and endophytes (Wearn et 

al., 2012), negative interactions between specific fungal genets (Lilleskov et al., 2004), e.g., 

competition between Tomentella and Amanita, Meliniomyces and Russula (Burke et al., 2009) or 

Russula and other ectomycorrhizal species (Koide et al., 2005; Sun et al., 2015). Analysis of co-

occurrence between ectomycorrhizal species revealed a number of positive relationships between 

species in a number of genera, including Russula, Lactarius, and Cortinarius. Various species of 

Cortinarius appear to have a positive relationship to one another, suggesting cooperation 

between members of this genus on host trees.  Surprisingly, our species co-occurrence analyses 

revealed mostly positive correlations between different fungal species, except for Trichoderma, 

which may be mycopathogenic and therefore expected to negatively correlate with a number of 

other fungal species (Hermosa et al., 2012). On the other hand, our dataset involved fungi 

present inside of the plant roots, and observing mainly positive co-occurrence patterns for these 

fungi agreed with the results of research by Pan and May (2009) who also observed largely 

positive interactions between endophytic fungi infecting roots of maize. Such co-occurrence 



44 

 

patterns resulted from higher vulnerability of the host plant to establishing symbiosis with 

multiple species after the initial colonization by the pioneer endophytic strain (Pan and May 

2009). Thus, the positive correlations observed in our study possibly indicate a cooperative 

relationship between fungi with endophytic roles and ectomycorrhizal fungi.   

F. Conclusion 

 

The diversity of fungi associated with the roots of trees in European temperate deciduous forests 

conform to current estimates. The degree to which these fungi are distributed based on host-

specificity or host preference is significant. Further research to assess whether or not species 

found on only one host taxon (whether at the genus or family level) is exhibiting host specificity, 

host preference, or responding to environmental factors is to be encouraged.  Fungal co-

occurrence data revealed previously unknown positive correlations between taxa. Correlations 

that exist between fungi of different ecological function may be a consequence of particular 

conditions in the rhizosphere favorable for these fungi, indicative of a cooperative arrangement 

between noncompetitive species or merely a function of microhabitat fragmentation within the 

rhizosphere. Within ectomycorrhizal fungi, some are thought to be exclusive, specifically 

Russula spp., and this suggests that our assumptions of the relationships between fungi of this 

ecological group may need to be revised to include the potential for cooperation. Further 

experiments need to be done to determine the extent of these relationships, preferably in a 

controlled environment.   
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H. Supplemental Materials 

 

Table S1. Molecular identification tag (MID) assignment for samples collected from Netherlands 

and Germany sites.  

Sample # MID tag# MID seq Sample # MID tag# MID seq 

NBP3 IonXpress_001 CTAAGGTAAC GFS1 IonXpress_026 TTACAACCTC 

NBP1  IonXpress_003 AAGAGGATTC GFS2 IonXpress_027 AACCATCCGC 

NBP2 IonXpress_004 TACCAAGATC GFS3 IonXpress_028 ATCCGGAATC 

NBP4 IonXpress_005 CAGAAGGAAC GFS4 IonXpress_029 TCGACCACTC 

NBP5 IonXpress_006 CTGCAAGTTC GFS5 IonXpress_030 CGAGGTTATC 

NCB1 IonXpress_011 TCCTCGAATC GQR1 IonXpress_031 TCCAAGCTGC 

NCB2 IonXpress_012 TAGGTGGTTC GQR2 IonXpress_032 TCTTACACAC 

NCB3 IonXpress_013 TCTAACGGAC GQR3 IonXpress_033 TTCTCATTGAAC 

NCB4 IonXpress_014 TTGGAGTGTC GQR4 IonXpress_034 TCGCATCGTTC 

NCB5 IonXpress_015 TCTAGAGGTC GQR5 IonXpress_035 TAAGCCATTGTC 

NFS1 IonXpress_016 TCTGGATGAC GCB1 IonXpress_095 CGGACAGATC 

NFS2 IonXpress_017 TCTATTCGTC GCB2 IonXpress_037 CTTGAGAATGTC 

NFS3 IonXpress_018 AGGCAATTGC GCB3 IonXpress_038 TGGAGGACGGAC 

NFS4 IonXpress_019 TTAGTCGGAC GCB4 IonXpress_039 TAACAATCGGC 

NFS5 IonXpress_020 CAGATCCATC GCB5 IonXpress_040 CTGACATAATC 

NQR1 IonXpress_021 TCGCAATTAC GBP1 IonXpress_044 TTGGAGGCCAGC 

NQR2 IonXpress_022 TTCGAGACGC GBP2 IonXpress_045 TGGAGCTTCCTC 

NQR3 IonXpress_023 TGCCACGAAC GBP3 IonXpress_046 TCAGTCCGAAC 

NQR4 IonXpress_024 AACCTCATTC GBP4 IonXpress_047 TAAGGCAACCAC 

NQR5 IonXpress_025 CCTGAGATAC GBP5 IonXpress_096 TTAAGCGGTC 

 

  

Figure S1. Values of Good’s coverage on the four tree species sampled at both sites. No 

significant difference in depth of OTU recovery was found between species.  
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Figure S2. Rarefaction curves for ITS2 DNA sequence reads from 40 sampled trees in Germany 

and the Netherlands. All sampled trees approached a plateau, suggesting a thorough sampling of 

fungal OTUs from each tree.  
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Table S2. Ecological function of OTUs on four European tree species. Functional group 

assignment was based on OTUs identified to genus and cross referenced with Tedersoo et al. 

2014. Large numbers of ECM taxa and saprotrophic taxa were found in association with 

colonized root-tips.  

Ecological function BP CB FS QR 

Animal parasite 22 28 13 17 

Animal pathogen 2 4 0 0 

Dark septate endophyte 1 0 2 1 

Ectomycorrhizal 169 171 141 181 

Endophyte 8 8 8 5 

Lichenized 1 1 0 0 

Mycoparasite 2 6 0 2 

Plant parasite 4 4 2 0 

Plant pathogen 17 24 13 15 

Root associated 0 1 0 0 

Saprotroph 212 282 164 185 
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Table S3. Vector identification for NMDS ordination of fungal OTUs on trees in Germany and 

the Netherlands. 

Fungal taxa on the first axis r value Fungal taxa on the second axis r value 

Fimetariella 0.578 Pleosporales 0.633 

Ectomycorrhizal -0.509 Pezizales 0.626 

Pezizales -0.512 Tricladium 0.589 

Paecilomyces -0.516 Capnodiales 0.581 

Hypholoma -0.519 Onygenales 0.561 

Cladophialophora -0.541 Cyphellophora 0.548 

Thelephorales -0.547 Mycenella 0.548 

Sebacinales -0.551 Peziza 0.548 

Inocybe -0.552 Trichophaea 0.548 

Trichosporon -0.567 Hysteriales 0.515 

Polyporales -0.576 Humaria 0.504 

Clathrus -0.595 Pestalotiopsis 0.5 

Eurotiales -0.602 Ampulloclitocybe -0.518 

Trichosporonales -0.606 
  

Lycoperdon -0.613 Fungal taxa on the third axis r value 

Hypoxylon -0.677 Cryptosporiopsis 0.577 

Xylariales -0.696 
  

Chaetothyriales -0.726 
  

Agaricales -0.735 
  

Saprotrophic -0.812 
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Table S4. Identification of vectors and their r values for separate ordinations of trees sampled in Germany and the Netherlands. 
Germany Netherlands 

Fungal Taxa on the first axis r value Fungal Taxa on the first axis cont.  r value Fungal Taxa on the first axis  r value 

Agaricales 0.5 Glomerella 0.652 Agaricales 0.784 

Agaricostilbales 0.652 Humaria 0.538 Chaetothyriales 0.76 

Agyriales 0.538 Hypocrea 0.652 Hysteriales 0.747 

Archaeorhizomycetales 0.652 Inocybe 0.719 Mortierellales 0.746 

Chaetothyriales 0.759 Isaria 0.623 Polyporales 0.598 

Diaporthales 0.652 Leptodontidium 0.589 Agrocybe 0.502 

Dothideales 0.652 Melanogaster 0.652 Cenococcum 0.615 

Eurotiales 0.593 Metarhizium 0.609 Cladophialophora 0.641 

Geminibasidiales 0.695 Minimelanolocus 0.652 Cortinarius 0.533 

Hypocreales 0.71 Oidiodendron 0.563 Tolypocladium 0.518 

Lulworthiales 0.652 Otidea 0.538    
Microascales 0.652 Paralepista 0.652 Fungal Taxa on the second axis r value 

Onygenales 0.652 Penicillium 0.652 Helotiales -0.66 

Pezizales 0.854 Peziza 0.864 Hypocreales -0.585 

Phallales 0.519 Psathyrella 0.801 Tremellales -0.582 

Pleosporales 0.828 Pseudaegerita 0.538 Elaphomyces 0.635 

Saccharomycetales 0.79 Rutstroemia 0.557 Trichosporon -0.677 

Thelephorales 0.67 Sarea 0.538    
Tubeufiales 0.652 Schizothecium 0.652 Fungal Taxa on the  third axis r value 

Abortiporus 0.652 Schwanniomyces 0.652 Capnodiales -0.679 

Acremonium 0.589 Scutellinia 0.652 Pezizales 0.514 

Acrostalagmus 0.652 Talaromyces 0.652 Phialocephala -0.551 

Aureobasidium 0.652 Tomentella 0.789 Trechispora -0.571 

Bensingtonia 0.652 Trichothecium 0.652    
Bradymyces 0.652 Tubeufia 0.652    
Candida 0.853 Wardomyces 0.652    
Clathrus 0.623       
Clitopilus 0.652 Fungal Taxa on the second axis r value    
Clonostachys 0.652 Helotiales -0.592    
Coniella 0.652 Trechisporales -0.586    
Conocybe 0.652 Venturiales -0.517    
Dictyochaeta 0.538 Annulohypoxylon 0.616    
Exophiala 0.652 Lasiosphaeris 0.616    
Fibulobasidium 0.538 Lopadostoma 0.557    
Gamsia 0.652 Mycena -0.532    
Geopora 0.538 Rickenella -0.561    
Gliomastix 0.652 Trechispora -0.667     
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Table S5. Indicator Species Analysis of fungal OTUs occurring on host trees in Germany and the 

Netherlands. 

Host species Location Fungal OTU taxonomy Indicator 

Value 

P-

value 

Accession 

No. 

SH No.  

Betula pendula Ger Agaricomycetes sp. 80 0.0034 FN610890 SH205313.07FU 
 

Ger Ascomycota sp. 80 0.003 KJ826832 
 

 
Ger Ascomycota sp. 71.4 0.0036 KT581723 

 

 
Neth Capnodiales sp. 55.6 0.0332 JF449633 SH206778.07FU 

 
Neth Cryptococcus podzolicus 60 0.0364 AJ581036 SH181879.07FU 

 
Neth Eurotiomycetes sp. 45.7 0.03 EU292229 SH213261.07FU 

 
Ger Fungi sp. 83.3 0.0012 KJ827957 

 

 
Ger Fungi sp. 80 0.0034 UDB007496 SH176401.07FU 

 
Ger Fungi sp. 62.5 0.0124 KJ827388 

 

 
Ger Fungi sp. 60 0.036 KT195623 

 

 
Ger Fungi sp. 60 0.0416 KC588678 

 

 
Ger Fungi sp. 60 0.0416 KP889691 

 

 
Neth Fungi sp. 64 0.02 GU174309 SH205736.07FU 

 
Neth Fungi sp. 60 0.0324 KT219809 

 

 
Ger Helotiaceae sp. 71.4 0.003 AY219881 

 

 
Neth Helotiales sp. 64 0.0194 KC876248 SH181081.07FU 

 
Neth Helotiales sp. 60 0.0376 GU997932 SH214273.07FU 

 
Ger Herpotrichiellaceae sp. 60 0.0302 HE605254 SH199199.07FU 

 
Ger Meliniomyces variabilis 80 0.0034 AY394902 SH181078.07FU 

 
Neth Meliniomyces variabilis 60 0.041 AY394902 SH181078.07FU 

 
Ger Mycenaceae sp. 71.4 0.0034 HQ625481 SH220731.07FU 

 
Ger Phialocephala fortinii 100 0.0006 UDB020374 SH204986.07FU 

 
Ger Sordariomycetes sp. 60 0.0312 AY704744 

 

 
Neth Trichocomaceae sp. 60 0.041 KM242318 

 

 
Ger Umbelopsidaceae sp. 60 0.0304 AB846975 SH018786.07FU 

 
Ger Venturiaceae sp. 71.4 0.0032 GU446639 SH219611.07FU 

 
Ger Vibrisseaceae sp. 60 0.0312 FN565305 SH204986.07FU 

Carpinus 

betulus 

Ger Basidiomycota sp. 60 0.0354 GQ223476 SH015646.07FU 

 
Neth Chaetothyriales sp. 80 0.0046 FM999597 SH458421.07FU 

 
Ger Clathrus archeri 55.6 0.03 KJ702369 SH205136.07FU 

 
Ger Fungi sp. 80 0.003 FM999518 SH214279.07FU 
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Host species Location Fungal OTU taxonomy Indicator 

Value 

P-

value 

Accession 

No. 

SH No.  

 
Ger Fungi sp. 60 0.0302 LC033786 

 

 
Neth Fungi sp. 60 0.0378 KP897187 

 

 
Ger Helotiaceae sp. 62.5 0.01 JX042982 SH026685.07FU 

 
Ger Herpotrichiellaceae sp. 71.4 0.0026 UDB005252 SH179624.07FU 

 
Ger Herpotrichiellaceae sp. 60 0.0302 KC965591 SH183634.07FU 

 
Ger Herpotrichiellaceae sp. 60 0.0354 JN890098 SH026648.07FU 

 
Ger Herpotrichiellaceae sp. 55.6 0.0144 GU083280 SH213273.07FU 

 
Neth Hyphodontia radula 60 0.0356 GQ411525 SH221533.07FU 

 
Ger Leotiomycetes sp. 55.6 0.0194 KF617787 SH021489.07FU 

 
Neth Leotiomycetes sp. 62.5 0.0158 FM999518 SH214279.07FU 

 
Neth Microbotryomycetes sp. 80 0.0028 EF434040 SH193764.07FU 

 
Ger Mortierellaceae sp. 60 0.0302 FJ197928 SH011035.07FU 

 
Neth Mortierellaceae sp. 62.5 0.0152 FN397392 SH180120.07FU 

 
Neth Myxotrichaceae sp. 80 0.0036 HM136622 SH217025.07FU 

 
Ger Tremellomycetes sp. 45.7 0.0324 GU055604 SH212824.07FU 

Quercus robur Ger Russula nigricans 80 0.004 UDB000011 SH219259.07FU 
 

Neth Russulaceae sp. 60 0.0334 FJ946940 SH218427.07FU 

Fagus sylvatica Ger Eurotiomycetes sp. 71.4 0.0026 EU292229 SH213261.07FU 
 

Ger Eurotiomycetes sp. 55.6 0.018 EU292229 SH213261.07FU 
 

Ger Fungi sp. 64 0.0172 UDB005682 SH186212.07FU 
 

Ger Helotiales sp. 55.6 0.0294 JF519310 SH192278.07FU 

  Ger Lopadostoma fagi 64 0.0196 KC774576 SH195181.07FU 

  

Table S5 (Cont.) 
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Table S6. Topsoil physical and chemical properties for each sample site. Data retrieved from the 

Harmonized World Soil Database Viewer (V 1.21).  

Topsoil parameter Netherlands site Germany site 

 Sand Fraction (%) 85 42 

 Silt Fraction (%) 8 38 

 Clay Fraction (%) 7 20 

 USDA Texture Classification loamy sand loam 

 Reference Bulk Density (kg/dm3) 1.65 1.41 

 Bulk Density (kg/dm3) 1.3 1.3 

 Gravel Content (%) 15 10 

 Organic  Carbon (% weight) 0.49 1.45 

 pH (H2O) 7.9 5.1 

 CEC (clay) (cmol/kg) 111 32 

 CEC (soil) (cmol/kg) 5 12 

 Base Saturation (%) 100 38 

 TEB (cmol/kg) 4.2 4.3 

 Calcium Carbonate (% weight) 6 0 

 Gypsum (% weight) 0 0 

 Sodicity (ESP) (%) 4 2 

 Salinity (ECe) (dS/m) 0.2 0.1 
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Figure S3. Co-occurrence matrix of ECM fungi. Fungal-fungal interactions among 30 ECM 

OTUs identified to the species level resulted in 18 positive, 1 negative, and 252 random 

associations. Of the 30 initial species, 18 were retained in the analysis with the other 12 showing 

neither positive nor negative associations. 
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Figure S4. Co-occurrence matrix of 35 saprotrophic fungi showing positive and negative 

interaction patterns of occurrence greater than that expected by chance. There were a total of 16 

negative and 93 positive fungal-fungal co-occurrence greater than that expected by chance. 

Random interactions constituted the remaining 486.  
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A. Abstract 

 

The eastern half of the United States is dominated by areas of temperate deciduous broadleaf 

forests that are important, both ecologically and economically. These forests support a vast 

diversity of thousands of species and provide billions of dollars in revenue. Among the dominant 

trees, American beech (Fagus grandifolia), northern red oak (Quercus rubra), and shagbark 

hickory (Carya ovata), form tight associations with below-ground microbial communities that 

play key roles in forest health, provide a defense against pathogens, and regulate host tree fitness. 

The diversity of these communities, however, remains largely unknown. This study used ITS2 

rDNA to assess root-associated fungal communities of F. grandifolia, Q. rubra, and C. ovata in 

forests of the central Appalachian Mountains and the Ozark Mountains of northwestern 

Arkansas, USA. DNA-metabarcoding revealed a high diversity of fungi associated with the host 

trees in both geographic localities. Variation in community compositions was explained by 

geographic location by ca. 30%, while the effect of host specificity was ca. 10%. Fungal species 
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occurring on all the trees (“generalists”) to a large extent were ectomycorrhizal, while host-

specific (“local”) communities were dominated by saprotrophs. Sequencing data provided insight 

in fungal-fungal interactions reflected in co-occurrence patterns of numerous ectomycorrhizal 

and saprotrophic species, with the most positive interactions revealed for Cenococcum 

geophillum. Because root-associated fungal communities are highly diverse, geographically 

distinct, and shift in response to available host taxa, we highlight the importance of DNA-based 

assessments to provide a more thorough understanding of these communities globally, including 

North American forest ecosystems. 

Keywords: co-occurrence, host-specificity, fungal communities, Ion Torrent, ectomycorrhizae 
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B. Introduction 

 

Diverse areas of forests extend from southern tropical regions to the subarctic in North America. 

According to modern classifications, a wide range of forest types can be found in North 

America, including boreal, subalpine, montane and temperate rain forests, as well as coastal 

redwoods, evergreen and deciduous coniferous forests, mixed coniferous/deciduous forests, and 

the temperate deciduous broadleaf forests that make up much of the forested land of the eastern 

United States (Dyer, 2006). Forests are of vital importance, both ecologically (e.g., providing 

habitats for numerous living organisms) and economically (e.g., for wood production or as 

recreational zones) (USBC, 2006; Thomas et al., 2017). For instance, plant biodiversity of North 

American temperate deciduous forests was estimated as ca. 2000-3000 species (Kier et al., 

2005), and species richness of soil fungi approached 2000-4000 operational taxonomic units 

(OTUs)–a proxy for species generally used in molecular assessments (Tedersoo et al., 2014). 

Globally, forests play key roles in carbon sequestration in trees (Pan et al., 2011) and soils (Lal, 

2005), nutrient cycling (Prescott, 2002), and oxygen generation. 

Geographically, forest types vary across the United States, with the western half characterized by 

Mediterranean chaparral, coastal redwood, and temperate rain forests that exist along the western 

coast, while montane and evergreen coniferous forests dominate further inland areas until the 

Great Plains (Wade et al., 2003). The eastern United States is characterized by coastal evergreen 

forests, mixed coniferous and deciduous forests, with some boreal forests in the northern parts of 

Minnesota and Maine. In general, most of the forested area of the eastern United States is 

dominated by assemblages of temperate deciduous broadleaf trees (Braun, 1950; Dyer, 2006), 

which extend from Texas to Minnesota and from Massachusetts to Nebraska (Dyer, 2006). 
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Dominant tree species of temperate deciduous broadleaf forests include maples (Acer spp., 

Aceraceae), birches (Betula spp., Betulaceae), oaks (Quercus spp., Fagaceae), beech (Fagus 

grandifolia Ehrh., Fagaceae), and hickory (Carya spp., Juglandaceae)(Braun, 1950). Globally, 

forests are of primary importance due to the ecological and economic value of their dominant 

tree species in addition to the ecological services provided by forest plants (Pearce, 2001). 

Timber-related industry in the United States accounted for 83.5 billion dollars of gross domestic 

production (GDP) in the most recent census (USBC, 2006), while the estimated revenue 

generated by tourism in national parks (including forested lands) surpassed 18.4 billion dollars in 

2016 (Thomas et al., 2017). As pointed out by Pearce (2001), it is difficult to estimate the total 

value of forested lands based on incomplete data for the vast array of direct and indirect goods 

and services provided by forests around the world. It is, therefore, difficult to assign a value to 

the ecological and economic importance of the temperate deciduous broadleaf forests of eastern 

North America. Oak, beech, and hickory are useful tree species for industrial use as well as 

providing food and habitat for wildlife. Among the Fagaceae, Quercus rubra L. and Fagus 

grandifolia are dominant tree species in much of the temperate forest biome. The Juglandaceae 

are another family of important canopy-forming tree species in these forests. One species of 

interest in this family is Carya ovata (Mill.) K. Koch, which can be found in forested areas at 

mid-latitudes across the eastern United States. In addition to the aboveground communities that 

are dependent on these tree species, there is an underground diversity of microbes associated 

with the roots of these trees (Uroz et al., 2016).  

Rhizosphere microbial communities are of great scientific interest as drivers of forest health, as a 

defense against pathogenic organisms, and as symbionts regulating the host fitness under 

stressful abiotic conditions (Vandenkoornhuyse et al., 2015). One area of primary interest with 
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respect to microbial communities of the rhizosphere is represented by the root-associated fungi 

(Walker et al., 2005; Burke et al., 2009; Comas & Eissenstat, 2009). These include taxa forming 

mycorrhizal associations, those serving as endophytes, and commensals or saprotrophs in the 

rhizosphere that are often collectively referred to as “other” fungi (Coince et al., 2014). The 

fitness of trees and other forest plants is greatly increased from the associations with their 

mutualistic fungi, both in the root and the adjacent rhizosphere (Barea et al., 2002). On the other 

hand, pathogenic fungi reduce the fitness of forest plants and are responsible for economic losses 

of forest products exceeding 7 billion dollars (Pimentel et al., 2005). Current estimates of the size 

of the Kingdom Fungi suggest anywhere from 1 million to 5.1 million species, with 70,000 

currently described (Blackwell, 2011). Across this diversity of taxa, a wide array of different 

ecological functional groups is responsible for decomposition, diseases, and mutualistic lifestyles 

which are all part of functioning forest ecosystems. Understanding the taxa and ecological roles 

of root-associated assemblages of fungi is an important component to understanding forest health 

and function.  

Quercus rubra and Fagus grandifolia are dominant tree species in the temperate deciduous 

broadleaf forests of eastern North America. Studies of root-associated fungal assemblages on 

these trees have focused on the description of putative ectomycorrhizal species and endophytes 

using a variety of morphological assays (roots and fruiting bodies) and molecular techniques 

(RFLP analyses and Sanger sequencing for example) (Gebhardt et al., 2007; Karpati et al., 

2011). Information on the root-associated fungal communities on Carya ovata, another important 

species in the broadleaf forests of eastern North America, appears to be lacking in the scientific 

literature, although they have been reported as forming ectomycorrhizal associations in previous 

research (Comas and Eissenstat, 2009). Recent advances in sequencing technology have 
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provided rapid, cost effective methods for identifying communities of microorganisms using 

Next Generation Sequencing (NGS) platforms such as Ion Torrent. These technologies allow the 

description and study of root-associated communities from host tissues at a much larger scale 

than previously available through morphological assays, culturing, and sequencing of individual 

fungi.  

The purpose of the research described herein was to add to our current understanding of fungal 

communities using ITS2 rDNA for NGS sequence-based identification of fungi from DNA 

extracted directly from root tissue of specific trees to describe and compare the root-associated 

fungal communities on Fagus grandifolia, Quercus rubra, and Carya ovata trees in 

geographically distant temperate deciduous broadleaf forests of eastern North America (Central 

Appalachian Mountains of Virginia and West Virginia and the Ozark Mountains of northwestern 

Arkansas) to answer the following research questions: (1) What are the communities of fungi 

associated with the roots of these trees in the temperate deciduous forests of eastern North 

America? (2) To what extent does location dictate the structure of root-associated fungal 

assemblages? (3) What level of host-specificity is present in fungi associated with the roots of 

each host species? (4) Are there patterns of occurrence among fungi on host trees that could be 

indicative of fungal-fungal interactions? 

C. Methods 

 

Study sites and root-tip sampling 

As indicted above, two localities (the Ozarks of North Western Arkansas and the Central 

Appalachian Mountains) were selected for root tip sampling of Fagus grandifolia, Quercus 

rubra, and Carya ovata in the summer of 2014 (May-September). The Ozark Mountain sites 

where Q. rubra roots were sampled consisted of the Pea Ridge National Military Park (PR) near 
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Garfield, Arkansas (36°44’38” N, 94°02’58” W) and the Ozark National Forest (ONF) near 

Devil’s Den State Park (35°46'20.0"N 94°14'37.2"W). Fagus grandifolia roots were sampled at 

Lost Valley State Park (LV) near Kingston, Arkansas (36°00'50.8"N 93°22'55.8"W), and C. 

ovata roots were sampled near Lake Wilson Park (LW) located just outside the city of 

Fayetteville, Arkansas (35°59'57.8"N 94°09'37.9"W). In the Central Appalachian Mountains, C. 

ovata was sampled in the Fernow Experimental Forest (FEF) near the town of Parson in eastern 

central West Virginia (39°03'21.0"N 79°40'06.0"W) and near the Mountain Lake Biological 

Station (MLBS) in Giles County, Virginia (37°24'46.8"N 80°31'16.6"W). Fagus grandifolia was 

sampled at another site near the MLBS (37°21'58.8"N 80°32'18.9"W), and Q. rubra was also 

sampled nearby (37°21'07.1"N 80°32'08.6"W).  

Host trees were sampled opportunistically at each site. A distance of at least 10 m was 

maintained between sampled trees to avoid sampling the same fungal genet. A total of 40 trees 

were sampled, including 15 Carya ovata (5 each from the FEF, MLBS, and LW sites), 10 Fagus 

grandifolia (5 each from the MLBS and LV sites), and 15 Quercus rubra (5 each from the 

MLBS, ONF, and PR sites). Root tips were sampled by uncovering the lateral roots of the target 

tree at the base of the trunk and following those roots out at 90° intervals to unearth feeder roots 

and colonized root tips representative of the root-associated fungal community on the root 

system of the target tree in the top 10 cm of soil below the litter layer. Colonized root tips were 

collected for each tree at each 90° interval and placed in a 15 ml screw cap tube containing 7 ml 

of a 2% CTAB solution so that each tube contained the pooled sample of roots for each sampled 

tree. Tubes were frozen in -20°C until processed for DNA extraction, PCR, and sequencing. 

Samples were thawed and thoroughly cleaned in distilled water to remove soil and organic 

particles. Using a dissecting scope and heat sterilized forceps, root tips were removed from each 
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sample of root material and placed in 2 ml microcentrifuge tubes, after which the root tips were 

lyophilized. These tubes were then submerged in liquid nitrogen and subsequently lysed and 

homogenized with sterile 3 mm glass beads in a Tissue Lyser (QIAGEN™) prior to DNA 

extraction.  

DNA extraction and sequencing 

DNA was extracted twice from each sample, for a total of 50 mg of homogenized tissues. DNA 

extractions were carried out using a Macherey-Nagel NucleoSpin Plant II DNA extraction kit 

using the PL1 lysis buffer protocol. Matrix-bound DNA was eluted 2 times in 30 µl of PE buffer, 

and pooled. PCR was carried out for each sample using the protocol established in Geml et al. 

(2014), 40 µl reactions were carried out with reagents at the following volumes: 1 µl of DNA 

template, 4 µl of 10X buffer, 1.5 µl of dNTP solution (2.5 mM), 1.5 µl each of forward and 

reverse primers (10 mM), 0.5 µl BSA (10 mg/ml), 4 µl MgCl2 (50 mM), 0.4 µl BIOTAQ 

polymerase (5 U/µl), and 25.6 µl of MQ water. The primers fITS7 (Ihrmark et al., 2012) and 

ITS4 (White et al., 1990) were used for library prep PCR. The ITS4 primer was labeled with 

Multiplex Identification DNA (MID) tags specific for sample. PCR reactions amplified a 250-

450 bp region of the ITS2 rDNA locus (Toju et al., 2012). PCR reactions were carried out under 

the following conditions established in Geml et al. (2014): 95°C for 5 min (one cycle), followed 

by 95°C for 20 sec, 54°C for 30 sec, and then 72°C for 1.5 min (25 cycles), followed by a 

terminal elongation step of 72°C for 7 min. Each sample had three replicate PCR reactions and a 

negative control with no template DNA added. Verification of PCR products for samples and 

replicates was done with agarose gel electrophoresis, and the PCR replicates were pooled for 

each sample. 
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Analysis of the size distribution and concentration of PCR products was done for each pooled 

sample using an Agilent D1000 ScreenTape system (Agilent Technologies, Waldbronn, 

Germany). Target PCR products were cleaned up using 0.9X Ampure® beads (Beckman-

Coulter, Beverly, Massachusetts, USA). An equimolar pool of PCR products was then calculated 

from the volume and concentration of each sample for a normalized equimolar pool 

concentration of 15 nmol/µl. Oil emulsion PCR using 250 µl of the normalized equimolar pool 

was carried out in accordance with the protocol for the Ion PGM™ 200Xpress™ Template Kit. 

This library was then sequenced using an Ion 318™ Chip on an Ion Torrent Personal Genome 

Machine (Life Technologies, Guilford, Connecticut, USA). Ion Torrent sequencing resulted in 

3,250,075 reads with a mean length of 228 bp. 

Bioinformatics and statistical analyses 

Preliminary clean-up of raw sequencing data was done using the Galaxy online platform 

(https://main.g2.bx.psu.edu/root) to arrange sequence reads by sample and remove MID adapter 

sequences. Sequences with poor-quality ends were trimmed using a 0.02 error probability limit 

in Geneious Pro 5.6.1 software (BioMatters, New Zealand). Sequence data were then filtered in 

USEARCH v.8.0 (Edgar, 2010) using the following settings: sequences were truncated to 200 

bp, and those sequences with an expected error >1 were discarded. The remaining high-quality 

sequences were grouped into 7,730 operational taxonomic units (OTUs) using the UPARSE 

algorithm in USEARCH set to 97% sequence similarity as recommended in recent fungal 

metabarcoding studies (e.g., Bjorbækmo et al., 2010; Geml et al., 2010; Bellemain et al., 2013, 

Tedersoo et al., 2014; Semenova et al., 2016). A total of 7,690 putative chimeric sequences were 

excluded. Sequences were assigned to taxonomic groups using the UNITE fungal ITS sequence 

database based on pairwise similarity search. Global singletons were discarded, OTUs with less 



 

70 

 

than 80% sequence similarity to any UNITE sequences were discarded, leaving a dataset of 

2,769 OTUs for subsequent analyses (Accession Numbers MG159816 - MG162584). Ecological 

functional groups were assigned for OTUs identified to genus (where consistent ecology existed) 

or species based on the dataset of Tedersoo et al. (2014), and resulted in 373 OTUs with putative 

functional assignment for analyses of distribution and proportions.  

Depth of sequencing coverage was quantified using the Good’s coverage estimator, and OTU 

community richness, diversity, and evenness were calculated to determine any potential 

differences between sampled communities. Good’s coverage, Shannon-Weaver and Simpson’s 

diversity indexes, OTU richness and Pielou’s evenness was carried out and/or calculated using 

the Vegan package “rarefy” function (Oksanen et al., 2013) in R software for statistical 

computing (R Core team, 2017). To visualize the diversity of fungi occurring on roots of host 

trees, OTU data were assessed using the web-browser based tool Krona Plots (Ondov et al., 

2011) for each host species. Krona plots were generated both for read abundance data (a limited 

proxy for biomass) and for richness data in order to compare the relative abundance of taxa and 

the diversity of taxa on each host species. Ecological functional groups of root-associated fungi 

were visualized in Excel to assess the distribution of functional types on different host species 

and those which occurred on all hosts (putative generalists). To determine the extent to which 

fungal OTUs were associated with each host species, Venn diagrams were generated using the 

online BioVenn platform (Hulsen et al., 2008) to provide comparative visualizations of area-

proportional diagrams from OTU lists on each host. A presence/absence matrix was generated of 

OTUs on each host tree replicate, and a second matrix with categories: Geographic locality, 

specific site, host species, and fungal OTU taxonomies (orders and genera) was used to enable a 

joint-biplot analysis of subsequent ordinations. Non-Metric Multidimensional Scaling (500 
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iterations, Sørensen similarity/Bray-Curtis index, and a random starting number) of OTU 

presence/absence data was done using PC-ORD software v. 6.19 to assess the distribution of 

OTUs on roots in the ordination space in order to identify the extent of host specificity, site 

fidelity, and important fungal taxa. Additionally, plexus values (chi-squared derivatives to test a 

hypothesis of no difference) were calculated for each OTU pair to determine if there were 

instances of OTUs occurring together in ordination space more frequently than expected by 

chance–thus suggestive of a potential positive fungal-fungal interaction. Permutation-based 

nonparametric MANOVA were carried out in PC-ORD to determine the amount of variation in 

the dataset explained by location and host species variables and these values were recorded. 

Multi-Response Permutation Procedures (MRPP) were calculated for each grouping category in 

the secondary matrix to determine if in-group variation was greater than that expected by chance. 

Fungal co-occurrence patterns were assessed for 78 species-level OTUs based on location and by 

host in R using the R package: “cooccur” (Griffith et al., 2016) providing both positive and 

negative co-occurrence of fungal species greater than expected by chance in order to identify 

potential fungal-fungal interactions on roots of host trees.    

D. Results 

 

Diversity and distribution of root-associated fungi 

Fungal communities obtained for each of the tree species had relatively high (96.7-97.7%) 

Good’s coverage estimators, suggesting that the sequencing effort was sufficient to capture the 

diversity of fungi present in the samples (Figure S1). OTU richness and diversity estimators were 

comparable (not statistically different) between the sampled communities (Figure S2). The 

diversity of root-associated fungi encompassed OTUs from five fungal phyla; in addition, a high 

number of sequences identified no further than to Kingdom Fungi was obtained. Most of the 
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OTUs (73-75%) associated with the sampled trees belonged to the Ascomycota or 

Basidiomycota. These OTUs could be referred to 17 fungal classes, 53 orders, 120 families and 

177 genera (Table S1). Visual representations of the relative abundance and OTU richness for 

each host tree are presented in Figures 1 (Carya ovata), 2 (Fagus grandifolia) and 3 (Quercus 

rubra). Across all three sampled trees, proportions of the most abundant and species-rich fungal 

groups remained markedly similar; datasets based on sequence abundance were largely 

represented by the members of the Basidiomycota, whereas presence-absence (richness) data 

were dominated by the Ascomycota. Arbuscular mycorrhizal fungi belonging to the 

Glomeromycota were present but were characterized by both low richness and abundance.  

Proportions of various ecological (functional) groups of fungi associated with tree roots were 

also similar (Figures 4a-c). However, richness of plant pathogenic fungi was higher in Fagaceae 

hosts (Fagus grandifolia and Quercus rubra) as compared to Carya ovata. Fungi that occurred 

on all host trees (generalists) were largely represented by an ectomycorrhizal ecology (ca. 64%), 

whereas host-specific fungi were mostly saprotrophs (50-58%). (Figure 4d). 
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Figure 1. Krona plot diagrams of fungal OTU read abundance (a) and OTU richness (b) at the level of fungal orders on the roots of 

Carya ovata. The largest groups are shown in red, second largest groups in light yellow-green, and unidentified in dark green. 

Ascomycota comprises 49% of the richness found on Carya, while Basidiomycota account for 27%. In abundance, basidiomycete 

OTUs account for 45% of the sequence reads while ascomycetes account for 37%. A large percentage of OTUs associated with the 

roots of Carya ovata are unidentified fungal sequences.  
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Figure 2. Krona plot diagrams of fungal OTU read abundance (a) and OTU richness (b) at the level of fungal orders on the roots of 

Fagus grandifolia. The largest groups are shown in red, second largest groups in light yellow-green, and unidentified in dark green. 

Ascomycota comprises 47% of the richness found on Fagus grandifolia, while Basidiomycota account for 25%. In abundance, 

basidiomycete and ascomycete OTUs each account for 42% of the sequence reads. More than 25% of OTUs are unidentified to 

phylum.   
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Figure 3. Krona plot diagrams of fungal OTU read abundance (a) and OTU richness (b) at the level of fungal orders on the roots of 

Quercus rubra. The largest groups are shown in red, second largest groups in light yellow-green, and unidentified in dark green. 

Ascomycota comprises 43% of the richness found on Q. rubra, while Basidiomycota account for 30%. With respect to abundance, 

basidiomycete OTUs account for nearly half (49%) of the sequence reads while ascomycetes account for 29% of reads. More than 

25% of OTUs associated with Q. rubra are unidentified.  
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Figure 4 (Previous page). Proportions of OTUs belonging to different ecological functional 

groups specific to Carya ovata (a), Fagus grandifolia (b), Quercus rubra (c), or occurring on all 

three tree species (d) across the study sites of temperate deciduous forests of eastern North 

America. Saprotrophic fungi dominate among OTUs found only on specific host trees, while 

ectomycorrhizal taxa dominate as generalists occurring on all sampled trees.  

Community structure is driven by location and host-association 

Fungal community compositions were compared by non-metric multidimensional scaling 

(NMDS, Figures 5a-b). An ordination plot resulted in a 2-dimentional solution with axis 1: 

r2=0.560 and axis 2: r2=0.231 and a final stress of 15.99, 0.00000 instability, and 65 iterations. 

Differences among groups within the dataset when grouped by location (A=0.076; P<0.00000) 

and host (A=0.025; P=0.00005) variables was greater than expected by chance using MRPP 

analysis.  Variation in community composition was largely explained by location; as revealed by 

MANOVA statistics, location explained 29.2% of the variation in fungal OTU composition 

(F=3.06; P=0.0002). The effect of host specificity on community compositions was lower 

(10.8% by MANOVA) but still significant (P=0.0008). A joint biplot of fungal taxonomy for 

OTUs revealed important taxa on axes 1 and 2 (Figure 5a) and showed a pattern of host tree 

clustering by both location and tree species. Geographical isolation of communities in the central 

Appalachian Mountains and the Ozark Mountains of northwest Arkansas is demonstrated by 

clustering of sampled host trees by geographic locality (Figure 5b), whereas strong (measure of 

association >0.5) plexus lines plotted between OTUs suggest a large number of positive 

associations across both geographical localities.  
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Figure 5. Nonmetric multidimensional scaling ordination of root-associated fungal OTUs on host 

trees. Circles represent Carya ovata collections at Lake Wilson (white), Fernow Experimental 

Forest (gray) and Mountain Lake Biological Station (ML; black). Squares represent Quercus 

rubra collectd at the Ozark National Forest (white), Pea Ridge National Military Park (gray) and 

ML (black). Fagus grandifolia collections are represented as triangles from sites at ML (white) 

and Lost Valley State Park (black). Fungal communities show a clear distribution influenced by 

location and host (a) fungal taxa with high richness associated with communities along the axis 

are denoted with vectors, dashed lines represent generalized fungal community limits around 

host tree taxa. Fungal OTUs showed a high number of positive correlations greater than that 

expected by chance using Yates corrected Chi-square test to generate a plexus diagram (b) in 

PC-ORD, the dashed/dotted centroids represent communities segregated by geographic location 

(Appalachian Mountains and Ozark Mountains).   

In order to examine the extent of host fidelity of root-associated communities, a proportional 

Venn diagram was generated for all fungal OTUs occurring on each host across all sample 

locations (Figure 6). Individuals of Quercus rubra contained the largest number of OTUs in their 

root-associated communities (2,595) and the largest number of OTUs specific to their 

communities (1491). Carya ovata had the second largest root-associated fungal community 

(1,671) and number of specific fungi (722), while Fagus grandifolia root-associated 

communities were smaller in comparison (1,184 OTUs total, 414 specific). Quercus rubra root-

associated communities shared a large number with C. ovata (421), F. grandifolia (242), and 441 
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OTUs occurred on all three host trees. Only 87 OTUs were shared between F. grandifolia and C. 

ovata.  

 

Figure 6. Venn diagram of OTUs occurring on the roots of Quercus rubra, Carya ovata, and 

Fagus grandifolia in temperate deciduous forests of the central Appalachian Mountains and the 

Ozark Mountains. 3,818 OTUs were used in analysis, with more than half (2,595) occurring on 

Q. rubra roots. 441 OTUs were generalists occurring on all three host tree taxa, while ~1,500 

were specific to Q. rubra.  
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Figure 7. Co-occurrence analyses of root-associated fungal assemblages on three host tree taxa in 

two temperate deciduous forests of eastern North America (Ozark Mountains and central 

Appalachian Mountains). Host trees were: a) Carya ovata, b) Fagus grandifolia, and c) Quercus 

rubra.  

Fungal co-occurrence patterns 

Co-occurrence analyses revealed several positive and negative species interactions on the three 

host tree species across all sample locations (Figures 7a-c). On Carya ovata (Figure 7a) there 

were 63 fungal species identified across the 15 samples; of the 1,953 species pair combinations 

250 pairs were retained for analysis, which resulted in 5 positive associations, 0 negative, and 

245 random/non-random unclassifiable interactions. On Fagus grandifolia (Figure 7b), 43 fungal 

species, 10 samples, 135 of 903 species pairs were retained for analysis. These included 3 
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positive interactions, 3 negative, and 129 random/non-random unclassifiable interactions were 

reported. Co-occurrence analysis of 67 fungal species on Quercus rubra (Figure 7c) resulted in 

an analysis of 513 of 2,211 possible species pair combinations across the 15 sampled trees, with 

20 positive, 4 negative, and 489 random/non-random unclassifiable interactions.  The 

saprotrophic species Mortierella elongata Linnem. and Oidiodendron maius G.L. Barron were 

negatively associated with other saprotrophs and ectomycorrhizal fungi on Fagus grandifolia 

and Quercus rubra but not on Carya ovata, where O. maius appears to be positively associated 

with the ectomycorrhizal Cenococcum geophilum Fr. On Q. rubra, members of the 

ectomycorrhizal Russulaceae appear positively associated with C. geophilum. Co-occurrence 

analyses of all host trees at each locality (central Appalachian Mountains or the Ozark 

Mountains) and all combined were also done to assess patterns of co-occurrence in 

geographically distinct communities (Figure S3), and the positive interactions between Russula 

spp., Lactarius spp., and C. geophilum appear to be cosmopolitan across temperate deciduous 

forests of eastern North America.  

E. Discussion 

 

DNA-metabarcoding of soil samples has revealed the high diversity of soil fungal communities 

in forests around the globe (Tedersoo et al., 2014). By examining root material collected directly 

from specific host trees in the temperate deciduous forests of eastern North America we can 

build on existing knowledge gained by previous work and understand more fully the root-

associated fungal communities found on particular tree species. The present study examined 

fungal communities associated with roots of Fagus grandifolia, Quercus rubra, and Carya ovata 

by direct sampling of tree roots in order to assess patterns in the distribution and specificity of 

fungal community members in different forest communities and host trees, and determine what 
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(if any) fungal-fungal interactions may be occurring based on patterns of co-occurrence of root-

associated fungi.  

Our results presented a more comprehensive assessment of root-associated communities on these 

three host tree species than previously available. Recent research on Quercus rubra and other 

host trees with ectomycorrhizal communities using morphotyping, RFLP analyses, baiting, and 

Sanger-sequencing of RFLP types resulted in fungal richness observations much more limited 

compared to what we found with NGS sequencing of root material (Dickie et al., 2002; Walker 

et al., 2005; Ishida et al., 2007; Karpati et al., 2011). Conversely, a recent study on different 

species of Quercus in California woodlands found similar numbers of ECM on roots (Morris et 

al., 2008), but these data were obtained via roots isolated from soil cores and not taken directly 

from host trees as in our study, thus likely representing ECM communities including nontarget 

hosts. A 21-year study of fruiting bodies collected in a mixed forest in Switzerland resulted in a 

maximum of 194 species found during the most diverse year (Straatsma et al., 2001), whereas in 

our study fungal richness was greater by more than an order of magnitude from a single sampling 

effort.  In addition to fungi that form visible fruiting bodies and thus could be assessed 

morphologically, NGS data obtained in this study from root material resulted in highly diverse 

fungal assemblages that include many “hidden” taxa occurring on Q. rubra, Fagus grandifolia, 

and Carya ovata roots, which represent data not previously known to science. While 

morphological assessments involve largely ectomycorrhizal fungi, NGS data unraveled a 

diversity of fungal taxa with a variety of ecological functions, including saprotrophs, endophytes, 

pathogens and different types of mycorrhizae.  

Root-associated fungal communities appear to be strongly influenced by their geographical 

location and host association. In terms of read abundance and richness of fungal taxa, all three 
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host tree species exhibited quite similar communities, at numbers comparable with recent soil 

fungal studies (Buée et al., 2009; Tedersoo et al., 2014); however, the species composition 

appeared to be different for each host. On Quercus rubra, the majority of root-associated fungi 

(ca. 60%) were found only in association with this host, which supports the findings of hyper-

diversity on the roots of Quercus in previous research (Walker et al., 2005; Jumponnen et al., 

2010). In this study, one third of the OTUs found on tree roots occurred on more than one host 

and the rest were tree-specific. This finding is in agreement with previous research showing a 

strong influence of host tree species on its associated fungal communities (Massicotte et al., 

1999; Ishida et al., 2007; Wehner at al., 2014).  

Interestingly, all the tree species sampled in this study hosted approximately same number of 

fungi belonging to various ecological groups.  Unexpectedly, the “specificity towards a particular 

host” was due to fungi belonging to a saprotrophic rather than ectomycorrhizal guild. The OTUs 

specific to particular host trees were to a large extent saprotrophic, while “generalist species” 

occurring on all of the sampled trees were assigned ectomycorrhizal lifestyles. We assume that 

members of saprotrophic root-associated community serve as endophytes and decomposers of 

senescent root tip sections (Le et al., 2015) or simply exist as epiphytes in the rhizosphere, 

decomposing nearby organic matter in the soil horizon. On the other hand, given that some 

ectomycorrhizal fungi also function as saprotrophs (Phillips et al., 2014; Lindahl and Tunlid, 

2015) and some saprotrophs colonize root tips as potential mycorrhizae (Vasiliauskas et al., 

2007), perhaps some of the OTUs assigned a saprotrophic lifestyle in this study (as based on 

general knowledge) could instead have symbiotic interactions with the trees (e.g., as facultative 

endophytes or mycorrhizae). 
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Given the declining cost of next-generation sequencing, biodiversity studies such as ours are 

increasingly being carried out worldwide, thus providing an unprecedented insight into fungal 

co-occurrence patterns that could be indicative of fungal interactions. In the scope of a single 

study, these patterns should be discussed with caution, given that strong positive or negative co-

occurrence patterns may be driven by random factors unrelated to fungal-fungal interactions, but 

they are still important to consider as potential ecological drivers and/or consequences of 

community structure and function (Ovaskainen et al., 2010). In this study, on all three tree 

species we observed positive interactions between Cenococcum geophilum and several species of 

saprotrophic fungi (e.g., Cryptosporiopsis radicicola Kowalski & C. Bartnik & Oidiodendron 

maius on Carya ovata; C. ericae Sigler on Fagus grandifolia; Geoglossum simile Peck, Leotia 

lubrica [Scop.] Pers., O. chlamydosporicum Morrall, Trichoderma semiorbis [Berk.] Jaklitsch & 

Voglmayr & Mortierella macrocystis Gams on Quercus rubra). We also found a positive 

interaction with the potentially ectomycorrhizal Sowerbyella unicisa (Peck) Moravec and C. 

geophilum on F. grandifolia which has been until now considered a likely saprotroph not 

previously found in root-associated community studies (Hansen et al., 2013). Cenococcum 

geophilum was also found to have a positive co-occurrence with several ECM fungi, including 

members of the Russulaceae, previously considered to interact negatively with other mycorrhizal 

fungi (Koide et al., 2005; Sun et al., 2015). As a trend, it appears that C. geophilum is forming 

dynamic partnerships with both saprotrophic fungi and other mycorrhizal associates on the roots 

of trees in the temperate forests of eastern North America. The data reported herein can be used 

to develop experimental studies of the relationship between these fungi for a more definitive 

explanation of the observed patterns of occurrence on tree roots.  
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F. Conclusions 

 

Globally, our understanding of fungal diversity is limited by the ability to accurately identify 

fungal taxa, most of which do not form visible fruiting bodies. Traditionally, morphological 

identification of fungal fruiting bodies was used to provide identifications, and the substrate upon 

which a particular fruiting body was found served to assign it to a certain fungal functional guild. 

Morphology-based description of fungal species is essential for understanding of fungal 

diversity; however, this approach has its limitations related to the ephemeral nature of fungal 

fruiting bodies in most species, including such things as the short duration of fruiting and/or 

infrequent production of the fruiting bodies, and their microscopic sizes. In addition, successful 

morphology-based assays of fungi rely heavily on skilled experts in fungal taxonomy. High-

throughput sequencing technology allows more objective assessments of fungal diversity in a 

rapid and accurate way. Because numerous samples can be processed at the same time, a DNA-

based approach could be applied on a much broader scale compared to morphological methods. 

In the temperate deciduous forests of North America, our DNA-based approach revealed hyper-

diverse communities of fungi associated with different host trees. Communities of root-

associated fungi were geographically distinct, specific to host tree species, and interacting with 

each other to form dynamic associations. The DNA-based assessments, as presented in this 

study, when applied on a broader scale, will contribute to an increased understanding of the 

interplay between fungal species at the host tree in addition to providing improved knowledge of 

fungal diversity, ecological functions, and co-occurrence patterns. 
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H. Supplementary 

 

 

Figure S6. Mean values of Good’s Coverage estimator for each sample at each location. All 

values were greater than 96 and there were no significant differences between any sample mean 

suggesting all samples were adequately sequenced to capture the fungi present. Error bars 

represent ±1 standard deviation.  
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Figure S2. Mean richness, diversity, and evenness of fungal OTUs on host trees at different 

sampling sites in temperate deciduous forests of eastern North America. Sites include locations 

in the central Appalachian Mountains (Fernow Experimental Forest – FEF; Mountain Lake 

Biological Station – ML) and locations in the Ozark Mountains of northwestern Arkansas (Lake 

Wilson Park – LW; Lost Valley State Park – LV; Ozark National Forest – ONF; Pea Ridge 

National Military Park – PR). No significant differences exist between the samples among the 

different diversity indices. Error bars represent ±1 standard deviation. 
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Table S2. Richness of OTUs in fungal genera on host trees in temperate deciduous forests 

located in the central Appalachian Mountains and the Ozark Mountains. Host trees were Carya 

ovata (CO), Fagus grandifolia (FG), and Quercus rubra (QR).  

Genus CO FG QR Genus CO FG QR 

Unidentified 2297 1312 2963 Paraconiothyrium 1 0 0 

Cenococcum 41 26 54 Pestalotiopsis 1 0 0 

Cryptosporiopsis 22 4 12 Peziza 1 0 0 

Cladophialophora 17 7 9 Phaeohelotium 1 0 0 

Oidiodendron 14 14 22 Psathyrella 1 0 0 

Inocybe 13 9 24 Pseudobaeospora 1 0 0 

Mortierella 10 4 12 Pseudoclitocybe 1 0 0 

Lactarius 9 20 21 Ramariopsis 1 0 0 

Tomentella 9 7 2 Rhodosporidium 1 0 0 

Meliniomyces 9 4 8 Schizophyllum 1 0 0 

Cortinarius 9 2 17 Stachybotrys 1 0 0 

Russula 7 11 14 Trechispora 1 0 0 

Pachyphlodes 7 2 1 Trichoglossum 1 0 0 

Cadophora 7 1 0 Tylopilus 1 0 0 

Pseudogymnoascus 7 0 0 Coniochaeta 0 3 3 

Scleroderma 6 3 1 Curreya 0 3 0 

Mycena 6 2 6 Craterellus 0 2 7 

Phialocephala 6 1 3 Ganoderma 0 2 1 

Metacordyceps 5 0 7 Sporobolomyces 0 2 0 

Entoloma 4 2 0 Cylindrium 0 1 6 

Elaphomyces 4 1 0 Capronia 0 1 2 

Clavulinopsis 4 0 1 Chalara 0 1 2 

Agrocybe 4 0 0 Exobasidium 0 1 1 

Lecanicillium 3 5 7 Phylloporus 0 1 1 

Urnula 3 4 2 Pseudoboletus 0 1 1 

Tuber 3 4 1 Rhodophyllus 0 1 1 

Strumella 3 3 0 Arthroderma 0 1 0 

Hyphodontia 3 1 3 Codinaeopsis 0 1 0 

Geoglossum 3 0 8 Coltricia 0 1 0 

Crinipellis 3 0 3 Discocainia 0 1 0 

Metarhizium 3 0 2 Echinoderma 0 1 0 

Preussia 3 0 2 Gymnomyces 0 1 0 

Flagelloscypha 3 0 1 Hannaella 0 1 0 

Minimelanolocus 3 0 0 Hydnocristella 0 1 0 

Monographella 3 0 0 Naucoria 0 1 0 

Leotia 2 9 6 Paraleptosphaeria 0 1 0 

Trichoderma 2 6 7 Pezoloma 0 1 0 
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Table S1 (Cont.) 

Genus CO FG QR Genus CO FG QR 

Pochonia 2 3 5 Stropharia 0 1 0 

Cryptococcus 2 1 1 Tetrapyrgos 0 1 0 

Helicodendron 2 1 1 Talaromyces 0 0 6 

Trichothecium 2 1 1 Clavulina 0 0 4 

Clonostachys 2 0 5 Cordyceps 0 0 4 

Hebeloma 2 0 2 Hypomyces 0 0 4 

Fusarium 2 0 1 Calcarisporium 0 0 3 

Paxillus 2 0 1 Hypochnicium 0 0 3 

Trichosporon 2 0 1 Penicillium 0 0 3 

Chaetomium 2 0 0 Exophiala 0 0 2 

Crucibulum 2 0 0 Gibberella 0 0 2 

Daedaleopsis 2 0 0 Gymnopus 0 0 2 

Dictyochaeta 2 0 0 Hypholoma 0 0 2 

Otidea 2 0 0 Lactifluus 0 0 2 

Phomopsis 2 0 0 Lauriomyces 0 0 2 

Pluteus 2 0 0 Leucocoprinus 0 0 2 

Volutella 2 0 0 Phacidium 0 0 2 

Sowerbyella 1 7 0 Suillus 0 0 2 

Amanita 1 3 9 Amphiporthe 0 0 1 

Laccaria 1 3 9 Botryobasidium 0 0 1 

Strobilomyces 1 2 5 Buellia 0 0 1 

Arachnopeziza 1 2 4 Chaetosphaeria 0 0 1 

Idriella 1 2 0 Ciliciopodium 0 0 1 

Verticillium 1 2 0 Clitopilus 0 0 1 

Lycoperdon 1 1 3 Coniothyrium 0 0 1 

Sebacina 1 1 3 Cyberlindnera 0 0 1 

Tricholoma 1 1 3 Dactylaria 0 0 1 

Ilyonectria 1 1 1 Delicatula 0 0 1 

Rhodotorula 1 1 1 Derxomyces 0 0 1 

Hemimycena 1 1 0 Flavoparmelia 0 0 1 

Paraphoma 1 1 0 Graphostroma 0 0 1 

Rectipilus 1 0 3 Haplotrichum 0 0 1 

Genea 1 0 2 Helicosporium 0 0 1 

Mycosphaerella 1 0 2 Hyalopeziza 0 0 1 

Rhizophagus 1 0 2 Hymenoscyphus 0 0 1 

Simplicillium 1 0 2 Lecanora 0 0 1 

Gliomastix 1 0 1 Leptodontidium 0 0 1 

Leucoagaricus 1 0 1 Lindgomyces 0 0 1 

Mycetinis 1 0 1 Lophiostoma 0 0 1 

Botryosphaeria 1 0 0 Luellia 0 0 1 
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Table S1 (Cont.) 

Genus CO FG QR Genus CO FG QR 

Calvatia 1 0 0 Myrothecium 0 0 1 

Cytospora 1 0 0 Ochrolechia 0 0 1 

Gliophorus 1 0 0 Paraphaeosphaeria 0 0 1 

Glomerella 1 0 0 Passalora 0 0 1 

Gnomonia 1 0 0 Phanerochaete 0 0 1 

Hypocrea 1 0 0 Ramularia 0 0 1 

Hypoxylon 1 0 0 Rhexodenticula 0 0 1 

Knufia 1 0 0 Rhizoscyphus 0 0 1 

Lepiota 1 0 0 Sagenomella 0 0 1 

Metapochonia 1 0 0 Sarocladium 0 0 1 

Mycenella 1 0 0 Umbelopsis 0 0 1 

Nectria 1 0 0 Wickerhamomyces 0 0 1 
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Figure S3. Co-occurrence analyses of root-associated fungi on Carya ovata, Fagus grandifolia, 

and Quercus rubra based on different geographic locations: a) communities occurring on roots in 

the central Appalachian Mountains, b) the Ozark Mountains, and c) both localities together. In 

the Appalachian Mountains data: there were 64 fungal species occurring, of 2,016 species pair 

combinations, 1391 pairs (69 %) were removed from the analysis because expected co-

occurrence was < 1 and 625 pairs were analyzed resulting in 26 positive, 4 negative and 593 

unclassifiable interactions. In the Ozark Mountains data: there were 53 fungal species occurring, 

of 1,378 species pair combinations, 966 pairs (70.1 %) were removed from the analysis because 

expected co-occurrence was < 1 and 412 pairs were analyzed resulting in 16 positive, 3 negative 

and 393 unclassifiable interactions. In the combined dataset: 77 fungal species occurred, of 2,926 

species pair combinations, 2,051 pairs (70.1 %) were removed from the analysis because 

expected co-occurrence was < 1 and 875 pairs were analyzed resulting in 65 positive, 9 negative 

and 801 unclassifiable interactions.   
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A. Abstract 

 

Atmospheric acid precipitation, generally referred to as “acid rain”, remains an important 

environmental problem arising from human industrial activities, crop fertilization, and cattle 

farming. Despite pollution abatement efforts the main cause of acid precipitation, i.e. 

atmospheric emissions of NOx and NH3, continue to rise resulting in alterations to aquatic and 

terrestrial ecosystems worldwide. In North American deciduous forests, acid deposition is 

resulting in a suite of consequences such as alterations in soil variables and vegetation, including 

dominant canopy trees. However, very little research has been carried out so far with regards to 

microbial communities, including the root-associated (ectomycorrhizal and endophytic) fungi 

inhabiting the roots of canopy-forming trees. In this study, we quantified the responses of root-

associated fungi to acid precipitation in the Fernow Experimental Forest subjected to long-term 

(since 1989) experimental acid deposition. We assessed fungal communities associated with 

roots of three forest-forming tree species belonging to the Fagaceae family -  Fagus grandifolia, 
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Querqus rubra and Q. alba, using DNA-metabarcoding of the ITS2 rDNA region. Fungal 

communities were significantly different (host-specific) between the sampled tree species, and 

observed fungal responses varied depending on the host tree, with greater shifts found in F. 

grandifolia-associated communities. Acid deposition resulted in strong decreases in 

ectomycorrhizal species, likely resulting from reduced dependence of the host trees on their root-

associated fungi for nitrogen acquisition, as nitrogen availability increased under the 

acidification treatment. Subsequently, other groups of fungi took over the vacant ecological 

niche, including white-rot polypores, ericoid mycorrhizae and dark septate endophytic fungi. The 

observed functional shifts in fungal communities imply strong alterations in ecosystem 

functioning with respect to nutrient cycling and decomposition. 

Keywords: acidification, fungal diversity, ecology, mycology, forests 
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B. Introduction 

 

Human industrial activities, fuel production/consumption, and modern agricultural practices such 

as animal husbandry and fertilization have been dramatically increasing global nitrogen 

emissions in recent decades (Anderson et al., 2003; Galloway et al., 2004; Webb et al., 2005; Ye 

et al., 2011; Yang et al., 2017). Despite abatement policies, NOx and NH3 emissions continue to 

rise and are projected to reach the level of 189 Tg N a−1 by the year 2050, which greatly exceeds 

the emission levels of the 1860s (23 Tg N a−1) and 1990s (93 Tg N a−1) (Galloway et al., 2004; 

Vet et al., 2014). Gaseous NH3 ionizes to NH4
+ in the atmosphere, and the latter then reacts with 

HCl, sulfur and nitrogen oxides to form (NH4)2SO4, NH3NO3, and NH4Cl. These and other 

compounds result in acid precipitation, often referred to as “acid rain” (Seinfeld and Pandis, 

1998). In particular, sulfuric acid residues contribute to acid precipitation (Likens et al., 1996), 

resulting in excessive S and N loads in aquatic and terrestrial ecosystems worldwide (Vitousek et 

al., 1997; Warner et al., 2017). Due to the limited buffering capacity of soil and water, 

atmospheric acid deposition has been projected to cause severe disturbances in 7-17% of natural 

ecosystems over the next few decades (Bouwman et al., 2002). 

The effect of acid rain on natural ecosystems varies geographically, based upon the level of 

emissions in a region from agricultural and industrial activities as well as topographical 

heterogeneity (Yu et al., 2016). Globally, Europe, North America, and China are experiencing 

increased atmospheric NH3 due to fertilization and in the case of the United States, because of 

successful efforts at controlling SO2 and NOx emissions (Warner et al., 2017). The impact of acid 

deposition is also dependent on the ecosystem type, with aquatic ecosystems exhibiting rapid 

changes, and terrestrial ecosystem responding slower, since shifts of acidity are mediated by base 

cations in soils (Driscoll et al., 2001; Adams et al., 2007). In forest soils, the wet deposition of N-
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based and other acidifying compounds has resulted in the leaching of exchangeable base cations 

by as much as 70% from the mineral soil (Heogberg et al., 2006).  

 Approximately 11% of global natural vegetation receives a critical load (greater than 1000 mg 

of N m−2 a−1), in the form of atmospheric acid deposition (Dentener et al., 2006). Increased N-

accumulation has been identified as an important factor altering species composition across a 

number of different ecosystems (Bobbink et al., 2010). For instance, in native grasslands, acid 

precipitation resulted in lower species richness by as much as 23% (Stevens et al., 2004). In 

forested areas, acid deposition has resulted in a decrease of tree growth rate in core wood over 

long periods (DeWalle et al., 2006), likely related to shifts in soil nutrients in both upper 

(organic) and underlying (mineral) horizons (DeWalle et al., 2006; Hoegberg et al., 2006).  

Despite the existing knowledge of the effects of acid deposition on water, soil, and aquatic and 

above-ground organisms, relatively little is known about the effect of acidification on soil 

microbial communities, including root-associated fungi. Few previous studies have reported 

decreases in total microbial biomass and effective rate of decomposition/nutrient cycling (Adams 

and Angradi, 1996; DeForest et al., 2004) under acid deposition treatments.  Gilliam et al. (2011) 

report increases in fungi and declines in bacteria caused by acid deposition. However, no 

information has been provided so far on taxonomic diversity and shifts in functional traits of soil 

fungi in response to acid precipitation. Given the known effects of atmospheric acid deposition 

on aboveground vegetation and the well-known associations between plants and their mutualistic 

fungi, it seems likely to expect changes in communities of root-associated fungi in response to 

acidification. 

The roles of root-associated fungi in forest ecosystems are difficult to overestimate, given that 

the vast majority of woody plants form obligate symbioses with ectomycorrhizal (ECM) and 
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endophytic fungi. Mycorrhizal species provide trees with nitrogen in exchange for carbon-

containing compounds, and thus mediate belowground allocation of carbon (C) in forests 

(Clemmensen et al., 2013). In addition, root-associated fungi play key roles in host defense 

against pathogens (Herre et al., 2007), while also supplying essential microelements and water 

(Marschner and Dell, 1994; Augé, 2001; Lösch & Gansert, 2002). Saprotrophic fungi feed on the 

dead cells of their hosts and facilitate nutrient cycling in the ecosystem; in particular, lignin 

degradation is important for forest C cycling, and is being performed exclusively by fungi (de 

Boer et al., 2005). Fitness of the trees, however, could be largely influenced by a variety of 

fungal pathogens, including necrotrophic species infecting the roots (Jarosz & Davelos, 1995). 

The aim of the present study was to quantify the responses of root-associated fungal 

communities to atmospheric acid deposition. We took advantage of the long-term (since 1989) 

acidification experiment being carried out on the Fernow Experimental Forest (Parsons, West 

Virginia), where acid precipitation has been simulated by the triannual addition of ammonium 

sulfate fertilizer. Ectomycorrhizal root tips from Fagus grandifolia Ehrh., Quercus alba L., and 

Q. rubra L. (Fagaceae) were sampled in an artificially acidified and adjacent, nonacidified 

watersheds to answer the following research questions: (1) how do root-associated fungi shift in 

their community composition in response to experimental acid deposition? (2) how does 

acidification influence richness and abundance in taxonomic and functional groups of root-

associated fungi? and (3) what is the impact of host tree species on the diversity of root-

associated fungi, and their responses to the acidification treatment?  
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C. Methods 

 

Site selection  

A study site in the Central Appalachian Mountains was selected for sampling of root tips from 

host tree taxa in June 2014. The Fernow Experimental Forest (FEF), located near Parsons, West 

Virginia (39.03° N, 79.67° W), is a mixed deciduous temperate forest with watersheds exposed 

to different management conditions in addition to experimental acidification (Adams et al., 

2006).  Watershed three (WS3) has been subject to artificial acidification annually since 1989. 

Three applications per year of ammonium sulfate fertilizer (spring 34kg/ha; summer 101kg/ha; 

fall 34kg/ha) have been applied for 25 years prior to the beginning of this study.  Watersheds 4, 

7, and 13 constitute adjacent unacidified watersheds that were sampled to compare root 

associated fungal community compositions with those of host trees in WS3.  

Root tip and soil sampling 

Root tips were collected opportunistically within watersheds with a distance of at least 10 m 

between sampled host trees. Root tips were sampled from three host tree species in the Fagaceae: 

Fagus grandifolia, Quercus alba, and Q. rubra. Each host species had 5 replicates from WS3, 

and 5 total from the adjacent watersheds 4, 7, and 13 (with the exception of Q. alba, which had 

only 3 trees sampled in control watersheds due to limited numbers). Root tips were collected by 

uncovering roots from the base of the target tree trunk at 90° intervals, unearthing lateral roots 

below the humic layer (0-10 cm), and following these roots to growing feeder roots and root tips. 

Collected root tips from the 4 quadrants of the tree were pooled as a representative sample of 

fungi associated with the roots of the target tree. These feeder roots and root tips were removed 

and stored in 15 ml screw-cap tubes containing 7 ml of 2% cetyltrimethylammonium bromide 

(CTAB) solution, and frozen at -20° C until processed for DNA extraction, PCR, and 
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sequencing. Root samples were thawed and washed with distilled water to remove soil and 

organic particulates. Root sections were examined with a dissecting scope and heat sterilized 

forceps were used to collect root tips. These collected root tips were placed in 2 ml 

microcentrifuge tubes and then frozen and lyophilized. Root material in these tubes was 

submerged in liquid nitrogen and then lysed with sterile 3 mm glass beads in a Tissue Lyser 

(QIAGEN™), and homogenized prior to DNA extraction.  

Soil samples of approximately 100 g dry weight were collected from the top 10 centimeters of 

soil within 1 meter of each sampled tree. Soil samples were air dried, sifted through a 2 mm soil 

sieve to remove large particulates, and sent for soil chemical analyses at Brookside Laboratories 

(New Bremen, Ohio).  

DNA extraction and sequencing 

Each sample was subject to DNA extraction twice, using a total of approximately 50 mg of 

homogenized root tissue. DNA extractions were done using a Macherey-Nagel NucleoSpin Plant 

II DNA extraction kit. The extractions were done following manufacturers protocol for PL1 lysis 

buffer. Matrix-bound DNA went through 2 elutions in 30 µl of PE elution buffer, and replicates 

were pooled prior to PCR. Following the PCR protocol established in Geml et al. (2014), 40 µl 

reactions were carried out at these volumes: 1 µl of DNA template, 4 µl of 10X buffer, 1.5 µl of 

dNTP solution (2.5 mM), 1.5 µl each of forward and reverse primers (10 mM), 0.5 µl BSA (10 

mg/ml), 4 µl MgCl2 (50 mM), 0.4 µl BIOTAQ polymerase (5 U/µl), and 25.6 µl of MQ water. 

The following primers were used: fITS7 (Ihrmark et al., 2012) and ITS4 (White et al., 1990). 

The latter was labeled with sample-specific Multiplex Identification DNA (MID) tags (Table 

S2). PCR reactions amplified a. 250-450 bp region of the ITS2 rDNA locus (Toju et al., 2012). 

As described in Geml et al. (2014), PCR reactions were carried out under the following 
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conditions: 95°C for 5 min (one cycle), followed by 25 cycles at 95°C for 20 sec, at 54°C for 30 

sec, and then at 72°C for 1.5 min, with a final terminal elongation step at 72°C for 7 min. Each 

sample was amplified with three replicate PCR reactions and a negative control with no template 

DNA added. Verification of PCR products was done with agarose gel electrophoresis, and the 

PCR replicates were pooled for each sample. 

Concentration and size distribution of PCR products was done for each pooled sample using an 

Agilent D1000 ScreenTape system (Agilent Technologies, Waldbronn, Germany). Target PCR 

products were separated from short fragments and PCR reagents using 0.9X Ampure® beads 

(Beckman-Coulter, Beverly, Massachusetts, USA). An equimolar pool of PCR products was then 

calculated from the volume and concentration of each sample for a normalized equimolar pool 

concentration of 15 nmol/µl. Oil emulsion PCR using 250 µl of the normalized equimolar pool 

was carried out in accordance with the protocol for the Ion PGM™ 200Xpress™ Template Kit. 

This generated a library which was then sequenced using an Ion 318™ Chip on an Ion Torrent 

Personal Genome Machine (Life Technologies, Guilford, CT, USA). Ion Torrent sequencing 

resulted in 2,545,132 sequence reads with a mean length of 267 bp.  

Bioinformatics analyses 

Preliminary clean-up of raw sequencing data was done using the Galaxy online platform 

(https://main.g2.bx.psu.edu/root) to sort sequence data by sample and remove adapter sequences. 

Sequences with poor-quality ends were trimmed using a 0.02 error probability limit using the 

software Geneious Pro 5.6.1 (BioMatters, New Zealand). Sequence data were then filtered using 

USEARCH v.8.0 (Edgar, 2010) with settings as follows: sequence lengths were truncated to 200 

bp, and sequences with an expected error greater than 1 were discarded. The remaining high-

quality sequences were grouped into 4,153 operational taxonomic units (OTUs) using the 
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UPARSE algorithm in USEARCH set to 97% sequence similarity as recommended in recent 

fungal metabarcoding studies (e.g. Bjorbækmo et al., 2010; Geml et al., 2010; Bellemain et al., 

2013, Tedersoo et al., 2014; Semenova et al., 2016). A total of 2,970 putative chimeric sequences 

were excluded. Sequences were assigned to taxonomic groups using the UNITE fungal ITS 

sequence database based on pairwise similarity search. Global singletons were discarded, OTUs 

with less than 80% sequence similarity to any UNITE sequences were discarded, leaving a 

dataset of 1,937 OTUs for subsequent analyses (Accession Numbers MF664752 - MF666670). 

Ecological functional groups were assigned for OTUs based on the dataset of Tedersoo et al. 

(2014), and resulted in 619 OTUs with putative functional assignment for subsequent analyses.  

 Statistical analyses 

Rarefaction curves were calculated to estimate depth of sequencing coverage. Rarefaction curves 

and calculations of diversity indices (Shannon’s H and Simpson’s D), OTU richness (S), and 

evenness (H/ln S) was carried out using the Vegan package “rarefy” function (Oksanen et al., 

2012) in R statistical software (R Core team, 2014).  

The impact of artificial acid deposition on the composition of root-associated fungal 

communities was estimated using PC-ORD v. 6.19 (McCune and Mefford, 2011) with 

presence/absence data to see if any ecological functional groups or taxa responded to the 

treatment. In addition, soil chemistry data were used to determine which parameters correlated 

with the distribution of root-associated fungal communities in treated and untreated watersheds.  

Non-metric multidimensional scaling (NMDS) in PC-ORD was used with the presence/absence 

data to assess shifts in richness of ecological functional groups or fungal taxa. OTU presence was 

set as 3 or more sequence reads based on similar research (Lindahl et al., 2013; Morgado et al., 

2016). The main matrix consisted of presence/absence data for each OTU by sampled tree 
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(fungal community composition). The secondary matrix contained richness data for fungal 

genera, fungal orders, and OTUs identified as members of ecological functional groups based on 

taxonomy for each sampled tree. An additional secondary matrix containing soil chemistry 

parameters for each sampled tree was also generated. NMDS analyses were also conducted on a 

per-host basis (individual main and secondary matrices based on host) to determine ecological 

functional group responses to the treatment on different host species. NMDS of the main matrix 

was subjected to 500 iterations per run with Sorensen similarity (Bray-Curtis index) selected and 

a random starting number. The resulting ordination was rotated so that treatment appears on the 

left of the first axis and control on the right of the ordination space. Pearson’s correlation 

coefficient R2 > 0.2 can be considered indicative of correlation (McCune et al., 2002). In this 

study Pearson’s correlation coefficient was set at R2 > 0.25 to indicate strong correlations 

between community distribution of the main matrix and parameters of the secondary matrix.  

The values reported in this study (|R|> 0.5) represent correlations important for the 

characterization of fungal community response (Semenova et al., 2016) to artificial acidification 

treatment. The effect on OTU richness for ecological functional groups with >100 OTUs, Orders 

with ≥10 OTUs, and genera with ≥7 OTUs were considered significant in this study.  

To test if root-associated fungi significantly shift in their community composition in response to 

experimental acid deposition and as a function of host-affinity, we ran permutation-based 

nonparametric MANOVA using both treatment and host as grouping variables (Anderson, 2001). 

To run this analysis, it was necessary to randomly subsample 3 of the 5 control group Quercus 

alba in order to maintain groups of equal size. PC-ORD was also used for indicator species 

analyses (Dufrêne and Legendre, 1997) to determine fungal OTUs characteristic for either 

treatment or control conditions, in addition to those OTUs characteristic for specific host taxa.  
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To test for changes in the abundance of OTUs between treatment and controls, we used sequence 

read counts as a proxy measurement and a Comprehensive Meta-Analysis software (Smith, 

2014) to conduct a two-group analysis of each OTU. There is a constraint to using sequence read 

abundance as a proxy for fungal abundance and/or biomass due to variation in copy numbers of 

ITS in different species of fungi. On a per-OTU basis, however, changes in sequence read counts 

between samples can be considered an indication of real differences with respect to abundance 

and/or biomass (Amend et al., 2010). Our two-group analysis data consisted of the following 

data for each OTU: mean read count, standard deviation of the mean, and number of replicates 

for the treatment and control groups. The analysis compared the mean read count for each OTU 

across trees sampled in the acidified watershed, and control watersheds to calculate the size 

effect of the treatment within a 95% confidence interval. These analyses were conducted 

separately for each host tree species to examine the host-specific response of fungi to the 

acidification treatment. OTUs were sorted and analyzed separately based on their ecological 

functional group assignment, and taxonomic assignment to Order or genus.  

D. Results 

 

Experimental acid deposition alters fungal community composition 

Rarefaction curves for all sampled trees reached a plateau, suggesting that root-associated fungal 

communities had been thoroughly sequenced for each tree (Figure S1.A.). There were no 

significant differences between treatment and control trees either in terms of community species 

richness, or estimates of community diversity and evenness (Figure S1.B.).   

Fungal communities did however change significantly in response to acid deposition treatment. 

NMDS analysis resulted in a 3-dimentional solution with a final stress of 9.597 and final 
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instability < 0.00001 (Figure 1). The following correlation values were obtained: axis 1: r2 = 

0.518, axis 2: r2 = 0.209, axis 3: r2 = 0.146. Significant differences between the fungal 

communities of acidified and control sites were revealed by both MRPP (P < 0.001; A = 0.026) 

and MANOVA (P < 0.001; F = 3.96). Experimental acidification treatment explained 18.56% of 

the variation in fungal community composition, as shown by MANOVA. Host tree species also 

had a significant effect on fungal assemblages (MRPP: P = 0.002; A = 0.018, MANOVA: P = 

0.005; F = 1.695), however, this effect was less strong than of the acid deposition treatment; 

according to MANOVA, host tree species explained 8% of the variation in fungal community 

compositions. 

 

 

Figure 1. Nonmetric Multi-dimensional Scaling ordinations of root-associated fungal 

communities under experimental acidification conditions and control conditions. Fungal 

communities appear to be responding to treatment conditions (left) and soil parameters of N and 

pH (right).  

The effect of acid precipitation on richness in fungal taxonomic and ecological groups is 

presented in Table 1. Among fungal ecological groups, we observed strong declines in richness 

of ectomycorrhizal fungi associated with Fagus grandifolia and Quercus alba. Among 
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taxonomic groups, richness declined in 11 fungal genera under acidified conditions; for example, 

this was the case in the ectomycorrhizal genera Cenococcum, Laccaria, Tomentella, Cortinarius, 

Inocybe, and Meliniomyces (ECM/dark-septate endophyte). Strong declines in richness were 

observed for Tomentella associated with F. grandifolia and Q. alba, and Meliniomyces 

inhabiting the roots of F. grandifolia and Quercus rubra. Among the tree species tested, root-

associated communities of Fagus grandifolia showed the strongest response to the acid 

deposition treatment (i.e., richness declines were observed in the largest number of taxa) (Table 

1). On the other hand, acid deposition resulted in richness increases in a few saprotrophic and 

ECM (Russula and Lactarius) genera on the roots of Q. alba. At the level of taxonomic orders, 

11 taxa exhibited significant declines in richness in the acidified watershed, and 6 increased in 

richness in response to the treatment (Table 1). Opposite responses were observed for fungi 

belonging to the order Mucorales; these increased in richness on Q. alba roots, while declining 

on F. grandifolia. 

Table 3(next page). The richness response of ecological functional groups and fungal taxa to 

experimental acid deposition as revealed using NMDS in PC-ORD. Correlation values are in 

bold for groups that correlated with ordination axis 1 at |R| > 0.5. Negative values indicate an 

increase in richness in response to artificial acidification, whereas positive values indicate a 

decrease in response (indicated by directional arrow).   
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 Fagus grandifolia Quercus alba Quercus rubra 

Ecological group # of OTUs Effect R-value # of OTUs Effect R-value # of OTUs Effect R-value 

Ectomycorrhizae 338 ↓ 0.724 165 ↓ 0.686 366  0.123 

Saprotrophs 306  0.334 217  -0.415 386  0.000 

Genus          
Arachnopeziza <5  N/A 9 ↓ 0.565 <5  N/A 

Archaeorhizomyces 22  N/A 24 ↑ -0.534 27  N/A 

Cenococcum 47 ↓ 0.682 21  N/A 50  N/A 

Cladophialophora 47 ↓ 0.532 34  N/A 53  N/A 

Coniochaeta 7 ↑ -0.71 <5  N/A 9  N/A 

Cortinarius 24 ↓ 0.717 10  N/A 28  N/A 

Galerina 15 ↑ -0.754 7  N/A 7  N/A 

Geoglossum 8 ↓ 0.624 8  N/A 6  N/A 

Inocybe 12 ↓ 0.567 14  N/A 10  N/A 

Laccaria 10 ↓ 0.619 5  N/A 10  N/A 

Lactarius 15  N/A 5 ↑ -0.512 18  N/A 

Meliniomyces 47 ↓ 0.542 29  N/A 66 ↓ 0.618 

Mycena 7 ↓ 0.759 7  N/A 9  N/A 

Oidiodendron 17 ↓ 0.616 22  N/A 18  N/A 

Phialocephala 10 ↑ -0.616 <5  N/A 10 ↑ -0.559 

Rhizoscyphus 10 ↑ -0.515 <5  N/A 16 ↑ -0.634 

Russula 48  N/A 11 ↑ -0.614 28  N/A 

Tomentella 40 ↓ 0.577 20 ↓ 0.512 40  N/A 

Umbelopsis 8  N/A 8 ↑ -0.581 <5  N/A 

Xenasmatella 11  N/A <5  N/A 16 ↑ -0.578 

Order          
Agaricales 142 ↓ 0.525 97  N/A 166  N/A 

Archaeorhizomycetales 22  N/A 24 ↑ -0.534 27  N/A 

Atheliales 22 ↓ 0.565 36  N/A 37  N/A 

Boletales 28 ↓ 0.716 12  N/A 25  N/A 

Cantharellales 9  0.677 <5  N/A 13  N/A 

Capnodiales 18 ↑ -0.51 5  N/A 20 ↑ -0.727 

Chaetothyriales 109  N/A 89 ↑ -0.582 137  N/A 

Eurotiales 6  -0.572 16  N/A 10  N/A 

Glomerales 13  N/A 23  N/A 45 ↓ 0.525 

Hysteriales 47 ↓ 0.682 21  N/A 52  N/A 

Mucorales 13 ↓ 0.662 10 ↑ -0.516 7  N/A 

Pezizales 21 ↓ 0.508 22 ↓ 0.888 33  N/A 

Pleosporales 21  N/A 8 ↓ 0.772 19  N/A 

Polyporales 18 ↑ -0.591 8  N/A 22  N/A 

Russulales 116 ↓ 0.525 66  N/A 140  N/A 

Saccharomycetales 7  N/A 8  -0.69 10  N/A 

Sebacinales 21  N/A 18 ↓ 0.753 33  N/A 

Sordariales 19 ↑ -0.526 9  N/A 23  N/A 

Thelephorales 104 ↓ 0.59 57 ↓ 0.729 126  N/A 

Trechisporales 16  N/A 13 ↑ -0.51 19  N/A 
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Changes in abundance of fungi in response to experimental acid deposition 

Comprehensive meta-analysis using CMA software carried out for ecological and taxonomic 

groups of root-associated fungi revealed significant shifts in abundance of some groups occurred 

in response to experimental acid deposition (Table 2). Four ecological functional groups 

experienced a significant decline in abundance under treatment conditions. Among these, ECM 

fungi experienced a decline on Fagus grandifolia (P < 0.001) and Quercus alba (P = 0.002), 

saprotrophic fungi declined in abundance on F. grandifolia (P < 0.001), and declines in 

abundance of animal pathogens (P = 0.029) and yeasts (P = 0.010) were observed on Q. rubra. 

Among the fungal genera, we observed a decline in abundance of Inocybe, Meliniomyces and 

Mortierella among the acidified plots, while increased abundance was revealed for 

Archaeorhizomyces and Russula (Table 2). On the level of taxonomic orders, the Sebacinales 

and Thelephorales experienced significant reductions in abundance across all three host trees. 

Other responses were specific for a particular host tree. For example, Trechisporales increased in 

abundance on Q. alba under treatment conditions but decreased in abundance on Q. rubra. 

Members of the Atheliales also increased on Q. alba while decreasing on F. grandifolia.  
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Table 4. Abundance shifts in ecological functional groups and fungal taxa in response to 

experimental acid deposition as revealed through Comprehensive Meta-Analysis. Significant 

shifts (P < 0.05) in ecological and taxonomic groups are denoted in bold font, with up or down 

arrows indicating the direction of the effect on abundance (increasing or decreasing 

respectively).  

 Fagus grandifolia Quercus alba Quercus rubra 

Ecological group Effect Size effect p-value Effect Size effect p-value Effect Size effect p-value 

Animal pathogens  -0.315 0.197  0.054 0.860 ↓ -0.632 0.029 

Ectomycorrhizal ↓ -0.435 <0.001 ↓ -0.218 0.002  -0.042 0.416 

Endomycorrhizal  0.290 0.271  -0.262 0.545  -0.043 0.844 

Mycoparasites  0.125 0.667  N/A N/A  N/A N/A 

Plant pathogens  0.136 0.373  0.095 0.677  0.054 0.698 

Root endophytes  N/A N/A  N/A N/A  0.049 0.882 

Saprotrophic ↓ -0.248 <0.001  0.068 0.301  -0.088 0.062 

Yeasts  N/A N/A  N/A N/A ↓ -0.627 0.010 

Genus          
Amanita ↓ -0.487 0.035  0.044 0.869  0.070 0.699 

Archaeorhizomyces  -0.227 0.207 ↑ 0.648 0.003  -0.253 0.253 

Cenococcum ↓ -0.367 0.020  -0.149 0.461  0.107 0.551 

Cladophialophora ↓ -0.398 0.005  -0.044 0.807  -0.173 0.228 

Cortinarius ↓ -0.467 0.019  -0.347 0.175  0.331 0.076 

Inocybe ↓ -0.653 0.001 ↓ -0.728 0.001  -0.193 0.506 

Lactarius ↓ -0.548 0.040  N/A N/A  0.462 0.059 

Meliniomyces  -0.115 0.495 ↓ -0.403 0.030 ↓ -0.420 0.002 

Mortierella  -0.393 0.138  N/A N/A ↓ -0.379 0.037 

Russula  -0.241 0.064 ↑ 0.677 0.027  -0.126 0.456 

Tomentella ↓ -0.573 0.001  -0.325 0.140  0.049 0.766 

Order          
Agaricales ↓ -0.323 <0.001  -0.170 0.051  0.056 0.411 

Russulales ↓ -0.213 0.012  -0.120 0.348 ↓ -0.232 0.005 

Chaetothyriales  -0.148 0.095 ↑ 0.242 0.029  0.023 0.779 

Thelephorales ↓ -0.520 <0.001 ↓ -0.448 <0.001 ↓ -0.186 0.028 

Hypocreales ↓ -0.315 0.023  -0.239 0.158  0.025 0.858 

Glomerales  0.051 0.834  0.106 0.572 ↓ -0.759 <0.001 

Pezizales ↓ -0.537 0.001 ↓ -0.620 0.001  0.074 0.639 

Atheliales ↓ -0.559 0.004 ↑ 0.320 0.045  0.091 0.572 

Pleosporales  -0.214 0.220 ↓ -0.586 0.030  -0.012 0.944 

Sebacinales ↓ -0.592 0.001 ↓ -0.437 0.032 ↓ -0.482 0.003 

Boletales ↓ -0.345 0.065  0.039 0.879  -0.034 0.865 

Hysteriales ↓ -0.367 0.020  -0.149 0.461  0.010 0.955 

Mortierellales  -0.193 0.372  N/A N/A ↓ -0.393 0.011 

Archaeorhizomycetales  -0.227 0.207 ↑ 0.648 0.003  -0.253 0.253 

Tremellales  -0.312 0.173  0.185 0.579 ↓ -0.388 0.039 

Cantharellales ↓ -0.777 0.008  N/A N/A  0.147 0.472 

Trechisporales  -0.152 0.564 ↑ 0.633 0.039 ↓ -0.431 0.046 

Polyporales  0.174 0.511 ↓ -0.526 0.022 ↓ 0.609 0.005 
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Indicator species analyses of treatment/control conditions and host taxa 

Indicator species analyses resulted in 45 OTUs determined as significant (P < 0.05) indicators 

for either host species or treatment type. Across all three host tree taxa, we found 4 OTUs 

identified to either genus or species indicative of experimental acid deposition treatment and 33 

OTUs significant as indicators of control conditions (Table S1). Three of the OTUs found to be 

indicative of acidification treatment were determined to be functional saprotrophs 

(Cladophialophora chaetospira [Grove] Crous & Arzanlou, Phialocephala sp., and 

Xenasmatella sp.) with the remaining OTU belonging to the nematophagous species Verticillium 

leptobactrum W. Gams. In the control conditions, 17 of the 33 indicator OTUs were 

ectomycorrhizal, dark-septate endophytes (DSE) or root-associated, 15 OTUs were saprotrophic, 

and a single OTU (Circinaria sp.), was a member of the lichenized ecological group.  

Among the indicators specific for individual host tree species were ectomycorrhizal, 

saprotrophic, and plant pathogenic fungal taxa. Host affinity for Fagus grandifolia was exhibited 

by the ectomycorrhizal fungal species Scleroderma citrinum Pers. and Russula granulata Peck. 

An OTU belonging to the saprotrophic genus Arachnopeziza was indicated for the host Quercus 

alba. A total of 5 OTUs were indicators for the host tree species Quercus rubra. Among these 

were three ectomycorrhizal taxa (Phylloporus rhodoxanthus [Schwein.] Bres., Cortinarius sp., 

and Hygrophorus sp.), an OTU of the saprotrophic genus Cladophialophora, and the 

saprotrophic fungus Mollisia cinerea (Batsch) P. Karst..   
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E. Discussion 

 

In this study, we assessed the responses of root-inhabiting fungi to long-term experimental acid 

deposition, and report strong shifts in fungal richness, abundance and community composition 

under artificial acidification. To our knowledge, this is the first study utilizing DNA- 

metabarcoding of plant root material to quantify the impacts of artificial acidification on root-

associated fungal communities in temperate hardwood forests of North America. Due to 

contradicting trends found in previous studies with regards to changes in fungal community 

composition, richness, and abundance under artificial acidification, our results were difficult to 

compare to existing published research. For instance, studies based on phospholipid fatty acid 

analysis reported increases in fungal abundance (Ruess et al., 1996; Bååth et al., 1984), no 

change in fungal abundance (Pennanen et al., 1998), or a decline in fungal abundance (DeForest 

et al., 2004) under the acidification treatment in coniferous forests. On the level of individual 

fungal taxa, contradicting results with our study, i.e. no changes in richness/abundance under 

acidification treatment, were reported by Bååth et al. (1984) and DeForest et al. (2004). On the 

other hand, declines in richness of root-associated endophytes observed in our study were in 

agreement with the work of Helander et al., 1994, who reported a decline in colonization of roots 

by endophytic fungi in response to acid deposition. Similarly, decreases in specific ECM and 

AM taxa observed in our study corresponded to trends reported by Danielson and Visser (1989). 

We suggest that such a variety of fungal responses to acid deposition presented in previous 

research is heavily dependent on the ecosystems studied and the methodological approach 

utilized. Presumably, observed responses largely depended on initial community structure and 

functions in the specific ecosystem. For example, variation in the initial availability of different 

nutrients coupled with regular N loads could alter in different ways the temporal dynamics of 
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plant nutrient limitation across various ecosystems studied, thus resulting in distinct nutrient 

allocation shifts (and therefore, compositional shifts) in root-associated fungi (Treseder & Allen, 

2002; van Diepen et al., 2010).  

Our data suggested a strong impact of experimental acid deposition on soil chemistry, including 

alterations in soil pH and concentrations of elements, such as Ca++, Mg++, Fe++, Mn++, Cu++ and 

B++, that correlated with shifts in richness and abundance of fungal taxonomic and ecological 

groups. Because changes in pH levels are known to affect nutrient availability (van Diepen et al., 

2010), and vice versa, alterations in concentrations of basic and exchangeable cations shift soil 

pH, it was impossible to disentangle the relative effects of all contributing factors within the 

given experimental setup. Previous studies addressing changes in fungal community 

compositions associated with altered soil variables showed a key role of pH in structuring 

microbial assemblages (e.g., Erland & Taylor, 2002; Wubet et al., 2012; Tedersoo et al., 2014 

and references therein; Goldmann et al., 2015; Zhang et al., 2016), as well as the strong impact 

of element concentrations on fungal richness and abundance (e.g., Oliveira et al., 2016; Xu et al., 

2017). Even though we sampled fungal communities from inside of the tree roots, where the 

variation in pH and element concentrations are smaller compared to soils, shifts in root-

associated assemblages with changing soil chemistry were expected as well (Berg & Smalla, 

2009). 

Perhaps the most striking result of this study was an observed strong decline in both the richness 

and abundance of ectomycorrhizal fungi in response to acid deposition. Similar results were 

obtained in other studies for specific ECM fungi; for example, a decline in commonly occurring 

ECM genus Cenococcum observed in our study corresponded to the findings of Choi et al. 

(2008) who found a decrease in colonization of Larix kaempferi (Lamb.) Carr. seedlings by C. 
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geophyllum under acidification treatment. Another study reported a decreased recovery of 

Amanitaceae sequences resulting from nitrogen deposition in coniferous forest (Weber et al., 

2013), similar to what we found in our study. Given that nitrogen deposition resulted in 

increased tree growth at the experimental site by all measures except core wood (DeWalle et al., 

2006), a decline in ectomycorrhizal fungi was unexpected, since the increases in aboveground 

tree biomass were assumed to correspond to increases in belowground biomass (Raich and 

Nadelhoffer, 1989), thus implying broader niches for root-associated fungi. Supposedly, decline 

in ectomycorrhizal species could indicate that trees were not strongly dependent on their 

mutualistic fungi for nitrogen acquisition in nitrogen-saturated soils, resulting in a functional 

shift in the root-associated fungal community (Wallander and Nylund, 1992; Treseder and Allen, 

2002).  

Nevertheless, ECM fungi declined as a functional guild, responses to acidification varied on the 

level of individual ECM taxa, as also observed by Cairney and Meharg (1999). For example, 

species of the ECM genus Russula increased in both richness and abundance under acid 

deposition, opposite to what we found for other ectomycorrhizal taxa. Because species of 

Russula tend to respond negatively to the presence of other ectomycorrhizal fungi (Koide et al., 

2005; Sun et al., 2015), it remained unclear if the increase in this genus was due to the treatment 

itself or resulted from altered competition with other ECM fungi. Interestingly, another genus 

that increased in richness under the acid deposition (Lactarius) belonged to the Russulaceae 

family as well. 

Acidification treatment resulted in increased richness and abundance in Archaeorhizomyces, a 

ubiquitous soil fungus with uncertain ecological function (Menkis et al., 2014). Because 

Archaeorhizomyces is associated with mycorrhizal fungi but does not form structures typical for 
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mycorrhizal fungi in the roots of the plants, it has been considered a weak parasite of 

mycorrhizal species (Rosling et al., 2011). Increased richness and abundance in this genus could, 

therefore, result from a decline in fitness of ectomycorrhizal species with subsequent 

proliferation of their parasites. 

Even though we sampled fungal communities from the inside of the plant roots, we observed a 

significant portion of saprotrophic fungi among the obtained fungal OTUs.  Similar results were 

shown in other DNA-based studies addressing fungal diversity within the plant roots, however, 

root-associated saprotrophs received very little attention in these studies compared to 

mycorrhizal species (Vandenkoornhuyse et al., 2002; Toju et al., 2013a,b). Root segments in our 

study were not surface-sterilized with any DNA-degrading substances, and therefore, 

saprotrophic species found in our dataset could potentially arise from the outside surface of the 

root. We, however, assume that saprotrophic fungi penetrated the plant tissues as well as 

mycorrhizal species, and lived inside the healthy host tissue awaiting its senescence, that would 

trigger the decomposition of plant material by fungi (Voříšková & Baldrian, 2013; Stone, 1987). 

Acidification treatment did not affect richness and abundance of saprotrophic fungi on Quercus 

hosts, however, it resulted in strong declines in saprotroph abundance on F.grandifolia. This 

trend was indirectly supported by the previous studies reporting declines in decomposition rates 

across experimentally acidified forests (Rechcigl and Sparks, 1985; Tamm, 1976; Wolters, 

1991a,b), including beech-dominated woodlands (Wolters, 1991a). Lower decomposition rates 

were expected to result in accumulation of primary and secondary C-rich compounds (Wolters & 

Schaefer, 1994), likely causing even stronger shifts in microbial community dynamics. 

  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vo%26%23x00159%3B%26%23x000ed%3B%26%23x00161%3Bkov%26%23x000e1%3B%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23051693
https://www.ncbi.nlm.nih.gov/pubmed/?term=Baldrian%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23051693


 

118 

 

 

 

F. Conclusions 

 

The fungal responses to acidification treatment revealed in our study varied depending on the 

host tree species, and were stronger in beech- compared to oak- associated communities. 

Possibly, this difference could relate to existing variation in tree physiology, e.g., with regards to 

N cycling. Comparisons of soil N mineralization and nitrification rates in beech and oak 

rhizosphere revealed high levels of both N uptake and cycling in the Fagus rhizosphere, while 

both N mineralization and nitrification were low in soils under oak (Lovett et al., 2004). Given 

that fungal communities in our study were host-specific, we suggest that the variation in 

observed responses (i.e., the set of fungal taxonomic and functional groups that altered in 

response to acidification treatment) could be explained by existing variation in fungi associated 

with roots of different hosts. We assume that this variation could contribute to unequal fitness 

responses to acid deposition observed in different tree genera (Singh & Agrawal, 2006). Because 

fungal communities have a much faster turnover rate compared to woody plants, the state of 

fungal assemblages may correspond to ongoing environmental changes (including acid 

deposition) that will be reflected in tree traits in future years. Therefore, we highlight the 

importance of studies in soil microbial communities, including root-associated fungi, for 

predicting and managing disturbances in forest ecosystems prior to a stage when such 

disturbances become visible as declines in the fitness of forest trees.  
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Figure S1 (previous page). Statistical analyses of sequencing effort, diversity metrics, and fungal 

biomass. Rarefaction curves of each sampled community (A) show plateau for all samples 

suggesting all community members represented in the sample were sequenced. Diversity 

statistics (B) show variation in richness, evenness, and diversity between treatment and control 

conditions on three Fagaceae species, but no significant differences. NMDS ordination of fungal 

community abundance data (C) is similar to presence/absence with respect to community 

response to artificial acidification. Abundance appears to be sensitive to more soil chemistry 

parameters than presence/absence.  
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Table S1. Indicator species analyses of host and treatment variables in PC-ORD software. 

Significant indicator species (P < 0.05) identified to the genus and species levels are included in 

the table. Ecological function was determined by taxonomic classification. Eight OTUs were 

indicators for the three host species, four OTUs were indicators for the acidification treatment, 

and 33 OTUs were indicators for control conditions. 

OTU Host/Treatment Fungal Taxon Ecological group 
p-

value 

41 F. grandifolia Scleroderma citrinum Ectomycorrhizal 0.047 

1825 F. grandifolia Russula granulata Ectomycorrhizal 0.005 

61 Q. alba Arachnopeziza  sp. Saprotrophic 0.006 

196 Q. rubra Phylloporus rhodoxanthus Ectomycorrhizal 0.038 

500 Q. rubra Cortinarius  sp. Ectomycorrhizal 0.004 

702 Q. rubra Cladophialophora  sp. Saprotrophic 0.02 

777 Q. rubra Mollisia cinerea Plant pathogen 0.02 

991 Q. rubra Hygrophorus  sp. Ectomycorrhizal 0.022 

796 Acidification Cladophialophora chaetospira Saprotrophic 0.019 

31 Acidification Phialocephala sp. Saprotrophic 0.035 

312 Acidification Verticillium leptobactrum Nematophagous 0.039 

129 Acidification Xenasmatella sp. Saprotrophic 0.032 

13 Control Amanita sp. Ectomycorrhizal 0.043 

171 Control Amanita sp. Ectomycorrhizal 0.049 

143 Control Archaeorhizomyces sp. Root-associated 0.015 

924 Control Cenococcum geophilum Ectomycorrhizal 0.01 

69 Control Cenococcum geophilum Ectomycorrhizal 0.046 

1171 Control Chaetosphaeria chloroconia Saprotrophic 0.045 

419 Control Chaetosphaeria sp. Saprotrophic 0.013 

14 Control Chaetosphaeria sp. Saprotrophic 0.013 

499 Control Circinaria sp. Lichenized 0.044 

809 Control Cladophialophora sp. Saprotrophic 0.004 

244 Control Cladophialophora sp. Saprotrophic 0.013 

178 Control Cryptosporiopsis sp. Saprotrophic 0.012 

336 Control Cyphellophora sp. Saprotrophic 0.014 

218 Control Dendrosporium sp. Saprotrophic 0.019 

156 Control Hymenoscyphus sp. Saprotrophic 0.048 

375 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.001 

154 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.003 

1518 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.013 

2918 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.013 

3005 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.044 

1987 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.047 

1549 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.047 

454 Control Meliniomyces sp. Ectomycorrhizal/DSE 0.048 

1063 Control Mortierella sp. Saprotrophic 0.016 

1318 Control Mortierella sp. Saprotrophic 0.047 

174 Control Mycena sp. Saprotrophic 0.004 

115 Control Oidiodendron sp. Saprotrophic 0.003 

688 Control Oidiodendron sp. Saprotrophic 0.037 

380 Control Pezicula radicicola DSE 0.043 

1169 Control Pseudaegerita sp. Saprotrophic 0.041 

7 Control Russula vesca Ectomycorrhizal 0.043 

49 Control Tomentella sp. Ectomycorrhizal 0.002 

741 Control Tuber sp. Ectomycorrhizal 0.046 
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Table S2. IonXpress Multiplex Identification DNA sequence tags assigned to sampled roots of 

Fagus grandifolia (FG), Quercus alba (QA), and Q. rubra (QR). 

Sample ID IonXpress MID# MID sequence 

FG1 1 CTAAGGTAAC 

FG2 2 TAAGGAGAAC 

FG3 3 AAGAGGATTC 

FG4 4 TACCAAGATC 

FG5 5 CAGAAGGAAC 

FG6 6 CTGCAAGTTC 

FG7 7 TTCGTGATTC 

FG8 8 TTCCGATAAC 

FG9 68 TCAAGAAGTTC 

FG10 69 TTCAATTGGC 

QA1 32 TCTTACACAC 

QA2 33 TTCTCATTGAAC 

QA3 34 TCGCATCGTTC 

QA4 35 TAAGCCATTGTC 

QA5 36 AAGGAATCGTC 

QA6 37 CTTGAGAATGTC 

QA7 38 TGGAGGACGGAC 

QA10 84 CTTCCATAAC 

QR1 58 TCCTAGAACAC 

QR2 59 TCCTTGATGTTC 

QR3 60 TCTAGCTCTTC 

QR4 61 TCACTCGGATC 

QR5 96 TTAAGCGGTC 

QR6 63 CCTTAGAGTTC 

QR7 64 CTGAGTTCCGAC 

QR8 65 TCCTGGCACATC 

QR9 66 CCGCAATCATC 

QR10 67 TTCCTACCAGTC 
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V. Discussion and Conclusions 

 

This dissertation presents data on the diversity of root-associated fungi occurring on several 

selected host tree species in temperate deciduous broadleaf forests of western Europe and eastern 

North America, including the responses of root-associated fungal communities to experimental 

wet acid deposition (acid rain). The data contained herein represent a deeper look into the 

incredible diversity of fungi associated with host tree roots in this forest type than previously 

available to researchers. In total, nearly 15.2 million sequence reads were generated from 

samples collected in Europe and North America (ca. 9.4 million reads from Germany and The 

Netherlands, ca. 3.3 million reads from trees in eastern North American forests, and ca. 2.5 

million reads at the Fernow Experimental Forest acidification study). These will be deposited in 

publicly available databases (e.g. DRYAD) once the manuscripts in which they are reported have 

been accepted for publication. These sequences represent a significant contribution to our 

understanding of the diversity of root-associated fungi and may serve as an informational 

baseline to future DNA-based monitoring efforts with respect to fungal communities in 

temperate deciduous forests and their response to changing abiotic factors such as those 

associated with climate change and environmental pollution. The raw sequencing data were 

clustered into fungal operational taxonomic units (OTUs) and given putative taxonomic 

identifications during the course of this research, and those OTU sequences were deposited in 

Genbank (accession numbers: KY413820-KY415572, European OTUs; MG159816 - 

MG162584, North American OTUs; MF664752 - MF666670, Fernow Experimental Forest 

acidification study OTUs ). These deposited OTUs were obtained by clustering the sequence 

reads that passed quality filtering so that only high-quality sequence reads remained, these high-

quality reads were truncated to equal lengths, and then clustered based on 97% sequence 
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similarity across the length of homologous nucleotides. As our understanding of the variation of 

the ITS2 region within and among different fungal taxonomic groups increases, it is likely that 

there will be changes in the methodology for clustering and identification of OTUs to increase 

the capability of this technology to take environmental samples and derive meaningful and 

accurate fungal identities from extracted DNA. Across the three data sets, an average of 16.6% 

of fungal OTUs were assigned species-level identification, while the majority (54.3%) of OTUs 

were identified to the level of order. Future taxonomic research efforts are essential to increase 

the number of taxonomic identities assigned to unidentified/unresolved fungal OTUs and will 

likely also provide information on ecological function of OTUs associated with the roots of host 

trees. In the future, this work could be improved by analyses using more complete data on fungal 

taxonomy and ecology, and the interpretations of the data in this dissertation may change in 

response to our increased knowledge. In this final chapter, I summarize what is known about the 

diversity of root-associated fungal communities in European and North American temperate 

deciduous broadleaf forests, their ecological roles on the roots of host trees, and the response of 

these communities to acid rain based on the current state of the science of fungal taxonomy, 

ecology, and available technology.  

A. NGS and fungal diversity 

Next generation sequencing technology makes possible the rapid and cost-effective identification 

of fungal DNA found in environmental samples and samples with multiple fungal community 

members present, such as the pooled root tips used to represent fungal root-associated 

communities in the body of work presented in this dissertation. Across the three studies 

presented herein, a conservative threshold of 80% sequence identity to curated sequences in the 

UNITE database was used to assign an OTU to the kingdom Fungi. This approach may exclude 
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deeply-divergent fungal lineages yet to be undescribed in the literature, but it reduces the 

likelihood of misidentification of OTUs belonging to nonfungal lineages being included in the 

analyses. Because the temperate deciduous broadleaf forest biomes of Europe and North 

America are among the more thoroughly studied in terms of fungal diversity (Tedersoo et al., 

2014), it is expected that a sequence with 80% or greater identity to known fungi should be 

considered as within the fungal lineage.  While some fungal sequences may have been excluded 

as a consequence, such a conservative approach was also expected to exclude the majority of 

remaining erroneous reads in the data sets. In the study of European root-associated fungi, there 

were ca. 1760 OTUs identified using this approach, 2769 OTUs in the North American study, 

and 1937 OTUs in the study of the effect of artificial acidification on root-associated 

communities. The mean richness of fungal OTUs per sampled host species/site was within the 

range of 110-257 in European forests, 381-542 OTUs in North American forests, and 169-329 in 

the Fernow acidification study. Within each study, there was no significant difference between 

mean richness on the hosts sampled, but there does appear to be a difference in richness between 

Europe and North American root-associated fungal communities on the selected genera (Fagus 

and Quercus), and a reduction of richness values on the Fernow Experimenal Forest when 

compared to other North American forests.  This could be a function of updates to the curated 

database that occur at infrequent intervals as fungal taxa are more thoroughly understood. Across 

all three studies in this body of work, the proportion of OTUs in the Ascomycota (37-49%) was 

greater than for the Basidiomycota (23-30%) on all host trees. Rare fungal phyla on host tree 

roots included the Glomeromycota (0.03-4%), Chytridiomycota (0.1-0.2%), Zygomycota (1-2%), 

and Rozellomycota (0.5-0.6%). All four rare phyla occurred in the acidification study, the 

Glomeromycota and Chitridiomycota occurred in the European study, and only the 
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Glomeromycota appeared as a rare occurrence in the study of root-associated fungal diversity in 

North America. Within the Ascomycota across all studies, the greatest species richness occurred 

in the orders Helotiales, Hypocreales, Hysteriales, and Chaetothyriales. The Helotiales 

represented a much greater proportion of the root-associated community in the artificial 

acidification study (11-13%) than in either the European or North American studies (3-5%). 

With respect to the Basidiomycota, the greatest number of species occurred in the orders 

Agaricales, Russulales, Thelephorales, Boletales, Tremellales, and Sebacinales. The 

Thelephorales and Sebacinales made up a greater proportion of the root-associated communities 

on hosts in North America (4-7% and 1-3%, respectively) versus those in Europe (0.9-2% and 

0.1-0.5%, respectively).  

Across all data sets, the number of unidentified fungal OTUs was approximately 25 percent. This 

inability to resolve the identities of OTUs, in addition to the lack of knowledge with respect to 

individual fungal species ecological lifestyles in situ, makes the determination of ecological 

functional group assignment complex and at times uncertain. In the studies presented herein, 15-

25% of OTUs were assigned an ecological function (ranging from ca. 375 – 650 OTUs) based on 

taxonomic assignment of taxa where that information is available in the current literature. This 

number was considered sufficient for analyses of ecological guilds in root-associated 

communities. Saprotrophic and ectomycorrhizal guilds were the most dominant in root-

associated communities, followed by plant pathogenic fungi.  

B. Fungal host-specificity 

Current opinion on the importance of host-specificity for root-associated fungi ranges from 

unimportant/negligible (Dean et al., 2015; Roy-Bolduc et al., 2016) to highly important 

(Massicotte et al., 1999; Wehner et al., 2014) with respect to fungal community composition, and 
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this may vary depending on the host tree species under study. In the context of this work, host 

species was considered important, since it explained approximately 9-15% of the variation in 

fungal communities on host root systems. Among European trees, the number of OTUs specific 

to any one tree species ranged from 122-493. That range was dramatically larger for host tree 

roots in North American deciduous forests (414-1491). This trend was markedly different in 

terms of overall proportion of specific occurrence among root-associated communities on 

members of the Fagaceae as well (6-8% of fungal community specific to the Fagaceae in Europe, 

10-40% in North America). This trend may not be significant, as these two studies consisted of 

different host taxa in Fagaceae, as well as different species in the Betulaceae and Juglandaceae 

between the two continents. However, it is evident that diversity and specificity on the Fagaceae 

in North America appears greater than the European root-associated communities on closely 

related species. Generalists in Europe and North America were of comparable proportions 

(14.9% and 11.6%, respectively). Specificity may play a role in the increased OTU richness 

observed in the North American data, among other factors such as different disturbance regimes 

and more comprehensive taxonomic sequence databases.  

Analysis of host-specific and generalist root-associated fungal community members with 

assigned ecological functional groups revealed an interesting observation. Among host-specific 

communities, saprotrophic taxa appear to dominate the communities and suggest that host niche 

specialization is a successful strategy for fungi making a living via decomposition. Conversely, 

among the community members occurring on all host tree taxa, the dominant lifestyle was 

ectomycorrhizal. In the case of symbionts, it appears that a strategy of associating with whatever 

is available is preferable to specialization.  
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C. Regional variation in fungal communities 

There appear to be distinct geographic and latitudinal differences in fungal communities from 

soils sampled globally (Tedersoo et al., 2014). The results of the work reported herein are 

consistent with that finding and describe the variation in root-associated fungal communities 

from geographically disparate host tree populations not from soil, but directly from root tissue. In 

North America, the extent of community composition explained by location was nearly 30%, 

while location in the European study explained more than 21% of the community composition. 

Currently, there are multiple explanations of the spatial variation in community structure of 

microorganisms within and between continents and across oceans (Green and Bohannan, 2006). 

On a landscape scale, communities of ectomycorrhizal fungi vary based on differences in 

dispersal strategy (Nara, 2009). On a larger continental or global scaling, other factors, such as 

spore dispersal limitations, adaptive evolution, and biogeographical histories must be considered, 

and it is reasonable to expect that spatially disparate places will develop unique fungal 

assemblages over time (Peay et al., 2010). This is likely the case for root-associated fungal 

communities on conspecific hosts in the different forests considered in the present work; to the 

extent that they are geographically isolated, exposed to different geological and biogeographical 

histories, and adapting to local conditions over time it makes sense that these communities will–

at least to some extent–be compositionally distinct from one another across a spatial scale. 

Historical contingency–the order and timing of individual species arrival in a community–can 

cause priority effects (Fukami, 2015) that are also a likely driver of differences in fungal 

community composition at some spatial scale.  
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D. Fungal responses to acid deposition 

The results of our analyses showed strong responses in fungal communities to experimental wet 

acid deposition via tri-annual application of ammonium sulfate fertilizer. Community 

composition shifted in response to the treatment, and 18.56% of the variation in fungal 

communities was explained by the acid deposition treatment. As a general trend, richness and 

read abundance of fungi declined in response to the treatment, although that was not true for all 

fungal taxa (see next section). Soil chemistry analysis and ordination showed that pH was an 

important factor for explaining community composition, as well as soil nutrients, including 

nitrogen, iron, and manganese.  Forest trees typically show an increase in growth during the first 

several years of acid deposition due to increased nitrogen availability, but over long periods of 

chronic acid deposition some trees will slow their growth rate and even experience a reduction in 

annual growth of core wood in response to nutrient leeching (a consequence of acid deposition 

and lack of buffering capacity in some soils) (DeWalle et al., 2006). It takes years to see the 

effects of acid deposition on forest trees, but their root-associated fungi appear to shift strongly 

in response to acid deposition and perhaps could represent a method of monitoring forest health 

for management purposes.  

E. Responses of fungal taxonomic and ecological groups to acid deposition 

To determine the responses of fungal taxonomic groups and ecological functional groups to 

experimental acid deposition, analyses of both richness and abundance were carried out. A 

conservative approach was taken to minimize the chances of small sample sizes causing strong 

correlation coefficients. OTU richness values of taxonomic groups and ecological functional 

groups were set to ≥ 7 OTUs minimum (at the level of genera), ≥10 OTUs in fungal orders, and 
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≥100 OTUs for ecological functional groups. Strong Pearson’s correlations were considered as 

(|R|>0.5) to provide a conservative estimate of groups responding to treatment. 

With respect to richness responses to acid rain, ectomycorrhizal fungi and many fungal taxa 

experienced strong declines. Most notably for ectomycorrhizal genera, two (Russula and 

Lactarius) increased in richness in response to treatment. The Russulaceae have been shown to 

respond negatively to the presence of a community of other ectomycorrhizal fungi (Koide et al., 

2005) and may be taking advantage of the reduction in other ECM fungi in the community (Sun 

et al., 2015). This suggests that at least the functional role of mycorrhizae on root tips is being 

fulfilled by some fungi under conditions of acid deposition, and this could lead to a method for 

monitoring forest health by comparing community richness of the Russulaceae in acidified 

forests with other ECM communities in non-acidified forests.  

Comprehensive meta-analyses were done for sequence read counts on a per-OTU basis to assess 

responses in abundance to acid deposition. Copies of the ITS region in fungal genomes vary in 

number depending on the taxa involved, and this may not offer the best way to examine 

abundance shifts when comparing individual taxa (Amend et al., 2010). However, in the case of 

examining the same OTU across different treatments this method can be considered a useful 

proxy for biomass or abundance. In this way we could determine the shifts in fungal abundance 

of ecological functional groups and fungal taxa responding to acid rain treatment. In this 

analysis, ECM and saprotrophic fungi both experienced a decline in abundance/biomass. 

Ectomycorrhizae declined as a group, but species of Russula increased in abundance, perhaps 

taking advantage of increased availability of uncolonized root tips as other ECM taxa decreased.  

Reduction in richness and abundance of ECM and saprotrophs, the two largest ecological groups 

of root-associated fungi, in response to acid deposition could lead to shifts in nutrient cycling as 
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the taxa involved in this ecosystem function may not persist under harsh conditions of 

acidification. There are conflicting reports in the current literature as to the responses of fungi to 

acidification, including increasing (Ruess et al., 1996), decreasing (DeForest et al., 2004), or no 

change (Pennanen et al., 1998). However, researchers have shown an increase in acetate 

incorporation into fungal ergosterol under acidified conditions (Rousk et al., 2009), which could 

indicate that those fungal taxa which remain or increase in richness and abundance under acid 

rain conditions will fulfill the roles of the fungi and bacteria which are extirpated. We suggest 

that in addition to this, local community structure (fungal species present) and functional guilds 

of taxa (what they do in the environment), site characteristics and soil chemistry parameters such 

as buffering capacity and N availability, are likely to dictate such a wide variety of measured 

responses to acid deposition in fungal communities. Ergosterol-based analyses such as those 

mentioned above would benefit from the addition of a DNA-based approach to determine taxa 

involved in such a variety of responses to acid deposition.  

F. Fungal-fungal interactions 

Analysis of fungal co-occurrence patterns was done in both European and North American data 

sets to identify any potential fungal-fungal interactions. This analysis identified patterns in co-

occurrence that happened more often than (positive) or less often than (negative) expected by 

chance.   Across both sets of data there appeared to be both positive and negative co-occurrence 

patterns between ectomycorrhizal fungi, saprotrophic fungi, and combinations of the two 

lifestyles. These patterns could indicate fungal partnerships between ECM and saprotrophs, and 

potentially within functional guilds.  

Given the fact that Cenococcum geophilum (a likely species-complex still listed under the 

umbrella of a single name [ Douhan et al., 2005]) was shown to decrease in both richness and 
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abundance in response to acid deposition, it was somewhat surprising that they are positively 

associated in both European and North American datasets with members of the ectomycorrhizal 

Russulaceae (both species of Russula and Lactarius) which show an opposite response to acid 

deposition. It appears that in a healthy forest rhizosphere environment, these two groups of 

ectomycorrhizal fungi form some sort of partnership rather than being exclusive. Based on our 

data alone, it is rather difficult to speculate on the nature of the relationships, both positive and 

negative, evidenced in the observed co-occurrence patterns. However, these data do highlight 

potential areas of interest for future work to determine precisely what interactions are happening 

between fungal taxa in the root-tip environment.  

G. Future research 

The research described herein provides significant improvements to our knowledge of the 

diversity and distribution of fungi associated with tree roots in temperate deciduous broadleaf 

forests of Europe and North America. The DNA-based approach to assessing community 

structure provides a dramatic increase in taxonomic data. However, there exists a very real need 

for comprehensive taxonomic work with culturable fungi to characterize and deposit sequence 

data for the > 25% of unknown members of kingdom Fungi, and even more unresolved species 

in known genera or other higher taxa that are detectable via environmental metabarcoding 

studies. The DNA-based approach can tell us what fungal DNA is present in a sample but not 

what taxa are functionally part of the root-associated community. In addition, the functional 

assignment of individual taxa based on taxonomy and the current understanding of ecology in 

closely related taxa is not direct evidence of an ecological lifestyle. An approach that uses 

transcriptomics of fungal isolates in experimental conditions, coupled with metabarcoding of the 

fungal community, would be useful to describe the functional roles of individual fungi in the 
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community in a direct way. Similarly, the interactions between fungi characterized as positive 

and negative co-occurrences in this study would benefit from future research assessing one-on-

one interactions in vitro and more complex interactions in a controlled experimental 

multifactorial setting to uncover the mechanisms at play.  

This research is apparently the first study using a DNA-based approach to identify and observe 

responses (shifts in richness and abundance) to acidification in individual fungal taxa and 

ecological functional groups. As such, it could serve as a baseline dataset to inform future 

researchers the extent of taxonomic and functional shifts in communities at the Fernow 

Experimental Forest in this snapshot of time. Similar studies in other ecosystem types and forest 

biomes could and perhaps should be used to capture the extent of fungal responses to 

acidification across multiple ecosystems. There is a potential that root-associated fungi such as 

those in this study are buffered by their presence on the surface–or inside–of tree roots, and thus 

respond differently to acidification than their soil-borne counterparts. A future study examining 

the differences in both community structure and function, and response to acid deposition, 

between soil fungi and root-associated fungi would be one way to determine the differential 

response of communities in these two habitat types.  

In the future, the recent technological advancement allowing single-molecule sequencing without 

PCR amplification will presumably become an affordable technique for a more accurate 

assessment of fungal community richness and abundance of root-associated fungi. The fact that 

fungi and fungal communities have a greater rate of turnover in response to abiotic factors than 

trees and other forest species, may make them a good environmental indicator of forest health for 

locations experiencing increased acid deposition or any of numerous other ecosystem 

disturbances including climate change, forestry activities, or drought.   
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