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Abstract

This dissertation focuses on the development of theories and practices of energy aware sparse

sensing schemes of random fields that are correlated in the space and/or time domains.

The objective of sparse sensing is to reduce the number of sensing samples in the space

and/or time domains, thus reduce the energy consumption and complexity of the sensing

system. Both centralized and decentralized sensing schemes are considered in this disserta-

tion. Firstly we study the problem of energy efficient Level set estimation (LSE) of random

fields correlated in time and/or space under a total power constraint. We consider uniform

sampling schemes of a sensing system with a single sensor and a linear sensor network with

sensors distributed uniformly on a line where sensors employ a fixed sampling rate to min-

imize the LSE error probability in the long term. The exact analytical cost functions and

their respective upper bounds of these sampling schemes are developed by using an optimum

thresholding-based LSE algorithm. The design parameters of these sampling schemes are

optimized by minimizing their respective cost functions. With the analytical results, we

can identify the optimum sampling period and/or node distance that can minimize the LSE

error probability. Secondly we propose active sparse sensing schemes with LSE of a spatial-

temporally correlated random field by using a limited number of spatially distributed sensors.

In these schemes a central controller is designed to dynamically select a limited number of

sensing locations according to the information revealed from past measurements,and the

objective is to minimize the expected level set estimation error. The expected estimation

error probability is explicitly expressed as a function of the selected sensing locations, and



the results are used to formulate the optimal sensing location selection problem as a combi-

natorial problem. Two low complexity greedy algorithms are developed by using analytical

upper bounds of the expected estimation error probability. Lastly we study the distributed

estimations of a spatially correlated random field with decentralized wireless sensor networks

(WSNs). We propose a distributed iterative estimation algorithm that defines the procedures

for both information propagation and local estimation in each iteration. The key parameters

of the algorithm, including an edge weight matrix and a sample weight matrix, are designed

by following the asymptotically optimum criteria. It is shown that the asymptotically op-

timum performance can be achieved by distributively projecting the measurement samples

into a subspace related to the covariance matrices of data and noise samples.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless sensor networks (WSNs) sometimes called wireless sensor and actuator networks

(WSANs) [1] have experienced significant growth over the past decade A WSN consists of

hundreds of low-cost and low-power autonomous sensors with limited sensing, computation,

and wireless communication capabilities. Sensors in a WSN are spatially distributed over

a target area to continuously observe physical phenomena, such as air pressure, vibration,

pressure, temperature, aggregated power level of wireless signals, density of toxic gases, etc..

WSNs have been widely used in many scientific and engineering applications, including

search and rescue, precision agriculture, industrial monitoring, disaster relief, spectrum sens-

ing, landslide detection, forest fire detection, water/waste/air pollution monitoring, natural

disaster prevention, etc.

Data taken by sensors among all these application scenarios share an intrinsic and sig-

nificant characteristic of spatial and temporal correlations due to the nature of the energy-

radiating physical phenomenon. Typically sensors are deployed spatially in high density in

WSN fields to cover target areas with the aim to reliably detect and estimate a certain event

of interest. Thus multiple observations from among close sites usually share correlated in-

formation about the event. Similarly some of WSN applications may require sensors to keep

1



tracking of a specific event. Each individual sensor is activated to take sequential observa-

tions in a fixed period or at actively selected instants. These sequential observations from

the same sensor may also contain temporally correlated information on an event of interest

in a WSN field.

Even though these spatial and temporal correlated observations can be exploited to im-

prove detection and estimation accuracy on the signal of event of interest, the problem on

how to reduce or limit redundant observations taken by sensors while satisfying given detec-

tion and estimation accuracy remains challenging and attractive. This problem is referred

as sparse sensing in this dissertation. The objective of sparse sensing is to reduce the num-

ber of space- and/or time-domain samples required by the sensing application. Reducing

the number of sensing samples can reduce the energy consumption and complexity of the

sensing system.

In many WSN applications estimating or identifying level sets of an event of interest is

the primary task, while estimating the values of original function of the event away from

the level set boundary is often secondary if not irrelevant. Level sets of an event in spatial-

temporally correlated field are defined as regions where function values of the event exceed a

certain threshold. Level set estimation (LSE) is the process of using observations of function

of an event to estimate the region(s) where the function value exceeds some critical threshold.

Estimating level set can be equivalently considered as a mapping problem that draws the level

contour or boundary in the field. The problem of sparse sensing can be naturally combined

with level set estimation. Intuitively data that are further away from the boundary are

usually quite distinct from the level of interests, thus there is less ambiguity in terms of level

set identification in those regions. Therefore it is desirable to collect less data samples or

2



place less sensors at the locations where the boundary is not likely to lie.

WSNs can be classified into two categories, centralized and decentralized WSNs. In a

centralized WSN, sensors are usually of lower cost and low complexity because the number

of sensor nodes deployed in a target area may be in the order of hundreds or thousands.

The measurement results from all sensors are congregated at a fusion center (FC) with

much higher capabilities of processing and computing, either through direct transmission or

by using other nodes as relays. Information processing is performed centrally at the FC.

Centralized WSNs are easy to design, but they also suffer from a lot of limitations such

as high cost of the FC, communication bottlenecks at areas close to the FC, susceptible to

node failures, etc. These problems can be easily addressed by a decentralized WSN, where

information processing is performed at each sensor node in a distributed manner without

the need of a central controller. Information processing is performed collaboratively among

nodes through iterative information exchange among neighboring nodes.

Distributed estimation is one of the most fundamental collaborative information pro-

cessing problems in distributed WSNs, where the nodes distributively perform estimation of

certain physical quantities through information exchange [2–9]. Most distributed estimations

involve two components: a local estimator and a distributed consensus algorithm that can

be used to improve estimation performance.

1.2 Objectives

Our research in this dissertation is dealing with sparse sensing problem and aimed at the

methods to exploit spatial and temporal correlation ingrained in random fields of WSNs to

enhance system performance with limited energy or sensor resources. Both centralized and

3



decentralized networks are studied in this dissertation.

Firstly we study the ways to utilize the temporal or/and spatial correlation to improve

accuracy of level set estimations under a total power constraint. An accurate LSE usually

demands a large amount of data to be collected, processed, and transmitted, and energy is

consumed during the sensing and transmission of each data sample. Limited energy supplies

in wireless sensing systems may not be able to meet the high energy demands imposed by the

large amount of data. Under a total power constraint, more data samples in a unit time or

area result in less energy per sample at the FC, and this will negatively affect the estimation

performance. On the other hand, a smaller sampling interval in time or space means a

stronger correlation among the samples, which may positively contribute to the estimation

accuracy. Therefore there is a fundamental tradeoff between the amount of sensing data and

energy supply. It is critical to identify the optimum sensing scheme that can balance this

tradeoff, such that we can significantly reduce the amount of data to be collected and still

achieve an accurate LSE under a stringent power constraint.

In particular we at the beginning study the problem of energy efficient LSE of a time-

varying random field under a total power constraint. In this simple case the fusion center of

a wireless sensing system performs LSE by using discrete-time samples collected by a sensor.

The sampling period has to be optimized to minimize the estimation error and balance

the data-energy tradeoff. We extend from the results of this simple case, and investigate

the problem of optimum energy efficient LSE of random fields correlated in both time and

line (1-D) space. Both node distance and sampling period are required to be optimized

simultaneously in this case to guarantee best possible estimation accuracy.

4



Secondly we develop active sparse sensing scheme for LSE of a spatial-temporally cor-

related random field by using a limited number of spatially distributed sensors. In this

scheme a central controller is designed to dynamically select a limited number of sensing

locations according to the information revealed from past measurements, and the objective

is to minimize the expected level set estimation error.

Lastly, we focus on the problem of distributed estimation of a spatially correlated random

field with decentralized WSNs. Sensor nodes in the network take spatial samples of the

random field, then each node estimates the values of arbitrary points on the random field by

iteratively exchanging information with each other without the need of a central controller.

The objective is to minimize the estimation mean squared error (MSE) while ensuring all

nodes reach a distributed consensus on the estimation results.

The study of theories and practices of sparse sensing are incarnated throughout this

dissertation by means of practical design, theoretical analysis and extensive simulations

under various system configurations.

1.3 Dissertation Outline

In the rest of this dissertation, four chapters are used to summarize what we have done

so far about sparse sensing of spatial-temporally correlated random fields in WSNs. For

the specific topic in each chapter, we give the background introduction, literature review,

proposed methodology, and results of simulations and/or experiments. Finally, we use the

last chapter to conclude contributions of this dissertation and discuss the future works . The

outline of the rest of the dissertation is listed as follows.

5



Chapter 2: In this chapter, we study energy efficient LSE of a time-varying random field

under a total power constraint. The fusion center of a wireless sensing system performs LSE

by using discrete-time samples collected by a sensor. Two sampling schemes are considered in

this chapter: a dynamic active sampling scheme that sequentially and adaptively selects the

next sampling instant in a myopic manner with knowledge learned from previous samples,

and a uniform sampling scheme that employs a fixed sampling rate to minimize the LSE

error probability in the long term.

Chapter 3: We investigate optimum LSE of a correlated random field in both time and

line space under a total power constraint. A linear sensor network is used to take discrete

samples of a spatial-temporally correlated random field, and the sensors operate with limited

power supply. The samples are congregated at a fusion center, which performs LSE of the

random field. Under the Gaussian process (GP) framework, we first develop an optimum

LSE algorithm that can minimize the LSE error probability. The results are then used to

derive the exact LSE error probability with the assistance of frequency domain analysis.

With the analytical results, we can identify the optimum node distance and sampling period

that can minimize the LSE error probability.

Chapter 4: We propose active sparse sensing schemes with LSE of a spatial-temporally

correlated random field by using a limited number of spatially distributed sensors. In these

schemes a central controller is designed to dynamically select a limited number of sensing

locations according to the information revealed from past measurements, with the objective

to minimize the expected level set estimation error. The expected estimation error probabil-

ity is explicitly expressed as a function of the selected sensing locations, and the results are

used to formulate the optimal sensing location selection problem as a combinatorial problem.

6



Two low complexity greedy algorithms are developed by using analytical upper bounds of the

expected estimation error probability. Both simulation and experiment results demonstrate

that the greedy algorithms can achieve significant performance gains over baseline passive

sensing algorithms and the GP Upper Confidence Bound (GP-UCB) level set estimation

algorithm.

Chapter 5: In this chapter we study the distributed estimations of a spatially correlated

random field with decentralized WSNs. Nodes in the network take spatial samples of the

random field, then each node estimates the values of arbitrary points on the random field

by iteratively exchanging information with each other without need of a central controller.

The objective is to minimize the estimation mean squared error (MSE) while ensuring all

nodes reach a distributed consensus on the estimation results. Specifically, we propose a

distributed iterative estimation algorithm that defines the procedures for both information

propagation and local estimation in each iteration. The key parameters of the algorithm,

including an edge weight matrix and a sample weight matrix, are designed by following the

asymptotically optimum criteria. It is shown that the asymptotically optimum performance

can be achieved by distributively projecting the measurement samples into a subspace related

to the covariance matrices of data and noise samples. Simulation and experimental results

show that all nodes in a large network can obtain accurate estimation results with much less

iterations than existing algorithms.

Chapter 6: Conclusion remarks are drawn in this chapter. The major contributions of

this research proposal is summarized, and future work is discussed.
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Chapter 2

Energy efficient wireless sensing for level set estimations

2.1 Abstract

Level set estimation (LSE) is the process of using noisy observations of an unknown function

to estimate the region(s) where the function values lie above a given threshold. It has a wide

range of applications in many scientific and engineering areas, such as spectrum sensing

or environment monitoring. In this paper, we study the energy efficient LSE of a time-

varying random field under a total power constraint. The fusion center (FC) of a wireless

sensing system performs LSE by using discrete-time samples collected by a sensor. An

accurate LSE usually requires a large number of samples to be collected and transmitted.

However, most wireless sensing systems operate with a stringent power constraint that may

not be able to meet the high energy demands imposed by the large amount of data. The

gap between energy demands and supplies is a direct result of the so-called ”big data”

problem. It is critical to develop energy efficient sampling schemes that can bridge this gap

by reducing the amount of data required by LSE. Two sampling schemes are considered in

this paper: a dynamic active sampling scheme that sequentially and adaptively selects the

next sampling instant in a myopic manner with knowledge learned from previous samples,

and a uniform sampling scheme that employs a fixed sampling rate to minimize the LSE

error probability in the long term. The exact analytical cost functions and their respective
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upper bounds of both sampling schemes are developed by using an optimum thresholding-

based LSE algorithm. The design parameters of both sampling schemes are optimized by

minimizing their respective cost functions. Analytical and simulation results demonstrate

that both sampling schemes can significantly reduce the amount of data collected by the

system while obtain accurate LSE under a stringent power constraint. In addition, the

uniform sampling scheme slightly outperforms the dynamic active sampling scheme.

2.2 Introduction

Level set estimation (LSE) is the process of using noisy observations of an unknown function

defined on a Hilbert space to estimate the region(s) where the function amplitude lies above a

given threshold. It has a wide range of applications in many scientific and engineering areas.

For example, the objective of spectrum sensing in cognitive radio networks is to identify

the boundary of “spectrum holes” in the space, time, and frequency domains [1]. Other

applications include the monitoring of the contours of pollution, sunlight, temperature, or

rainfalls for biosystem ecology tracking [10, 11], etc. In these and many other applications,

identifying level sets is the primary task, while estimating the value of the function away

from the level set boundary is often secondary, if not irrelevant. Consequently, level set

estimation can be equivalently considered as a mapping problem that draws the level contour

or boundary in a random field.

LSE can be performed by applying standard binary classifications to the implicit function

using probability models [6, 9, 12]. The binary classification approach ignores the difference

between the actual function value and the threshold, and such information contains salient

information that can improve the LSE accuracy. Another popular approach is to estimate
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the values of the underlying functions through regression, and then obtain the level set by

thresholding the estimated function values at the critical value [4, 14].

Most LSE methods are applicable in a static setting, that is, the measurements in the

field are given or passively provided [4,16,18]. Recently, it has been proposed to dynamically

adjust the sensing strategy based on past sensing results [2,7,20] by using active learning [15].

The dynamic LSE employs sequential decision makings, and it can accurately track the

level set in a time-varying random field. None of the above mentioned works consider the

constraints imposed by the limited energy supply, which is one of the main performance

limiting factors in wireless sensing systems.

An accurate LSE usually demands a large amount of data to be collected, processed,

and transmitted, and energy is consumed during the sensing and transmission of each data

sample. However, most low power wireless sensors are equipped with extremely limited

energy supplies such as small batteries or energy harvesting devices. The limited energy

supplies in wireless sensing systems may not be able to meet the high energy demands

imposed by the large amount of data. The big gap between energy supplies and demands is

a direct result of the so-called “big data” problem, and it imposes formidable challenges for

system designs. Under a total power constraint, more data samples in a unit time results in

less energy per sample, or a lower signal-to-noise ratio (SNR) per sample at the FC, and this

will negatively affect the estimation performance. On the other hand, a higher sampling rate

means a stronger temporal correlation among the samples, which may positively contribute

to the estimation accuracy [19]. Therefore there is a fundamental tradeoff between the

amount of sensing data and energy supply. It is critical to identify the optimum sensing

scheme that can balance this tradeoff, such that we can significantly reduce the amount of
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data to be collected and still achieve an accurate LSE under a stringent power constraint.

In this paper, we study the optimum LSE in a power-constrained wireless sensing system

by explicitly identifying and optimizing the data-energy tradeoff. A wireless sensor samples

the time-varying random event and transmits the discrete-time samples to a fusion center

(FC), which performs LSE by using distorted observations of the discrete-time samples. The

optimum sampling of a power-constrained wireless sensing system that can minimize the

estimation mean squared error (MSE) of a random field has been studied in [17, 19]. The

LSE problem studied in this paper is different from [17, 19], in that our objective is not to

reconstruct the entire function, but to estimate the level set of the underlying function.

We introduce a Gaussian process (GP) prior model to capture the temporal correlation

inherent in the random field [13]. Under the GP framework, we first show that the time-

averaged LSE error can be achieved by performing a GP regression with all discrete-time

data samples and then thresholding the regression results. With the thresholding-based LSE

method, two sampling schemes are considered in this paper: a dynamic active sampling

scheme that sequentially and adaptively selects the next sampling instant by using knowl-

edge learned from previous samples, and a uniform sampling scheme that employs a fixed

sampling rate. For uniform sampling with a given sampling rate, we know the exact sampling

instants for all future samples, thus the uniform sampling scheme can minimize the LSE er-

ror probability averaged over the entire time duration. On the other hand, dynamic active

sampling needs to select the sampling instants sequentially, thus the optimization needs to

be performed in a myopic manner, that is, the cost function is the LSE error probability

averaged in time up to the next possible sampling instant.

Exact analytical cost functions and their respective upper bounds of both sampling
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schemes are developed by following the GP prior model, and they are expressed as func-

tions as various system parameters, such as the hardware energy consumption, the power

constraint of the sensor, the probability distribution of the random field, and the sampling

instants, etc. The optimum sampling schemes are designed by minimizing their respective

cost functions. Numerical and simulation results demonstrate that both sampling schemes

can balance the data-energy tradeoff by significantly reducing the amount of required data

while still achieving accurate LSE, and the uniform sampling scheme slightly outperforms

dynamic active sampling.

The remainder of this paper is organized as follows. The system model and problem

formulation are given in Section II. Section III presents an optimum LSE estimation algo-

rithm if the sampling scheme has been selected. The dynamic active sampling and uniform

sampling are developed in Sections IV and V, respectively. Numerical and simulation results

are presented in Section VI, and Section VII concludes the paper.

2.3 System Model

We consider the sensing and monitoring of the level set of a time-varying random event,

x(t), where t is the time variable. The random event can be used to model temperature, air

pressure, or density of toxic gases, etc.

Assumptions 2.1 : We make the following assumptions about the random event x(t):

1) The prior distribution of {x(t)} is a zero-mean Gaussian process (GP) with covariance

function k(t, t′) = E[x(t)x(t′)], i.e, x ∼ GP (0, k(t, t′)).
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2) The Gaussian process is wide sense stationary in time, and

k(t, t′) = ρ|t−t
′|, (2.1)

where ρ ∈ [0, 1] is the temporal correlation coefficient.

At time t , we are interested in identifying the γ-level set of {x(t)}, which is define as

S(t) := {t′ ∈ [0, t] : x(t′) > γ} (2.2)

We assume γ > 0 without loss of generality.

The level set will be estimated by using distorted observations of the random event. Due

to energy limit, the sensing system can only take discrete-time samples of the continuous-

time random event. The collected discrete-time samples are transmitted to a fusion center

(FC). Denote the sampling instants as ti, for i = 1, 2, · · · . It is assumed that the i-th

sampling operation consumes an energy of E0i = Ec +Ei Joul, where the constant Ec is due

to hardware power consumption, and Ei is the transmission energy of the i-th sample. The

samples observed at the FC can be represented as

y(ti) =
√
Eix(ti) + ξi (2.3)

where ξi includes the effects of observation noise and channel distortions. It is assumed that

ξi is zero mean Gaussian distributed with variance σ2.

The sensor operates under the constraint of a fixed power P0. The energy allocated to
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the i-th sample is thus E0i = P0(ti−ti−1). Consequently, the transmission energy per sample

is Ei = P0(ti − ti−1)− Ec.

At time t, the FC will obtain an estimated level set, Ŝ(t), by using the set of discrete-time

samples, {y(ti)|ti ≤ t}. We define the level set estimation error at time t as the symmetric

difference between the level set of interest, S(t), and the estimated level set, Ŝ(t) :

e(Ŝ(t)) :=

∫ t

0

I
{
µ ∈ ∆(S(t), Ŝ(t))

}
dµ (2.4)

where ∆(S(t), Ŝ(t)) = (S(t)∩ Ŝc(t))∪ (Sc(t)∩ Ŝ(t)) denotes the symmetric difference, Sc is

the complement of S, and I{E} = 1 if event E is true and 0 otherwise.

The level set estimation (LSE) problem can then be formulated as

min . lim
t→∞

1

t
E[e(Ŝ(t))]

s.t. Ei = P0(ti − ti−1)− Ec

Ei ≥ 0 (2.5)

The optimization problem involves two steps: first, how to choose the sampling instants

{ti}i; second, once {ti, y(ti)}i is given, how to estimate the level set by using the knowledge

of {y(ti)}i.

The choice of the sampling intervals plays a critical role on the LSE performance. Under

a fixed power constraint, a larger interval between two consecutive samples means more

energy per sample, thus a higher signal-to-noise ratio (SNR) per sample. On the other

hand, a larger interval results in weaker temporal correlation between the two samples, and
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this might negatively impact the estimation accuracy. Therefore it is important to identify

the sequence of sampling intervals that can balance the tradeoff between SNR and sample

correlation.

In this paper, we will consider two different sampling scenarios by adding additional

constraints to the optimization problem in (2.5).

• Dynamic active sampling: After collecting the first n samples, the sensor dynami-

cally selects tn+1 based on the knowledge of all previous samples {y(ti)}ni=1 in a myopic

manner, such that the expected error up to time tn+1, 1
tn+1

E[e(Ŝ(tn+1))], is minimized.

• Uniform sampling: Uniform sampling adds an additional constraint, ti+1 − ti = d,

∀i, to the optimization problem in (2.5). In this case, we can optimize the value d to

minimize the expected estimation error.

Uniform sampling employs a constant sampling period to minimize the global cost func-

tion as t→∞, while the dynamic active sampling adjusts the sampling instant in a myopic

manner to minimize the cost function up to the next sampling instant, by using knowledge

learned from the previous samples. We will study the design and performance of these two

sampling schemes in Sections 2.5 and 3.5, respectively.

Before moving to the two different sampling schemes, we first study in Section 5.5 the

optimum estimation of level set once {y(ti)}i are known at the receiver. The results will

provide the analytical form of the conditional LSE error given {y(ti)}, which can be used to

facilitate the optimum sampling designs in Sections 2.5 and 3.5.
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2.4 Optimal Level Set Estimation in GP

In this section, we study the optimal level set estimation if the sampling instants, tn =

[t1, · · · , tn], and the discrete-time samples, yn = [y(t1), y(t2), . . . , y(tn)]T , are known at the

FC. This is the operation performed at the FC after the sampling instants, {tn}n, have

already been chosen through one of the sampling schemes to be discussed in the next two

sections.

Define rxyn(t) := E[x(t)yTn ] ∈ Rn and Rynyn := E[yny
T
n ] ∈ Rn×n, where R is the set of

real numbers. From (2.1) and (2.3), the i-th element of the vector rxyn(t) is
√
Eik(t, ti), and

the (i, j)-th element of the matrix Rynyn is
√
EiEjk(ti, tj) + σ2δij, with δij = 1 if i = j and

0 otherwise.

Due to the GP modelling, given yn, the distribution of x(t) is still Gaussian, with mean

m̂n(t) and variance k̂n(t) given by

m̂n(t) = rxyn(t)R−1
ynynyn (2.6)

k̂n(t) = k(t, t)− rxyn(t)R−1
ynynrxyn(t)T . (2.7)

The GP regression based LSE algorithm is given in Algorithm 5.

Theorem 2.1 : Algorithm 1 is optimal with given {tn,yn}, i.e., it minimizes the condi-

tional LSE error, E[e(Ŝ(tn))|yn].

Proof: Under the GP modelling on x(t) and y(t), S(tn) is also a random process. Given the

observation history yn, we can always obtain a posterior distribution of S(tn).
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Algorithm 1 GP regression based level set estimation

1: Input: tn and yn
2: Run GP regression for ∀t ∈ [0, tn]:

m̂n(t) := rxyn(t)R−1
ynynyn

3: Threshold m̂n(t):

Ŝ(tn) = {t ∈ [0, tn] : m̂(t) > γ}

4: Output Ŝ(tn).

Given yn, the expected LSE error can be calculated as

E[e(Ŝ(tn))|yn] :=

∫ tn

0

P
[
t ∈ ∆(S(tn), Ŝ(tn))

∣∣∣yn] dt
=

∫ tn

0

(
P [x(t) ≤ γ|yn] · I{t ∈ Ŝ(tn)}

+ P [x(t) > γ|yn] · I{t ∈ Ŝc(tn)}
)
dt (2.8)

Therefore, the optimal estimator that minimizes (4.10) is to let

t ∈


Ŝ(tn) if P [x(t) > γ|yn] > P [x(t) ≤ γ|yn]

Ŝc(tn) if P [x(t) > γ|yn] ≤ P [x(t) ≤ γ|yn]

(2.9)

for every t ∈ [0, tn].

Since x(t) given yn is still Gaussian distributed with mean and variance given in (4.8)

and (4.9), we have

P [x(t) > γ|yn] = Q

γ − m̂(t)√
k̂(t)

 (2.10)
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where Q(·) is the Gaussian-Q function. The optimal estimator defined in (4.11) is then

reduced to compare m̂(t) with γ. If m̂(t) > γ, the probability in (4.12) is greater than 1/2,

thus, we should let t ∈ Ŝ(tn); otherwise, we let t ∈ Ŝc(tn). �

A byproduct of the proof of Theorem 3.1 is the conditional LSE error given yn, and the

result is given as follows.

Corollary 2.1 : The minimum conditional LSE error with given yn is

E[e(Ŝ(tn))|yn] =

∫ tn

0

Q

 |γ − m̂n(t)|√
k̂n(t)

 dt (2.11)

The results in Theorem 3.1 and Corollary 2.1 will be used to facilitate the designs of

dynamic active sampling and uniform sampling in the next two sections.

2.5 Dynamic Active Sampling

In this section, we consider the dynamic active sampling scheme, where the FC dynamically

selects the next sensing instant tn based on the sensing history yn−1. With the informa-

tion extracted from sensing history yn−1, the FC obtains updated information regarding

the current function value x(t), which is different from its prior distribution. With such

information, the FC can adaptively select tn in a myopic manner, with the goal to minimize

1
tn
E[e(Ŝ(tn))|yn−1], the expected normalized level set estimation error up to tn.
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The optimization problem in (2.5) in the dynamic active sampling case can be reformu-

lated as

minimizetn
1

tn
E[e(Ŝ(tn))|yn−1, tn]

s.t. tn ≥ tn−1 + dc (2.12)

where dc := Ec
P0

is the hardware energy normalized by the power constraint. The cost

function, 1
tn
E[e(Ŝ(tn))|yn−1, tn], depends on both past observations, yn−1, and potential

future sampling instant, tn. It should be noted that value of y(tn) at tn is not available

during the sensing set selection stage, even if tn is given.

The cost function in (4.4) can be alternatively expressed as

1

tn
E[e(Ŝ(tn))|yn−1, tn] =

1

tn
Eyn

{
E[e(Ŝ(tn))|yn]

}
(2.13)

The reason that we take another layer of expectation with respect to yn on the right hand

side (RHS) of (4.5) is due to the fact that yn is unknown before the selection of tn. The

value of yn will be revealed only after sensing sample is collected at time tn.

The observation history up to time tn−1 is used to obtain an initial estimate of the

distribution of x(t), i.e., its posteriori mean m̄(t) = E [x(t)|yn−1] and covariance k̄(t, t′) =

E [x(t)x(t′)|yn−1]− m̄(t)m̄(t′), which can be expressed as

m̄(t) == rxyn−1R
−1
yn−1yn−1

yn−1 (2.14)

k̄(t, t′) = k(t, t′)− rxyn−1R
−1
yn−1yn−1

rTx′yn−1
(2.15)
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It should be noted that m̂(t) and k̂(t, t′) defined in (4.8) and (4.9) are conditioned upon

yn, and they are different from m̄(t) and k̄(t, t′) defined in (4.14) and (4.15), which are

conditioned upon yn−1. The results in (4.14) and (4.15) provide a rough sketch of the level

set. Once tn is chosen, they can be used in combination with y(tn) to refine the level set

estimation based on Algorithm 5.

we first decompose the estimation error in (4.13) as a function of (tn, yn) and (tn−1,yn−1).

The difference between ( m̄(t), k̄(t, t′) ) and ( m̂(t), k̂(t, t′) ) is directly related to the im-

pacts of selecting tn on the expected level set estimation error. To identify the relationship,

define the following variables.

h(t, tn) := r̄xyn r̄
−1
ynyn [yn − m̄(tn)] (2.16)

σ2
h(t, tn) := r̄2

xyn r̄
−1
ynyn (2.17)

where r̄xyn := E(x(t)y(tn)|yn−1) =
√
Enk̄(t, tn) , and r̄ynyn := E(y(tn)y(tn)|yn−1) = Enk̄(tn, tn)+

σ0.

With the notation in (4.5) and (2.17), we have the following theorem regarding the

decomposition of m̂(t) and k̂(t, t′).

Theorem 2.2 : The posteriori mean and variance, m̂(t) and k̂(t, t), defined in (4.8) and

(4.9) can be decomposed in the following form

m̂(t) = m̄(t) + h(t, tn) (2.18)

k̂(t, t) = k̄(t, t)− σ2
h(t, tn) (2.19)
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We use the notation of m̂(t) and k̂(t, t) instead of m̂n(t) and k̂n(t, t) in Theorem 4.2 and

following part in this section for concise notations.

Proof: The proof relies on the conditional distribution of jointly Gaussian distributed ran-

dom variables. Consider three jointly Gaussian distributed random vectors, x, z1, and z2,

and we have the following relationship

µx|z1z2 = µx|z1 + Σxz2|z1Σ
−1
z2z2|z1

(
z2 − µz2|z1

)
, (2.20)

Σxx|z1z2 = Σxx|z1 −Σxz2|z1Σ
−1
z2z2|z1Σz2x|z1 , (2.21)

where the notations, µa|b = E(a|b) and Σab|c = E[(a− µa|c)(b− µb|c)
T |c], are used in the

above expressions, with a, b, and c being three random vectors.

If we let x = x(t), z1 = yn−1, and z2 = yn = x(tn) + ξ, then

µx|z1z2 = m̂(t),Σxx|z1z2 = k̂(t, t) (2.22)

µx|z1 = m̄(t),Σxx|z1 = k̄(t, t). (2.23)

In addition, it can be easily shown that µz2|z1 = m̄(tn), and

Σxz2|z1 = r̄xyn (2.24)

Σz2z2|z1 = r̄ynyn (2.25)

Substituting the above equations into (4.22) and (4.23) yields (4.20) and (4.21). �

We note that m̄(t) and k̄(t, t) depend on (tn−1,yn−1) only, σ2
h(t, tn) depends on tn−1
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and tn, while h(t, tn) depends on (tn−1,yn−1) and (tn, yn). Moreover, given (tn−1,yn−1) and

tn, h(t, tn) is a Gaussian random variable with zero mean and variance σ2
h(t, tn), with the

randomness contributed by y(tn). As a result, the results in Theorem 4.2 decompose m̂(t)

and k̂(t, t) into two parts, one part depends on tn−1, and the other part depends on tn.

In order to simplify notations, we define

λ(t) : =
m̄(t)− γ√
k̄(t, t)

, δ(t) :=
σh(t, tn)√
k̄(t, t)

(2.26)

With the decomposition given in Theorem 4.2, we have the following results regarding

the cost function in (4.4).

Theorem 2.3 : The cost function in (4.4), J (tn) := 1
tn
E[e(Ŝ(tn))|yn−1, tn], with respect

to the sensing location tn is

J (tn) =
1

πtn

∫ tn

0

∫ π
2

0

[
1 +

δ2(t)

(1− δ2(t)) sin2(θ)

]−1/2

×

exp

{
− λ2(t)

2[δ2(t) + (1− δ2(t)) sin2(θ)]

}
dθdt (2.27)

where λ(t) depends on (tn−1,yn−1) only and δ(t) depends on yn−1 and tn as defined in (4.28).

Proof: From (4.5), Corollary 2.1, and Theorem 4.2, the cost function in (4.4) can be alter-

natively expressed as

1

tn
E[e(Ŝ(tn))|yn−1, tn] =

1

tn
EY [Q(|Y |)] (2.28)
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where

Y =
h(t, tn) + m̄(t)− γ√
k̄(t, t)− σ2

h(t, tn)
. (2.29)

Since h(t, tn) ∼ N (0, σ2
h(t, tn)), it is straightforward that the random variable Y is Gaussian

distributed with mean µY = λ(t)√
1−δ2(t)

and variance σ2
Y = δ2(t)

1−δ2(t)
.

With Craig’s alternative expression of the Q-function [3], we have

EY [Q(|Y |)] =
1

π

∫ π
2

0

EY
[
e
− Y 2

2 sin2(θ)

]
dθ (2.30)

Since Y is Gaussian distributed, Z := Y 2/σ2
Y is non-central χ2-distributed with one

degree-of-freedom. The moment generating function (MGF) of Z is

MZ(s) = E
[
e
sY 2

σ2

]
= exp

{
µ2
Y s

(1− 2s)σ2
Y

}
1√

1− 2s
(2.31)

Combining (4.32) with (4.33) yields

EY [Q(|Y |)] =
1

π

∫ π
2

0

exp

{
− µ2

Y

2(σ2
Y + sin2(θ))

}
1√

1 +
σ2
Y

sin2(θ)

dθ

This completes the proof. �

Theorem 4.3 gives the exact explicit expression of the cost function of the optimization

problem. It is expressed as a double integral, and might be difficult to evaluate. To simplify

calculation, we develop an upper bound of the cost function. The upper bound is obtained

by applying sin θ ≤ 1 to (4.29), and the result is given in Corollary 2.2.
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Corollary 2.2 : The cost function in (4.4) with respect to the sensing time tn is upper

bounded by

1

tn
E[e(Ŝ(tn))|yn−1, tn] ≤ 1

2tn

∫ tn

0

exp

{
−λ

2(t)

2

}
· τ(t)dt (2.32)

where τ(t) =
√

1− δ2(t) =
√

1− σ2
h(t,tn)

k̄(t,t)
.

In the upperbound (4.34), the variables λ(t) and k̄(t, t) are independent of the choice of

tn, and the choice of tn will only impact σ2
h(t, tn).

We propose to minimize the upper bound given in (4.34). Define α(t) = 1
2

exp
{
−λ2(t)

2

}
.

Then, a new optimization problem with the upper bound being the cost function can be

formulated as

min
tn

J̄ (tn) :=
1

tn

∫ tn

0

α(t)

√
1− σ2

h(t, tn)

k̄(t, t)
dt

s.t. tn ≥ tn−1 + dc (2.33)

In the integrand in the objective function in (4.35), the weight α(t) is a function of

λ(t), which is defined in (4.28). We note that in its definition, the numerator |m̄(t) − γ|

measures the deviation of m̄(t) from the threshold γ, which is then normalized by
√
k̄(t, t),

the estimated standard deviation. The larger the value of λ(t), the less likely an classification

error will happen at time t. This is reflected by α(t), since it is decreasing in λ(t). With a

small weight α(t), the term α(t)τ(t) plays a less important role in the optimization (4.35).

The solution to (4.35) thus automatically allocates more resources to the locations with

larger α(t).
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Since the cost function J̄ (tn) in (4.35) is continuous and differentiable with respect to

tn, the optimum value of tn must be one of the zero-slope points of J̄ (tn). Therefore, the

optimum value must be one of the solutions to J̄ ′(tn) = 0,

which can be expressed as

α(tn)

√
1− σ2

h(tn, tn)

k̄(tn, tn)
=

1

tn

∫ tn

0

α(t)

√
1− σ2

h(t, tn)

k̄(t, t)
dt

+
1

2

∫ tn

0

α(t)√
k̄(t, t)

[
k̄(t, t)− σ2

h(t, tn)
] ∂σ2

h(t, tn)

∂tn
dt (2.34)

where

∂σ2
h(t, tn)

∂tn
=
k̄2(t, tn)

[
σ2

En
(2 log ρ+ 1) + 2 log ρ

][
k̄(tn, tn) + σ2

En

]2 (2.35)

The above problem can be solved numerically with the fsolve function in Matlab. Our

numerical results indicate there is always just a unique solution to the above equation for

all configurations considered in this paper.

The dynamic active sampling picks the sampling sequentially in a myopic manner. It

attempts to minimize the cost function evaluated up to the next sampling instant. Next we

will study the uniform sampling scheme, which tries to minimize the global cost function

evaluated as t→∞.

2.6 Optimal Uniform Sampling

In this section, optimal uniform sampling scheme will be studied. we will first find the

unconditional LSE error probability using the results from Algorithm 5. The analytical
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results will then be used to identify the optimum sampling rate that can minimize the LSE

error probability.

2.6.1 LSE Error Probability in Uniform Sampling

With uniform sampling, the sensor takes samples at uniform intervals with sampling period

d = ti+1− ti. The dimension of the problem is reduced significantly, that is, the optimization

variable is reduced to a single variable d, as against the time sequence {ti}i in the original

problem.

With the additional constraint of uniform sampling, the optimization problem in (2.5)

can be reformulated as

min . lim
n→∞

1

nd
E[e(Ŝ(nd))]

s.t. ti+1 − ti = d

E := Ei = P0d− Ec

d ≥ P0

Ec
(2.36)

The unconditional LSE error probability in (3.5) can be alternatively expressed as

E[e(Ŝ(t))] = Eyn

{
E[e(Ŝ(nd))|yn]

}
(2.37)

From (3.12) and Corollary 2.1, the cost function depends on the posteriori mean m̂n(t)
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and variance k̂n(t). From (4.8) and (4.9), we have

m̂n(t) =
√
Erxxn(t)

(
ERxnxn + σ2In

)−1
yn (2.38)

k̂n(t) = k(t, t)− E rxxn(t)
(
ERxnxn + σ2In

)−1
rTxxn(t). (2.39)

where rxxn(t) = E [x(t)xn] ∈ Rn and Rxnxn = E[xnx
T
n ] ∈ Rn×n, with xn = [x(d), x(2d), · · · , x(nd)]T ∈

Rn.

The posteriori mean is a function of yn, whereas the posteriori variance is a constant

independent of yn. Since yn is zero-mean Gaussian distributed, it can be easily shown that

m̂n(t) is zero-mean Gaussian distributed with variance being

σ2
m̂n(t) = E rxxn(t)

(
ERxnxn + σ2In

)−1
rTxxn(t) (2.40)

From (3.14) and (3.15), we have k̂n(t) = k(t, t)− σ2
m̂(t).

The variance in (3.15) depends on a number of factors, such as the correlation coefficient

ρ, the sampling period d, the energy per sample E, and the time instant t. As n → ∞, we

have the following asymptotic results of σ2
m̂n

(t) and k̂n(t).

Theorem 2.4 : Define the asymptotic posteriori variance σ2
e(µ) := limn→∞ k̂n(t), where

µ = t
d
− b t

d
c ∈ [0, 1] is the relative position of t between two adjacent samples. We have

σ2
e(µ) =

[
1

γ0(d− dc)
+

1 + ρ2d − ρ2µd − ρ2(1−µ)d

1− ρ2d

]
(

1

γ0(d− dc)
+

1− ρd

1 + ρd

)− 1
2
(

1

γ0(d− dc)
+

1 + ρd

1− ρd

)− 1
2

(2.41)
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where γ0 := P0

σ2
being the SNR, and dc := Ec

P0
is hardware energy normalized by the average

power constraint. In addition,

lim
n→∞

σ2
m̂n(t) = 1− σ2

e(µ). (2.42)

Proof: Define a new vector, x′n = [x(d+µd), x(2d+µd), · · · , x(nd+µd)]T , which is obtained

by shifting xn to the right by µd seconds. The posterior covariance matrix of x′n given yn is

R̂x′nx
′
n

:= E[x′nx
′T
n |yn], which can be expressed as

R̂x′nx
′
n

= Rx′nx
′
n
− ERx′nxn

(
ERxnxn + σ2In

)−1
RT

x′nxn
(2.43)

where Rx′nx
′
n

= E[x′nx
′T
n ] = Rxnxn and Rx′nxn = E[x′nx

T
n ]. Since the value of k̂n(t) in (3.14)

is on the diagonal of R̂x′nx
′
n
, we have

σ2
e(µ) = lim

n→∞
k̂n(t) = lim

n→∞

1

n
trace(R̂x′nx

′
n
) (2.44)

From (2.1), Rxnxn is a symmetric Toeplitz matrix with the (i, j)-th element being ρ|i−j|d.

Similarly, the matrix Rx′nxn is an asymmetric Toeplitiz matrix with the first row being

[ρ|µd|, ρ|µ−1|d, · · · , ρ|µ−(n−1)|d], and the first column [ρ|µd|, ρ|µ+1|d, · · · , ρµ+(n−1)|d]T .

The Toeplitz matrix, Rxnxn is uniquely determined by the sequence {ρ|n|d}n, whose

discrete-time Fourier transform (DTFT), Ψxnxn(ω) =
∑+∞

n=−∞ ρ
|n|de−jnω, is

Ψxnxn(ω) =
1− ρ2d

1 + ρ2d − 2ρd cos (ω)
(2.45)
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The Toeplitz matrix, Rx′nxn , is uniquely determined by the sequence, {ρ|µ+n|d}n. The

DTFT, Ψx′nxn(ω) =
∑+∞

n=−∞ ρ
|µ+n|de−jnω, can be calculated as

Ψx′nxn(ω) =
ρ−µd

[
ρd(1− ρ2µd)ejω + ρ2µd − ρ2d

]
1 + ρ2d − 2ρd cos (ω)

. (2.46)

Based on [5, Lemma 2], Rx′nxn is asymptotically equivalent to a circulant matrix, Cx′nxn =

UH
n Dx′nxnUn, where Un is the unitary discrete Fourier transform (DFT) matrix with the

(i, l)-th element being (Un)i,l = 1√
n

exp [−j2π (i−1)(l−1)
n

], and Dx′nxn is a diagonal matrix with

its k-th element being (Dx′nxn)k = Ψx′nxn(2π k−1
n

).

Similarly, the Toeplitz matrix, Rxnxn , is asymptotically equivalent to a circulant ma-

trix, Cxnxn = UH
n DxnxnUn, where Dxnxn is a diagonal matrix with its k-th element being

(Dxnxn)k = Ψxnxn(2π k−1
n

).

Based on [8, Theorem 2.1], R̂x′nx
′
n

in (2.43) is asymptotically equivalent to a circulant

matrix Ĉx′nx
′
n

= Cxnxn − Cx′nxn(Cxnxn + 1
γ0(d−dc))

−1CH
x′nxn

= UH
n D̂xnxnUn, where D̂xnxn =

Dxnxn −Dx′nxn(Dxnxn + 1
γ0(d−dc))

−1DH
x′nxn

.

From Szego’s Theorem [5], we have

lim
n→∞

k̂n(t) =
1

2π

∫ π

−π

[
Ψxnxn(ω)−

|Ψx′nxn(ω)|2

Ψxnxn(ω) + 1
γ0(d−dc)

]
dω. (2.47)

Substituting (2.45) and (2.46) into above equation and solving the integral with [21, eqn.

(2553.3)], we have the result in (2.41). �

In Theorem 3.2, the asymptotic posteriori variance σ2
e(µ) is expressed as an explicit func-

tion of a number of parameters, such as the SNR γ0, the sampling period d, the normalized
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hardware energy dc, the temporal correlation coefficient ρ, and the relative time location µ.

From Theorem 3.2, as n → ∞, m̂n(kd + µ) is a zero-mean Gaussian random variable

with variance 1−σ2
e(µ). Therefore, the statistical properties of m̂n(t) as n→∞ are periodic

in t with period d. Define m̂(µ) := limn→∞ m̂n(kd + µ). We have the following corollary

regarding the distribution of m̂(µ).

Corollary 2.3 : As n→∞, m̂(µ) = limn→∞ m̂n(kd+µ) is zero-mean Gaussian distributed

with variance 1− σ2
e(µ), that is, m̂(µ) ∼ N (0, 1− σ2

e(µ)).

With the asymptotic results in Theorem 3.2 and Corollary 3.1, we can get the explicit

expression of the cost function in (3.5), and the result is given in the following theorem.

Theorem 2.5 : The cost function in (3.5), J := limn→∞
1
nd
E[e(Ŝ(nd))], can be expressed

as

J =
1

π

∫ 1

0

∫ π/2

0

[
1 +

1− σ2
e(µ)

σ2
e(µ) sin2(θ)

]−1/2

× exp

(
− γ2/2

1− σ2
e(µ) cos2(θ)

)
dµdθ. (2.48)

Proof: We first consider the conditional cost function, limn→∞
1
nd
E[e(Ŝ(nd))|yn]. From

(4.13) and (3.12), the cost function can be expressed as

lim
n→∞

1

nd
E[e(Ŝ(nd))|yn] =

lim
n→∞

1

nd

n∑
i=1

∫ id

(i−1)d

Q

 |γ − m̂n(t)|√
k̂n(t)

 dt

Performing change of variable, t = (i− 1)d+ µd, in the above integral yields, and using the
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results from Theorem 3.2, we have

lim
n→∞

1

nd
E[e(Ŝ(nd))|yn] =

∫ 1

0

Q

(
|γ − m̂(µ)|√

σ2
e(µ)

)
dµ (2.49)

In the conditional cost function in (3.27), there is only one random variable, m̂(µ) ∈

N (0, 1− σ2
e(µ)), which is a function of yn. Therefore the unconditional cost function can be

expressed as

J= lim
n→∞

1

nd
E[e(Ŝ(nd))]=

∫ 1

0

Em̂(µ)

[
Q

(
|γ − m̂(µ)|√

σ2
e(µ)

)]
dµ (2.50)

With Craig’s alternative expression of the Q-function [3], (3.28) can be reformulated as

J =
1

π

∫ 1

0

∫ π
2

0

Em̂(µ)

[
e
− (m̂(µ)−γ)2

2σ2e(µ) sin
2(θ)

]
dµdθ (2.51)

Define Z := (m̂(µ)−γ)2

1−σ2
e(µ)

, which is a non-central χ2-distributed random variable with one

degree-of-freedom and the non-centrality parameter γ2

1−σ2
e(µ)

. The MGF of Z is given in (4.33).

Combining (3.29) with (4.33) yields (3.26). �

The results in Theorem 3.3 give the exact analytical expression of the cost function, which

is expressed as a function of the optimization parameter d, and other system parameters

such as the SNR γ0, the temporal correlation coefficient ρ, and the normalized hardware

energy consumption dc. Thus, given {γ0, ρ, dc}, we can identify d ≥ dc that minimizes

the cost function J in (3.26). The integrand in (3.26) has only elementary functions, and

the integration limits are finite. Thus the integrals in (3.26) can be easily evaluated with

numerical integrations with high precision.
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2.6.2 Optimum Sampling Rate

Due to the complicated form of the double integrals in (3.26), it might be difficult to directly

minimize the exact cost function with respect to d. We resort to an upper bound of d to

simplify the optimization.

The following corollary provides an upper bound of the cost function expressed in a

closed-form.

Corollary 2.4 : The asymptotical expected LSE error in (3.26) is upper bounded by

g(d) =
1

2
exp (−γ

2

2
)

[
1

γ0(d− dc)
+

1 + ρ2d

1− ρ2d
+

1

d log ρ

]1/2

(
1

γ0(d− dc)
+

1− ρd

1 + ρd

)− 1
4
(

1

γ0(d− dc)
+

1 + ρd

1− ρd

)− 1
4

(2.52)

Proof: It can be easily shown that the integrand in (3.26) is an increasing function with

respect to θ for θ ∈ [0, π/2]. Thus we have

E[e(Ŝ)] ≤ 1

2
exp (−γ

2

2
)

∫ 1

0

√
σ2
e(µ)dµ. (2.53)

Due to the concavity of
√
x, the asymptotic LSE error can be upper-bounded again as

E[e(Ŝ)] ≤ 1

2
exp (−γ

2

2
)

√∫ 1

0

σ2
e(µ)dµ. (2.54)

Substituting (2.41) into (2.54) and simplifying yields (2.52). �

Given the complicated form of the exact LSE error probability in (3.26), we propose

to instead minimize the error probability upper bound in (2.52). It will be shown in the
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numerical results that minimizing the exact error probability or its upper bound yields

almost the same values of the optimum sampling rates.

Since the upper bound in (2.53) is continuous and differentiable with respect to d, the op-

timum value of d that minimizes g(d) must be one of the zero-slope points of g(d). Therefore,

the optimum value of d must be one of the solutions to g′(d) = 0, which can be expressed as

g′(d) = c(d) · w(d), where

w(d) = −8 ln ρ−1ρ2d(1− ρ2d)−3 +

[
− 4 ln ρ−1γ0(d− dc)ρ2d

+4 ln ρ−1ρ2d +
4

d
ρ2d +

4

d− dc

]
(1− ρ2d)−2

+

[
− 2

ln ρ−1d(d− dc)
− 4

d− dc
+

4

ln ρ−1d2

]
(1− ρ2d)−1

+
1

ln ρ−1d(d− dc)

(
1− 1

γ0(d− dc)

)
+

1

d2 ln ρ−1

(
1

γ0(d− dc)
+ γ0(d− dc)− 2

)
(2.55)

and

c(d) =
1

8
exp (−γ2)g−1(d)

1

γ0(d− dc)

[( 1

γ0(d− dc)
− 1
)2

+
4

γ0(d− dc)(1− ρ2d)

]− 3
2

> 0

for all d > dc.

Again the above problem can be solved numerically with the fsolve function in Matlab.

Our numerical results indicate the LSE error probability upper bound, g(d), defined in

(2.53) is quasi-convex in d and there is always just a unique solution to w(d) = 0 for all
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configurations considered in this paper.

2.7 Numerical and Simulation Results

In this section, numerical and simulation results are presented to demonstrate the perfor-

mance of the proposed level set sensing and estimation algorithms in both uniform sampling

and active sampling scenarios. Without loss of generality, the level set threshold γ is set to

0.1.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR (dB)

A
sy

m
pt

ot
ic

 L
S

E
 e

rr
or

 p
ro

ba
bi

lit
y

 

 

d
c
=0.01, dynamic active sampling

d
c
 =0.01, optimum uniform sampling

d
c
=0.1, dynamic active sampling

d
c
 =0.1, optimum uniform sampling

d
c
=0.5, dynamic active sampling

d
c
 =0.5, optimum uniform sampling

Figure 2.1: LSE error probability as a function of SNR under various dc (ρ = 0.5).

Figs. 2.1 and 2.2 compare the LSE error probabilities between dynamic active sampling

and uniform sampling. For the dynamic active sampling, the optimum value of tn is ob-

tained by solving (2.34); for the uniform sampling, the optimum value of d is calculated by

equaling (2.55) zero. Each point in the simulation results are obtained by averaging over 500

independent trials. The LSE error probability are calculated over a time period of t = 150

seconds, and both algorithms converge in this time frame. In Fig. 2.1, the power law coeffi-

cient is ρ = 0.5. In Fig. 2.2, the SNR is γ0 = 20 dB. The performance of uniform sampling

consistently outperforms that of dynamic active sampling for all system configurations. The
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performance difference between the two narrows as the normalized hardware energy con-

sumption dc decreases. The performance of both schemes degrades as dc increases, because

more energy is consumed by the hardware.
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Figure 2.2: LSE error probability as a function of ρ under various dc (γ0 = 20 dB).

Fig. 2.3 compares sampling rates between dynamic active sampling and uniform sampling.

For the dynamic active sampling, the value of sampling rates is obtained by dividing the

accumulated number of samples in the time frame by the duration of this time frame. For

the uniform sampling, the optimum value of sampling rate is the reciprocal of the optimum

d . In terms of sampling rate, there is always a gap between the two sampling schemes

for all system configurations. The optimum uniform sampling yields more sampling actions

than the dynamic active sampling in the same time frame, which partly explains its better

performance in term of LSE error probability shown in Figs. 2.1 and 2.2.
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Figure 2.3: Sampling rate as a function of ρ under various dc (γ0 = 20 dB).

Fig. 2.4 shows the asymptotic LSE error probabilities and their corresponding upper

bounds of uniform sampling as a function of the sampling rate r = 1
d
≤ 1

dc
. The SNR is

γ0 = 10 dB, and the normalized hardware energy consumption dc is fixed as 0.05, which

corresponds to a maximum sampling rate of rmax = 20 Hz. The simulation results are

obtained with n = 100 samples yet the analytical results are derived by using n→∞. The

simulation results with finite n match very well with the analytical results with infinite n,

thus the asymptotic analytical results provide a very good approximation of the performance

of practical systems with a finite n. For all system configurations, when the sampling rate

approaches its boundaries at 0 or rmax = 20 Hz, the LSE error probability approaches Q(|γ|),

the error probability of random decisions. At 0 Hz, no sample is collected by the sensor. At

rmax, all energy is consumed by the sensing operation thus no information is transmitted to

the FC. The optimum sampling rates that minimize the error probability upper bound in

(2.52) are obtained by equaling (2.55) zero and marked in the figure. The optimum sampling

rates that minimize the exact error probability in (3.26) are obtained through exhaustive

search. It is observed that the sampling rates that minimize the upper bound or the exact
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expression are almost the same. For example, when ρ = 0.9, the two optimum sampling

rates are 1.85 Hz and 1.81 Hz, respectively. Therefore minimizing the upper bound provides

a reasonably accurate approximation of the true optimum sampling rate.
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Figure 2.4: LSE error probability as a function of sampling rate r = 1/d for systems with
uniform sampling (γ0 = 10 dB, dc = 0.05 seconds).

Fig. 2.5 shows the optimum sampling periods d∗ as a function of dc for uniform sampling.

The SNR is set as γ0 = 10 dB. The results that minimize the upper bound in (2.52) or

the exact error probability in (3.26) are shown in the figure. Again, minimizing the upper

bound or the exact error probability yields almost identical optimum sampling periods, for

all system configurations. The optimum sampling period is an increasing function in ρ, in

that a larger ρ renders a stronger correlation between two adjacent samples. It is also an

increasing function in dc, because more energy needs to be allocated for each sample with a

higher hardware energy consumption.
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Figure 2.5: Optimum sampling period d∗ as a function of dc for systems with uniform
sampling (γ0 = 10 dB).

The minimum LSE error probabilities and their upper bounds are shown in Fig. 2.6 as

a function of the SNR for systems with uniform sampling. The results are obtained by first

identifying the optimum sampling period d∗ by zeroing (2.55), and then plugging the values

in (3.26) or (2.52). The value of ρ is 0.8. As expected, a higher dc or a higher hardware

energy consumption always results in a higher LSE error probability. The impact of dc on

the LSE is very small when the SNR is low, and it is more pronounced at high SNR. In

addition, the gap between the minimum LSE error probability and its upper bound narrows

as SNR increases.
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Figure 2.6: Minimum LSE error probabilities as a function of SNR (γ0) for systems with
uniform sampling (ρ = 0.8).

2.8 Conclusions

The optimum level set estimations of a time-varying random field with a wireless sensor un-

der a power constraint has been studied in this paper. The optimum designs were performed

to minimize the time-averaged LSE error probability by choosing a sequence of sampling

instants. Two sampling schemes have been considered, a dynamic active sampling scheme

that adaptively selects the next sampling instant in a myopic manner based on knowledge

learned from previous samples, and a uniform sampling scheme that uses a fixed sampling

period to minimize the global cost function. The exact analytical cost functions and their re-

spective upper bounds for both sampling schemes have been developed by using an optimum

thresholding-based LSE algorithm. The cost functions and upper bounds were expressed as

explicit functions of their respective design parameters, and they are minimized by choosing

the next sampling instant for dynamic active sensing, or the optimum sampling rate for

uniform sampling. Numerical and simulation results demonstrate that both algorithms can

obtain accurate LSE with a small number of samples under a stringent power constraint,

40



and the uniform sampling scheme slightly outperforms the dynamic active sampling scheme.
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Chapter 3

Optimal Energy Efficient Level Set Estimation of Spatially-Temporally

Correlated Random Fields

3.1 Abstract

Level set estimation (LSE) is the process of classifying the region(s) that the values of an

unknown function exceed a certain threshold. It has a wide range of applications such

as spectrum sensing or environment monitoring. In this paper, we study the the optimal

LSE of a linear random field that changes with respect to time. A linear sensor network

is used to take discrete samples of the spatially-temporally correlated random field in both

the space and time domain, and the sensors operate under a total power constraint. The

samples are congregated at a fusion center (FC), which performs LSE of the random field by

using the noisy observation of the samples. Under the Gaussian process (GP) framework,

we first develop an optimal LSE algorithm that can minimize the LSE error probability.

The results are then used to derive the exact LSE error probability with the assistance of

frequency domain analysis. The analytical LSE error probability is expressed as an explicit

function of a number of system parameters, such as the distance between two adjacent nodes,

the sampling period in the time domain, the signal-to-noise ratio (SNR), and the spatial-

temporal correlation of the random field. With the analytical results, we can identify the

optimum node distance and sampling period that can minimize the LSE error probability.
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3.2 Introduction

Wireless sensor networks (WSNs) have been widely used in many scientific and engineering

applications, including search and rescue, disaster relief, spectrum sensing, and environment

monitoring, etc. Many WSNs are designed to monitor a random event, which can be modeled

as a random function in the space and time domains. It is usually difficult and costly to

estimate the precise values of the random function. For many applications, it is sufficient

to find out the regions over which the function values exceeds a certain threshold, and this

is denoted as level set estimation (LSE). The applications of LSE include terra in mapping,

spectrum sensing [1], and monitoring the contours of sunlight, water pollution, and rainfall

[9].

A large number of works are devoted to the development of LSE algorithms [12]– [13].

In [11], the LSE is performed by identifying the difference between two probability densities,

and the method is closely related to standard binary classifications. The binary classification

based method do not consider the difference between the threshold and the actual function

value, which contains salient information helpful to LSE. The methods in [4,7,10] are devel-

oped by studying the statistical properties of the random field. These methods do not involve

an intermediate reconstruction step and it is usually hard to obtain analytical conclusions

on consistency and convergence. A popular LSE method is to estimate the values of the

underlying function and then thresholding at the critical value [3, 5, 12]. Such an approach

is easy to implement and the consistency and convergence of the algorithms can be analyzed

based on certain smooth prior assumptions. In [6, 8, 15], the domains defining the function

of interest are discretized into a set of small regions to perform the LSE, and the price is the
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larger estimation error introduced by the discretization. The LSE of a single spatial point

over infinite continuous time domain are developed in [13]. However, it does not consider

the spatial variation of the random field.

In this paper, we study the LSE of a spatially-temporally correlated random field with a

linear WSN. The sensor nodes are evenly distributed on a line in the spatial domain, and they

periodically sample a time-varying physical quantity, such as temperature or pollution level,

under a constraint on the total power per unit area. The collected samples are transmitted

to a fusion center (FC), which performs the LSE by using noisy observations of the samples.

The performance of the LSE depends critically on the number of sensors in a unit area,

i.e. sensor density, and the sampling rate. A higher sensor density and/or sampling rate

means denser sampling of the random event, which benefit the LSE estimation. On the other

hand, under the constraint of a total power per unit area, a higher sensor density and/or

sampling rate means less energy per sample or a lower signal-to-noise ratio (SNR), which

negatively affects the LSE performance. Therefore it is important to identify the optimum

sensor density in the space domain and sampling rate in the time domain.

Under GP framework , we first propose an optimum LSE algorithm that can minimize

the LSE error probability. The results are then used to derive an asymptotic LSE error

probability when the size of the field and the time go to infinity. The analytical LSE error

probability are explicitly expressed as a function of various system parameters, such as the

node distance (inverse of node density), sampling period, SNR, and spatial and temporal

covariance kernels. The asymptotically optimum node density and sampling rate can then

be obtained by minimizing the asymptotic LSE error probability. Simulation results show

that the asymptotic results can accurately predict the performance of practical random field
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of finite size and finite time duration.

3.3 System Model

Consider a linear sensor network with M sensor nodes evenly distributed on a line. Denote

the coordinate of the m-th node as sm = ml, for m = 1, 2, . . . ,M , where l is the distance

between two adjacent sensors. Define the two-dimensional space-time coordinate vector as

c = [s, t]T ∈ X ×R+, where s is the space coordinate, t is the time variable, X is the linear

field and R is the set of real numbers. Sensors are used to measure a spatial-temporally

dependent physical quantity, x(c), such as air pressure, temperature, aggregated power level

of wireless signals, or density of toxic gases, etc.

It is assumed that the prior distribution of {x(c)} is a zero-mean Gaussian process that

is wide sense stationary (WSS) in both space and time. The covariance function of {x(c)}

is

k(c, c′) = E[x(c)x(c′)] = ks(|s− s′|) · kt(|t− t′|), (3.1)

where ks(·), kt(·) are the spatial and temporal covariance functions, respectively, and both

are absolutely integrable.

Due to energy limit, the sensors take discrete-time samples of the random field. The

collected discrete-time samples are transmitted to a FC. Assume uniform sampling is used.

Denote the sampling instants as tn = nd, for n = 1, 2, · · · , where d is the sampling period. It

is assumed that an energy E0 = Ec +E is allocated for each sample, where the constant Ec

is due to hardware power consumption of the sensing operation, and E is the transmission
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energy of a sample. Denote cin := [si, tn]T as the space-time coordinate of the n-th sample

from the i-th sensor. The samples observed at the FC can be represented as

y(cin) =
√
Ex(cin) + ξ(cin) (3.2)

where ξ(cin) includes the effects of observation noise and channel distortions. It is assumed

that ξ(cin) is a white Gaussian process with zero-mean and variance σ2. The sensor nodes

operate under the constraint of a fixed power P0 per unit area. Given a sensing system with

node density δ = 1
l
, the energy allocated to one sample is thus E0 = P0d

δ
= P0dl.

The FC uses the discrete-time samples to estimate the γ-level set of {x(c)}, which is

defined as

S(t) := {[s, t]T : s ∈ X , x(s, t) > γ}. (3.3)

Without loss of generality, we assume γ > 0.

Denote the estimated level set as Ŝ(t). Then the level set estimation error up to time t

is defined as

e(t) :=

∫ t

0

∫
X
I
{

[s, µ]T ∈ ∆(S(µ), Ŝ(µ))
}
ds dµ (3.4)

where ∆(S(t), Ŝ(t)) = (S(t)∩Ŝc(t))∪(Sc(t)∩Ŝ(t)) denotes the symmetric difference between

two sets, Sc is the complement of S, and I{E} = 1 if the event E is true and 0 otherwise.
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Then, the LSE problem can be formulated as

min . lim
t,M→∞

δ

Mt
E[e(t)]

s.t. E = P0d/δ − Ec ≥ 0 (3.5)

In the cost function, the LSE error is normalized by the time duration t and the length of the

area of interest V = M/δ. The optimization is performed with respect to the node density

δ and the sampling rate r = 1/d.

3.4 Optimal Level Set Estimation in GP

We first study the optimal LSE for given δ and d and derive the corresponding LSE error

probability. The results will be used to identify the solutions to (3.5) in the next section.

Denote xn and yn ∈ RM×1 be the vectors containing the true and observed data samples

that the FC collects from all M sensors at time tn, respectively. Define x1:n := {xi}ni=1

and y1:n := {yi}ni=1 be the sets of true and observed discrete-time data from time t1 to tn,

respectively.

Since {x(c)} is Gaussian process, given y1:n, the distribution of x(c) is still Gaussian,

with conditional mean, m̂n(c), and conditional variance, k̂n(c), given by

m̂n(c) = rxy1:n(c)R−1
y1:ny1:n

y1:n, (3.6)

k̂n(c) = k(c, c)− rxy1:n(c)R−1
y1:ny1:n

rxy1:n(c)T , (3.7)

where rxy1:n(c) := E[x(c)yT1:n] ∈ RnM×1 and Ry1:nyT1:n
:= E[y1:ny

T
1:n] ∈ RnM×nM .
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Based on (4.8), the GP regression based LSE algorithm is given in Algorithm 5.

Algorithm 2 GP regression based level set estimation

1: Input: tn and y1:n

2: Run GP regression for ∀t ∈ [0, tn], s ∈ X to get m̂n(c) with (4.8).
3: Threshold m̂n(c):

Ŝ(t) = {[s, t]T : s ∈ X , m̂n(c) > γ}, 0 ≤ t ≤ tn

4: Output Ŝ(t).

Theorem 3.1 : Algorithm 1 is optimal with given y1:n, i.e., it minimizes the conditional

LSE error probability, E[e(tn)|y1:n]. The corresponding minimum LSE error probability is

E[e(tn)|y1:n] =

∫ tn

0

∫
X
Q

 |γ − m̂n(c)|√
k̂n(c)

 ds dt (3.8)

where Q(x) = 1√
2π

∫∞
x
e−u

2/2du is the Gaussian-Q function.

Proof:

Given y1:n, the expected LSE error can be calculated as

E[e(tn)|y1:n]

=

∫ tn

0

∫
X
P
[

[s, t]T ∈ ∆(S(t), Ŝ(t))
∣∣∣y1:n

]
ds dt

=

∫ tn

0

∫
X

(
P [x(c) ≤ γ|y1:n] · I{[s, t]T ∈ Ŝ(t)}

+ P [x(c) > γ|y1:n] · I{[s, t]T ∈ Ŝc(t)}
)
ds dt (3.9)
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Therefore, the optimal estimator that minimizes (4.10) is to let

c ∈


Ŝ(t), if P [x(c) > γ|y1:n] > P [x(c) ≤ γ|y1:n]

Ŝc(t), if P [x(c) > γ|y1:n] ≤ P [x(c) ≤ γ|y1:n]

(3.10)

for every c = [s, t]T with t ∈ [0, tn] and s ∈ X .

Since x(c) given y1:n is still Gaussian distributed with mean and variance given in (4.8)

and (4.9), we have

P [x(c) > γ|y1:n] = Q

γ − m̂n(c)√
k̂n(c)

 (3.11)

The optimal estimator defined in (4.11) is then reduced to compare m̂n(c) with γ. If m̂n(c) >

γ, the probability in (4.12) is greater than 1/2, thus, we should let c ∈ Ŝ(tn); otherwise, we

let c ∈ Ŝc(tn). A combination of (4.10) and (4.12) results in (4.13). �

3.5 Optimal Uniform Sampling

In this section, we will first find the unconditional LSE error probability using the results

from Algorithm 5. The analytical results will then be used to identify the optimum sampling

period and node density that can minimize the LSE error probability.

The cost function in (3.5) is the time and space averaged unconditional error probability.

The unconditional LSE error probability can be alternatively expressed as

E[e(tn)] = Ey1:n {E[e(tn)|y1:n]} (3.12)
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From (4.13) and (3.12), the cost function depends on the posterior mean m̂n(c) and

variance k̂n(c). From (4.8) and (4.9), we have

m̂n(c)=
√
Erxx1:n(c)

(
ERx1:nx1:n + σ2InM

)−1
y1:n (3.13)

k̂n(c)=k(c, c)−

E rxx1:n(c)
(
ERx1:nx1:n + σ2InM

)−1
rTxx1:n

(c). (3.14)

where rxx1:n(c) = E
[
x(c)xT1:n

]
∈ R1×nM and Rx1:nx1:n = E[x1:nx

T
1:n] ∈ RnM×nM .

The posterior mean is a function of y1:n, whereas the posterior variance is a constant

independent of y1:n. Since y1:n is zero-mean Gaussian distributed, it can be easily shown

that m̂n(c) is zero-mean Gaussian distributed with variance

σ2
m̂n(c) = E rxx1:n(c)

(
ERx1:nx1:n + σ2InM

)−1
rTxx1:n

(c) (3.15)

From (3.14) and (3.15), we have k̂n(c) = k(c, c)− σ2
m̂n

(c).

The variance in (3.15) depends on a number of factors, such as the spatial and temporal

covariance, the sampling period d, the node density δ, the energy per sample E, the number

of sensors M and the time instant t. As n → ∞ and M → ∞, we have the following

asymptotic results of σ2
m̂n

(c) and k̂n(c).

Theorem 3.2 : Define the asymptotic posterior variance σ2
e(u, v) := limn,M→∞ k̂n(c), where

u = s
l
− b s

l
c ∈ [0, 1] is the relative position of s between two adjacent samples in space and

v = t
d
− b t

d
c ∈ [0, 1] is the relative position of t between two adjacent samples in time. We

53



have

σ2
e(u, v) =∫ 1

2

− 1
2

∫ 1
2

− 1
2

[
Ψ00(fs, ft)−

|Ψuv(fs, ft)|2

Ψ00(fs, ft) + 1
γ0(d/δ−dc)

]
dfs dft (3.16)

where γ0 := P0

σ2 is the signal-to-noise ratio (SNR), dc := Ec
P0

is hardware energy normalized

by the average power constraint, and

Ψuv(fs, ft):=
+∞∑

m = −∞

+∞∑
k = −∞

ks((m+ u)l)kt((n+ v)d)e−2πj(mfs+nft) (3.17)

is the 2-D discrete-time Fourier transform (DTFT) of sequences
{
ks((m+u)l)kt((n+v)d)

}
m,n

.

In addition,

lim
n,M→∞

σ2
m̂n(c) = 1− σ2

e(u, v). (3.18)

Proof: To simplify notation, denote xi+u,n+v = x([(i+u)l, (n+v)d]T ) and yi,n = y([il, nd]T ).

The linear minimum mean squared error (LMMSE) estimation of xi+u,n+v based on {yi,n}i,n

is

x̂i+u,n+v =
+∞∑

m = −∞

+∞∑
k = −∞

h(m, k)yi−m,n−k (3.19)

where {h(m, k)} is the impulse response of the LMMSE filter.
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Based on the orthogonal principle, E[(xi+u,n+v − x̂i+u,n+v)yi′,n′ ] = 0, we have

+∞∑
m = −∞

+∞∑
k = −∞

h(m, k)ryy(i−m,n− k) = rxy(i+ u, n+ v) (3.20)

where

ryy(i, n) = E[yi′+i,n′+nyi′,n′ ] = E ks(il)kt(nd) + σ2 (3.21)

rxy(i+ u, n+ v) = E[xi′+i+u,n′+n+vyi′,n′ ]

=
√
Eks((i+ u)l)kt((n+ v)d) (3.22)

Based on the convolution theorem [14], converting (3.20)-(3.22) into the frequency domain

with 2-D DTFT, we have

H(fs, ft) =

√
EΨuv(fs, ft)

EΨ00(fs, ft) + σ2
(3.23)

Based on the orthogonal principle, the MSE can be calculated as

σ2
e(u, v)=E[(xi+u,n+v − x̂i+u,n+v)xi+u,n+v] (3.24)
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Combining (3.19) and (3.24) yields

σ2
e(u, v) = ks(0)kt(0)−

√
E

+∞∑
m = −∞

+∞∑
k = −∞

h(m, k)ks(−(m+ u)l)kt(−(k + v)d)

=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[Ψ00(fs, ft)−H(fs, ft)Ψ
∗
uv(fs, ft)] dfsdft (3.25)

Then (3.16) can be obtained by combining the above equation with (3.23). �

From Theorem 3.2, we can see that as n,M → ∞, m̂n(il + u, kd + v) is a zero-mean

Gaussian random variable with variance 1−σ2
e(u, v). Therefore, as n,M →∞, the statistical

properties of m̂n(c) are periodic in space and time with periods l and d, respectively. Define

m̂(u, v) := limn,M→∞ m̂n([(i+u)l, (k+ v)d]T ). We have the following corollary regarding the

distribution of m̂(u, v).

Corollary 3.1 : As n,M → ∞, m̂(u, v) is zero-mean Gaussian distributed with variance

1− σ2
e(u, v), that is, m̂(u, v) ∼ N (0, 1− σ2

e(u, v)).

With the asymptotic results in Theorem 3.2 and Corollary 3.1, we can get an explicit

expression of the cost function in (3.5), and the result is given in the following theorem.

Theorem 3.3 : The cost function in (3.5), J (d, l) := limn,M→∞
1

nd·Ml
E[e(nd)], can be

expressed as

J (d, l) =
1

π

∫ 1

0

∫ 1

0

∫ π/2

0

[
1 +

1− σ2
e(u, v)

σ2
e(u, v) sin2(θ)

]−1/2

× exp

(
− γ2/2

1− σ2
e(u, v) cos2(θ)

)
du dv dθ. (3.26)
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Proof: We first consider the conditional cost function, limn,M→∞
1

nd·Ml
E[e(nd)|y1:n]. From

(4.13)-(3.12), we have

E[e(nd)|y1:n] =

M∑
i=1

n∑
k=1

∫ il

(i− 1)l

∫ kd

(k − 1)d
Q

 |γ − m̂n(c)|√
k̂n(c)

 ds dt

Performing change of variable, s = (i− 1)l+ ul, and t = (k− 1)d+ vd in the above integral

, and using the results from Theorem 3.2, we have

lim
n,M→∞

1

nd ·Ml
E[e(Ŝ(nd))|y1:n] =∫ 1

0

∫ 1

0

Q

(
|γ − m̂(u, v)|√

σ2
e(u, v)

)
du dv (3.27)

In the conditional cost function in (3.27), there is only one random variable, m̂(u, v) ∼

N (0, 1−σ2
e(u, v)), which is a function of y1:n. Therefore the unconditional cost function can

be expressed as

J (d, l)=

∫ 1

0

∫ 1

0

Em̂(u,v)

[
Q

(
|γ − m̂(u, v)|√

σ2
e(u, v)

)]
du dv (3.28)

With Craig’s alternative expression of the Q-function [2], (3.28) can be reformulated as

J (d, l)=
1

π

∫ 1

0

∫ 1

0

∫ π
2

0

Em̂(u,v)

[
e
− (m̂(u,v)−γ)2

2σ2e(u,v) sin
2(θ)

]
du dvdθ (3.29)

Define Z := (m̂(u,v)−γ)2

1−σ2
e(u,v)

, which is a non-central χ2-distributed random variable with one
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degree-of-freedom and the non-centrality parameter γ2

1−σ2
e(u,v)

. The moment generating func-

tion (MGF) of Z, MZ(s) = EZ [esZ ], is

MZ(s) = exp

[
s

(1− 2s)

γ2

1− σ2
e(u, v)

]
1√

1− 2s
. (3.30)

Combining (3.29) with (3.30) yields (3.26). �

Theorem 3.3 gives the exact analytical expression of the cost function, which is expressed

as a function of d, δ and other system parameters such as the SNR γ0, the temporal and

spatial correlation covariance function kt(x) and ks(x), and the normalized hardware energy

consumption dc. Thus, given {γ0, ρ, dc, kt, ks}, we can identify d and δ that minimizes the

cost function J in (3.26). The integration limits in (3.26) are finite, thus the integrals in

(3.26) can be evaluated with numerical integration with high precision.

In the special case that the covariance functions are the power law kernels, i.e., ks(x) = ρ
|x|
s

and kt(x) = ρ
|x|
t with ρs and ρt being the power law coefficients in the spatial and temporal

domains, respectively, we can get the closed-form expressions of the 2-D DTFT in (3.17)

Ψuv(fs, ft) =
ρ−vdt [ρdt (1− ρ2vd

t )e2πjft + ρ2vd
t − ρ2d

t ]

1 + ρ2d
t − 2ρdt cos(2πft)

×ρ
−ul
s [ρls(1− ρ2ul

s )e2πjfs + ρ2ul
s − ρ2l

s ]

1 + ρ2l
s − 2ρls cos(2πfs)

(3.31)

Numerical results show that the cost function with the power law covariance is convex

in both sampling period d and node distance l, thus we can always identify the optimal d

and l by using the Karush-Kuhn-Tucker (KKT) conditions.
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Figure 3.1: Asymptotic LSE error probabilities as a function of sampling period d under
various node distances l.

3.6 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the pro-

posed level set estimation algorithm with power law kernels. The threshold of the level set

γ is set to be 0.1.

Fig. 3.1 shows the asymptotic LSE error probability as a function of the sampling period

d under different node distances l. The SNR is γ0 = 10 dB. The temporal and spatial power

law coefficients are set to be ρt = 0.5 and ρs = 0.8, respectively. The normalized hardware

energy is dc = 0.05. The simulation results are obtained with n = 100 and M = 100. The

simulation results with finite n and M matches very well with the numerically analytical

results with infinite n and M . Thus the asymptotic analytical results give a very good

approximation of the performance of practical systems with finite n and M . Given l, the

asymptotic LSE error probability is a convex function of sampling period d for d > dc/l.

When d = dc/l, all energy is consumed by the sensing operation and there is no energy to

transmit information to FC, which leads to a maximum LSE error, Q(|γ|) = 0.46, the same
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Figure 3.2: Asymptotic LSE error probabilities as a function of node distances l under various
sampling periods d.

error with a random decision estimator. The minimum LSE error probability is achieved

with the optimal l∗ = 0.78, which corresponds to an LSE error probability of 0.149 .

Similarly, Fig. 3.2 presents the asymptotic LSE error probability as a function of node

distance l with different sampling periods d. All other parameters are the same as Fig. 3.1.

Given d, the asymptotic LSE error probability is also a convex function of node distance l

for l > dc/d. The special case of l = dc/d results in a maximum LSE error, Q(|γ|) = 0.46.

The minimum LSE error probability 0.149 is achieved with d∗ = 0.24 and l∗ = 0.78.

Fig. 3.3 shows the optimal asymptotic LSE error probability as a function of the SNR,

under different values of dc. The power law coefficients are ρt = 0.5 and ρs = 0.8. The

optimal asymptotic LSE error probability is obtained by identifying the optimal values of d

and l for each configuration. As expected, the optimal asymptotic LSE error probability is a

decreasing function of SNR. For a given SNR, a larger dc yields a larger optimal asymptotic

LSE error probability, due to the fact that more energy are consumed by the hardware.
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Figure 3.3: Optimal asymptotic LSE error probabilities as a function of SNR under various
dc (ρ = 0.5).

3.7 Conclusions

We have studied the optimal level set estimation of a temporally-spatially correlated random

field with linear sensor network, under a total power constraint. The optimal LSE algorithm

was developed by using regression of a 2-D Gaussian process. Then the exact LSE error

probability was derived with the assistance of frequency domain analysis. The LSE error

probability has been expressed as an explicit function of a number of system parameters,

such as the node distance in the space domain, the sampling period in the time domain, the

covariance kernel functions, and the SNR, etc. The optimum node distance and sampling

period can then be identified to minimize the LSE error probability. Simulation results

demonstrated that the proposed algorithm can achieve accurate and efficient LSE.
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3.8 Appendix of the Copyright

3.8.1 Copyright Clearance
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Chapter 4

Level Set Estimation of Spatial-temporally Correlated Random Fields with

Active Sparse Sensing

4.1 Abstract

In this paper, we study the level set estimation of a spatial-temporally correlated random

field by using a small number of spatially distributed sensors. The level sets of a random

field are defined as regions where data values exceed a certain threshold. The identification

of the boundaries of such sets is an important theoretical problem with a wide range of

applications such as spectrum sensing, urban sensing, and environmental monitoring, etc.

We propose a new active sparse sensing and inference scheme, which can achieve rapid and

accurate extraction of level sets in a large random field by using a small number of data sam-

ples strategically and sparsely selected from the field. A Gaussian process (GP) prior model

is used to capture the spatial-temporal correlations inherent in the random field. It is first

shown that the optimal level set estimation can be achieved by performing a GP regression

with all data samples and then thresholding the regression results. We then investigate the

active sparse sensing scheme, where a central controller dynamically selects a small number

of sensing locations according to the information revealed from past measurements, with

the objective to minimize the expected level set estimation error probability. The expected

estimation error probability is explicitly expressed as a function of the selected sensing loca-

tions, and the results are used to formulate the optimal sensing location selection problem
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as a combinatorial problem. Two low complexity greedy algorithms are developed by using

analytical upper bounds of the expected estimation error probability. Both simulation and

experiment results demonstrate that the greedy algorithms can achieve significant perfor-

mance gains over baseline passive sensing algorithms and the GP Upper Confidence Bound

(GP-UCB) level set estimation algorithm.

4.2 Introduction

Large-scale sensing has played a critical role in many scientific and engineering fields, such as

spectrum sensing and environment monitoring, etc. For many large-scale sensing applications

efficient level set identification is a crucial task. Level set estimation is the process of using

observations of a function f(s) defined on a Hilbert space X to estimate the region(s) in

X where the function value exceeds some critical value γ; i.e. S := {s ∈ X : f(s) ≥ γ}.

Level set estimation is of paramount importance in many large-scale sensing applications,

including the following examples.

• Spectrum sensing in cognitive radio networks [1]: fast identification of the boundary

of “spectrum holes” in space and frequency domains is crucial for the construction of

spectrum map [8], a dynamic database providing real-time information and predictions

on spectrum usage at a given area over a wide range.

• Urban sensing: accurate monitoring and tracking of the range of a widespread phe-

nomena, such as traffic congestion [19], air/water/noise pollution [18], damages caused

by hurricane, is of critical importance.

• Environment monitoring: contours of sunlight, rainfall and other key environmental
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factors are critical for the understanding and tracking of biosystem ecology [17].

• Swarming sensing: to identify urban tomography for military operations by swarming

coordination of multiple unmanned aerial vehicles (UAVs) for collaborative sensing [23].

In these and many other applications identifying level sets is the primary task, while

estimating the value of the function (i.e. the power in spectrum sensing) away from the

level set boundary is often secondary if not irrelevant. Consequently level set estimation can

be equivalently considered as a mapping problem that draws the level contour or boundary

in a random field. Intuitively data that are further away from the boundary are usually

quite distinct from the level of interests, thus there is less ambiguity in terms of level set

identification in those regions. Therefore it is desirable to collect more data samples or place

more sensors at the locations where the boundary is likely to lie.

This paper describes a new active sparse sensing and inference scheme for rapid and

accurate extraction of level sets of a spatial-temporally correlated random field. One of the

main novelties of the proposed scheme is that it can dynamically adjust the sensing locations

through active learning and adaptation of level set boundaries by analyzing past sensing data.

Therefore the proposed scheme can achieve accurate estimation of the level sets with only a

small number of sensors strategically placed at critical locations of the random field.

While many methods have been devised for level set estimation in a static setting [9,

11–13, 27], the temporally evolving nature of the random field requires a dynamic level set

estimation, which makes the estimation problem different and challenging. Besides, existing

work in this area often assumes that the measurements and the sensor locations are static,

as opposed to dynamically selected [2,21,35]. How to actively sense the field for a fast and
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accurate level set estimation has been rarely investigated [32, 33, 36]. On the other hand,

active learning and its applications have been extensively investigated in the machine learning

community [28]. The common goal of active learning algorithms is to adaptively select

statistically optimal training data with information gleaned from previous observations [5].

Numerous sample selection criteria have been proposed [16]. The active learning approach

has been widely applied in sensing networks for mobile path planning [15, 29], and sensor

placement [14], etc. The active sensing approach we propose in this paper inherits the

essence of active learning. The problem studied in this paper is fundamentally distinct from

these works in two ways; the first is that our objective is to estimate the level set instead of

estimating the function values and the second is the time varying nature of our problem.

We introduce a Gaussian process (GP) prior model to capture the spatial-temporal cor-

relations inherent in the random field [4, 7, 25, 26]. GPs have been exploited to address the

sensor location selection problem in static sensor networks [14, 15], and the sensing path

planning problem in mobile sensor networks [3], etc. It is pointed out in [22] that the actual

multivariate distribution underlying a set of data is difficult to obtain. Given this uncertainty,

the multivariate Gaussian distribution is a natural assumption because it is the distribution

of maximum entropy when all that is known is the mean and covariance matrix. According

to [34], non-Gaussian data can often be made approximately Gaussian by transformation to

a new scale (e.g. by taking logarithms or square-roots), and this is widely followed as the

best practice in the analysis of soil data.

The objectives of many sensing applications are often to minimize the uncertainty of

the posterior distribution of the function under certain constraints. The level set estimation

problem studied in this paper is fundamentally different from those formulations, due to
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the fact that our objective is not to reconstruct the entire function with minimum expected

mean squared error (MSE), but to estimate the level set of the underlying function accu-

rately. Similar level set estimation problems under a GP formulation are studied in [9, 30]

by employing a Gaussian Process Upper Confidence Bound (GP-UCB) algorithm. The GP-

UCB algorithm selects the sensing locations by minimizing a cost function that penalizes

both the posterior variance and deviation from the level set boundary. This cost function is

intuitive given that more sensors should be placed to the location of interests, that is, the

level set boundaries, but it is also a surrogate objective function because this cost function

does not directly measure the error probability of level set estimation. In this paper we

will perform active sensing by directly minimize the level set estimation error probability.

Active sensing to minimize the level set estimation error is usually a difficult task, because

it requires the error probability as a function of potential future sensing locations, and the

observations at those potential locations have not yet been revealed to the fusion center (FC)

during the error probability analysis. In addition, the works in [9, 30] consider only spatial

correlation. The temporal correlation is considered in [31], where a myopic active sensing

scheme is performed in the time domain by selecting the next sampling instant to minimize

the cost function accumulated up to the next sampling instant. However, the results in [31]

show that the performance of time domain myopic sensing is worse than that of passive

uniform sensing due to the myopic nature of the scheduling scheme. In this paper we take

into consideration of both spatial and temporal correlation into the formulation and develop

optimum active sensing schemes that can achieve significant performance gains over passive

sensing.

Under the GP framework, we first show that the optimal level set estimation can be
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achieved by performing a GP regression with all data samples and then thresholding the re-

gression results. We then investigate the active sensing scheme, where the central controller

actively selects the sensing locations according to the information gleaned from past measure-

ments, with the objective to minimize the expected level set estimation error. Extracting

information embedded in past sensed data leads to an improved estimation performance,

due to the temporal correlation in the sensed signal. Meanwhile previous observations also

provide some ”prior” information for current sensing, which enables a more efficient sensing

scheme. Intuitively to minimize the level set estimation error, sensing locations should be

selected from where the boundary is likely to lie, with ”prior” information gleaned from pre-

vious observations. The expected estimation error is explicitly characterized as a function

of past sensing results and the potential future sensing locations, and the results are used to

formulate the optimal sensing location selection problem as a combinatorial problem. Two

low complexity greedy algorithms are then proposed by developing upper bounds of the

expected estimation error.

Our contributions are three-fold:

1. We propose a set of new active sensing algorithms that directly minimize the level

set estimation error probability, which is expressed as an explicit function of past

observations and future potential sensing locations. Such a problem formulation results

in new sensing algorithms that outperform existing level set algorithms that employ

intuitive but surrogate cost functions.

2. We introduce a two-step active sensing scheme, where the first step is to obtain an

initial estimation based on historical data samples, and the second step is to actively
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probe the field to refine the initial estimation. The sensing scheme is designed to mini-

mize the expected estimation error under a sensing budget constraint. The estimation

error metric driven sensing location selection algorithm is novel. The proposed greedy

algorithms are practical and efficient.

3. The problem formulation and methodology developed in this paper can benefit many

large-scale sensing applications with ”big data”. It can also be applied to perform

”information distillation”, the process that extracts useful data from an ocean of data

that have already been collected.

The proposed algorithms can be applied to different application scenarios. For a static

wireless sensor network with a large number of sensors, we can use the algorithms to acti-

vate only a small subset of sensors at any given moment to reduce the energy consumption

and prolong the life time of the entire network. For mobile networks such as UAV swarms

the algorithms can be used for mobile path planning by considering additional mobility

constraints. The results in this paper are developed without considering the mobility con-

straints, and the analytical performance results can serve as lower bounds for systems with

mobility constraints.

4.3 System Model

We consider a sensing system with multiple sensor nodes placed over a measurement field

X ⊂ R2. Define the three-dimensional (3D) space-time coordinate vector as c = [s, t]T ∈

X ×R+, where s = [s1, s2]T is the space coordinate, and t is the time variable. Sensor nodes

measure a spatial-temporally dependent physical quantity, f(c), such as the temperature,
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humidity, aggregated power level of wireless signals, or sunlight intensity, etc. The two-

dimensional (2D) space coordinate is assumed here. It should be noted that all analysis and

algorithm presented in this paper can also be directly extended to three-dimensional spatial

cases.

The sensing samples from individual sensors are transmitted to a FC for processing. We

model the sensing samples recovered at the FC as the sum of the ground truth f(c), and a

noise term ξ, i.e.,

y(c) = f(c) + ξ.

Here we use ξ to capture the distortions introduced during the sensing stage as well as the

transmission stage.

Assumptions 4.1 : We make the following assumptions:

a) The prior distribution of {f(c)} is a zero-mean Gaussian process, i.e., for any two

points ci, cj, f(ci), f(cj) are jointly zero-mean Gaussian distributed, with covariance

k(ci, cj). Any non-zero mean GP can be converted to a zero-mean GP by subtracting

the original process with its mean, which can be easily estimated.

b) The Gaussian process is wide sense stationary in both space and time, and

k(ci, cj) = ks(‖si − sj‖) · kt(|ti − tj|), (4.1)

where ks(·), kt(·) are defined as the spatial and temporal covariance, respectively. The
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`2-norm ‖si − sj‖ measures the Euclidean distance between the two points with coor-

dinates si, sj ∈ X .

c) ξ is an independent Gaussian random variable with zero mean and variance σ2, i.e.,

ξ ∼ N (0, σ2).

At time t, we are interested in identifying the γ-level set of {f([s, t]T )}, which is defined

as

S(t) := {s ∈ X : f([s, t]T ) > γ} (4.2)

Without loss of generality, we assume γ > 0.

To simplify the design and analysis, we partition the measurement field X with equal-

sized grids. We assume that the edge length of the grid is small enough such that the signal

remains approximately unchanged within one grid. Index the coordinates of the grid as

1, 2, . . . , L, and let si be the coordinate for the i-th grid point. Then, X can be slightly

modified as X := {si : i = 1, . . . , L}.

Similarly, the time axis is partitioned into discrete time slots, t1, t2, · · · , where the signal

stays constant in a slot, but evolves from slot to slot based on the temporal correlation of

the time-varying random process. During each slot, sensing samples are collected from a

number of locations. Let C1, C2, . . . be the sets of spatial coordinates the FC has collected

samples from at time t1, t2, . . .. Denote fn and yn as the vectors containing the true and

observed data samples at Cn, respectively. Define f1:n := {fi}ni=1 and y1:n := {yi}ni=1. Then,

at the end of time slot tn, the FC estimates the γ-level set Sn = S(tn) given C1:n := {Ci}ni=1
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and y1:n.

The optimum level set estimation algorithm should minimize the level set estimation

error probability, which can be calculated at time tn as

e(Ŝn) :=
1

L

L∑
i=1

I
{

si ∈ ∆(Sn, Ŝn)
}

(4.3)

where Ŝn is the estimated level set, ∆(Sn, Ŝn) = (Sn∩Ŝcn)∪ (Scn∩Ŝn) denotes the symmetric

difference between the true and estimated level set, L is the total number of spatial grids,

Sc is the complement of S, and I{E} = 1 if the event E is true and 0 otherwise. In (4.3),

the level set estimation error probability measures the percentage of spatial grids in which

the estimated level set does not equal to the true level set.

Then at each time slot tn the dynamic level set estimation problem is to select the

set of sensing locations, Cn, based on the knowledge of C1:n−1 and y1:n−1, such that the

expected estimation error E[e(Ŝn)] is minimized. Assume the sensing cost is proportional

to the number of sensing actions performed by the sensor nodes. Thus at each time slot

it is assumed that the system can pick up to N sensing locations due to a sensing budget

constraint, that is |Cn| ≤ N , for all n. The problem can be formulated as follows.

minimizeCn E[e(Ŝn)|y1:n−1, Cn]

s.t. |Cn| ≤ N (4.4)

where the expectation in the cost function is performed over the GP and the noise. The cost

function, E[e(Ŝn)|y1:n−1, Cn], depends on both past observations, y1:n−1, and potential future
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sensing locations, Cn. Here when observation history y1:n−1 (or y1:n) is given, the sensing

locations information, C1:n−1 (or C1:n) is also included for concise notations. It should be

noted that values of yn at Cn are not available during the sensing set selection stage, even

if Cn is given. The problem is combinatorial in nature and it is NP-hard in general. In

addition, the cost function is usually very complicated and it depends on the actual level set

estimation algorithm.

The cost function in (4.4) can be alternatively expressed as

E[e(Ŝn)|y1:n−1, Cn] = Eyn

{
E[e(Ŝn)|y1:n]

}
(4.5)

The reason that we take another layer of expectation with respect to yn on the right hand

side (RHS) of (4.5) is due to the fact that yn is unknown before the selection of Cn. The

value of yn will be revealed only after sensing samples are collected from Cn in time slot tn.

With the alternative cost function expression in the RHS of (4.5), we can decompose

the optimization in (4.4) into two steps. First, if Cn and yn are known, identify the level

set estimation algorithm that can minimize the the inner expectation on the RHS of (4.5),

E[e(Ŝn)|y1:n]. Second, select Cn that can minimize the overall cost function in (4.4). We will

discuss the two steps in Sections 4.4 and 5.5, respectively.

4.4 Optimal Level Set Estimation with Known Measurement Results

In this section we present the optimal level set estimation algorithm under the condition

that the measurements y1:n collected from C1:n are available at the FC. The algorithm will
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be designed to minimize E[e(Ŝn)|y1:n] with the knowledge of y1:n, and the results will be

used to facilitate the development of the active sensing algorithm in the next section.

Define cin := [si, tn], fin := f([si, tn]T ), K(cin, C1:n) := E
[
fin (f1:n)

T
]

and K(C1:n, C1:n) :=

E
[
f1:n (f1:n)

T
]
. The posteriori mean and covariance of fin given y1:n is defined as

m̂(cin) = E
[
f(cin)|y1:n

]
(4.6)

k̂(cin, cjn) = E
[
f(cin)f(cjn)|y1:n

]
− m̂(cin)m̂(cjn) (4.7)

Due to the GP modeling, given C1:n,y1:n, the distribution of fin is still Gaussian, with

the posteriori mean m̂(cin) and variance k̂(cin, cin) as [10]

m̂(cin) = K(cin, C1:n)[K(C1:n, C1:n) + σ2I|C1:n|]
−1Y1:n (4.8)

k̂(cin, cin) = k(cin, cin)−K(cin, C1:n)[K(C1:n, C1:n)+

σ2I|C1:n|]
−1 ·K(C1:n, cin) (4.9)

where I|C1:n| is an identity matrix of size |C1:n|.

The GP regression based level set estimation algorithm is given in Algorithm 3.

Algorithm 3 GP regression based level set estimation

1: Input: C1:n,y1:n at tn.
2: Run GP regression for cin = [si, tn],∀si ∈ X :

m̂(cin) := K(cin, C1:n)[K(C1:n, C1:n) + σ2I|C1:n|]
−1y1:n

3: Threshold m̂(cin):

Ŝn = {si ∈ X : m̂(cin) > γ}

4: Output Ŝn.
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Theorem 4.1 : The GP regression based level set estimation minimizes the expected es-

timation error with given (C1:n,y1:n), i.e., E[e(Ŝn)|C1:n,y1:n].

Proof: Since Sn is unknown for every n, the expression in (4.3) is not directly computable.

Under the GP modeling on f ,y, Sn is also a random process defined over X . Given the obser-

vation history (C1:n,y1:n), we can always obtain the posterior distribution of Sn. Therefore,

the expected error with an estimation Ŝ at time tn is

E[e(Ŝn)] =
1

L

∑
i

P
[
si ∈ ∆(Sn, Ŝn)

]
=

1

L

∑
i

(
P [fin ≤ γ] · I{si ∈ Ŝn}

+ P [fin > γ] · I{si ∈ Ŝcn}
)

(4.10)

Therefore, the optimal estimator that minimizes (4.10) is to let

si ∈


Ŝ if P [fin > γ] > P [fin ≤ γ]

Ŝc if P [fin > γ] ≤ P [fin ≤ γ]

(4.11)

for every si ∈ X .

Since fin given y1:n is Gaussian distributed, we have

P
[
fin > γ|y1:n

]
= Q

 γ − m̂(cin)√
k̂(cin, cin)

 (4.12)

whereQ(·) is the GaussianQ function, and the posteriori mean m̂(cin) and variance k̂(cin, cin)

are given in (4.8) and (4.9), respectively. The optimal estimator defined in (4.11) is then
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reduced to compare m̂(cin) with γ. If m̂(cin) > γ, the probability in (4.12) is greater than

0.5, thus, we should let si ∈ Ŝn; otherwise, we let si ∈ Ŝcn. �

Corollary 4.1 : The expected error given by Algorithm 3 with given (C1:n,y1:n) is

E[e(Ŝ, tn)|y1:n] =
1

L

∑
i

Q

 |γ − m̂(cin)|√
k̂(cin, cin)

 (4.13)

Eqns. (4.8) and (4.9) capture the relationship between the samples y1:n, and the un-

derlying function value fin. The posterior distribution of fin depends on the correlation

between fin and f1:n (through K(cin, C1:n)), the correlation between the sensing samples

(through K(C1:n, C1:n)), and the noise level in sensing and transmission process. We note

that k̂(cin, cin) depends on C1:n only and m̂(cin) depends on both C1:n and y1:n.

The optimality of Algorithm 3 is conditioned upon the fact that Cn and yn are given.

We will discuss how to actively select Cn based on sensing history (C1:n−1,y1:n−1) in the next

section.

4.5 Optimal Active Sensing for Level Set Estimation

In this section, we consider a scenario where the FC is able to coordinate with the sensor

nodes and actively selects the sensing locations in each time slot, such that the cost function

in (4.4) is minimized.

The active sensing scheme consists of two steps in each time slot tn. The first step is to

obtain an initial estimate of the distribution of f(cin), i.e., its mean m̄(cin), and covariance

78



k̄(cin, cjn), based on the sensing history up to to tn−1, i.e., (C1:n−1,y1:n−1), that is

m̄(cin) = E
[
fin|y1:n−1

]
(4.14)

k̄(cin, cjn) = E
[
finfjn|y1:n−1

]
− m̄(cin)m̄(cjn) (4.15)

It should be noted that m̂(cin) and k̂(cin, cjn) defined in (4.8) and (4.9) are conditioned upon

y1:n, and they are different from m̄(cin) and k̄(cin, cjn) defined in (4.14) and (4.15), which

are conditioned upon y1:n−1.

The observation history up to time slot tn−1 is thus utilized to provide a rough sketch of

the level set. Then, the second step is to sample the sensing field X in tn, i.e., to select a

subset of up to N locations to make observations, and refine the level set estimate based on

Algorithm 3 once samples are collected from Cn. The objective of the two-step active sensing

is to minimize the expected estimation error averaged over yn, under a cardinality constraint

on Cn. Details of the two steps are provided in the following subsections.

The major difficulty of the active sensing scheme lies in the step of selecting Cn. In order

to evaluate the impact of the selection of Cn on the final expected level set estimation error,

i.e., the objective function in (4.4), we first decompose the estimation error in (4.13) as a

function of (Cn,yn) and (C1:n−1,y1:n−1).

Based on the GP assumption, the posteriori mean m̄(cin) and variance k̄(cin,xjn) defined
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in (4.14) and (4.15) can be written as

m̄(cin) = K(cin, C1:n−1)[K(C1:n−1, C1:n−1)+

σ2I|C1:n−1|]
−1Y1:n−1 (4.16)

k̄(cin, cjn) = k(cin, cjn)−K(cin, C1:n−1)[K(C1:n−1, C1:n−1)

+ σ2I|C1:n−1|]
−1K(C1:n−1, cjn). (4.17)

The difference between (m̄(cin), k̄(cin, cjn)) and (m̂(cin), k̂(cin, cjn)) is directly related

to the impacts of selecting Cn on the expected level set estimation error. To identify the

relationship, we define the following variables.

h(cin, Cn) := K̄(cin, Cn)[K̄(Cn, Cn) + σ2I|Cn|]
−1[yn − m̄(Cn)] (4.18)

σ2
h(cin, Cn) := K̄(cin, Cn)[K̄(Cn, Cn) + σ2I|Cn|]

−1K̄(Cn, cin) (4.19)

where the elements of the posterior mean vector m̄(Cn) = E(fn|y1:n−1) is defined in (4.16),

and

K̄(cin, Cn) = E
{

[fin − m̄(cin)][fn − m̄(Cn)]T |y1:n−1
}

K̄(Cn, Cn) = E
{

[fn − m̄(Cn)][fn − m̄(Cn)]T |y1:n−1
}

are the posterior covariance vector and matrix with elements k̄(cin, cjn) defined in (4.17).

With the notation in (4.18) and we have the following theorem regarding the decompo-

sition of m̂(cin) and k̂(cin, cin).
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Theorem 4.2 : The posteriori mean and variance, m̂(cin) and k̂(cin, cin), defined in (4.8)

and (4.9) can be decomposed in the following form

m̂(cin) = m̄(cin) + h(cin, Cn) (4.20)

k̂(cin, cin) = k̄(cin, cin)− σ2
h(cin, Cn) (4.21)

Proof: The proof relies on the conditional distribution of jointly Gaussian distributed ran-

dom variables. Consider three jointly Gaussian distributed random vectors, x, z1, and z2,

and we have the following relationship

µx|z1z2 = µx|z1 + Σxz2|z1Σ
−1
z2z2|z1

(
z2 − µz2|z1

)
, (4.22)

Σxx|z1z2 = Σxx|z1 −Σxz2|z1Σ
−1
z2z2|z1Σz2x|z1 , (4.23)

where the notations, µa|b = E(a|b) and Σab|c = E[(a− µa|c)(b− µb|c)
T |c], are used in the

above expressions, with a, b, and c being three random vectors.

If we let x = fin, z1 = y1:n−1, and z2 = yn = fn + ξ, then

µx|z1z2 = m̂(cin),Σxx|z1z2 = k̂(cin, cin) (4.24)

µx|z1 = m̄(cin),Σxx|z1 = k̄(cin, cin). (4.25)

81



In addition, it can be easily shown that µz2|z1 = m̄(Cn), and

Σxz2|z1 = K̄(cin, Cn) (4.26)

Σz2z2|z1 = K̄(Cn, Cn) + σ2I|Cn| (4.27)

Substituting the above equations into (4.22) and (4.23) yields (4.20) and (4.21). �

We note that m̄(cin) and k̄(cin, cin) depend on (C1:n−1,y1:n−1) only, σ2
h(cin, Cn) depends

on C1:n−1 and Cn, while h(cin, Cn) depends on (C1:n−1,y1:n−1) and (Cn,yn). Moreover, given

(C1:n−1,y1:n−1) and (Cn,yn), h(cin, Cn) is a Gaussian random variable with zero mean and

variance σ2
h(cin, Cn). As a result, the results in Theorem 4.2 decompose m̂(cin) and k̂(cin, cin)

into two parts, one part depends on C1:n−1, and the other part depends on Cn.

In order to simplify notations, we define

γi : =
m̄(cin)− γ√
k̄(cin, cin)

, σi :=
σh(cin, Cn)√
k̄(cin, cin)

(4.28)

With the decomposition given in Theorem 4.2, we can establish an explicit relationship

between the cost function in (4.4) of the optimization problem and the optimization variable

Cn as shown in the following theorem. The explicit expression of the cost function enables

us to solve the optimization problem.
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Theorem 4.3 : The cost function in (4.4) with respect to the sensing location Cn is

E[e(Ŝn)|y1:n−1, Cn] =
1

πL

L∑
i=1

∫ π
2

0

1√
1 +

σ2
i

(1−σ2
i ) sin2(θ)

×

exp

{
− γ2

i

2[σ2
i + (1− σ2

i ) sin2(θ)]

}
dθ (4.29)

where σi depends on y1:n−1 and Cn, and it is defined in (4.28).

Proof: From (4.5), Corollary 4.1, and Theorem 4.2, the cost function in (4.4) can be alter-

natively expressed as

E[e(Ŝn)|y1:n−1, Cn] = EY [Q(|Y |)] (4.30)

where

Y =
h(cin, Cn) + m̄(cin)− γ√
k̄(cin, cin)− σ2

h(cin, Cn)
. (4.31)

Since h(cin, Cn) ∼ N (0, σ2
h(cin, Cn)), it is straightforward that the random variable Y is

Gaussian distributed with mean µY = γi√
1−σ2

i

and variance σ2
Y =

σ2
i

1−σ2
i
.

With Craig’s formula of the Gaussian Q-function [6], we have

EY [Q(|Y |)] =
1

π

∫ π
2

0

EY
[
e
− Y 2

2 sin2(θ)

]
dθ (4.32)
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Since Y is Gaussian distributed, Y 2/σ2
Y is non-central χ2-distributed with one degree-of-

freedom. The moment generating function (MGF) of Y 2/σ2
Y is

M(t) = E
[
e
tY 2

σ2

]
= exp

{
µ2
Y t

(1− 2t)σ2
Y

}
1√

1− 2t
(4.33)

Combining (4.32) with (4.33) yields

EY [Q(|Y |)]=1

π

∫ π
2

0

exp

{
− µ2

Y

2(σ2
Y + sin2(θ))

}
1√

1 +
σ2
Y

sin2(θ)

dθ

This completes the proof. �

Theorem 4.3 gives the exact explicit expression of the cost function of the optimization

problem. Even though it is expressed as an integration, the integral is of finite limits and the

integrand contains only elementary functions, thus it can be easily evaluated numerically.

The cost function in Theorem 4.3 is expressed as a function of γi and σi defined in (4.28). It

should be noted that γi is independent of the choice of Cn. So the sensing set selection will

only affect the cost function through σi.

Based on the result in Theorem 4.3, the optimization problem in (4.4) can be solved by

using an exhaustive search algorithm as shown in Algorithm 4.

Algorithm 4 An exhaustive search algorithm

1: Input: C1:n−1, y1:n−1, X with size L.
2: Calculate m̄ with (4.16) and K̄ with (4.17).
3: Calculate γi with (4.28), for i = 1, · · · , L.
4: for each possible combination of Cn ∈ X do
5: Calculate σi with (4.28), for i = 1, · · · , L
6: Calculate the cost function with (4.29).
7: end for
8: Output Cn that minimizes the cost function.

84



The Algorithm exhaustively searches all the possible
(
L
N

)
sets of Cn, and finds the one that

minimizes the cost function. The complexity becomes prohibitive as L and/or N becomes

large.

4.6 Greedy Algorithms for Active Sensing

Greedy algorithms for active sensing are presented in this section to achieve a balanced

tradeoff between performance and complexity.

4.6.1 A Cost Function Upper Bound

The greedy algorithms are developed by using an upper bound of the cost function in (4.29).

The upper bound is obtained by applying sin θ ≤ 1 to (4.29), and the result is as follows.

Corollary 4.2 : The cost function in (4.4) with respect to the sensing location Cn is upper

bounded by

E[e(Ŝn)|y1:n−1, Cn] ≤ 1

2L

L∑
i=1

exp

{
−γ

2
i

2

}
· τi (4.34)

where τi =
√

1− σ2
i =

√
1− σ2

h(cin,Cn)

k̄(cin,cin)
.

In the upper bound (4.34), the variables γi and k̄(cin, cin) are independent of the choice

of Cn. Only σ2
h(cin, Cn) depends on Cn. Compared with (4.29), the upper bound (4.34) is a

linear function in τi, thus much easier to evaluate.

Therefore, we propose to minimize the upper bound instead. Define αi = 1
2

exp
{
−γ2i

2

}
.
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Then, a new optimization problem with the upper bound can be formulated as

min
Cn

1

L

∑
i

αi

√
1− σ2

h(cin, Cn)

k̄(cin, cin)

s.t. |Cn| ≤ N (4.35)

The objective function in (4.35) coincides with our intuition. The weight αi is a function

of γi, which is defined in (4.28). We note that in its definition, the numerator |m̄(cin) −

γ| measures the deviation of m̄(cin) from the threshold γ, which is then normalized by√
k̄(cin, cin), the estimated standard deviation. The larger the value of γi, the less likely an

classification error will happen at si. This is reflected by αi, since it decreases in γi. With

a small weight αi, the term αiτi plays a less important role in the optimization (4.35). The

solution to (4.35) thus automatically allocates more resources to the locations with heavy

weights αis.

At the beginning of each time slot, the system obtains an initial estimate of f(x), char-

acterized as (m̄, K̄). Intuitively, if the initially estimated mean m̄(cin) deviates significantly

relative to variance k̄(cin, cin) from the threshold γ, the probability of incorrectly classifying

si in slot tn is very small, and bringing in another sample from si will not help much in terms

of the expected error; on the other hand, if m̄(cin) is quite close to the threshold γ, sensing

around si potentially can make the classification much more accurate. Therefore, minimizing

the level set estimation error is not equivalent to minimizing the total posterior variance.

Essentially, to estimate the level set of a function is to search for the boundary of the level

sets. For sensing locations far away from the boundary, their actual values do not have

much impact on the level set estimation, thus more sensing resources should be allocated for
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locations around the boundary. Such an approach has the potential to significantly reduce

the number of required sensing samples because the area of boundary is usually only a very

small percentage of the total area, thus achieving sparse sampling.

4.6.2 Greedy Algorithms

Even though the optimization problem (4.35) has a much less complicated form than (4.4),

it is still an NP-hard problem. In the following, we propose Algorithm 5 to solve it in a

greedy fashion.

Algorithm 5 A greedy algorithm

1: Input: C1:n−1, y1:n−1, Cn = ∅, F = X .
2: Calculate m̄ with (4.16) and K̄ with (4.17).
3: K̂← K̄.
4: Calculate γi and αi, for i = 1, · · · , L.
5: for k = 1, 2, . . . , N do

6: Calculate σ2
h(cin, cjn) =

k̂(cin,cjn)2

k̂(cjn,cjn)+σ2
for cjn ∈ (F , tn)

7:

l = arg min
j

1

L

∑
i

αi

√
k̂(cin, cin)− σ2

h(cin, sj)√
k̄(cin, cin)

(4.36)

8: Cn ← Cn ∪ l, F ← F\l.
9: Update K̂: for i, j = 1, 2, . . . , L,

k̂(cin, cjn)← k̂(cin, cjn)− k̂(cin, cln)k̂(cln, cjn)

k̂(cln, cln) + σ2

10: end for
11: Output Cn.

In this algorithm, the optimization problem is solved in a sequential and greedy fashion.

Specifically, we select one sensing location from X in each iteration according to (4.36), with

the objective to minimize the objective function in (4.35). We point out that the objective

function in (4.36) is different from that in (4.35), as in each iteration, we need to remove the
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impacts from sensing locations already included in Cn. Thus, we use k̂(cin, cin) instead of

k̄(cin, cin) in the numerator in (4.36). However, we keep k̄(cin, cin) in the denominator fixed

during the selection of Cn to ensure each term is normalized by the same factor as in (4.35).

The impact of a sensing location on the posterior variance on every si can be explicitly

evaluated through σ2
h(cin, sj). Once one sensing location is selected, the posterior covariance

matrix K̂ is updated to remove the impact from the newly added sensing location. After

that, another iteration is performed with the updated covariance matrix.

We note that individual terms in the summation in (4.35) are coupled due to the cross

correlation between yn and f(x) carried through σ2
h(cin, Cn). Therefore, a sample collected

from si does not only directly affect the estimation accuracy at si, but also indirectly affects

locations nearby. The optimization requires us to jointly consider the direct and indirect

impacts of all of the samples, which makes the problem complicated.

To simplify the optimization, we ignore the indirect impacts of samples, and focus on

direct impacts only. This is equivalent to neglecting the cross correlations between different

locations. This results in a simplified greedy algorithm presented in Algorithm 6.

Specifically, to select the first sensing location, we mask out the off-diagonal entries in

K̄, and this leads to the following approximation

σ2
h(cin, cjn) =

k̄2(cin, cjn)

k̄(cjn, cjn) + σ2
δij (4.38)

88



Algorithm 6 A simplified greedy algorithm

1: Input: C1:n−1, y1:n−1, Cn = ∅, F = X .
2: Update the distribution of f(c), obtain m̄, K̄.
3: Assign K̄ to K̂.
4: Calculate γi, αi, for i = 1, · · · , L.
5: for k = 1, 2, . . . , N do

6: Calculate σ2
h(cin, si) = k̂(cin,cin)2

k̂(cin,cin)+σ2
for si ∈ F

7:

l = arg max
i∈F

αi

√
k̂(cin, cin)√
k̄(cin, cin)

(
1−

√
1− σ2

h(cin, si)

k̂(cin, cin)

)
(4.37)

8: Cn ← Cn ∪ l, F ← F\l.
9: Update K̄: for i, j = 1, 2, . . . , L,

k̂(cin,xjn)← k̂(cin,xjn)− k̂(cin,xln)k̂(xln,xjn)

k̂(xln,xln) + σ2

10: end for
11: Output Cn.

Thus, the single sensing location that minimizes (4.35) must satisfy

l = arg min
i

∑
j 6=i

αj + αi

√
1− σ2

h(cin, si)

k̄(cin, cin)

= arg max
i
αi

(
1−

√
1− σ2

h(cin, si)

k̄(cin, cin)

)
(4.39)

Once this location is selected, we then take its indirect impact on the other nodes into

consideration by updating the posterior covariance matrix K̄ conditional on l. We point out

that in (4.37) we use

√
k̂(cin, cin) −

√
k̂(cin, cin)− σ2

h(cin, si) to measure the performance

gain if a sample is collected at si, which is then weighted by αi√
k̄(cin,cin)

. We use k̂(cin, cin)

instead of k̄(cin, cin) in the gain to remove the indirect impacts from sensing locations already

included in Cn.
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Due to the fast decaying spatial correlation, we expect that the indirect gain brought

by a sample is localized and roughly proportionally to its direct gain, which makes (4.38) a

valid approximation.

4.7 Simulation and Experiment Results

In this section, we evaluate the performance of the proposed active sensing algorithms

through simulations and experiments, and compare them with a baseline passive sensing

algorithm and a batch sample selection level set estimation algorithm [9] based on the

Gaussian Process Upper Confidence Bound (GP-UCB) method [30]. In the passive sensing

algorithm, the FC does not coordinate with sensor nodes for sensing. Rather, in each time

slot, sensor nodes from N random locations sense the field and send measurements to the

FC. The FC then performs level set estimation according to Algorithm 3. In the GP-UCB

level set estimation algorithm, the N sensor node locations are selected according to the

batch sample selection proposed in [9], which minimizes a cost function that penalizes both

the posterior variance and the deviation from the level set boundary.

4.7.1 Simulation Results

We consider a sensor network in a 2-D squared area. The sensing field is partitioned to

L = d× d segments with unit length each. The covariance function is selected as

k(xi,xj) = ρ‖si−sj‖s · ρ|ti−tj |t , (4.40)
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where ρs and ρt ∈ [0, 1] are the spatial and temporal correlation coefficients, respectively.

The signal to sensing noise ratio is 30 dB, and the level set threshold is γ = 0.1.

4.7.1.1 Comparison on different sensing location selections

To illustrate the difference in sensing decision making between our proposed algorithms and

the passive sensing algorithm, we first consider a special scenario, where ρt = 1, L = 225

(d = 15) and N = 1. This may correspond to a temporally slow-varying sensing field and

the time interval between any two consecutive sensing actions is small and thus negligible.

We set ρs = 0.96. The heatmap of the original signal is shown in Fig. 4.1a. We reconstruct

the original signal based on the first 20 locations selected by the passive sensing algorithm in

Fig. 4.1b, and those selected by Algorithm 5 in Fig. 4.1c. The boundaries of the reconstructed

level sets are plotted, and they are compared to the underlying ground truth in Figs. 4.1b

and 4.1c.
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Figure 4.1: (a) Heatmap of the original signal. (b) and (c) Red circles represent 20 sensing
locations selected by the sensing algorithms, in a filed partitioned into 15×15 = 225 segments.
The spots in the original truth signal are represented as red solid dots in the high level sets
and blue circles in the low level sets.

As illustrated in Fig. 4.1b, the random sensing location selection in the passive sensing
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scheme renders a relatively uniform distribution of sensing locations. This results in a good

reconstruction of the function. The MSE of the function reconstruction is 0.0924. On the

other hand, in Fig. 4.1c, most of the sensing locations of the greedy algorithm are around

the boundary. As a result, the greedy algorithm gets a more accurate estimation of the

boundary. This matches with our optimization objective, as the accurate identification of

the boundary, rather than accurate function reconstruction, plays a critical role for level set

estimation. Even though the MSE for the signal reconstructed in the greedy algorithm (MSE

= 0.0969) is higher than the passive approach, it has a much lower level set estimation error.

In this example, the average level set estimation error from passive sensing and the greedy

Algorithm 3 is 0.1556 and 0.0178, respectively. We also applied the GP-UCB algorithm [9,30]

in the simulations. The MSE of the GP-UCB algorithm is 0.0813, the smallest among the

three. The level set estimation error of GP-UCB is 0.0467, better than the passive algorithm,

but worse than our newly proposed greedy Algorithm 3. All MSE and level set estimation

error results here are calculated by using the results in Figs. 4.1b and 4.1c in one trial.

For further comparisons, Table I shows the mean, the first, second, and third quantiles

of LSE error and MSE obtained by using 1,000 Monte-Carlo trials. The system configura-

tions are the same as in Fig. 1. The results show that the greedy algorithm has the best

performance in terms of level set estimation error, followed by the GP-UCB algorithm and

the passive algorithm. On the other hand, the greedy algorithm has the worst performance

in terms of MSE.
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Table I. Mean and quantiles of LSE error and MSE for 1,000 Monte-Carlo trials
Mean Q1 Q2 Q3

LSE
error

Passive 0.1465 0.0844 0.1422 0.2000
GP-UCB 0.1293 0.0711 0.1244 0.1822
Algorithm
3

0.1124 0.0578 0.1067 0.1578

MSE
Passive 0.1975 0.1625 0.1880 0.2194
GP-UCB 0.1806 0.1532 0.1756 0.2028
Algorithm
3

0.2209 0.1779 0.2095 0.2487

4.7.1.2 Robustness of Gaussian Assumption

The algorithms are developed by assuming that the data can be modeled by a multivari-

ate Gaussian process. To verify the robustness of the Gaussian assumption, we apply the

algorithms to a group of data generated by following the Laplace distribution. Except the

distributions, all other settings are the same as in Fig. 4.1. That is, the data following

the Laplace distribution have the same mean and covariance matrix as those following the

Gaussian distribution. The average LSE errors are obtained by averaging over 1,000 Monte-

Carlo simulations, and the results are presented in Table II. The average LSE errors for data

generated by following the Laplace distribution are slightly higher than those following the

Gaussian distribution. Compared to data with Gaussian distribution, the average LSE errors

for data with the Laplace distribution increase by 11.9%, 11.9%, and 14.4% for the passive

sensing, GP-UCB, and the greedy algorithm (Algorithm 3), respectively. These results show

that even though the proposed algorithms are developed based on the Gaussian assumption,

they can still be applied to data following non-Gaussian distributions, at the cost of a slight

increase in the LSE error probability.
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Table II. Mean of LSE Error for data following Gaussian and Laplace distributions
Gaussian distribution Laplace distribution

Passive 0.1465 0.1639
GP-UCB 0.1293 0.1448
Algorithm
3

0.1124 0.1286

4.7.1.3 Effect of time window size on the performance

As time progresses, more and more samples are collected and added to (4.8) for estimation.

This quickly becomes formidable due to the high storage requirement and computational

complexity. One the other hand, under the assumption that the temporal correlation decays

exponentially in t, samples collected in the past have less and less impacts on the estimation

as time progresses. This motivates us to adopt a truncated version of the level set estimation

algorithm described in Algorithm 3. Specifically, we propose a sliding window scheme, which

only keeps samples collected in the most recent T time slots for the regression in Algorithm 3.

In order to explicitly evaluate the effect of window size on the sensing and inference

performance, we perform the following simulation. We set ρt = 0.9, ρs = 0.9, L = 169

(d = 13) and fix the total number of samples collected in each slot as N = 15. The window

size T varies from 1 to 8. When T = 1, it means that only the current sensing samples

are used for level set estimation. Thus the active sensing algorithms including GP-UCB

algorithm become identical to the passive sensing algorithm in this case. When T > 1,

samples collected from the most recent T slots are used in the regression. For each T , we

randomly generate 1,000 different traces, and obtain the average results. The reconstruction

MSE as a function of T is plotted in Fig. 4.2a, and the average level set estimation error is

plotted in Fig. 4.2b.
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In Fig. 4.2a, when T ≥ 4, the GP-UCB algorithm has the best MSE performance, fol-

lowed by the passive algorithm, the greedy algorithm (Algorithm 5), the exhaustive search

algorithm that employs exhaustive search (Algorithm 4), and the simplified greedy algo-

rithm (Algorithm 6). On the other hand, in Fig. 4.2b for level set estimation errors, the

proposed Algorithms 4 – 6 achieve significant performance gains over the passive and the

GP-UCB algorithms. The objective of the proposed algorithms is to estimate the level set

rather than to reconstruct the underlying function. The information provided from previous

samples guides the sample selection decision, which may even worsen the MSE performance.

In addition, the performance of the greedy algorithm (Algorithm 5) is very close to its

simplified version (Algorithm 6), and both can nearly achieve the optimum performance of

the exhaustive search algorithm. For all three algorithms and for this particular choice of

ρt = 0.9, the MSE and level set estimation error do not decrease significantly when T ≥ 5.
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Figure 4.2: Performance versus window size T

4.7.1.4 Effect of sample size N on the performance

The effects of the number of selected sensing locations on the performance of level set esti-

mation are studied in this example. We set ρt = 0.9, ρs = 0.9, L = 169 (d = 13), and fix the

window size T for the sliding window scheme to be 5, i.e., the sensing location selection is
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made based on samples collected in the most recent 4 time slots, and the final estimation is

based on those plus the new samples collected in the current slot. The sensing location set

size N varies from 1 to 60. For each N , we randomly generate 1,000 different traces, and the

average MSE and level set estimation error are plotted in Figs. 4.3a and 4.3b, respectively.

The MSE and level set error decrease monotonically as N increases for all algorithms.

For the level set estimation error, all three proposed algorithms consistently outperform the

GP-UCB and the passive algorithm. In addition, the performance of the optimum algorithm

with exhaustive search, the greedy algorithm, and the simplified greedy algorithm are almost

identical for N ≥ 10. The performance gap between the our proposed sensing schemes and

the passive sensing remains almost a constant (around 0.05) for different values of N .

For the MSE, we note that the passive algorithm is slightly worse than the proposed

algorithms for small N (less than 10), and it gradually surpasses the greedy algorithms as N

increases. The reason that the greedy algorithm has a better MSE performance for small N

can be explained by the following fact. The level set estimation error does not only depend

on the posterior mean, but also the posterior variance. To minimize the error, it requires

small uncertainty in the posterior distribution, which is aligned with minimizing MSE when

N is small. As N increases, the posterior mean becomes more important in deciding the

level set estimation, as it reflects the locations of the boundary points. Therefore, MSE is no

longer the primary goal, and more resources are allocated for searching for the boundaries.
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Figure 4.3: Performance versus sensing set size N .

4.7.1.5 Effect of ρs and ρt on the performance

The effects of spatial correlation coefficient ρs and temporal correlation coefficient ρt on the

performance are studied in this example. We set L = 169 (d = 13), sample size N = 15, and

sliding window size T = 5. We have ρt = 0.9 and ρs = 0.9 in Figs. 4.4a and 4.4b, respectively.

The curves are obtained by averaging over 1,000 random trials. As expected, the level set
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estimation error is a monotonic decreasing function in both ρs or ρt for all algorithms. The

three proposed algorithms consistently outperform the existing algorithms for all values of

ρs and ρt considered in this example. In Fig. 4.4a, the performance of Algorithms 2, 3,

and 4 are almost identical, which again verifies the validity of the approximation in (4.38).

Changing the spatial correlation coefficient has a much bigger impact on the estimation

performance than changing the temporal correlation coefficient.
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Figure 4.4: Performance versus spatial correlation ρs and temporal correlation ρt.
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4.7.1.6 Computation Complexity

The computation complexities of various algorithms are compared in this example. The

complexity is measured by the amount of time required to run one simulation trial. The

simulation configurations are the same as those for Fig. 4.2 with L = 169 (d = 13) and

N = 15. The simulations are run on a Windows 7 workstation with a 3.10 GHz Intel

Core i5-2380P CPU and 16 GB of RAM. The simulation software is Matlab R2011b. The

computation time for various algorithms are shown in Fig. 4.5 as a function of the sliding

window size T . The computation time increases almost linearly with the sliding window

size. The passive sensing algorithm has the lowest complexity because it just randomly pick

N sensing locations at each time slot, followed by the GP-UCB algorithm and simplified

greedy algorithm (Algorithm 4). The greedy algorithm (Algorithm 3) has a slightly higher

complexity with additional computation with the off-diagonal elements of K̄. The exhaustive

search algorithm (Algorithm 2) has the highest complexity.
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4.7.2 Experiment Results

The level set estimations are performed over real world temperature data collected from 200

randomly selected weather stations covering the 48 states of the continental United States.

The data are available online at the National Climatic Data Center [20]. We use the daily

average temperature data in the month of January from a time span of 14 years (2000 to

2013) as the dataset, thus each location has T = 31× 14 = 434 time-varying data.

4.7.2.1 Preprossing and Parameter Estimation

Pre-processing is performed over the 434 data samples at each weather station to convert

them into a zero-mean random process with unit variance. Denote the raw daily temperature

data collected by the i-th weather station on the n-th day as x(i, n), for i = 1, · · · , 200 and

n = 1, · · · , 434. Then the pre-processed data samples are f(i, n) = 1
σ̃i

[x(i, n) − x̄i], where

x̄i = 1
T

∑T
n=1 x(i, n) is the sample mean, and σ̃2

i = 1
T−1

∑T
i=1 |x(i, n) − x̄i|2 is the sample

variance of the data collected by the i-th weather station.

The spatial and temporal covariance functions of the pre-processed data are modeled

with the Matérn covariance function [24],

κv,l(r) =
21−v

Γ(v)

(√
2vr

l

)v

Kv

(√
2vr

l

)
(4.41)

where v and l are the smooth and range parameters. The parameters (v, l) in both the space

and time domain, along with the noise variance σ2, are estimated jointly through maximum

likelihood estimation. For the spatial covariance function, the estimation is performed by

using T = 434 sets of data in the time domain, and the dimension of each set of data is
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M = 200. For the temporal covariance function, we are only interested in the temporal

covariance within a month of the same year. Therefore, the data in the same month from

the same weather station form a 31-dimension data vector, and there are 200 × 14 = 2800

sample vectors that are used for the estimation of the temporal covariance function.

We define the hyperparameter vector as θ = {vs, ls, vt, lt, σ2}T , where (vs, ls) are the non-

negative smooth and range parameters of the Matérn kernel in the space domain, (vt, lt) are

the smooth and range parameters in the time domain, and σ2 is the variance of the additive

noise ξ. Define the observation data vector from the i-th weather station in one month as

yi = [yi, · · · , yi31]T with yin being the normalized data sample collected on the n-th day

of a month by the i-th weather station. Stacking the vectors from all 200 stations yields

y = [yT1 , · · · ,yT200]T ∈ R6200. The likelihood function of y given θ is

p(y|θ) =
1

(
√

2π)N |Σ|
exp

{
−1

2
yT
(
Σ + σ2I6200

)−1
y

}

where Σ is the covariance matrix that has a Toeplitz-block-Toeplitz structure, that is, Σ

is a block Toeplitz matrix, and each sub-matrix is also a Toeplitz matrix. The (m,n)-th

submatrix of Σ is κvs,ls(|m− n|)K(vt, lt) ∈ R31×31, for m,n = 1, · · · , 200, where K(vt, lt) is

a Toeplitz matrix with the (i, j)-th element being κvt,lt (|i− j|).

With more observation data in the same month in 14 years, the likelihood function can

be written as

p(y(1),y(2), . . . ,y(14)|θ) =
14∏
m=1

p(y(m)|θ),
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where y(m) is the 6200-dimension data vector from the m-th year. With the maximum

likelihood estimation, the estimated parameter vector is θ̂ = argmaxθp(y
(1),y(2), . . . ,y(14)|θ).

4.7.2.2 Results

The first example is used to illustrate the sensing locations chosen by the proposed algo-

rithms. To visually illustrate the performance of level set estimation, we use a rectangle to

cover the US map, and divide the rectangle into segments, with 21 equal-spaced segments

in the latitude direction, and 30 equal-spaced segments in the longitude direction as shown

in Fig. 4.6a. For a given day, the temperature data of all L = 21 × 30 = 630 segments are

obtained by interpolating the 200 weather stations with the Matérn covariance function, and

they serve as the ground truth for the experiment. The level set threshold is set to γ = 0.1.

We set N = 1 and use the data in one day, and select the first 50 sensing locations with

the passive sensing algorithm in Fig. 4.6a and the greedy sensing algorithm (Algorithm 5)

in Fig. 4.6b. It can be clearly seen from the two figures that the proposed greedy algorithm

selects the sensing locations close to the level set boundary, thus it results in a very accurate

estimate of the temperature level set. The level set estimation errors for the passive, GP-

UCB, and greedy algorithms are 0.0794, 0.0569, and 0.0429, respectively. On the other hand,

the MSE of the passive, GP-UCB, and greedy algorithms are 0.2089, 0.1787, and 0.2213,

respectively. Thus the proposed greedy algorithm has the best level set estimation accuracy,

even though its MSE performance is the worst.

Then the effect of time window size on the performance is explored in Fig. 4.7. The

sensing location set size N is chosen as 30. The time window T varies from 1 to 8. For each

T , the value is obtained by averaging over all sliding window positions within a month of the
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same year, and the results are then averaged again over 14 years. Similar to the simulation

results, the level set estimation error of the greedy algorithm and the optimum algorithm

with exhaustive search are very close to each other, and they are better than the GP-UCB

and the passive algorithms. The level set estimation error of all algorithms do not increase

when T ≥ 4.
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Figure 4.6: Red circles represent 50 sensing locations selected by the sensing algorithms.
The spots in the original truth signal are represented as red solid dots in the high level sets
and blue circles in the low level sets.
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Figure 4.7: Level set error as a function of window size T in the experiment.

Next we study the impacts of sensing set size on system performance in Fig. 4.8. The

sliding window size T is chosen as 3. The sensing location set size N varies from 1 to 60.

For each N , the value is obtained by averaging over all sliding window positions within a

month of the same year, and the results are then averaged again over 14 years. Again, the

proposed greedy and optimum algorithms consistently outperform the passive and GP-UCB

algorithms.
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Figure 4.8: Level set error as a function of sensing set size N in the experiment.
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4.8 Conclusions

We proposed an active sparse sensing scheme for level set estimation in spatial-temporally

correlated random field. The sparse sensing scheme can dynamically adjust the selection

of sensing locations based on past sensing results, thus achieving the rapid and accurate

extraction of level sets in a large random field with a small number of sensing samples. Exact

analytical expression of the expected level set estimation error probability were developed

by employing an optimum GP regression based level set estimation algorithm. An optimum

active sensing algorithm was developed to minimize the level set error probability. Two low

complexity greedy algorithms were proposed to minimize an upper bound of the level set

error probability. All three algorithms achieved significant performance gains over passive

sensing algorithms that do not proactively select the sensing locations, and the GP-UCB

algorithm [9] that selects the sensing locations based on a surrogate cost function.
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4.9 Appendix of the Copyright

4.9.1 Copyright Clearance
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Chapter 5

Optimum Distributed Estimation of a Spatially Correlated Random Field

5.1 Abstract

We study the distributed estimation of a spatially correlated random field with decentralized

sensor networks. Nodes in the network take spatial samples of the random field, then each

node estimates the values of arbitrary points on the random field by iteratively exchanging

information with each other. The objective is to minimize the estimation mean squared er-

ror (MSE) while ensuring all nodes reach a distributed consensus on the estimation results.

We propose a distributed iterative linear minimum mean squared error (LMMSE) algorithm

that defines an information propagation stage and a local estimation stage in each iteration.

The key parameters of the algorithm, including an edge weight matrix and a sample weight

matrix, are designed to minimize an MSE upper bound at all nodes when the number of iter-

ations is large. It is shown that the optimum performance can be achieved by distributively

projecting the high dimension measurement samples from all nodes into a low dimension

subspace related to the covariance matrices of data and noise samples, and this projection

is achieved in a distributed manner through iterative information propagation. The low

dimension projection can significantly reduce the amount of data exchanged in the network,

thus improve the convergence speed of the iterative algorithm. Simulation and experimental

results show that all nodes in a large network can obtain accurate estimation results with

less iterations and lower complexities than existing algorithms.
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5.2 Introduction

Wireless sensor networks (WSNs) have a wide range of applications, such as precision agri-

culture, environment monitoring, surveillance, and disaster relief, etc. In many of the WSN

applications, the sensors are used to monitor a physical quantity that can be modeled as

a spatially correlated random field, such as temperature, vibration, pressure, and pollutant

concentration, etc [23]. Sensor nodes take samples of the random field at their respective

locations, and the results are then used to estimate the values of arbitrary points on the

random field.

The WSN can be classified into two categories, centralized and decentralized WSNs. In

a centralized WSN, the measurement results from all nodes are congregated at a fusion cen-

ter (FC), either through direct transmission or by using other nodes as relays. Information

processing is performed centrally at the FC. Centralized WSNs are easy to design, but they

also suffer from a lot of limitations such as high cost of the FC, communication bottlenecks

at areas close to the FC, and susceptible to node failures, etc. These problems can be easily

addressed by a decentralized WSN, where the information processing is performed at each

sensor node in a distributed manner without the need of a central controller. The informa-

tion processing is performed collaboratively among the nodes through iterative information

exchange among neighboring nodes.

Distributed estimation is one of the most fundamental collaborative information pro-

cessing problems in distributed WSNs, where the nodes distributively perform estimation

of certain physical quantities through information exchange [1–5, 7, 8, 11–13, 15, 18, 20–22].

Most distributed estimation algorithms involve two components: a local estimator and a
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distributed consensus algorithm that can be used to improve the estimation performance.

Algorithms based on distributed Kalman filters are presented in [12,13] by using knowledge

of the states and observation models of the underlying data. When the measurements are

spatially correlated, a distributed Kriged Kalman filter is proposed to obtain weighted least

squares estimates at the nodes [4]. A distributed maximum a posteriori (MAP) estimator

is presented in [11] for multi-robot cooperative localization, where a distributed conjugate

gradient algorithm is employed to reduce the computation complexity. In [21], a distributed

Bayesian estimation algorithm is proposed to estimate unknown parameters of a linear model

with unknown observation covariances.

In addition to estimation algorithms, distributed consensus algorithms [1,3,6,14,19,25]

are used to enforce agreement among cooperating nodes. In a consensus procedure, each

node maintains a state, shares its state with its neighboring nodes, and updates the state

by using information from its neighbors. An agreement about the state can be reached by

all nodes in the network through iterative information exchange. In [25], a simple scheme of

distributed average consensus was proposed to compute the maximum-likelihood estimate

of system parameters based on noisy linear measurements of the parameters. A distributed

MAP and a distributed linear minimum mean squared error (D-LMMSE) algorithm are

proposed in [1], where a set of bridge nodes is introduced to enable information consensus.

In [3], the distributed estimation and consensus is achieved by using a diffusion recursive

least squares (D-RLS) algorithm, which exploits more network connectivity and achieves

faster network convergence compared to the incremental RLS proposed in [17].

This paper proposes a new distributed iterative LMMSE algorithm for the estimation

of a spatially correlated random field. A group of distributed sensor nodes take spatial
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samples of the random field, and the nodes need to estimate the values of some arbitrary

points on the random field in a distributed manner through iterative information exchange.

The objective is to minimize worst case mean squared error (MSE) at all nodes, while

ensuring all nodes reach a distributed consensus of the estimation results. The algorithm

performs two actions in each iteration: information propagation and local estimation. In the

information propagation stage, a node updates a locally maintained state vector by using a

linear combination of its own information and state vectors sent out by its neighbors in the

previous iteration. The updated state vector is then broadcast to all its neighbors. In the

local estimation stage, each sensor performs iterative LMMSE by using its updated state

vector and its own estimates from the previous iteration. The initial state vector is obtained

by multiplying the measurement sample with a coefficient vector.

The proposed algorithm requires two key parameters, an edge weight matrix for state

vector updates and exchanges, and a sample weight matrix for constructing the initial state

vector. The two matrices are designed to minimize an MSE upper bound while ensuring

distributed consensus when the number of iterations is large. It is found that the opti-

mum design is equivalent to projecting the high dimension samples from all nodes into a

low dimension subspace that is related to the covariance matrices of data and noise. The

projection is performed in a distributed manner through iterative information propagation,

with the help of the edge weight and sample weight matrices. The low dimension projection

can significantly reduce the among of information exchanged in the network, and achieve

faster convergence compared to existing algorithms such as D-LMMSE [1] and D-RLS [3]. A

distributed learning algorithm is also presented for the distributed estimation of the spatial

covariance that is necessary for the implementation of the proposed algorithm.
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The remainder of this paper is organized as follows. The problem is formulated in Sec-

tion II. The distributed iterative LMMSE algorithm is presented in Section III. Section IV

discusses the optimum design of the edge weight matrix and sample weight matrix. Section

V proposes a distributed learning algorithm for spatial covariance estimation. Simulation

results are given in Section VI and Section VII concludes the paper.

5.3 Problem formulation

Consider a sensor network with n sensor nodes, which are used to monitor a spatially cor-

related random field F . Denote the spatial coordinate of the i-th sensor node as ci ∈ F .

The sensor network can be represented as a graph G = (N , E), where N = {1, 2, . . . , n} is

the set of nodes and E is the set of edges, with {i, j} ∈ E connecting nodes i and j. The set

of neighbors of node i is denoted Ni = {j : {i, j} ∈ E}. Two nodes can directly exchange

information with each other if they are neighbors. A graph is called strongly connected (SC)

if there is a path connecting any two nodes in the graph. The sensor network can be modeled

as an unweighted SC graph.

The sensor network is used to monitor a physical quantity x(c) ∈ R in the random field,

such as the temperature, humidity, or the normalized difference vegetation index (NDVI)

in an agricultural field. The quantity x(c) is assumed to be of zero mean, which can be

obtained by subtracting the mean of a non-zero mean process. The physical quantity x(c)

has a spatial correlation rxx′ = E[x(c)x(c′)]. It is assumed that the random filed is spatially

wide-sense stationary with rxx′ = ks(‖c − c′‖), where ks(·) is a covariance kernel function,

and ‖c− c′‖ is the Euclidean distance between the coordinates c and c′.

Each sensor node can obtain a measurement of the physical quantity at its own location.
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The measurement taken by the i-th sensor is

z(ci) = x(ci) + ε(ci). (5.1)

where ε(ci) is the sensing noise with variance σ2. Denote the measurement vector and the

corresponding data vector as z := [z(c1), · · · , z(cn)]T ∈ Rn and x := [x(c1), · · · , x(cn)]T ∈

Rn, respectively, where aT represents matrix transpose.

In the distributed WSN, each node will estimate the values of k locations in the random

field, and denote them as s := [x(c′1), x(c′2), . . . , x(c′k)]
T . The estimation will be performed by

each node separately in a distributed manner by using its own measurement and information

received from its neighboring nodes. It should be noted that s could be the same or different

from the measurement vector x.

In a decentralized network, the nodes need to exchange information with each other in

order to obtain an estimate of s. Without loss of generality, the time is divided into slots.

In each slot, a node can update its estimate of s by using information received from all of

its neighbors. Denote the estimate from node i at slot t as ŝ(i, t) ∈ Rn, for i = 1, · · · , n and

t = 0, 1, 2, · · · .

The design objective is to find the information exchange scheme such that all nodes in the

network can reach a consensus and obtain an accurate estimate of s. Denote the estimation

mean squared error (MSE) at the i-th node and time slot t as σ2
e(i, t) = E [‖ŝ(i, t)− s‖2],
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where ‖a‖ =
√

aTa is the `2-norm of the vector a. Then the problem can be formulated as

(P1) minimize lim
t→∞

max
i
σ2
e(i, t) (5.2)

subject to lim
t→∞
|ŝ(i, t)− ŝ(j, t)| = 0,∀i 6= j

The constraint in (P1) is used to ensure that all nodes in the network reach a consensus on

the estimation results.

The optimization problem can be easily solved in a centralized system, where the in-

formation collected by all the nodes are congregated at a FC. In this case, the FC has full

knowledge of the measurement vector z and it can obtain an optimum estimate of s by using

the LMMSE estimator as

ŝFC = Rsx(Rxx + σ2In)−1z (5.3)

where Rab = E[abT ] is the cross-correlation matrix between vectors a and b, and In is a

size-n identity matrix. The covariance matrices, Rsx and Rxx, are generally unknown to the

nodes in the network, but they can be acquired either during a training phase or from the

underlying physics of the quantity of interest. A distributed covariance learning algorithm is

presented in Section 5.6, where the nodes can learn the covariance in a distributed manner

by exchanging data samples with their immediate neighbors. Since the covariance changes

much slower compared to the actual values x and s, the training only needs to be performed

once at the beginning.

In a decentralized network, the information of z is distributed at all the nodes and no
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node has full knowledge of z. Each node performs the estimation individually by using

its own measurement and information exchanged from its neighbors. This necessitates the

design of distributed estimation algorithms.

5.4 Distributed iterative LMMSE estimation

In this section we propose a distributed iterative LMMSE estimation algorithm for the

WSN. The algorithm is iterative in the sense that each node will exchange information with

its neighbors in an iterative manner until convergence.

In the iterative algorithm, the time is divided into slots, and each time slot corresponds

to one iteration of the algorithm. Each node maintains a size-m state vector y(i, t) ∈ Rm

with m ≤ n. The state vector is updated in each iteration and then shared with all of its

neighboring nodes.

In the t-th iteration, each node will perform two actions:

1. Information Propagation: node i will update its state vector y(i, t), and broadcast it

to all its neighboring nodes with indices j ∈ Ni.

2. Local Estimation: node i will obtain an estimate of s by using y(i, t), and denote the

estimation result as ŝ(i, t).

We will discuss the details of the two stages in the next two subsections, respectively.

5.4.1 Iterative Information Propagation

In the initial iteration with t = 0, the vector broadcast by the i-th node is y(i, 0) = ṽiz(ci),

where z(ci) is the scalar measurement at the i-th sensor, and the weight vector ṽi ∈ Rm is
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designed to minimize the estimation MSE required for distributed consensus. The optimum

design of ṽi will be discussed in the next section. The initial state vector y(i, 0) contains m

weighted copies of the i-th node’s measurement z(ci).

In the (t+ 1)-th iteration, node i will first update its state vector by using its own state

vector and state vectors received from all its neighbors in the previous iteration, as

y(i, t+ 1)=wiiy(i, t)+
∑
j∈Ni

wijy(j, t), i = 1, 2, . . . , n, (5.4)

where t = 0, 1, · · · , and wij is a weight coefficient applied by node i to the vector received

from node j ∈ Ni. We have wij = 0 if j /∈ Ni. A weight matrix W ∈ Rn×n is formed by

setting its element on the i-th row and j-th column as (W)ij = wij, if j ∈ Ni and (W)ij = 0

otherwise. The matrix W is denoted as the edge weight matrix. The edge weight matrix

W is designed to ensure the convergence of the iterative process, and the optimum design

of W will be discussed in the next section.

The updated state vector y(i, t+1) will then be broadcast to all its neighbors with indices

j ∈ Ni.

We can form a matrix by using the vectors from all nodes in the networks as Y(t) =

[y(1, t),y(2, t), . . . ,y(n, t)]T ∈ Rn×m, then we can rewrite (5.4) in a compact form as

Y(t+ 1) = WY(t), for t = 0, 1, · · · (5.5)
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The initial matrix Y(0) can be alternatively represented as

Y(0) = ZdV (5.6)

where Zd = diag{z} ∈ Rn×n is a diagonal matrix with z on its main diagonal, and V =

[ṽ1, ṽ2, · · · , ṽn]T = [v1,v2, . . . ,vm] ∈ Rn×m with vk ∈ Rn, for k = 1, · · · ,m. We denote V

as the sample weight matrix because its elements are directly applied to the measurement

samples. Combining (5.5) and (5.6) yields

Y(t) = WtY(0) = WtZdV, (5.7)

where Wt is the t-th power of the matrix W.

We can obtain the state vector at the i-th node at time slot t by extracting the i-th row

of Y(t) as

yT (i, t) = wi(t)ZdV (5.8)

where wi(t) is the i-th row of the matrix Wt. Define a diagonal matrix Wi(t) = diag{wT
i (t)} ∈

Rn×n, then (5.8) can be alternatively expressed as

y(i, t) = A(i, t)z ∈ Rm (5.9)

where A(i, t) = VTWi(t) ∈ Rm×n.
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5.4.2 Iterative LMMSE Estimation

At the t-th time slot, node i will obtain an estimate of s by using the aggregated state vectors

{y(i, t′)}tt′=0, and the estimated vector is denoted as ŝ(i, t). Without loss of generality, we

will focus on the operation at node i. To simplify notation, we will skip the index i in

subsequent discussions as

yt := y(i, t), st := s(i, t), At := A(i, t) (5.10)

Thus (5.9) can be alternatively written as

yt = Atz (5.11)

The aggregated state vector y1:t := [yT1 , . . . ,y
T
t ]T can be represented as

y1:t = A1:tz = A1:t(x + ε). (5.12)

where ε := [ε(c1), · · · , ε(cn)]T and A1:t = [AT
1 , · · · ,AT

t ]T ∈ Rmt×n.

We have the following results regarding the LMMSE estimator.

Lemma 1 : Given y1:t, the LMMSE estimate of s at node i and time slot t is

ŝ(t) = RsxA
T
1:t

[
A1:t(Rxx + σ2In)AT

1:t

]−
y1:t (5.13)

where A− is the general inverse of the matrix A.
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Proof: The proof is in Appendix 5.9.1. �

The memory requirement and computation complexity of (5.13) increases with time t,

and they become prohibitively high when t and/or n is large. Given the iterative nature of

the distributed consensus algorithm, we propose to calculate ŝ(t) iteratively. The iterative

LMMSE estimation algorithm is presented in Theorem 5.1 below.

To facilitate analysis and presentation, we first define the following notations that will

be used in Theorem 5.1. For any arbitrary random vector p, denote the LMMSE estimator

of p given samples history y1:t at time slot t as

p̂(t) = E[p|y1:t] = Rpy1:tR
−
y1:ty1:t

y1:t (5.14)

where p could be z, s, or yt+1

Define the cross-covariance matrix between two LMMSE estimates p̂(t) and q̂(t) as

Cpq(t) = E[(p̂(t)− p)(q̂(t)− q)T ] (5.15)

where p and q are the true values of p̂(t) and q̂(t), respectively.

With the above notations, we have the following theorem that shows how to iteratively

update ŝ(t) by using ŝ(t− 1) and yt.

Theorem 5.1 : (Iterative LMMSE) The LMMSE estimation ŝ(t) given sample history y1:t

at node i and time slot t (c.f. Lemma 1) can be iteratively calculated as

ŝ(t) = ŝ(t− 1)+Csz(t− 1)AT
t B−t

(
yt−Atẑ(t− 1)

)
(5.16)
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where ẑ(t) ∈ Rn can be iteratively calculated as

ẑ(t) = ẑ(t− 1) +Czz(t− 1)AT
t B−t

(
yt−Atẑ(t− 1)

)
(5.17)

and Bt = AtCzz(t− 1)AT
t ∈ Rm×m.

The auto- and cross-covariance matrices can be iteratively updated as

Czz(t)=Czz(t− 1)−Czz(t− 1)AT
tB
−
tAtCzz(t− 1) (5.18)

Csz(t)=Csz(t− 1)−Csz(t− 1)AT
tB
−
tAtCzz(t− 1) (5.19)

Css(t)=Css(t− 1)−Csz(t− 1)AT
t B−t AtCzs(t− 1) (5.20)

with the initial states Czz(0) = Rzz = Rxx + σ2In ∈ Rn×n, Csz(0) = Rsx ∈ Rk×n and

Css(0) = Rss ∈ Rk×k.

Proof: The proof is in Appendix 5.9.2. �

Theorem 5.1 provides an iterative implementation of the LMMSE in Lemma 1. The

iterative procedures described in (5.16)-(5.20) in Theorem 5.1 can obtain the same estimation

results as in Lemma 1, but with a fixed memory requirement and much less complexity.

Comment 1: The memory requirement of the iterative LMMSE algorithm in Theorem

5.1 does not change with time t. At time t, the iterative LMMSE needs to store the vectors

ŝ(t) ∈ Rk, ẑ(t) ∈ Rn, and the matrices At ∈ Rm×n, Czz(t) ∈ Rn×n, Csz(t) ∈ Rk×n, and

Css(t) ∈ Rk×k. The total memory required by the iterative LMMSE is thus on the order of

k + n+mn+ kn+ n2 + k2, which is independent of t.
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Comment 2: The computation complexity of the iterative LMMSE algorithm in The-

orem 5.1 does not change with time t. Since all vectors and matrices in (5.16)-(5.20) are of

fixed sizes, the complexities of the iterative calculations described in (5.16)-(5.20) are also

fixed at each iteration, and it does not change with respect to t.

Comment 3: In the distributed iterative LMMSE algorithm, the nodes only exchange

information about state vectors y(t), which are weighted linear combinations of the mea-

surement samples at different nodes. The estimated vectors ŝ(t) are not exchanged among

the nodes. This is different from most existing distributed estimation algorithm, such as

the D-RLS [3] and incremental RLS [17], which exchange both measurement samples and

estimation results. Thus the proposed algorithm requires less information exchange than the

incremental RLS or diffusion RLS algorithm. We will show later through simulations that

the proposed algorithm also converges faster than those RLS-based algorithms.

The results in Theorem 5.1 indicate that the estimation of s at each node can be itera-

tively updated as new information is received from its neighbors. The expected MSE of the

LMMSE estimator ŝ(t) at node i and time slot t is

σ2
e(i, t) =

1

k
trace(Css(t)) (5.21)

For the special case when n = m, we have the following result regarding the LMMSE

estimation when the number of iterations is larger than the diameter of the network d, which

is defined as the shortest distance between the two most distant nodes in the network.

Corollary 5.1 : Consider the special case that m = n. Assume the sample weight matrix

V is of full column rank, and this can be easily achieved by design. When the number of
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iterations t is no less than the diameter of the network d, then ŝ(t) = ŝ(d), ∀t ≥ d, and all

nodes have the same estimate ŝ(t).

Proof: The proof is in Appendix 5.9.3. �

Corollary 5.1 means that the distributed iterative LMMSE algorithm converges in at

most d iterations if m = n with a full rank sample weight matrix V, and all nodes reach

distributed consensus in at most d iterations. We will perform optimum designs of both W

and V when m < n in the next section.

5.4.3 Performance Upper Bound

The MSE result in (5.21) is obtained by performing LMMSE by using the aggregated state

vector y1:t. It is expressed as a function of the edge weight matrix W and the sample weight

matrix V through the matrix At = A(i, t) = VTWi(t), where Wi(t) is a diagonal matrix

with its diagonal being the i-th row of Wt. The MSE can be calculated numerically through

iterations as shown in Theorem 5.1. However, the iterative calculation does not provide a

closed-form expression of the MSE in the form of W and V, which need to be designed to

solve the optimization problem. To address this issue, we propose to design the matrices

W and V by using an upper bound of σ2
e(i, t), which is obtained by performing LMMSE

estimation with only the current state vector yt.

Corollary 5.2 : Given yt, the LMMSE estimate of s at node i and time slot t is

s̃(i, t) = RsxA
T
t

[
At(Rxx + σ2In)AT

t

]−
yt. (5.22)
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The corresponding error covariance matrix C̃ss(t) = E[(s̃(i, t)− st)(s̃(i, t)− st)
T ] is

C̃ss(t) = Rss −RsxA
T
t

[
At(Rxx + σ2In)AT

t

]−
AtR

T
sx (5.23)

The average MSE at node i and time slot t is thus

σ̃2
e(t, i) :=

1

k
trace(C̃ss(t)) (5.24)

which is an upper bound of σ2
e(i, t) in (5.21).

Proof: The proof is in Appendix 5.9.4. �

5.5 Asymptotically optimum Design of the distributed algorithm

In this section, we perform the asymptotically optimum design of the distributed estimation

algorithm when t is large. The distributed estimation algorithm presented in the previous

section depends on two matrices, the edge weight matrix W, and the sample weight matrix

V. We will study the design of W and V that can minimize the MSE upper bound σ̃2
e(t, i)

defined in (5.24), while ensuring the distributed consensus on the estimation results among

the nodes. Replacing σ2
e(t, i) in (P1) with σ̃2

e(t, i) yields

(P2) minimize lim
t→∞

max
i
σ̃2
e(i, t) (5.25)

subject to lim
t→∞
|s̃(i, t)− s̃(j, t)| = 0,∀i 6= j

As can be seen from (5.23) and (5.24), σ̃2
e(i, t) is related to the matrices W and V through
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At as At = A(i, t) = VTWi(t) ∈ Rm×n.

Denote A∞ = limt→∞At, then (P2) can be solved by identifying A∞ that can minimize

σ̃2
e(i, t). We have the following theorem regarding the optimum solution to (P2).

Theorem 5.2 : The optimum solution to (P2) is A∗∞ = [vT1 , · · · ,vTm]T , where vi ∈ Rn is

the eigenvector corresponding to the i-th largest eigenvalue of the matrix (Rxx+σ2In)−1RT
sxRsx.

Proof: The proof is in Appendix 5.9.5. �

The result in Theorem 5.2 indicates that if At converges to a matrix containing the m

leading eigenvectors of the (Rxx + σ2In)−1RT
sxRsx as t → ∞, then we can minimize the

MSE upper bound. In addition, since At = A(i, t) for the i-th node converges to a constant

matrix independent of node index i, then the estimates at all nodes are the same, that is,

all nodes achieve a consensus on the estimation results.

Since At depends on both W and V, we will design W and V separately such that the

optimum condition in Theorem 5.2 is satisfied.

5.5.1 Design of Edge Weight Matrix W

The edge weight matrix should satisfy two conditions. First, for a stable system, the linear

iteration in (5.5) needs to converge, that is, limt→∞Wt = W0, such that limt→∞Y(t) =

W0ZdV. Second, to meet the objective of distributed consensus among all nodes in the

network, the information available at all nodes should be the same when t is large. Based

on the above two conditions, we can write the converged matrix W0 as

W0 = lim
t→∞

Wt =
1

n
1n1

T
n (5.26)
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where 1n is a length n all-one vector.

The convergence conditions of W are shown in the following theorem.

Theorem 5.3 : [24, Theorem 1] Eq. (5.26) holds, if and only if

1TnW∗ = 1Tn (5.27)

W∗1n = 1n (5.28)

ρ(W∗ − 1n1
T
n/n) < 1 (5.29)

where ρ(·) denotes the spectral radius of a matrix.

Based on Theorem 5.3, the optimum W∗ with the fastest convergence rate can be ob-

tained by solving a semidefinite program (SDP) optimization problem as in [24].

5.5.2 Design of sample weight matrix V

The optimum design of the sample weight matrix V is discussed in this subsection.

Based on the convergence of W∗ in (5.26), we have

lim
t→∞

At =
1

n
VT (5.30)

Substituting (5.30) into (5.23) yields

C̃ss(∞) := lim
t→∞

C̃ss(t)

= Rss −RsxV
[
VT (Rxx + σ2In)V

]−
VTRT

sx (5.31)
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It should be note that the asymptotic error covariance matrix C̃ss(∞) is independent of i

due to the constraint that W0 has identical rows.

The optimization problem in (P2) can thus be solved by minimizing trace(C̃ss(∞)) in

(5.31). Comparing (5.31) and Theorem 5.2, it is clear that we can minimize trace(C̃ss(∞))

by setting V∗ = A∗∞.

Corollary 5.3 : With W∗ in given Theorem 5.3, the optimum V∗ that can solve (P2) is

V∗ = [v1, · · · ,vm], where vi is the eigenvector corresponding to the i-th largest eigenvalue

of the matrix (Rxx + σ2In)−1RT
sxRsx. �

Comment 4: With the edge weight matrix W∗ in Theorem 5.3 and sample weight

matrix V∗ in Corollary 5.3, we have

lim
t→∞

At = lim
t→∞

VW∗
i (t) = V∗ = A∗∞ (5.32)

which minimizes the MSE upper bound as in Theorem 5.2. Thus the design of W and V

presented in this section can achieve the asymptotically optimum results in Theorem 5.2.

Comment 5: With the optimum design of W∗ and V∗, when t is large, the system

model in (5.9) or (5.12) becomes

y∞ := lim
t→∞

y(i, t) = V∗z (5.33)

This is equivalent to projecting the n-dimensional vector z into an m-dimension subspace,

and this projection is performed in a distributed manner through information exchange

among neighboring nodes. In addition, all nodes reach distributed consensus by having the
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same y∞. The projection is optimized in a way such that the m-dimension subspace is aligned

with the eigendirection containing the most salient information needed for the minimization

of the MSE upper bound. The distributed low dimension projection reduces the amount of

information needed to be propagated in the network, and improves the convergence speed

of the estimation.

The optimum design presented require the knowledge of the network covariance matrices

Rxx, Rsx, and the noise variance σ2, which are also required to implement the iterative

LMMSE algorithm in Theorem 5.1. The covariance matrices and noise variance can be

estimated in a distributed manner by the nodes in a training phase, which is discussed in

the next section.

5.6 Distributed learning of spatial covariance

In this section, we present a distributed learning algorithm for the joint estimation of the

spatial covariance and noise variance at all nodes.

During the distributed learning, we adopt a parametric model, the Matérn kernel, for

the spatial covariance [23]. The Matérn kernel provides parametric flexibility to model a

wide range of spatial covariances in practical local spatial processes [9]. The Matérn kernel

is represented as

κv,l(d) =
21−v

Γ(v)

(√
2vd

l

)v

Kv

(√
2vd

l

)
(5.34)

where Γ is the Gamma function, Kv is the modified Bessel function of the second kind, d is

the distance between two points of interest, and v and l are the smooth and range parameters
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to be estimated from the data samples, respectively.

It should be noted that the actual spatial covariance might follow a different model other

than the Matérn kernel. Due to the flexibility of the Matérn kernel, our simulation results

show that we can still obtain accurate estimates of the second-order statistics even when the

real model is different from the Matérn kernel.

With the Matérn kernel, the spatial covariance estimation is equivalent to the estimation

of the two model parameters v and l. Each node can jointly estimate (v, l) and the noise

variance σ2 by exchanging data samples with its immediate neighbors.

The distributed learning algorithm contains two steps: distributed maximum likelihood

parameter estimation, and distributed parameter consensus. Details of the two steps are

given as follows.

5.6.1 Distributed Maximum Likelihood Parameter Estimation

In the first step, each node obtains maximum likelihood (ML) estimates of the parameters

(v, l, σ2) by using data samples from all of its immediate neighbors.

Assume each node obtains K independent samples of the random field at its own location.

Denote the K data samples collected by node i as
{
z(t)(ci)

}K
t=1

. The K data samples are then

shared with their immediate neighbors. As a result, node i have a total NiK independent

data samples from its neighbors, where Ni = |Ni| is the number of neighbors of node i.

Index the neighbors of node i as i1, i2, · · · , iNi , where ik ∈ Ni. Define z
(t)
i = [z(t)(ci), z

(t)(ci1),

· · · , z(t)(ciNi )]
T ∈ RNi+1. Then the covariance matrix of z

(t)
i is

Rzizi = Rxixi + σ2INi+1 (5.35)
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where the (m,n)-th element of the cross-covariance between the samples from nodes j and

k are

rjk = E[z(t)(cj)z
(t)(ck)] =


κv,l(‖cj − ck‖), j 6= k

1 + σ2, j = k

(5.36)

Define the vector z
(t)
jk = [z(t)(cj), z

(t)(ck)] ∈ R2. Then the covariance matrix is

Rjk =

 1 rjk

rjk 1

+ σ2I2 (5.37)

Under the assumption that the data is a spatial Gaussian process, the likelihood functions

of the unknown parameters can then be formulated as

p(z1
jk, · · · , zKjk|v, l, σ2) =

1

[2π det(Rjk)]
K
×

exp

(
−

K∑
t=1

z
(t)
jk

T
R−1
jk z

(t)
jk

)
, j, k ∈ {i}

⋃
Ni (5.38)

The parameters (v, l, σ2) can then be estimated by using ML estimation as

(v̂i, l̂i, σ̂
2
i ) = argmax

v,l,σ2

∏
j,k∈{i}

⋃
Ni

p(z1
jk, · · · , zKjk|v, l, σ2) (5.39)

The product in the above equation is performed over
(
Ni+1

2

)
node pairs. The ML estimation

in (5.39) does not have a closed-form solution, and can be solved via numerical methods

such as interior point or grid search.

133



5.6.2 Distributed Parameter Consensus

Once each node obtains their respective estimates on the parameters, they exchange infor-

mation with their neighbors such that all nodes in the network achieve a global consensus on

the estimates of (v, l, σ2). The distributed parameter consensus can be iteratively achieved

by using the edge weight matrix W∗ defined in Theorem 5.3.

The training phase is divided into time slots. At the i-th slot of the training phase,

denote θ̂i(t) as the estimated parameter at node i, where θ ∈ {v, l, σ2}. We set θ̂i(0) = θ̂i,

which is the ML estimate obtained from (5.39). Then the iterative distributed consensus

can be carried out in a similar manner as the iterative information propagation described in

(5.4)

θ̂i(t+ 1)=wiiθ̂i(t)+
∑
j∈Ni

wij θ̂j(t), i = 1, 2, . . . , n, (5.40)

or in matrix format

θ̂(t+ 1) = W∗θ̂(t) = (W∗)tθ̂(0) (5.41)

where θ̂(t) = [θ̂1(t), θ̂2(t), · · · , θ̂n(t)]T .

Based on Theorem 5.3, we have

lim
t→∞

θ̂(t) =
1

n
11T θ̂(0) (5.42)
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which can also be written as

lim
t→∞

θ̂i(t) =
1

n

n∑
k=1

θ̂k (5.43)

for θ ∈ {v, l, σ2}. That is, every node obtains an average of the estimated parameters from

all nodes in the metwork. Even though the analytical results require t→∞, our numerical

results indicate that the process usually converges with the number of iterations on the same

order as the number of nodes in the network.

Once all nodes reach a consensus on the estimation results, they can then use the esti-

mated parameters to formulate the spatial covariance matrices following the Matérn kernel.

We will show through simulations that the proposed distributed learning algorithm can ob-

tain very accurate estimates of the second-order statistics.

5.7 Simulation and experimental results

Simulation and experimental examples are presented in this section to demonstrate the per-

formance of the proposed distributed estimation algorithms in decentralized sensor networks.

5.7.1 Simulation Results

In the simulation, we apply the distributed algorithms over synthesized data generated by

using the covariance function with power-law kernel, i.e.

rxx′ = E[x(c)x(c′)] = ρ‖c−c
′‖ (5.44)
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where ρ ∈ [0, 1] is a spatial correlation coefficient and ‖ · ‖ measures distance between points

in the field. It should be noted that the power-law kernel is different from the Matérn kernel

used in the parameter estimation during the training phase described in Section 5.6. We will

show through simulation results that the proposed algorithms work well even with mismatch

models.

The data are generated by following a two-dimensional Gaussian process with zero-mean

and covariance function given in (5.44). The noise is zero-mean Gaussian distributed white

uncorrelated samples. The sensor nodes are randomly deployed in an area of size 15 × 15

and two nodes are connected by an edge if their distance is less than certain threshold. We

can adjust the number of neighbors of each node by adjusting the threshold.

5.7.1.1 Impacts of Imperfect Second-Order Statistics

We first study the impacts of imperfect second-order statistics on the performance of the

proposed distributed iterative LMMSE algorithm. Specifically, we compare in Fig. 5.1 the

performance between two systems, one with perfect knowledge of the second order statistics,

including Rxx and Rsx and σ2, the other one with the above parameters estimated with

the distributed learning algorithm described in Section 5.6 during the training phase. Even

though the Matérn kernel is used in the training phase, the data are generated by following

the power-law kernel.

In the simulation, we set ρ = 0.80 and the signal-to-noise ratio (SNR) at 15 dB. There

are n = 50 nodes in the network, and the average number of neighbors each node has is

1
n

∑n
i=1 Ni = 3.72. The size of the state vector is m = 35. The system tries to estimate s = x.

In the training phase, each node shares with its neighbors K independent data samples, with
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Figure 5.1: Comparison between systems with true and estimated covariances.

K = 3 and 7 considered in this example, and all nodes achieve distributed consensus of the

estimated parameters in 150 iterations. The simulated MSE of ŝ are calculated by averaging

the results from 50 Monte Carlo trials, and they are shown as a function of the number of

iterations during the estimation phase.

As can be seen from Fig. 5.1, the performance difference between systems with true

and estimated parameters is very small throughout all iterations. At t = 60, the MSE for

systems with estimated kernels with K = 3 and K = 7 are 5.0 × 10−2 and 4.5 × 10−2,

respectively, and that for system with true kernel is 4.3 × 10−2. Thus the performance loss

due to estimated kernel is only 4.6% at K = 7. The results indicate that the distributed

learning algorithm can achieve very accurate estimation of the second-order statistics, even

when there is a mismatch between the actual and training models.

5.7.1.2 Comparison with D-LMMSE

Next we compare the performance between the proposed algorithm with D-LMMSE [18]. The

D-LMMSE algorithm requires covariance information rxj := E[x(cj)x
T ], rxjs := E[x(cj)s

T ]
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Figure 5.2: The graph of the network with 50 nodes and 110 edges. There are 20 points of
interest in the 2-D squared field.

and Rss at sensor j, while the proposed algorithm requires the covariance information of

the entire network. On the other hand, the proposed algorithm requires less information ex-

change during each iteration. In the proposed algorithm, each node transmits m ≤ min(n, k)

values; in the D-LMMSE algorithm, each iteration contains two phases, and each node trans-

mits n+k values in the first phase then each bridge node transmits n+k values in the second

phase. The D-LMMSE algorithm requires a set of parameters cj and dj at sensor j to be

set, and they are numerically optimized to 65 to achieve the fastest convergence.

The sensors are deployed in an area of size 15 × 15 as shown in Fig. 5.2. We set

ρ = 0.85 and SNR = 20dB. The network has n = 50 nodes (marked as ‘o’) and 110 edges.

The diameter of the network is 9. The sensors will estimate the values at k = 20 randomly

generated points of interest (marked as ‘*’). This graph is randomly generated following [24]:

50 nodes are randomly generated, uniformly distributed on the square, then two nodes are

connected by an edge if their distance is less than a threshold.

Fig. 5.3 shows the MSE as a function of the number of iterations t. Ideal knowledge of
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Figure 5.3: Comparison between the proposed algorithm and D-LMMSE [18].

the covariance is assumed for both the proposed algorithm and the D-LMMSE algorithm.

The results demonstrate the convergence of the distributed algorithms as time evolves. The

number of samples exchanged in each iteration is m = 10. For the proposed algorithm, two

different types of estimation are performed. The first type is the optimum LMMSE performed

by using all previous state vectors y1:t as in Theorem 5.1. The second type is the simplified

LMMSE performed by using the current state vector yt as in Corollary 5.2. The MSE for a

centralized system with estimation performed at a fusion center is also shown in the figure

as reference. As expected, the optimum LMMSE with y1:t outperforms its low complexity

counterpart, but the difference decreases as t increases. The optimum LMMSE converges

in t = 10 iterations and the simplified LMMSE converges in about t = 70 iterations. On

the other hand, the D-LMMSE start to converge in about t = 1, 000 iterations. Even if

we consider the cost of the training phase, which requires an additional 150 iterations, the

proposed algorithm still converges significantly faster than D-LMMSE.

One of the main factors contributing to the fast convergence of the proposed algorithm

is the equivalent low dimension projection achieved with the optimum design of W∗ and V∗

as pointed out in Comment 5. Projecting the n-dimension sample vector from all nodes into

139



a m-dimension subspace will significantly reduce the amount of information to be exchanged

in the network, thus improve the convergence speed.

5.7.1.3 Comparison with D-RLS

To further demonstrate the performance of the proposed algorithm, we compare its per-

formance with the D-RLS algorithm [3]. To match the terminology used in the D-RLS

algorithm with our system model, yt is the observation vector, At is the regressor, and ŝt is

the pre-estimate. We still set ρ = 0.85 and SNR = 20dB. The network topology is the same

as in Fig. 5.2, except that we will estimate s = x in this example, because D-RLS does not

exploit spatial covariance and it cannot estimate points that are not sampled by the sensors

without the help of an explicit regressor.

The comparison results are shown in Fig. 5.4. Both algorithms converge in about t = 60

iterations, but the proposed algorithm achieves significant performance gains over the D-

RLS in terms of converged MSE. The MSE of the proposed algorithm converges to that of

the centralized algorithm at 10−3, which is much less than the noise variance. On the other

hand, the converged MSE of D-RLS is one magnitude higher at 10−2, which is the noise

variance. The higher MSE floor of D-RLS is partly due to the fact that it does not exploit

the spatial covariance among the samples.

It is worth pointing out that the proposed algorithm requires less information exchange

than D-RLS. In the proposed algorithm, the only information being exchanged among the

neighboring nodes is the state vector yt. In diffusion RLS, both yt (denoted as observations

in D-RLS) and ŝt (denoted as pre-estimate in D-RLS) are exchanged among the neighboring

nodes.
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Figure 5.4: Comparison between the proposed algorithm and D-RLS [3].

5.7.2 Experimental Results

In the experiment, we apply the proposed algorithm to data collected from an Asian rice

field by the department of Electrical Engineering at Shenyang Agricultural University at

Shenyang, China. Optical sensors are deployed to measure the Normalized Difference Vege-

tation Index (NDVI) of the Asian rice at different locations on the field. In this example we

use the observations from n = 11 locations to estimate the NDVI at k = 5 locations. The

graph of the network and the relative positions of the points of interest are shown in Fig.

5.5.

The NDVI data are modeled as Gaussian Process with the Matérn covariance. The

parameters (v, l, σ2) are estimated with maximum likelihood estimation.

An NDVI value is collected at each location each day for 31 days. On each day, the

parameters of the covariance function is estimated by using the data from the previous 10

days with maximum likelihood estimation, and the distributed estimation algorithm is then

applied to estimate the NDVI values at the points of interest. The MSE results are averaged

over the estimation performed on days 11 to 31.
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Figure 5.5: Graph of the experiment network and relative positions of the points of interest.
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Figure 5.6: MSE as a function of the number of iterations t in experiment.

Fig. 5.6 shows the MSE as a function of the number of iterations t. The number of

samples exchanged in each iteration is m = 4. The MSE obtained in a centralized network

with LMMSE performed at a FC is shown as a reference. To better illustrate the convergence

of the algorithms, Fig. 5.7 shows the MSE difference between the distributed and centralized

algorithm, σ2
e(t)−σ2

0, where σ2
e(t) is the MSE of the proposed algorithm, and σ2

0 is the MSE

at the fusion center in a centralized system.

At any given time slot t, the MSE of the proposed system with optimum V always out-

performs that of the system with random V. The MSE of the proposed algorithm converges
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Figure 5.7: Difference between distributed and centralized MSEs as a function of the number
of iterations t in experiment.

to that of the centralized algorithm as t increases, and the majority of the performance gain

is achieved during the first 5 iterations.

5.8 Conclusions

We have studied the distributed estimation of a spatially correlated random field with a

decentralized network. Nodes in the network perform estimation of arbitrary points on the

random field by iteratively exchanging information with each other. A distributed iterative

LMMSE algorithm has been proposed. The key parameters of the algorithm, including the

edge weight matrix W and sample weight matrix V, are designed by following asymptotically

optimum conditions when t → ∞. The optimum design equivalently projects the high

dimension data collected by all sensors to a low dimension subspace in a distributed manner

during information propagation. As a result, the proposed algorithm can significantly reduce

the amount of information exchanged in the network, thus improve the convergence speed.

Simulation and experimental results have shown that the proposed distributed estimation

algorithm outperforms D-LMMSE and D-RLS algorithms in terms of MSE, convergence
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speed, and complexity.

5.9 Appendices

5.9.1 Proof of Lemma 1

The LMMSE estimate of s can be written as ŝt = Uty1:t, where Ut is the MMSE weight

matrix. Based on the orthogonality principle E[(Uty1:t − s)yT1:t] = 0, we have Ut satisfying

UtRy1:ty1:t = Rsy1:t .

Denote p := [yT1:t, s
T ]T , and the positive semidefinite matrix Rpp can be partitioned as

Rpp =

Ry1:ty1:t Ry1:ts

Rsy1:t Rss.

 Then based on [26, Theorem 1.19] we have

Ut = Rsy1:tR
−
y1:ty1:t

(5.45)

Combining (5.45) with (5.12) yields (5.13).

5.9.2 Proof of Theorem 5.1

First we are going to show that the right-hand sides (RHSs) of (5.13) and (5.16) are equal.

We observe that the matrices Rsy1:t and Ry1:ty1:t in the RHS of (5.13) can be written in the

form of block matrices as

Rsy1:t =
[
Rsy1:t−1 Rsyt

]
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and

R−y1:ty1:t
=

R11 := Ry1:t−1y1:t−1 R12 := Ry1:t−1yt

R21 := RT
12 R22 := Rytyt


−

=

Q11 Q12

Q21 Q22

 .

Since Ry1:ty1:t is positive semidefinite, according to generalized inversion formula of a block

matrix [16,26], we have

Q11 = R−11 + R−11R12Q22R21R
−
11

Q22 = R−22 + R−22R21Q11R12R
−
22

Q12 = −R−11R12Q22

Q21 = QT
12

Then (5.13) can be rewritten as

ŝ(t) =Rsy1:t−1Q11y1:t−1 + RsytQ21y1:t−1

+ Rsy1:t−1Q12yt + RsytQ22yt (5.46)

On the other hand, based on (5.11), (5.16) can be reformulated as

ŝ(t) = ŝ(t− 1) + Csyt(t− 1)C−ytyt(t− 1)(yt − ŷt(t− 1)) (5.47)
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From (5.14), we have

ŝ(t− 1) = Rsy1:t−1R
−
11y1:t−1 (5.48)

ŷt(t− 1) = R21R
−
11y1:t−1 (5.49)

Combining (5.48) and (5.49) into (5.15) yields

Csyt(t− 1) = E[(ŝ(t− 1)− s)(ŷt(t− 1)− yt)
T ] (5.50)

= Rsyt −Rsy1:t−1R
−
11R12 (5.51)

Similarly, from (5.15) and (5.49) we have

C−ytyt(t− 1) = (R22 −R21R
−
11R12)− = Q22 (5.52)

where the Woodbury matrix identity is used in obtaining the second equality.

Substituting (5.48)–(5.52) into (5.47) and simplifying, we can see that the RHS of (5.47)

is the same as that of (5.46).

The proof of (5.17) is similar to the above procedures.

Next we are going to show that Csz(t) can be iteratively calculated with (5.19). Based

on (5.11), (5.17) can be alternatively expressed as

ẑ(t) = ẑ(t− 1) + Czyt(t− 1)C−ytyt(t− 1)(yt − ŷt(t− 1)) (5.53)
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Plugging (5.47) and (5.53) into the definition of Csz(t), we have

Csz(t) = E[(ŝ(t)− s)(ẑ(t)− z)T ]

= E[(ŝ(t− 1) + Csyt(t− 1)C−ytyt(t− 1)(yt − ŷt(t− 1))− s)

(ẑ(t− 1) + Czyt(t− 1)C−ytyt(t− 1)(yt − ŷt(t− 1))− z)T ]

= Csz(t− 1)− 2Csyt(t− 1)C−ytyt(t− 1)Cytz(t− 1)

+ Csyt(t− 1)Cytyt(t− 1)−Cytz(t− 1)

= Csz(t− 1)−Csz(t− 1)AT
t

(
AtCzz(t− 1)AT

t

)−
AtCzz(t− 1)

The proofs of (5.18) and (5.20) are similar.

5.9.3 Proof of Corollary 5.1

When t ≥ d, the initial state vector from any node in the network has reached all other

nodes in the network through the iterative information exchange described in (5.7). As a

result, all elements of the matrix Wt are non-zero. Therefore the n × n diagonal matrix

Wi(t), which contains all elements on the i-th row of Wt, has full rank n, when t ≥ d.

Based on the assumption that V is of full column rank, then At = VTWi(t) is of full

rank when t ≥ d. As a result,

AT
t B−t At = C−zz(t− 1), ∀t ≥ d (5.54)

Substituting the above result into (5.18) yields Czz(t) = 0, for t ≥ d. From (5.19), we have

Csz(t) = 0, for t ≥ d. Thus from (5.16), it is clear that ŝ(t) = ŝ(d), for all t ≥ d.
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The above analysis is true for all nodes in the network, thus all nodes have the same

estimates.

5.9.4 Proof of Corollary 5.2

Eqn. (5.22) can be directly obtained from (5.13) in Lemma 1 by replacing A1:t and y1:t with

At and yt, respectively. Eqn. (5.23) can be obtained by using the orthogonality principle

E[(s̃t − s)yTt ] = 0.

Since σ̃2
e(t, i) is obtained by using yt yet σ2

e(t, i) is obtained by using y1:t, it is straight-

forward that σ̃2
e(t, i) ≥ σ2

e(t, i).

5.9.5 Proof of Theorem 5.2

The proof of Theorem 5.2 requires the following lemma.

Lemma 2 : Consider positive semi-definite (PSD) matrix A ∈ Rn×n , positive definite

(PD) matrix B ∈ Rn×n, and X ∈ Rn×m with m ≤ n. Define Y = (XTBX)−XTAX. Then

we have

trace(Y) ≤
m∑
i=1

λi (5.55)

where λi is the i-th largest eigenvalue of B−1A or generalized eigenvalue of (A,B) with

associated eigenvector ui. The equality holds when X = [u1,u2, . . . ,um].

Proof: The eigenvalue decomposition of B−1A is B−1A = UΣU−1 where Σn = [λ1, λ2, . . . , λn]

and Un = [u1,u2, . . . ,un].
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In what follows we are going to show that the eigenvalues of B−1A, {λi}ni=1 are real and

non-negative. Since B is PD, performing Cholesky decomposition of B−1 yields B−1 = QTQ.

Thus In = BQTQ and

In = QInQ
−1 = Q(BQTQ)Q−1 = QBQT (5.56)

Denote φi = (QT )−1ui , then we have ui = QTφi. Left multiplying Q on both side of

Aui = λiBui, we obtain that

QAQTφi = λiQBQTφi = λiφi

which means λi are also the eigenvalues of the PSD matrix QAQT , thus λi ≥ 0.

Denote Φ = [φ̄1, φ̄2, . . . , φ̄n] as the normalized eigenvector matrix, where φ̄i = φi/
√

φT
i φi.

Since QAQT is symmetric, based on the spectral theorem, Φ is an orthonormal matrix, that

is, it satisfies ΦT = Φ−1. Thus we have QAQT = ΦΣΦT .

Let V = Q−1Φ, then we can obtain A = VΣVT and B = (QTQ)−1 = VVT . Thus we

have

trace(Y) = trace((XTVVTX)−XTVΣVTX)

= trace(PΣ)

where P := VTX(XTVVTX)−XTV is a projection matrix. Denote l = rank(XTV) ≤ m.

Since P is a projection matrix, it has l eigenvalues with value 1 and and n−l zero eigenvalues.
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Finally by applying Von Neumann’s trace inequality [10] we have

trace(PΣ) ≤
l∑

i=1

λi ≤
m∑
i=1

λi

The equality holds when X = Um because AUm = BUmΣm then UT
mAUm = UT

mBUmΣm

and

Y = (UT
mBUm)−1UT

mAUm = Σm.

�

Now we are ready to prove Theorem 5.2.

From (5.23) and (5.24), solving (P2) is equivalent to maximize the following cost function

J(X)=trace
{
RsxX

[
XT (Rxx + σ2In)X

]−
XTRT

sx

}
(5.57)

where X = AT
∞.

Let RT
sxRsx = A and Rxx +σ2In = B. Then the cost function in (5.57) can be rewritten

as

J(X)=trace
{[

XT (Rxx + σ2In)X
]−

XTRT
ssRsxX

}
(5.58)

= trace
{

(XTBX)−XTAX
}

(5.59)
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From Lemma 2, we have

J(X) ≤
m∑
i=1

λi (5.60)

where λi is the i-th largest eigenvalue of B−1A = (Rxx+σ2In)−RT
sxRsx. The maximum value

of J(X) is achieved when X is formed by the m leading eigenvectors of (Rxx+σ2In)−1RT
sxRsx.
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Chapter 6

Conclusions

This chapter summarizes the main contributions of this dissertation and lists some possible

directions for the future research.

6.1 Contributions

The contents presented in this dissertation focused on the development of the theories and

practices of energy aware sparse sensing schemes for the monitoring of random fields that

are correlated in the space and/or time domains. The main contributions are summarized

as follows. and the main contributions are summarized as follows.

At first we studied energy efficient LSE of random fields correlated in time and space

under a total power constraint. We considered uniform sampling schemes of a sensing system

with a single sensor and a linear sensor network with sensors distributed uniformly in a line

where sensors employ a fixed sampling rate to minimize the LSE error probability in the

long term. The exact analytical cost functions and their respective upper bounds of these

sampling schemes are developed by using an optimum thresholding-based LSE algorithm.

The design parameters of both sampling schemes are optimized by minimizing their respec-

tive cost functions. With the analytical results, we identified the optimum sampling period

and/or node distance that can minimize the LSE error probability. Analytical and simula-

tion results demonstrate that these sampling schemes can significantly reduce the amount of
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data collected by the system while obtain accurate LSE under a stringent power constraint.

Secondly we proposed active sparse sensing schemes with LSE of a spatial-temporally

correlated random field by using a limited number of spatially distributed sensors. In these

schemes a central controller is designed to dynamically select a limited number of sensing lo-

cations according to the information revealed from past measurements, with the objective to

minimize the expected level set estimation error. The expected estimation error probability

is explicitly expressed as a function of the selected sensing locations, and the results are used

to formulate the optimal sensing location selection problem as a combinatorial problem. Two

low complexity greedy algorithms were developed by using analytical upper bounds of the

expected estimation error probability. Both simulation and experiment results demonstrate

that the greedy algorithms can achieve significant performance gains over baseline passive

sensing algorithms and the GP Upper Confidence Bound (GP-UCB) level set estimation

algorithm.

Lastly we investigated the distributed estimations of a spatially correlated random field

with decentralized WSNs. we proposed a distributed iterative estimation algorithm that

defines the procedures for both information propagation and local estimation in each itera-

tion. The key parameters of the algorithm, including an edge weight matrix and a sample

weight matrix, are designed by following the asymptotically optimum criteria. It is shown

that the asymptotically optimum performance can be achieved by distributively projecting

the measurement samples into a subspace related to the covariance matrices of data and

noise samples. Simulation and experimental results show that all nodes in a large network

can obtain accurate estimation results with much less iterations than existing algorithms.

Inspired by the contents what we have done so far, some other topics are presented in
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this proposal for the future work.

6.2 Future Work

We list two possible directions for future work.

Firstly inspired by the idea of distributed estimation using linear iterations in Chapter

5, we are considering the problem of distributed computation in finite time in a distributed

WSN. How to design edge weight matrix and the sample weight introduced in Chapter 5

such that distributed computation can be reached in finite iterations close to the network

diameter is of great practical values. In many consensus algorithms [1,6–8,11,12] distributed

consensus is reached under various graph typologies asymptotically over an infinite-time

horizon. Some study on discrete-time distributed finite-time consensus algorithms has been

found in recent literature [2–5, 9, 10, 13] due to their nature of applicability, none of which

has addressed the problem of reaching distributed consensus in the discrete time steps equal

to the network diameter. We obtained some preliminary results to solve this problem. Each

node in the network is required to compute some function of initial values at all nodes through

information exchange step by step between their direct neighbors. Each node maintains a

state vector initialized by multiple weighted copies of its initial value and updates it by linear

iterations using linear combination of its previous state vector and those of all its neighbors.

A linear equation system combining the initial value vector and local observation vector from

aggregated state vectors at each node can be established. The linear equation system can

be solved thus function value of the initial vector can be calculated by running the linear

iteration for a finite number of time-steps until the system matrix is full-rank. We can adjust

the size of the state vector, which is upper bounded by the size of the network so that the
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number of time-steps needed to achieve distributed function calculation can be as small as

its lower bound, the diameter of the given graph. We want to investigate further conditions

and constraints on this solution that we have.

Secondly, we want to extend our work in Chapter 4 to LSE with mobile path planning.

The algorithms and results in Chapter 4 are developed without considering the mobility

constraints when a fixed number of samples are taken at each time slot if mobile sensing

systems is considered and the analytical performance results can serve as lower bounds

for systems with mobility constraints. Specifically we are interested in applying our LSE

algorithms into agricultural applications in which drones or other flying robots with camera

are used to gather light-spectrum related physical quantities such as the normalized difference

vegetation index (NDVI) in massive agricultural fields. Our goal is to estimate the level sets

of these physical quantities based on the a limited number of samples taken by drones flying

in certain heights over too large field such that it is costly to cover the entire field. Given

a fixed flying time, there are more samples taken in higher level which would potentially

improve the estimation accuracy; on the other side the samples taken in higher level would

suffer more distortion due to path loss and other environmental factors based on the nature

of light propagation in air. It is very attractive and practical to balance this tradeoff and

design optimum flying heights and paths.
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