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Abstract 

This dissertation seeks to explore and assess the habitat selection, trophic interactions and 

distribution of Himalayan musk deer. Chapter one deals with seasonal diet analysis of musk deer 

along with the overlap in consumption with livestock during summer. Microhistological 

technique was employed to assess dietary consumption. Results showed that Abies spectabilis, 

Pinus wallichiana, and Berberis species constituted the major portion of musk deer’s diet. 

Dietary breadth measured by the Shannon index was found higher in winter compared to 

summer.  Although musk deer and livestock shared a considerable number of plant species in 

their diets, the consumption however was significantly different in terms of abundance of the 

species consumed.  

Chapter two deals with habitat selection at the 2nd order in terms of physical and 

vegetational attributes within the home range. It also assesses the impacts of livestock presence 

in habitat selection of musk deer. Logistic regression of musk deer’s presence/absence with 

binomial error structure and logit link function was employed to determine the physical and 

vegetational characteristics that likely affected the habitat selection by musk deer. Results found 

that elevation, aspect, canopy-cover, and tree species significantly affected the habitat selection 

of musk deer. Moreover, presence and absence of livestock was not found to have any significant 

effect on the habitat section of musk deer suggesting the selection as an evolutionary adaptation 

rather than an outcome of interspecific interactions with the livestock.  

Chapter three deals with habitat selection at the scale of geographic range. This chapter 

seeks to predict the area that is climatically suitable currently and in the future in context of 

climate change. Maxent modeling technique with occurrence records (i.e., latitude and longitude) 

of the species and bioclimatic variables as inputs was employed. Annual mean temperature was 



 
 

found as the significant climatic variable affecting habitat selection at the scale of geographic 

range and the model predicted an expansion of climatically-suitable area at the northern limit of 

the species’ range in Indian and Tibetan regions. It is expected that the understanding of habitat 

selection of musk deer at different scales could help in the conservation and management of the 

species. 
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Introduction: 

Species have some optimal requirements in terms of resources and conditions for 

survival, reproduction, and persistence and are thus adapted to such optimal conditions as 

invoked by niche theory (Grinnell, 1917; MacArthur, 1970; Tilman, 1982). Conservation of 

declining and threatened species requires the identification of those necessary resources and 

conditions, i.e. habitat that produces occupancy and support their survival and persistence 

(Hutchinson, 1957; Levins, 1968; Hall et al. 1997). However, the conditions that appear 

important for the distribution and persistence of species are scale dependent and selection of 

resources and conditions by individuals of a given species occur in a hierarchical process 

(Johnson, 1980). Hence, our understanding of resources that appear important could be greatly 

influenced by the scale context of the study. Understanding the factors that produces occupancy, 

drive their distribution, and support survival and persistence of the species at different spatial 

scales could greatly aid in the management and conservation. For example, Johnson (1980) has 

reported four hierarchical order of habitat selection ranging from the scale of geographic range of 

a species to procurement of diet at microscale within the home range. While physical and 

vegetational characteristics of the habitat, and biotic interactions could be important at a finer 

scale, climatic factors are considered important at a broader scale and are powerful determinants 

of species distribution at the scale of geographic range (Andrewartha and Birch 1954; Pearson 

and Dawson, 2003; Benton, 2009; Wiens, 2011).  

With human induced climate change, selection of habitat and distribution of species at a 

scale of geographic range could change with cascading effect at lower and/or finer scale. Hence, 

understanding the factors that drive the selection of habitat and distribution of species at different 

hierarchical order could aid in better and effective management of species with immediate 
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conservation concern. Moreover, such information could assist in habitat management and 

conservation planning in the context of climate change as well since the predicted climate change 

could shift the distribution and change the geographic range of the species as has been 

documented for many other species (Chen et al., 2011;  

Himalayan musk deer (Moschus leucogaster) and Alpine musk deer (Moschus 

chrysogaster) are typically confined to mountain forests and alpine environments of Asia 

(Whitehead, 1972; Flerov, 1952). According to the literature, both the species are 

interchangeably treated as Himalayan musk deer or Alpine musk deer. It is probably due to their 

morphological similarities and overlapping habitat Nevertheless, owing to their small and 

declining population size with restricted geographic range, both the species are listed in 

Appendix I of CITES and as endangered in the IUCN red list. Thus, they require immediate 

conservation actions before their extinction in the wild. In Nepal, musk deer are found in the 

birch, pine and rhododendron forest of the Himalayan region at an altitude of 2400-4300 m 

(Shrestha, 1998). Although protected by the Department of National Park and Wildlife 

Conservation Act since 1973 (Green and Kattel, 1997), musk deer populations in Nepal remain 

susceptible to poaching, potential competition with livestock, and habitat alteration; all factors 

that likely contribute to further decline and fragmentation of remaining populations.  

Despite of the understanding about the threats and necessity of their conservation 

concerns, little is known regarding habitat conditions driving the distribution and supporting the 

survival of musk deer populations at different hierarchical order and/or process. Also, potential 

threats from sympatric livestock during summer in terms of resource exploitation and habitat 

utilization is largely unknown. With this information in mind, this study seeks to fulfill the 

knowledge gap regarding the selection of habitat at different hierarchical scale and potential 
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impacts of livestock in terms of diet and spatial habitat overlap. Moreover, the study also aims 

The findings could assist in developing and implementing the conservation strategies for the 

species at different hierarchical order. The first chapter is concerned with the dietary assessment 

of musk deer and evaluate the dietary composition and overlap with livestock. I analyzed the 

dietary composition using the microhistological technique. The second chapter is concerned with 

the habitat conditions in terms of physical characteristics and vegetational characteristics that are 

selected and utilized by the musk deer and evaluate any effects of livestock in terms of selection. 

The third chapter is concerned with the bioclimatic conditions driving the distribution of the 

species at the scale of geographic range of the species. Besides, this chapter also aims to predict 

the climatically-suitable geographic area in the future in the context of projected climate change.  
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Chapter II: Dietary composition, breadth, and overlap between seasonally sympatric 

Himalayan musk deer and livestock: conservation implications 

Abstract:  

Livestock in high altitudes of Nepal and elsewhere, frequently and freely, use the 

potential habitat of native wildlife for foraging. Such intrusion of ecologically similar domestic 

species is supposed to negatively impact the resident wildlife via ‘perceived’ and/or ‘real’ 

competitive interactions. Hence, assessment of dietary composition and overlap between 

herbivores is crucial to gain insight into the potential impacts via resource exploitation by 

foraging livestock. Also, evaluation of dietary composition of resident wildlife across seasons is 

important to decipher their seasonal resource needs. Within this context, microhistological 

technique, that makes use of fecal pellets for the identification of plant species through 

comparison with reference slides of plant materials in the area, was used to assess dietary 

composition, breadth, and overlap between seasonally sympatric Himalayan musk deer and 

livestock in the Nepal Himalaya. Musk deer and livestock were found to have significantly 

different dietary consumption and that partition was contributed by different species; meaning 

different plant species were associated to the diets of these two groups. Of notable, however, was 

a considerable ‘number’ of species (i.e., species richness) shared in diets by musk deer and 

livestock raising a concern of unchecked number of livestock with a potential to exploit and 

reduce the availability of shared plant species for musk deer. Also, seasonal dietary composition 

of musk deer significantly varied, with increased dietary breadth in winter, suggesting a potential 

for intraspecific competition for forage in winter because of limited availability of resources 

mediated by retarded growth and harsh conditions. 
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1. Introduction 

Coexistence of sympatric species, despite extensive overlap in ecological requirements, is 

a function of resource partition (Hutchinson, 1959; MacArthur & Levins, 1967; MacArthur, 

1972). Such differential use of resources such as food and space can potentially be attributed to a 

response to interspecific competition over evolutionary time, where selection would favor the 

separation of resources to increase fitness (Schoener, 1974; Ricklefs, 2008). Introduction of 

ecologically similar species into a system can disrupt the system, if resident and introduced 

species do not share a long evolutionary history for resource partitioning and coexistence 

(Voeten & Prins, 1999; Prins, 2000). The severity of such introduction amplifies when 

introduced species are domesticated livestock with artificial supplementation of diet and are thus 

potentially competitively superior (Prins, 1992; Mishra et al., 2002). The gravity of the situation 

is even more severe when residents are declining endangered species confined within the 

boundary of Conservation areas (Mishra et al., 2004). Thus, understanding the extent of resource 

use by native wildlife and resource overlap with introduced species is a crucial conservation 

concern for declining wildlife populations. 

Wildlife and livestock share the rangelands worldwide (Prins, 2000).  High altitudes in 

the Himalayas, in particular, experience heavy grazing by livestock because of substantial 

pastoralism practices in these areas. Livestock grazing in these areas can potentially result in 

competitive interactions between the herbivores, and such interactions are predicted to be the 

most severe when the introduced species have similar feeding style with the native herbivore. 

Although demographic rates of the interacting species are desirable to confirm the existence of 

competition (Prins, 1996), incidences of significant spatial segregation between native wildlife 

and livestock have been reported in the literatures (Acevedo, Cassinello & Gortazar, 2007; Loft 
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Menke & Kie, 1991; Stewart et al., 2002) as evidence for competition between them. However, 

spatial segregation alone cannot be a consistent response to interactions between the herbivores. 

Understanding dietary breadth and overlap appears to be an additional important yardstick for 

understanding interactions (MacArthur & Levins, 1967; Gauze, 1971), and gauge the potential 

impacts of livestock-grazing on native wildlife species. 

Himalayan musk deer (Moschus leucogaster) and alpine musk deer (Moschus 

chrysogaster), in particular, are confined to high-altitude forests of Bhutan, northern India, 

Pakistan, Nepal, and China (Green, 1986; Grubb, 2005; Yang et al., 2003). The species are listed 

on Appendix I of CITES and as endangered on International Union for Conservation of Nature 

(IUCN) red list.  Taking expert-based range map of IUCN red list as a reference, the species of 

concern in this study is treated as Moschus leucogaster, although literatures indicate that both the 

species are interchangeably treated as Himalayan musk deer and/or alpine musk deer. It is 

probably due to their overlapping habitat, difficulties in species identification from their 

morphology because of their elusive nature, and lack of genetic studies for species identification 

(i.e., species concept conundrum, see de Queiroz, 2007). In Nepal, musk deer are found in birch, 

pine, and fir forests at an altitude of 2400–4300 m (Khadka & James, 2016) and considerably 

share their potential habitat with seasonally-sympatric livestock that are the means of sustenance 

for people (Metz, 1990; Fox, Yonzon & Podger, 1996). Yet the likely impacts of livestock 

grazing in the potential musk deer habitats appear to be overlooked and still remains largely 

unexplored. An earlier study (Khadka & James, 2016) found a spatial segregation between musk 

deer populations and livestock in study area considered here. However, that separation could not 

be attributed as a response to competition, due in part to independent selection of habitat 

conditions by two groups. Moreover, the species do not share a co-existing evolutionary history 
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for such niche segregation. So, it was hypothesized that the spatial separation between livestock 

and musk deer is due to significant overlap in dietary composition between them. Hence, the 

present study is directed towards the assessment of seasonal diet composition, diet breadth, and 

diet overlap between livestock and musk deer. It is expected that the findings of the study shed 

light on the likely impacts of livestock on musk deer populations in the area, and potentially aid 

in management and conservation of species. Besides, it is also anticipated that such well-

informed management approach helps to address the interests of both Conservation area and 

people, and reduce the probable conflicts between two. 

2. Methods 

2.1 Study area 

This study was conducted in Jomsom, Mustang area of Nepal (Fig. 1); it lies in the 

central North region of the country in the rainshadow part of Annapurna and Dhaulagiri 

Himalaya ranges. The altitude ranges from 2750 m above sea level to 6700 m and average 

annual precipitation is 250–400 mm. The study site is located in the Annapurna Conservation 

Area Project (ACAP), the largest protected area, covering 7629 sq. km in Nepal. Vegetation of 

the area is characterized by temperate coniferous forests and alpine meadows, while the northern 

boundary of the area consists of arid landscape and long steep bare slopes cut by deep river 

gorges (Ives, 2006). Livestock comprises cattle, goats, sheep, and are the major sources of 

sustenance for the local people. These livestock forage freely in the potential habitat range of 

musk deer from April to October (i.e., summer) and stay in the livestock-sheds built at higher 

elevation. They move down to human settlements in winter where they are provided 

supplemental forage during that season. 
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2.2 Data collection 

For the purpose of fecal collection, the area was divided into five units (four forest 

patches and one meadow patch).  Fresh fecal pellets (< ca15 days old) of musk deer and 

livestock were collected along the altitudinal transect (1 transect per season) from each patch 

during summer (June and July) and winter (December and January) of 2014 and 2015. Age of 

the fecal pellets was roughly estimated by observing the color and moisture content. Collected 

pellets were air dried for microhistological analysis. Although issues of biased estimates due to 

differential digestibility of plant materials have been documented, microhistological technique is 

widely used in assessing the diets of herbivores. Moreover, the technique is of particular 

significance for rare and declining species like musk deer.  Fecal pellets from a total of 39 and 27 

latrine sites of musk deer were collected from summer and winter season respectively.  Likewise, 

for livestock fecal pellets from a total of 72 fecal sites (Goat = 28, Sheep = 20, Cattle= 22) were 

collected for summer. Fecal pellets of livestock were collected only from summer since they 

forage in the concerned area only during that season. Fecal pellets collected from each unit for 

each season for each herbivore group were mixed thoroughly to make a composite sample.  

Air dried fecal samples were broken into smaller pieces and ground to pass through a 1-

mm screen fitted to an electric mill. The ground material was sieved through Endecotts sieves of 

595 and 210 µm mesh size to remove coarse unidentifiable material and dust. Five slides from 

each composite sample for each season for each herbivore group (i.e., musk deer and livestock) 

were prepared following the method used by Sparks & Malechek (1968) and Anthony & Smith 

(1974), as modified by Vavra & Holechek (1980). 

In order to get a glimpse of resource distribution and availability in the area in summer 

and evaluate if the consumption was correlated to abundance, dominant plant species in terms of 
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frequency and cover in each category of tree species (browse), shrub species (browse), and herb 

species (forb + graminoid) were recorded in each randomly laid plots (10m X 10m) (n=112) in 

the area. Also, thirty-four plant species considered as the potential diets were collected from the 

area for preparation of reference slides. Each plant species was also classified among 3 forage 

categories: graminoids (grass and sedge families), forbs (broad leaved herbaceous plants) and 

browse (woody plants). Plant fragments in the slides were identified using compound 

microscope at 200X magnification. Each prepared slide was marked into five longitudinal 

transects and the first ten non-overlapping fragments in each transect were identified, classified, 

and recorded. Fragments were classified at least to generic taxonomic level. Completely 

unidentifiable fragments were classified as unknown. A total of 1250 fragments from each 

season for each group of herbivore were recorded.  

2.3 Data analyses 

Sample-based species-accumulation curves were plotted using vegan package (Oksanen et 

al., 2013) in R (R Core Team, 2016) to assess the sampling sufficiency for both the herbivore 

groups for each season. Bipartite package was used to build a bipartite network graph for 

depicting the links between the herbivores and their shared or exclusive plant taxa in their diet. 

Dietary breadth was measured using Shannon diversity index. Diet separation between groups 

and across seasons was calculated using Bray-Curtis dissimilarity index in vegan with values 

ranging from 0 (complete overlap) to 1 (complete separation). This index takes into account the 

abundance of the plant species in the diet. Sorenson index (0= all species common, 1= none 

species common) was also calculated to elucidate diet overlap in terms of shared ‘number’ of 

species (i.e., species richness) between the groups. Differences in diet composition between the 

groups and within musk deer population across seasons were analyzed using adonis with 999 
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permutations in vegan.  In order to determine the plant taxa contributing most to diet partition 

between two groups and within musk deer across seasons, indicator species analysis was 

performed using signassoc function with 999 permutations and Sidak’s correction for multiple 

comparisons in indicspecies v.1.7.2 (De Cáceres & Legendre, 2009). This analysis tested the one 

sided null hypothesis that the abundance of plant taxa in samples from one herbivore group 

and/or one season is not greater than its abundance in the other group and/or season. 

3. Results 

Sample-based species-accumulation curves for each herbivore group and for each season 

approached asymptotes, indicating sufficient sampling for the dietary analysis (Colwell et al., 

2012). The distributions of abundant plant species in each category of trees, shrubs, and herbs 

were significantly different [tree (browse): χ2 = 24.7, P < 0.001, d.f.=2; shrubs (browse): χ2 = 

130.95, P < 0.001, d.f.=8; herbs (gramonid + forbs): χ2 = 293.72, P < 0.001, d.f.=4]. The 

distributions of tree, shrub and herb species were dominated by Pinus wallichaina, Berberis 

asiatica, and Calamagrostis canescens respectively. 

A total of 19 species were found in the summer diet of musk deer (Table 1).  Mean 

dietary breadth of summer consumption in terms of Shannon index was found to be 1.09 ± 0.58 

(mean ± SD). Summer consumption was found to be dominated by browse (86.5 %) (Fig. 2), in 

which Abies spectabilis alone accounted for 47.8%.  Similarly, a total of 22 species were found 

in winter consumption. Mean dietary breadth in terms of Shannon index was found to be 1.43 ± 

0.44 (mean ± SD). Winter consumption was found to be dominated by browse (67.0%) and forbs 

(22.7 %) (Fig.2), where Abies spectabilis (25.8%), Pinus wallichiana (14.8%), and Berberis 

asiatica (10.6%) dominated the browse category. However, there was no significant difference in 
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the proportions of forage categories between summer and winter consumptions (χ2 =0.093, 

P=0.95, d.f.=2). 

A total of 26 species were found in the summer diet of livestock (Table 1). Mean 

Shannon diversity index of the consumption was found to be 1.41 ± 0.52 (mean ± SD). Summer 

consumption of livestock was dominated by browse (63.8%) and graminoids (28.4%), among 

which Pinus wallichaina (30.6%) and Calamagrostis canescens (19.7%) dominated the forage 

categories respectively. In terms of proportion of forage categories, there was no significant 

difference between summer consumptions of livestock and musk deer (χ2 =0.33, P=0.84, d.f.=2). 

Although there was considerable overlap in consumption (74% of the species common) between 

livestock and musk deer, they however, diverged in abundance (Fig.3). Bray-Curtis and 

Sorenson dissimilarity indices were found to be 0.65 and 0.22 respectively. Bray-Curtis 

dissimilarity between musk deer and livestock diet composition was statistically significant 

indicating significant difference in consumption (pseudo F1, 49 = 22.5, R2 = 0.31, P < 0.001). 

Nonmetric multidimensional scaling (NMDS) showed clear separation of samples between 

livestock and musk diet composition (Fig. 4). Also, Shannon diversity indices of summer diet 

composition of livestock and musk deer were found to be significantly different (t = -2.2024, d.f. 

= 54.435, P = 0.03). Five species, namely: Calamagrostis canescens, Hedysarum species, Betula 

utilis, unknown, and Kobresia species were found to be significantly associated to summer diet 

of livestock. Abies spectabilis, however, was found to be significantly associated to musk deer’s 

summer diet.  

Likewise, Bray-Curtis and Sorenson dissimilarity indices between summer and winter 

diet of musk deer were found to be 0.36 and 0.26 respectively.  Bray-Curtis dissimilarity 

between summer and winter diet was significant (pseudo F1, 49 = 9.34, R2 = 0.16, P < 0.001), and 
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nonmetric multidimensional scaling (NMDS) showed separation of samples between summer 

and winter diet composition of musk deer (Fig. 5). Also, Shannon diversity indices of summer 

and winter diet composition of musk deer were significantly different (t = -2.6133, d.f. = 62.38, 

P = 0.01). Five species, namely: Lonicera species, Rhododendron lepidotum, Juniperus species, 

Caragana species, and an unknown species were found to be significantly associated to winter 

diet contributing most to the diet partition across seasons in musk deer.  

4. Discussion 

Both livestock and musk deer in the area appear to be mixed feeders (i.e., graze and 

browse) in terms of forage categories, although browsing seems to be a major feeding mode in 

musk deer unlike livestock that have considerably both grazing and browsing feeding modes. 

However, plant species contributing to the forage categories differ for the two groups. Although 

musk deer and livestock use a wide range of plant species available in the area in summer, 

majority of their diets are comprised of only few species they eat (25% for livestock and 20% for 

musk deer). Of notable was a disproportionate consumption of available resources by musk deer 

suggesting them to be selective feeders. Livestock, however, appear to be generalist feeders since 

the consumption was proportionate to resource distribution in the area. Livestock forage in a 

group, and hence it should be profitable to consume the available resources in bulk rather than 

search for the preferable plant species, as predicted by optimal foraging theory.  Also, musk deer 

seems to be more specialist feeders in terms of diet breadth compared to livestock although this 

difference might have been biased by lumping of different livestock species into a single group. 

Nevertheless, this study is directed towards the assessment of intergroup diet variation and/or 

overlap for the habitat management purpose. Hence, the finding should be of worth concern for 

the conservation of musk deer population in the area.  
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Although musk deer and livestock show considerable summer diet overlap in terms of 

‘number’ of species shared (74% of the species shared), they however differ in composition in 

terms of abundance of the species present in their consumption; it is presumably a reflection of 

differential preference. Such a significant differentiation in diet composition in summer, which is 

a major growing season in the high altitudes with increased abundance of plant species and 

availability of plant material, indicates differential diet selection and a low potential for 

competition for food between the groups. Although assessment of demographic rates might be 

desirable to robustly conclude the degree of competitive interactions (Prins & Olff, 1998) for 

food between the groups, such a compositional discrepancy in consumption should in part 

explain the absence of competition for food, as musk deer are particularly active during the night 

(Meng et al., 2001) with an opportunity of unrestricted access to and consumption of available 

plant species and/or materials in the area. Moreover, currently detected diet partition cannot be 

explained as a response to competitive interactions in the past as these two groups do not share a 

considerable coexisting evolutionary history leading to significant niche partitioning to improve 

fitness (Connell, 1980). An earlier finding of independent habitat selection by musk deer and 

livestock (Khadka & James, 2016) and current finding of significant diet partition between them 

in the area so far sufficiently provide suggestive evidences for absence of competitive 

interactions between these two groups of herbivores (De Boer & Prins, 1990). Thus, it appears 

that spatial segregation and differential consumption are presumably the responses to 

evolutionary adaptation of musk deer rather than to the competitive interactions with the 

livestock. However, removal of livestock from the area to see any changes in diet composition 

and breadth of musk deer resulting to considerable positive effect on vital rates would add 

further accuracy and precision in understanding competitive interactions between them (Pianka, 
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1976; Prins & Olff, 1998). So, future studies directed to unearth such concerns are recommended 

for gaining a deep sense on competitive interactions. 

Compared to summer, musk deer appear to increase their dietary breath with differing 

composition in winter. Moreover, intraspecific diet variation was considerably lower in winter 

compared to summer suggesting limited availability of diet and potential for intraspecific 

competition for food during winter in the area. However, diet composition in terms of forage 

categories did not differ significantly across seasons indicating consistency in foraging mode. 

Increased dietary breadth with differing composition in winter might be due to intraspecific 

competition for the limited available plant species and differential availability of plant species 

across seasons in the area. Niche expansion due to intraspecific competition with depletion of 

preferred resources is a key prediction of classical optimal foraging theory (Svanback & Bolnick, 

2005), and has been reported in numerous taxa elsewhere (Werner & Hall, 1974; Svanback & 

Bolnick, 2007). Winters in the high altitudes are characterized by considerable snowfall, retarded 

growth of the plant species, and lowered availability of annual graminoids and forbs. Thus, it 

should be potentially beneficial to opportunistically forage on the available perennial browse 

species in the area in winter in order to avoid intraspecific competition (MacArthur & Pianka, 

1966; Schoener, 1971; Pulliam, 1974). Thus, significant association of perennial browse like 

Rhododendron species, Caragana species, Lonicera species, and Juniperus species with winter 

diet of musk deer is probably because of their availabilities in winter as well. Musk deer 

significantly select pine and fir forest as their potential habitat (Khadka & James, 2016). 

Increased proportion of Pinus species in the winter diet might be due to the increased preference 

for pine forest during winter, where the thick blanket of pine leaves provide relatively warm 

bedding against low temperature of winter, potentially decreasing thermoregulatory cost 
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(Dussault et al., 2004). On the other hand, significant association of Abies species with summer 

diet provides a suggestive evidence for increased preference of fir forest during summer.  

Niche partitioning as a response to interspecific competition is a mechanism for the 

coexistence for sympatric species (Hutchinson, 1959; Schoener, 1974). However, it is notable 

that partitioning of dietary composition between musk deer and livestock is presumably not a 

response to competitive interactions (see above). But, musk deer and livestock appears to share a 

considerable ‘number’ of plant species in their diets. Hence, the finding of significant 

partitioning in dietary composition cannot be completely-interpreted and expected as without any 

effect to musk deer population in the area. Numerical supremacy of livestock can potentially 

exploit the shared resources limiting their availability to musk deer. Moreover, being a generalist 

feeder livestock can potentially increase their dietary breadth as a response to intragroup 

competition for food (MacArthur & Pianka, 1966; Schoener, 1971) with their increase in number 

in the area. It can negatively affect the availability of plant species that constitute the major 

portion in diets of musk deer. Thus, it appears that the current finding of diet partition between 

musk deer and livestock in the area should be considered with caution. Additionally, possibility 

of indirect effects mediated by the compositional change of plant species due to the introduction 

of livestock in the area (Augustine & McNaughton, 1998; Fleischner, 1994) deserves a 

significant attention as well. Hence, further study directed towards an assessment of 

compositional change of vegetation in the area due to the presence of livestock would precisely 

decipher the possible negative impacts on musk deer. Undoubtedly though, findings of the 

current study are expected to aid in habitat management and species conservation via well-

informed decision to focus on the availability and abundance of plant species that make the diets 
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of musk deer in the area and elsewhere where the species share their potential habitat with 

livestock. 

Park-people conflict is ubiquitous due to conflicting interests between the park manager 

and local people. Such conflicts, in particular, are common in countries where the local herders 

have huge dependencies on forest resources for livestock rearing (Nepal &Weber, 1993). 

However, complete barring of local people from the protected areas does not seem to be an 

effective tactic to conservation (Sekhar, 2003). Thus, approaches that accommodate and address 

the interests of both park and people are of utmost importance for a “win-win” outcome. 

Conception and development of such approaches for habitat management require a well-

informed understanding of resource use and overlap of native species with livestock. Findings 

from the present study suggest for a partition and designation of livestock grazing area limiting 

them within it rather than letting them move freely and forage in the whole habitat range. 

Livestock removal and/or restriction from the area with significant availability of resources to 

musk deer could potentially benefit the species as has been reported for other wild herbivores 

elsewhere (Khan et al., 1996; Mishra et al., 2004). Also, the area that supports plant species (for 

example, Abies species, Pinus species, Rhododendron species, Juniperus species, Caragana 

species, Lonicera species) that are significantly associated to summer and winter diet of musk 

deer should be prioritized and protected from anthropogenic disturbances for the conservation of 

musk deer. 
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Table 1: Percentage contribution of plant species in the diets of livestock and musk deer across 

seasons in the area 

 

                          Summer Winter 

Plant species Livestock Musk deer Musk deer 

Abies spectabilis 0.8 61.28 28.43 

Anaphalis spp 0.24 - 0.06 

Artemisia spp 0.16 - - 

Berberis asiatica 5.33 9.12 12.61 

Betula utilis 4.28 1.3 0.3 

Bistorta spp - - 0.36 

Calamagrostis 

canescens 17.54 0.81 - 

Caragana spp 0.08 - 1.96 

Carex spp 0.16 0.08 - 

Clematis barbellate - 0.24 15.69 

Cotoneaster spp 3.07 1.46 0.67 

Festuca spp 1.21 - - 

Geranium spp 0.16 0.08 - 

Hedysarum spp 7.51 0.32 0.18 

Iris goniocarpa 0.16 0.08 0.06 

Juniperus spp 2.18 1.71 4.3 

Kobresia spp 6.3 0.08 - 

Lonicera spp 4.28 1.05 6.03 

Moss - - 0.06 

Oxytropis spp 0.32 - 0.06 

Pinus wallichiana 27.16 15.56 17.35 

Polygonatum spp 0.24 - 0.06 

Potentilla fruticose 0.16 - - 

Rhododendron 

lepidotum 0.24 - 1.96 

Rosa sericea 0.64 1.14 1.41 

Salix spp 0.24 - 0.24 

Spiraea spp 0.32 0.08 - 

Syringa emodi 0.56 0.08 0.18 

Taraxacum spp - 0.16 0.24 

Thalictrum spp 0.08 0.24 0.43 

Unknown a 8.73 4.8 7.01 

Unknown b 7.76 0.24 0.24 
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Figure 1. Mustang district of Nepal with river network and VDC boundary. Village Development 

Committee (VDC) is the lower administrative part in Nepal. Study site is labeled as Jomsom. 
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Figure 2. Percentage of forage categories (Browse, Forb, and Graminoid) in the summer and 

winter diet of musk deer, and summer diet of livestock. 
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Figure 3. Bipartite network depicting dietary composition and overlap of summer diet of musk 

deer and livestock. Lines connect herbivore group (upper boxes) to dietary plant species (lower 

boxes), which are colored by plant species. Widths of upper boxes reflect the abundance of each 

plant species detected across all samples from the herbivore group. 



26 
 

 

 

 

Figure 4. Summer diet partitioning between musk deer and livestock. NMDS of Bray–Curtis 

dissimilarity of samples from musk deer and livestock. 
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Figure 5. Diet partitioning of musk deer between summer and winter season. NMDS of Bray–

Curtis dissimilarity of samples from summer and winter diet. 
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Chapter III: Habitat selection by Himalayan musk deer and impacts of livestock grazing in 

Nepal Himalaya 

Abstract: 

Habitat management within and outside the protected areas is a key to effective 

conservation of wildlife. It is particularly more vital for a declining wildlife population confined 

within the boundary of conservation area, yet sharing their potential habitat range with foraging 

livestock. To understand the habitat use by Himalayan musk deer (Moschus chrysogaster) and 

explore any potential impacts of livestock grazing on them, I conducted the present study in four 

forest patches of central Nepal Himalaya. I recorded data on musk deer and/or livestock 

presence/absence (based on signs of fecal pellets, footprints, and resting site) along the 

altitudinal transect with associated topographic features (altitude, slope, aspect, and distance to 

water) and vegetation features (tree sp., shrub sp., herb sp., and canopy-cover). I found that 

altitude, aspect, canopy-cover, and tree sp.in the area significantly affect the likelihood of habitat 

selection by musk deer. In particular, they selected the southern aspect of the area with altitude 

≥3529 m, canopy-cover ≥42 %, and with stands of Pinus sp. and Abies sp. Slope and canopy-

cover significantly affected the grazing areas selection by livestock. They used the gentler slopes 

in the northern aspect of the area with altitude <3529 m and canopy-cover <42%. These 

selections are possibly the response to morphological and behavioral adaptations than to impacts 

and interactions between these two groups of herbivores. I suggest avoiding any disturbances and 

livestock grazing on the area that are likely used and occupied by musk deer population. 
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1. Introduction: 

Increasing anthropogenic pressures and their consequent impacts on wildlife have been 

well recognized globally (Millenium Ecosystem Assessment, 2005). High altitudes in the 

Himalayas, in particular, experience heavy grazing by livestock because of substantial 

pastoralism practice in these areas. Therefore, impacts of livestock grazing on native wildlife 

species in these areas are crucial conservation concerns (Fleischner, 1994; Noss, 1994; Mishra et 

al., 2004), as habitat overlap with foraging livestock can spatially displace wildlife with reduced 

foraging opportunities and low quality food via exploitative and interference competition leading 

to reduced fitness. Hence, it requires exploration, identification, and understanding of key habitat 

conditions that limit distribution and/or produce occupancy of the species (Morrison et al., 2006). 

This information can potentially act as yardstick to gauge the impacts imposed by migratory 

livestock on native wildlife, and can be effectively applied for habitat management which is a 

root to wildlife conservation (Lindenmayer et al., 2006). This can be accomplished via empirical 

modeling that correlate species presence and/or occupancy to resources and conditions 

potentially required for species survival and persistence (Pearce & Ferrier, 2000). 

Himalayan musk deer (Moschus chrysogaster) (hereafter musk deer), characterized by 

the lack of antlers and presence of a pair of tusk like teeth (canines), is an ecologically and 

economically (for the invaluable musk male musk deer produces) important species of the family 

Moschidae (Order: Cetartiodactyla). This species is typically confined to mountain forests of 

Bhutan, northern India, Nepal, and China (Green, 1986, 1987; Grubb, 2005). In Nepal, the 

species is found in birch and rhododendron forests at an altitude of 2400-4300 m (Green, 1980; 

Shrestha, 1998). The species has been listed in Appendix I of CITES and as endangered by 
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IUCN suggesting that population is declining primarily due to habitat loss and poaching (Yang et 

al., 2003; Wang & Harris, 2008). 

In Nepal, the species is protected by the Department of National Park and Wildlife 

Conservation Act since 1973. Despite conservation efforts implemented through enactment of 

law and designation of protected areas, the species remains susceptible to likely negative 

impacts of livestock grazing in their range (Aryal et al., 2010). Protected areas although play an 

important role in conservation, their effectiveness is limited by human-induced stresses. In high 

altitudes of Nepal, people depend on livestock rearing and forest resources for their sustenance. 

Livestock experience transhumance foraging systems where they move to different pastures and 

forests in the high altitudes for foraging (Metz, 1990; Fox et al., 1996) which are presumably the 

potential habitat for native wildlife including musk deer. 

However, impacts of livestock grazing on mountain ungulates including musk deer 

habitat appear to be overlooked and their repercussions have received little attention recently 

(Mishra et al., 2004; Namgail et al., 2007). Thus, it’s crucial to identify habitat (topographic and 

vegetation features) use by both musk deer and migratory livestock in the areas to understand 

any impacts, and explore the conditions that characterize their habitat selection and use (Boyce et 

al., 2002). This information can act as guiding principles to develop management strategies for 

musk deer conservation in the high altitudes. With this understanding in mind, the present study 

aims to explore and identify the habitat conditions (topography and vegetation categories) that 

likely produce occupancy of musk deer and livestock to test whether habitat use of these two 

groups are characterized by similar habitat conditions in the area leading to potential impacts 

(Stewart et al., 2002; Bagchi et al., 2004). Although both physical and biotic factors shape the 

distribution of species (Benton, 2009), here we focus on physical habitat parameters since wild 
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musk deer and domesticated migratory livestock do not share a co-existing evolutionary history 

that potentially leads to resource partitioning in response to their interactions (Connell, 1980). 

2. Methods 

2.1 Study area 

I conducted this study in Jomsom, Mustang area of Nepal (Fig 1). It lies in the central North 

region of the country in the rain-shadow part of Annapurna and Dhaulagiri Himalaya ranges. The 

altitude ranges from 2750 m to 6700 m above sea level and average annual precipitation is 250-

400 mm. The study sites (4 forest patches in Lupra and Thini village) are located in Annapurna 

conservation Area Project (ACAP), the largest protected area, covering 7629 sq. km. in Nepal. 

Vegetation is characterized by temperate coniferous forests and alpine meadows, whereas the 

northern boundary consists of arid landscape and long steep bare slopes cut by deep river gorges 

(Ives, 2006). Livestock comprises cattle, goats, sheep, and horses that forage in the forests and 

meadows of the area. 

2.2 Data collection and analysis 

The procedure followed design I and sampling protocol D of Mcdonald, Alldredge, Boyce, and 

Erickson, (2005), meaning I categorized the sampling plots as used or unused by musk deer and 

livestock at a population level. The study was conducted during summer (June and July) and 

winter (December and January) of 2014 and 2015 (1 transect per unit per season). I laid plots (N 

= 209), each of 10 m × 10 m, at intervals of 100 m along the transect in elevational gradient, and 

recorded presence or absence of livestock and musk deer based on signs (fecal pellets, footprints, 

resting sites). I intensively searched each plot for any signs of presence or use to maximize the 

probability of detection. Also, at each plot the following variables were assessed and recorded: 
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elevation (m), slope (degree), canopy-cover (%), distance to vantage point (m) (rock, cliff, and 

wooden log), aspect, distance to water (m), dominant herb spp., shrub spp., and tree spp. Tree 

spp., shrub spp., and herb spp. were categorized into 3 (1 = Betula spp., 2 = Abies spp., 3 = Pinus 

spp.), 5 (1 = Berberis spp., 2 = Juniperus spp., 3 = Anaphilis spp., 4 = Rosa spp., 5 = Caragana 

spp.), and 2 (1 = Grass, 2 = Others) genus levels respectively for analyses. Likewise, I 

categorized aspect into 2 levels (1 = North, 2 = South). Also, years (1 = 2014, 2 = 2015) and 

seasons (1 =Winter, 2 = Summer) were categorized and used as explanatory variables to check 

the consistency in habitat use across years and seasons. Multicollinearity of continuous variables 

were checked and when I found a significant correlation of vantage point distance with slope 

(Pearson’s r = −0.3, p < 0.05) and cover (Pearson’s r = 0.15, p < 0.05), I excluded it from 

analysis. I performed a binomial logistic regression with presence or absence of musk deer and 

livestock as a response variable and aforementioned variables as inputs to explore the habitat 

selections. Also, I included the presence or absence of livestock in the logistic regression model 

for musk deer (and vice versa) to check whether the habitat selection is independent of the other 

group. I scaled (subtracted the mean and divided by SD) all the continuous variables prior to 

analysis (Draper & Smith, 1998) to improve model convergence. Also, I built a partition tree 

taking the plots exclusive to musk deer and livestock presence as class for partition and the 

associated variables in those plots as partitioning factors. I conducted all the analyses in 

statistical tool R (R Core Team, 2015). 

3. Results 

Of the plots surveyed, 19% were used exclusively by livestock and 35% by musk deer while 

13% were found to be used by both. Musk deer presence signs were found in the area with 

average (±SD) elevation, canopy-cover, slope, and water-distance of 3685 ± 115 m, 55 ± 23%, 
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47 ± 14◦, and 440 ± 253 m respectively. Likewise, livestock presence signs were found in the 

area with average (±SD) elevation, canopy-cover, slope, and water distance of 3634 ± 198 m, 46 

± 29%, 42 ± 14◦, and 420 ± 198 m respectively. Maximum detected distance between musk deer 

and livestock was 580 m, while the mean detected distance between them was 51 m. Elevation, 

aspect, canopy-cover, and tree spp. (Pinus spp. and Abies spp.) were found to be the significant 

predictors for likelihood of habitat selection by musk deer. I determined the best predictive 

reduced model using a stepwise model selection (direction = ‘both’) approach which employs the 

Akaike’s Information Criteria for decision making (Table 1). The reduced model was not 

different from the full model (Likelihood ratio test: 2 = 8.93, df = 6, p = 0.25). Likewise, I found 

slope and canopy-cover as the significant predictors for likelihood of habitat selection by live 

stock (Table 2). Again, reduced model was not different from the full model with all the 

variables included (Likelihood ratio test: 2 = 7.18, df = 4, p = 0.61). Also, I found that presence 

or absence of livestock does not have any significant effect (Tables 3 and 4) on the likelihood of 

habitat selection by musk deer (and vice versa), and made insignificant differences in the habitat 

coefficients of the habitat selection models (i.e. Tables 1 and 2). Finally, I built a partition tree 

taking livestock and musk as categorical classes and associated variables as partitioning factors. I 

found elevation (≥3529 m for musk deer and <3529 m for livestock), canopy-cover (≥42% for 

musk deer and < 42% for livestock), and aspect (South for musk deer and North for livestock) as 

the important classifiers for the classification of musk deer and livestock on habitat selection in 

the area (Figure 2). 

4. Discussion 

The present study depicts a broad yet important picture of habitat selection by musk deer and 

livestock in the study area. Musk deer populations appear to use the area characterized by 
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presence of stands of Pinus sp. and Abies sp. trees with relatively dense canopy-cover (≥42 %) 

on higher elevational zone (≥3529 m) of the southern aspect. These selections are presumably 

the response to the behavioral and morphological adaptations (Futuyma & Moreno, 1988) to 

increase the fitness. Musk deer are elusive and shy animals (Kattel, 1992) characterized by 

longer hind limbs compared to forelimbs adapted for efficient movement and climbing rugged 

terrain of high elevation. Moreover, thick blanket of pine leaves on ground provide warmth and 

presumably reduces the thermoregulatory cost (Dussault et al., 2004; Maloney et al., 2005) in 

high altitudes. Besides, bark of Abies sp. contribute a significant portion to the diet of musk deer 

(Green, 1980) during winter. Selection for relatively dense vegetation with higher canopy-cover 

(Yang et al., 2003) is possibly a response to predator avoidance.  

On the other side, livestock tends to use the area characterized by moderate canopy cover 

(<42 %) on relatively gentler slope and lower elevation (<3529 m) of the northern aspect. This 

presumably is a response to their foraging strategy to maximize forage intake and profitability 

(Pyke et al., 1977). It is energetically costly to travel to high altitudes and steep slopes for 

foraging. Moreover, livestock forage in a group and hence potentially select areas with high 

forage availability. It’s likely that moderately open canopy provides comparatively more 

foraging opportunities to the livestock, as increasing density of canopy cover of woody plants 

decreases the herbaceous standing crop (Jameson, 1967; Dahl et al., 1978). 

Findings of the present study, thus far, offer suggestive evidence that habitat selection by 

musk deer and livestock in the area is independent ofthe other species, and do not provide 

evidence to current interactions and impacts to musk deer populations. Although musk deer are 

active particularly during the night (Meng et al., 2001), this behavior however cannot be 

attributed as a response to interactions with livestock. This is because such behavioral changes 
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are expected to evolve as a response to interactions (in particular competition) for co-existing 

species in the same habitat competing for the same limited resources. Habitat selections by these 

two groups, however, are characterized by a combination of different vegetation categories and 

topographic features, and are spatially separated. Additionally, these selections are less likely to 

be the response to past impacts and interactions (Connell, 1980), as these two groups do not 

share co-existing evolutionary history that potentially leads to habitat differentiation and 

adaptive resource partitioning (Behmer & Joern, 2008). 

Nevertheless, this does not completely eliminate the possibility of any form of effects on 

musk deer population by livestock grazing on the area because of possible imperfect detection of 

used and unused plots during the survey. Moreover, population trend of musk deer in the area is 

unknown. The present study depended on indirect evidence of presence. Hence, further study 

directed towards the assessment of vital rates and population trajectory of the species is 

recommended to shed more light on potential impacts by livestock. Northern aspect of the area is 

closer to human settlement and hence the reason for using the southern aspect by musk deer 

could also be a response to human disturbance and livestock avoidance. This side of the area is 

often visited by villagers for fuel wood and fodder (personal observation) and is therefore 

comparatively more disturbed, possibly leading to displacement of musk deer population from 

the area. Significant spatial displacement of mountain ungulates by livestock elsewhere is 

reported in the literatures (Acevedo, Cassinello, & Gortazar, 2007; Loft, Menke, & Kie, 1991; 

Stewart et al., 2002). Therefore, it would be interesting to see if the musk deer population in the 

area expands their habitat selection when livestock are stopped foraging from this part of the 

area. 



36 
 

Our results can help meet a ‘win-win’ condition to both the managers and livestock owners. 

Avoidance of livestock grazing and restriction of any form of disturbances on high elevation 

(≥3529 m) of the southern aspect, where dense stands of Pinus sp. and Abies sp. trees with 

canopy-cover ≥42 % potentially provide the resources and conditions for musk deer occupancy, 

can promote the conservation of musk deer in the area. On the other hand, limiting livestock 

grazing on lower elevation (<3529 m) of the Northern aspect with canopy-cover <42 % can 

assist the sustenance of livestock owners. Wildlife conservation in a developing country like 

Nepal, where majority of people depend on agriculture and natural resources, is often in serious 

conflict with the necessities for sustenance by local people. Efficacy of any conservation 

approach, therefore, depends on the support and participation of the people. So, complete 

restriction of livestock grazing for the conservation of musk deer in the area can potentially 

create a park-people conflict. We suggest for a management approach with dual goals of 

regulation of livestock grazing and amelioration of habitat conditions for musk deer in the area. 

 

Acknowledgments: 

I thank the American Society of Mammologists for funding this study through Grant-in-Aid of 

Research. I also like to thank Ms. Kabita Karki, Mr. Kiran ThapaMagar, and Mr. Nitesh Singh 

for assistance in the field. 

 

 

 



37 
 

Works cited: 

Acevedo, P., Cassinello, J., Gortazar, C., 2007. The Iberian ibex is under an expansion trend but 

displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. 

Biodiversity and Conservation. 16. 3361-3376. 

 

Aryal, A., Raubenheimer, D., Subedi, S., Kattel, B., 2010. Spatial habitat overlap and habitat 

preference of Hinmalayan musk deer (Moschus chrysogaster) in Sagarmatha (Mt. Everest) 

National Park, Nepal. Current Research Journal of Biological Science. 2. 217-225. 

 

Bagchi, S., Mishra, C., Bhatnagar, Y.V., 2004. Conflicts between traditional pastoralism and 

conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan Mountains. Animal 

Conservation. 7. 121–128. 

Behmer, S.T., Joern, A., 2008. Coexisting generalist herbivores occupy unique nutritional 

feeding niches. Proceedings of National Academy of Sciences. 105. 1977-1982. 

Benton, M.J., 2009. The Red Queen and the Court Jester: Species Diversity and the Role of 

Biotic and Abiotic Factors through Time. Science. 323. 728-732.  

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K.A., 2002. Evaluating resource 

selection functions. Ecological Modelling. 157. 281-300. 

Bremset Hansen, B., Herfindal, I., Aanes, R., Sæther, B.E., Henriksen, S., 2009. Functional 

response in habitat selection and the tradeoffs between foraging niche components in a large 

herbivore. Oikos. 118. 859-872. 

Connell, J.H., 1980. Diversity and the Coevolution of Competitors, or the Ghost of Competition 

Past. Oikos. 35. 131-138. 

Dahl, B.E., Sosbee, R.E., Goen, J.P., Brumley, C.S., 1978. Will mesquite control with 2,4,5-T 

enhance grass production? Journal of Range Management. 31. 129-131. 

Draper, N.R., Smith, H., 1998. Applied Regression Analysis. 3rd Edn. John Wiley & Sons, Inc.  

Dussault, C., Ouellet, J.P., Courtois, R., Huot, J., Breton, L., Larochelle, J., 2004. Behavioural 

responses of moose to thermal conditions in the boreal forest. Ecoscience. 11. 321-328. 

Fleischner, T.L.,1994. Ecological costs of livestock grazing in western North America. 

Conservation Biology. 8. 629-644. 

Fox, J., Yonzon, P., Podger, N., 1996. Mapping Conflicts between Biodiversity and Human 

Needs in Langtang National Park, Nepal. Conservation Biology. 10. 562-569. 

Futuyma, D.J., Moreno, G., 1988. The Evolution of Ecological Specialization. Annual Review of 

Ecology, Evolution, and Systematics. 19. 207-233. 

Green, M.J.B., 1986. The distribution, status, and conservation of the Himalayan musk deer 

Moschus chrysogaster. Biological Conservation. 35. 347-375. 

 

http://0-www.pnas.org.library.uark.edu/search?author1=Spencer+T.+Behmer&sortspec=date&submit=Submit
http://0-www.pnas.org.library.uark.edu/search?author1=Anthony+Joern&sortspec=date&submit=Submit
http://0-www.sciencemag.org.library.uark.edu/search?author1=Michael+J.+Benton&sortspec=date&submit=Submit


38 
 

Green, M.J.B., 1980. Threatened Deer. In Proceedings of a Workshop Meeting of the 

Deer Specialist Group of the Survival Service Commission: 56-64. Longview, 

Washington: International Union for Conservation of Nature and Natural Resources. 

Grubb, P., 2005. Artiodactyla. In Mammal Species of the World: A Taxonomic and Geographic 

Reference: 637-722. Wilson, D. E. & Reeder, D. M. (Eds.). Baltimore: The Johns Hopkins 

University Press. 

Ives, J.D., 2006. Himalayan Perceptions: Environmental changes and well-being of mountain 

peoples. 2nd edn. Jagadamba Press, Kathmandu. 

Jameson, D.A., 1967. The relationship of tree overstory and herbaceous understory vegetation. 

Journal of Range Management. 20. 247-249. 

Kattel, B., 1992. Ecology of the Himalyan musk deer in Sagarmatha National Park, Nepal. PhD 

Thesis, Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins.  

Lindenmayer, D.B., Franklin, J.F., Fischera, J., 2006. General management principles and a 

checklist of strategies to guide forest biodiversity conservation. Biological Conservation. 131. 

433-445. 

Loft, E.R., Menke, J.W., Kie, J.G., 1991. Habitat shifts by mule deer: the influence of cattle 

grazing. Journal of Wildlife Management. 55. 16-26. 

 

Maloney, S.K., Moss, G., Cartmell, T., Mitchell, D., 2005. Alteration in diel activity patterns as a 

thermoregulatory strategy in black wildebeest (Connochaetes gnou). Journal of Comparative 

Physiology. 191. 1055-1064. 

McDonald L.L., Alldredge, J.R., Boyce, M.S., Erickson, W.P., 2005. Measuring availability and 

vertebrate use of terrestrial habitats and foods. In Techniques for wildlife investigations and 

management: 465-488. Braun, C. E. (Ed.). Bethesda, Maryland: The Wildlife Society.  

Metz, J.J., 1990. Conservation Practices at an Upper-Elevation Village of West Nepal. Mountain 

Research Development. 10. 7-15. 

Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: biodiversity 

synthesis. Washington, DC: World Resources Institute. 

Mishra, C., Wieren, S.E.V., Ketner, V., Heitkönig, I.M.A., Prins, H.H.T., 2004. Competition 

between domestic livestock and wild bharal Pseudois nayaur in the Indian trans-Himalaya. 

Journal of Applied Ecology. 41. 344-354. 

Morrison, M.L., Marcot, B.G., Mannan, R.W., 2006. Wildlife-Habitat Relationships: Concepts 

and Applications. 3rd Edn. Washington, DC: Island Press. 

Namgail, T., Fox, J.L., Bhatnagar, Y.V., 2007. Habitat shift and time budget of the Tibetan 

argali: the influence of livestock grazing. Ecological Research. 22. 25-31. 

Noss, R.F., 1994. Cows and conservation biology. Conservation Biology. 8. 613-616. 

Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed 

using logistic regression. Ecological Modelling. 133. 225-245. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Maloney%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=16049700


39 
 

Pyke, G.H., Pulliam, H.R., Charnov, E.L., 1977. Optimal foraging: a selective review 

of theory and tests. The Quarterly Review of Biology. 52. 137-154. 

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 

Shrestha, M.N., 1998. Animal welfare in the musk deer. Applied Animal Behaviour Science. 59. 

245-250. 

Stewart, K.M., Bowyer, R.T., Kie, J.G., Cimon, N.J., Johnson, B.K., 2002. Temporospatial 

distributions of Elk, mule deer and cattle: resource partitioning and competitive displacement. 

Journal of Mammalogy. 83. 229-244. 

Wang, Y., Harris, R.B., 2008. Moschus chrysogaster. The IUCN Red List of Threatened Species. 

Available:  http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T13895A4362754.en . 

Yang, Q.S., Meng, X.X., Xia, L., Lin Feng, Z.J., 2003. Conservation status and causes of decline 

of musk deer (Moschus spp.) in China. Biological Conservation. 109. 333-342. 

 

 

 

 

 

 

 

 

 

 

 

https://scholar.google.com/citations?user=6jP9YKwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=0UvAJCQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=LYy5Ny8AAAAJ&hl=en&oi=sra
http://www.jstor.org/stable/2824020
http://www.jstor.org/stable/2824020
http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T13895A4362754.en


40 
 

Table 1. Habitat parameters in the final logistic regression model with the presence of musk deer 

as the response as revealed by stepwise regression. 

 

 Estimates SE  Z-value   P – value 

Intercept -1.48 0.4 -3.62 <0.01 

Elevation  0.81 0.2 3.93 <0.01 

Canopy-cover 0.33 0.16 2.02 0.04 

South aspect 1.47 0.41 3.55 <0.01 

Abies spp Tree 0.97 0.49 1.96 0.04 

Pinus spp Tree  1.46 0.5 2.92 <0.01 
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Table 2. Habitat parameters in the final logistic regression model with the presence of livestock 

as the response as revealed by stepwise regression. 

 

  Estimates SE  Z-value  P – value 

Intercept -0.59 0.17 -3.31 <0.01 

Slope -0.52 0.17 -3.07 <0.01 

Canopy-cover -0.38 0.15 -2.41 0.01 

North aspect -0.56 0.38 -1.48 0.13 
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Table 3. Logistic regression model with the presence of musk deer as the response and 

presence/absence of livestock added as an explanatory variable to check the effect of livestock 

on habitat selection by musk deer. 

 

 

Estimates SE Z-value  P – value 

Intercept -1.65 0.45 -3.62 <0.01 

Elevation  0.8 0.2 3.89 <0.01 

Canopy-cover 0.31 0.16 1.85 0.06 

South aspect 1.47 0.41 3.52 <0.01 

Abies spp Tree 0.93 0.5 1.86 0.06 

Pinus spp Tree  1.44 0.5 2.88 <0.01 

Livestock [absence] 0.29 0.32 0.9 0.36 
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Table 4. Logistic regression model with the presence of livestock as the response and 

presence/absence of musk deer added as an explanatory variable to check the effect of musk deer 

on habitat selection by livestock. 

 

 Estimates SE  Z-value P – value 

Intercept -0.45 0.21 -2.08 0.03 

Slope -0.52 0.17 -3.07 <0.01 

Canopy-cover -0.36 0.16 -2.3 0.02 

North aspect -0.48 0.39 -1.22 0.22 

Musk deer [presence] -0.33 0.31 -1.07 0.28 
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Figure 1. Figure 1. Mustang district of Nepal with river network and VDC boundary. Village 

Development Committee (VDC) is the lower administrative part in Nepal. Study site is labeled 

as Jomsom. 
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Figure 2. Partition tree for musk deer and livestock based on habitat parameters. Figures inside 

the boxes indicate probability of fitted class. 
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Chapter IV: Modeling and mapping the current and future climatic-niche of endangered 

Himalayan musk deer 

Abstract: 

Conservation and management of environmentally suitable areas, that support survival 

and persistence of species, are keys to protect wildlife in their natural habitat.  Populations of 

Himalayan musk deer Moschus leucogaster, an endemic species in Asia, are listed as endangered 

in the IUCN red list, requiring immediate conservation actions before their extinction in the wild.  

In order to model and map the current and future (under projected climate change settings) 

climatically-suitable areas for the species, Maxent modeling technique, that requires presence-

only records, was employed. As predictors, I extracted 19 bioclimatic variables from 

‘WorldClim’ database with a ~1km spatial resolution and used 10 uncorrelated bioclimatic 

variables as inputs. As indicated by a high area under ROC curve (AUC) value (> 0.9), Maxent 

well performed and predicted climatically-suitable habitat for the species along the Hindukush 

Himalaya, where the species is known to occur. Annual mean temperature appeared to most 

influence the distribution of potential habitat for the species. An expansion of species’ habitat 

was noticed in the Indian and Tibetan part of species range, suggesting a potential future effect 

of climate change on the species distribution.  The findings of this study could assist wildlife 

managers in devising conservation plans for the current and future conservation of the species in 

the context of climate change. This is the first study to model and map the current and future 

distribution of the species in its range. 
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Introduction: 

With different levels of biodiversity increasingly being endangered or threatened with 

extinction by manifold factors (both deterministic and stochastic), one of the biggest challenge 

conservationists face today is to turn this tide and maintain integrity and functionality of 

ecosystems (Millennium Ecosystem Assessment, 2005).  This challenge has been further 

amplified by effects of climate change with an array of varying consequences over space and 

time (Parmesan and Yohe, 2003; Thomas et al., 2004; van Gils et al., 2016).  Numerous 

conservation strategies, varying with type, scale, and magnitude of threats, have been developed 

by conservationists (Brooks et al., 2006). Within these contexts, species distribution models 

(SDMs) have been widely developed to estimate, predict, and map species geographic ranges 

over time (Elith and Leathwick, 2009). 

Various algorithms, with increasing computational capabilities, have been devised for 

SDMs and their use vary with objectives, their data type and availabilities (Guisan and 

Zimmermann, 2000; Elith and Graham, 2009).  These techniques establish relationships between 

sites of known species occurrences and environmental factors that are presumed to affect their 

presences or absences. These relationships allow to interpolate and extrapolate geographic 

distributions in novel areas and/or under a changed scenario setting (for example, scenarios 

predicted under climate change).  Among the SDMs, Maximum Entropy Modeling (Maxent) 

technique, that requires presence-only records (i.e., latitude/longitude of species occurrence 

points) of the concerned species, is being widely used for estimation and prediction of a species’ 

geographical range (Phillips et al., 2006).  Moreover, increasing availabilities of species 

occurrence data have increased its application in conservation biogeography, especially 

regarding rare and declining species with incomplete information (for example, Himalayan musk 
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deer in this study). Consequently, Maxent appears as an important tool to gain insights into 

current ranges and potential range-shifts due to climate change effects over time (see Phillips et 

al., 2006; Franklin, 2010). 

Himalayan musk deer (Moschus leucogaster) inhabits high alpine environments of 

Bhutan, northern India, Pakistan, Nepal, and China (Green, 1986; Grubb, 2005, Yang et al., 

2003); i.e., high altitude regions along the Hindukush Himalaya.  This species is also treated as a 

subspecies of alpine musk deer (Moschus chrysogaster). So, literatures indicate that both M. 

leucogaster and M. chrysogaster are interchangeably treated as Himalayan musk deer and/or 

alpine musk deer in these regions. However, the range map from IUCN red list specifies that the 

musk deer species in this range is Himalayan musk deer (i.e., M. leucogaster). Hence, the species 

of concern in this study is treated as M. leucogaster. Populations of musk deer are declining 

primarily due to habitat loss and overexploitation (Yang et al., 2003; Timmins and Duckworth, 

2015). Consequently, the species has been listed in Appendix I of CITES and as endangered in 

red list of International Union for Conservation of Nature (IUCN).  Identification of climatically-

suitable areas for the survival and persistence of the species could potentially aid in the current 

and future conservation of the species. Hence, the current study is directed towards modeling and 

mapping the current distributional range of the species, and attempts to predict the future range 

under projected climate change scenario.  Besides, it also aims to provide qualitative insights into 

the climatic variables that potentially affect the habitat distribution of the species. 

Methods: 

Eighty-five unique geographic coordinates (i.e. Latitude/Longitude) of the species’ 

occurrences were used in the study. These geographic coordinates represent presence locations 

of the species and were recorded based on sightings of fecal pellets of the species. Musk deer 
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have easily recognizable ‘latrine-sites’ (with a heap of fecal pellets) that make recording of the 

species’ presence easy. These data were collected from randomly surveyed potential habitat of 

the species in Bhutan, Nepal, India, and Pakistan in between 2013-2015; hence the occurrence 

points are from the geographic range of the species along the Hindukush Himalaya from Pakistan 

to Bhutan (for details about the area and data collection see, Abbas et al., 2015; Ilyas, 2015; 

Khadka and James, 2016).  Nineteen bioclimatic variables with a 30 arc-second spatial resolution 

(approximately 1 km resolution) for two time periods: ‘current’ and ‘future’ (for the year 2050), 

were used as predictors and extracted from the ‘WorldClim’ database (url: worldclim.org; 

Hijmans et al., 2005).  The database consists of projected climate for the years 2050 and 2070, 

with four different scenarios of greenhouse gas trajectories i.e., Representative Concentration 

Pathways (RCPs).  Because of varying level of greenhouse gas concentration trajectories 

envisioned for the future and their inherent effect on climate, climatic surfaces data for a modest 

scenario i.e., RCP6.0 averaged from three randomly selected General Circulation Models (GCM: 

BCC-CSM1-1, CCSM4, GISS-E2-R) for the year 2050 were used for projecting the future 

geographic range of the species.   

Pearson’s correlation coefficients among the current nineteen bioclimatic variables in the 

database were determined, and when the correlation coefficient between the variables was found 

to be significant (i.e. r ≥ 0.9, p < 0.01), only one variable from a set of highly correlated variables 

was used to reduce the problems due to multi-collinearity (Dormann et al., 2013).  So, of the 19 

bioclimatic variables extracted from ‘WorldClim’, 10 bioclimatic variables i.e. annual mean 

temperature, mean diurnal range, isothermality, temperature seasonality, mean temperature of 

wettest quarter, annual precipitation, precipitation of driest month, precipitation seasonality, 

precipitation of warmest quarter, and precipitation of coldest quarter were used as inputs for the 
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model. Since the ecology of the species is largely unknown, I used all the 10 uncorrelated 

variables as inputs rather than filtering them out to variables that otherwise would be 

considerably linked to the survival of the species. Moreover, my major focus is to map 

climatically-suitable geographic area (i.e., prediction) rather than description of the process (i.e., 

explanation). I used Maxent (version 3.3.3k; http://www.cs.princeton.edu/~schapire/maxent/; 

Phillips et al., 2004, 2006) as a modeling platform (with auto features, 5000 iterations and 

default settings). For background samples (i.e. pseudo-absences), to estimate the bioclimatic 

layers across the entire extent, Maxent was made to select only the countries with presence 

locations (i.e., Bhutan, Nepal, India and Pakistan).  In so doing, I limited the pseudo-absences to 

areas that were surveyed for the species, potentially providing the background samples with the 

same bias as presence locations (Elith et al., 2011).  

Model was developed in Maxent using the occurrence points (i.e. latitude and longitude) 

and current climatic variables and was projected for the future climatic variables.  The model 

was replicated 100 times in order to get an average estimate (since machine learning techniques 

are notorious for their inability to produce unique solutions), and hence the output is an average 

of 100 replications.  Maxent produces a continuous raster map of habitat suitability with values 

ranging from 0 to 1 (0 indicating a non-suitability, 1 indicating a perfect suitability).  Continuous 

map produced by Maxent was exported to ArcGIS (version: 10.4.1).  A binary map of 

climatically-suitable and unsuitable geographical areas was created in ArcMap using ‘maximum 

test sensitivity plus specificity logistic threshold’ in the Maxent output file called 

‘maxentResults’. This threshold has been found or shown to perform considerably well as the 

‘presence/absence’ models (see Liu et al. 2016).  Performance of the model was evaluated using 

a metric called ‘Area Under the ROC (receiver operating characteristic) curve’ or ‘AUC’ (Swets, 

http://www.cs.princeton.edu/~schapire/maxent/
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1988) and test omission error (i.e., fraction of presences predicted absent).  The AUC metric, 

whose value ranges between 0 and 1, is a threshold-independent measure of a model’s ability to 

discriminate presence from absence (or background).  An AUC value of 0.5 indicates that the 

model performance is not better than random, while value > 0.9 indicates high model 

performance (Peterson et al., 2011).  ‘Subsampling’ procedure was executed in Maxent for 

model validation. Seventy percent of the occurrences data were used to train the model while the 

remaining 30 percent were used to test it.  The relative contribution of different bioclimatic 

predictors to the distribution model was evaluated using percent variable contribution and 

jackknife procedures in Maxent (Elith et al., 2011) 

Results 

Average test AUC value for the model was 0.98 (± 0.003 SD) and average training AUC 

value was 0.992 (± 0.0007 SD). Average test omission error for the threshold used was 0.01. 

Annual mean temperature was the strongest predictor of musk deer habitat distribution with 

71.4percent contribution. Similarly, the other climatic variables that were noted important for 

musk deer habitat distribution were precipitation seasonality (i.e., coefficient of variation), 

temperature seasonality, and annual precipitation (Table 1; Figs. 1,2,3,4). Jackknife results 

showed ‘annual mean temperature’ as the most useful information by itself, and having the most 

information that is not present in other variables, for model predictability (i.e., with highest 

regularized training gain and AUC value).  Model predictions matched the collected occurrences 

of musk deer in Bhutan, Nepal, India, and Pakistan and also showed potential geographic range 

in China (Fig. 5 and 6). Future geographic distribution of the species is predicted to expand 

mostly in the Indian and Tibetan region of China (Fig. 6).  

Discussion 
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This is the first study to model and map the potential current and future distribution of 

climatically-suitable habitat of Himalayan musk deer in its whole range.  Maxent accurately 

predicted the currently available occurrences; hence the maps created can be used reliably to 

design detailed surveys to explore populations of the species in the predicted geographic area.  It 

appears that the species has a narrowly-distributed climatically-suitable habitat, along the 

Hindukush Himalaya, with majority of climatically-suitable current habitat in Indian and the 

Tibetan region of species’ range.  The current distribution of climatically-suitable area as 

predicted from the study did not completely match the expert-based IUCN range map of the 

species. Yet, notable is the potential habitat range in Pakistan and Tibetan region of China which 

is not encompassed in the IUCN range map although the species have been recorded in those 

areas (see Yang et al. 2003; Abbas et al. 2015). Hence, the current distribution map from this 

study offers an avenue for further exploration of the species in the area predicted suitable in this 

study.  I believe that the current distribution map, as predicted from this study, meets the 

necessity of identifying potential areas that demand conservation concern. We recommend the 

protection and management of potentially suitable key areas predicted by the model even if the 

species don’t currently occur there.  This might require cooperation between countries and the 

design of a joint, international management plan.  

The expansion of climatically-suitable habitat in future in Indian and Tibetan part of the 

species’ range suggest a potential reshuffling of species’ distribution in the future (see Parmesan 

and Yohe, 2003); presumably to track the optimum or adaptive climatic niches and keep pace 

with the effects of changing climate for survival.  This is in accordance to the theoretical 

predictions of climate change on a wide variety of taxa and climates (Hersteinsson and 

Macdonald, 1992; Pounds et al., 1999, Warren et al., 2001; Parmesan and Yohe, 2003). The 
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geographic range of the species is distributed in between the latitudinal range of 300-380 N (i.e. in 

temperate areas), where the magnitude of climate change effects is predicted to be greater 

(Parmesan, 2007), because of projected relatively high rise in temperature and variation in 

precipitation patterns at those latitudes and altitudes (IPCC, 1996; Hughes, 2000). Therefore, 

effects of climate change on the species are inevitable, since a narrow range of annual mean 

temperature, low precipitation seasonality, and low annual precipitation appear to be the major 

determinants to its habitat distribution. Temperature has been found as a major component in 

structuring distribution of Himalayan species of other taxa as well (Elsen et al., 2017). How and 

to what extent these climatic changes will affect the species, however, cannot be explained with 

certainty primarily because of knowledge gap and incomplete information about the ecology of 

the species. Yet we can hypothesize that the effects would be direct via physiological or 

phenological effects and indirect via cascading effects on resource bases or both. Since evidences 

suggest that temperate species have relatively broader thermal tolerance (Chan et al., 2016; but 

see Elsen et al., 2017), the latter hypothesis however would be more reasonable to test in the 

future studies to better understand the effects of climate change.  Nevertheless, design of new 

conservation areas and expansion of existing conservation areas towards the predicted potentially 

suitable geographic area could aid in conservation of the species. 

It is noteworthy that climatic variables are not the sole factors driving species distribution 

over space, although their crucial role in determining the geographic range of many species is 

undisputable (Andrewartha and Birch, 1954; IPCC, 1996; Venier et al., 1999).  Other ecological 

factors like dispersal pattern and capacity, resource distribution and availability, ecological 

interactions, habitat selection etc. deserve well considerations, and better integrations within 

SDMs to comprehend a perfect and clear picture of their distribution over space (Guisan and 
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Thuiller, 2005; Elith and Leathwick, 2009).  Incomplete availabilities of such data, to fully 

integrate the ecological theories of species into modeling process, have in part added some 

limitations to this study. Other factors that contribute to the uncertainties and limitations of 

SDMs are; sample size, sampling bias, spatial resolution of predictors including their choices, 

multi-collinearity; that deserve well considerations during modeling process (Stockwell and 

Peterson, 2002; Kadmon et al., 2004; Segurado et al., 2006).  Maxent is robust to small sample 

sizes and has been found to have an optimal predictive power even with small sample size (see 

Wisz et al. 2008), and although I tried to deal with issues of multi-collinearity (by dropping 

highly correlated variables) and background sampling bias (by picking the background samples 

from the area of occurrences records only), yet I acknowledge the possible uncertainties in my 

findings, due in part to other potential issues (for example, biotic interactions, dispersal capacity, 

phenology) that could not be dealt and/or integrated into the modeling process.  Inclusion of 

biologically relevant factors in modeling process in future would further refine the predicted 

distribution map of environmentally suitable habitat for the species. Yet, the predicted suitable 

area from the study is climatically-conducive to the survival of the species; hence the area 

deserves considerable concern for conservation of the species in the context of climate change. 

SDMs are increasingly and diversely used in conservation biogeography with relatively 

good success (Austin et al., 1990; Elith and Burgman, 2002; Ferrier, 2002).  Of notable beauty of 

these techniques is an easily understandable and interpretable output, in the form of binary maps 

(i.e. habitat-suitability maps), required by wildlife managers for conservation actions and risk 

analyses.  Although interpreting habitat and its suitability from patterns of occurrence can 

sometimes be misleading (van Horne, 1983), which is usually the case with high population size; 

yet for a small population size of Himalayan musk deer, it is unlikely to misinform the suitability 
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of habitat by the occurrence points of the species used here.  This, however, requires exploration 

of musk deer populations in the predicted geographical space for validity.  It is expected that the 

findings of the current study potentially assist wildlife managers and other stakeholders in 

conservation planning and sound management decisions of, declining and threatened, Himalayan 

musk deer in the context of climate change.  
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Table 1. Relative contribution of different bioclimatic variables to Maxent model for 

climatically-suitable habitat distribution of Himalayan musk deer. Percent contribution values 

are averages over 100 replicate runs. General statistics show the bioclimatic profile of the 

species. Only the variables with contribution > 1% are shown. 

 

Variable Percent Contribution Mean Standard Deviation 

Annual Mean Temperature (°C) 71.4 6.18 0.28 

Precipitation seasonality (CV) 7.6 68.2 0.8 

Temperature seasonality (SD*100) 5.5 5690 179 

Annual precipitation (mm) 5.3 721 52 

Mean Diurnal Range (°C) 1.7 10.5 0.09 

Precipitation of Coldest Quarter (mm) 2.8 124 6.48 
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Figure 1. Relationship between annual mean temperature and probability of presence of musk 

deer. The curve depicts the mean (± SD) response calculated over 100 replicates. 
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Figure 2. Relationship between precipitation seasonality and probability of presence of musk 

deer. The curve depicts the mean (± SD) response calculated over 100 replicates. 
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Figure 3. Relationship between temperature seasonality and probability of presence of musk 

deer. The curve depicts the mean (± SD) response calculated over 100 replicates. 
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Figure 4. Relationship between annual precipitation and probability of presence of musk deer. 

The curve depicts the mean (± SD) response calculated over 100 replicates. 
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Figure 5. Current climatically-suitable area for Himalayan musk deer as determined by the 

model. Yellow boundary line shows the geographical boundary of conflict. 
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Figure 6. Future climatically-suitable area for Himalayan musk deer as predicted by the model 

along with the expansion and contraction of area under projected climate change. 
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Chapter V: Concluding remarks 

        To sum up, this dissertation highlights the importance of understanding habitat selection of 

a species at different hierarchical order. Conservation of biodiversity at species level requires 

well-informed decisions and planning. Development and execution of planning, however, 

demands scale specific understanding of the habitat selection process. It is expected that this 

dissertation could aid in the planning of Himalayan musk deer conservation at different scales of 

their range. Chapter 1 highlights the seasonal diet composition of musk deer along with the 

possible impacts of sympatric livestock if their number is not checked and are not assigned a 

separate foraging area. Similarly, the chapter highlights the habitat attributes in terms of physical 

and vegetational characteristics that are likely selected by Himalayan musk deer within their 

home range. Thus, management of habitat with due consideration of these habitat attributes 

could help in the conservation of the species. Chapter 3 predicts the potential future distribution 

of the species and highlights the possible range expansion at the northern limit of the current 

geographic range of the species. Consideration of the geographic area predicted climatically-

suitable in the future during conservation planning would help mitigate the potential impacts of 

climate change. The findings, however, are not the panacea to the threats per se. Future studies 

regarding dispersal ecology and population dynamics would help in further understanding about 

the species and better management of the species before their extinction in the wild. 
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