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Abstract 

Membrane-affiliated interactions are significant in understanding cell function, detecting 

biomarkers to diagnose disease, and in testing the efficiency of new therapeutic targets. Model 

membrane systems have been developed to study membrane proteins, allowing for stable protein 

structure and maintaining native activity. Bicelles, disc-shaped lipid bilayers created by 

combining long- and short-chain phospholipids, are the model membrane system of focus in this 

study. Bicelles are accessible from both sides and have a wide size range, which make them 

attractive for studying membrane proteins without affecting function. In this work, bicelles were 

functionalized with two peptoids to alter the edge and face chemistry. Peptoids are suitable for 

this application because of the large diversity of available side chain chemistries that can be 

easily incorporated in a sequence-specific manner. The peptoids sequence consist of three 

functional regions to promote insertion into the edge of bicelles. The insertion sequence at the C-

terminus contains two alkyl chains and two hydrophobic, chiral aromatic groups that anchor into 

the bicelle edge or face. The facially amphipathic helix contains chiral aromatic groups on one 

side that interact with the lipid tails and positively charged groups on the other side, which 

interact with the lipid head groups. Thiol groups are included at the N-terminus to allow for 

determination of peptoid location in the bicelle. Bicelle morphology and size were assessed by 

transmission electron microscopy (TEM) and dynamic light scattering (DLS). Peptoid location in 

the bicelle was determined by attachment of gold nanoparticles, which confirm preferential 

incorporation of the peptoid into the bicelle edge or face. Results from this study show that 

peptoid-functionalized bicelles are a promising model membrane system. Specifically, the 

designed peptoids sequence were found to incorporate preferentially into the edges and faces of 

bicelles with 82% and 92% specificity, respectively. Additionally, the peptoid-functionalized 

bicelles are of similar size and morphology to non-functionalized bicelles. Potential applications 



would include customization to anchor in biosensors or facilitate interactions with specific 

membrane proteins or complexes. 
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Chapter 1 Introduction 

1.1.Cell Membrane 

The basic function of biological membranes is to draw a boundary between or within cells and 

organelles (Figure 1.1) [1]. This function enables the isolation of different cellular processes 

during tightly regulated transportation into and across membranes. In addition, many different 

physiological events like signaling, fusion, and fission occur in membranes. Having a complex 

composition and dynamic nature, membranes can be connected with each other or isolated 

spatially and temporally [2-4].  

The current view of biological membrane is inspired by the “fluid mosaic” model, first 

introduced in 1972 by Singer and Nicolson [5]. In this model, which is still reliable after more 

than forty years, the cell membrane was described as a two-dimensional fluid lipid bilayer where 

proteins have an asymmetric distribution among the lipids. Recent experimental data showed 

some facts about biological membrane that are not considered in the fluid mosaic model, such as 

membrane curvature, high density of transmembrane proteins, and deviations from equilibrium 

Figure 1.1. Schematic representation of biological membranes [1]   
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[6]. The lipids are distributed in a bilayer form according to the “fluid mosaic” model, which is 

in equilibrium. However, experimental data showed that small part of cell membrane may adopt 

a non-bilayer form. The cell membrane is mainly composed of lipids (50%), proteins (40%), 

sugars (2%–10%), small amounts of water, inorganic salts, and metal ions. 

Investigating the nature of these interconnected components and their reciprocal relationships is 

very challenging, specifically when scientists try to reestablish membrane biology in the systems 

which are constructing membranes. Complexity of biological membrane inspire the creation of a 

vast number of modified, but similar, model systems with precise size, geometry and 

composition. Generally, cell membrane models have various types from vesicles to different 

kinds of lipid bilayers [4, 7-9].  

1.2.Membrane Protein 

Proteins, which have various structures and functions, are the basic building blocks of all living 

organisms. One class of proteins are membrane proteins, which interact with biological 

membranes and exist in one-third of the majority of mammalian genomes. They work as ion and 

molecule transporters and as a selective filter to regulate molecules entering cells. Other 

functions of membrane proteins include immune system molecule recognition, energy 

transduction, and communicate with the surrounding environment [10, 11].  

Despite membrane protein lesser number in comparison with other soluble counterparts, their 

importance cannot be overlooked. For instance, they represent 50% of all known drug targets. 

The function of membrane proteins is to delineate proteins that interact with the plasma 

membrane of cells. It should be pointed out that not all membrane proteins have similar 
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interactions with the lipid bilayer of the plasma membrane. Membrane proteins are classified into 

three groups: peripheral, integral, and lipid-anchored. The interaction between peripheral 

membrane proteins and plasma membrane of cells is superficially. The common method to 

extract these kind of proteins is based on traditional biochemical techniques where typically 

dissolve in aqueous buffers. Integral membrane proteins, which are embedded in the lipid bilayer 

of the plasma membrane. The degree of association between integral membrane proteins and 

lipids is variable [7]. Lipid-anchored proteins can dissolve in aqueous buffers and anchor to 

plasma membrane via the covenant attachment of a glucolipid and a lipid. 

Membrane proteins are considered a challenging class of biomolecules to study. This is result 

due to the high fractions of non-polar amino acids in their structure, which create a high degree 

of hydrophobicity. Traditional biochemical techniques such as analytical ultracentrifugation, 

solution NMR, and chromatography have been adapted to study membrane proteins. However, 

these adapted methods need to be modified experimentally in order to study a new membrane 

protein. These challenges have encouraged researchers to develop simpler model membrane 

systems for studying membrane proteins [4]. 

1.3.Model Cell Membrane  

In general, the differences between membrane proteins are subtle. For instance, integral 

membrane proteins are embedded in the lipid bilayers as a single α-helix, a bundle of α-helices, 

or β-barrels. Due to the small variations in membrane protein architecture responsible for a 

specific function, exceptional model membrane systems need to be developed. Moreover, several 

membrane protein characteristics depend on the membrane environment such as secondary 

structures, aggregation, dynamics, stability, orientation, and function. 
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The most commonly used systems for studying membrane proteins are: (1) vesicles, (2) 

supported lipid bilayers, (3) nanodiscs, and (4) bicelles. Each of these systems has advantages 

and disadvantages for the study of membrane proteins, which will be further discussed.  

1.3.1. Vesicles  

Vesicles (lipid vesicles or liposomes) are composed of phospholipid molecules that form bilayers 

in an aqueous environment because of their amphipathic nature. Vesicles are a lipid bilayer 

membrane that have an aqueous cavity inside (Figure 2) and have a wide range of applications 

including in biology, biochemistry and biophysics [12]. Vesicles were first synthesized in the 

late 1960s [13, 14], and have become very popular in lipid and membrane studies due to the 

similarity to living cells. Vesicles are typically formed from a lipid solution in a volatile organic 

solvent. Slow evaporation of the organic solvent creates a thin lipid film on the inside of a glass 

flask. Vesicles are formed by the hydration of the lipid film [15]. In addition, different methods 

have been developed for macroscale production of vesicles including electroformation [16], 

freeze-drying [17], and budding [18].  

Vesicles are categorized based on the size and number of lipid bilayers which is called 

lamellarity. Vesicles composed of one lipid bilayer are unilamellar vesicles, while multilamellar 

lipid vesicles have several lipid bilayers [19]. Unilamellar vesicles are divided in three categories 

based on the size which are small unilamellar vesicles (less than 100 nm), large unilamellar 

vesicles (100-1000 nm) and giant unilamellar vesicles (larger than 1 micron) [1, 19].  

javascript:popupOBO('CMO:0001553','C2LC41121K')
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A common use of vesicles to in determine lipid phase behavior in aqueous dispersion. In 

membrane protein studies, they can be useful in examining the phase behavior of binary and 

ternary lipid mixtures in bilayers. Single liquid phase, two coexisting liquid phases, solid–liquid 

phase are physical states that are displayed by vesicles depending on the lipid composition. The 

protein reconstitution can be established on the vesicles easily. The main disadvantage of this 

system is low thermodynamic stability. Additionally, lipid molecules in the vesicle bilayer are 

not in flux with the counterpart, since vesicles are not equilibrium systems. This characteristic is 

a disadvantage of using vesicles in protein membrane studies, because incorporated proteins are 

not free to interact with each other [7, 20, 21].  

Phospholipid vesicles containing membrane proteins are called proteoliposomes. They should 

have several characteristics to be considered useful in membrane protein structure and function 

studies including homogeneous size distribution, uniform distribution of membrane protein in 

liposomes, high biological activity of embedded membrane protein, and efficiency of protein 

reconstitution over a variety of lipid to protein ratio [22, 23].   

Figure 1.2. (a) The structure of one naturally-occurring lipid molecule, (b) The 

interaction of the heads and tails of the lipid  to self-assemble into a vesicle, and (c) 

a lipid vesicle [12] 

javascript:popupOBO('CHEBI:18059','C2LC41121K','http://0-www.ebi.ac.uk.library.uark.edu/chebi/searchId.do?chebiId=18059')
javascript:popupOBO('CHEBI:18059','C2LC41121K','http://0-www.ebi.ac.uk.library.uark.edu/chebi/searchId.do?chebiId=18059')
javascript:popupOBO('CHEBI:18059','C2LC41121K','http://0-www.ebi.ac.uk.library.uark.edu/chebi/searchId.do?chebiId=18059')
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1.3.2. Supported Lipid Bilayers 

Supported lipid bilayers (SLB) are flat membranes that are created on a solid substrate and are 

usually formed by lipid vesicle fusion or Langmuir-Blodgett technique. SLB were introduced in 

the mid-1980s [24], and often have a very thin (10-20 Å) aqueous layer between the support and 

the membrane (Figure 1.3A). The solid surface should be hydrophobic, smooth, and clean to 

form an effective SLB. Common substrates includes fused silica, borosilicate glass, mica, and 

oxidized silicon [25-27].  

The combination of van der Waals, electrostatic, hydration and steric forces keeps the 

phospholipid membranes above the solid oxide support [28]. Furthermore, it was shown that the 

aqueous layer between a glass substrate and an egg phosphatidylcholine bilayer is responsible for 

free movement of lipids with a diffusion constant of 1–4 μm2/s [29]. Recently, air-stable lipid 

membranes have been introduced as a new class of solid supported lipid bilayers where the 

bilayer and supporting substrate are separated by an air–water interface [30]. This type of SLB 

has some limitations. They cannot be used in developing practical biosensors since the 

membrane needs permanent hydration. Air-stable lipid membranes have been applied in different 

systems such as hybrid bilayers [31], protein stabilized lipid bilayers [30], and polymerized 

membranes formed using synthetic diacetylene-containing phospholipids [32-34]. 

The advantages of this model are ease of preparation, stability, and patterning. In addition, 

numerous techniques are available for surface analysis such as atomic force microscopy, X-ray 

scattering, transmission electron microscopy, scanning electron microscopy, and Fourier 

transform infrared resonance [9]. However, the solid support affects the lipid bilayer and leads to 
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the loss of mobility and function for the incorporated membrane proteins. Moreover, membrane 

protein reconstitution is very challenging [4, 7, 9]. 

1.3.3. Nanodiscs 

Nanodiscs are one of the newest class of model cell membrane and have shown to be an 

excellent tool for membrane protein studies. They are stable, self-assembled nano-structures of 

phospholipids encapsulated by an amphipathic protein defined and controllable size (Figure 

1.3B) [35, 36]. The membrane scaffold protein (MSP) sequence can be tailored to create 

nanodiscs with different sizes (9.8 nm-17 nm) [37]. Nanodiscs are formed by addition of MSP to 

a detergent stabilized phospholipid and then using dialysis or adsorbtion to hydrophobic beads to 

remove the detergent [36-38]. Nanodiscs have several advantages including monodispersity, 

stability and consistency. They are also accessible from both sides of the membrane. However, 

the small size range of nanodisc that does not allow for the study of stoichiometric inclusion of 

multi-protein complexes.  
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 1.3.4. Bicelles 

Bicelles (or bilayered micelles) are generally formed by combination of long-chain 

phospholipids and short-chain phospholipids. These bilayered lipids were introduced in the 

1990s and immediately became popular as a model membrane system due to their similarity with 

Figure 1.4. Schematic representation of the DMPC–DHPC bicelles [41] 

Figure 1.3. A schematic representation of (A) supported lipid bilayer [25] (B) Nanodisc [38] 
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biological membranes [39, 40]. Bicelles are disc-shaped structure morphology of long-chain and 

short-chain lipids which are concentrated at disc planar and rim, respectively (Figure 1.4) [41]. 

The combination of long-chain and short-chain phospholipids results in the formation of new 

structures with new morphology. The macroscopic structures of these morphologies have been 

thoroughly investigated resulting in establishing different phase diagrams. Small angle neutron 

scattering is used in order to draw a clear picture for all morphologies found in different research 

studies (Figure 1.5). The important factors in evaluating bicelle morphology are q, hydration 

level, temperature, and ionic strength.  

When only long chain lipid is presented in the aqueous environment, multilamellar vesicles 

(MLV) are formed (Figure 5.1A). By adding detergent to solution, defects appear in the MLV 

structure due to low miscibility between lipid and detergent (Figure 5.1B).The vesicles start to 

collapse as the amount of detergent increases which result in formation of extended lamellae 

(Figure 5.1C) or chiral nematic ribbons (Figure 5.1D). Disc-shaped structures are formed when 

the content of detergent is higher (Figure 5.1E). The long-chain lipid forms a lipid bilayer in this 

morphology since it is still separated from the detergent. The detergent alone in the aqueous 

environment will form micelles (Figure 5.1F). 

http://click.thesaurus.com/click/nn1ov4?clkord=14&clkpage=the&clksite=thes&clkld=0&clkdest=http%3A%2F%2Fwww.thesaurus.com%2Fbrowse%2Fsuccessively
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The combination of dimyristoylphosphatidylcholine (DMPC), a long-chain, bilayer component,  

with dihexanoylphophatidylcholine (DHPC), a short-chain lipid, has been extensively recognized 

as the most popular option [41-44].  

The significant factor in bicelle preparation is the ratio of long-chain to short-chain lipids, 

referred to as q (equation 1.1). 

𝑞 =  
𝑚𝑜𝑙𝑒 𝑜𝑓 𝑙𝑜𝑛𝑔 𝑐ℎ𝑎𝑖𝑛 𝑙𝑖𝑝𝑖𝑑

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡 𝑐ℎ𝑎𝑖𝑛 𝑙𝑖𝑝𝑖𝑑
                                                                        Equation 1.1 

Bicelles have proved to be a more natural membrane environment in comparison with micelles. 

As their names suggest, bicelles have both features of bilayered vesicle and micelles. Their 

internal construction is composed of a bilayered lamellar structure, which is most important 

advantage of bicelles compared to micelles. Because of their improved characteristics, their use 

has been increased in recent studies [39, 42, 45, 46]. As it was mentioned before, the main 

disadvantage of vesicles as model membrane is lack of stability. Bicelles provide a stable 

environment for related studies. In addition, one of the challenging issues of SLB is the effect of 

Figure 1.5. Schematic models for the morphology of bicellar phases with increasing 

detergent content: multilamellar vesicles (A), with toroidal pores lined up by detergents (B), 

extended lamellae showing magnetic-alignment (C), chiral nematic “worm-like” ribbons, 

also magnetically alignable (D), flat disk-like aggregates tumbling isotropically (E), and 

detergent micelles (F) [40] 
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solid support on lipid properties such as mobility and function. In contrast, incorporation of 

protein in bicelles does not affect the characteristics of protein.  

Different biophysical techniques such as nuclear magnetic resonance, X-ray crystallography, 

circular dichroism, and Fourier transform infrared spectroscopy are performed to study 

molecular interactions and structure of membrane peptides and proteins using the planar region 

of bicelles [22, 47-50]. Specifically, bicelles spontaneously orient in a magnetic field at high 

DMPC/DHPC molar (q) ratios (above 2.3) and within total lipid concentrations (3–60% w/v) and 

temperatures (30–50 °C) which is useful for solid-state NMR applications [48, 51-55].  

Bicelles can be used in membrane protein studies in two ways using both isotropic and aligned 

bicelles. Membrane proteins are embedded in bicelles and solution-state or solid-state NMR 

spectroscopy are used for studies. In order to improve the result of NMR samples, different 

preparation protocols and all parameters need to be evaluated to find the optimum method and 

conditions. For instance, using the optimal q value in isotropically tumbling bicelles can result in 

distinguishing between mobile and structured residues in embedded proteins [56].  

1.4.Poly-N-Substituted Glycines (Peptoids) 

Peptoids, a type of peptidomimetics, are easy to synthesize, have low cost, diversity in side chain 

accessibility and resistance to proteolytic degradation. The backbone is similar to peptides with 

the side chains attached to the amide nitrogen rather than the α-carbon. Peptoids have two 

important characteristics that differentiate them from peptides:  (1) lack of backbone chirality 

and (2) lack of backbone hydrogen bond donors (Figure 4A). These factors are the result of the 

modification to the backbone structure. Furthermore, appending the side chain to the amide 
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nitrogen results in a protease resistance backbone and a decreased immune response [57, 58]. 

The submonomer protocol for peptoid synthesis has advantages such as high coupling 

efficiencies and capability of adding a large diversity of side chain moieties due to the vast 

number of primary amines available [59]. 

The submonomer protocol has two stages: In the first stage, bromoacetic acid is utilized in order 

to acylate a secondary amine on the resin. In the second stage, a primary amine is added to the 

oligomer via an SN2 reaction. These steps are repeated until the desired sequence is obtained 

(Figure 4B) [60]. After synthesise is complete, the peptoid is cleaved from the resin using 

trifluoroacetic acid. 

Many studies have investigated the formation of peptoid secondary structure. Armand et al. used 

molecular modeling to predict that a stable helical structure can be formed by fully N-substituted 

glycines with aromatic and chiral side chain groups [61] which later was established via nuclear 

magnetic resonance [62]. Circular dichroism spectra of a peptoid with a polyproline type-I-like 

helix is similar to a peptide α-helix. The spectra has a maxima at 190 nm and two minima at 205 

and 220 nm, respectively [63, 64]. In order to form robust helical structure, peptoid helices 

Figure 1.6. Peptoid submonomer synthesis protocol 
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should contain: (1) aromatic and chiral side chain (at least 50%), (2) C-terminus of the peptoid 

structure should be with a chiral, aromatic side chain, (3) one helical face should be composed of 

aromatic and chiral side chains [65, 66]. 

1.5.Interactions of Peptoids and Lipids 

Peptoid/lipid interactions have previously been studied in the development of lung surfactant 

replacements. Peptide- and peptoid-based mimics of the lung surfactant proteins, SP-B and SP-C 

have been analyzed using the pulsating bubble surfactometer, Langmuir-Wilhelmy surface 

balance, and fluorescence microscopic film imaging [67-69]. However, the peptoid-based lung 

surfactant replacements were not able to mimic the surface activity of natural lung surfactant 

replacements. Another study has been shown that that lipid formulation composition is an 

important factor in the surface activity and structure of a specific SP mimic [70]. Therefore, in 

vitro function of two peptoid- and two peptide-based SP mimics in three different lipid 

formulations has been investigated in [71]. Moreover, the effects of side chain chemistry and 

length of the helical hydrophobic region in vitro testing of two classes of peptoid SP-C mimics 

have been evaluated [72]. Furthermore, a library of antimicrobial peptoids have been presented 

with different helical structures and biomimetic sequences [73].  

1.6.Purpose and Significance of Research 

Bicelles as a model cell membrane has been the focus of reserarchers since the 1990s and have a 

wide range of applications. Functionalizing bicelles with peptoids can provide applications in 

emerging areas such as drug delivery, biosensors, and bioseperations. Specifically, preferential 

edge modification of bicelle peptoids can be a promising alternative for peptdide modified 
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lipodisk as nanocarriers since use of PEG decreses the chance of getting approved by FDA. The 

product needs to be homogeneous to get approved by the FDA. However, the production process 

for PEG-protein conjugate are costly, difficult and inefficient [74-78]. Moreover, peptoid-

funtionalilized bicelles can be anchored into gold nanoring arrays to develop biosensors. 

Peptoid-functionalized bicelles can also be applied in capillary electrophoresis as a media for 

membrane protein separation. 
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Chapter 2 Methods and Improvements 

2.1. Synthesis of 2-tritysulfanyl-ethylamine 

The protected thiol side chain, 2-tritysulfanyl-ethylamine, was prepared as previously described 

[79]. Briefly, triphenylmethanol was added to the solution of 2-aminoethanethiol hydrochloride 

in trifluoroacetic acid (TFA). Following incubation, the TFA was removed under reduced 

pressure using a rotating evaporator (Heidolph Laborota 4001, Elk Grove Village, IL). The 

solution was triturated with ethyl ether, the precipitant was partitioned with an aqueous solution 

of NaOH, and the product was extracted with ethyl acetate. The desired product was confirmed 

by 1H NMR spectroscopy using a Bruker Avance 300 MHz spectrometer (Billerica, MA) 

equipped with a 5mm BBO probe and compared to previously published data (Figure 2.1) [80].  

Figure 2.1. 1H NMR spectra of the protected thiol side chain, 2-

tritysulfanyl-ethylamine in deuterated dichloromethane. Chloroform and 

ethyl acetate spectra were the remaining from the synthesis process.  

http://en.wikipedia.org/wiki/Trifluoroacetic_acid
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2.2. Peptoid Synthesis 

Peptoids were synthesized via a submonomber solid-phase method using an Applied Biosystems 

433A automated peptide synthesizer (Carlsband, CA) that was refurbished from a 431A 

synthesizer [59].Briefly, rink amide resin was swelled with dimethylformamide (DMF) and the 

Fmoc protecting group was removed using a 20% solution of piperidine in DMF. The two-step 

submonomer cycle starts with bromoacetylation by addition of 1.2 M bromoacetic acid in DMF 

and N, N’-diisopropylcarboniimide at a ratio of 4.3:1. In the next step, side chain were added to 

the resin via an SN2 reaction mechanism, which consists of incubation with 0.5-1 M amine in 

DMF for 90 min. The submonomer cycle was repeated until the desired sequence was achieved 

The peptoid was removed from the resin by bathing it in a solution of 95% trifluoroacetic acid 

(TFA), 2.5% triisoproylsilane, and 2.5% water for 10 min. The acid was removed using a 

Heidolph Laborota 4001 rotating evaporator (Elk Grove Village, IL) and the product was diluted 

to a concentration of ~3 mg/mL in a 50:50 solution of isopropanol-water. 

2.3. Peptoid Purification 

Peptoids were purified using preparative reversed-phase high pressure liquid chromatography 

(RP-HPLC; Waters Delta 600, Milford, MA) with a Duragel G C4 150 x 20 mm column (Peeke 

Figure 2.2. RP-HPLC chromatogram of Peptoid HN1  
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Scientific, Novato, CA). Gradients were run at ~1% per min with 30-70% solvent B in A 

(solvent A: water, 5% isopropanol, 0.1% TFA; solvent B: isopropanol, 5% water, 0.1% TFA) at 

room temperature. 

2.4. Peptoid Characterization 

Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry 

(Bruker Daltonik GMBH, Bremen, Germany) was used to confirm that the purified peptoid 

molecular weight matched the theoretical mass calculated with ChemSketch (ACD/Labs, 

Toronto, ON). Peptoids were confirmed to be >98% pure via analytical HPLC (Waters 2695 

Separations Module, Milford, MA) equipped with a Duragel G C4 150 x 2.1 mm column (Peeke 

Scientific, Novato, CA) using a linear gradient of 30 to 70% solvent D in C (solvent D: 

isopropanol, 0.1% TFA; solvent C: water, 0.1% TFA) over 30 min. Purified peptoid fractions 

were comibined and lyophilized using a Labconco lyophilizer (Kansas City, MO) and stored as a 

powder at -20 °C. 

2.5. Circular Dichroism 

Peptoid secondary structure was confirmed using CD spectrometry analysis to be a poly-proline 

type-I-like helix exhibits a maxima near 190 nm and two minima near 205 and 220 nm [65, 66, 

81]. CD was performed using a Jasco J-1500 instrument (Easton, MD) at room temperature with 

a scanning speed of 50 nm/min and a path length of 0.2 mm. The peptoid was dissolved in pure 

methanol at a concentration of 430 μM and the CD spectra is the cumulative average of 10 scans. 
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2.6. Bicelle and Peptoid-functionalized Bicelles Preparation 

Bicelles were prepared as previously described [82]. Briefly, chloroform was evaporated from 

the lipids using a gentle stream of nitrogen gas to form a lipid film, and the samples were placed 

under hard vacuum for 12 hr to ensure all solvent is removed. The long-chain lipid was 

incubated at room temperature for an additional 8 hr before hydration overnight with nanopure 

water to a final concentration of 0.38 mmole/mL. In order to form liposomes the hydrated long-

chain lipid was incubated at 40 °C for 10 min, vortexed briefly, and placed in an 18 °C ice bath. 

This cycle was repeated ~3 times, until the solution was free-flowing when heated. The short-

chain lipid was hydrated with nanopure water to a final concentration of 0.25 mmole/mL and 

vortexed at room temperature for 30 sec to form micelles. The desired molar ratio of long-chain 

(DMPC) to short-chain (DHPC) lipid, referred to as q [40], was combined. The lipid mixture 

(0.63 mmole/mL) was placed on ice for 5 min and vortexed for 1 min. The final step in bicelle 

formation consists of freezing using liquid nitrogen, and thawing in a 45 °C water bath. The 

freeze-thaw cycle was repeated ~10 times until the solution was transparent after being placed on 

ice for 5 min.  

Peptoid-functionalized bicelles were prepared following two methods: (1) peptoid addition after 

bicelle formation and (2) peptoid addition before bicelle formation. Peptoid was dissolved in 

50:50 solution of isopropanol and water. In order to prevent the formation of disulfide bonds, the 

reducing agent DTT was added to the peptoid solution at 1 mM prior to adding to the bicelle 

solution [83]. The preliminary results showed that Method 2 was successful in incorporating 

peptoid in the edge of bicelles. Therefore, Method 1 was chosen for the rest of the studies.  
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2.7. Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was used to visualize bicelles and peptoid-

functionalized bicelles, as previously described [42, 45, 84, 85]. Briefly, TEM grids were 

prepared by dropping 5 μL of diluted bicelle solution onto a 300 square mesh formvar-carbon 

supported nickel (Method 1) or copper (Method 2) grid at room temperature. The grids were 

placed on filter paper to dry, stained with 2% uranyl acetate, and placed on filter paper to dry 

overnight. Images were obtained using a JEOL-1011 TEM (Tokyo, Japan) with an accelerating 

voltage of 110 kV. In order to obtain clear TEM images of the bicelles, samples were diluted 

with nanopure water [86]. Microsoft Visio was used to determine the diameter and thickness of 

the bicelles from the TEM images.   

2.8. Gold Nanoparticle Studies 

Gold nanoparticles (AuNP) were used to determine the location of peptoids within the bicelle 

structure. The AuNP size is 10±2 nm and the AuNP solution concentration is 40-50 µg/mL in 

water. First, 1.5 µL of non-functionalized and peptoid-functionalized bicelle solutions were 

combined with 1.0 mL of AuNP solution in 1.5 mL nanopure water [87] and then incubated for 1 

hr on an orbital vortexer to allow for AuNP attachment to the thiols at the N-terminus of the 

peptoid [88-91]. AuNP-peptoid-functionalized bicelles were visualized by TEM without any 

further dilution, as described above.  

2.9. Dynamic Light Scattering 

The size of bicelles and peptoid-functionalized bicelles is an important parameter that needs to 

be measured. Dynamic light scattering (DLS) was performed, which uses the variation in 
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Brownian movement to measure the hydrodynamic diameter of particles in solution assuming a 

spherical shape [92]. The hydrodynamic radius was translated to the radius of a disc for the 

bicelles using Equation (2.1) [93], 
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                               Equation 2.1 

where Rh is hydrodynamic radius, r is disc radius, and t is disc thickness determined by TEM. 

The experiments were carried out at 25 °C using a Delsa™Nano C (Beckman Coulter, Brea, 

CA). The bicelle solutions were diluted with nanopure water. 
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Chapter 3 Altering the Edge Chemistry of Bicelles with Peptoids 

3.1. Introduction  

Biological membranes draw a boundary between or within cells and organelles, enabling the 

isolation of different cellular processes during tightly regulated transportation of materials into 

and across membranes [1]. They also serve as a home for biochemical processes since many 

physiological events, such as signaling, fusion, and fission, occur in the membrane. Membranes 

have a complex composition, including both lipid and protein, and are dynamic in nature. The 

main class of membrane lipids is phospholipids, which consist of two hydrophobic fatty acid 

chains linked to a phosphate-containing hydrophilic head group. Due to their amphipathic 

character, phospholipids form bilayers in aqueous solutions [94]. Investigating the nature of cell 

membranes and their reciprocal relationships is very challenging, specifically when trying to 

establish membrane biology in non-natural systems. Due to the complexity of biological 

membranes, a vast number of modified, but similar, model systems with precise size, geometry, 

and composition have been developed to investigate membrane characteristics, lipid-lipid 

interactions, and drug discovery and delivery [4, 7-9]. Many model membrane systems preserve 

the structure and function of the lipid bilayer, while simplifying the system to evaluate the role of 

each component and visualize the organization and function of the system. Commonly used 

model membrane systems include: vesicles [3, 9, 95, 96], supported lipid bilayers [97-99], 

nanodiscs [37, 38, 100, 101], and bicelles [40, 42, 43, 45, 102, 103]. 

Vesicles are lipid bilayers of phospholipids [104], and are typically formed by slow evaporation 

from volatile organic solvents and resuspension in an aqueous solution [20]. While vesicles have 

fundamental similarity to the biological cell membrane and are easy to prepare, they are limited 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3122/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3121/
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by low stability and the ability of incorporated proteins to interact with each other [7, 20, 21]. 

Supported lipid bilayers are flat membranes that are created on a hydrophilic support such as 

mica, glass, or silica by lipid vesicle fusion or using the Langmuir-Blodgett technique, and often 

have a very thin (~5 Å) aqueous layer between the solid support and the lipid membrane [4, 9]. 

The advantages of supported lipid layers are their ease of preparation, stability, and their ability 

to incorporate patterning. However, surface effects impair protein stability and decrease lipid 

mobility [7, 105].  

Bicelles and nanodiscs are disc-shaped lipid bilayers that are accessible from both sides, unlike 

the previously discussed lipid structures. Nanodiscs contain phospholipids in the planar, bilayer 

surface and an engineered, amphipathic, helical membrane scaffold protein at the edge [36, 37, 

101]. These self-assembled structures provide high stability, access to both sides of the 

membrane, and monodispersity [36]. However, nanodiscs have a small, uniform size range (8 to 

13 nm) that does not permit the study of stoichiometric inclusion of multi-protein complexes 

[106]. 

Bicelles are formed by combining long-chain and short-chain lipids, where the long-chain lipids 

form the planar surface of the disc and the short-chain lipids form the edge [40]. These bilayered 

lipid discs have been investigated as a model membrane system due to their similarity to 

biological membranes in lipid composition and their planar surface [39, 46]. Bicelles overcome 

the issues of stability and mobility that impair vesicles and supported lipid bilayers, while 

maintaining the structure and function of incorporated proteins [16, 18, 20, 21]. The size of 

bicelles can be custom-tailored, resulting in a wide range of sizes (10-100 nm), thereby 

overcoming the concerns of nanodiscs [40, 102, 107]. The main shortcoming of bicelles is their 
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limited temperature and hydration levels in the bicellular phase diagram. Efforts that have been 

made to extend the bicellar region include the use of designed lipids with biphenyl-containing 

acyl chains and stabilizing the bicelles by the addition of sialylated lipids [40].  

Bicelles have been previously modified with poly(ethylene glycol) (PEG), which created a new 

class of model cell membrane called lipodisks [108-110]. In lipodisks, the PEGylated lipids are 

mostly at the edges of the bicelle improving stability for the investigation of drug-membrane 

interactions and drug partition studies [74, 111]. In recent studies, lipodisks have shown promise 

as nanocarriers. The rim of lipodisks has high affinity to amphiphilic peptides with antimicrobial 

and anticancer activity and can be easily modified with peptides [74, 112]. Peptide-modified 

lipodisks have been developed as a tumor-targeted drug delivery system for potential anticancer 

candidate, such as melittin [75, 76]. However, PEGylated protein drugs have to meet several 

criteria in order to get FDA approval [77]. 

The focus of this study is to modify the edge chemistry of bicelles through incorporation of 

peptoids, peptide-like molecules that have their side chain attached to the backbone amide rather 

than the alpha-carbon [58]. Functionalizing bicelles with peptoids leads to applications in 

biosensors, bioseperations, and drug delivery. Peptoid-functionalized bicelles can be customized 

to bind to gold nanoring arrays for use in biosensors. Peptoid-functionalized bicelles can also be 

used as a media for membrane protein separation in capillary electrophoresis to increase yield. 

Moreover, peptoid-functionalized bicelles are an interesting alternative for peptide-modified 

lipodisks with eliminating the need for PEG with the better chance of getting approved by the 

FDA. Peptoids are useful in this application because a large diversity of side chains are available, 

and they are sequence-specific, easy to synthesize and, resistant to proteolytic degradation, and 
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elicit a low immune response [59]. Peptoids are synthesized via a submonomer protocol that 

yields high coupling efficiencies compared to peptides [60] and a large diversity of side chain 

moieties are available as primary amines [58].While peptoids lack backbone chirality and 

hydrogen bond donors, a secondary structure can be introduced through side chain chemistry 

[61, 113]. For example, peptoids with chiral, aromatic side chains form robust polyproline type-

I-like helices with ~6 A° pitch and 3 monomers per turn [62]. These helices are stabilized by 

steric interactions, rather than hydrogen bonds, leading to stable secondary structure even with 

increasing temperature and inclusion of denaturants such as urea [66].  

The interaction of peptoids and lipids has been studied for biomedical applications including 

lung surfactant mimics, antimicrobials, and cellular uptake and delivery [65-69, 72, 73, 114-

121]. Barron and co-workers designed and characterized amphipathic peptoids as mimics of lung 

surfactant proteins and showed that the facially and longitudinally amphipathic helices insert into 

the lipid layer [65-69, 72, 114-116]. Further studies showed that the inclusion of alkyl side 

chains improves insertion of the peptoids into the lipid layer [114, 115]. Peptoid-based mimics of 

antimicrobial peptides have been shown to decrease bacterial cell growth [119], and molecular 

studies confirm that the peptoid helices interact with lipids in a similar manner as antimicrobial 

peptides [73]. Zuckerman et al. first used cationic peptoids conjugated to phospholipid 

headgroups (lipitoids) as cellular uptake agents [120]. The protease-resistance feature of peptoids 

makes the lipitoids a group of synthetic polymers that has shown promising results in in vitro 

cellular delivery of plasmid DNA [121]. 

Here we report, for the first time, the functionalization of bicelle edges with peptoid HN1. These 

studies show that peptoid functionalization does not significantly alter bicelle morphology or 

javascript:popupOBO('CHEBI:16670','B817980H','http://0-www.ebi.ac.uk.library.uark.edu/chebi/searchId.do?chebiId=16670')
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size, and that the amphipathic peptoid preferentially incorporates into the edge of the bicelles. 

These findings indicate that peptoids can be used to modify the edge chemistry of bicelles with 

potential applications in biosensors and bioseparations. 

3.2. Materials and Methods 

3.2.1. Materials 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC; 14:0 PC) and 1,2-dihexanoyl-sn-glycero-

3-phosphocholine (DHPC; 6:0 PC) dissolved in chloroform were purchased from Avanti Polar 

Lipids (Alabaster, AL). MBHA rink amide resin was purchased from NovaBiochem (Gibbstown, 

NJ), piperidine was purchased from Sigma-Aldrich (St. Louis, MO), hexylamine and S-

methylbenzylamine were purchased from Acros Organics (Pittsburgh, PA) and tert-butyl N-(4-

aminobutyl)carbamate was purchased from CNH Technologies Inc. (Woburn, MA). Gold 

nanoparticles (AuNP) in aqueous solution were purchased from NNCrystal (Fayetteville, AR), 

and carbon-coated copper grids 300 mesh TYPE A and carbon-coated nickel grids 300 mesh 

were purchased from Ted Pella. Inc. (Redding, CA). All other reagents and materials were 

Figure 3.1. Schematic representation of peptoid-functionalized bicelles 
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purchased from VWR. All chemicals were used without further modification, unless otherwise 

noted. 

3.2.2. Synthesis of 2-tritysulfanyl-ethylamine 

The protected thiol side chain, 2-tritysulfanyl-ethylamine, was prepared as previously described 

[79]. Briefly, triphenylmethanol was added to the solution of 2-aminoethanethiol hydrochloride 

in trifluoroacetic acid (TFA). Following incubation, the TFA was removed under reduced 

pressure using a rotating evaporator (Heidolph Laborota 4001, Elk Grove Village, IL). The 

solution was triturated with ethyl ether, the precipitant was partitioned with an aqueous solution 

of NaOH, and the product was extracted with ethyl acetate. The desired product was confirmed 

by 1H NMR spectroscopy using a Bruker Avance 300 MHz spectrometer (Billerica, MA) 

equipped with a 5mm BBO probe and compared to previously published data [80].  

3.2.3. Peptoid Synthesis and Purification 

Peptoid HN1 was synthesized following a submonomer method [59] using an ABI 433A 

automated peptide synthesizer that was refurbished from a 431A synthesizer (Carlsband, CA), as 

previously described [122]. Briefly, rink amide resin was swelled by bathing it in 

dimethylformamide (DMF) and the Fmoc protecting group was removed using 20% piperidine in 

DMF. The submonomer cycle consists of (1) the addition of 1.2 M bromoacetic acid in DMF and 

N, N’-diisopropylcarboniimide at a ratio of 4.3:1 and (2) incubation with 0.5-1 M amine in DMF 

for 90 min. The submonomer cycle was repeated until the desired sequence was obtained. 

Peptoid HN1 was cleaved from the resin by incubation in a mixture of 95% TFA, 2.5% water, 

and 2.5% triisopropylsilane for 10 min. The resin was filtered from the peptoid solution, the TFA 

http://en.wikipedia.org/wiki/Trifluoroacetic_acid
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was removed using a rotating evaporator, and the product was dissolved in 50:50 

isopropanol:water to a final concentration of ~3 mg/mL.  

Peptoid HN1 was purified by preparative reversed-phase high pressure liquid chromatography 

(RP-HPLC; Waters Delta 600, Milford, MA) with a Duragel G C4 150 x 20 mm column (Peeke 

Scientific, Novato, CA). Gradients were run at ~1% per min with 30-70% solvent B in A 

(solvent A: water, 5% isopropanol, 0.1% TFA; solvent B: isopropanol, 5% water, 0.1% TFA) at 

room temperature. Peptoid purity of >97% was confirmed using a Waters 2695 separations 

module analytical RP-HPLC with a Duragel G C4 150 x 2.1 mm column (Peeke Scientific) and a 

linear gradient of 30 to 70% solvent D in C over 60 min (solvent C: water, 0.1% TFA; solvent D: 

isopropanol, 0.1% TFA). The molecular weight of the peptoid was determined using matrix-

assisted laser desorption/ionization (MALDI) mass spectrometry (Bruker Daltonik GMBH, 

Bremen, Germany) and compared to the molecular weight calculated with ChemSketch 

(ACD/Labs, Toronto, ON) (Supporting information, Figure S3.1). The formation of peptoid 

dimer was confirmed by MALDI and analytical RP-HPLC which showed that a reducing agent 

was required [83]. Purified peptoid solutions were dried to powder using a Labconco lyophilizer 

(Kansas City, MO) and stored at −20 °C until use.  

3.2.4. Circular Dichroism 

The secondary structure of peptoid HN1 was confirmed to be a poly-proline type-I-like helix by 

circular dichroism (CD; Supporting information, Figure S3.2). CD spectroscopy analysis was 

performed using a Jasco J-1500 instrument (Easton, MD) with a scanning speed of 50 nm/min 

and a path length of 0.2 mm at room temperature. The peptoid was dissolved in pure methanol at 
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a concentration of 430 μM and the CD spectra is the cumulative average of 10 scans. Data are 

presented as per residue molar ellipticity. 

3.2.5. Bicelle and Peptoid-Functionalized Bicelle Preparation 

Bicelles were prepared as previously described [82]. Briefly, chloroform was evaporated from 

the lipids using a gentle stream of nitrogen gas to form a lipid film, and the samples were then 

placed under hard vacuum for 12 hr to remove all solvent. The long-chain lipid was incubated at 

room temperature for an additional 8 hr before hydration overnight with nanopure water to a 

final concentration of 0.38 mmole/mL. In order to form liposomes, the hydrated long-chain lipid 

was incubated at 40 °C for 10 min, vortexed briefly, and placed in an 18 °C ice bath. This cycle 

was repeated ~3 times, until the solution was free-flowing when heated. The short-chain lipid 

was hydrated with nanopure water to a final concentration of 0.25 mmole/mL and vortexed at 

room temperature for 30 sec to form micelles. A 1.5:1 molar ratio of long-chain (DMPC) to 

short-chain (DHPC) lipid, referred to as q [40], was used for these studies. The lipid mixture 

(0.63 mmole/mL) was placed on ice for 5 min, vortexed for 1 min, frozen using liquid nitrogen, 

and thawed in a 45 °C water bath. The freeze-thaw cycle was repeated ~10 times until the 

solution was transparent after being placed on ice for 5 min.  

Peptoid-functionalized bicelles were prepared following two methods: (1) peptoid addition after 

bicelle formation and (2) peptoid addition before bicelle formation. Peptoid was added at 0.25 or 

20 mole% of the short-chain lipid (DHPC). In order to prevent the formation of disulfide bonds, 

the reducing agent DTT was added to the peptoid solution at 1 mM prior to adding to the bicelle 

solution [83]. Peptoid-functionalized bicelles prepared in the absence of DTT formed aggregates 

due to disulfide bonds, as observed by TEM and DLS (Supporting information, Figure S3.3).  
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3.2.6. Transmission Electron Microscopy 

Bicelles and peptoid-functionalized bicelles were visualized by TEM, as previously described 

[42, 45, 84, 85]. TEM grids were prepared at room temperature by dropping 5 μL of diluted 

bicelle solution onto a carbon-coated copper (for Method 1) or carbon-coated nickel (for Method 

2) grid. The grids were placed on filter paper to dry, stained with 2% uranyl acetate, and placed 

on filter paper to dry overnight. Images were obtained using a JEOL-1011 TEM (Tokyo, Japan) 

with an accelerating voltage of 110 kV. Microsoft Visio was used to determine the diameter and 

thickness of the bicelles from the TEM images. 

In order to obtain clear TEM images of the bicelles, samples were diluted with nanopure water to 

final lipid concentrations of 6.36, 3.18, 0.318, and 0.159 mM for bicelles and 0.183, 0.091, 

0.009, and 0.005 mM for peptoid-functionalized bicelles [86]. It was determined that samples 

with a final lipid concentrations of 0.159 mM non-functionalized bicelles and 0.005 mM 

peptoid-functionalized bicelles resulted in the best images (Supporting information, Figure S3.4).  

3.2.7. Dynamic Light Scattering (DLS) 

DLS was used to determine the size distribution of bicelles and peptoid-functionalized bicelles in 

solution. DLS uses the variation in Brownian movement to measure the hydrodynamic diameter 

of particles in solution, assuming a spherical shape [92]. The hydrodynamic radius was translated 

to the radius of a disc for the bicelles using Equation (3.1) [93], 
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where Rh is hydrodynamic radius, r is disc radius, and t is disc thickness determined by TEM. 

The experiments were carried out at 25 °C using a Delsa™Nano C (Beckman Coulter, Brea, 

CA). The bicelle solutions were diluted with nanopure water. 

3.2.8. Determination of Peptoid Position 

The location of peptoid HN1 within the bicelles was determined by incubation with AuNP. The 

AuNP size is 10±2 nm and the AuNP solution concentration is 40-50 µg/mL. 1.5 µL of non-

functionalized and peptoid-functionalized bicelle solutions were combined with 1.0 mL of AuNP 

solution in 1.5 mL nanopure water [87] and incubated for 1 hr on an orbital vortexer to allow for 

AuNP attachment to the thiols at the N-terminus of peptoid HN1 [88-91]. AuNP-peptoid-

functionalized bicelles were visualized by TEM without any further dilution, as described above.  

3.3. Results and Discussion 

3.3.1. Peptoid HN1 Sequence and Rationale 

The ability to selectively alter the surface chemistry of bicelles will lead to improved function as 

model cell membranes in applications such as biosensors and electrophoretic separations. 

Previous studies showed that peptoids can be designed to interact with lipids [67, 72, 115] and, 

in some cases insert into lipid structures [68, 69] and anchor into the lipid membrane [114].  
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Peptoid HN1 sequence reported here is based on work in the Barron lab that showed that 

alkylation of a cationic, facially amphipathic peptoid led to improved insertion into lipid films 

[114]. Specifically, peptoid HN1 reported here has three functional regions (Figure 1): (1) 

insertion sequence, (2) facially amphipathic helix (charged anchor), and (3) functional groups. 

The insertion region includes two alkyl chains that match the length of the DHPC tail groups that 

make up the bicelle edge (6 carbons) and two hydrophobic, chiral aromatic groups. This region 

of the peptoid inserts into the hydrophobic lipid tail region and serves as an anchor into the 

bicelle edge. The facially amphipathic helix contains chiral aromatic groups to induce helical 

secondary structure with three residues per turn [62]. One side of the helix is hydrophobic to 

interact with the lipid tails, and the other side contains positive charges to interact with the lipid 

head groups. The functional group selected for this study was thiol to allow for AuNP attachment 

to determine peptoid location within the bicelle.  

3.3.2. Effect of Peptoid on Bicelles  

Bicelles were composed of DMPC and DHPC (C14 and C6, respectively) with 0, 0.25, or 20 

mole% peptoid HN1, relative to DHPC. Peptoid-functionalized bicelles were prepared by adding 

Figure 3.2. Peptoid HN1 structure and molecular weight. There are 3 active regions on the 

peptoid: (1) insertion sequence, (2) charged anchor, and (3) functional groups. 
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peptoid HN1, either after bicelle formation (Method 1) or before bicelle formation (Method 2). 

Bicelle morphology and size were determined by TEM imaging for non-functionalized and 

peptoid functionalized bicelles. In the absence of peptoid HN1, bicelles in both face-on and 

edge-on projections were observed by TEM imaging (Figure 2A) with an average diameter of 

36.5±13.0 nm, in accordance with previously published data for DMPC:DHPC bicelles [41, 123-

125].Bicelles prepared with 0.25 mole% peptoid HN1 by Method 1 had similar morphology to 

non-functionalized bicelles, with an average diameter of 48.4±12.0 nm (Figure 2B). Bicelles 

prepared with 20 mole% peptoid HN1 by Method 1 formed aggregates that required further 

dilution of the bicelle solution to obtain clear images. At the higher peptoid HN1 concentration, a 

layer of bicelles was observed with peptoid HN1 aggregates on top (Figure 2C). The average 

diameter for the peptoid-functionalized bicelles and small peptoid HN1 aggregates was 28.1±5.3 

nm. Peptoid-functionalized bicelles prepared by Method 2 had morphology similar to non-

functionalized bicelles for both the 0.25 and 20 mole% peptoid HN1concentrations (Figures 2E 

and 2F). The average diameter of the bicelles was 47.8±14.4 nm for 0.25 mole% peptoid HN1 
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and 48.6±11.2 nm for 20 mole% peptoid HN1. Bicelle size in nanopure water solution was 

determined by DLS for non-functionalized and peptoid-functionalized bicelles. The measured 

hydrodynamic radius of the particles was transformed to the disc radius using Equation 1 using a 

bicelle thickness of 5.4 nm as determined by TEM, which is in agreement with previously 

published data [45, 103]. DLS results show that in the absence of peptoid HN1, the bicelles had a 

diameter of 31.8±20.5 nm in solution, in agreement with previous studies [45, 126].  

Figure 3.3. TEM images of non-functionalized (A) and peptoid-functionalized bicelles prepared 

by Method 1 (B and C) or Method 2 (D and E) with peptoid-DHPC = 0.25 mole% (B and D) or 

20 mole% (C and E) and q=1.5. Face-on bicelles are indicated by white arrows, edge-on bicelles 

are indicated by black arrows, and peptoid HN1 aggregates are indicated by black circles. Scale 

bar represents 500 nm (A, D, E) or 400 nm (B, C).  
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For peptoid-functionalized bicelles prepared by Method 1 with 0.25 mole% peptoid HN1, the 

average diameter was 45.5±15.1 nm (Figure 3A). When the peptoid HN1 concentration was 

increased to 20 mole%, two peaks appeared on the size distribution curve: (1) a peak for peptoid-

functionalized bicelles and small peptoid HN1 aggregates with an average diameter of 

26.41±16.40 nm and (2) a peak for larger peptoid HN1 aggregates with an average diameter of 

76.35±30.84 nm. DLS results for the peptoid-functionalized bicelles prepared using Method 2 

showed no aggregates (Figure 3B) and had an average diameter of 47.8±14.4 nm for 0.25 mole% 

peptoid HN1 and 48.6±11.2 nm for 20 mole% peptoid HN1.  

Figure 3.4. DLS size distribution curves for non-functionalized (solid) and peptoid-

functionalized bicelles with 0.25 mole% (dash) or 20 mole% (dash-dot-dash) prepared by 

Method 1 (A) and Method 2 (B) with q = 1.5. The hydrodynamic radius was transformed to 

the disc radius using equation 1. 
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3.3.3. Placement of peptoid within bicelles 

The position of the peptoid within the bicelle was determined by incubation with AuNP, which 

interacted with the thiol groups at the N-terminus of peptoid HN1, followed by visualization with 

TEM. Incubation of AuNP with non-functionalized bicelles confirmed that the AuNPs did not 

interact with bicelles without peptoid (Supporting information, Figure S3.5). Additionally, 

AuNPs had limited interaction with peptoid-functionalized bicelles containing 0.25 mole% 

peptoid (Supporting information, Figure S3.5). All further studies to determine peptoid position 

in the bicelle were completed with 20 mole% peptoid HN1. 

TEM images of AuNP-peptoid-functionalized bicelles prepared by Method 1 showed that the 

peptoid was incorporated in both the bicelle face and edge with little preference (Figure 4A). 

Quantitative analysis of the TEM images revealed that 54% of the peptoid was incorporated into 

the edge of the bicelle. AuNP incubation with peptoid-functionalized bicelles prepared by 

Method 2 showed preferential incorporation of peptoid into the bicelle edges (Figure 4B). TEM 

image analysis showed 82% peptoid incorporation into the bicelle edge, as opposed to the face. 

The incorporation of some peptoid into the face is not surprising considering that previous 

Figure 3.5. TEM images of AuNP modified peptoid-

functionalized bicelles with peptoid-DHPC = 20 mole% and 

q=1.5 prepared by Method 1 (A) or Method 2 (B) 
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studies showed that the non-idealized molecular structure of bicelles leads to the presence of 

some DHPC molecules in the face of the bicelle [102, 127].  

3.4.Discussion 

Here we report the successful formation of bicelles functionalized with peptoid preferentially at 

the edges. TEM results show that discoidal peptoid-functionalized bicelles were formed by 

Method 2 with both 0.25 and 20 mole % peptoid, at 0.25 mole % peptoid for Method 1. The 

main difference between two methods is the peptoid addition step. In Method 2, peptoid 

incorporate into the bicelle structure along with the lipids since peptoid was added during the 

bicelle formation. In fact, peptoid is a part of self-assembly process of bicelle formation. The 

insertion region of peptoid which contains alkyl chain matching the length of the DHPC tail 

groups, preferentially assembled with the DHPC at the edges of bicelle. The results for 5% and 

20% mole peptoid show that disc-shaped structure of bicelle was the only observed morphology 

and the addition of peptoid does not alter the discoidal bicelle shape. Preferential incorporation 

of the peptoid into the bicelle edge was confirmed by attachment of AuNPs to the thiol groups on 

the N-terminus of the peptoid. Peptoid-functionalized bicelles prepared by Method 2 showed 

preferential placement in the bicelle edge (~80%). In Method 2, addition of peptoid before 

bicelle formation allows the insertion region of peptoid incorporates preferentially into the edges 

of the bicelle. The insertion of peptoid in the planar region of bicelle is minor, but predictable, 

since the alkyl chain length of peptoid is shorter than the length of the DMPC tail groups.   

In Method 1, peptoid was added after bicelles were already formed. The peptoid is not a part of 

self-assembly process of bicelle formation. At 5% mole peptoid for Method 1, only disc-shaped 

structure of peptoid-functionalized bicelles was observed. However, as the peptoid concentration 
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was increased to 20 mole %, three morphologies were observed including peptoid-functionalized 

bicelles, small peptoid aggregates, and larger peptoid aggregates. These results show at 20 

mole% peptoid, the amount of peptoid is high and since the peptoid addition is not a part of self-

assembly process, peptoid molecules started to interact with each other and formed aggregates. 

Therefore, peptoid-functionalized bicelles were formed but also peptoid aggregation occurred. 

AuNPs studies show bicelles formed by Method 1 showed no preference for the edge versus the 

face (~50%) 

Preferential incorporation of the peptoid into the bicelle edge was confirmed by attachment of 

AuNPs to the thiol groups on the N-terminus of the peptoid. Peptoid-functionalized bicelles 

prepared by Method 2 showed preferential placement in the bicelle edge (~80%), whereas the 

bicelles formed by Method 1 showed no preference for the edge versus the face (~50%). In 

Method 2, addition of peptoid before bicelle formation allows the insertion region of peptoid 

incorporates preferentially into the edges of the bicelle. While forming peptoid-functionalized 

bicelles by method 1, bicelles are already formed and when peptoids are added, they 

incorporated into any available space, so there is no preference.  

Size analysis performed using DLS and TEM images not only show agreement between the two 

methods, but also show no statistical difference in bicelle diameter with the addition of peptoid, 

based on ANOVA analysis (Table 1). The average particle diameter for peptoid-functionalized 

bicelles was larger than the diameters of bicelles alone, likely due to peptoid incorporation in the 

edges of the bicelles.  
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Table 3.1. Comparison between particle diameter based on TEM images analysis and DLS 

 

mole% peptoid in DHPC 

Peptoid-functionalized bicelles diameter (nm) 

TEM images analysis DLS 

                    0 36.55±13.00 31.82±20.48 

 

Method 1 

0.25 48.35±11.95 45.53±15.14 

20 - - 

 

Method 2 

 

0.25 47.84±14.36 44.15±27.79 

20 48.61±11.16 44.69±14.64 

 

3.5.Conclusions  

To our knowledge, this is the first time bicelles have been functionalized with peptoids to modify 

the edge chemistry. Peptoids are promising candidates for bicelle functionalization since they are 

easily synthesized, sequence-specific, resistant to proteolytic degradation, and have a vast 

number of side chains available for synthesis. The insertion of peptoids into the edges of bicelles 

alters the surface chemistry and creates interaction regions for membrane protein studies with 

potential applications in biomarker detection and drug discovery. Peptoid-functionalized bicelles 

can also be used as a media for capillary electrophoresis, which may increase the yield in 

membrane proteins separation processes [128, 129], and can help to improve the selectivity for 

drug screening processes. Further studies may focus on using different q values, peptoid 

sequences, and other lipid combinations to investigate these effects on bicelle size and stability.  
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3.6.Supporting Information 

 

Figure S3.1. MALDI-TOF mass spectrometry was used to confirm that 

the purified peptoid mass matched the theoretical mass.   
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Figure S3.2. Circular dichroism spectra for the peptoid. The spectra depict a 

polyproline type I-like helical secondary structure. The CD spectra exhibits a 

characteristic maximum near 193 nm and two minima near 205 and 220 nm 

[24, 47-49].The increased intensity of the 220 nm peak as compared to the 

205 nm peak is indicative of a stable helical secondary structure. 
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Figure S3.4. Peptoid-functionalized bicelles with different 

final lipid concentrations by dilution with nanopure water. 

(A) 6.36, (B) 3.18, (C) 0.318, and (D) 0.159 mM. q = 1.5, 

peptoid-DHPC = 0.25 mole%. Scale bar represents 500 nm 

(A, B, C) or 300 nm (D). 

Figure S3.5. TEM images of AuNP modified with (A) non-

functionalized bicelles and (B) peptoid-functionalized 

bicelles with peptoid-DHPC = 0.25 mole% and q=1.5. Scale 

bar represents 300 nm 
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Chapter 4 Rational Design of Peptoids to Preferentially Insert into Edge or Plane of 

Bicelles  

4.1. Introduction 

Biological membranes play a crucial role in living organisms as major building blocks of cell 

walls, mitochondria and numerous other cell organelles. They provide stable and functional 

compartments, control transport, host a number of metabolic and biosynthetic activities, 

dominate cell-to-cell recognition, and more. Biological membrane have a dynamic nature and 

complex composition that mainly contains of three types of lipids - the phospholipids, 

cholesterol and glycolipids- and proteins [94, 130-133]. 

Phospholipids are one of the most abundant types of lipids in biological membranes that has a 

hydrophilic head group and a hydrophobic tail. They form a lipid bilayer structure in the aqueous 

environment, which is energetically (free energy) most favorable. Due to the complexity of 

biological membranes, it is often required to use a simplified system to model biomembrane 

structures. These model membrane systems are usually composed of one or two lipids and may 

have embedded natural proteins, sterols, or artificial peptides. Investigating model cell 

membranes leads to better understanding of biological membranes functions, lipid-lipid 

interactions, and drug discovery and delivery [45, 100, 132]. The major classes of model cell 

membranes are: vesicles [3, 9, 95, 96], supported lipid bilayers [97-99], nanodiscs [37, 38, 100, 

101], and bicelles [40, 42, 43, 45, 102, 103]. 

Vesicles are self-assembled, spherical phospholipid bilayers that closely resembles living cells 

and can encapsulate materials such as DNA, proteins, drugs, or other chemicals. While vesicles 

can be relatively easily prepared, they have low stability and the ability of incorporated proteins 
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to interact with each other is limited [7, 9]. Supported bilayer bilayers (SLBs) are another class 

of model membrane system where a lipid bilayer is placed on a solid support such as mica, glass 

or silicon. Several methods have been used to form SLBs including vesicle fusion, the lipid-

detergent method, and Langmuir-Blodgett (LB) deposition. SLBs are stable and easy to prepare, 

while solid surface may affect the membrane protein mobility and function [25, 27, 105].  

Both vesicles and SLBs are only accessible from one side, which is a disadvantage; therefore 

another class of model membrane systems have been developed that are accessible from both 

sides such as bicelles and nanodiscs. Nanodiscs consist of a segment of phospholipid bilayer 

surrounded by a membrane scaffold protein (MSP) coat. While nanodiscs have advantages such 

as monodispersity, access to both sides of the membrane and high stability, they are not 

applicable in the study of stoichiometric inclusion of multi-protein complexes due to small 

uniform size range (8 to 13 nm) [35, 36, 38, 106]. 

Bicelles are nano-disc shape structures composed of long chain lipids (12-18 carbons) and short 

chain lipids (6–8 carbons). The long and short chain lipids mainly distributed in the plane and 

edge of the disc, respectively. Bicelles are similar to biological membranes in terms of lipid 

composition and their planar surface, and they maintain the structure and function of 

incorporated proteins. The size of bicelles can be varied (10-100nm) which resolves the 

disadvantage of nanodiscs [39-41, 43].  

We previously showed in Chapter 3 that the designed peptoid sequence HN1 is preferentially 

incorporated into the edges of bicelles. The focus of this part of study is to modify the planar 

region of bicelles with another designed peptoid sequence peptoid HN2 and investigate the effect 
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of q and peptoid concentration on morphology and size of peptoid-functionalized bicelles. 

Peptoid-functionalized bicelles can be used in biosensors by binding to gold nanoring arrays. 

Moreover, peptoid-functionalized bicelles is applicable as a new media in capillary 

electrophoresis for membrane protein separation.  

Peptoids are a novel class of peptidomimetics that have a backbone similar to peptides with the 

side chains attached to the amide nitrogen rather than the alpha-carbon. Peptoids were chosen for 

this application since a large diversity of side chains are available, and they are sequence-

specific, easy to synthesize and, resistant to proteolytic degradation [59]. When chiral, aromatic 

side chains are included, peptoids adopt a polyproline type-I like helix exhibiting a helical pitch 

of ~6 Å and 3 monomers per turn [62].  

Here, for the first time we report the functionalization of planar region of bicelle with peptoid 

HN2 and evaluate the effect of q and concentration of peptoid HN1 and HN2 on morphology and 

size of peptoid-functionalized bicelles. The results show that peptoid HN2 preferentially 

incorporates into the face of the bicelles.  

4.2. Materials and Methods 

4.2.1. Materials 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC; 14:0 PC) and 1,2-dihexanoyl-sn-glycero-

3-phosphocholine (DHPC; 6:0 PC) dissolved in chloroform were purchased from Avanti Polar 

Lipids (Alabaster, AL). MBHA rink amide resin was purchased from NovaBiochem (Gibbstown, 

NJ), piperidine was purchased from Sigma-Aldrich (St. Louis, MO), hexylamine, 

tetradecylamine and S-methylbenzylamine were purchased from Acros Organics (Pittsburgh, 
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PA) and tert-butyl N-(4-aminobutyl)carbamate was purchased from CNH Technologies Inc. 

(Woburn, MA). Gold nanoparticles (AuNP) in aqueous solution were purchased from NNCrystal 

(Fayetteville, AR), and carbon-coated copper grids 300 mesh TYPE A and carbon-coated nickel 

grids 300 mesh were purchased from Ted Pella. Inc. (Redding, CA). All other reagents and 

materials were purchased from VWR. All chemicals were used without further modification, 

unless otherwise noted. 

4.2.2. Synthesis of 2-tritysulfanyl-ethylamine 

The protected thiol side chain, 2-tritysulfanyl-ethylamine, was prepared as previously described 

[79]. Briefly, triphenylmethanol was added to the solution of 2-aminoethanethiol hydrochloride 

in trifluoroacetic acid (TFA). Following incubation, the TFA was removed under reduced 

pressure using a rotating evaporator (Heidolph Laborota 4001, Elk Grove Village, IL). The 

solution was triturated with ethyl ether, the precipitant was partitioned with an aqueous solution 

of NaOH, and the product was extracted with ethyl acetate. The desired product was confirmed 

by 1H NMR spectroscopy using a Bruker Avance 300 MHz spectrometer (Billerica, MA) 

equipped with a 5mm BBO probe and compared to previously published data (Supporting 

information, Figure 2.1) [80]. 

4.2.3. Peptoid Synthesis and Purification 

Peptoids were synthesized via a submonomber solid-phase method using an Applied Biosystems 

433A automated peptide synthesizer (Carlsband, CA) that was refurbished from a 431A 

synthesizer [59]. Rink amide resin was swelled with dimethylformamide (DMF) and the Fmoc 

protecting group was removed using a 20% solution of piperidine in DMF. Then the two-step 

http://en.wikipedia.org/wiki/Trifluoroacetic_acid
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submonomer cycle starts with bromoacetylation step by addition of 1.2 M bromoacetic acid in 

DMF and N, N’-diisopropylcarboniimide at a ratio of 4.3:1. In the next step, side chain amines 

were added to the resin via an SN2 reaction mechanism which consists of incubation with 0.5-1 

M amine in DMF for 90 min. The submonomer cycle was repeated until the desired sequence 

was synthesized. The peptoid was removed from the resin by bathing it in a solution consisting 

of 95% trifluoroacetic acid (TFA), 2.5% triisoproylsilane, and 2.5% water for 10 min. The acid 

was removed using a Heidolph Laborota 4001 rotating evaporator (Elk Grove Village, IL) and 

the product was diluted to a concentration of ~3 mg/mL in a 50:50 solution of isopropanol-water. 

Peptoids were purified using a preparative reversed-phase high pressure liquid chromatography 

(RP-HPLC; Waters Delta 600, Milford, MA) with a Duragel G C4 150 x 20 mm column (Peeke 

Scientific, Novato, CA). Gradients were run at ~1% per min with 30-70% solvent B in A 

(solvent A: water, 5% isopropanol, 0.1% TFA; solvent B: isopropanol, 5% water, 0.1% TFA) at 

room temperature (Figure 4.1). Matrix-assisted laser desorption/ionization time of flight 

(MALDI-TOF) mass spectrometry (Bruker Daltonik GMBH, Bremen, Germany) was used to 
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confirm that the purified peptoid molecular weight matched the theoretical mass calculated with 

ChemSketch (ACD/Labs, Toronto, ON). (Figure 4.2) 
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Figure 4.2. MALDI-TOF mass spectrometry was used to 

confirm that the purified peptoid mas matched the theoretical 

mass. Mw : 2882 Da.  

Figure 4.1. RP-HPLC chromatogram of Peptoid HN2  
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4.2.4. Circular Dichroism 

Circular dichroism (CD) spectroscopy was used to determine the secondary structure of HN1 and 

HN2. The CD spectra for both peptoids in methanol exhibited a maxima near 190 nm and two 

minima near 205 and 220 nm [65, 66, 81] (Figure 4.3). CD was performed using a Jasco J-1500 

instrument (Easton, MD) at room temperature with a scanning speed of 50 nm/min and a path 

length of 0.2 mm. The peptoids were dissolved in pure methanol at a concentration of 430 μM 

and the CD spectra is the cumulative average of 10 scans. 
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Figure 4.3. Circular dichroism spectra of peptoids 

HN1 and HN2 showing poly-proline type-1-like 

helical secondary structure. CD spectra were taken at 

room temperature with scanning speed of 20 nm/min 

and a path length of 0.1 mm. The peptoids were 

dissolved in methanol at a concentration of 430 μM. 



49 

4.2.5. Bicelle and Peptoid-functionalized Bicelles Preparation 

Bicelles were prepared as previously described [82]. First, chloroform was evaporated from the 

lipids using a gentle stream of nitrogen gas to form a lipid film, and the samples were then 

placed under hard vacuum for 12 hr to assure there is no solvent remained. The long-chain lipid 

was incubated at room temperature for an additional 8 hr before hydration overnight with 

nanopure water to a final concentration of 0.38 mmole/mL. Then, in order to form liposomes, the 

hydrated long-chain lipid was incubated at 40 °C for 10 min, vortexed briefly, and placed in an 

18 °C ice bath. This cycle was repeated ~3 times, until the solution was free-flowing when 

heated. The short-chain lipid was hydrated with nanopure water to a final concentration of 0.25 

mmole/mL and vortexed at room temperature for 30 sec to form micelles. The desired molar 

ratio of long-chain (DMPC) to short-chain (DHPC) lipid, referred to as q [40], was mixed 

together. The lipid mixture (0.63 mmole/mL) was placed on ice for 5 min and vortexed for 1 

min. The final step which is the bicelle formation consists of freezing using liquid nitrogen, and 

thawing in a 45 °C water bath. The freeze-thaw cycle was repeated ~10 times until the solution 

was transparent after being placed on ice for 5 min.  

Peptoid-functionalized bicelles were prepared by peptoid addition before bicelle formation 

(Method 2 in Chapter 3). In order to prevent the formation of disulfide bonds, The reducing 

agent DTT was added to the peptoid solution at 1 mM prior to adding to the bicelle solution [83]. 

The amount of q for peptoid-functionalized bicelles was defined based on the aimed 

modification region: 
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𝑞 =
𝑚𝑜𝑙𝑒 𝐷𝑀𝑃𝐶

𝑚𝑜𝑙𝑒 (𝐷𝐻𝑃𝐶+𝑝𝑒𝑝𝑡𝑜𝑖𝑑 𝐻𝑁1)
                                                         Edge modification (Equation 4.1) 

𝑞 =
𝑚𝑜𝑙𝑒 (𝐷𝑀𝑃𝐶+𝑝𝑒𝑝𝑡𝑜𝑖𝑑 𝐻𝑁2)

𝑚𝑜𝑙𝑒 𝐷𝐻𝑃𝐶
                                                       Planar modification (Equation 4.2) 

4.2.6. Transmission Electron Microscopy 

Transmission Electron Microscopy (TEM) was used to visualized bicelles and peptoid-

functionalized bicelles as previously described [42, 45, 84, 85]. TEM grids were prepared by 

dropping 5 μL of diluted bicelle solution onto a 300 square mesh formvar-carbon supported 

copper at room temperature. The grids were placed on filter paper to dry, stained with 2% uranyl 

acetate, and placed on filter paper to dry overnight. Images were obtained using a JEOL-1011 

TEM (Tokyo, Japan) with an accelerating voltage of 110 kV. Microsoft Visio was used to 

determine the diameter and thickness of the bicelles from the TEM images. In order to obtain 

clear TEM images of the bicelles, samples were diluted with nanopure water [86].   

4.2.7. Determination of Peptoid Position 

The location of peptoids within the bicelles was determined by incubation with AuNP. The 

AuNP size is 10±2 nm and the AuNP solution concentration is 40-50 µg/mL. 1.5 µL of non-

functionalized and peptoid-functionalized bicelle solutions were combined with 1.0 mL of AuNP 

solution in 1.5 mL nanopure water [87] and incubated for 1 hr on an orbital vortexer to allow for 

AuNP attachment to the thiols at the N-terminus of peptoid HN1 [88-91]. AuNP-peptoid-

functionalized bicelles were visualized by TEM without any further dilution, as described above.  
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4.3. Results 

4.3.1. Peptoids Sequence and Rational 

The design of peptoids sequence is based on work in the Barron lab that showed that alkylation 

of a cationic, facially amphipathic peptoid led to improved insertion into lipid films [114]. Both 

peptoids reported here have three functional regions (Figure 4.4): (1) insertion sequence, (2) 

facially amphipathic helix (charged anchor), and (3) functional groups. The insertion region is 

includes two alkyl chains and two hydrophobic, chiral aromatic groups. The length of alkyl 

chains depends on the target region of bicelle that needs to be modified which is the length of the 

DHPC tail groups that make up the bicelle edge (6 carbons) for edge modification or the length 

of DMPC tail groups that make up the bicelle face (14 carbons) for planar modification. This 

region of the peptoid serves as an anchor into the bicelle edge or face and inserts into the 

hydrophobic lipid tail region. To induce helical secondary structure, the facially amphipathic 

helix contains chiral aromatic groups with three residues per turn [62]. One side of the helix is 

hydrophobic to interact with the lipid tails, and the other side contains positive charges to interact 
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with the lipid head groups. In order to determine peptoid location within the bicelle, thiol was 

selected as the functional group to use for AuNP attachment studies.  

4.3.2. Placement of Peptoids within Bicelles 

The position of peptoids within the bicelle was evaluated using AuNP attachment to the thiol 

groups at the N-terminus of peptoids. Then, AuNP-peptoid-functionalized bicelles were 

visualized by TEM. For edge modification, previous studies in Chapter 3 showed that peptoid 

position in the bicelle were completed at 20 mole% peptoid HN1 with 82% peptoid incorporation 

into the bicelle edge (Figure 4.5A). TEM images of AuNP-peptoid-functionalized bicelles using 

peptoid HN2 for planar modification showed that peptoid incorporated preferentially into the 

faces of bicelle at 40 mole% peptoid. (Figure 4.5B). TEM image analysis showed 92% peptoid 

incorporation into the bicelle face, as opposed to the edge. 

Figure 4.4. Peptoids HN1 and HN2 structure. There are 3 active regions on the peptoids: (1) 

insertion sequence, (2) charged anchor, and (3) functional groups. 
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4.3.3. Morphology Studies of Bicelles and Peptoid-functionalized Bicelles 

Bicelles and peptoid-functionalized bicelles (composed of DMPC and DHPC) at different levels 

of q, and peptoid concentration using both peptoid HN1 and HN2 were prepared and 

morphology and size were investigated by TEM imaging. Bicelle samples were prepared after 

100-fold dilution. TEM images showed that at all levels of q, bicelles were observed mostly in 

edge-on projections which is due to the high concentration of bicelles in the sample (Figure 4.6). 

The average diameter for bicelles was 31.6±13.0 nm, 36.5±13.0 nm, 47.3±17.8 nm for q=0.5, 

1.5, and 3.2 respectively, in accordance with previously published data for DMPC:DHPC 

bicelles [41, 123-125].  

Morphology studies for peptoid HN1 and HN2 are shown in Figure 4.7 and Figure 4.8, 

respectively. TEM images showed that peptoid-functionalized bicelles had similar morphology 

to bicelles and addition of peptoid did not alter the structure of bicelles. For each value of q, 

Figure 4.5. TEM images of AuNP modified peptoid-

functionalized bicelles with (A) Peptoid HN1, peptoid-

DHPC = 20 mole% and (B) Peptoid HN2, peptoid-DMPC 

= 40 mole% . q=1.5  
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peptoid-functionalized bicelles with different peptoid concentration had similar size to bicelles. 

The average diameter for bicelles and peptoid-functionalized bicelles is presented in Table 4.1.  

 

 

 

 

 

 

 

A B C 

Figure 4.6. TEM images of DMPC/DHPC bicelles at different q levels. (A) q=0.5, (B) q=1.5, 

(C) q=3.2. Scale bar represents 100 nm. 
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G 

F 

H I 

Figure 4.7. TEM images of peptoid-functionalized bicelles with peptoid HN1. q = 0.5: (A) 

peptoid-DHPC = 0.25 mole%, (B) peptoid-DHPC = 2.5 mole%, (C) = peptoid-DHPC = 5 

mole%. q = 1.5: (D) peptoid-DHPC = 0.25 mole%, (E) peptoid-DHPC = 2.5 mole%, (F) = 

peptoid-DHPC = 5 mole%. q = 3.2: (G) peptoid-DHPC = 0.25 mole%, (H) peptoid-DHPC = 

2.5 mole%, (I) = peptoid-DHPC = 5 mole%.Scale bar represents 100 nm. 
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Figure 4.8. TEM images of peptoid-functionalized bicelles with peptoid HN2. q = 0.5: (A) 

peptoid-DMPC = 0.25 mole%, (B) peptoid-DMPC = 2.5 mole%, (C) = peptoid-DMPC = 5 

mole%. q = 1.5: (D) peptoid-DMPC = 0.25 mole%, (E) peptoid-DMPC = 2.5 mole%, (F) = 

peptoid-DMPC = 5 mole%. q = 3.2: (G) peptoid-DMPC = 0.25 mole%, (H) peptoid-DMPC = 

2.5 mole%, (I) = peptoid-DMPC = 5 mole%. Scale bar represents 100 nm. 
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4.4. Conclusion 

Here, for the first time, we report the formation of peptoid-functionalized bicelles with peptoid 

preferentially at the faces. The insertion region of peptoid which contains alkyl chain matching 

the length of the DMPC tail groups, preferentially assembled with the DMPC at the faces of 

bicelle. Preferential incorporation of the peptoid into the bicelle edge was confirmed by 

attachment of AuNPs to the thiol groups on the N-terminus of the peptoid. Peptoid-

functionalized bicelles showed preferential placement in the bicelle edge (~92%). The insertion 

of peptoid in the edge region of bicelle is unlikely, since the alkyl chain length of peptoid is 

longer than the length of the DHPC tail groups.   

The increase in the size of bicelle with higher q is predictable as q is the ratio of molecules that 

forms faces of bicelles to the molecules that forms edges. Moreover, morphology studies of 

peptoid-functionalized bicelles using both peptoid HN1 and peptoid HN2 at different levels of q 

and peptoid concentration show that addition of peptoid doesn’t change the structure of bicelles. 

For each level of q, addition of peptoid doesn’t change the size of bicelles which is due to the 

small size of peptoid (~30 A°). 
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Table 4.1. Size analysis of peptoid-functionalized at different levels of q and peptoid 

concentrations using peptoids HN1 and HN2 

 

   

Peptoid/lipid

% 

Peptoid-functionalized bicelles diameter (nm) 

0 0.25 2.5 5 

Modification ___ Edge Face Edge Face Edge Face 

q = 0.5 

31.6±13.

0 

33.5±12.

0 

31.2±10.

3 

32.6±12.

7 

35.8±12.

6 

32.4±15.

3 

34.1±16.

2 

q = 1.5 

36.5±13.

0 

47.8±14.

3 

39.7±18.

0 

43.0±17.

2 

38.2±16.

9 

42.2±16.

0 

37.4±13.

1 

q = 3.2 

47.3±17.

8 

45.1±18.

9 

57.6±19.

3 

42.7±13.

2 

57.0±15.

4 

43.0±12.

6 

62.6±18.

4 
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4.5. Future Work 

Future studies can be continued in several directions. The stability of peptoid-functionalized 

bicelles may be determined and compared to bicelles using NMR. Moreover, peptoid-

functionalized bicelles can be formed using different lipids including saturated and unsaturated 

and then incorporation of peptoid HN1 and HN2 into the bicelle structure may be investigated.  

Furthermore, peptoid-functionalized bicelles have great potential to use as drug carriers for 

tumor targeted drug delivery. Therefore, membrane proteins can be incorporated into peptoid-

functiolized bicelles using other functional groups in peptoid HN1 sequence instead of thiol for 

edge modification in order to form nanocarriers and compare the results with lipodisks.  
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Appendices  

Appendix A: Scanning Electron Microscopy (SEM) studies 

SEM was first used to visualized bicelles and peptoid-functionalized bicelles. The results for 

bicelle are shown in Figure A.1. However, SEM was not successful in visualizing peptoid-

functionalized bicelle due to the charges of peptoids. In order to obtain good images of charged 

samples, gold coating is usually used which was not applicable in peptoid-functionalized 

samples. Therefore, TEM was chosen for visualization of bicelles and peptoid- functionalized 

bicelles.  

  

Figure A.1. SEM image of DMPC/DHPC 

bicelles. Scale bar represents 1 µm. 
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Appendix B: Using DPPC as the long chain lipid to form bicelles and peptoid-functionalized 

bicelles 

Bicelles and peptoid-functionalized bicelles were also formed using 1,2-dipalmitoyl-sn-glycero-

3-phosphocholine (DPPC 16:0 PC) as the long chain lipid which has a longer tail compared to 

DMPC (14:0 PC). The results show that the addition of peptoid causes a small variation in the 

size of the bicelles, but does not alter the shape.  

 

Figure B.1. TEM images of non-functionalized (A) and 

peptoid-functionalized bicelles using DPPC as long chain 

lipid. peptoid-DHPC = 0.25 mole% .q=1.5. Scale bar 

represents 100 nm. 
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