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Abstract 
 

A forecasting model, associated with predictive analysis, is an elementary requirement 

for academic leaders to plan course requirements. The M.S. in Operations Management (MSOM) 

program at the University of Arkansas desires to understand future student enrollment more 

accurately. The available literature shows that there is an absence of forecasting models based on 

quantitative, qualitative and predictive analysis. This study develops a combined forecasting 

model focusing on three admission stages. The research uses simple regression, Delphi analysis, 

Analysis of Variance (ANOVA), and classification tree system to develop the models. It predicts 

that 272, 173, and 136 new students will apply, matriculate and enroll in the MSOM program 

during Fall 2017, respectively. In addition, the predictive analysis reveals that 45% of applicants 

do not enroll in the program. The tuition fee of the program is negatively associated with the 

student enrollment and significantly influences individuals’ decision. Moreover, the students’ 

enrollment in the program is distributed over 6 semesters after matriculation. The classification 

tree classifies that 61% of applicants with non-military status will join the program. Based on the 

outcomes, this study proposes a set of recommendations to improve the admission process. 
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I. INTRODUCTION 

The colleges and universities in the United States of America are experiencing an 

increase in the number of graduate level students every year. A survey by the National Center for 

Education Statistics (“Fast Facts,” 2017) reveals that the institutions are expecting to award 

3.73% more graduate-level degrees during the 2017-18 academic year when compared to the 

previous academic year. The University of Arkansas follows this trend. The University enrolled 

4,275 graduate students in all departments during Fall 2016, a 1.3% increase from the previous 

year. The University of Arkansas’ academic council is committed to recruiting more graduate 

students for its 86 master’s degree and 50 doctoral programs to maintain the University’s 

research mission as a Carnegie Research I institution. (“U of A Enrollment,” 2016).  

The Master of Science in Operations Management (MSOM) program at the University of 

Arkansas has been committed to the University mission of providing quality graduate education 

since 1974. The program has the largest number of graduate students and provides education 

through online, live or hybrid modalities. However, the MSOM program faces many challenges. 

The MSOM program does not receive the state’s funding for higher education. In general, the 

state’s funding for higher education in the United States has been decreasing for the last 20 

years. The recent economic recession further worsened the funding trend. The rising cost of 

research components, software-licensing fees, healthcare, journal subscriptions and other utilities 

are posing an immense threat to the budget for education. It is a critical task for the program to 

distribute the available resources efficiently since there is no new funding available from the 

state (“Campus Planning Update,” 2016). 

The resource allocation largely depends on the estimation of student enrollments in the 

program. The forecasting system is an essential predictive tool for the department in such a 
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complex environment. As defined, it is a planning instrument for the leaders to cope with future 

uncertainties based on the analysis of the past and present data trends. The quantitative 

forecasting is based on numerical analysis that attempts to associate two or more variables, and 

time series analysis that uses past information to make a prediction. The qualitative analysis 

depends on experienced employees’ knowledge and judgment to provide valuable insights about 

the future admissions. A combination of quantitative and qualitative forecasting can help the 

MSOM department effectively predict future student registrations and assist in the revenue and 

expenditure budget, course offerings, human resources planning and supportive resource 

allocation. However, the forecast accuracy is interrelated with the availability of precise data, 

admission process, off-campus facilities, courses offered online and other factors.  

This thesis strives to answer the question: can we predict next year’s MSOM student 

enrollment more accurately? This research obtained the appropriate data from a complex records 

system and analyzed the application, matriculation and enrollment information of the MSOM 

program. The study focused on identifying existing data patterns and developing a quantitative 

forecasting model based on the analysis. The process included a qualitative exploration to 

improve the forecasting accuracy. Additionally, the study performed quantitative predictive 

analysis on the available information to pinpoint the fundamental aspects associated with the 

enrollment decision. The research combined the findings with forecasting outcomes and 

recommended future strategic efforts. 

This paper is as follows: in Section 2, the paper reviews the literature on predicting the 

total new student enrollments using forecasting models. In Section 3, the paper clearly outlines 

the specific objectives of the research. Section 4 covers the research methodology. Section 5 

defines the system components, develops the models and computes the accuracy to validate the 
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research. Section 6 covers the predictive analysis of the data sets. Finally, Section 7 discusses 

future research opportunities.   

II. LITERATURE REVIEW 

This research focused on two broad intentions. The first aim was to develop an 

appropriate forecasting model to estimate the future new student admissions to the MSOM 

program. Secondly, the study used predictive analytics to model an individual’s actions and 

improve forecasting performance by combining the outcomes. The literature review focuses on 

both features of the study. 

Boes and Pflaumer (2006) used Autoregressive Integrated Moving Average (ARIMA) 

methods to analyze the structural ratios and develop a forecasting model to estimate university 

student enrollments in Germany. The study analyzed the structural ratios by relating the number 

of university students to the population of the same age. The aim of this study was to improve 

the existing transition model, which does not consider the prediction intervals and lacks the 

forecast uncertainty measure. The research predicted that the total student enrollment at the 

university level in Germany would reach 2.35 million students by 2015. However, the forecast 

interval ranged between 1.72 and 2.98 million at a 95% confidence interval in 2015, a very wide 

margin. This analysis process considered only population as a factor in describing the structural 

ratios.  

   Ward (2007) proposed a forecasting model using a “3-year average” method to estimate 

new student application, admission, and enrollment information. This model was designed to 

predict the total number of applications required to achieve the targeted student matriculation 

figures and improve the enrollment rates. Furthermore, their forecasting model developed a 
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system to distribute the new students basing on their entrance exam scores and grade point 

averages, and assist the financial aid administrators. This model used 5 years’ worth of data to 

predict future new student registrations. However, the 3-year average method failed to reflect the 

trend and seasonal impacts in the forecasting model. The 3-year moving average method is not 

suitable for a sophisticated data pattern and the process is vulnerable to any fluctuation in the 

time series (Stevenson, 2012). In addition, the model used only yield rate method to justify the 

performance of the forecast model. 

Zan et al. (2013) proposed multiple forecast models to predict the future student 

enrollments at the State University of New York at Binghamton. Their study analyzed the 

historical student enrollment information at three different levels – university, school, and 

division. The analysis compared the performance of different forecasting models and revealed 

that the 1-year average method produced the lowest Mean Absolute Percentage Error (MAPE) of 

40% for the Spring semester using the school level data set. On the other hand, average return 

ratio method provided the forecasting error of 81% for Fall semester using the university-level 

data set. It is not feasible to use two different forecasting models for two semesters using two 

diverse data sets. Also, these models need more rationalization from other accuracy perspectives 

rather than depending on only forecasting error. In addition, these proposed models do not justify 

an individual student’s motivation to join the institution. 

Callahan (2011) mentioned in his white paper that Institutional Planning, Assessment, 

and Research (IPAR) division developed an enrollment projection model for Winona State 

University in Minnesota. The data set included the current class-to-class level new student 

enrollment information, retention rate, advancement rate and non-advancement rate. Also, it used 

Fall to Spring and Spring to Fall class information and estimated the Summer enrollments 
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directly from the past terms. Finally, a 3-year moving average method projected the new student 

enrollment in the university for the upcoming semester. The moving average forecasting method 

has significant drawbacks when trend and seasonality are present in the data set. In addition, it 

did not consider the environmental factors, such as tuition fees and unemployment rate that 

influence the student’s enrollment decisions. However, the paper did not specify the accuracy of 

the forecasting model.  

Lavilles and Arcilla (2012) developed a student enrollment-forecasting model for the 

Mindanao State University in the Philippines as a part of the electronic School Management 

System (e-SMS). The new model aimed to replace the naïve forecasting model previously used 

by the university. The study developed forecasting models using three different methods – 

simple moving average, single and double exponential smoothing approaches over a period of 5 

years. The results revealed that the simple moving average is not suitable for their data pattern. 

The single exponential smoothing method, with an alpha of 0.9, exhibited low MAPE. The 

outcome showed that 80% of the subjects considered the latest observation as a major factor in 

estimating the number of enrollments. The remaining 20% emphasized on the old records. This 

model projected 20.5% better accuracy than the existing naïve forecasting model. The double 

exponential smoothing method, with an alpha of 0.9 and beta of 0.1, displayed MAPE of 16.4%. 

Furthermore, the researchers used 182 subjects to generate the least error model based on the 

available data. About 58% subjects resulted in lowest MAPE using double exponential 

smoothing and remaining 42% subjects used single exponential smoothing. However, the study 

did not optimize the alpha value using Mean Squared Error (MSE). Also, the study could have 

used tracking signals and control charts to check the accuracy of the forecasting model. 
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Trusheim and Rylee (2011) developed a predictive forecasting model to link the 

enrollment and budgeting process of the University of Delaware. The objective of this study was 

to develop an enrollment projection model and a tuition model and establish a relationship 

between them for a better planning strategy. This study accommodated the freshmen, transfer, 

readmit and continuing student information through the 1999-07 academic years to predict the 

enrollment for 2008-09. The model further classified the data set into full-time and part-time 

categories and calculated the 5-year semester-to-semester retention rate. Furthermore, the study 

collected the estimated student enrollment information from the provost and enrollment 

management committee and verified the numbers with the admission office. Finally, the 

estimated value was multiplied by the 5-year retention rate to obtain the enrollment forecast for 

the 2008-09 academic years. The accuracy check revealed that the model predicted within 1% of 

the actual enrollment. However, the model did not consider other enrollment criteria or drop 

rates during the semester. Also, the simple moving average method struggles to reflect the actual 

retention rate in presence of the trend and seasonality. In addition, there is a major drawback in 

justifying the performance of the proposed model. 

Chen (2008) developed a quantitative forecasting model to predict student enrollment at 

Oklahoma State University. This integrated forecast model analyzed the student enrollment 

information over 42 years, during the period Fall 1962 - Fall 2004, and checked the explanatory 

power with 15 independent variables. In the first phase, the ARIMA (1,1,0) revealed that the 

number of Oklahoma high school graduates significantly contributes to the Oklahoma State 

University enrollment. The accuracy of this model was 97.89% and coefficient of determination, 

R², was 0.96. In the second phase, the linear regression model discovered that one year lagged 

enrollment and Oklahoma high graduates are highly correlated with the university enrollment. 
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The MAPE of this model was 1.62% and R² was 0.97. Also, this study found that the linear 

regression model outperformed the ARIMA model at three turning points. There is an 

opportunity to improve the performance of this model by combining it with a qualitative 

forecasting model. In addition, a control chart can help the university leaders to track the validity 

of the forecasting model in future. 

Rehman and Larik (2015) compared three forecasting models to develop a concrete 

decision making policy for COMSATS Institute of Information Technology in the Pakistan. The 

models are a simple linear regression model, a linear trend model, and Holt’s linear trend model. 

The study used 12 years of new student admission information to develop the forecasting 

models. The study discovered that the simple linear regression model provided better accuracy as 

measured by the variance of the predicted values from the actual values. But this study did not 

analyze the historical data pattern and justify the selection of the forecasting models. Also, this 

study did not clarify the optimization process of the coefficient factors. The simple linear 

regression model was accepted based on a single accuracy standpoint, which may not be correct 

considering other accuracy testing methods. 

Bowe and Merritt (2013) used SAS® BI platform to develop the short and long-term 

student enrollment-forecasting model for Kennesaw State University in the Georgia. This study 

selected a ratio-based forecasting model for short-term purpose and used SAS® Enterprise 

Guide® to construct the model. The researchers determined that a stable business environment 

surrounds Kennesaw State University and the ratio-based forecasting model is highly reliable for 

such a scenario. The analysis calculated the average census-to-registration ratio based on the Fall 

enrollment data set during 2003-10 and used it for estimating future enrollments. Similarly, the 

researchers selected a mixed ARIMA model to predict the long-term student enrollment in the 
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university and used SAS® Forecast Studio® to develop the model. However, the study used 

limited independent variables to develop the ARIMA model. In addition, it did not measure the 

accuracy levels to justify the performance of the forecasting models. The Kennesaw State 

University can take the advantage of the SAS software to predict the individual’s decision to join 

the institution. 

Robson and Matthews (2011) compared two forecasting models to more accurately 

predict student enrollments at Utah Valley University. The ARIMA model used 22 years of 

student enrollment data set and the results both displayed an R² value of 0.99. The linear 

regression results revealed that unemployment rate and number of Utah high school graduates 

had a significant impact on the university’s enrollment. This model showed acceptable accuracy 

results through the Ljung-Box chi-square and MSE tests. On the other side, the mixed model 

used 12 years of enrollment data set and divided the students into 6 distinct registration 

categories. The outcomes revealed that the retention of existing students significantly influenced 

the enrollment growth. Also, the model indicated that the enrollment from high school might 

gradually decrease due to supply limitations and demand permeation. The study had the 

opportunity to combine the quantitative outcomes with qualitative features and improve the 

overall forecasting performance. Furthermore, the study did not perform the predictive analysis 

to understand student’s motivation to join this particular institution. 

Aadland, Godby, and Weichman (2007) classified the student enrollment information 

into four categories to develop the forecasting models for the University of Wyoming. Firstly, 

the researchers developed a linear regression model over the time 1957-2005 to predict 

undergraduate enrollment from the permanent residents of Wyoming. The model revealed that 

all the 5 variables, such as tuition fees, energy prices, 8th – 12th grade enrollment in Wyoming’s 
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education system, Wyoming’s community college enrollment, and University of Wyoming 

athletic success, have an affect on the enrollment. The model came with a R² measure of 92.5%. 

Secondly, the researchers used a semi-log regression model to predict the undergraduate 

enrollment from regional states. The result showed that their out of state tuition fee policy led to 

129 fewer less regional undergraduate student enrollments. On the other hand, an increase in 

neighboring state Colorado’s college admissions was a predictor of enrollment growth for the 

University of Wyoming. The model presented an R² measure of 94.2%. Thirdly, this study used a 

linear regression model to explain the university’s graduate enrollment. The result showed a 

strong relationship between economic conditions in the United States and graduate enrollment. 

The resulting R² was 91.9%. Finally, this research used a simple linear trend regression model to 

explain the undergraduate enrollment in the university from “all other” states. The analysis 

showed that predicted enrollment tracked actual enrollment properly over the short period. The 

resulted R² was 97.4% due to the linear trend. This study checked the accuracy of the models 

using the out-of-sample method and the results were within -0.5% and -1.5% margin of error. 

However, it is challenging to maintain three different forecasting models to predict future student 

enrollments in the university. 

Davidson (2005) analyzed 10 independent variables, such as campus visit, high school 

program, online application, direct correspondence, entrance exam scores etc.,  using a logistic 

regression model to predict the level of influence each variable had on individual student’s 

perspective to join Hardin-Simmons University in the Texas. The model considered both 

matriculated and non-matriculated student information over a period of 5 years, 1999-2003. The 

study revealed that housing status, the area of study, test scores, school ranking, ethnicity, 

religious denomination, and region of the state highly influenced student enrollment in the 
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university. The index for the student’s projected possibility for entering the university is 92.70%. 

This study aimed to accurately forecast a student’s prospects for enrolling in the university but a 

standard quantitative and qualitative forecasting model did not support the model. In addition, 

the study failed to address the impact of the tuition fee on individual’s decision-making process. 

Ledesma (2009) focused on a Wisconsin-based private liberal arts college and developed 

a predictive forecasting model to calculate future student enrollments. It is notable that a private 

liberal arts college has a different organizational mission compared to a public university; the 

private college here had a religious affiliation and higher tuition rates. This research developed a 

logistic regression model that considered student enrollment as the target variable and student 

personal and demographic characteristics including academic performance, marketing and 

promotion related variables indicating applicant’s first interaction with the college, and 

applicant’s college preference and involvement with university sports as the predictor variables. 

The model used Fall 2001 admission data set to estimate the coefficients and validated the 

forecasting accuracy using Fall 2002 admission data set. The result indicated that the student’s 

high school GPA is inversely correlated with the enrollment decision. The academically strong 

applicants had more options to decide on where to attend college and they mostly favor colleges 

other than this one. The out of sample prediction accuracy was 64%. However, the model’s 

sensitivity was 21% and specificity was 43%. The model used a small 2-year sample size and 

divided the primary data into the developmental and validation sample sets. The data set is too 

small to reflect any seasonal, stationary or trend patterns and diminishes the forecasting 

accuracy. 

Maltz, Murphy, and Hand (2007) emphasized incorporating the financial aid policy in 

predicting new student enrollment for Willamette University College of Liberal Arts in the 



11 
 

Oregon. This study implemented a two-phase project for the institution to develop a predictive 

model and a user-friendly interface. As a part of the project, this study thoroughly analyzed the 

existing process of estimating enrollment and tuition fee discount rate to identify the flaws in the 

system. Initially, the new predictive system used a decision tree model that provided an accuracy 

of 70.30%. But the decision tree model generated only the discrete breakpoints to explain the 

impact of financial aid on individual’s decision to enroll, rather than the impact of small 

adjustments to financial aid plans. Finally, the system used logistic regression model, which 

revealed that 70% of the admitted students declined to enroll. The analysis discovered that 

students from Oregon had a 55% likelihood of enrollment, which increased to 75% with a 

promise of more than $10,000 in financial aid. Also, non-Oregon residents who visited the 

campus had a 55% chance of enrolling after admission. This study solely focused on the 

predictive analysis in developing the forecasting model and did not use the qualitative methods. 

Also, the correctness of the model was based on the error matrix only. 

The last set of reviewed studies, Zeng, Yuan, Li, and Zou (2014), used the decision tree 

model to forecast the popularity of Chinese colleges and to help potential Chinese students to 

select the most promising college. The researchers mined popularity change ratio information 

from an 8-year data set gathered from 6 provinces of China. Then they used the gain ratio based 

algorithm to construct the decision tree model. The study set the parameter value at 10 to achieve 

an accurate forecasting result. The decision tree revealed that the science colleges outnumbered 

the arts colleges. The confusion matrix revealed that the accuracy of the model is 65.42%. In 

addition, the area under ROC curve showed 0.685 relativeness between false positive rate and 

true positive rate. This study reflected only the applications received by the individual colleges 
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and did not consider other important factors in constructing the decision tree model. Also, the 

data set was limited to the science and arts colleges.  

Table 1 shows the summary of the literature review: 
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Table 1. Summary of literature review 

Aspects

Bibliography

1 Boes and Pflaumer (2006) ARIMA No Measure of uncertainty No Number of university students to the population of the same age.
High uncertainty level, only population factor, 

large area of concentration

2 Ward (2007) 3-year average No Yield rate No Application, matriculation and enrollment
Trend and seasonal impacts are not reflected, 

no standard accuracy measurement

3 Zan et al. (2013)
1-year average, average 

return ratio
No Error matrix No University, school and division

2 different models for 2 different semesters 

using 2 different data set, poor accuracy level

4 Callahan (2011) 3-year average No No No
Class-to-class level new student enrollment information, retention 

rate, advancement rate and non-advancement rate

No accuracy measurement, did not consider 

the changes over summer semester

5 Lavilles and Arcilla (2012)

Simple moving average, 

single and double 

exponential smoothing

No MAPE No Enrollment
Did not calculate MAD and MSE, the alpha 

value is not optimized

6 Trusheim and Rylee (2011) 5-year moving average Yes Forecast error No Freshmen, transfer, readmit and continuing student information

Did not consider other enrollment criteria and 

drop rates, trend and seasonal impacts are 

not reflected, major drawback in conducting 

the accuracy test

7 Chen (2008)
ARIMA (1,1,0), linear 

regression model
No MAPE, RMSE, MAE No

15 independent variables - demographics (Oklahoma high

school graduates and competitor OU enrollment), state tax fund, 

appropriations for Oklahoma higher education, and economic 

climate indicators (Oklahoma unemployment rate, Oklahoma per 

capita income, the United States GNP, and the United States 

Consumer Price Index

Did not combine with qualitative model, 

control chart can check the validity of the 

model in future

8 Rehman and Larik (2015)

Simple linear regression 

model, linear trend model, 

and Holt’s linear trend 

model.

No MAPE No Admission

Did not analyze the data pattern, didn't justify 

model selection process, accuracy is based 

on only one method

9 Bowe and Merritt (2013)

Ratio-based forecasting 

model, mixed ARIMA 

model

No No No Registration, census

Did not check the accuracy of the models, 

didn't justify individual's decision to join the 

university

10 Robson and Matthews (2011)
ARIMA model, mixed 

forecasting model
No

Ljung-Box chi-square, 

MSE tests
No Enrollment

Did not combine with qualitative model and 

predictive analysis

11
Aadland, Godby and 

Weichman (2007)

Linear regression model, 

semi-log regression 

model, simple linear trend 

regression model

No Out-of-sample No State resident, regional, all other state and graduate enrollment
It is challenging to maintain three different 

forecasting model

12 Davidson (2005) No No Index
Logistic regression 

model 

Housing status, area of study, test score, school ranking, 

ethnicity, denominational preference, start term, gender, origin of 

application and region of the state

Not supported by quantitative and qualitative 

forecasting model, didn't consider tuition fees

13 Ledesma (2009) No No
Sensitivity and 

specificity

Logistic regression 

model 

Personal and demographic characteristics, marketing and 

promotion related variables and applicant’s college preference 

and concern in university sports

Low accuracy rate, small data size

14
Maltz, Murphy and Hand 

(2007)
No No Error matrix

Decision tree 

model, Logistic 

regression model 

Financial aid, geography
Did not associate qualitative input, accuracy 

is based on only one method.

15
Zeng, Yuan, Li and Zou 

(2014)
No No Error matrix

Decision tree 

model, Logistic 

regression model 

Application based on popularity

Only considered science and arts colleges, 

didn't consider other factors in constructing 

the decision tree mode

Sl No. ObservationsQuantitative Model
Qualitative 

Model
Accuracy Measure

Predictive 

Model
Factors
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III. RESEARCH OBJECTIVE 

The Industrial Engineering Department in the School of Engineering at the University of 

Arkansas offers the MSOM program. The department offers the live program to students through 

four program sites. They are the Northwest Arkansas campus at Fayetteville, AR, Northwest 

Florida campus at Hurlburt Field, FL, Central Arkansas campus at Air Force Base, Little Rock, 

AR, and Greater Memphis campus at Naval Activity, Mid-South Millington, TN. The facility 

locations are presented in Figure 1:  

 

  Figure 1. MSOM program facility locations 

In addition, the program offers online courses for students, allowing them to complete the 

degree remotely. The new student registration process goes through three principal stages. They 

are the application, matriculation and enrollment stages. To date, the department has no standard 

forecasting mechanism to predict new student admission and enrollment for every semester. As 

an alternative, the department uses a qualitative approach to forecast the number of new students. 

Considering the facts, the research aims to analyze the application and enrollment process to 
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develop a forecasting model for the MSOM program. The research covers the following specific 

objectives:  

1. To develop a quantitative forecasting model for application, matriculation and 

enrollment numbers. 

2. To develop a qualitative forecasting model for application, matriculation and 

enrollment numbers, and compare the results with the quantitative model. 

3. To check the accuracy of the forecasting model. 

4. To perform predictive analysis to determine the individual’s likelihood of 

attending the program. 

5. To identify the leading factors for these three areas and their relationship with the 

increase of the new student enrollment. 

IV. METHODOLOGY 

A quality data set is the base point to maintain research integrity. The researchers must 

systematically collect the data from consistent sources, formulate hypotheses that address the 

research questions, and evaluate the results. However, it is a challenging task to filter the 

necessary information from a large data set and ensure the data accuracy. Specifically, 

information from secondary sources requires extensive investigation to avoid misleading figures 

and maintain the quality of the research (“Responsible Conduct in Data Management,” 2005). 

This study received a large set of student admission and enrollment information and performed 

wide-ranging analysis to gather new student application, matriculation and enrollment data for 
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each semester. The analysis process focused on the newly applied, matriculated and enrolled 

students and excluded the students who are not in the MSOM program. Furthermore, this study 

accommodated relevant information in the data set to assess an individual student’s decision to 

join the MSOM program. 

According to Stevenson (2012), there are two common approaches to forecasting – the 

qualitative approach and the quantitative approach. Qualitative methods consist of subjective 

inputs, which often defy specific numerical models. On the other hand, quantitative forecasting 

techniques are more intensively objective than their qualitative counterparts. Quantitative 

methods use historical data to make a forecast. They usually avoid individual biases that 

sometimes infect qualitative methods. The data pattern is also a significant factor in 

understanding how the time series behaved in the past. If such behavior continues in the future, 

the past pattern works as a guide in selecting a suitable forecasting method. Furthermore, the 

quantitative approach can be combined with the qualitative method to improve the overall 

forecasting performance. The management’s opinion and judgment about the critical political 

and economic factors can significantly advance the forecasting performance better than a 

quantitative model alone, which may lag behind real world data. Based on the data analysis 

outcomes, this study selected an exponential smoothing method to develop the quantitative 

forecasting model and the Delphi method to construct the qualitative forecasting model. This 

study then combined the outcomes of both models to predict the new student application, 

matriculation and enrollment more precisely. In addition, the ARIMA model was used to verify 

the relationship between the variables and the three data sets. 

Accuracy and control of the forecast is a vital aspect of developing the forecast model. It 

is essential to include an indication of the extent to which the forecast may deviate from the 
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value of the variable that actually occurs. Stevenson also mentioned that it is vital to monitor 

forecast errors, during periodic forecasts, to determine if the errors are within reasonable bounds. 

If they are not, it is necessary to take corrective action. Stevenson prescribes Mean Absolute 

Deviation (MAD), MSE and MAPE to calculate the accuracy of the forecast. However, Delurgio 

(1999) emphasizes introducing a tracking signal and developing a control chart to further 

measure the forecast accuracy. This study took a unique step to optimize the forecasting model 

using three accuracy techniques – MAD, MSE and MAPE calculations, tracking signal, and 

control chart. 

The summary of the process (Russell & Taylor, 2011) is as follows: 

 

Figure 2. Forecasting process, by Russell & Taylor (2011) 

The prescribed forecasting process relies on the historical or lagging data set that 

indicates the past admission and enrollment patterns. Nevertheless, it is essential to determine the 

future opportunities and define the strategies for a range of possibilities. Considering the data, 

this study developed a decision tree using the repulsive function. This analysis is based on a 

No 

Yes 
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recursive partition (rpart), which divided the data set into training (70%) and test (30%) 

categories. The tree is helpful for exploratory analysis, as the binary structure of the tree is 

simple to visualize and provides easily interpretable results. The decision tree usually provides 

higher prediction accuracy. However, the model performance varies when a new and unexpected 

situation appears. This is because the decision tree is created by learning simple rules based on 

training data (Laurinec, 2017). Furthermore, this study constructed a confusion matrix to 

measure the performance of the decision tree model. 

V. FORECASTING MODEL DEVELOPMENT 

System Definition 

The University of Arkansas has a central database system that contains new student 

application, matriculation, and enrollment information for every semester. However, every 

program has individual admission and enrollment requirements for new students. The admission 

and enrollment system in the MSOM program consists of three principal stages with multiple 

sub-stages. The new student information is embedded in multiple layers and correlated with 

different admission and enrollment criteria. This study focused on the following principal stages 

to extract the new student information: 

 

Figure 3. New student information mining stages 
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 The study gathered new student data for the last 10 years from a secondary source: the 

university database. The data set contains student information for the Spring, Summer and Fall 

semesters under a unique terminology. The first of the four-digit code represents a symbolic 

number (which is only a placeholder), the second and third digits represents the calendar year 

and the last digit specifies the semester. The explanation of the terms are as follows:  

Table 2. Term explanation 

Term Number Year Semester 

1**3 1 ** Spring 

1**6 1 ** Summer 

1**9 1 ** Fall 

 

Data Analysis 

The study extracted application, matriculation and enrollment information from the 

research data set. However, the data mining was extremely challenging due to the complexity of 

the facts query process and overlapping of multi-layer information. This study spent significant 

time and efforts to filter the data set and gather new student information for the three stages. 

Figure 4 shows the total number of new students who applied, matriculated and enrolled in the 

MSOM program during the last 10 years to display the underlying behavior of the data: 
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Figure 4. New student application, matriculation and enrollment chart 

The chart revealed that the total number of students enrolled in the program is higher than 

the total number of students applied and matriculated during the 1079 - 1126 terms. The outcome 

reflected an inconsistency in the extracted data set and therefore it was not suitable for 

forecasting purposes. On the right-hand side of the chart, it displays that the total number of 

students applied is higher than the matriculated students and that the total number of students 

matriculated is higher than enrolled students for the most recent 15 terms, from 1129 to 1176. 

The result reflected the consistent data from new student applications, matriculation, and 

enrollment. The researcher decided to use the last 15 terms’ data set to meet the research 

objectives. Table 2 shows the final data set used for this research purpose.  
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Table 3. Final application, matriculation and enrollment data set 

Term Application Matriculation Enrollment 

1129 284 193 161 

1133 204 135 121 

1136 109 71 62 

1139 269 176 159 

1143 216 143 124 

1146 105 55 55 

1149 272 185 165 

1153 260 157 140 

1156 139 83 70 

1159 303 176 156 

1163 205 146 130 

1166 105 58 48 

1169 257 168 140 

1173 230 146 121 

1176 122 63 45 

 

 Moreover, the analysis process evaluated the data set to detect the presence of trend and 

seasonal patterns.  There are obvious, strong seasonal effects, with Fall being the highest season 

and Summer being the lowest season.  After the seasonal effects were accounted for, there was a 

minor downward trend over the last 5 years in application, matriculation, and enrollment 

numbers. The coefficient of determination, R², was significantly low for all the phases, which 

concluded that there is no statistically significant trend pattern associated with the data sets. The 

Analysis of Variance (ANOVA) identified a strong presence of seasonal patterns in the data sets. 

Lind, Marchal and Wathen (2010) mentioned that the p-value is the probability of obtaining a 

test statistic result at least as extreme as the one that is actually observed, assuming that the null 

hypothesis is true under statistical significance testing. The p-value not only results in a decision 

regarding the null hypothesis but also it gives additional insight into the strength of the decision. 
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According to the test results, the application, matriculation, and enrollment stages have p-values 

of 0 for Summer semester and 0.001, 0.0002 and 0.0004 for Fall semester respectively. The p-

values were significant at the 95% significance level. The adjusted R² were 0.92, 0.96 and 0.96 

for application, matriculation and enrollment stages respectively. The results concluded that  the 

data sets have strong seasonal patterns. The APPENDIX section contains the detailed calculation 

of the ANOVA test. The summary of the analysis follows in Table 4:  

Table 4. ANOVA analysis to identify seasonal patterns 

 

  Based on these results, this study decided to remove the seasonal impacts from the data 

sets. The seasonal factors are widely used to de-season the data sets. According to Stevenson 

(2012), the seasonal factors are the seasonal percentages in the multiplicative model. He 

mentioned that the number of periods needed in a centered moving average has to be equal to the 

number of seasons involved in the index calculation process. In case of semester-based data, the 

de-season process used a three period moving average. Further calculation averaged the seasonal 

components to eliminate the error and isolate the seasonal relatives. The seasonal factors were 

standardized to three in order to match the number of semesters per academic year (Delurgio, 

1999). The APPENDIX section contains the detailed calculation of the seasonal indexes. The 

summary of the seasonal indices are as follows:  

Aspects

R Square

Adjusted R Square

ANOVA Coefficients P-value Coefficients P-value Coefficients P-value

Intercept 218.8222 0.0000 148.7778 0.0000 134.3111 0.0000

Summer -107.5222 0.0000 -78.9778 0.0000 -70.3111 0.0000

Fall 54.5222 0.0010 33.7778 0.0002 28.1111 0.0004

Period 0.5222 0.6671 -0.4222 0.4980 -0.8889 0.1217

Application Matriculation Enrollment

Regression Statistics

0.942

0.926

0.969

0.961

0.970

0.962
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Table 5. Seasonal indices for application, matriculation and enrollment data sets 

 

Table 6 shows the de-seasonalized application, matriculation and enrollment information 

after dividing the original data by the respective seasonal standard indices:   

Table 6. De-seasonalized application, matriculation and enrollment data set 

Term 
De-seasonalized 

Application 
De-seasonalized 
Matriculation 

De-seasonalized 
Enrollment 

1129 211 142 118 

1133 187 120 107 

1136 193 137 121 

1139 200 129 117 

1143 198 127 110 

1146 186 106 107 

1149 202 136 121 

1153 238 140 124 

1156 246 161 136 

1159 225 129 115 

1163 188 130 115 

1166 186 112 94 

1169 191 124 103 

1173 211 130 107 

1176 216 122 88 

 

Quantitative Forecasting Model Development and Accuracy Testing 

This study simulated multiple forecasting models on the stationary data sets to achieve 

better accuracy results through three different testing methodologies. The simple exponential 

smoothing method performed the best of all, satisfying all the base line requirements. Delurgio 

(1999) supported the result as he prescribes simple exponential smoothing as the most suitable 

forecasting method for this data pattern.  

Average Index Standard Index Average Index Standard Index Average Index Standard Index

Fall 1.337 1.345 1.353 1.360 1.358 1.360

Spring 1.084 1.091 1.117 1.123 1.126 1.127

Summer 0.561 0.564 0.514 0.517 0.513 0.513

Application Matriculation Enrollment
Season



24 
 

 

The smoothing constant (α) represents the sensitivity of the forecast to new data points. 

The α value ranges between 0 and 1. A lower α value helps to smooth the forecasting curve but 

makes it less sensitive to the forecasting error. A higher α value reduces the smoothness of the 

curve but makes it more sensitive to forecasting error. Normally, the α value is optimized by 

minimizing the MSE value. However, this study attempted to adjust the α value by satisfying the 

MSE, tracking signal and control chart procedures. The tracking signal works as an indicator to 

check the bias of the nominated forecasting model. It is the ratio of the cumulative sum of 

forecast errors to the MAD. A tracking point within the standard range ±4 indicates that the 

forecasting method is performing suitably. In addition, a control chart is a useful tool to monitor 

the forecast errors. The chart contains an Upper Control Limit (UCL), Lower Control Limit 

(LCL) and a centerline that represents an error of zero. The forecast errors are plotted on the 

control chart in the order they occur. Each error is judged separately and should be distributed 

according to a normal distribution around a mean of zero. 99.74% of the values are expected to 

stay within ±3s range of the center line (Stevenson, 2012). In view of the facts, this study 

decided to optimize the α value satisfying all the testing methods and achieve the best possible 

forecasting results. 

Table 7 shows the simple exponential smoothing model for application data set with 

accuracy controls.  
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Table 7. Forecasting model and accuracy controls for application data set    

  

The MAD measures the difference between actual and average forecast values providing 

equal weight to all errors. For the application data set, the MAD was 16 students; that means the 

average absolute deviation from the mean was 16 students. 

The MSE measures the average of the squares of the errors. The MSE is the second 

moment (about the origin) of the error, and thus incorporates both the variance of the estimator 

and its bias. The forecasting model showed MSE score of 430. 

The MAPE provides the measurement of forecast error relative to the actual value. The 

forecasting model expressed a MAPE score of 8% for the application data set; that means the 

average absolute percentage of error was 8%. 

The tracking signal calculated the ratio of the cumulative sum of forecast errors to the 

MAD. The results displayed that all the values are within the ±4 limits, which indicates that the 

forecast model is free of bias.  

Term De-seasonalized Application Forecast Tracking Signal (±4)

1129 211

1133 187 211 -1.47 α 0.54

1136 193 198 -1.76 MAD 16

1139 200 195 -1.49 MSE 430

1143 198 198 -1.48 MAPE 8%

1146 186 198 -2.20

1149 202 192 -1.55

1153 238 197 0.93 S 20.75

1156 246 219 2.57 UCL 62.24

1159 225 234 2.04 LCL -62.24

1163 188 229 -0.47

1166 186 207 -1.74

1169 191 196 -2.02

1173 211 193 -0.95

1176 216 203 -0.13

2101179
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Figure 5. Control chart for application data set 

 The control chart for the application data (Figure 5) shows that all the errors are within 

the specified limits. Moreover, the errors are randomly distributed on both sides of the centerline, 

which indicates that the forecast model is working properly for the data set. In summary, the 

quantitative forecast model for the application data set satisfied all the testing methods and 

projected that 210 new students would apply to the MSOM program during the 1179 term. 

 Table 8 shows the simple exponential smoothing model for the matriculation data 

set with accuracy controls.  
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Table 8. Forecasting model and accuracy controls for matriculation data set    

  

For the matriculation data set, the MAD was 13 students. The forecasting model scored 

228 in MSE measure. The calculation revealed a MAPE score of 10% for the matriculation data 

set; that means the average absolute percentage of error was 10%. Moreover, the tracking signal 

system shows that all the values are within the ±4 limits, which indicates that there is no bias in 

the forecast model. 

The control chart for matriculation data set in Figure 6 shows that all the errors are within 

the specified limits. However, the errors are not randomly distributed on both sides of the 

centerline, which indicates that the model may not perform satisfactorily in the future. In 

summary, the quantitative forecast model for the matriculation data set satisfied all the testing 

methods and projected that 125 new students would matriculate in the MSOM program during 

the 1179 term. 

Term De-seasonalized_Matriculation Forecast Tracking Signal (±4)

1129 142

1133 120 142 -1.73 α 0.45

1136 137 132 -1.30 MAD 13

1139 129 135 -1.71 MSE 228

1143 127 132 -2.10 MAPE 10%

1146 106 130 -3.97

1149 136 119 -2.65

1153 140 127 -1.63 S 15.11

1156 161 133 0.60 UCL 45.34

1159 129 145 -0.66 LCL -45.34

1163 130 138 -1.31

1166 112 134 -3.08

1169 124 124 -3.16

1173 130 124 -2.68

1176 122 127 -3.06

1251179
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Figure 6. Control chart for matriculation data set 

 Table 9 shows the simple exponential smoothing model for the enrollment data 

set with accuracy controls. 
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Table 9. Forecasting model and accuracy controls for enrollment data set  

 

The MAD was 10 students for the enrollment data set; that means the average absolute 

deviation from the mean was 10 students. Also, the forecasting model scored 137 in MSE 

measure. The calculation revealed a MAPE score of 9% for the enrollment data set; that means 

the average absolute percentage of error was 9%. Moreover, the tracking signal system presented 

that all the values are within the ±4 limits, which indicates that the model is not biased. 

The control chart for enrollment data set in Figure 7 displayed that all the errors are 

within the specified limits. Furthermore, the errors are randomly distributed on both sides of the 

centerline but the curve is slowly sloping downward. It indicates that the forecast model is 

working properly for the data set but may not perform adequately in the future. In summary, the 

quantitative forecast model for enrollment data set pleased all the testing methods and projected 

that 94 new students would enroll in the MSOM program during the 1179 term and afterward. 

Term De-seasonalized_Enrollment Forecast Tracking Signal (±4)

1129 118

1133 107 118 -1.13 α 0.67

1136 121 111 -0.13 MAD 10

1139 117 118 -0.19 MSE 137

1143 110 117 -0.92 MAPE 9%

1146 107 112 -1.45

1149 121 109 -0.18

1153 124 117 0.53 S 11.72

1156 136 122 2.00 UCL 35.16

1159 115 132 0.29 LCL -35.16

1163 115 120 -0.22

1166 94 117 -2.60

1169 103 101 -2.43

1173 107 102 -1.93

1176 88 106 -3.76

941179
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Figure 7. Control chart for enrollment data set 

 In the final stage of developing the quantitative forecasting model, it was required to 

incorporate the seasonality in the forecast. This study used the seasonal relatives for 

incorporating the seasonality in the forecasting model of every stage. Table 10 shows the 

seasonalized forecast for Fall, and a similar analysis can be conducted for the Spring and 

Summer seasons.  

Table 10. Seasonalized forecast  

Stages 
De-seasonalized 

Forecast 
Seasonal Relative 

(Fall) 
Seasonalized 

Forecast 

Application 210 1.345 282 

Matriculation 125 1.360 170 

Enrollment 94 1.360 128 
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Qualitative Forecasting Model Development 

The qualitative forecasting models are mostly subjective, which depends on the opinion 

and judgment of the experienced employees. The Delphi method is one of the most popular and 

widely used qualitative forecasting models. It is a systematic and collaborative forecasting model 

that relies on the response of a panel of experts with specific reasoning. This study decided to 

perform Delphi analysis on a panel of administrators to gather their opinion on new student 

application, matriculation and enrollment number in the MSOM program. The panel consisted of 

two members who work closely with the program admission, marketing, and promotional 

activities. This research developed a two round Delphi questionnaire focusing on the three 

stages. The questionnaires are available in the APPENDIX section. The summary of the first 

round Delphi analysis is as follows: 

Table 11. Summary of the first  round Delphi analysis  

 

The panelists suggested that on average 263 new students would apply to the program 

during Fall 2017 semester. The number of new applicants may vary between 229 and 288. 

Among them, the panelists expected 178 new students to matriculate in the program, ranging 

between 160 and 190 students. Finally, the panelists predicted that on average 145 new students 

How many new students will you forecast for Fall 2017? 250 275 263

How many new students AT LEAST will you forecast for Fall 2017? 200 257 229

How many new students AT MOST will you forecast for Fall 2017? 275 300 288

How many new students will you forecast for Fall 2017? 170 185 178

How many new students AT LEAST will you forecast for Fall 2017? 150 170 160

How many new students AT MOST will you forecast for Fall 2017? 190 190 190

How many new students will you forecast for Fall 2017? 125 165 145

How many new students AT LEAST will you forecast for Fall 2017? 110 140 125

How many new students AT MOST will you forecast for Fall 2017? 150 175 163

Application

Matriculation

Enrollment

Question
2nd Panelist's 

Response
Average

1st Panelist's 

Response
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would enroll in the program and the enrollment may vary between 125 and 163 students. This 

study compiled the information in the second round Delphi analysis and requested the panelists 

to reconsider their predictions. The summary of the second round Delphi analysis is as follows –  

Table 12. Summary of the second round Delphi analysis  

 

The panelists suggested that on average 260 new students would apply to the program 

during Fall 2017 semester after reviewing the first round Delphi analysis outcomes. The number 

of applicants may vary between 225 and 288. Moreover, the panelists estimated 175 new 

students to matriculate in the program, ranging between 160 and 190. Lastly, the panelists 

anticipated that on average 143 new students would enroll in the program and the enrollment 

may vary between 125 and 163 students. 

This analysis calculated the second-degree mean of the outcomes of the two round Delphi 

analysis to concrete the qualitative forecasting model results. Table 13 summarized that on 

average 261 new students would apply to the program during the upcoming semester. A total of 

144 new students would enroll in the program followed by the matriculation of 176 new students 

during Fall 2017. The summary of the analysis is as follows in Table 13.  

How many new students will you forecast for Fall 2017? 250 270 260

How many new students AT LEAST will you forecast for Fall 2017? 200 250 225

How many new students AT MOST will you forecast for Fall 2017? 275 300 288

How many new students will you forecast for Fall 2017? 170 180 175

How many new students AT LEAST will you forecast for Fall 2017? 150 170 160

How many new students AT MOST will you forecast for Fall 2017? 190 190 190

How many new students will you forecast for Fall 2017? 125 160 143

How many new students AT LEAST will you forecast for Fall 2017? 110 140 125

How many new students AT MOST will you forecast for Fall 2017? 150 175 163

Average
1st Panelist's 

Response

Application

Matriculation

Enrollment

Question
2nd Panelist's 

Response
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Table 13. Summary of the Delphi analysis  

 

Combined Forecasting Model 

The analysis found that the quantitative and qualitative forecasting model predictions are 

close to each other at every stage. In this regard, this study decided to average the results to 

conclude the prediction for application, matriculation and enrollment stages. The model predicts 

that 272, 173 and 136 new students would apply, matriculate and enroll in the MSOM program 

respectively during Fall 2017 semester. The combined forecasting model is as follows: 

Table 14. Combined forecasting model  

Stages 
Quantitative  

Forecast 
Qualitative  

Forecast 
Combined 
Forecast 

Application 282 261 272 

Matriculation 170 176 173 

Enrollment 128 144 136 

VI. PREDICTIVE ANALYSIS 

Classification Tree Model 

 This study developed a classification tree model to justify an individual student’s 

decision to join the MSOM program.  The classification tree attempted to pinpoint the factors 

influencing a student’s judgment by using rpart analysis. In the analysis, the target attribute was 

How many new students will you forecast for Fall 2017? 263 260 261

How many new students AT LEAST will you forecast for Fall 2017? 229 225 227

How many new students AT MOST will you forecast for Fall 2017? 288 288 288

How many new students will you forecast for Fall 2017? 178 175 176

How many new students AT LEAST will you forecast for Fall 2017? 160 160 160

How many new students AT MOST will you forecast for Fall 2017? 190 190 190

How many new students will you forecast for Fall 2017? 145 143 144

How many new students AT LEAST will you forecast for Fall 2017? 125 125 125

How many new students AT MOST will you forecast for Fall 2017? 163 163 163

Matriculation

Enrollment

Question
1st Round 

Average

2nd Round 

Average

Second Degree 

Average

Application
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student “Enrolled” and the independent attributes were “Gender”, “Military_Status”, 

“Birth_Year”, “Ethnic_Group”, “State”, “Country” and The Standard & Poor's 500 index, 

abbreviated as the “SP_500_Prices”. The model considered a seed of 55 and minbucket of 7, 

which is a standard in R programming. In addition, the entire data set was divided into training 

(70%) and test (30%) categories (Viswanathan, 2015). Initially, the model generated a 

classification tree with more than 100 leaf nodes and the study decided to prune the tree. The cp 

chart revealed that a cp value of 0.0031 could provide a better classification tree with a smaller 

number of leaf nodes. The pruned classification tree is shown in Figure 8.
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Figure 8. Pruned classification tree 
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The summary of the analysis displays that 55% of the applicants enrolled in the program 

and the remaining 45% did not enroll. Therefore, if this study randomly selects an applicant from 

the data set, there is a 0.55 probability of getting a positive result and a 0.45 probability of 

getting a negative consequence. If this analysis follows the naïve rule then it is correct 55% of 

the time. 

The classification tree contains 18 leaf nodes, which are developed from 3,080 cases. 

Node 1 of the classification tree reveals that 55% of the applicants successfully enrolled in the 

MSOM program whereas 45% students did not enroll. The cases that meet the condition of 

ethnic group African American (AA) and Foreign (FO) proceeds to the left and others transfer to 

the right. Node 2 reaches from the parent node and represents 28% of the total number of cases. 

Node 2 describes that 63% of the African American and Foreign students did not enroll in the 

program. This section is further branched based on the AK, AL, AZ, CA, DC, HI, IN, KS, LA, 

MI, MN, MO, MT, NC, NE, NJ, OH, UT, WA and WV states. Node 4 represents 12% cases and 

labels that 77% applicants from these 20 states did not enroll in the program. Node 5 shows that 

52% applicants from other states did not enroll in the program, considering 16% cases.  

Furthermore, Node 3 characterizes 72% of the total cases and describes that students 

from Asian (AS), Caucasian (CA), Hispanic (HI), Hawaiian (HW), Native American (IN), Two 

or More (TM) and Not Reported (NR) ethnic groups enrolled in the program in 62% cases. Node 

3 is branched further based on the military status. Node 6 represents 67% of the total cases and 

labels that applicants with Not Indicated (1), No Military Service (2) and Not a Veteran (X) 

military status have 61% chances to enroll in the program. Node 7 represents the students with 
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Veteran of US Armed Forces (5, Y) and shows that 88% of them enrolled in the program. 

However, Node 7 contains only 4% of the total cases.  

In addition, Node 6 is classified based on the applicants from AK, AZ, CA, CT, DC, DE, 

GA, ID, IL, KS, ME, MN, MS, MT, NC, NE, NJ, NV, NY, TX, UT, VA, WA and WY states. 

Node 13 reveals that 64% applicants from other states enrolled in the courses considering 49% of 

the total cases. Another interesting fact is that the applicant from other states, whose birth year is 

after 1978, has 67% chance to enroll in the program. A confusion matrix shows the number of 

correct and incorrect predictions made by the classification model compared to the actual 

outcomes (target value) in the data. The confusion matrix for test data set is as follows: 

Table 15. Confusion matrix for test data set  

 Predicted 
 

Total Cases 923 

Actual No Yes 
 

Error rate   35% 

No 216 198 
 

Correctness rate 65% 

Yes 121 388 
 

Lift   1.19 

 

The confusion matrix for test data set shows an error rate of 35%. The correctness rate on 

the test data set is 65% and the lift is 1.19. The lift is a measure of the effectiveness of a 

classification model calculated as the ratio between the results obtained with and without the 

model (“Model Evaluation,” 2016). In a perfect scenario, the confusion matrix should win the 

naïve classification and produce a lift more than 1.00. In this analysis, the correctness rate of the 

confusion matrix is better than that of the naïve model and the lift is showing 19% improvement 

over the base performance. 
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Dropout at Matriculation and Enrollment Stages 

 The analysis of the 10 years’ application, matriculation and enrollment data set directed 

that a significant number of applicants were dropping out at the matriculation and enrollment 

levels. This study further analyzed the semester wise dropout rates in matriculation stage 

considering the total number of applications as the reference line and generated an area chart in 

Figure 9:  

 

Figure 9. Dropout in matriculation stage 

 The entire area of the chart represents the total applicants during the 1129 – 1176 

periods. The overlapping zone, where the orange zone overlaid the blue area, signifies the 

dropout rates at matriculation stage. On average, 38% of the total applicants failed to matriculate 

in the program. In addition, this study examined the semester wise dropout rates in enrollment 

stage considering the total number of matriculated students as the point of reference and prepared 

an area chart in Figure 10:  
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Figure 10. Dropout in enrollment stage 

 The entire area of the chart represents the total matriculated students during the 

1129 – 1176 periods. The overlapping zone, where the green zone overlapped the deep blue area, 

denotes the dropout rates at enrollment stage. On average, 13% of the total matriculated students 

did not enroll in the program at all. However, the 1176 term information requires an additional 

update, as the students tend to enroll in following semesters. 

Correlation between Admission Stages and Tuition Fees 

 During the data analysis, this study exposed that the tuition of the program is 

considerably correlated with the admission stages. Based on the data, this research decided to 

explore the relationship between the tuition fees and admission stages by using simple linear 

regression model. The first model based on the application data set directed that the tuition fees 

are not the deciding factor for the applicants in joining the program. The coefficient of 

determination (R²) for this model was 0.002, which indicates that only 0.2% of the change in the 

application is predicted by the change in tuition fees. Similarly, the second model based on the 
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matriculation data set revealed that only 9% change in matriculation is anticipated by the change 

in tuition fees. However, the third model, based on the enrollment data set, the outcome was 

different from the others:  

Table 16. Correlation between tuition fees and enrollment  

 

 The regression model in Table 16 discovered that the new student enrollment in the 

MSOM program is negatively correlated with the tuition fees. The final equation of the model is 

as follows:  

Enrollment = 303.22 – (0.74 * Tuition Fees) 

 According to the equation, a $100 increase in the tuition fees will decrease the new 

student enrollment by 74 students. The coefficient of determination (R²) for this model is 0.41, 

which indicates that tuition fees influence 41% of the change in student enrollment. If the 

administrative leaders intend to increase the tuition fee to $288 by Fall 2017 semester, the 

enrollment in the program will decrease to 122 students after seasonalizing the outcome with 

Simple Linear Regression

Enrollment

Slope = -0.74 R  = -0.64

Intercept = 303.22 R
2
 = 0.41

Tuition Fees Enrollment Forecast Error

250.00$       118 118 0

250.00$       107 118 -11

250.00$       121 118 3

250.00$       117 118 -1

250.00$       110 118 -8

250.00$       107 118 -11

250.00$       121 118 3

250.00$       124 118 6

250.00$       136 118 18

262.50$       115 109 6

262.50$       115 109 7

262.50$       94 109 -15

275.63$       103 99 4

275.63$       107 99 8

275.63$       88 99 -11 x = 288

Dx = 1 Forecast: 90

89.77402352
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standard index. This analysis concluded that tuition fees are not a major concern for the new 

students when they are applying and matriculating in the program. However, changes in the 

tuition fees strongly influenced their decision to enroll in the program.  

Enrollment Distribution 

 An in-depth analysis found that many students did not enroll in the same semester they 

gave their consent to join the MSOM program. In some cases, the enrollment of students 

overextended up to 13 semesters after the matriculation. Figure 11 shows the distribution of 

semester wise new students’ first enrollment including the matriculating term:  

 

Figure 11. Enrollment distribution 
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 The chart displays the enrollment distribution of each term, which is extended up to the 

last enrolling semester. The chart reveals that on average 35% of students enrolled in the same 

term they matriculated to join the program. Another 21% students enrolled in the following 

semester of matriculation. Furthermore, 12% and 11% students enrolled in the program during 

the 2nd and 3rd semester of matriculation respectively. The enrollment further extended to the 4th 

and 5th semester by 6%. The remaining 10% of students prolonged their enrollment in the later 

semesters. The top layer of the stack diagram shows the number of the students who matriculated 

but did not enroll in the program so far. 

Recommendations 

 This study has the following recommendations based on the research findings: 

• The forecasting models revealed that new student application, matriculation, and 

enrollment are decreasing. The coefficient of determination is slowing increasing in each 

step of the admission process. It may become a major issue in the future and management 

should increase marketing efforts. Corporate-focused online advertisements, latest 

ranking information, retaining students from undergraduate programs and scholarship 

offers can play important role in promotional efforts. 

• The classification tree revealed that applicants with Not Indicated (1), No Military 

Service (2) and Not a Veteran (X) military status have a 61% chance to enroll in the 

program and the outcome is supported by 67% of total cases. The result suggests that the 

department has immense opportunity to optimize the capacities of off-campus locations. 

Furthermore, the University leaders may consider signing a Memorandum of 

Understanding (MoU) with the military divisions by providing them a special offer.  
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• The predictive analysis found that 45% of applicants are not enrolling in the program. 

The outcome is supported by both classification tree model (45%) and dropout analysis 

(46%). The administrative staffs are working hard to process the students’ application 

documents but their hard work is not paying off due to the dropouts. The University 

leaders may introduce an application fee to reduce the dropout rates. 

• The predictive analysis revealed that tuition fee effects students’ decision to enroll in the 

program. Tuition fees influence 41% of the change in student enrollment and a $100 

increase in the tuition fees will decrease new student enrollment by 74 students. If the 

administrative leaders intend to increase the tuition fee to $288, the enrollment in the 

program will decrease to 122 students. Ultimately, the new student enrollment will 

decrease by six students from the quantitative model prediction due to increase in the 

tuition fees. 

• The applicants are not enrolling in the same semester in which they give their consent to 

join the MSOM program. On average, only 35% of students enrolled during the 

matriculating term and the main portion of students’ enrollment is distributed in the 

following 5 semesters. The enrollment distribution period is creating a complex situation 

for administrative processes. The University leaders may evaluate and revise the 

enrollment policies. 

VII. CONCLUSION 

  The university enrollment environment is progressively competitive and less predictable 

than any time before. The administrators are constantly monitoring the student enrollment 

patterns and developing forecasting models to predict the new student numbers. However, every 
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university has a unique admission pattern and requires in-depth analysis of next level metrics to 

make resource allocation decisions. This research combines quantitative and qualitative 

forecasting model and predicts the new student admission in the MSOM program. Three 

accuracy measures justified the performance of the forecasting models. In addition, the combined 

forecasting model is supported by a series of predictive analysis to improve the enrollment 

processes. The forecasting models revealed that new student application, matriculation, and 

enrollment in the MSOM program are experiencing a downward trend and require significant 

marketing efforts. On average, 45% of the applicants are dropping out in enrollment level that is 

causing complexity in offering the courses. The predictive analysis discovered that the dropout is 

negatively correlated with the tuition fees of the program. These findings will assist the leaders 

to make acute decisions in adopting the admission patterns of the MSOM program. 

This research focused on a specific program of the university and the discoveries open 

the door for expanding the research objectives. Future models can incorporate engagement and 

behavioral data into their predictive models to identify the changes in the factors influencing 

students’ decision and develop an early alert system. Furthermore, this research will work as a 

platform for the future experimentation on deploying a complete predictive analysis based 

forecasting system for the University of Arkansas. 
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APPENDIX 
 

Table 17. Statistical significance of regression for application data set in Table 4 

 

Table 18. Statistical significance of regression for matriculation data set in Table 4 

 

 

Application

Regression Statistics

Multiple R 0.971

R Square 0.942

Adjusted R Square 0.926

Standard Error 19.420

Observations 15.000

ANOVA

df SS MS F Significance F

Regression 3.000 67216.967 22405.656 59.412 0.000

Residual 11.000 4148.367 377.124

Total 14.000 71365.333

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 218.822 12.838 17.045 0.000 190.566 247.079 190.566 247.079

Summer -107.522 12.339 -8.714 0.000 -134.680 -80.365 -134.680 -80.365

Fall 54.522 12.339 4.419 0.001 27.365 81.680 27.365 81.680

Period 0.522 1.182 0.442 0.667 -2.079 3.123 -2.079 3.123

Matriculation

Regression Statistics

Multiple R 0.985

R Square 0.969

Adjusted R Square 0.961

Standard Error 9.901

Observations 15.000

ANOVA

df SS MS F Significance F

Regression 3.000 34013.067 11337.689 115.662 0.000

Residual 11.000 1078.267 98.024

Total 14.000 35091.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 148.778 6.545 22.731 0.000 134.372 163.184 134.372 163.184

Summer -78.978 6.291 -12.555 0.000 -92.823 -65.132 -92.823 -65.132

Fall 33.778 6.291 5.369 0.000 19.932 47.623 19.932 47.623

Period -0.422 0.603 -0.701 0.498 -1.748 0.904 -1.748 0.904
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Table 19. Statistical significance of regression for enrollment data set in Table 4 

 

Table 20. Seasonal indices for application data set in Table 5 

 

Enrollment

Regression Statistics

Multiple R 0.985

R Square 0.970

Adjusted R Square 0.962

Standard Error 8.709

Observations 15.000

ANOVA

df SS MS F Significance F

Regression 3.000 26797.467 8932.489 117.777 0.000

Residual 11.000 834.267 75.842

Total 14.000 27631.733

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 134.311 5.757 23.329 0.000 121.639 146.983 121.639 146.983

Summer -70.311 5.533 -12.707 0.000 -82.490 -58.132 -82.490 -58.132

Fall 28.111 5.533 5.080 0.000 15.932 40.290 15.932 40.290

Period -0.889 0.530 -1.677 0.122 -2.055 0.278 -2.055 0.278

Application

Number of "seasons" = 3

Season Average Standard

Index Index

Fall 1.337 1.345 season season

Spring 1.084 1.091 Fall 0

Summer 0.561 0.564 season season

season season

0 0

Period Season Actual MA Center Index

1 Fall 284 #N/A #N/A

2 Spring 204 #N/A 199 1.0251256

3 Summer 109 199 194 0.5618557

4 Fall 269 194 198 1.3585859

5 Spring 216 198 196.66667 1.0983051

6 Summer 105 196.66667 197.66667 0.5311973

7 Fall 272 197.66667 212.33333 1.2810047

8 Spring 260 212.33333 223.66667 1.1624441

9 Summer 139 223.66667 234 0.5940171

10 Fall 303 234 215.66667 1.4049459

11 Spring 205 215.66667 204.33333 1.0032626

12 Summer 105 204.33333 189 0.5555556

13 Fall 257 189 197.33333 1.3023649

14 Spring 230 197.33333 203 1.1330049

15 Summer 122 203 #N/A

Clear

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
a
ll

S
p

ri
n

g

S
u

m
m

e
r



50 
 

 

Table 21. Seasonal indices for matriculation data set in Table 5 

  

Table 22. Seasonal indices for enrollment data set in Table 5 

  

Matriculation

Number of "seasons" = 3

Season Average Standard

Index Index

Fall 1.353 1.360 season season

Spring 1.117 1.123 Fall 0

Summer 0.514 0.517 season season

season season

0 0

Period Season Actual MA Center Index

1 Fall 193 #N/A #N/A

2 Spring 135 #N/A 133 1.0150376

3 Summer 71 133 127.33333 0.5575916

4 Fall 176 127.33333 130 1.3538462

5 Spring 143 130 124.66667 1.1470588

6 Summer 55 124.66667 127.66667 0.4308094

7 Fall 185 127.66667 132.33333 1.3979849

8 Spring 157 132.33333 141.66667 1.1082353

9 Summer 83 141.66667 138.66667 0.5985577

10 Fall 176 138.66667 135 1.3037037

11 Spring 146 135 126.66667 1.1526316

12 Summer 58 126.66667 124 0.4677419

13 Fall 168 124 124 1.3548387

14 Spring 146 124 125.66667 1.1618037

15 Summer 63 125.66667 #N/A

Clear

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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Enrollment

Number of "seasons" = 3

Season Average Standard

Index Index

Fall 1.358 1.360 season season

Spring 1.126 1.127 Fall 0

Summer 0.513 0.513 season season

season season

0 0

Period Season Actual MA Center Index

1 Fall 161 #N/A #N/A

2 Spring 121 #N/A 114.66667 1.0552326

3 Summer 62 114.66667 114 0.5438596

4 Fall 159 114 115 1.3826087

5 Spring 124 115 112.66667 1.1005917

6 Summer 55 112.66667 114.66667 0.4796512

7 Fall 165 114.66667 120 1.375

8 Spring 140 120 125 1.12

9 Summer 70 125 122 0.5737705

10 Fall 156 122 118.66667 1.3146067

11 Spring 130 118.66667 111.33333 1.1676647

12 Summer 48 111.33333 106 0.4528302

13 Fall 140 106 103 1.3592233

14 Spring 121 103 102 1.1862745

15 Summer 45 102 #N/A

Clear

0

0.2

0.4

0.6

0.8
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Table 23. Forecasting model and accuracy controls for application data set Table 7 

 

Table 24. Forecasting model and accuracy controls for matriculation data set Table 8 

 

 

Term De-season Application Forecast (A - F)│A - F│ (A - F)² (│A - F│)/A Cumulative Sum of Error Tracking Signal (±4)

1129 211

1133 187 211 -24.19 24.19 585.37 12.94% -24.19 -1.47

1136 193 198 -4.87 4.87 23.72 2.52% -29.06 -1.76

1139 200 195 4.54 4.54 20.62 2.27% -24.52 -1.49

1143 198 198 0.05 0.05 0.00 0.02% -24.48 -1.48

1146 186 198 -11.81 11.81 139.46 6.34% -36.29 -2.20

1149 202 192 10.67 10.67 113.88 5.28% -25.61 -1.55

1153 238 197 40.96 40.96 1678.07 17.19% 15.35 0.93

1156 246 219 26.96 26.96 726.85 10.94% 42.31 2.57

1159 225 234 -8.72 8.72 76.04 3.87% 33.59 2.04

1163 188 229 -41.42 41.42 1715.34 22.04% -7.83 -0.47

1166 186 207 -20.80 20.80 432.65 11.17% -28.63 -1.74

1169 191 196 -4.62 4.62 21.32 2.42% -33.24 -2.02

1173 211 193 17.59 17.59 309.34 8.34% -15.66 -0.95

1176 216 203 13.57 13.57 184.03 6.27% -2.09 -0.13

210 230.77 6026.67 111.62%

α 0.54 S 20.75

MAD 16 UCL 62.24

MSE 430 LCL -62.24

MAPE 8%

1179

Term De-season_Matriculation Forecast (A - F)│A - F│ (A - F)² (│A - F│)/A Cumulative Sum of Error Tracking Signal (±4)

1129 142

1133 120 142 -21.70 21.70 470.99 18.06% -21.70 -1.73

1136 137 132 5.32 5.32 28.32 3.87% -16.38 -1.30

1139 129 135 -5.13 5.13 26.29 3.96% -21.51 -1.71

1143 127 132 -4.90 4.90 24.03 3.85% -26.41 -2.10

1146 106 130 -23.53 23.53 553.85 22.10% -49.94 -3.97

1149 136 119 16.59 16.59 275.32 12.20% -33.35 -2.65

1153 140 127 12.89 12.89 166.19 9.22% -20.46 -1.63

1156 161 133 27.99 27.99 783.59 17.42% 7.53 0.60

1159 129 145 -15.89 15.89 252.44 12.28% -8.35 -0.66

1163 130 138 -8.15 8.15 66.42 6.27% -16.50 -1.31

1166 112 134 -22.18 22.18 492.11 19.76% -38.69 -3.08

1169 124 124 -0.97 0.97 0.94 0.79% -39.66 -3.16

1173 130 124 5.94 5.94 35.25 4.57% -33.72 -2.68

1176 122 127 -4.76 4.76 22.63 3.90% -38.48 -3.06

125 175.95 3198.36 138.25%

α 0.45 S 15.11

MAD 13 UCL 45.34

MSE 228 LCL -45.34

MAPE 10%

1179
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Table 25. Forecasting model and accuracy controls for enrollment data set Table 9 

 

 

 

 

 

 

 

 

 

 

 

Term De-season_Enrollment Forecast (A - F)│A - F│ (A - F)² (│A - F│)/A Cumulative Sum of Error Tracking Signal (±4)

1129 118

1133 107 118 -11.09 11.09 123.01 10.33% -11.09 -1.13

1136 121 111 9.83 9.83 96.59 8.13% -1.26 -0.13

1139 117 118 -0.63 0.63 0.39 0.53% -1.89 -0.19

1143 110 117 -7.16 7.16 51.33 6.51% -9.05 -0.92

1146 107 112 -5.18 5.18 26.82 4.83% -14.23 -1.45

1149 121 109 12.48 12.48 155.68 10.28% -1.75 -0.18

1153 124 117 6.94 6.94 48.14 5.59% 5.18 0.53

1156 136 122 14.51 14.51 210.64 10.64% 19.70 2.00

1159 115 132 -16.88 16.88 284.78 14.71% 2.82 0.29

1163 115 120 -5.00 5.00 24.98 4.33% -2.18 -0.22

1166 94 117 -23.43 23.43 548.84 25.05% -25.60 -2.60

1169 103 101 1.71 1.71 2.92 1.66% -23.90 -2.43

1173 107 102 4.92 4.92 24.20 4.58% -18.98 -1.93

1176 88 106 -18.02 18.02 324.62 20.55% -36.99 -3.76

94 137.76 1922.93 127.73%

α 0.67 S 11.72

MAD 10 UCL 35.16

MSE 137 LCL -35.16

MAPE 9%

1179
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Delphi Questionnaire 1 

A Delphi Analysis to Enhance the Student Admission and Enrollment System of MSOM 

Program 

Dear Panelist, 

This study is a part of the research project to analyze the fundamental aspects and develop a 

forecasting model to improve the student admission and enrollment system of MSOM program. 

This two-round Delphi study aims to develop a qualitative forecasting model for application, 

matriculation and enrollment stages. A quantitative analysis analyzed the data pattern of last 15 

periods and developed a forecasting model using Exponential Smoothing method. The analysis 

verified the accuracy of the model using three techniques – MAD, MSE and MAPE calculation, 

Tracking Signal, and Control Chart. The outcomes of the Delphi analysis will be associated with 

the quantitative model. This study provides you the detailed information in each section for your 

reference. I cordially request you to provide your best judgment to predict the new student 

admission in the program and specify the relevant factors influencing an individual student’s 

decision to join the program.  

Instructions: 

1. This analysis contains three sections – Application, Matriculation, and Enrollment. 

2. Each section contains new student information for last 15 terms. 

3. Please answer each question and make comments on relevant issues. 

4. For further information please contact:  

Sultanul Nahian Hasnat; Email – snhasnat@email.uark.edu 

MSOM Program, Department of Industrial Engineering. 
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Personal Information: 

Name  

Designation  

Program  

Department  

College  

Email  
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Application: 

The application data set is as follows –  

 

 

 

Figure 1. Application Data Set 

The Table 1 shows the termwise new application information for the last 15 terms. In addition, 

Figure 1 provides you a graphical representation of the application data set to understand the 

underlying behavior of the data pattern. 

 

Table 1

Termwise Application Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Application 284 204 109 269 216 105 272 260 139 303 205 105 257 230 122



56 
 

 

Question 1: 

257 new students applied for admission in MSOM program during Fall 2016 (Term - 1169).  

How many new students will you forecast for Fall 2017?  

How many new students AT LEAST will you forecast for Fall 2017?  

How many new students AT MOST will you forecast for Fall 2017?  

Please explain your answers 

 

 

Question 2: 

What factors do you think influence the application numbers? 
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Matriculation: 

The matriculation data set is as follows –  

 

 

 

Figure 2. Matriculation Data Set 

The Table 2 shows the termwise new matriculation information for the last 15 terms. In addition, 

Figure 2 provides you a graphical representation of the matriculation data set to understand the 

underlying behavior of the data pattern. 

 

Table 2

Termwise Matriculation Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Matriculation 193 135 71 176 143 55 185 157 83 176 146 58 168 146 63
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Question 3: 

168 new students matriculated in MSOM program during Fall 2016 (Term - 1169).  

How many new students will you forecast for Fall 2017?  

How many new students AT LEAST will you forecast for Fall 2017?  

How many new students AT MOST will you forecast for Fall 2017?  

Please explain your answers 

 

 

Question 4: 

What factors do you think influence the matriculation numbers? 

 



59 
 

 

Enrollment: 

The enrollment data set is as follows –  

 

 

 

Figure 3. Enrollment Data Set 

The Table 3 shows the termwise new enrollment information for the last 15 terms. In addition, 

Figure 3 provides you a graphical representation of the enrollment data set to understand the 

underlying behavior of the data pattern. 

 

Table 3

Termwise Enrollment Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Enrollment 161 121 62 159 124 55 165 140 70 156 130 48 140 121 45
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Question 5: 

140 new students enrolled in MSOM program during Fall 2016 (Term - 1169).  

How many new students will you forecast for Fall 2017?  

How many new students AT LEAST will you forecast for Fall 2017?  

How many new students AT MOST will you forecast for Fall 2017?  

Please explain your answers 

 

 

Question 6: 

What factors do you think influence the enrollment numbers? 
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Delphi Questionnaire 2 

A Delphi Analysis to Enhance the Student Admission and Enrollment System of MSOM 

Program 

Dear Panelist, 

Thank you for participating in the Delphi Questionnaire 1 survey. I am inviting you to join the 

second round of the study. This study is a part of the research project to analyze the fundamental 

aspects and develop a forecasting model to improve the student admission and enrollment system 

of MSOM program. This two-round Delphi study aims to develop a qualitative forecasting 

model for application, matriculation and enrollment stages. A quantitative analysis analyzed the 

data pattern of last 15 periods and developed a forecasting model using Exponential Smoothing 

method. The analysis verified the accuracy of the model using three techniques – MAD, MSE 

and MAPE calculation, Tracking Signal, and Control Chart. The outcomes of the Delphi analysis 

will be associated with the quantitative model. This study provides you the detailed information 

in each section for your reference. I cordially request you to provide your best judgment to 

predict the new student admission in the program and specify the relevant factors influencing an 

individual student’s decision to join the program.  

Instructions: 

5. This analysis contains three sections – Application, Matriculation, and Enrollment. 

6. Each section contains new student information for last 15 terms. In addition, each segment 

comprises the outcome of the Delphi Questionnaire 1 survey. 

7. Please answer each question and make comments on relevant issues. 

8. For further information please contact:  

Sultanul Nahian Hasnat; Email – snhasnat@email.uark.edu 

MSOM Program, Department of Industrial Engineering. 

 



62 
 

 

Personal Information: 

Name  

Designation  

Program  

Department  

College  

Email  
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Application: 

The application data set is as follows –  

 

 

 

Figure 1. Application Data Set 

Table 1 shows the termwise new application information for the last 15 terms. In addition, Figure 

1 provides you a graphical representation of the application data set to understand the underlying 

behavior of the data pattern. 

 

Table 1

Termwise Application Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Application 284 204 109 269 216 105 272 260 139 303 205 105 257 230 122
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Question 1: 

257 new students applied for admission in MSOM program during Fall 2016 (Term - 1169).  

 
Your Early 
Feedback 

Second Panelist’s 
Feedback 

Your Final 
Prediction 

How many new students will you 
forecast for Fall 2017? 

250 275  

How many new students AT LEAST 
will you forecast for Fall 2017? 

200 257  

How many new students AT MOST 
will you forecast for Fall 2017? 

275 300  

Please explain your answers 

 

 

Question 2: 

What factors do you think influence the application numbers? 

Your Early Feedback 
Second Panelist’s 

Feedback 
Your Final Prediction 

• USAF is 

masking the 

promotion 

board results. 

• Increase in 

tuition fees. 

• Military 

deployment. 

• Military funding 

for tuition fees. 

• Marketing and 

recruiting efforts. 
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Matriculation: 

The matriculation data set is as follows –  

 

 

 

Figure 2. Matriculation Data Set 

Table 2 shows the termwise new matriculation information for the last 15 terms. In addition, 

Figure 2 provides you a graphical representation of the matriculation data set to understand the 

underlying behavior of the data pattern. 

 

Table 2

Termwise Matriculation Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Matriculation 193 135 71 176 143 55 185 157 83 176 146 58 168 146 63
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Question 3: 

168 new students matriculated in MSOM program during Fall 2016 (Term - 1169).  

 
Your Early 
Feedback 

Second Panelist’s 
Feedback 

Your Final 
Prediction 

How many new students will you 
forecast for Fall 2017? 

170 185  

How many new students AT LEAST 
will you forecast for Fall 2017? 

150 170  

How many new students AT MOST 
will you forecast for Fall 2017? 

190 190  

Please explain your answers 

 

 

Question 4: 

What factors do you think influence the matriculation numbers? 

Your Early Feedback 
Second Panelist’s 

Feedback 
Your Final Prediction 

• Acceptance in 

other programs. 

• Increase in 

tuition fees. 

• Student’s 

intention and 

seriousness to 

attend the 

program. 

• Communication 

with the 

staffs/instructors. 
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Enrollment: 

The enrollment data set is as follows –  

 

 

 

Figure 3. Enrollment Data Set 

Table 3 shows the termwise new enrollment information for the last 15 terms. In addition, Figure 

3 provides you a graphical representation of the enrollment data set to understand the underlying 

behavior of the data pattern. 

 

Table 3

Termwise Enrollment Data Set

Term 1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176

Enrollment 161 121 62 159 124 55 165 140 70 156 130 48 140 121 45
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Question 5: 

140 new students enrolled in MSOM program during Fall 2016 (Term - 1169).  

 
Your Early 
Feedback 

Second Panelist’s 
Feedback 

Your Final 
Prediction 

How many new students will you 
forecast for Fall 2017? 

125 165  

How many new students AT LEAST 
will you forecast for Fall 2017? 

110 140  

How many new students AT MOST 
will you forecast for Fall 2017? 

150 175  

Please explain your answers 

 

 

Question 6: 

What factors do you think influence the enrollment numbers? 

Your Early Feedback 
Second Panelist’s 

Feedback 
Your Final Prediction 

• Increase in 

tuition fees. 

• Economic 

development. 

• Issues with the 

8-week term. 

• USAF is 

masking the 

degree data. 

• Access to tuition 

funding (tuition 

assistance from 

the employer, 

financial aid). 
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Figure 12. R code for pruned classification tree Figure 8 
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Figure 13. cp chart for pruned classification tree Figure 8 

 

Table 26. New student dropout in Matriculation stage Figure 9 

 

Term Application Matriculation Application Dropout in Matriculation

1129 284 193 100% 32.04%

1133 204 135 100% 33.82%

1136 109 71 100% 34.86%

1139 269 176 100% 34.57%

1143 216 143 100% 33.80%

1146 105 55 100% 47.62%

1149 272 185 100% 31.99%

1153 260 157 100% 39.62%

1156 139 83 100% 40.29%

1159 303 176 100% 41.91%

1163 205 146 100% 28.78%

1166 105 58 100% 44.76%

1169 257 168 100% 34.63%

1173 230 146 100% 36.52%

1176 122 63 100% 48.36%

38%Average
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Table 27. New student dropout in enrollment stage Figure 10 

 

Table 28. Enrollment distribution Figure 11 

 

Term Matriculation Enrollment Matriculation Dropout in Enrollment

1129 193 161 100% 17%

1133 135 121 100% 10%

1136 71 62 100% 13%

1139 176 159 100% 10%

1143 143 124 100% 13%

1146 55 55 100% 0%

1149 185 165 100% 11%

1153 157 140 100% 11%

1156 83 70 100% 16%

1159 176 156 100% 11%

1163 146 130 100% 11%

1166 58 48 100% 17%

1169 168 140 100% 17%

1173 146 121 100% 17%

1176 63 45 100% 29%

13%Average

1129 1133 1136 1139 1143 1146 1149 1153 1156 1159 1163 1166 1169 1173 1176 1179

1129 193 161 32 56 26 9 23 15 8 8 4 1 5 1 2 3

1133 135 121 14 37 12 18 17 3 10 10 4 1 3 0 2 3 0 1

1136 71 62 9 10 19 10 3 9 3 1 0 3 0 2 2 0 0

1139 176 159 17 47 38 11 15 17 7 9 6 1 4 4 0 0

1143 143 124 19 39 9 19 16 9 13 6 2 4 3 2 2

1146 55 55 0 15 15 6 4 2 9 1 0 2 0 1

1149 185 165 20 65 29 5 20 14 5 15 6 3 3

1153 157 140 17 56 13 16 16 2 12 13 1 11

1156 83 70 13 21 13 12 3 2 9 0 9

1159 176 156 20 68 27 7 23 7 4 20

1163 146 130 16 60 12 19 16 5 18

1166 58 48 10 10 18 7 6 7

1169 168 140 28 55 32 11 42

1173 146 121 25 64 11 46

1176 63 45 18 20 25

Matriculating 

Term
Matriculation Enrollment

Didn't 

Enroll

Enrollment Term
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