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Abstract 

As estimated in the American Society of Civil Engineers 2017 report, in the United States, there 

are approximately 240,000 water main pipe breaks each year. To help estimate pipe breaks and 

maintenance frequency, a number of physically-based and statistically-based water main failure 

prediction models have been developed in the last 30 years. Precious review papers focused more 

on the evolution of failure models rather than modeling results. However the modeling results of 

different models applied in case studies are worth reviewing as well. 

In this review, we focus on research papers after Year 2008 and collect latest cases without 

repetition. A total of 64 papers are qualified following the selection criteria. Detailed information 

on models and cases are summarized and compared. Chapter 2 provides a summary and review of 

failure models and discusses the limitation of current models. Chapter 3 provides a comprehensive 

review of collected cases, which include network characteristics and factors. Chapter 4 focuses on 

the main findings from collected papers. We conclude with insights and suggestions for future 

model selection for pipe failure analysis. 
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Chapter 1 Introduction 

Drinking water is delivered via one million miles of pipes across the U.S. Aging pipe has been one 

of the major challenges facing the water industry due to the limitation of funding availability. 

Many of those pipes were laid in the early to mid 20th century with a lifespan of 75 to 100 years 

(American Water Works Association (AWWA), 2017). Using these average life estimates and 

counting the years since the original installations shows that these water utilities will face 

significant needs for pipe replacement over the next few decades. Some components in water and 

sanitation conveyance systems in the United States and Europe are more than 100 years old 

(AWWA 2017). Aging pipes present many technical limitations for effective water provisioning. 

Firstly, degradation of infrastructure system integrity leads to system losses and water leaks. The 

water lost in the conveyance process is often referred to as “nonrevenue water” because it leaves 

the system prior to the water meter, which is generally used to define cost paid by the user. 

Secondly, supplied water by pipes with breaks generally carries a higher risk of contamination, 

which could lead to various potential health impacts for users. As estimated in the American 

Society of Civil Engineers (ASCE) 2017 Infrastructure Report Card, in the United States, there are 

approximately 240,000 water main pipe breaks each year (ASCE 2017). As a result, 10% to 30% 

of total water is non-revenue water, while in England this value has recently been estimated to be 

25% (ASCE 2015). It is projected that above 1 million miles of water mains need replacement, as 

estimate by AWWA (2017). The replacement cost is estimated to be approximately $1 trillion to 

maintain and expand service to meet demand over the next 25 years (ASCE 2017). However, 
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constrained by the limited resources available, efficient maintenance and management of water 

infrastructure, particularly pipe maintenance and repair in the distribution system, is challenging 

but imperative. 

To deal with this problem, a number of physically-based and statistically-based water main failure 

prediction models have been developed in the last 30 years. Physical models predict breaks by 

simulating the mechanics of pipe failure and the capacity of a pipe to resist failure. Statistical 

models are developed with historical data on pipe breaks to identify failure patterns, and they 

extrapolate these patterns to predict future pipe breaks (MJ Nishiyama, 2013). 

1.1 Motivation 

Most papers about water network failure focused on failure model development and validation, 

with case studies using one or more real database of networks. Previous review papers on failure 

models summarized the evolution of models, compared the differences between various models, 

and defined a variety of classification of models (Clair & Sinha, 2012; Nishiyama & Filion, 2013). 

However, all these discussion and comparisons did not mention much about the applied cases. The 

application of each single case and the specific conclusion for real data are seldom reviewed in the 

past 20 years. The characteristics of cases covers a lot of information such as region (water and air 

temperature, the depth of pipes), pipeline scale (the number of pipes ranging from tens to 

thousands), date of construction (which is highly associated with pipe material used), the state of 

maintenance and record (the frequency of maintenance and the integrity of maintenance record). 
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A better understanding of the relationship between failure prediction and network characteristics 

would be useful for failure model selection when an analyst works on another similar real case. In 

addition, previous conclusions from case studies could be used as validation for prediction and 

direction for analysis in the future. Therefore, a comprehensive review for water network cases 

and results is necessary and worthwhile. 

1.2 Objectives and Design of Systematic Review 

The overall goal of this paper is to provide a comprehensive review of recent water network failure 

models and cases. In this review, we focus on research papers after Year 2008 and collect latest 

cases without repetition. Detailed information on models and cases such as attributes of networks 

considered in the models are summarized and compared. Papers selected in this research are 

searched by key words: pipe failure, water distribution, failure prediction, pipe break, pipe 

deterioration. A few papers were collected from the citation of pervious review papers (Genevieve 

Pelletier 2003; Berardi et al. 2008). After paper collection, case screening was processed by several 

principles: remove papers before 2008 and keep papers that have the case study part. According 

to the flow diagram in Figure 1, 64 cases were collected in total. 
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Figure 1. Selection Criteria Flow Diagram 
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1.3 Organization of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 provides a brief review of failure 

models in previous review papers and discusses the limitation of current models. Chapter 3 

provides a comprehensive review of collected cases which include network characteristics and 

factors. Chapter 4 focuses on the main findings from collected papers. Common points are 

extracted as insights and suggestion for future model selection in pipe failure.  



 

6 

Chapter 2 Review of Water Network Failure Models 

During the last three decades, researchers developed different models to predict the failure of water 

pipes for a reliable infrastructure management. These failure prediction models can be classified 

into four categories: deterministic, statistical, stochastic, artificial intelligence models. In the next 

few sections, we first review each category in detail with a focus on the studies in the last decade 

and then summarize in Section 2.5.  

2.1 Deterministic Models 

Deterministic models usually are used in cases where the relationship between inputs and output 

is clear. In two approaches the deterministic models can be applied: empirical and mechanistic. 

Empirical approach tries to find the relations between failure rates as the output and the features 

and attributes of a group of pipes as the inputs, while the mechanistic approach can forecast the 

remaining useful life of an individual asset (just one pipe). Many papers (Kwietnieswki et al. 1993; 

Kowalski 2013; Kutylowska 2014) used a similar definition of failure rate. The value of λ is 

determined from operational data using number of pipe failures in unit time interval divide average 

pipeline length in a time period and the observation time. The problem of these models is that a 

deterministic model can be applied just in a specific location (Clair and Sinha 2012).  

2.2 Probabilistic Models 

Probabilistic models analyze the probability of an event occurring (Creighton 1994). The 
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probability of occurrence is one and the probability of the event that cannot happen is zero. The 

other probability of occurrence should be between 0 and 1 (Mitrani 1998). Information about asset 

conditions and attributes are required to develop a probabilistic model. The output or dependent 

variable would be a range of values instead of the specific number. These models need extensive 

data and typically used in infrastructure assets (Clair and Sinha 2012). It should be noted that the 

probabilistic approach commonly increases the computational complexity of the models (Moglia 

2007).  

The Evolutionary Polynomial Regression (EPR) technique was first presented by Giustolisi and 

Savic (2006). The technique utilizes the huge potential of conventional numerical regression 

techniques and the strength of Genetic Algorithm in solving optimization problems (Xu et al. 2011). 

Later, this approach was used by other researchers in several engineering fields. Savic et al. (2006) 

and Ugarelli et al. (2008) used EPR to model the sewer pipe failures. Berardi et al. (2008) and Xu 

et al. (2011) applied the EPR to develop deterioration models for water distribution networks. 

Rezania et al. (2008) utilized the EPR methodology to evaluate the uplift capacity of suction 

caissons and shear strength of reinforced concrete deep beams. Elshorbagy and El-Baroudy (2009) 

compared the EPR and Genetic Programming to develop the prediction model of soil moisture 

response. 

Guistolisi and Savic (2009) tested the EPR-MOGA (an improved EPR) to develop a model to 

forecast the groundwater level based on the amount of rainfall each month. El-Baroudy et al. (2010) 

utilized the EPR to develop the evapotranspiration process then compared the efficiency of 
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Evolutionary Polynomial Regression to Artificial Neural Networks (ANNs) and Genetic 

Programming (GP). Markus et al. (2010) applied EPR, ANNs and the naive Bayes model to 

forecast weekly nitrate-N concentrations at a gauging station. Ahangar-Asr et al. (2011) applied 

EPR to predict mechanical properties of rubber concrete. Fiore et al. (2012) used EPR to provide 

the predicting torsional strength model of reinforced concrete beams. 

Moglia et al. (2007) developed a physical probabilistic failure prediction model based on the 

fracture mechanics of cast 30 iron water pipes. The random independent variables were added to 

the inputs, and then Monte-Carlo simulation technique was applied to deal with the computational 

complexity of the model. The developed model without failure data, degradation and load data, 

was not capable of estimating failure rates of water pipes. Whereas, with these data, it can predict 

failure rates more accurately. 

Li et al. (2009) used the mechanically-based probabilistic model to predict remaining useful life 

and failure probability of buried pipes. They considered the effect of random inputs and used 

Monte-Carlo simulation framework to calculate cumulative distribution function (CDF) of 

remaining useful life of pipelines. But, they did not consider the correlation of defects for a pipeline 

having more than one corrosion defects. Also, they found CDF more suitable than probability 

density function (PDF) and reliability index in describing the probability of failure. 

It should be mentioned that this technique requires a large historical dataset that contains a number 

of data points collected over a period to develop a promising statistical model (Clair and Sinha 
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2012). There has been an extensive effort during the past decades to develop the failure rate 

prediction model by using statistical approach. 

Berardi et al. (2008) developed a water pipe deterioration model using Evolutionary Polynomial 

Regression. As it is mentioned before, they used a dataset that was classified into homogeneous 

groups based on the age and diameter of the pipe. The developed model can predict the number of 

breaks in each group. Then, for predicting the failure rate for each pipe, a general structural 

deterioration model based on EPR aggregated model was developed. 

Wang et al. (2009) utilized five multiple regression models for a range of pipe materials (gray cast 

iron, ductile iron without lining, ductile iron with lining, PVC, and hypericin) to forecast the annual 

failing rate of individual water pipe rather than a homogeneous group. The overall model 

robustness was measured by F-test and the significant of each independent variable was measured 

by t-test. The model was validated using 20% of their collected dataset that was randomly selected. 

Wang et al. (2010) employed the Bayesian inference to assess the condition of water pipes. Ten 

factors from three pipe materials (cast iron, ductile cast iron, and steel) were used to generate factor 

weight. According to the results of these experiments, the age of pipe is the most critical variable 

28 while, the model was not sensitive to some factors like trench depth, electrical recharge, and 

some road lanes. 

Xu et al. (2011) developed two prediction models for failure rate using Evolutionary Polynomial 

Regression and Genetic Programming, and then they compared the results of these two models. 
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Results were measured based on; 1) error between predicted and actual data, 2) parsimony of 

generated equation, and 3) ability to justify the generated equations based on the engineering 

knowledge. The results showed that EPR has some advantages over GP in equation uniformity and 

parameters estimation, while GP was better to find the complex relations. 

Osman and Bainbridge (2011) employed two statistical deterioration models to predict future 

failures of water pipes: rate-of-failure models (ROF) and transition-state (TS) models. ROF model 

extrapolates the failure rate for a specific group of water pipes that were classified based on age 

and some environmental factors. This model does not differentiate the times between successive 

pipe breaks for an individual segment while, the transition-state model focuses on finding the time 

between successive failures for the water pipes. TS models are dependent on the availability of 

sufficient and accurate data, but ROF models can be applied to limited historical data. The stresses 

in the buried pipes, which increase the probability of pipe failure, might be caused by the ground 

movement. 

Kabir et al. (2015) presented Bayesian Model Averaging (BMA) method to select the most critical 

explanatory variables. Then the Bayesian Weibull Proportional Hazard 29 Model (BWPHM) is 

applied to provide the survival curves and to forecast the failure rate of two pipe types: cast iron 

and ductile iron. 

Kabir et al. (2014) assessed the risk of failure of metallic water pipes using a Bayesian Belief 

Network (BBN). Bayesian Belief Network can be interpreted as a probabilistic graphical model 
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that can represent a collection of some covariates and their probabilistic relationships. This model 

recognizes the most vulnerable and sensitive pipe segments through the water pipe networks. The 

proposed model is good just for small to medium utilities with limited data. 

Jenkins et al. (2014) tried to address the problem of limited, incomplete, or uncertain data in water 

distribution networks. Two main modification were added to Weibull hazard rate models (WPHM) 

to improve the prediction performance of the models: the expert opinion and the spatial analysis. 

But these two modifications were not tested in the other utilities. 

Francis et al. (2014) analyzed the water distribution systems to develop a pipe breaks prediction 

model using Bayesian Belief Networks (BBNs). They illustrated that assessing water pipe network 

is not only important for the failure prediction model but also is crucial for avoiding water loss and 

water quality degradation. 

Kabir et al. (2015) stated that uncertainty regarding quality and quantity of databases became a 

major concern for failure prediction model development of infrastructure assets. Thus, they tried 

to reduce these uncertainties by developing failure prediction model for water mains using a new 

Bayesian belief network based data fusion model. The proposed model can identify the most 

vulnerable and sensitive pipe in the entire network, as well as the total number of pipes that require 

the immediate and appropriate action like maintenance, rehabilitation, and replacement 

Konstantinos Kakoudakis et al. (2017) presented a new approach for improving pipeline failure 

predictions by combining a data-driven statistical model, i.e. evolutionary polynomial regression 
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(EPR), with K-means clustering. The EPR is used for prediction of pipe failures based on length, 

diameter and age of pipes as explanatory factors. Individual pipes are aggregated using their 

attributes of age, diameter and soil type to create homogenous groups of pipes. The created groups 

were divided into training and test datasets using the cross-validation technique for calibration and 

validation purposes respectively. The K-means clustering is employed to partition the training data 

into a number of clusters for individual EPR models 

2.3 Stochastic model 

A stochastic model is a tool for estimating probability distributions of potential outcomes by 

allowing for random variation in one or more inputs over time. Poisson process, nonhomogeneous 

Poisson process, Yule process are classified in this type. To see occurrences of pipe breaks over a 

certain period as stochastic point processes is one of the common ways to model them. (Kleiner 

and Rajani, 2001; Gat and Eisenbeis, 2001). One of the point processes that is often used is the 

non-homogeneous Poisson process (NHPP). This is because its great flexibility allows it to capture 

the non-linear relationship of the break rate with time without giving up on the inclusion of suitable 

pipe factors (Loganathan et al., 2002). Li Chik et al. (2016) used the NHPP, hierarchical beta 

process (HBP), and a newly-developed Bayesian simple model (BSM) for short-term failure 

forecasting with a few water utility failure data sets. After close analysis of the prediction curves, 

they found that the performance of the three models are of great similarity in terms of pipe ranking. 

However, compared with the other models, the BSM is relatively simpler, which has given it more 

edges. The covariate, the number of known past breaks, can be very important when it comes to 
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the relative ranking of the pipes in the network. The NHPP and HBP are recommended if the total 

number of failures in the network is required. 

2.4 Artificial Intelligence and Machine Learning Methods 

Artificial intelligence and machine learning models, which include Artificial Neural Networks 

(ANN), Least square support vector machine method (LS-SVM) and Fuzzy set theory models, 

become more and more popular in recent years due to its capability of dealing with complex data. 

ANN is a method that can predict pipe failure and deterioration of infrastructure specially buried 

pipes. The ANN follows the pattern of the human brain using its generalization capabilities. Thus, 

this technique is able to process information even under large, complex, and uncertain environment. 

The high-quality database is needed for supervised training and forecasting the future condition of 

the pipes. Moreover, ANN needs several controlling factors including: number of hidden layers, 

the number of neurons in each hidden layer, activation functions, the number of training epochs, 

learning rate, and momentum term. However, ANN is considered as a “Black- 32 Box” technique. 

Therefore, it is not able to provide insight into the relationship between dependent and 

independents variables (Clair and Sinha 2012; Moselhi and Hegazy 1993, Atef et al. 2015, Shirzad 

et al. 2014).  Fuzzy Logic is a mathematical method in the field of artificial intelligence that widely 

used by researchers to assign a value to a certain degree of membership instead of crisp values 

such as zero and one. This method is known to deal with systems that are subject to uncertainties 

and ambiguities. Fuzzy Logic is applicable in infrastructure assets like oil and gas, water, bridges 

and highways (Siler and Buckley 2005, Clair and Sinha 2012). 
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Jafar et al. (2010) employed ANN to analyze the urban water mains. Six ANN models that predict 

the failure rate of water pipes of a city in France were developed then, they tried to estimate the 

optimal rehabilitation/replacement time for the same network. These prediction models were tested 

and validated using cross validation. In the first part of this article, data collection was explained 

then development and validation of ANN models were discussed. In the data collection part, 

correlation and chi2 method were applied to select the most critical inputs. 

Asnaashari et al. (2013) studied two different methods to forecast the water pipe’s failure rate. 

Multi Linear Regression (MLR) and ANN were utilized, and their results were compared. The 

value of R-Squared showed that the ANN model (R2=0.94) is more promising while the MLR 

technique (R2=0.75) is just good enough for preliminary assessment. Shirzad et al. (2014) 

compared the predictive performance of ANN and Support Vector Regression (SVR) in 

forecasting the water pipe’s breakage rate. In addition, they investigated the effect of hydraulic 

pressure (average and maximum hydraulic pressure values) on precision of predicting the pipe’s 

failure rate. The results showed that the ANN model is more accurate, but it is not suitable for 

generalization purposes. Thus, for management purposes, SVR might be more appropriate. 

Kutyłowska (2014) predicted the failure rate of pipes in an urban water utility using ANN. They 

employed quasi-Newton approach to train the model. The house connections and distribution pipes 

are considered as two different sections in database, and the results for both were acceptable. 

Aydogdu and Firat (2014) incorporated two methods: fuzzy clustering and Least Squares Support 
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Vector Machine (LS-SVM) in order to estimate the failure rate of water pipes. At first, they 

developed failure rate estimation model using LS-SVM, and then fuzzy clustering method is 

utilized to define nine sub-regions for predictive performance improvement of the model. For 

model evaluation they employed some measurement indexes such as Correlation Coefficient (R), 

Efficieny (E) and Root Mean Square Error (RMSE). 

2.5 Summary and Limitation of Previous Studies 

Table 1. Classification of Models and Corresponding Number of Cases in the Literature. 

Classification Models 

Number of 

Cases 

Deterministic Models Failure Rate 8 

Probabilistic Models 

Linear Regression, Evolutionary 

Polynomial Regression (EPR), 

Weibull Proportional Hazard Model 

(WPHM), Bayesian Belief Network, 

Weibull/Exponential Distribution (WE) 

31 

Stochastic Models Poisson process, NHPP, Yule process 12 

Artificial 

Intelligence/Machine 

Learning 

Artificial Neural Network(ANN), Fuzzy 

Clustering; Least square support vector 

machine method (LS-SVM) 

15 
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As shown in Table 1, it is obvious that statistical models have been the most popular method for 

failure prediction compared to other model types. Statistical models are used most frequently in 

the latest 10 years although it mostly requires large number of available factors in dataset. 

Deterministic model mainly refers to failure rate model which is usually only need the failure 

number in a period of time, so it is easy to use than others. Stochastic models mostly used for data 

that only include process information even under large, complex, and uncertain environment. In 

most cases, datasets were clustered into different groups, based on the pipe material, and then one 

model was developed for each group. Thus, there are several models just for one network that 

might be tough to implement in the real world. Several techniques were utilized by the other 

authors. Particularly, ANNs are commonly used in many studies. ANN is able to develop accurate 

prediction models in complex and uncertain environments. However, EPR is selected because it 

does not require large datasets for training and unlike ANN, it enables the recognition of 

correlations among dependent and independent variables. Being as such, EPR is not a “Black-Box” 

technique, but it is classified as a “Grey-Box” technique that can provide insight into the 

relationship between inputs and the output. The process of development and selection of EPR 

contains the engineering 36 knowledge that allows the user to understand the generated equations 

and correlation between variables involved. In ANN, each attempt delivers particular output, 

which can be different in other attempts with the same inputs and features, while, in EPR or 

generally regressions, all similar attempts lead to the same equations as the output. Advantage 

summary form  
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Chapter 3 Review of Contributing Factors 

In this section, we summarize factors contributing to water network failure with two parts. We first 

discuss classification of various factors in the literature, and then summarize the effects of 

commonly used factors on network failures. 

3.1 Classification of Factors 

InfraGuide (2003) classified the factors contributing to the deterioration of water pipes to three 

main categories: physical, environmental and operational. According to this classification, 

physical factors include pipe material, pipe wall thickness, pipe age, pipe vintage, pipe diameter, 

type of joints, thrust restraint, pipe lining and coating, dissimilar metals, pipe installation and pipe 

manufacture. Pipe bedding, trench backfill, soil type, groundwater, climate, pipe location, 

disturbances, stray electrical currents, and seismic activity are considered as the environmental 

factors, while other researchers included rainfall, traffic and loading, and trench backfill as the 

environmental factors as well (Kabir et al. 2015). The internal water pressure, transient pressure, 

leakage, water quality, flow velocity, backflow potential, and O&M practices are examples of 

operational factors.  Others considered the nature and date of last failure (e.g., type, cause, severity), 

nature of maintenance operations (e.g., TV inspections, pipe cleaning, cathodic protection), nature 

and date of last repair (e.g., type, length), water quality and construction method as operational 

factors that affect the failure rate of water pipes (InfraGuide 2003). The specific explanation of 

each factor is shown in Table 2. 
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Table 2. Factors that contribute to water system deterioration (InfraGuide 2003) 

Jon Røstum (2000) proposed another classification method which considered all the factors into 4 

types: structural, external, internal, and maintenance. Table 3 provides more details about it. 

Classification Factor Explanation 

Physical 

Pipe material Pipes made from different materials fail in different ways. 

Pipe wall thickness Corrosion will penetrate thinner walled pipe more quickly. 

Pipe age Effects of pipe degradation become more apparent over time. 

Pipe vintage 
Pipes made at a particular time and place may be more vulnerable 

to failure. 

Pipe diameter Small diameter pipes are more susceptible to beam failure. 

Type of joints 
Some types of joints have experienced premature failure (e.g., 

leadite) 

Thrust restraint Inadequate restraint can increase longitudinal stresses. 

Pipe lining and 

coating 
Lined and coated pipes are less susceptible to corrosion. 

Dissimilar metals Dissimilar metals are susceptible to galvanic corrosion. 

Pipe installation 
Poor installation practices can damage pipes, making them 

vulnerable to failure. 

Pipe manufacture 

Defects in pipe walls produced by manufacturing errors can make 

pipes vulnerable to failure. This problem is most common in older 

pit cast pipes. 

Environmental 

Pipe bedding Improper bedding may result in premature pipe failure. 

Trench backfill Some backfill materials are corrosive or frost susceptible. 

Soil type 

Some soils are corrosive; some soils experience significant 

volume changes in response to moisture changes, resulting in 

changes to pipe loading. Presence of hydrocarbons and solvents 

in soil may result in some pipe deterioration. 

Groundwater Some groundwater is aggressive toward certain pipe materials. 

Climate 
Climate influences frost penetration and soil moisture. Permafrost 

must be considered in the north. 

Pipe location Migration of road salt into soil can increase the rate of corrosion. 

Disturbances 

Underground disturbances in the immediate vicinity of an 

existing pipe can lead to actual damage or changes in the support 

and loading structure on the pipe. 

Stray electrical 

currents 
Stray currents cause electrolytic corrosion. 

Seismic activity 
Seismic activity can increase stresses on pipe and cause pressure 

surges. 

Operational 

Internal water 

pressure, transient 

pressure 

Changes to internal water pressure will change stresses acting on 

the pipe. 

Leakage 
Leakage erodes pipe bedding and increases soil moisture in the 

pipe zone. 

Water quality Some water is aggressive, promoting corrosion 

Flow velocity Rate of internal corrosion is greater in unlined dead-ended mains. 

Backflow potential 
Cross connections with systems that do not contain potable water 

can contaminate water distribution system. 

O&M practices 
Poor practices can compromise structural integrity and water 

quality. 
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Table 3.  Factors affecting structural deterioration of water distribution pipes (Jon Røstum, 

2000) 

 

 

 

 

 

 

 

 

 

 

 

3.2 Effect of Factors in Previous Papers 

In this section, we list and describe factors that are commonly identified to have the greatest impact 

on pipe failure.  Conclusions on these factors are also summarized. 

Age and installation period  

We can see the features of different failures in different phases of the installation process. After 

the installation has been done, compared with time, these features will become more reliant on the 

construction practice in each phase. The break rate in one construction phase might be higher than 

that in another phase (Mosevoll, 1994). Sometimes, compared with pipes that are relatively young, 

Structural 

Variables 

External/Environmental 

Variables 

Internal 

Variables 

Maintenance 

Variables 

Location Soil type 
Water 

velocity 
Date of failure 

Diameter Loading 
Water 

pressure 
Date of repair 

Length Groundwater 
Water 

quality 
Location of failure 

Year of 

construction 
Direct stray current 

Water 

hammer 
Type of failure 

Pipe material Bedding condition 
Internal 

corrosion 

Previous failure 

history 

Joint method Leakage rate   

Internal 

protection 
Salt for de-icing of road   

External 

protection 
Temperature   

Pressure class External corrosion   

Wall thickness    

Laying depth    
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pipes that are older will be less prone to the effect of failures. For example, the walls of grey cast 

iron pipes are produced by newer casting methods, and for the same external loads, these thinner 

walls may cause more corrosion as well as more stress. It is only in the 1930s that we managed to 

use backfill to extend the lifetime of pipes. Time has witnessed the improvements of the jointing 

techniques, which make a higher degree of deflections at joints become possible. From 1950s to 

1960s, when the number of houses just kept rising at a rapid rate, compared with the quality of the 

buildings, people often placed more emphasis on the quantity. During this time, houses of a rather 

bad quality as well as the poor skill of the construction workers could often be seen in the reports 

(Sundahl, 1997). According to the report written by Andreou et al. (1987), compared with pipes 

that failed at a later stage, pipes that failed in the initial stage usually have better performance. 

Besides, Wengström (1993) has discovered that we cannot rely on pipe records to find out the age 

dependency. This is also why he drew up the conclusion that it is possible for us to hide the age 

dependency via repairs. In other words, after being repaired for around four times, pipes will 

usually need to be taken out of the ground. sessing pipe   

Corrosion  

One of the causes of the need to replace a pipeline is corrosion as it can lead to degradation of 

pipes that are made of grey cast iron, ductile iron and steel (Mosevoll, 1994). The internal corrosion 

has great reliance on the features of the transported water (e.g. pH, alkalinity, bacteria and oxygen 

content) while the external corrosion is reliant on the surroundings of the pipe (e.g. soil 

characteristics, soil moisture, and aeration). However, Kumar Dey (2003) put forward the idea that 
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when we are doing the prediction, we also need to take into consideration the external corrosion 

as its intensity will change according to the different conditions. In this regard, it is different from 

the internal corrosion.  

Diameter  

The idea that pipes with small diameters are most prone to failures can be found in a large number 

of literature works in the field. (Rajeev, 2003). Pipes with diameters that do not exceed or are equal 

to 200mm failure the most often. The strength of smaller pipes is usually are usually smaller, and 

their walls are also thinner. Also, they are usually constructed in a different way and their joints 

are usually not as reliable. These are the reasons why smaller pipe dimensions fail more frequently 

(Wengström, 1993). Another possible cause for this is the lower velocities in smaller pipes, which 

can cause the suspended materials in the water to settle, and this can make it easier for the bacteria 

to grow. (National Research Council. (2006)).  

Pipe length  

The length of pipes, regardless of which network they are in, varies from one to another. For long 

pipes (e.g. >1000m), external conditions including the condition of the soil as well as the traffic 

might be different depending on the pipe. Røstum et al. (1997) advised us to choose pipes that are 

100m long so that the external conditions for the same pipe will be the same as well. Eisenbeis 

(1999) found out that the hazard function is of a similar proportion to the square root of length.  
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Pipe material  

Cast iron pipes (i.e. grey cast iron and ductile iron pipes) are used in a great number of water works 

despite the fact that they have long been notorious for their high failure rates. This can also explain 

the increasing use of new materials such as PVC and PE in water networks. The material features 

of these pipes vary a great deal from each other, and analysis of different materials must be done 

separately. Recent studies have been focusing on analyzing pipes that are made of PVC and PE in 

a statistical way (Eisenbeis et al., 1999). The past few decades have witnessed great improvements 

in the techniques used in the manufacturing of different pipe material. One of the best examples 

showing this can be found in the improvement of the casting method used in the manufacturing of 

for grey iron pipes. At the beginning, pipes were cast in sand molds in a horizontal order, which 

makes the thickness of the wall become uneven. It is only after the introduction of the vertical 

casting technique that the production of walls of the same thickness became possible. This new 

technique has also helped to make the manufacturing of pipes with thinner walls become possible. 

The improvements obtained in the centrifugal casting methods has also helped to strengthen pipes 

and to help the walls to reach a higher consistency of thickness (WRc, 1998).   

Seasonal variation  

Winter is the season when most of the water distribution networks become the most prone to 

failures. Andreou (1986) is the first person to find out that it will be easier for pipes of a smaller 

diameter (those whose length do not exceed 8 inches) to break during winter. After analyzing five 
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water networks in Sweden, Sundahl (1996) found out that among the temperature of air, 

precipitation and the depth of snow, only the former one would exert an effect on the break rate. 

In Trondheim, even though the coldness in winter has brought forth a huge amount of frost, the 

number of reported failures in summer time still overrode that for the winter season (Røstum, 

1997). However, Sægrov et al. (1999) found out that the break rate in both summer time and winter 

time in the United Kingdom was rather high. As the clay soils during the summer season became 

increasingly drier and kept shrinking, the break rate also kept rising up, whereas during the winter 

season, usually there would be a great deal of frost, and this is one of the major causes of the high 

break rate. Another factor contributing to this is the thermal contraction effects. Other than this, it 

is also found that the mean temperature during the day as well as the amount of rainfall each year 

have also played a part in the annual break rate over a period of ten years. It is suggested that we 

ought to use the effects of the climate to find out the factors leading to the failures of pipes. 

However, since we do not have an idea as to how this factor change over time, it will be really 

difficult for us to use the effects of the climate as a tool to forecast future failures. In her research, 

Sundahl (1996) attempted to use a sinus curve to model the changes in the leakage in different 

seasons. The manager held the view that the change of the failing rate of pipes according to 

different seasons can offer us help to plan/organize the water network on a daily basis. However, 

when it comes to the calculation of the future needs for rehabilitation and for making priorities 

between pipes, the knowledge of the actual day of failure becomes less helpful. 
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Soil conditions  

Soil conditions can not only exert an influence on the rate of external corrosion, but can also affect 

pipe degradation. In their research, Clark et al. (1982) tried to put pipes in corrosive soil 

environments and then analyzed their failing rate. They found out that how much of the pipe is 

laid in corrosive environments has no relation with its breaking rate. Malandain et al. (1998) tried 

using a geographic information system (GIS) to relate soil conditions to the failing rate for pipes 

in the water network in Lyon, France. In his analysis of the breaking rate of pipes, Eisenbeis (1994) 

used ground condition, (which is defined as the presence or absence of corrosive soil) as an 

explanatory variable.  

Previous failures  

The braking rate of pipes in the past can help a great deal in the forecasting of future failures. 

Andreou (1986) used the Cox proportional hazards model to analyze failures in the water network. 

It is only after the third failure that the failing rate stopped rising, with each failure, and yet the 

rate still remained to be a high one. The assumption is that at this phase, the pipes have entered a 

“rapid failing state”. It is found out that failures happened in the past can exert a huge effect on the 

hazard function of the pipes. Eisenbeis (1994) has also spotted a similar pattern.  Malaindain et al. 

(1999) has applied these findings from Andreou and Eisenbeis in a failing rate model. Goulter and 

Kanzemi (1988) made close observation of the temporal and spatial gathering of water-main 

breaks, which shows that it is highly likely that failures of a pipe in the past will lead to future 
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failures in its surroundings. Approximately 60% of all of the subsequent failures happened during 

the first three months after the first failure. This has led us to believe that the damage brought by 

the repairing work is the culprit behind these subsequent breaks. Possible damages include the rise 

of pressure brought by pipe-refilling, the change of position of the ground during excavation, the 

back-filling procedure or the movement of weighty vehicles. Sundahl (1996, 1997) has also 

pointed out that maintenance work done on the network including repair and replacement after a 

failure can also lead to a higher failing rate.  

Other factors that do not share any correlation with the repair work also play a role in the 

subsequent failures in the network. Pipes in the same place are usually of the same age, and the 

materials that they were made from, very often, are also the same. What’s more, they are usually 

constructed and jointed together via the same method. Other than all these, it is also highly possible 

that both the external and internal factors that can lead to corrosion for these pipes are the same.    

Nearby excavation  

Excavation work done near the pipelines can exert a negative effect on the bedding conditions, 

which can cause the pipe to break. Researches conducted in the U.K. (WRc, 1998) indicated that 

work on closely related services (e.g. gas, electricity) can lead to pipe breaks.   

The pressure in static water and the rise of pressure in a distribution system also play a role in pipe 

breaks. The rise of pressure is usually caused by the opening and closing of water and air valves 

while the network is under operations. These changes can be seen as one of the causes of break 



 

26 

clustering. Andreou (1986) found that when it comes to modelling pipe breaks, it can be useful to 

take into account the effect of static pressure, but this factor is by no means of huge importance. 

When Clark et al. (1982) were modelling time to the first break, they used both the absolute 

pressure and the pressure differential (surge).   

Land use  

Land use (e.g. traffic zones, places of residence, and commercial areas) is used as a substitute for 

external loads on pipes. Eisenbeis (1997) used land use over the pipe (i.e. no traffic vs. heavy 

traffic), as a variable in break models. 

Previous papers discussed a lot about the classifications and definitions of factors. However, the 

availability of factors in data are limited based on real dataset. The factors have higher availability 

are more likely to be considered in real models and effect more to failure prediction. The frequency 

of factors using in collected dataset will be discussed in later section. 

3.3 Summary of Factors Considered in Different Failure Models 
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Table 4. Considered Factors Affecting Water Pipes Failure 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of failure 

Deterministic 

Models 

Failure 

rate 

Amarjit Singh 

(2012) 

Failure 

rate 
      2             1 

Andreas 

Scheidegger 

(2017) 

Average 

number of 

failure 

  2                   

Małgorzata 

Kutyłowskaa 

(2016) 

Average 

number of 

failure 

  2 2                 

Andrew Wood 

(2009) 

Number 

of failure 
    2               1 

Hossein Rezaei 

(2015) 

Number 

of failure 
1   1   1     1 1     

Alex 

Francisque 

(2017) 

Failure 

rate 
  2 2               1 

Katarzyne 

Pietrucbe  

(2015) 

Number 

of failure 
1 1   1   1 1   1     

 C.Vipulanandan 

(2012) 

Number 

of failure 
    2               1 

 

 

 

2
7
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of failure 

 Probabilistic 

Models  

Weibull 

proportional 

hazard 

model 

E. Kimutai 

(2015) 

Number 

of failure 
    2               1 

Yves Le gat 

(2000) 

Failure 

rate 
  1                 1 

Cox 

proportional 

model 

H Shin 

(2016) 

Number 

of failure 
1   1   1     1 1     

Weibull-

Based 

Failure 

Models 

Lindsay 

Jenkins 

(2014) 

Average 

number of 

failure 

1 1 1                 

Stefano 

Alvisi (2008) 

Number 

of failure 
1 1       1           

Weibull 

Accelerated 

lifetime 

model 

André 

Martins 

(2013) 

Average 

number of 

failure 

  1 1 1             1 

Weibull/Exp

onential/Exp

onential 

model 

Babacar 

Toumbou1 

(2013) 

Number 

of failure 
    2               1 

Weibull/Exp

onential 

model 

Ben Ward 

(2016) 

Number 

of failure 
    2               1 

 

 

2
8
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of 

failure 

 Probabilistic 

Models  

Principal 

component 

regression 

Zhiguang 

Niu (2017) 

Failure 

rate 
  1                 1 

Multiple 

regression 

model 

Pengjun 

Yu (2013) 

Number 

of failure 
1 1       1           

Mohamed 

Fahmy 

(2009) 

Number 

of failure 
    1 1               

Yong 

Wang 

(2009) 

Failure 

rate 
  1                 1 

Leila Dridi 

(2009) 

Average 

number 

of failure 

2   2                 

Ahmad 

Asnaashari 

(2013) 

Number 

of failure 
1 1   1     1         

Kang Jing 

(2012) 

Number 

of failure 
1 1   1   1 1   1     

Logistic 

regression 

Boxall 

(2013) 

Number 

of failure 
    2               1 

Non-linear 

regression 

B. García-

Mora 

(2015) 

Number 

of failure 
    2               1 

 

 2
9
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of 

failure 

 Probabilistic 

Models  

Evolutionary 

polynomial 

regression 

L. Berardi 

(2008) 

Number 

of failure 
1 1   1   1 1   1     

D. A. Savic 

(2009) 

Number 

of failure 
    2               1 

Seyed Farzad 

Karimian 

(2015) 

Number 

of failure 
1 1       1           

Konstantinos 

Kakoudakis 

(2017) 

Number 

of failure 
1 1   1   1 1   1     

Qiang Xu 

(2011) 

Number 

of failure 
1 1       1           

Fulvio Boanoa 

(2015) 

Number 

of failure 
1   1   1     1 1     

Bayesian 

method 

Kleiner,Yehuda 

(2012) 

Number 

of failure 
1 1   1   1 1   1     

G Kabir (2015) 
Number 

of failure 
1   1   1     1 1     

Ángela 

Martínez-

Codina (2015) 

Number 

of failure 
    2               1 

 

 
 

3
0
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of 

failure 

Stochastic 

Models 

NHPP 

Peter D. 

Rogers 

(2009) 

Number 

of failure 
1 1       1           

T. 

Economou 

(2008) 

Number 

of failure 
1 1       1           

T. 

Economou 

(2012) 

Number 

of failure 
1 1       1           

Li Chik 

(2016) 

Average 

number 

of failure 

2   2                 

Fengfeng 

Li (2011) 

Number 

of failure 
    2               1 

Yehuda 

Kleiner 

(2010) 

Failure 

rate 
  1                 1 

Poisson 

process 

Theodoros 

Economou 

(2010) 

Number 

of failure 
      1   1         2 

Linear 

extended 

Yule 

process 

Yves Le 

Gat (2013) 

Failure 

rate 
  1                 1 

Li Chik 

(2016) 

Average 

number 

of failure 

2   2                 

 

 

3
1
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of 

failure 

Artificial 

Intelligence/Machine 

Learningd 

ANN 

RaedJafar 

(2010) 

Number 

of failure 
1 1       1           

M. Tabesh 

(2009) 

Average 

number 

of failure 

  2 2                 

Richard 

Harvey 

(2014) 

Number 

of failure 
1 1       1           

Libi P. 

(2016) 

Average 

number 

of failure 

2   2                 

Genetic 

programming 

Qiang Xu 

(2011) 

Number 

of failure 
1 1       1           

Wen-

zhong Shi 

(2013) 

Failure 

rate 
  1                 1 

Fuzzy 

Clustering 

Mahmut 

Aydogdu 

(2014) 

Average 

number 

of failure 

  2 2                 

 

 

 
 

3
2
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Table 4 (Cont.) 

Classification Model References Response Age Length Diameter 
Installation 

Year 
Temperature Depth 

Soil 

Type  

Water 

Press 

Freezing 

Index 

Pipe 

thickness 

Previous 

number 

of 

failure 

Artificial 

Intelligence/Machine 

Learning 

Fuzzy 

Clustering 

Małgorzata 

Kutyłowska 

Average 

number 

of failure 

  2 2                 

Dirichlet 

process 

mixture of 

hierarchical 

beta process 

model 

Peng Li 

(2015) 

Number 

of failure 
1 1       1           

Moran’s I 

Ripley’s K-

statistic 

Qiang Xu 

(2012) 

Number 

of failure 
1 1       1           

 Grey 

relational 

analysis(GRA)  

Kang Jin 
Number 

of failure 
    1   1     1 1     

 

3
3
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Number 2 in the form refer to use as group whereas number 1 means it is a covariate in the models. 

Failure rate defined as λ which is determined from operational data using number of pipe failures 

in unit time interval divide average pipeline length in a time period and the observation time. 

It can be seen from Table 4 that diameter, length, and age are considered most frequently in the 

network failure models. Material mostly used as cohorts or groups in the models such as NHPP, 

Failure rate model, and Weibull distribution model. Diameter and length are easy to quantify and 

thus are often used as covariates. These features are mostly analyzed as covariates in failure models. 

Soil type is another common factor that was often included due to its availability. Although soil 

type is often shown to significantly affect pipe performance, in some of the cases like Berardi 

(2008), soil type is not found significant. Comparing to other factors, pipe material is usually 

considered as a cohort, and different models are developed for each material cohort (add those 

case). For response variable, number of failure account a large percentage.  

 

3.4 Factor Distribution Analysis  

In some cases, factors such as diameter and length are considered as covariates in the models while 

material is considered as cohorts. However, sometimes, especially for failure rate models, all the 

factors are considered as cohorts and the results of failure rate only apply to certain groups of pipes. 

Thus, it is difficult to reach conclusion about the whole network failure status based on many 

independent failure rates for different groups. The distribution of each factor is necessary to be 
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considered because the weight of each diameter and material have different weight in the modeling 

results. Another important attribute for pipe is the installation year which reflects the variation in 

failures over time. Since data availability of pipe failure is limited, it would be useful to know the 

material installation year which has a large percentage in the whole network. The data and figures 

are presented in Appendix II. 

 

 

 

. 
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Chapter 4 Summary of Key Findings in Previous Studies  

Most failure prediction models, particularly deterministic, statistical and artificial intelligence 

models, characterize the relationship between network features and failures of a single network, 

and predict the number of failures or life span of the network based on these factors. In this section, 

we summarize the finding in collected papers and extract common conclusion about factors and 

models as insights for future fitting. 

4.1 Factor Effect in Regression Models 

Linear models usually had a similar response variable like failure rate or break time which could 

reflect the degree of failure directly. Most papers provided the result equation, so the coefficient 

of parameter is easy to obtain, By this way, the results of linear model is analyzed independently 

in this section. A Figure about linear model results is shown below. 
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Table 5. Results of Regression Models 

References Result Equation Response 

Variable 

Genevieve 

Pelletier (2003) 

 

Log10R = 4.85 − 0.0206A + 0.000245A2

+ 0.00281S − 0.905Log10L

− 1.40Log10L
2 − 1.40Log10S 

Failure Rate 

Log10R = 1.83 − 0.911Log10L 

Failure Rate 

Log10R = 2.69 − 0.898Log10L

− 0.745Log10A 
Failure Rate 

Pengjun Yu 

(2013) 

R = 2.096 − 4.4423D + 3.3571D2

− 0.7292D3 
Failure Rate 

Kang Jing 

(2012) 

Y = −6000.741 − 1999.02D + 17318.428H

+ 450.949P2 
Leakage 

Time 

Boxall et 

al. (2013) 
γ(D,L,A) = 0.50247 - 0.00726D + 

0.66252logL - 0.03375A + 0.00016A² 

Burst Rate 

In the result equation, R refers to the rate of failure; A is age of pipes; D is diameter of pipes; S is 

soil type; P is water press in pipe; H is depth; L refers to length. 

In the case by Pelletier (2003), the pipes of shorter lengths have higher annual break retes than 

those of longer lengths. The annual break rates of the 100m length of gray cast iron pipes with 

different diameters versus pipe age. In this network, 100 mm size pipe have the highset annual 

break rates compared to others for all ages. The 300 and 150 mm size pipe have similar annual 

break rates. For the network in case by Yu (2013), the models show a negative correlation between 
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the failure rate and diameter when the pipe diameter is less than 100mm while the failure rate is 

rising when the pipe diameter is greater than 1000mm. So, the pipeline with diameter as 1000mm 

has the lowest failure rate value. Jing (2012) gives a result that depth has a positive relationship to 

leakage time and a negative one for diameter. The diameter limited in 50-250 mm. Boxall et al. 

(2013) indicates that the burst rate only applied in certain material. Diameter, length, age is 

involved in the equation. 

The relationship between annual burst rate, length and diameter for cast iron and asbestos cement 

pipe groups for each of the two datasets are similar, with slight variation in the coefficient values. 

Once the models have been derived for a given company or region it is possible to make predictions 

for every combination of material, diameter, length and age of pipe.  These can be used directly to 

inform investment decision making and planning, or to inform whole life cost decision support 

procedures and software.  It is important to recognize that this kind of burst rate prediction is valid 

principally for the short term, from perhaps 1 to 5 years.  The prediction for a pipe of a given age 

is for its burst rate in the next year. 

 

4.2 Model Results Review 

In this section, the conclusions in the collected papers are summarized and shown in Appendix 

III. Although each case has its own characteristics, the similar conclusion about model 

performance or factor effect could be common. The common parts in conclusions are extracted 

and shown in Table 6. 
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Table 6. Extracted Common Conclusions. 

Category Common Conclusions References 

Model 

WE model may have a good prediction performance though it does not 

consider covariates. 

Toumbou et 

al.(2013) 

Extending WE model to WEE model or developing a WE based proportional 

model would be feasible ways to improve the prediction accuracy. 

Francis et al. 

(2014) 

However, too much covariates covered in proportional model may lead to 

overfitting. 

Davis et al. 

(2007) 

For failure rate model, modeling the failure in group and individual pipe 

level would be a good way to avoid the inference that all covariates have the 

same impact on pipes. 

Mahmut 

Aydogdu  

(2014) 

Cox-PHM and Poisson process both have their advantages in certain 

conditions. 

García-Mora et 

al. (2015) 

Although in most situation, Poisson process is used as a comparison for other 

models or used for a small number of breaks prediction. 

Asnaashari et al. 

(2013) 

Artificial Neural Network are useful for modeling complex problem that a 

large number of covariates are included and the correlation between 

covariates are uncertain. 

Kabir et al. 

(2015a) 

Linear models usually have a lot of significant covariates and has accurate 

prediction when pipe failure history is known.  Otherwise, short-term 

prediction would be more reliable. 

Kutyłowskaa et 

al. (2016) 

Material 

Ductile pipe has a higher failure rate when the previous number of breaks is 

zero. 

García-Mora et 

al. (2015) 

After first break, it will decrease the probability of failure, especially for 

ductile pipe with long length and small diameter. 

Rezaei et 

al.(2015) 

PVC and AC pipes suffered more from cracking which may relate to 

covariates such as internal pressure, soil deflection and residual pressure. 

Kleiner and 

Rajani (2008) 

Steel and grey cast iron suffered material corrosion which may relate to 

temperature and humidity 

Wood and Lence 

(2009) 

Time-linear model fits better than time-exponential model for as asbestos 

cement (AC) and ductile iron (DI), PVC pipes usually has small number of 

failures and lack of recorded history because of near installation year.  So, 

they can be good predicted by Poisson process. 

Aydogdu and 

Firat (2014) 

Diameter 

Diameter is a common and efficient group for failure prediction. Kimutai (2015) 

Smaller diameter (25-50mm) pipe more likely to get damage which may due 

to pressure fluctuation. 

Kleiner and 

Rajani (2008) 

For pipe has high brittleness, like AC or PVC, failure rate is higher in winter 

than summer, but this covariate has strong correlation with pipe-laying depth 

which effect the temperature of pipes. 

Martins et 

al.(2013) 

Generally, high pressure variation will increase failure rate. 
M. Tabesh 

(2009) 

Age, diameter, length, material, buried depth and elevation of pipe were 

selected as the most critical factors. 

Jenkins et 

al.(2014) 

Pipe diameter and age are the most sensitive factors in two datasets. 
Martins et 

al.(2013) 

For linear, NOPNF has more important weight than in other models. 
Karimian et 

al.(2015) 

Installation site has relationship with many factors. 
Jenkins et 

al.(2014) 

The relationship between burst rate and diameter has been found to increase 

exponentially with decreasing diameters. 

Achim et al. 

(2007) 
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Chapter 5 Summary and Conclusion 

Unlike previous model review papers that mostly reviewed the model development or 

improvement in a period of time, this paper focuses on review and summary of contributing factors 

considered in the models and the associated effects of these factors. Specifically, the characteristics 

of all the collected cases are summarized to find the distribution and tendency of available 

networks data; the results of different fitting models are summarized to find common conclusions. 

5.1 Conclusions 

Based on the review, we reach the following conclusions. 

• The distribution of case regions has shown that the United States has concentrated much on 

network deterioration issue. Prior to Year 2000, the case from Canada and Europe accounted 

for a majority of total number of cases in papers about failure models because Canada faced 

the failure problem earlier. However, the increasing number of cases in Asia and North 

America indicates that some other areas started facing and solving this global common issue. 

Recent papers applying to the cases in the U.S. would offer more references to future than 

those applying Canadian cases. 

• The analysis has also shown that the number of pipe breaks and the number of pipe segments 

do not have high correlation. Thus, judging the severity of pipe deterioration based on the 

number of breaks is not a feasible way. 

•  
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• The summary statistics of models used in the literature has shown the popularity of prediction 

models. Data driven methods has been used increasingly. 

The following tables summarize the recommendations for model selection or validation of results 

for future studies.  

Table 7. Preferred Record Period for Material 

Material Preferred Record Period 

CI All 

PVC After 1950 

AC 1950-1970 

Steel After 2000 

DI 1900-2000 

 

Table 8. Related Conclusions for Covariates. 

Covariates Related Conclusions 

Material 
Mostly used as cohorts and the number of type is not necessary to be 

much  

Age Has negative correlation to failure. 

Diameter 

Diameter less than 250mm has a negative correlation with failure, 

while diameter of 1000 or above has a positive correlation with 

failure. 

Length Has a negative correlation with failure. 

Buried depth Has a positive correlation with failure. 

Pipe inner pressure Not enough conclusion. 

 

Table 9. Preferred Condition for Models. 

Models Preferred Condition 

WEE Small number of covariates 

Failure rate model When the input and output are clear  

ANN  With a large number of covariates. 

Linear model When pipe failure history is known; Short term prediction. 

Cox-PHM and 

Poisson process 

Use as comparison for models with covariate or non-covariates, 

respectively. 
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5.2 Limitation and Future Work 

The sample size of collected cases is limited which leads to a limitation for the analysis correlations 

between model and network characteristics. Less than 20 cases offer the data of factor distributions 

and the summarized conclusions may have unknown application range, e.g. the model fitting may 

get influenced by network size. Thus, the conclusions of this paper are not accurate enough to be 

used as verification for future model fitting. 

In addition, this paper only discussed the case information, characteristics distribution and model 

results separately. The link among them are not explored due to lack of time and data. So it would 

be a feasible direction to do more research on the characteristics identification in network failures.  
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Appendix I 

Table 10. Information Summary of Collected Cases 

# Title References Area Country City Population 

Network 

length (km) 

Number of 

pipe 

segment 

Number of 

pipe 

breaks 

1 

Modeling Water Pipe Breaks—Three 

Case Studies 

Genevieve 

Pelletier (2003) 

North 

America Canada Chicoutimi 64000 352 2096 1719 

2     

North 

America Canada Gatineau 93000 407 1554 1426 

3     

North 

America Canada Saint-Georges 20000 155 1806 279 

4 

Failure Assessment Modeling to 

Prioritize Water Pipe Renewal: Two 

Case Studie 

Peter D. Rogers 

(2009) 

North 

America America Colorado Spring 400000 2900 1471 1771 

5     

North 

America America Laramie Water 30000 330 3792 667 

6 

Development of pipe deterioration 

models for water distribution systems 

using EPR 

L. Berardi 

(2008) Europe UK 

48 water quality 

zones 19494 173 3669 354 

7 

Application of Artificial Neural 

Networks (ANN) to model the failure 

of urban water mains 

RaedJafar 

(2010) Europe France   43000 162 4862   

8 

A zero-inflated Bayesian models for 

the prediciton of water pipe bursts 

T. Economou 

(2008) 

North 

America Canada 

South-Central 

Ontario     1349 5425 

9 

On the prediction of underground 

water pipe failures: zero inflation and 

pipe-specific effects 

T. Economou 

(2012) Asia New Zealand       532 175 

10 

Integrating Bayesian Linear 

Regression with Ordered Weighted 

Averaging: Uncertainty Analysis for 

Predicting Water Main Failures G Kabir (2015) 

North 

America Canada Calgary 1100000 4281km 49531   

11 

Comparative Study of Three 

Stochastic Models for 

Prediction of Pipe Failures in Water 

Supply Systems 

André Martins 

(2013) Europe Portugal     367km 11472 1912 
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Table 10 (Cont.) 

# Title References Area Country City Population 

Network 

length 

(km) 

Number of 

pipe segment 

Number 

of pipe 

breaks 

12 

Expectation Analysis of the Probability of 

Failure for Water Supply Pipes 

Amarjit Singh 

(2012) North America US 

Island of 

Oahu   3200     

13 

General Model for Water-Distribution Pipe 

Breaks: 

Babacar 

Toumbou 

(2013) North America Canada 

City in 

Quebec,   185km 1152   

14 

Comparison of Statistical Models for Predicting 

Pipe Failures: Illustrative Example with the City 

of Calgary Water Main Failure 

E. Kimutai 

(2015) North America Canada Calgary 149552       

15 

Estimation of the Short-Term Probability 

of Failure in Water Mains Li Chik (2016) Asia Australia Melbourne   376     

16 

Assessing pipe failure rate and mechanical 

reliability of 

water distribution networks using data-driven 

modeling 

M. Tabesh 

(2009) Europe Iran   93719 579     

17 

I-WARP: Individual water mAin renewal 

planner 

Yehuda Kleiner 

(2010) North America   

Western 

Canada   146.6 1091   

18 

Extending the Yule process to model recurrent 

pipe failures in water supply networks 

Yves Le Gat 

(2013) North America US Mid-Atlantic   627.2 10581 10286 

19 

GROUP MAINTENANCE SCHEDULING: A 

CASE STUDY FOR A PIPELINE NETWORK 

Fengfeng Li 

(2011) Asia Australia   50000 3640 66405   

20 

Data Driven Water Pipe Failure Prediction: A 

Bayesian 

Nonparametric Approach Peng Li (2015) Asia China A 210000       

23 

Bayesian Belief Networks for Predicting 

Drinking Water Distribution 

Royce Fransis 

(2014) North America US Mid-Atlantic 500000 403.4 2598 3686 

24 

Extension of pipe failure models to consider the 

absence 

of data from replaced pipes 

Andreas 

Scheidegger 

(2017) Europe Swizerland Lausanne         
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Table 10 (Cont.) 

# Title References Area Country City Population 

Network 

length (km) 

Number of 

pipe 

segment 

Number of 

pipe breaks 

25 

Prediction Models for Annual Break Rates 

of Water Mains Yong Wang (2009) 

North 

America Canada 

Monton, 

Laval, Quebec   432km     

26 

Estimation of Failure Rate in Water 

Distribution Network 

Using Fuzzy Clustering and LS-SVM 

Methods 

Mahmut Aydogdu  

(2014) 

North 

America   Malatya 550000 440km   1231 

27 

Comparative analysis of water–pipe 

network deterioration–case study 

Małgorzata 

Kutyłowskaa(2016) Europe Poland A 40000 10.7   269 

28 

Estimating burst probability of water 

pipelines with a 

competing hazard model H Shin (2016) Asia 

South 

Korea     848.1km 26577 1405 

29 

Study of Failure Rate Model for a Large-

scale Water Supply Network in 

Southern China Based on Different 

Diameters Pengjun Yu (2013) Asia China 

Southern 

China         

30 

Forecasting watermain failure using 

artificial 

neural network modelling 

Ahmad Asnaashari 

(2013) 

North 

America Canada Toronto   784km   5422 

31 

Comparative analysis of two probabilistic 

pipe breakage models 

applied to a real water distribution system 

Stefano Alvisi 

(2008) 

North 

America Italy Ferrara 250000 2400km 23000 3472 

32 

Asset deterioration analysis using multi-

utility data and 

multi-objective data mining D. A. Savic (2009) Europe UK     189 477 89 

33 

Application of genetic programming to 

modeling pipe 

failures in water distribution systems Qiang Xu (2011) Asia China Beijing   3322.5km 313804 566 

34 

Spatial analysis of water mains failure 

clusters and factors: A Hong Kong case 

study 

Wen-zhong Shi 

(2013) Asia China  Hong Kong   643km 84127   

35 

Modelling of Failure Rate of Water-pipe 

Networks 

Małgorzata 

Kutyłowska (2012) Europe Poland A   16km     
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Table 10 (Cont.) 

# Title References Area Country City Population 

Network 

length 

(km) 

Number of 

pipe 

segment 

Number of 

pipe breaks 

36 

Using Water Main Break Data to Improve Asset 

Management 

for Small and Medium Utilities: District of 

Maple Ridge, B.C. 

Andrew Wood 

(2009) 

North 

America Canada Maple Ridge 6000 43.55km   54 

37 

Water distribution system modeling and 

optimization: a case study 

Fulvio Boanoa 

(2015)       50000 170km     

38 

Time Prediction Model for Pipeline Leakage 

Based on Grey 

Relational Analysis 

Kang Jing 

(2012) Asia China  North China          

40 

Forecasting the Remaining Useful Life of Cast 

Iron 

Water Mains 

Mohamed 

Fahmy (2009) 

North 

America 

Canada, 

USA   150000 221     

41 

Multiobjective Approach for Pipe Replacement 

Based 

on Bayesian Inference of Break Model 

Parameters 

Leila Dridi 

(2009)               

42 

Predicting the Timing of Water Main Failure 

Using Artificial Neural Networks 

Richard Harvey 

(2014) 

North 

America Canada 

Greater 

Toronto 

Area 5500000 5850km 6346 9918 

43 

Comparison of Pipeline Failure Prediction 

Models 

for Water Distribution Networks with Uncertain 

and Limited Data 

Lindsay Jenkins 

(2014) 

North 

America USA southeastern 600000 4800km     

44 

Leakage Rate Model of Urban Water Supply 

Networks Using Principal Component 

Regression Analysis 

Zhiguang Niu 

(2017) Asia China Tianjin 15.17 mi 5000km     

45 

Deterioration modelling of small-diameter water 

pipes under limited data availability 

Ben Ward 

(2016) Europe     1.5 mi 15000 800000 60827 

46 

ANN and ANFIS Modeling of Failure 

Trend Analysis in Urban Water 

Distribution NetworkANN and ANFIS 

Modeling of Failure 

Trend Analysis in Urban Water 

Distribution Network 

Markose and 

Deka (2016) Asia Indian Trivandrum 137714       

47 

Time Prediction Model for Pipeline Leakage 

Based on Grey Relational Analysis* 

Kang Jing 

(2012)               
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Table 10 (Cont.) 

# Title References Area Country City Population 

Network 

length (km) 

Number of 

pipe segment 

Number 

of pipe 

breaks 

48 

Model study for rehabilitation 

planning of water supply network  

Aabha Sargaonkar 

(2012)               

49 

Using maintenance records to 

forecast failures in water networks Yves Le gat (2000) Europe France 

Charente-

Maritime   1243km 1212 735 

50 

Pipeline failure prediction in water 

distribution networks using 

evolutionary polynomial regression 

combined with K-means clustering 

Konstantinos 

Kakoudakis (2017) Europe UK           

53 

Estimation of burst rates in water 

distribution mains Boxall (2013) Europe UK       36000 4335 

54 

Failure Rate Prediction Models of 

Water Distribution Networks 

Seyed Farzad 

Karimian (2015) Asia Qatar Montreal 1.8mi 5045km 125828 22735 

55 

New equations for Prediction of 

pipe burst rate in water distribution 

networks 

Mohammad Javad 

Mehrani (2015) Asia    Tehran          

56 

Comparison of four models to rank 

failure likelihood 

of individual pipes 

Kleiner, Yehuda 

(2012) 

North 

America   A(CI)     1091   

57 

Pipe failure analysis and impact of 

dynamic hydraulic conditions in 

water supply networks 

Hossein Rezaei 

(2015) Europe UK   100000 1090 5427   

58 

Modelling the failure risk for water 

supply networks with interval-

censored data 

B. García-Mora 

(2015) Europe Spain Mediterranean     25026 1487 
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Appendix II 

Table 11. Diameter Percentage in Cases. 

 

1982-

2003 

1982-

2003 

1982-

2003 

1993-

2005 

1993-

2003 

2000-2006 

0-100 2 3 4 5 2.8 50 

100-200 82 66 65 30 57 28 

200-300 10 25 16 25 19 13 

300-400 5 5 15 16 22.4 7 

400-600 0 0 0 23 0 2 

 

Figure 2. Distribution of Diameters for Each Available Case 
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Table 12. Installed Pipes Percentage in Cases 

1 

1950-

2013 

1950-

2013 

1982-

2003 

1982-

2003 

1982-

2003 

2000-

2006 

<1945 0 0 3 0 0 3 

1945-1960 46 0 25 20 10 13 

1961-1975 9 18 30 45 30 12 

1976-1996 19 24 35 35 60 34 

1996-2010 26 56 0 0 0 38.5 

 

Figure 3. Installed Pipes Percentage in Cases 
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Table 13.  Material Percentage in Cases. 

 

1940-

2010 

1972-

2015 

1992-

2003 

1992-

2003 

1993-

2003 

1995-

2005 

1999-

2012 

1999-

2012 

2000-

2006 

2000-

2006 

2003-

2013 

2006-

2012 

CI 20 56.5 35 44 20 15 56.6 64.1 2.9 15 69 55 

DI 23 26.6 42 35 25 40 0 2 0 0 5 0 

PVC 57 5.5 17 25 54 3.2 8.4 7.4 0 17 7 27.4 

AC 0 10.5 0 0 0 0 1.8 0.6 31 55 10 1.8 

PE 0 0 0 0 0 0 17.2 24 34 0 3 0 

Steel 0 0 0 0 0 1.9 8 16 0 15.6 0 0 

 

 

Figure 4. Material Percentage in Cases 
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Appendix III 

Table 13. Model Results Review.  

References Model Main Conclusions Type 

Scheidegger 

et al.(2017) 
WE 

It is obvious that the failure rate of the first-generation 

ductile pipes is higher 
Material 

Toumbou et 

al.(2013) 
WE 

The WEE mode is not affected by the covariates 
Model 

Comparison 

The effect of pipe diameter grouping is more useful in long 

term failure prediction 
Diameter 

Davis et al. 

(2007) 
WE 

For pipes made of PVC, the time to brittle fracture for pipes 

with internal defects are caused by internal pressure, soil 

deflection and residual stress 

Material 

Francis et al. 

(2014) 
Data driven 

Population density cannot be used to find the relation 

between pipe age and intensity of water due to its lack of 

accuracy 

Population 

García-Mora 

et al. (2015) 
Data driven 

Long and small pipes made of ductile cast material will not 

break easily when they are put under sidewalks 

Length, 

Diameter, 

Material 

Asnaashari et 

al. (2013) 
Failure rate 

Both the CP and the CML programs can help to decrease the 

failure rate 

Internal 

protection 

Kutyłowskaa 

et al. (2016) 
Failure rate 

Change in the pressure might be one of the causes of the 

damage of small pipes (25-50mm) 
Diameter 

Grey cast iron can be influenced by corrosion; Pipes made 

of AC or plastic will only be affected by cracks; Steel is 

exempt from the harm of material corrosion. 

Material 

Pipes that are not laid deep into the ground are more likely 

to break in winter time than in summer time 
Temperature 

Rezaei et 

al.(2015) 
Failure rate Change in pressure can lead to failure of the pipe Pressure 

Kleiner and 

Rajani (2008) 
Failure rate 

Covariates at both group and pipe levels are analyzed so that 

the inference that all covariates will exert the same influence 

on pipes can be avoided 

Model 

Comparison 

Wood and 

Lence (2009) 
Failure rate 

The time-linear models can help to make the results of the 

analysis of pipe material groups become more accurate 
Material 

Aydogdu and 

Firat (2014) 
Failure rate 

Pipes with a diameter of 110cm, pipes that are 0-200m long, 

and pipes aging from 15 years to 20 years are the easiest to 

break 

Length, 

Diameter, 

Age 

Kimutai 

(2015) 

Weibull 

Proportioanl 

Hazard 

Model; Cox 

Proportional 

Hazard 

Model 

Thanks to its accurate estimation of the number of failures, 

compared with Cox-PHM and Poisson process, WPHM does 

a much better job at predicting the failing rate of metallic 

pipes 

Model 

Comparison 

As the failing speed of the pipes becomes increasingly 

faster, the forecasting made via Cox-PHM becomes less and 

less accurate 

Model 

Comparison 

Cox-PHM is a better option for the forecasting of young 

systems. 
  

PM is a better option for the forecasting of PVC pipes Material 
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Jenkins et 

al.(2014) 

Weibull 

Proportioanl 

Hazard Model; 

Cox 

Proportional 

Hazard Model 

If we reduce the number of explanatory variables, 

then it will become less likely for us to overfill a 

model 

Size 

It can be difficult for us to learn more about the 

uncertain length of segment pipe from known data 
Length 

Karimian 

et al.(2015) 

Evolutionary 

Polynomial 

Regression 

(EPR) 

Length, diameter, age, material,elevation and the 

buried depth of pipes  were chosen as the most 

important factors 

Length, 

Diameter, 

Material 

Among all the factors, age and the diameter of pipes 

are the most sensitive ones in two of the data sets 

Diameter, 

Age 

Achim et 

al. (2007) 

Artificial 

Neural Network 

(ANN) 

ANNs can help a great deal in the modeling of 

sophisticated problems and these models can deal 

with all the effects brought by a wide range of input 

variables 

Model 

Comparison 

Both time-dependent and other supplementary 

factors will be incorporated in the analysis for this 

model 

Model 

Comparison 

Kabir et al. 

(2015a) 

Linear 

Regression 

Model 

CI pipes are more sensitive to the resistance of soil 

while the DI pipes are more sensitive to the soil 

corrosivity index 

Material 

Martins et 

al.(2013) 

linear extension 

of the Yule 

process 

(LEYP); 

Weibull 

accelerated 

lifetime model 

(WALM) 

Neither the linear-extended Yule process nor the 

Weibull accelerated lifetime model can affect the 

avoidable breaks 

Model 

Comparison 

The number of past breaks are the priority for both 

LEYP and WALM 

Historical 

Failure 

Results shown by the other two models are slightly 

better than the Poisson results 

Model 

Comparison 

Without the effect of past breaks, both LEYP and 

WALM would perform in as similar way as the 

Poisson process does 

Model 

Comparison 

Repair work can make a pipe become more prone to 

breaks 

Historical 

Failure 

Under the circumstances when only a small number 

of variables are available, the Poisson process can 

become very good at forecasting the failing rate 

Model 

Comparison 

The shorter the  maintenance records are, the better 

the forecasting done by LEYP and WALM will be 

Model 

Comparison 

Le Gat et 

al.(2013) 
Linear 

Time-dependent factors including  implementation 

of pipe protection measures, changes in the traffic in 

the road, the time of frost as well as rainy weather 

sequence can all be used as references 

Other Effect 

The thickness of the walls of pipes are closely 

related to the break rate 
Thickness 
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Boxall (2013) Linear 

The reduce of diameters can help to strengthen 

the correlation between the burst rate and the 

diameter 

Diameter 

Very little changes were found in the 

correlation between length and the burst rate 
Length 

The correlation between age and the burst rate 

is different if we analyze it in different ways 
Age 

Without a dependable age relationship, we 

would not be able to make long-term 

forecasting of burst rates. 

Model 

Comparison 

Wang et al. 

(2010) 
Linear 

The diameter and age of a pipe are the factor 

that can exert the biggest effect on the 

condition of the pipe 

Age, 

Diameter 

Since the recharge of electricity, the depth of 

the trench and the number of roads share no 

relation to the condition of a pipe, they were 

not takne into consideration in the final 

analysis 

Environment 

Kleiner, 

Yehuda (2012) 
NHPP 

The number of past breaks, length as well as 

the age of the covariates can become very 

important statistics when the NHPP based 

model is in use 

Age, 

Length, 

Historical 

Failure 

Compared with ductile iron pipes, cast iron 

mains are more prone to the effects of factor 

related to the climate 

Material 

C.Vipulanandan 

(2012) 

Genetic 

Programming;EPR 

Models used for big cities ought to be different 

from those used for smaller cities 

Network 

Size 

Peter D. Rogers 

(2009) 

multiple-

criteria decision 

analysis (MCDA) 

Three failures happened in the past will be 

needed if we are using NHPP to do a single 

forecasting of pipe break 

Model 

Comparison 

L. Berardi 

(2008) 

Evolutionary 

polynomial 

regression 

Compare with pipes with a larger diameter, 

when the external pressure becomes really 

strong, smaller pipes are easier to break 

Diameter 

T. Economou 

(2008) 

zero-inflated  

NHPP 

Compared with the general NHPP, the zero-

inflated version of the NHPP is more suitable 

for the data and the results it provides is of a 

slightly higher accuracy even though its 

performance is still worse than the general one 

Model 

Comparison 

T. Economou 

(2012) 
NHPP 

For pipes that remained not to break while 

being watched, the use of the Zero-inflated 

NHPP will give us a more accurate forecasting 

Model 

Comparison 

G Kabir (2015) 
Bayesian Linear 

regression 

The mean response forecasting made by the 

Bayesian regression models is no different 

from that made by the normal regression 

model, but predicted response made by the 

former one is better 

Model 

Comparison 
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M. Tabesh 

(2009) 

Artificial 

neural network 

When it comes to the evaluation of the 

mechanical reliability (availability) values, the 

ANN pipe failure rate model does a much 

better job than the Adaptive NeuroFuzzy 

Inference System (ANFIS). 

Model 

Comparison 

Yehuda 

Kleiner 

(2010) 

NHPP 

For pipes with nearly no failures in the past, 

the aggregated total number of failures per 

pipe given by the NHPP was over estimated, 

while the forecasting made by the same model 

for pipes have failed for many times in the 

past was underestimated 

Model 

Comparison 

Fengfeng 

Li (2011) 

Dirichlet 

process mixture 

of hierarchical 

beta process 

model 

Pipes whose predicted likelihood of breaks in 

the future do not exceed 0.1 would not be 

included in future analysis 

Model 

Comparison 

Yong 

Wang 

(2009) 

Multiple 

Regression 

model 

Short pipes that have broken for more times in 

a year do not necessarily have more failures 

than long pipes do 

Length 

Mahmut 

Aydogdu  

(2014) 

Fuzzy 

Clustering; 

Leaset square 

support vector 

machine 

method (LS-

SVM) 

LSSVM model results for the sub-regions 

defined by clustering analysis are better and 

that the clustering analysis can help to 

improve the performance of the estimation 

model and to provide a better result 

Model 

Comparison 
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