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Abstract

Outlier detection is one of the most important challenges with many present-day

applications. Outliers can occur due to uncertainty in data generating mechanisms or due

to an error in data recording/processing. Outliers can drastically change the study’s results

and make predictions less reliable. Detecting outliers in longitudinal studies is quite

challenging because this kind of study is working with observations that change over time.

Therefore, the same subject can produce an outlier at one point in time produce regular

observations at all other time points. A Bayesian hierarchical modeling assigns parameters

that can quantify whether each observation is an outlier or not. The purpose of this thesis

is to detect the outlying observations by developing three approaches of techniques and

comparing each of them under different data generating mechanisms. In the first chapter,

we introduce the important concepts in Bayesian inference with three examples. The first

two examples (Binomial and Poisson distributions) are to illustrate the idea behind the

Monte Carlo method, while the last example (normal distribution) is to illustrate the

Markov Chain Monte Carlo (MCMC). We visited three different types of MCMC Methods:

Metropolis-Hastings, Gibbs sampler and Slice sampler which we have used in the three

algorithms of outlier detection. In Chapter Two, we used Gibbs sampler techniques with

the linear regression model. Simulated data with three covariates were used, and then we

applied our method to a real dataset: the Strong Rock data. We explained the findings

using diagrams. In Chapter Three, we focused on the core problem of identifying outliers by

using three methods. We applied our methods on four simulation datasets. We found that

the first two methods did not work well under assumptions of systematic heteroscedasticity

but the last one did an efficient job, as we expected, even when the functional form of

heteroscedasticity was not correctly specified. Next, we formulated our model for the real

data, so we could apply the methods that we developed in chapter three. Given access to

the real data that have large numbers of observations, we will apply these methods.
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Chapter 1

Bayesian Inference

1.1 Hierarchical Model and Bayes’s Theorem

Bayesian inference refers to a paradigm that is used for estimation of parameters from a

statistical model. This method is based on Bayes’s theorem, an important theorem in

statistics. In the 18th century, Thomas Bayes, one of the famous mathematicians and

theologians, discovered this important theorem which we will discuss in the next section. A

hierarchical model connects multiple simple intuitive models in a hierarchy so that the

resultant joint probability model can capture complex dependence patterns from correlated

data. Gelman et al. (2014) gives an interesting example: “in a study of the effectiveness of

cardiac treatments, with the patients in hospital j having survival probability θj, it might

be reasonable to expect that estimates of the θj’s, which represent a sample of hospitals,

should be related. We shall see that this is achieved in a natural way if we use a prior

distribution in which the θj’s are viewed as a sample from a common population

distribution. A key feature of such applications is that the observed data, yij, with units

indexed by i within group indexed by j, can be used to estimate aspect of the population

distribution of the θj’s even though the values of θj are not themselves observed”.

Hierarchical modeling is the best way to model this kind of problem, as it connects the data

with the prior distribution based on historical information about the model parameters.

In Bayesian hierarchical modeling, the probability distribution of data contains

parameters. The parameters are assigned probability distributions, referred to as priors.

There can be parameters inside these prior distributions as well, and they are called

hyper-parameters, and the distribution of the hyper-parameter is called the hyper-prior
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(Banerjee et al., 2014).

We give an example of hierarchical model using grouped data. Suppose, there are k

groups with possibly different number of observations. Let yij be the jth observation in

group i for j = 1, 2, . . . , ni and i = 1, 2, . . . , k. We model yij ∼ f(µi), where f is a

probability distribution with parameter µi. Then, µ1, µ2, . . . , µk are the parameters and we

assigned each of them a prior distribution g such that µi ∼ g(θ) where θ is an

hyper-parameter. We could also assign a hyper-prior to θ with a parameter λ whose value

is fixed. In Fig. 1.1, we present the hierarchical structure for this model. This example was

motivated by a similar setting in Fig.1 of Al-Amin et al. (2014).

Fig. 1.1: An exmaple of hierarchical model for grouped data

1.1.1 Prior, Likelihood and Posterior Distributions

There are three important parts in Bayesian inference: prior, likelihood, and posterior. A

brief explanation of each part is provided in the following.
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First of all, the prior distribution for any parameter θ, denoted by π(θ), is one’s initial

beliefs about a probability distribution before information has been examined. For

example, our interest is in the probability distribution of voters in favor of a specific party

in an upcoming election. There are several ways to get a prior distribution. For example,

using information from past elections can help us to determine an appropriate prior

distribution for the proportion of voters willing to support the party. We can also use the

supposition of an expert, which will help us to select the prior distribution for the required

model. Moreover, an uninformative prior, one which lacks available information, could be

determined by equally weighing all possibilities. There are some priors that can be selected

by certain qualities such as, the Jeffrey or Bernardo’s reference prior (Banerjee et al., 2014).

The likelihood function, the second factor in the Bayesian inference, describes the

possibility of different values of a parameter solely from observed data.

The last factor of the Bayesian inference is the posterior distribution, which is denoted

by π(θ|D), where D is the data. We can think about the posterior distribution as a

modification of the prior distribution after the data are observed using the likelihood as a

function of parameters. The posterior distribution is how we make inferences about

unknown parameters.

When π(θ) is the prior distribution, and we have independent observations

x1, x2, . . . , xn, then f(D|θ) =
n∏
i=1

(f(xi|θ)) is the likelihood function, and π(θ|D) is the

posterior distribution. This formula was derived from the classic Bayes Theorem which is

π(θ|D,α) =
f(D|θ)h(θ|α)∫
f(D|u)h(u|α)du

(1.1)

In summary, the prior distribution is the best way to guess the parameters before

observing the data, and the posterior distribution is the one to use after observing the
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data. This relationship can be written as follows:

Posterior ∝ Likelihood× Prior

π(θ|D) ∝
n∏
i=1

(f(xi|θ))× π(θ)

Bayes theorem, or Bayes’s rule, is one of the most famous theorems in statistics. It is used

to define the probability of an event by using the information about the prior distribution

that may be related to the event. In this subsection, we will consider the following example

to better understand the Bayesian Hierarchal model by using the Bayes theorem. If we

want to determine the background for students in a math class, we need to get information

about the student’s high school grades, then combine them with their current grade point

average (GPA). This will give us an estimate for how well they did in the math class.

However, in many situations, the posterior π(θ|D) may not be a standard distribution.

In those cases, it may become difficult to solve the problem analytically or numerically.

Therefore, there is a special technique called the Monte Carlo Method which is used to

learn the properties of θ by drawing samples from π(θ|D) and then performing empirical

computation.

1.2 Monte Carlo Method for Bayesian

If we are uncertain about the inputs in any experiment, then we can simulate the posterior

by using the Monte Carlo (MC) method (Gilks et al., 1995). The main objective of the MC

method is to compute results based on repeated random sampling and statistical analysis.

Monte Carlo Methods are used in high dimensional problems, and can often be used with

other methods to complete analyses (Geman and Geman, 1984). The results of the many

experiments that use the MC method simulation are not well documented. However, there

are many applications that are difficult to integrate because they have complex hierarchical
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structures. We will show two examples for posterior distributions; one for a binomial

distribution and the other for a Poisson distribution.

1.2.1 Binomial Distribution Example

Let us consider n independent binomial experiments with a different number of trials but

the same probability of success. Assume y1 was the number of success in the first

experiment out of n1 trials, y2 the number of success in the second experiment out of n2

trials and so on. For simplicity we can write it as

yi ∼ Bin(ni, p), where 0 < p < 1, and ni is known. We want to determine the posterior

distribution of p. The likelihood function L(y) can be found by multiplying the n binomial

functions, so we can define it as follows:

L(y) =
n∏
i=1

f(yi) =
n∏
i=1

(
ni
yi

)
pyi(1− p)ni−yi (1.2)

We can choose beta to be the prior distribution. So, the prior distribution is

p ∼ Beta(a0, b0)

π(p) ∝ pa0−1(1− p)b0−1

We can get the posterior binomial distribution by multiplying the likelihood function and

posterior distribution as follows:

π(p|y) ∝ L(y)π(p)

∝
n∏
i=1

(
ni
yi

)
pyi(1− p)ni−yipa0−1(1− p)b0−1

∝ p
∑n

i=1 yi(1− p)
∑n

i=1(ni−yi)pa0−1(1− p)b0−1

∝ p
∑n

i=1 yi+a0−1(1− p)
∑n

i=1(ni−yi)+b0−1

From the above form we conclude that p follows a beta distribution with shape

5



=
∑n

i=1 yi + a0 and rate =
∑n

i=1(ni − yi) + b0.

p|D ∼ Beta
( n∑
i=1

yi + a0,

n∑
i=1

(ni − yi) + b0

)
(1.3)

We applied the posterior distribution that we got in Eq. 1.3 for a dataset with 100

observations. The dataset was generated by a binomial distribution with p = 0.8. We used

the posterior to simulate samples of p, and we plotted the histogram in Fig.1.2-a. The

posterior samples mean of p is equal to 0.7899, and it lies inside the 95% credible intervals,

which is (0.7654, 0.8134). The red line marks the true value for p = 0.8. In Fig.1.2-b, we

plotted the likelihood function and the prior distribution with rate = 2 and shape = 5

which were represented by the long red dashed line. It is clear that it was far from the

data. We plotted the posterior density also, which was represented by the solid blue line,

and it is very close to the likelihood function.

(a) Histogram for posterior samples for p

0.74 0.76 0.78 0.80 0.82 0.84 0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
35

(b)  Likelihood, Prior and Posterior Densities

Likelihood
Prior
Posterior

Fig. 1.2: Densities and Histogram for Binomial Distribution Example: red line denotes the true
value from the simulation
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1.2.2 Poisson Distribution Example

In a second illustration of Monte Carlo methods, we discussed the posterior inference for a

Poisson model. Lets say yi ∼ Poi(λ), where i = 1, 2, . . . , n. The likelihood function of y is

defined as follows:

L(y|λ) =
n∏
i=1

f(yi|λ)

=
n∏
i=1

exp(−λ)
λyi

yi!

= exp(−nλ)
λy1λy2 . . . λyn

y1!y2! . . . yn!

= exp(−nλ)
λ
∑n

i=1 yi

y1!y2! . . . yn!

Now let us consider that λ follows the gamma prior distribution such as λ ∼ Γ(a0, b0), with

density function f(λ) =
b
a0
0

Γ(a0)
λ(a0−1) exp(−b0λ). As we can see, the prior distribution of λ is

expressed as π(λ) ∝ exp(−b0λ)λa0−1. Notice that the prior distribution of λ , π(λ), must

be a distribution that only allows positive values because λ can only be present with

positive real numbers.

After finding the likelihood function and the prior distribution, now we are ready to

derive the posterior distribution for λ|D by multiplying both of them as we can see below:

π(λ|y) ∝ L(y|λ)× π(y)

= exp(−nλ)
λ
∑n

i yi

y1!y2! . . . yn!
exp(−b0λ)λa0−1

= exp(−nλ)λ
∑n

i yi exp(−b0λ)λa0−1

= exp(−(n+ b0)λ)λ
∑n

i yi+a0−1

It is clear that the appropriate conditional posterior distribution for λ|D is the gamma

7



distribution with shape =
n∑
i

yi + a0 and rate = n+ b0.

λ|D ∼ Gam
( n∑

i

yi + a0, n+ b0

)
(1.4)

The simulation data that we applied in the above method has 50 observations. It was

generated by using a Poisson distribution with λ = 4.8. We used Eq. 1.4, to simulate

samples for λ, and we plotted the histogram for the posterior samples in Fig. 1.3-a. The

true value for λ = 4.8 was marked by the red line. The posterior sample mean, 4.6725, is

close to the true value and it lies in the 95% CI which is (4.1037, 5.2729). In Fig. 1.3-b, we

plotted the prior, likelihood and posterior distributions. The posterior distribution is very

close to the likelihood function which indicates that the likelihood has much stronger

influence on the final inference than the prior.

(a) Histogram for posterior samples for λ

3.5 4.0 4.5 5.0 5.5 6.0 0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

(b)  Likelihood, Prior and Posterior Densities

Likelihood
Prior
Posterior

Fig. 1.3: Densities and Histogram for Poisson Distribution Example: red line denotes the true
value from the simulation

However, it is possible that there may be situations where π(θ|D) is non-standard, and
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it is not easy to sample from them directly. More commonly, a complex hierarchical model

has many parameters. In that case, π(θ|D) is a high-dimensional posterior distribution. As

described below, Markov Chain Monte Carlo is an efficient way to solve these types of

problems.

1.3 Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo (MCMC) method is useful when it is challenging to

sample from the target posterior density. MCMC is one of the most important techniques

in statistics, and it is used widely in many statistical applications. These kinds of methods

are types of algorithms which work by sampling the probability distribution that is derived

from a MC method (Gill et al., 2012). After several steps, the MCMC uses the chain as an

approximate sample of desired distribution. The approximation improves after many steps

are complete. In the remainder of this chapter, we will describe the three important

MCMC methods that we used in this thesis, which are Metropolis-Hastings, Gibbs

sampling and slice sampling, with necessary theoretical justification.

1.3.1 Metropolis-Hastings (M-H)

One of the important types in MCMC algorithms is the Metropolis - Hastings (M-H)

algorithm. M-H works by drawing a sample from any proposal distribution q(θ|θold)

whereas the original target was to draw from another density p(θ). One of the most

important flexibilities which makes M-H more suitable is that it is adequate to know p(θ)

up to a proportianality constant. That is useful because in some situations it is difficult to

compute the necessary normalization factor. The process of the M-H algorithm works by

creating samples one-by-one, moving from one sample to the next one. The algorithm uses

a proposal distribution for the next sample that is dependent on the current sample value

(Chib and Greenberg, 1995). This candidate will be either accepted or rejected based on
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an acceptance probability. The probability of acceptance is determined by comparing the

ratio of p(θ) at proposed and current values and the ratio of q(θ) at those values as well.

Moreover, there is a special case of the M-H algorithm when the proposal function is

symmetric which is called the Metropolis algorithm. We can summarize the M-H algorithm

as follows.

Algorithm 1 Metropolis-Hastings (M-H)

INPUT: θ(i−1) = (θ
(i−1)
1 , θ

(i−1)
2 , . . . , θ

(i−1)
k ), q(x)

OUTPUT: θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k )

θproposed ∼ q(θproposed|θ)

R(θproposed, θ(i−1)) = min(1, p(θ
proposed)q(θ(−1)|θproposed)

p(θ(i−1))q(θproposed|θ(i−1))
)

u ∼ unif(0, 1)

if u ≤ R(θproposed, θ(i−1)), then

θ(i) = θproposed

else

θ(i) = θ(i−1)

end if

1.3.2 Gibbs Sampling

Gibbs sampling is a version of the MCMC method. The process is that if we are given a

multivariate distribution, then we should divide the vector into several blocks and sample

each block for its conditional distribution given other blocks. The idea in Gibbs sampling is

to generate posterior samples by sweeping through each variable (or block of variables)

(Carter and Kohn, 1994). Eventually, we reach a sample from its conditional distribution

with the remaining variables fixed to their current values. Suppose we have k parameters

θ1, θ2, . . . , θk, so Gibbs sampling can be found by first finding the joint posterior

π(θ1, θ2, . . . , θk|D) and by multiplying the likelihood with the prior π(θ1), π(θ2), . . . , π(θk).

10



Then, we update parameters one by one. For example, for θ1 and if we assume all other θ′s

are fixed at their current values, then we can find conditional posterior for θ1 which is

π(θ1|θ2, . . . , θk, D). We repeat this process for θ2 and then for θ3 until θk; so we have k

conditional posteriors. In the next step, we draw the rephrase symbol for each conditional

distribution by using large numbers. That gives us posterior samples for each of

θ1, θ2, . . . , θk which we then analyze. In the following algorithm, we summarize the Gibbs

sampler steps.

Algorithm 2 Gibbs Sampler

INPUT: θ(i−1) = (θ
(i−1)
1 , θ

(i−1)
2 , . . . , θ

(i−1)
k )

OUTPUT: θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k )

for i = 1, 2, . . . , N do

θ
(i)
1 ∼ p(θ1|θ(i−1)

2 , θ
(i−1)
2 , . . . , θ

(i−1)
k )

θ
(i)
2 ∼ p(θ2|θ(i)

1 , θ
(i−1)
3 , . . . , θ

(i−1)
k )

θ
(i)
3 ∼ p(θ3|θ(i)

1 , θ
(i)
2 , . . . , θ

(i−1)
k )

...

θ
(i)
k ∼ p(θk|θ(i)

2 , θ
(i)
2 , . . . , θ

(i)
k−1)

end for

In the next section, we will show an example for Gibbs sampling with normal

distribution, where the two parameters µ and σ have been estimated by the above steps.

1.3.3 Slice Sampling

Slice sampling is another method of the MCMC technique. It is a useful tool for drawing

samples from a posterior distribution which is not easy to draw from (Neal, 2003). To

understand slice sampling, let us consider the parameter θ with distribution f(θ). It is easy

to use slice sampling if the following conditions are satisfied: f(θ) can be written as

f(θ) = g(θ)h(θ) with h(θ) always positive. Since it is not easy to draw samples from f(θ),

11



we need to introduce a new random variable u.

f(u, θ) = π(u|θ)f(θ) = g(θ)h(θ)
1

h(θ)
1(u < h(θ)) = g(θ)1(u < h(θ))

We can summarize the slice sampler steps by the following algorithm.

Algorithm 3 Slice Sampler

INPUT: θ(i−1) = (θ
(i−1)
1 , θ

(i−1)
2 , . . . , θ

(i−1)
k )

OUTPUT: θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k )

f(θ) = g(θ)h(θ) where h(θ) > 0

for i = 1, 2, . . . , N do

u ∼ unif(0, h(θ))

π(u|θ) = 1
h(θ)

1(u < h(θ))

f(θ|u) = g(θ)1(θ ∈ H(u)) where H(u) = h−1(θ)

end for

1.4 Illustration Examples

We implement Gibbs sampling with a simulation from normal distribution. We summarize

the result for posterior distributions by using diagrams.

1.4.1 Simulation Example from Normal Distribution

Suppose, x1, . . . , xn ∼ N(µ, σ2) where µ, σ2 unknown.

f(x) =
1√

2πσ2
exp

(
− 1

2

(x− µ)2

σ2

)

In this example, we want to understand how Gibbs sampling works with a normal

distribution that has two parameters, µ and σ2. In the beginning, we found the likelihood

12



function by multiplying the n densities functions. The likelihood function will be,

f(x) ∝
n∏
i=1

1√
2πσ2

exp
(
− 1

2

(xi − µ)2

σ2

)
(1.5)

Now, we assume appropriate priors for both unknown parameters. Let us assume that the

prior for µ is N(µ0, σ
2
0). Inverse gamma is the conjugate prior distribution of variance of

the normal distribution. Because of this, we choose the prior distribution for σ2 to be

IG(a0, b0).

µ ∼ N(µ0, σ
2
0) ∝ exp

(1

2

(µ− µ0)2

σ2
0

)
σ2 ∼ IG(a0, b0) ∝ 1

(σ2)a0+1
exp

(
− b0

σ2

)

We obtain the conditional posterior for µ, σ2 by multiplying the likelihood function by the

prior distributions of µ, σ2. Beginning with the conditional posterior for µ, the procedures

were derived by the posterior distribution for µ shown below

π(µ|σ2, D) ∝
n∏
i=1

exp
(
− 1

2

(xi − µ)2

σ2

)
exp

(
− 1

2

(µ− µ0)2

σ2
0

)
∝ exp

(
− 1

2

∑n
i=1(xi − µ)2

σ2

)
exp

(1

2

(µ− µ0)2

σ2
0

)
∝ exp

(
− 1

2

[∑n
i=1(x2

i − 2µµi + µ2)

σ2
+
µ2 − 2µµ0 + µ2

0

σ2
0

])
∝ exp

(
− 1

2

[∑n
i=1(−2µxi + µ2)

σ2
0

+
µ2 − 2µµ0

σ2
0

])
∝ exp

(
− 1

2

[
µ2(

n

σ2
+

1

σ2
0

)− 2µ(

∑n
i=1 xi
σ2

+
µ0

σ2
0

)
])

For simplification, we will use, A = n
σ2 + 1

σ2
0
, and B =

∑n
i=1 xi
σ2 + µ0

σ2
0
, so the posterior

13



distribution for µ will be

f(µ|σ2, D) ∝ exp
(
− 1

2

[
Aµ2 − 2Bµ

])
∝ exp

(
− 1

2

[
Aµ2 − 2

B

A
Aµ
])

∝ exp
(−A

2

[
µ2 − 2

B

A
µ
])

∝ exp
(−A

2

[
µ2 − 2

B

A
µ+ (

B

A
)2
])

∝ exp
(−A

2

(
µ− (

B

A
)2
)

∝ exp
(
− 1

2

µ− (B
A

)2

1
A

)

From the above computation, the conditional posterior distribution for µ given σ2 and the

data is also a normal distribution with mean equal to B
A

and variance equal to 1
A

,

µ|σ2, D ∼ N(
B

A
,

1

A
) (1.6)

Second, we will find the posterior distribution for σ2 by fixing µ and the data by

following the same process as above.

π(σ2|µ,D) =
1

(σ2)
1
2

exp
(
−1

2

(xi − µ)2

σ2

)
× 1

(σ2)a0+1
exp

(
− b0

σ2

)
=

1

(σ2)
n
2

exp
(
−1

2

∑n
i=1(xi − µ)2

σ2

)
× 1

(σ2)a0+1
exp

(
− b0

σ2

)
=

1

(σ2)
n
2

+a0+1
exp

(
− 1

σ2

[∑n
i=1(xi − µ)2

2
+ b0

])

Apparent from this computation, the conditional posterior distribution for σ2 is an

inverse gamma with shape = n
2

+ a0, and scale =
∑n

i=1(xi−µ)2

2
+ b0. The conditional

14



posterior distribution for σ2 given µ and the data (D) is

σ2|µ,D ∼ IG(
n

2
+ a0,

∑n
i=1(xi − µ)2

2
+ b0) (1.7)

In this case, 1
σ2 will follow the Gamma distribution with the same shape and rate. In other

words, since σ2 is an inverse gamma distribution, it follows that 1
σ2 is a gamma distribution.

1

σ2
∼ Γ(

n

2
+ a0,

∑n
i=1(xi − µ)2

2
+ b0) (1.8)

We can fit the Bayesian model based on the posterior distribution for µ and posterior

distribution for σ2 that we derived above. We generated a simulation dataset with 200

observations by using the normal distribution with µ = 3.8 and σ2 = 4. In Fig. 1.4, we

plotted the likelihood function, prior distribution and the posterior distribution from a

normal distribution with small and large datasets. We chose the initial parameters for

normal prior distribution to be µ = −10 and σ2 = 10, and for the inverse gamma

distribution to be a0 = 2.1 and b0 = 2.1.
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Fig. 1.4: Posterior samples distribution plots for µ and σ2 with small and large sample size

We used Eq.1.6 and Eq. 1.8 to simulate samples for µ and σ2, respectively. The

resulting histogram shown in Fig.1.5 displays the fundamental difference for both µ and σ2

when we chose a different number of iterations. When we had a small number of iterations,

the distributions of both µ and σ2 are unorganized (skewed), and it looks like a multi-model

as we can see in Fig. 1.5-(a,c). However, when we had a large number of iterations, we

actually approached a normal distribution as we see in Fig. 1.5-(b,d). It is clear that they
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are approximately symmetric. It is obvious that we need a large number of iterations in

Gibbs sampling since our choices for the prior initial values were far away from the true

values. In Fig. 1.5-(a-d), the true values for µ and σ2 are delineated by the red line.

(a) Histogram for µ when N = 10

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

(b) Histogram for µ when N = 10000

3.4 3.6 3.8 4.0 4.2

(c) Histogram for σ2 when N = 10

0 50 100 150 200

(c) Histogram for σ2 when N = 10000

2.5 3.0 3.5 4.0 4.5 5.0

Fig. 1.5: Histograms for posterior samples for µ and σ2 when N = 100 and N = 10000: red line
denotes the true value from the simulation

In Table 1.1, we included the true value, posterior mean and 95% credible intervals for

both µ and σ2. The credible interval when N = 10 is wider than the credible intervals

when N = 10000. This indicates that for a large number of iterations our posterior mean

becomes closer to the true value.
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Table 1.1: Comparison among true values, posterior means and 95% credible intervals when
N = 10 iterations vs. N = 10000 iterations

# of Iterations N = 10 N = 10000

True Value Posterior Mean 95% Credible Interval Posterior Mean 95% Credible Interval

µ 3.8 3.6966 (2.8631, 3.9730 ) 3.7665 (3.5109, 4.0189)

σ2 4.0 24.6631 (3.0654, 167.8721) 3.3920 (2.7836, 4.1155)
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Chapter 2

Bayesian Inference in Regression

2.1 Introduction

Regression analysis is a statistical procedure to estimate the relationships between variables

and how to use that relationship for predictive purposes. In general, regression analysis

focuses on the relationship between a dependent variable and one or more independent

variables, which are also known as the predictors. Regression analysis is important because

it can help us understand the changes of a specific value of the dependent variable when an

independent variable is altered, while the other independent variables remain constant

(Vaughn, 2008). In this case, to model linear regression, we can use an advertising

expenditures example - advertising expense is the independent variable and the dependent

variable is sales. This model can be useful for businesses making advertising decisions.

Depending on how many independent variables we are using, we refer to it as simple

and multiple regression. Simple regression is used when we have only one independent

variable while multiple regression is used when more than one independent variable is

present. Moreover, the relationships among variables can be of different kinds - if the

relationship is assumed to be in the form of a straight line then it can be defined by a

linear regression model, while the nonlinear regression model can be defined by general

curves between the variables (Vaughn, 2008). There are many different ways to approach a

regression model. Some are simple, while others are quite complex, but all have the power

to explain the response in different levels.

In this chapter, we will discuss MCMC algorithms for multiple linear regression which

we are going to use as a starting point for developing outlier detection methods in Chapter
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3.

2.2 Bayesian Inference of a Multivariate Linear Regression

In this section, we are going to focus on construction of a Gibbs sampler for multiple linear

regression. The linear regression equation is

yi = β0 + β1xi1 + · · ·+ βpxip + εi, where εi ∼ N(0, σ2)

For n observations, the multiple linear regression in matrix notations is, given by y, where

Y = Xβ + ε, where ε ∼MVNn(0n, σ
2In)

such that Y is a n× 1 vector, β is an (p+ 1)× 1 vector, X is n× (p+ 1) matrix, 0n is zero

vector of length n, σ2 is a scalar value, and In is n× n identical matrix.

From above, we conclude that y ∼MVNn(Xβ, σ2In), so the likelihood function is

defined as follows:

L(y) =
n∏
i=1

f(yi)

=
1

(σ2)
n
2

exp
(
− 1

2
(y −Xβ)T (σ2In)−1(y −Xβ)

)
=

1

(σ2)
n
2

exp
(
− 1

2
(y −Xβ)T

In
σ2

(y −Xβ)
)

=
1

(σ2)
n
2

exp
(
− 1

2

(y −Xβ)T (y −Xβ)

σ2

)

We chose the prior for β as β ∼MVN(0, c0Ip+1), where c0 was chosen to be a large

value, the prior for σ2 as σ2 ∼ IG(a0, b0), and a0 and b0 are the initial values. The
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conditional posterior distribution for β can be defined as follows:

π(β|σ2, D) ∝ L(y)× Π(σ2|β,D)

∝ exp
(
− 1

2

[(y −Xβ)T (y −Xβ)

σ2
+
βTβ

c0

])
∝ exp

(
− 1

2

[yTy − yTXβ − βTXTy + βTXTXβ

σ2
+
βTβ

c0

])
∝ exp

(
− 1

2

[−yTXβ − βTXy + βTXTXβ

σ2
+
βTβ

c0

])
∝ exp

(
− 1

2

[−2βTXTy + βTXTXβ

σ2
+
βTβ

c0

])
∝ exp

(
− 1

2

[
− 2βT

XTy

σ2
+ βT (

XTX

σ2
)β + βT (

I

c0

)β
])

∝ exp
(
− 1

2

[
− 2βT

XTy

σ2
+ βT

])
∝ exp

(
− 1

2

[
− 2βT

XTy

σ2
+ βT [

XTX

σ2
+
I

c0

]β
])

By considering b = XT y
σ2 and A = XTX

σ2 + I
c0

, we can rewrite the posterior distribution for β

as follows:

π(β|σ2, D) ∝ f(y)× Π(σ2)

∝ exp
(

(−1

2

[
βTAβ − 2βT b

]
)
)

∝ exp
(
−1

2
(β − p)Tφ(β − p)

)
∝ exp

(
−1

2
(β − A−1b)TA(β − A−1b)

)

The above equation matches the multivariate normal density with µ = A−1b and Σ = A−1.

Therefore, the full conditional posterior for β is

β ∼MVN(A−1b, A−1) where A =
XTX

σ2
+
I

c0

and b =
XTy

σ2
(2.1)

We found the full conditional posterior distribution for σ2. Let us define

21



G1 = (y −Xβ)T (y −Xβ), hence

π(σ2|β,D) ∝ (σ2)−
n
2 exp

(
− 1

2

G1

σ2

)
(σ2)−(a0+1) exp

(
− b0

σ2

)
∝ (σ2)−

n
2
−(a0+1) exp

(
− 1

σ2
(
G1

2
+ b0)

)
∝ (σ2)−(n

2
+a0+1) exp

(
− 1

σ2
(
G1

2
+ b0)

)

The above formula is similar to the inverse gamma distribution with shape equal to n
2

+ a0

and rate equal to G1

2
+ b0. So, the posterior distribution for σ2 is

σ2 ∼ IG(
n

2
+ a0,

G1

2
+ b0) (2.2)

2.3 Illustrative Examples

We applied the Gibbs sampler that was developed above to two regression examples - one

with a simulated dataset and another with a real dataset.

2.3.1 Example 1: Simulation Example with Three Covariates

In this example, we used the posterior distributions for µ and σ2 (Eq. 2.1 and Eq. 2.2). We

generated 250 observations by first simulating x-variables uniformly with (0, 1), and then

we used β = (2.5,−1.2, 4.8, 0.07) and σ2 = 0.16. Running the Gibbs sampler for 100000

iterations, we acquired the posterior sample mean for all the parameters, which are

β0, β1, β2, β3 and σ2. We plotted the histograms for posterior samples of these parameters

in Fig. 2.1, and we marked the true values for these parameters by a red line. All the

parameters in the posterior sample histograms were approximately normal, and the true

values for the parameters were close to the samples mean. Moreover, we used the model to

predict the response for selected x values of (1.23, 0.12, 0.37, 0.32). The responses were

plotted as histograms for the all the samples for the prediction, and we marked the true
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value with the red line.

β0

2.2 2.4 2.6 2.8

β1

-1.6 -1.4 -1.2 -1.0 -0.8

β2

4.4 4.6 4.8 5.0 5.2

β3

-0.2 0.0 0.2 0.4 0.6

σ2

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

ynew

4.0 4.1 4.2 4.3

Fig. 2.1: Posterior Histograms for β0, β1, β2, β3, σ
2 and ynew: red line denotes the true value from

the simulation

In Table 2.1, we compared the true values for our parameters with the posterior sample

means, and we created 95% CI for all the parameters and the prediction of ynew. All of the

true values lie inside the 95% CI which indicates that the estimation is satisfactory.
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Table 2.1: True Values, Predicted Values & 95% Credible Interval

True Value Posterior Mean 95% Credible Interval

β0 2.50 2.4369 ( 2.2686 , 2.6038 )

β1 -1.20 -1.1664 ( -1.3563 , -0.9770 )

β2 4.80 4.7123 ( 4.5299 , 4.8930 )

β3 0.07 0.2487 ( 0.0671 , 0.4292 )

σ2 0.16 0.1763 ( 0.1480 , 0.2101 )

ynew 4.15 4.1201 ( 4.0226 , 4.2174 )

2.3.2 Example 2: Analysis of Rock Strength Dataset

We used the Gibbs sampler to analyze the Rock Strength Dataset (RSD). The RSD (Ali

et al., 2014) contains information about the relationship between Uniaxial Compressive

Strength (UCS) and 8 predictors, which are %Quartz, %Plagaoclase, %K.feldspar,

%Hornblende, Grain size (mm), Grain area (mm2), Aspect Ratio and Shape Factor for 30

rock specimens. First, we normalized the data, and then we ran the Gibbs sampler for

10000 iterations to create posterior samples for our parameters, which are

β0, . . . , β8, and σ2.
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Fig. 2.2: Posterior Histograms for RSD: red line denotes the true UCS for test observations

In Fig. 2.2, we plotted the histograms for posterior samples for all the parameters in

our model. It is clear that they are approximately symmetric with a large number of

iterations. We checked our prediction by using leave-one-out-cross validation (LOOCV) by

leaving out one of the observations and estimating the model with the rest of the

observations. In our example, we have 30 observations, which means we repeated the

procedure 30 times. We found that 93% of the prediction of our samples lie inside the 95%

credible intervals, which means that 28 of 30 prediction values lie inside the 95% CI. We

plotted the histogram for two posterior samples, y15 and y25, one lying inside the 95% CI

and the other outside. We marked the true value for y15 and y25 by the red lines.
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In Table 2.2, we show all the posterior means for all the parameters and the two

prediction values. The most significant variables were % Quartz and Aspect Ratio.

Table 2.2: Predicted Values & 95% Credible Interval

Intercept % Quartz % Plagaoclase

104.9958 (103.4305 , 106.4273) 2.3129 (0.3548 , 4.2481) 1.6855 (-0.5103 , 3.8742)

% K.feldspar % Hornblende Grain size (mm)

-0.3945 (-2.8232 , 2.0350) 2.5563 (-0.05526 , 5.1791) -3.1271 (-11.8750 , 5.6153)

Grain area (mm2) Aspect Ratio Shape Factor for 30 rock specimens

-1.6038 (-9.8060 , 6.6122) 2.7616 (0.4790 , 5.0350) 1.2611 (-0.9408 , 3.4443)

σ2 y15 = 104.5 y25 = 101

16.6176 ( 9.5632 , 28.6522 ) 115.7421(107.0332 , 124.4515) 99.8877 (90.5009 , 109.2746 )
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Chapter 3

Bayesian Model for Outliers in Regression

3.1 Introduction

In this chapter, we are focusing on detecting outliers from a large dataset using regression.

Longitudinal studies are one of the common studies in many different types of research. A

longitudinal study is useful to understand the changes of development over long periods of

time such as days, weeks, months, or even years. The longitudinal studies are very useful

for many health and medical issues. Obesity is a growing concern, and it is best measured

with longitudinal studies. According to past research, approximately one in three children

in the United States over two years of age are either overweight or obese (Ogden et al.,

2012). Arkansas has an even greater problem with childhood obesity, with 38.8% either

overweight or obese in the 2013-2014 school years. Moreover, there is a correlation between

childhood obesity and adult obesity. Since this kind of study tracks people over long

periods of time, the longitudinal studies are very useful for studying obesity. But these

kinds of studies are very sensitive because the data of these studies is changing over time.

There are many elements that are affected by change over periods of time which will affect

the results of the study. However, the biggest challenge in these kinds of studies is the

occurrence of outlying observations. In fact, there are two different types of outliers in

longitudinal studies, which are cross-sectional and longitudinal cross-sectional outliers. We

can define the outliers as those observations that are different from the rest of the

observations of the same individual. There are several things that cause outliers, such as

incorrect data entry, inappropriate measurements, and biased observations recorded on

different individuals. These kinds of outliers can affect the results of an experiment. In this
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chapter, we built models to be applied to datasets on height, weight, and BMI, gathered on

public school children in the state of Arkansas to detect and eliminate cross-sectional and

longitudinal outliers before the outliers can be used for analysis. We expect the models to

be more sensitive to detect the outliers among heights as compared to weights. Because

children of school age may have many elements that will affect their growth, children of the

same age and in the same grade will not have the same measurments for height due to

several factors, such as lifestyle, weight and genetics. Those factors can be added as

covariates in regression. In this chapter, we will work with three different methods to

detect outliers in heights and weights, and then suggest the best one for detecting outliers.

In regression, we can not consider an observation to be an outlier just because it has a

very high/low value. Rather, an observation should be an outlier if compared to the rest of

the data, it could not be explained by the covariates. Things would become more

challenging if the ability of the model to explain a response value depends on the covariates

of the observation (systematic heteroscedasticity). We shall start with simpler hierarchical

models without taking into account this type of behavior and then improve our model to

address this.

3.2 Hierarchical Model for Outlier detection

We defined our multiple regression model as follows:

Y = Xβ + ε, where ε ∼MVNn(0n,Σ)

where Σ is a diagonal matrix of σ2
i , i = 1, . . . , n. We allow every observation to vary

around the regression line. Because we tried to detect the outliers, we had a separate σ2
i for

every observation instead of having only one σ2 for data entered. An outlier will be

indicated by εi having a large positive or negative value. This in turn implies the
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corresponding σ2
i must be a large positive (because the mean for ε is zero which means σ2

i

needs to be large to allow large positive or negative values of εi.). Using a common σ2

would not achieve this constraint. In this case, our full posterior distribution will be as

follows:

π(σ2
1, . . . , σ

2
n|D, β) ∝ L(D|β, σ2

1, . . . , σ
2
n)π(σ2

1) . . . π(σ2
n) (3.1)

To detect the outliers, we need to identify any position i with large σ2
i .

There are many ways to solve this problem, but first we need to put a prior on each σ2
i .

There are two options for choosing appropriate prior distributions for each σ2
i . We will

apply both options and refer to them as Method I and Method II.

For Method I, suppose that σ2
i follows an inverse gamma prior distribution with a

shape equal to a0 and rate equal to b0 ( i.e., σ2
i ∼ IG(a0, b0), i = 1, . . . n). So,

π(σ2
i ) = (σ2

i )
−a0−1 × exp(− b0

σ2
i

) (3.2)

The likelihood function in this case can be written as:

L(y) ∝ | Σ |−
1
2 exp

(
−1

2
(y −Xβ)TΣ−1(y −Xβ)

)
∝ (σ2

1 . . . σ
2
n)−

1
2 exp

(
−1

2
(y −Xβ)Tdiag(

1

σ2
i

)(y −Xβ)
)
, i = 1, . . . , n.

∝ (σ2
1 . . . σ

2
n)−

1
2 exp

(
−1

2

[
yi − xT1 β, y2 − xT2 β, . . . , yn − xTnβ

])

× diag(
1

σ2
i

)



y1 − xT1 β

y2 − xT2 β
...

yn − xTnβ


∝ (σ2

1 . . . σ
2
n)−

1
2 exp

(
−1

2

[(y1 − xT1 β)2

σ2
1

+
(y2 − xT2 β)2

σ2
2

+ · · ·+ (yn − xTnβ)2

σ2
n

])
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Hence,

L(y) = (σ2
1 . . . σ

2
n)−

1
2 exp

(
−1

2

n∑
i=1

(yi − xTi β)

σ2
i

)
(3.3)

The parameters for this method were β, σ2
1, σ2

2,. . . ,σ2
n. To develop a Gibbs sampler, we

first simulated the posterior distribution for β given the data and all σ2
i , i = 1, . . . , n. Then

we simulated the posterior distribution for σ2
i given β and the data. As we showed in

Chapter 2, the posterior conditional distribution for β given the data and σ2
1, . . . , σ

2
n follows

a multivariate normal distribution, with a mean of A−1b and variance of A−1, ( i.e.,

β|σ2
1, . . . , σ

2
n ∼MVN(A−1b, A−1)). So,

π(β|σ2
1, . . . , σ

2
n, D) ∝ exp

(
−1

2
(β − A−1b)T (β − A−1b)

)
(3.4)

where A = XTΣ−1X + In
c0

and b = XTΣ−1y.

The posterior conditional distribution for σ2
1, . . . , σ

2
n given β and D is derived as follows:

π(σ2
1, . . . , σ

2
n|β,D) ∝ L(y)π(σ2

1) . . . π(σ2
n) (3.5)

Now, from Eqs. 3.2, 3.3 and 3.5, we can compute the posterior distribution for

π(σ2
1, . . . , σ

2
n|β,D) as follows,

π(σ2
1, . . . , σ

2
n|β,D) ∝ (σ2

1 . . . σ
2
n)−

1
2 exp

(
−1

2

n∑
i=1

(yi − xTi β)2

σ2
i

)
(σ2

1)−a0−1 exp
(
− b0

σ2
1

)
× (σ2

2)−a0−1 exp
(
− b0

σ2
2

)
. . . (σ2

n)−a0−1 exp
(
− b0

σ2
n

)

Suppose we are interested in the posterior of σ2
1. We consider the terms that involve

only σ2
1 and ignore the other terms, so

π(σ2
1|β, σ2

2, σ
2
3, . . . , σ

2
n, D) ∝ (σ2

1)−
1
2 exp

(
−1

2

(y1 − xT1 β)2

σ2
1

)
(σ2

1)−a0−1 exp
(
− b0

σ2
1

)
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∝ (σ2
1)−

1
2
−a0−1 exp

(
− 1

σ2
1

[(y1 − xT1 β)2

2
+ b0

])
∝ (σ2

1)−( 1
2

+a0)−1 exp
(
− 1

σ2
1

[
−(y1 − xT1 β)2

2
+ b0

])

From the above formula, it is clear that the posterior distribution for σ2
1 is an inverse

gamma with a shape equal to a0 + 1
2

and rate equal to
(y1−xT1 β)2

2
+ b0,

σ2
1 ∼ IG(a0 +

1

2
,
(y1 − xT1 β)2

2
+ b0)

In general, the posterior conditional distribution for σ2
i , i = 1, . . . , n is an inverse gamma,

σ2
i ∼ IG(a0 +

1

2
,
(yi − xTi β)2

2
+ b0) (3.6)

From the above discussion, we can use the full conditional distribution for β and σ2,

which are represented in Eq. 3.3 and Eq. 3.6, respectively. We can summarize Method I by

the following algorithm:

Algorithm 4 Method I

INPUT: Prior parameters a0, b0, c0 and initial values β and σ2.

OUTPUT: β, σ2
1, . . . , σ

2
n

for i = 1, 2, . . . , N do

Given σ2
1, . . . , σ

2
2 draw β ∼MVN(A−1b, A−1)

Given β draw σ2
j ∼ IG(a0 + 1

2
,

(yj−XT
j β)2

2
+ b0)

end for

Suppose our model is

yi = β0 + β1xi1 + · · ·+ βpxip + εi, where i = 1, 2, . . . , n.
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As we know, in a usual regression model the mean for εi is equal to 0 and the variance is

equal to σ2. Now let us find the mean and the variance for Method I. The expectation for

εi is still zero and the variance is σ2
i . As we assumed, σ2

i is a random variable and its prior

distribution was IG(a0, b0), so the mean and the variance for inverse gamma are b0
a0−1

and

b0
(a0−1)2(a0−2)

, respectively. Since the σ2
i is not a constant, we need to use the two formulas

below to find the mean and the variance.

E(y) = E
(
E(y|x)

)
(3.7)

V ar(y) = E
(
V ar(y|x)

)
+
(
V ar(E(y|x))

)
(3.8)

From Eq. 3.7 and 3.8, we can compute the mean and the variance for εi by replacing y

with εi and x with σ2
i :

E(εi) = 0

V ar(εi) = E
(
V ar(εi|σ2

i )
)

+ V ar
(
E(εi|σ2

i )
)

= E(σ2
i ) + V ar(0) =

b0

a0 − 1

Therefore, for the i-th observation under Method I, the expected value for εi is equal to

0, and the marginal variance is equal to b0
a0−1

.

For the second method, we can solve the problem using log(σ2
i ) instead of working with

just σ2
i . That means that the simulated value for β does not change. The only thing that

will change is σ2
i .

log(σ2
i ) ∼ N(µ0, σ

2
0) where δi = log σ2

i , i.e., σ2
i = exp(δi)

Now we will find the posterior distribution for δi = log(σ2
i ), but first let us find the
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likelihood function.

L(y1) = (σ2
1)−

1
2 exp

(
−1

2

(y1 − xt1β)2

σ2
1

)
=

(
exp(δ1)

)− 1
2

exp
(
−1

2

(y1 − xT1 β)2

eδ1

)
= exp

(
− δ1

2

)
exp

(
− 1

2
exp(−δ1)(y1 − xT1 β)2

)

Since, the prior distribution for δ1 is

π(δ1) ∝ exp
(
−1

2

(δ1 − µ0)2

σ2
0

)
∝ exp

(
−1

2

δ2
1

σ2
0

)

The posterior distribution for δ1 is,

π(δ1|D) ∝ exp
(
− δ1

2

)
exp

(
− 1

2
exp(−δ1)(y1 − xT1 β)2

)
exp

(
−1

2

δ2
1

σ2
0

)
∝ exp

(
−1

2
[
δ2

1

σ2
0

+ δ1]
)

exp
(
− c1

2
exp(−δ1)

)
, where c1 = (y1 − xt1β)2

∝ exp
(
− 1

2σ2
0

[δ2
1 + 2δ1σ

2
0]
)

exp
(
− c1

2
exp(−δ1)

)
∝ exp

(
− 1

2σ2
0

[δ2
1 + 2δ1σ

2
0 + (σ2

0)2 − (σ2
0)2]
)

exp
(
− c1

2
exp(−δ1)

)
∝ exp

(
− 1

2σ2
0

(δ1 + σ2
0)2
)

exp
(
−c1

2
exp(−δ1)

)

From the above formula, the first part represents the normal distribution, so

δ1 ∼ N(−σ2
0, σ

2
0)f(δ1), where f(δ1) = exp

(
−c1

2
exp(−δ1)

)

If we introduce u ∼ unif(a, b), then the density function is f(u) = 1
b−a1(a < u < b). Since
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π(δ1) ∝ N(δ1| − σ2
0, σ

2
0)f(δ1), let us introduce variable u1 such that u1 ∼ unif(0, f(δ1)),

f(u1) =
1

f(δ1)
1
(

0 < u < f(δ1)
)

(3.9)

Hence the posterior distribution for δ1 is

π(δ1|β,D) ∝ π(δ1)f(u1)

∝ N(−σ2
0, σ

2
0)1
(

0 < u1 < f(δ1)
)

Notice that given δ1, we can compute f(δ1). Therefore, we can sample from

u1 ∼ unif(0, f(δ1)). Now, the density function for δ1 is given by

f(δ1) = exp
(
− c1

2
exp(−δ1)

)
> u1

exp
(
− c1

2
e−δ1

)
> log u1

exp
(
− δ1

)
<
−2

c1

log u1

−δ1 < log
(−2

c1

log u1

)
δ1 > − log

(−2

c1

log u1

)

In this case, given the value of u1, we know the value of − log
(
−2
c1

log u1

)
. In

conclusion, we can say the posterior distribution will be,

π(δ1|u1) ∝ N
(
δ1| − σ2

0, σ
2
0

)
1
(
δ1 > − log(−−2

c1

) log u1

)
(3.10)

From the above discussion, we can use Eq. 3.3, 3.9 and 3.10 to summarize Method II

using the following algorithm.
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Algorithm 5 Method II

INPUT: Prior parameters a0, b0, c0 and initial values β and σ2.

OUTPUT: β, ui and δi

for i = 1, 2, . . . , N do

Given σ2
1, . . . , σ

2
n draw β ∼MVN(A−1b, A−1)

Given β draw uj ∼ unif(0, f(δi))

Given u1, . . . , un, β draw δj ∼ N(
δj
σ2
0
, σ2

0)1
(
f(δj) > uj

)
end for

For the i-th observation, under Method II, the prior distribution for σ2
i was a log

normal distribution with mean µ0 and variance σ2
0,

σ2
i ∼ LN(µ0, σ

2
0)

The mean for σ2 is exp
(
µ0 +

σ2
0

2

)
, and by applying the same formula above(Eq. 3.7 and

3.8), we get,

E(εi) = 0

V ar(εi) = E(V ar(εi|σ2
i )) + V ar(E(εi|σ2

i )) = E(σ2
i ) + V ar(0) = exp(µ0 +

σ2
0

2
)

3.3 Model for Outliers in presence of Systematic Heteroscedasticity

In this section, we will address a different method to (Method III) detect the outliers.

Previously, we assumed that variance of the error, σ2
i , i = 1, . . . , n, had no dependence on

any covariate. In this method, we allow the variance to change based on covariate values

for each observation. Hence, an observation may have a large error even if it is not an

outlier. Conversely, a true outlier may not have the largest error.

y = Xβ + ε, where ε ∼MVNn(0,Σ),
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We assume that the diagonal entries of Σ will depend on covariates in the form function f .

We define, X(2) =

[
f(X1), f(X2), . . . , f(Xp)

]
, and model Σ = Diag((σ2

i e
X

(2)T

i ν))ni=1;

Different choices of f give us a different model. We explore two choices (a) f(x) = X2 and

(b) f(x) = |X|.

Our parameters in this method are β, σ2
1, . . . , σ

2
n and ν. We chose the prior distribution

as follows: β ∼MVNp(0, c0I), σi ∼ IG(a0, b0), and ν ∼MVNp(0, d0I).

After following the same processes that we did in Chapter 2, the posterior conditional

distribution for β given the data and σ2
1, . . . , σ

2
n follow a multivariate normal distribution

with a mean of A−1b and variance of A−1, where A = XTΣ−1X + In
c0

and b = XTΣ−1y. The

posterior distribution π(β|σ2
1) is given by

π(β|σ2
1, . . . , σ

2
n, D) ∝ exp

(
−1

2
(β − A−1b)TΣ−1(β − A−1b)

)
(3.11)

Similarly, we showed the posterior conditional distribution for σ2
i given β, ν and D as

follows:

π(σ2
i |β, ν,D) ∝ IG(a0 +

1

2
,

(yi −XT
i β)2

2 exp(X
(2)T

i ν)
+
I

c0

), i = 1, . . . , n. (3.12)

Next, we found the posterior distribution for ν by multiplying the likelihood function with

the prior distribution for ν. Since yi ∼ N(XT
i , σ

2
i exp(X

(2)T

i ν)), the likelihood function L

isgiven by

L(y1, . . . , yn) =
n∏
i=1

π(yi)

=
n∏
i=1

(σ2
i exp(X

(2)T

i ν))−
1
2 exp(−1

2

(yi −XT
i β)2

σ2
i exp(X

(2)T

i ν)
)

∝
n∏
i=1

exp(−1

2
X

(2)T

i ν) exp(−hi exp(−X(2)T

i ν)), where hi =
(yi −XT

i β)2

2σ2
i
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Therefore, the posterior function π(ν|−) is given by

π(ν|−) ∝ exp(−1

2

n∑
i=1

X
(2)T

i ν) exp(−
n∑
i=1

hi exp(X
(2)T

i ν)) exp(−1

2

νTν

d0

)

The logarithm posterior log(π(ν|−)) is given by

log(π(ν|−)) = −1

2

n∑
i=1

X
(2)T

i ν −
n∑
i=1

hi exp(X
(2)T

i ν)− 1

2

νTν

d0

+ constant (3.13)

We generated the proposed value of ν as

νproposedj ∼ N(νoldj , σ2proposed)

where (in MH) we accept the νproposed values as a new sample if

u <
π(νproposed|−)

π(νold|−)
, where u ∼ unif(0, 1)

We can rewrite the above condition as follows,

log(u) < log(π(νproposed|−))− log(π(νold|−))

In Method III, we used two different functions, square and absolute value of covariates,

as Methods III(a) and III(b). In reality, we do not know the correct functional form for the

systematic heteroscedasticity (i.e., we do not know whether σ2 depends on X2 or |X|), so

we should consider all the possible cases to show a comparison. Since we used different form

functions, we define method III(a) to use X(2) = X2 and Method III(b) to use X(2) = |X|.

From the above discussion, we can summarize Method III by the following algorithm.
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Algorithm 6 Method III

INPUT: Prior parameters a0, b0, c0, d0 and initial values β, ν0 and σ2.

OUTPUT: β, σ2
1, . . . , σ

2
n and ν

for i = 1, 2, . . . , N do

Given σ2
1, . . . , σ

2
n and ν draw β ∼MVN(A−1b, A−1)

Given β and ν draw σ2
j ∼ IG(a0 + 1

2
,

(yj−X
(2)T
j β)2

2exp(X
(2)T

j ν)
+ I

c0
+ I

d0
)

ui ∼ unif(0, 1)

if log(ui) < log(π(νproposed))− log(π(νold)) then

νnew = νproposed

else

νnew = νold

end if

end for

3.4 Data Analysis

3.4.1 Simulation of Outliers

We used two simulation models to generate covariates for two main datasets, each with 800

observations. First of all, we generated 800 observations from a uniform distribution

between 0 and 1. Then, in Simulation Model I, we used β = c(0.5,−0.3, 0.7, 1.9) and

σ2 = 0.25 (i.e., the variance does not change), and we defined the model y as

y = Xβ + ε, where ε ∼MVNn(0n, σ
2In)

In the Simulation Model II, we used the same values of β that we used in Simulation

Model I, and ν = c(0.8, 1.75, 0). We assumed the variance depends on X, and we defined
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the model y as

y = Xβ + ε, where ε ∼MVNn(0n,Σ), Σ = Diag((eX
2
i
T
ν))ni=1

From each main dataset we created two additional datasets by adding some outliers. First,

we created 4 randomly chosen outliers in each main dataset by increasing the 180th

observation by 4 and the 481st observation by 2.5, and by decreasing the 33rd and 653rd

observations by 3 and 2.75, respectively. We call them Dataset 1 and Dataset 2. We

created another version with more outliers than previous datasets. We increased the

percentage of outliers from 0.5% to 1% by adding 4 randomly chosen outliers to our

previous datasets, Dataset 1 and 2, where we decreased the 53rd observation by 2 and the

495th observation by 2.94, and increased 700th, 780th by 2.5, 2.1, respectively.

Fig. 3.1 and 3.3 contains the plot of y and the plot of y verses Xi, i = 1, 2, 3. As we can

see, it is easy to identify the outliers just by looking at them visually. In Fig. 3.2 and 3.4,

when we plotted Dataset 2 and 4, it was difficult to identify the outliers because in many

cases the outliers lie in the same region of most of the data, and there are other points that

are not outliers which look more extreme. So, we expect Dataset 2 and 4 will be more

challenging to find the outliers compared with Dataset 1 and 3.
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Fig. 3.1: Dataset 1: the actual outliers are marked as red triangles

Fig. 3.2: Dataset 2: the actual outliers are marked as red triangles
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Fig. 3.3: Dataset 3: the actual outliers are marked as red triangles

Fig. 3.4: Dataset 4: the actual outliers are marked as red triangles
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3.4.2 Application of Methods on Simulated Datasets

We ran all methods with same the prior parameters, initial values and number of

iterations. For the prior parameters, we chose a0 = 2.1, b0 = 3, c0 = 10000 and d0 = 10000.

The initial values for β and σ2 were chosen to be the least-squares estimator. In Method

III, we chose the initial value for ν = c(0, 0, 0), and the value of σ2propose equal to 0.15, so

that the MH achieved acceptance range between (30 - 40)%. The MCMC techniques were

run for 10000 iterations where first 10% was discarded and the rest was thinned by 3.

First, we applied Method I and II for both Datasets 1 and 2, and as we see in Fig.3.5,

both methods worked well with Dataset 1 since they could detect the exact outliers easily.

But they did not perform well with Dataset 2 because both of them did not use X at all in

the variance.
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Fig. 3.5: Outlier detection using posterior sample mean for σ2 for Method I and II for two
simulation datasets: the actual outliers are marked as red triangles

Next, we applied Method III (a) and (b) for both Datasets, 1 and 2. For Dataset 1,

both methods worked very well. Also, Method III (a), worked well with Dataset 1 because

we assumed X in the variance and with correct function form which is f(X) = X2.

However, as we can see in Fig.3.6, Method III (b) did not work as well as Method III (a)
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because even though we used X in the variance, we used misspecified function form,

f(X) = |X|.

Fig. 3.6: Outlier detection using posterior sample mean for σ2 for Method III (a) and III (b) for
two simulation datasets: the actual outliers are marked as red triangles.

We ran the models for Datasets 3 and 4. In Fig. 3.7. We plotted the output for

detecting outliers in Method I and II. With Dataset 3 both methods worked well as
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expected. However, with Dataset 4, we noticed that both methods did not perform well

since many data points lay above the outliers.

Fig. 3.7: Outlier detection using posterior sample mean for σ2 for Method I and II for two
simulation datasets: the actual outliers are marked as red triangles.

We ran Method III (a) and (b) for Datasets 3 and 4. In Fig. 3.8, we notice that both

Methods III (a) and (b) worked well in Dataset 3 since the values of σ2 for the outliers
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were far from other values. But, in Dataset 4, Method III (a) could detect easily only 5

outliers, and Method III (b) could detect only 4 outliers, and it did not perform as well as

Method III(a) due to misspecified function form.

Fig. 3.8: Outlier detection using posterior sample mean for σ2 for Method III (a) and III (b) for
two simulation datasets: the actual outliers are marked as red triangles.

In Table 3.1, we compare among Method I, II , III (a) and (b). We assumed that the
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number of outliers were known to us. In our simulation, there were 4 and 8 outliers as we

explained in Sec. 3.4.1. The x-coordinate represents the number of outliers that can be

identified in the model, and the y-coordinate represents how many observations we should

consider in the model, so we could catch all the outliers. We observed that all methods

worked well with Dataset 1. Also Method III (a) worked well with dataset two since

Dataset 2 depends on X. Method III (b) does not work well compared to Method III (a)

for dataset two, but it is still much better than Method I and II for all Datasets 2, and 4.

Table 3.1: Comparison of detecting outliers across different methods and different datasets

# Outliers Dataset Method I Method II Method III (a) Method III (b)

4
1 ( 4 , 4 ) ( 4 , 4 ) ( 4 , 4 ) ( 4 , 4 )

2 ( 0 , 36 ) ( 0 , 40 ) ( 3 , 6 ) ( 2 , 13 )

8
3 ( 8 , 8 ) ( 8 , 8) ( 8 , 8 ) (8 , 8 )

4 ( 0 , 393 ) ( 1 , 401 ) ( 5 , 304 ) ( 4 , 316 )

3.5 Estimation of Regression Coefficients

We want to analize how presence of outliers influence the estimation of regression

coefficients. We used the same two simulation models that we described in Sec.3.4 to

generate covariates for four datasets. Each dataset had 3 covariates, and for each covariate,

we generated 800 observations from uniform distribution between 0 and 1. Then in the

simulation model I,

y = Xβ + ε, where ε ∼MVNn(0n, σ
2I)

we used β = c(0.2,−0.8, 5.7, 0) and σ2 = 0.25 (i.e., the variance did not change for all the

observations). We added noise to some of the observations to create outliers. The dataset

with 8 outliers was denoted as Dataset 5 and the dataset with 40 outliers was denoted as

Dataset 6. After running Method I, II, III(a) and III(b), we compared the true parameters
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used in the simulation with the posterior means and 95% CI that we got from MCMC. The

results were presented in Table 3.2 below.

Table 3.2: Comparison of parameters estimation across different datasets and different methods

Parameters True values
Dataset 5

Method I Method II Method III(a) Method III(b)

β0 0.2 0.24(0.057,0.426) 0.248(0.049,0.453) 0.155(0.069,0.242) 0.174(0.097,0.253 )

β1 -0.8 -0.876(-1.062,-0.679) -0.886(-1.093-0.684) -0.815(-0.891,-0.738) -0.832(-0.904,-0.761)

β2 5.7 5.730(5.536,5.927) 5.719(5.518,5.922) 5.785(5.705 ,5.861) 5.775(5.702,5.848)

β3 0 -0.045(-0.236,0.149) -0.043(-0.252,0.160) 0.001(-0.068,0.072) -0.005(-0.073,0.063)

Parameters True values
Dataset 6

Method I Method II Method III(a) Method III(b)

β0 0.2 0.226(0.039,0.418) 0.225(0.067,0.383) 0.162(0.061,0.264) 0.178(0.086,0.268)

β1 -0.8 -0.866(-1.059,-0.665) -0.865(-1.024,-0.696) -0.814(-0.898,-0.727) -0.832(-0.913,-0.748)

β2 5.7 5.735(5.539,5.938) 5.737(5.572,5.893) 5.776(5.685,5.864) 5.771(5.685,5.856)

β3 0 -0.0492(-0.239,0.151) -0.038(-0.203,0.121) -0.006(-0.088,0.074) -0.012(-0.091,0.065)

In Table 3.2, we found that there were more parameters outside the 95% credible

interval when we increased the number of outliers from 8 to 40. Also, we saw that the 95%

credible interval for all β1, β2 and β3 got wider in Method III(a) and III(b) when we

compared Dataset 5 with 6.

Similarly, we generated two datasets from simulation model II,

y = Xβ + ε, where ε ∼MVNn(0n,Σ), Σ = Diag((eX
(2)
i

T
ν))ni=1

where we used the same value of β and we used ν = c(0.8, 3.75, 0). By adding 8 and 40

outliers to the dataset, we got two datasets, we denoted them as Dataset 7 and 8,

respectively. After running all the methods (Method I, II, III(a) and III(b)), we compared
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the true parameters used in the simulation with posterior means and their 95% credible

interval that we got from MCMC. The results were reported in Table 3.3 below.

Table 3.3: Comparison of parameters estimation across different datasets and different methods

ParametersTrue values
Dataset 7

Method I Method II Method III(a) Method III(b)

β0 0.2 0.281(0.003,0.554) 0.606(0.460,0.777) 0.288(-0.0640,0.630) 0.290(-0.085,0.657)

β1 -0.8 -1.236(-1.560,-0.911)-1.632(-1.804,-1.463)-1.183(-1.642,-0.725)-1.236(-1.714,-0.766)

β2 5.7 6.47(6.106,6.828) 5.836(5.736,6.124) 6.096(5.542,6.622) 6.109(5.553,6.631)

β3 0 -0.281(-0.600,0.032) -0.483(-0.727,-0.355) -0.13(-0.572,0.291) -0.097(-0.555,0.362)

ν1 0.8 — — 1.011(0.698,1.337) 0.522(0.205,0.860)

ν2 3.75 — — 3.534(3.205,3.838) 3.165(2.833,3.483)

ν3 0 — — 0.265(-0.081,0.611) -0.266(-0.610,0.043)

ParametersTrue values
Dataset 8

Method I Method II Method III(a) Method III(b)

β0 0.2 0.204(-0.081,0.483) 0.425(0.327,0.555) 0.2144(-0.147,0.580) 0.221(-0.173,0.612)

β1 -0.8 -1.144(-1.480,-0.815)-1.473(-1.579,-1.322)-1.064(-1.559,-0.580)-1.146(-1.648,-0.634)

β2 5.7 6.465(6.092,6.836) 6.283(6.083,6.454) 6.077(5.494,6.625) 6.101(5.510,6.659)

β3 0 -0.176(-0.500,0.141) -0.247(-0.354,-0.097) -0.060(-0.531,0.387) -0.023(-0.519,0.460)

ν1 0.8 — — 1.107(0.790,1.433) 0.591(0.278,0.926)

ν2 3.75 — — 3.454(3.129,3.772) 3.055(2.728,3.387)

ν3 0 — — 0.509(0.157,0.855) -0.014(-0.360,0.328)

In Table 3.3, we can see that anything not covered in Dataset 7 still was not covered in

Dataset 8, and one extra parameter ν3 was not covered in Dataset 8. Also, the credible

interval for β2 got wider when we move from 8 to 40 outliers in Method III (a) and III(b).
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Chapter 4

Future work

4.1 Analysis of Longitudinal Data on Student Biometrics

As discussed in the beginning of Chapter 3, the eventual aim of developing these methods

was to apply them on a large dataset related to school students in Arkansas that is yet to

be made available to us. The dataset contains the height, weight and BMI measurements

of school students across different counties. It is temporal as well, as the same student’s

biometric information is measured at different grades of his/her school years are recorded.

Our goal is to detect the outliers in this dataset by using previously developed techniques.

In the following, we first describe the necessary transformation in the raw data before using

it in the model. Then, we discussed some practical challenges that we have to address.

4.1.1 Formulation of the Problem

Direct use of raw biometric measurements such as height or weight can pose some

challenges. Lets consider height - denote by Hi(t) the height of student i at grade t. The

change between two time points is ∆it which will be defined as ∆it = Hi(t+ 1)−Hi(t).

Obviously any negative value of ∆ is an outlier. A small positive value is acceptable but a

large positive value is an outlier. Hence, working with ∆ implies we cannot treat the

positive and negative values in the same way, so using a symmetric distribution like a

Normal model will not be reasonable. To remove this problem, we decided to use Z-scores

of heights instead of actual heights. These Z-scores are computed based on the quantile of

a student’s height calculated using database of student biometric across the entire country.

Zi(t) will be defined as Zi(t) = P [H ≤ Hi(t)], where H is the generic variable denoting the
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height of a randomly selected student in that country-wise database. Now, let us define

Yi(t) = Zi(t+ 1)− Zi(t). Our goal is to see if Yi changes too much (large absolute value).

The advantage of working with Y compared to ∆ is that large positive and negative

changes in Y are equally likely a priori to be an outlier, so we do not have an issue with

using error distribution which is symmetric around 0. The outlier-detection model will be

as follows,

Yit = β0 + β1X
(1)
it + · · ·+ βpX

(p)
it + εit, where εit ∼ N(0, σ2

it),

where {X(1)
it , ..., X

(p)
it } can be covariates such as gender, race, diet, sports activity indicator,

school zip code, etc. Some of them will change over time whereas the others will be same

for a student irrespective of grades. The outlier can be specific to both subscripts t and i.

It is possible that a student’s height information at one grade is an outlier, whereas in the

rest of the grades it is in the normal range.

4.1.2 Further Discussion

We anticipate some challenges in our modeling effort. For example, height and weight are

not expected to show similar variation across time. A student’s weight can increase or

decrease significantly between two successive measurements due to events such as diet

change, disease or surgery. We can see large positive or negative values in Y for weight

that may not be outliers. Therefore, it will be relatively difficult to identify true outliers in

weight data as opposed to the data for heights.

Finally, we plan to validate the model results for the real datasets. Unlike the

simulation data, we have no knowledge of the true outliers or their numbers. Because of

this we need to develop some validation strategy in this setting. One option could be to

identify the top 1% of data points based on the largest values of E(σ2
i |Y ) and obtain

external expert evaluation to see how many of them are actually outliers. Alternative

validation procedures based on statistical techniques are also being explored.
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