Evaluation of The Impact of Tart Cherries Polyphenols on The Human Gut Microbiota and Phenolic Metabolites In Vitro and In Vivo

Alba Claudia Mayta-Apaza

University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Food Microbiology Commons, Food Studies Commons, and the Fruit Science Commons

Recommended Citation

http://scholarworks.uark.edu/etd/2612

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Evaluation of The Impact of Tart Cherries Polyphenols on The Human Gut Microbiota and Phenolic Metabolites In Vitro and In Vivo

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science

by

Alba Claudia Mayta Apaza
Escuela Agrícola Panamericana, El Zamorano
Bachelor of Science in Food Technology, 2013

December 2017
University of Arkansas

This thesis is approved for recommendation to the graduate Council.

Dr. Franck Carbonero
Thesis Director

Dr. Ravi Barabote
Committee Member

Dr. Luke Howard
Committee Member
Abstract

Tart cherries are polyphenol abundant stone fruits claimed to exert health benefits further of its nutritional properties. The abundant phytochemicals content in tart cherries also referred as dietary polyphenols have been considered as an effective natural antioxidant when added in daily diet. However, it has been hypothesized the intervention of gut microbiota on the overall functionality of such compounds. This thesis contains a wide-ranging literature review focused on tart cherry as a crop, current market, functional food, and several health benefits. Furthermore, the research done describes and in vitro and in vivo assays of a short-term dietary intervention of tart cherry and polyphenol isolates assessed with microbial ecology analysis and metabolomics of tart cherry concentrate polyphenols and microbial metabolites. The concentration of polyphenols (anthocyanins, flavonols and phenolic acids) were high amounts as expected. The in vitro assay showed large increase of Bacteroides in addition to a suggested Bifidobacterium increase likely due to large concentration of chlorogenic acid found in the tart cherry concentrated juice. The main microbial metabolites found in this assay was mainly 4-hydroxyphenyl propionic acid and in less amounts 4-hydroxybenzoic acid. The in vivo assay showed two initial scenarios associates with Bacteroides relative abundance: individuals with high Bacteroides increase the relative abundance of Lachnospiraceae, Ruminococcus and Collinsella; on the other hand, individuals with low levels of Bacteroides responded with an increase Prevotella and Bifidobacterium and Bcteroides and decrease of Lachnospiraceae, Ruminococcus and Collinsella. The results confirm an intervention from the gut microbiota over the metabolism of phytochemicals which should be considered in studies linked with functional foods and potential benefits to health.
Acknowledgments

I would like to extend my deepest gratitude to all the people who made this chapter of my professional life possible and allow me to get a better education while having an unforgettable experience.

I would like to thank my advisor Dr. Franck Carbonero for all his guidance and patience also, extend my gratitude to my committee members Dr. Ravi Barabote and Dr. Luke Howard for sharing their expertise and teaching disposition.

Express my profound gratitude to my laboratory peers, very supportive friends that walked with me all in moments and the student fellows, professors and personal at the Food Science Department.

And foremost I am very blessed and enormously thankful to my beloved parents and brothers whom have supported every single dream and have loved me unconditionally.

To all these people, I am deeply thankful.
Dedication

This thesis is dedicated to my loving and supportive family and the friends that have become part of it.
Table of Contents

Chapter 1 .. 1
Tart Cherries and health: Current knowledge and need for a better understanding of the fate of
phytochemicals in the human gastrointestinal tract .. 1

ABSTRACT .. 2
INTRODUCTION .. 3
TART CHERRY ECONOMIC IMPORTANCE ... 4
PRE AND POST-HARVEST AND PROCESSING SPECIFICITIES .. 5
TART CHERRY PHYTOCHEMICALS ... 8
 Phenolics .. 9
 Flavonoids .. 10
 Anthocyanins ... 11
 Flavanols ... 12
 Phenolic acids .. 12
 Carotenoids and other phytochemicals ... 13
IMPACT ON NUTRITION AND HEALTH .. 14
 Nutrition ... 14
 Tart cherries impact on exercise .. 14
 Antioxidant and anti-inflammatory potential ... 15
POTENTIAL IMPACT OF METABOLIC DISEASES ... 16
 Diabetes and Obesity .. 16
 Cardiovascular disease .. 18
 Other potential health benefits .. 18
FATE OF CHERRY POLYPHENOLS IN THE DIGESTIVE SYSTEM .. 19
 Polyphenols and polyphenol-rich food impact on the gut microbiota .. 20
 Microbial derived metabolites from dietary polyphenols .. 21
 Conclusions and perspectives ... 23
ACKNOWLEDGMENTS .. 23
REFERENCES .. 24

Chapter 2 .. 45
Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in
vitro and in vivo ... 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>46</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>47</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>48</td>
</tr>
<tr>
<td>Materials and reagents</td>
<td>48</td>
</tr>
<tr>
<td>Analytical chemistry</td>
<td>50</td>
</tr>
<tr>
<td>Dietary intervention</td>
<td>52</td>
</tr>
<tr>
<td>Microbial Analyses</td>
<td>53</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>55</td>
</tr>
<tr>
<td>Tart cherry juices phenolic profiles</td>
<td>55</td>
</tr>
<tr>
<td>Polyphenol degradation and associated phenolic metabolites in vitro</td>
<td>56</td>
</tr>
<tr>
<td>Impact of tart cherries and apricots on gut microbiota in vitro</td>
<td>57</td>
</tr>
<tr>
<td>Impact of tart cherries powder and tart cherries concentrated juices</td>
<td>58</td>
</tr>
<tr>
<td>Impact of apricot powder on the gut microbiota</td>
<td>58</td>
</tr>
<tr>
<td>Impact of representative pure polyphenols</td>
<td>59</td>
</tr>
<tr>
<td>Impact of tart cherries on gut microbiota in vivo</td>
<td>61</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>63</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>64</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>65</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>83</td>
</tr>
<tr>
<td>OVERALL CONCLUSION</td>
<td>83</td>
</tr>
<tr>
<td>Appendix</td>
<td>84</td>
</tr>
<tr>
<td>IRB APROVAL LETTER15-2-476</td>
<td>84</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Description of tart cherry juice processing steps .. 39
Table 2: Polyphenols distribution and concentration in the tart cherry fruit. 40
Table 3: Phytochemical profiles and antioxidant properties in different tart cherries food products ... 41
Table 4: Anthocyanins concentrations across varieties and product presentation 42
Table 5: Flavonols profile and concentration in tart cherry products .. 43
Table 6: Phenolic acids profile in tart cherry ... 44
Table 7: Nutrient composition of Tart cherry compared to Sweet cherry (values in 100 grams: Adapted from USDA ARS 2017) ... 44
Table 8: Phenolic profiling of cherry concentrated juices (NQ: Not quantified) 74
Table 9: Demographic and dietary intake data of the High and Low Bacteroides groups........ 75
List of Figures

Figure 1: Polyphenol metabolomics; Microbial degradation of the main native tart cherry polyphenols over the 48 hours of microbial fermentation in vitro A and B. Tart cherry and C. Sweet cherry concentrate juices; and detection of major metabolites from chlorogenic acid (DEF) and proanthocyanins (GHI) for King Orchard (DG) and All Natural (EH) tart cherry juices and Sweet cherry juice (FI). .. 76

Figure 2: Dynamics (phylum level) of microbiota in in vitro fermentation for A. Control, B. Apricots, C. All tart cherries and D. all polyphenols standards. .. 77

Figure 3: Tart cherries impact on in vitro gut microbiota. (A) Non-metric Multidimensional Scaling (NMDS) of control (filled squares), tart cherries (+) and sweet cherries (filled circles); (B) Relative abundances of significantly modulated taxa for all tart cherries samples. .. 78

Figure 4: Apricots impact on in vitro gut microbiota. (A) NMDS of control (filled squares), and apricots (open diamonds); (B) Relative abundances of significantly modulated taxa for all apricots samples. .. 79

Figure 5: Pure polyphenols impact on in vitro gut microbiota: relative abundances of significantly modulated taxa. .. 80

Figure 6: Stool microbiota dynamics (NMDS and phylum level) for human volunteers with A. High Bacteroides and B. Low Bacteroides initially; before (green) and after (red) dietary intervention with daily tart cherry juice consumption .. 81

Figure 7: Bacterial genera significantly affected by tart cherry consumption for (A) the high Bacteroides group and (B) the low Bacteroides group. .. 82
List of published articles

1. **Chapter 1:** Mayta-Apaza, Alba C., Daya Marasini, and Franck Carbonero. "Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract." *Critical Reviews in Food Science and Nutrition* just-accepted (2017): 00-00.

2. **Chapter 2:** Mayta-Apaza, Alba C.; Pottgen, Ellen; De Bodt Jana; Papp Nora; Daya Marasini; Luke Howard; Abranko Laszlo; VandeWiele Tom; Lee, Sun-Ok; and Carbonero, Franck. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo (submitted for review).
Chapter 1

Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract

Mayta-Apaza, Alba C. 1, Marasini, Daya 1 and Carbonero, Franck 1*

1Department of Food Science, University of Arkansas, Fayetteville, AR, United States.

*Corresponding author: Franck Carbonero: Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA\ Phone: 479-575-6822

fgcarbon@uark.edu

Keywords: Tart cherry, phytochemicals, gut microbiota
ABSTRACT

Tart cherries are increasingly popular due to purported health benefits. This *Prunus cerasus* species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.

Keywords:

Tart cherries, Phytochemicals, Polyphenols, Gut microbiota, Metabolome
INTRODUCTION

Tart cherries (Prunus cerasus) are among the ever-growing list of fruits branded as “superfoods”. While the superfood concept tends to often rely on speculative assertions, the potential health benefits of tart cherries are relatively well documented. The significantly high phytochemical content in tart cherries (especially polyphenols) has most commonly been studied in the context of health, and there is solid evidence for high antioxidant properties at the very least (Blando et al. 2004, Ducharme et al. 2009, Levers et al. 2016, Matchynski et al. 2013, Wojdylo et al. 2014).

Functional food is a term broadly used to label foods that help to enhance some functions of the body as well as being nutritious (Hasler. 1996). It is important to note that “qualified health claims” arestringently regulated by FDA, and thus only few foods marketed as functional foods have strong scientific evidence of bringing health benefits. Therefore, tart cherries, like other phytochemical-rich fruits, do not fulfill specific health claims (however, like most fruits and vegetables containing fibers and vitamins, they fulfillment the general claims for reduced coronary heart disease and cancer risk). Still, there have been numerous reports of beneficial health impacts from consumption of phytochemical-rich fruits (Nile and Park. 2014). Tart cherries are particularly rich in polyphenolic compounds such as flavonoids: flavonols and anthocyanins; anthocyanins being responsible for the deep red color characteristic of the fruits (Damar and Eksi. 2012, Alrgei et al. 2016).

Several studies in recent years have suggested specific beneficial health properties from tart cherry consumption, notably a potential to alleviate muscle damage commonly associated with prolonged physical effort (Connolly et al. 2006, Kuehl et al. 2010, Kuehl. 2012). Tart cherries potential for prevention of chronic diseases such as cancer (Kang et al. 2003, Martin and Wooden.
2012) and cardiovascular abnormalities (Juhasz et al. 2013, Bak et al. 2006, Csiki et al. 2015), diabetes (Mahmoud et al. 2013) as well as inflammatory conditions (Ou et al. 2012, Saric et al. 2009) has also been reported. However, a significant portion of research has relied on in vitro or animal studies with isolated native polyphenolic extracts (in particular, antioxidant properties) (Kirakosyan et al. 2015, Kirakosyan et al. 2009, Mahmoud et al. 2014). Polyphenols, which are large and complex molecules, are known to be generally poorly absorbed in the small intestine. It has been shown that the colonic microbiota (the collection of microbes living in the large intestine) modifies and degrades polyphenols to smaller metabolites which become available to the host (Bohn. 2014, Bohn et al. 2015, Crozier et al. 2009). There is still only sparse knowledge on how fruit polyphenols modulate the gut microbiota, and into which metabolites they break down through colonic fermentation (Del Rio et al. 2013a). This represents a major limitation for previous in vitro studies using native polyphenols, since human cells/organs are most likely to be exposed to phenolic metabolites (Aura et al. 2013, Clifford et al. 2013, Larrosa et al. 2009a, Miene et al. 2011). Further, the strong individuality in human gut microbiota profiles (Turroni et al. 2017, Arumugam et al. 2011) and microbiome functions arguably leads to different metabolome profiles (Bolca et al. 2013, Tomas-Barberan et al. 2016). The goal of this review is to present the current knowledge on tart cherries as a high value crop and describe the reported potential health benefits. The limited knowledge on gut microbiota modulation of tart cherries phytochemicals will also be presented.

TART CHERRY ECONOMIC IMPORTANCE

Cherry trees (genera *Prunus*) are represented by two subgenera, *Padus* (bird cherries) and *Cesarus*, however most berries of agricultural importance belong to the *Cesarus* subgenus. More
specifically, the two-main species grown worldwide are *Prunus avium* (sweet cherries) and *Prunus cerasus* (tart or sour cherries) (Brown-Skrobot et al. 1989). Cherries are considered high-value crop produced worldwide largely because of their purported health benefits (Bak et al. 2010, Bell et al. 2014a) rather than organoleptic properties. The current review will be focused on tart cherries.

Worldwide, tart cherries production has increased significantly in the last decades because of advances in agricultural practices, food technologies and raising global demand; from 2,154,000 to 3,057,000 metric tons. Europe leads the production with 65.8% of the total world production followed by Asia and America with 24.9% and 9.3% respectively (FAOSTAT, 2015). In 2013, the top five producer countries of tart cherry were Ukraine, Russian Federation, Poland, Turkey and the United States of America (USA). The USA produced 268,072 metric tons in 2013 and 2014 valued at more than $210 million. Michigan, Utah, and Washington are the three states with the highest production (USDA NASS, 2014). During the past decade, USA has been a leading exporter of this commodity and lately Chile has joined the export market, mainly to China, Russia and South Korea. Tart cherry production has increased due to recent improvement in agricultural practices, allowing producers to sell fruits at reasonable prices (Webster and Looney. 1995), before necessary processing into concentrate, juice, wine, brined, dried and powder, which have better palatability (Kirakosyan et al. 2009, Webster and Looney. 1995).

PRE AND POST-HARVEST AND PROCESSING SPECIFICITIES

Tart cherry cultivars are the most tolerant plants to biotic and abiotic stress among their family (Rosaceae). However, during harvest tart cherries become susceptible to hot-dry weather, which reduces the harvest window and can be the cause of significant physico-chemical changes
affecting color, polyphenol content and the detachment force, thus affecting the overall production
(Aslantas et al. 2016). Appropriate harvest and postharvest handling are critical for higher quality
of the commodity, however 55% of the total cost is spent when cherries are hand-harvested. In
contrast mechanical harvesting was shown to lower the cost and enhance profits for the industry
(Webster and Looney. 1995).

Tart cherry is a non-climacteric fruit, thus the variability of maturity throughout the tree
influences quality and yields during harvest and processing. Industrial tart cherry processors rely
on methods to determine optimum physio-chemical parameters of maturity including the fruit
detachment force (FDF) and color parameters (Aslantas et al. 2016) . The color characteristics,
specifically the color intensity, have been reported to be an effective field indicator of maturity
stage in cherry. Aslantas et al. (2016) researched a standard procedure to determine the degree of
maturity for harvest based on the fruit detachment force and fruit pomological and chemical
characteristics. Tart cherries were classified into five stages of maturity per physical characteristics
such as color and size by observation, where higher values meant higher level of maturity. The
results indicated a strong relation between the physicochemical characteristics and the stage of
maturation in the fruit; where the best three categories of maturity stages showed higher efficiency
in poundage per tree, as well as improved homogeneity of color and reduced fruit detachment
force. Ascorbic acid levels tend to decrease when maturity increases as degradation of organic
acids occur, which is a desirable quality in the juice industry (Wojdylo et al. 2014,Karaaslan et al.
2016).

Around 95% of the tart cherry production is intended for industrial purposes; representing
a great challenge for new processing technologies able to preserve bioactive compounds available
for consumption. The production of juice accounts for about half of the tart cherry production
destined to industry. Turkey, one of the largest producers, utilizes around forty percent of the tart cherries in production of juice or nectar because of the market demand and accessible handling for commercialization (Damar and Eksi. 2012). The rest of the production is distributed into frozen, purees, dried pitted tart cherry, powder from individually quick frozen (IQF), and concentrates. Every product undergoes different treatment technologies that have an impact on the content of bioactive compounds which varies according to the type of product. Table 1 presents an exhaustive list of the processing steps that tart cherries undergo to be converted to juice. In the production of juice, mash press extraction has been shown as the key step for optimal phenolic compounds recovery. To improve extraction three rinses are necessary to increase the recovery yield of bioactive compounds, reaching 83% of anthocyanin and 62% of procyanidins (oligomeric flavonoids) from the press cake (Toydemir et al. 2013b). The total extraction of these compounds is remarkably high in comparison to other fruits such as blueberries (Skrede et al. 2000); and two properties may explain this phenomenon. First, the molecular structure of the anthocyanin profile in tart cherry is dominated by water soluble chemical groups (tri-glycoside), which may increase the recovery of anthocyanins. Second, anthocyanins in the fruits are found mainly in the flesh facilitating disruption and enabling a higher yield of bioactive compounds in the end-product (Capanoglu et al. 2013, Toydemir et al. 2013a). Transformation of rich polyphenol plants tissues to processed products leads to changes in the phenolic profile with the formation of derived polyphenols (Crozier et al. 2009). The addition of sweeteners in cherry products has been shown to induce a slight decline in polyphenol concentration, especially the anthocyanins. Nevertheless, these products are more attractive to consumers and are still able to provide a high antioxidant activity and potential health benefits (Nowicka and Wojdylo. 2016).
Nutritional and health claims have substantially increased the demand of tart cherry in the industry and have generated interest of research in preservation and stability of the phytochemicals content and bioavailability in tart cherry after processing (Seeram et al. 2001a). During processed tart cherry products storage, physicochemical reactions take place where the antioxidant compounds are converted or degraded, and color may be altered. The concentration of polyphenolic compounds can also change due to enzymatic oxidation to quinones (Bonerz et al. 2007). Monomeric anthocyanins are the most affected by the storage steps that the products undergo. Furthermore, long term storage had been reported to affect the polyphenol profile and contents. Storage at 20°C for 6 months resulted in formation of polyphenol derivatives and significant decline (70–75%) of anthocyanin concentration (Bonerz et al. 2007). Also since this last step is key, packaging alternatives were tested to identify the most effective storage route for product quality (freeze-dried sour cherry) and polyphenols integrity. This study showed that most of polyphenols remain stable and in high concentration except anthocyanins which decreased by 62% after one-year storage at lower temperatures (Zoric et al. 2016). This kind of food storage allow year-round tart cherry products availability, hence proper food processing practices to preserve the bioactive components is beneficial not only for the industry but for the consumers.

TART CHERRY PHYTOCHEMICALS

Phytochemicals are secondary metabolites, non-nutritive molecules produced naturally by plants (Dillard and German. 2000) as a response to abiotic and biotic stress especially climate variation, mechanical damage, as well as a response to pathogen attack (Hirschi. 2009). Certain secondary metabolites are classified as phytochemicals if their chemical structure can provide potential health benefits over basic nutritional value (Dillard and German. 2000,Tsao. 2010).
Phytochemical profiles are extremely variable across plant species (and even variety/cultivar); and environmental factors such as growth conditions, soil type and seasons result in further variability (Hirschi. 2009, Webster and Looney. 1995).

Cherries in general have been described as phytochemical rich fruits with potential health benefits, while reports on their phytochemical profiles have been somewhat conflicting (Kirakosyan et al. 2009, Kirakosyan et al. 2010, Ou et al. 2012). While there is convincing evidence that phytochemicals in general are safe to consume, one should remember that in vitro experiments that constitute a large fraction of our current knowledge are only partially representative of actual human metabolism and physiology (Nile and Park. 2014, Steinberg et al. 2003, Amin et al. 2015, Bak et al. 2006). Moreover, the interaction between phytochemicals may result in changes in physio-chemical characteristics such as solubility, stability and bioavailability of the active compounds in the products (Kirakosyan et al. 2010). Total polyphenol, monomeric anthocyanins, and ascorbic acid are well known to possess remarkable anti-oxidant properties (Moyer et al. 2002, Seeram et al. 2008, Del Rio et al. 2013b, Landete. 2012, Redondo et al. 2017). However, most of the antioxidant response was thought to come from the anthocyanins fraction but it actually derives mostly from phenolic acids (Damar and Eksi. 2012).

Phenolics

Phenolics are secondary metabolites produced by plants which have at least one aromatic ring with a single or several hydroxyl groups attached, ranging from simple low molecular weight up to complex large molecules such as tannins. Some phenolics are synthesized from
carbohydrates following shikimate and phenyl propanoid pathways (Ferretti et al. 2010). The distribution and concentration of phenolics varies within each tree and within the fruit as shown in Table 2. Montmorency tart cherry cultivar have highest phenolic content in their skin, leading to higher antioxidant capacity (Chaovanalikit and Wrolstad. 2004). The synthesis and accumulation of phenolics in the skin is used as a natural harvest indicator, provides organoleptic characteristics to the fruit constituting a natural defensive mechanism.

The phenolic compounds in tart cherry contribute to their sensorial attributes like color and flavor (Ferretti et al. 2010) (Table3). There is also a great interest on the preventive functionality that phenolic compounds have shown in several animal and human models exposed to chronic and/or long-term diseases such as, cancer or diabetes and associated features such as oxidative stress.

For a clearer understanding, phenolic compounds are classified into flavonoids and non-flavonoids (Bravo. 1998, Tsao. 2010).

Flavonoids

Flavonoids have attracted interest because of their influence as health promoter compounds. The widely-studied anthocyanins are well known for their antioxidant capacity (Casedas et al. 2016,Khoo et al. 2012,Wojdylo et al. 2014)(Khoo and others 2011; Wojdylo and others 2014b; Casedas and others 2016; Nowicka and others 2016). Other flavonoids include flavonols, flavones, flavanols, flavanones, and isoflavones. Flavonoids are recognized for their ability of scavenge hydroxyl and peroxyl radicals and also function in synergy with other antioxidants and other bio-compounds such as tocopherol and ascorbic acid.
Anthocyanins

Anthocyanins are synthezized mainly during ripening and are responsible for the color change from green to deep red (Karaaslan et al. 2016). Tart cherries have been shown to contain high levels of anthocyanins and phenolic acids which have an inverse relationship: during early stage the fruit is high in phenolic acids, while anthocyanins synthesis increases towards ripening (Karaaslan et al. 2016, Wojdylo et al. 2014, Blando et al. 2004, Damar and Eksi. 2012), resulting in the characteristic deep red color of tart cherries. Since color means such an important parameter for harvest and sensorial control, Kim et al (Kim et al. 2005) also evaluated the total content of anthocyanins in cherries using two approaches: a colorimetric assay and HPLC. While comparing both methods the anthocyanin levels from both were almost the same, meaning that the total count of anthocyanins colorimetric assays gave a similar result when compared with the sum of individual anthocyanins analyzed with HPLC.

Several factors strongly affect the anthocyanin content such as genetic background and environmental characteristics (Karaaslan et al. 2016) or if the tart cherries are analyzed as fresh fruit or as processed product (Kirakosyan et al. 2009). However, the major fraction corresponds to Cyanidin-3-glucosyl-rutinoside, accounting for approximately 70% of the total anthocyanin concentration (Blando et al. 2004, Chaovanalikit and Wrolstad. 2004, Daenen et al. 2007, Kang et al. 2003, Seeram et al. 2001, Tall et al. 2004). Anthocyanins have been reported to be the major phenolic in tart cherries, in particular cyanidin and peonidin aglycones and anthocyanidins (Fang 2015) (Table 4).

Although, anthocyanins are the major compound in tart cherries, they are also the most unstable and handling in industrial levels is a challenge (Chaovanalikit and Wrolstad. 2004,
Kirakosyan et al. 2009, Zoric et al. 2016). Vesna et al. (2016) developed a cookie taking advantage of the positive interaction between proteins and phenolics, resulting in a satisfactory retention of anthocyanins (19-59%).

Flavonols

Flavonols are a subclass of flavonoids that are naturally produced by plants with important antioxidant potential (Kirakosyan et al. 2009). The reported flavonols content in cherry products vary significantly, this phenomenon can be due to several causes such as the kind of product itself, the conditions it was subjected during processing as well as to the environmental and agricultural conditions where the plant was grown (Toydemir et al. 2013b). In a study of interaction of isolated polyphenols from tart cherry fruits, it was found that kaempferol and quercetin were the primary contributors of the antioxidant (TEAC) properties (Kirakosyan et al. 2009), with Trolox equivalent antioxidant capacity (TEAC) values of 4.5 mM TEAC and 4.2 mM respectively. The flavonols reported from tart cherry products are kaempferol-3-rutinoside, quercetin-3-glucoside, quercetin-3-rutinoside, quercetin-3-(2-glucosyl-rutinoside) and isorhamnetin rutinoside (Table 5). They were found to be fairly stable in tart cherry juice stored six months at freezing temperature (-25°C) (Bonerz and others 2007a; Li and others 2008).

Phenolic acids

Phenolic acids are non-flavonoid polyphenolic compounds recognized for their strong antioxidant activity; and divided into two subclasses: hydroxyl-benzoic acids and hydroxyl-cinnamic acids. Recent studies reported that tart cherries are rich in chlorogenic and neochlorogenic acids (Table 6), which have only been described in similarly high quantities in
coffee (Karaaslan and others 2016; Casedas and others 2016) and in lower abundances in apricots and blueberries (Cho et al. 2004, Dragovic-Uzelac et al. 2007).

Carotenoids and other phytochemicals

While carotenoids are assumed to be present in tart cherries, there have been no reports on detection and quantification specifically on tart cherries. Carotenoids, including α and β-carotens, lutein and neoxanthin have been detected in wild cherries; however total carotenoids levels did not exceed 12.6 mg/kg, whereas carotenoids-rich vegetables often contain hundreds of mg/kg of just one of these carotenoids (Mikulic-Petkovsek et al. 2016). Carotenoids have been reported to be present in sweet cherries (McCune et al. 2011), however original reports could not be tracked back. Carotenoids were also detected in very low levels (0.02 mg/g DW) in cherries (presumably sweet) in comparison with carrots and bell peppers in a study conducted in New Zealand (Leong and Oey. 2012).

The potentially antioxidant melatonin (N-acetyl-5-methoxytryptamine) had been reported in high levels in tart cherries (Burkhardt et al. 2001), however more recent reports indicated that melatonin was in low concentration in Montmorency and Balaton tart cherries and completely absent in processed tart cherry products (Kirakosyan et al. 2009). Finally, tart cherries contain relatively low (3-9 mg/100 g) amounts of ascorbic acid (Vitamin C) (Papp et al. 2010), confirming that tart cherries antioxidant potential mainly derive from phenolic compounds.
IMPACT ON NUTRITION AND HEALTH

There are several studies suggesting health promoting benefits could be associated to tart cherries consumption including effects on chronic diseases such as cancer, diabetes and cardiac complications (Bajerska et al. 2016, Czompa et al. 2014, Bobe et al. 2006, Martin and Wooden. 2012, Saleh et al. 2017). These studies have generally focused on the content and functionality of phytochemicals of tart cherries and connected specifically with the antioxidant activity.

Nutrition

Tart cherry fruits have somewhat unremarkable nutritional composition (Table 7), with low fiber and vitamin C content, but represent a good source of minerals and vitamin A. In addition, the necessary food processing tends to even lower the contents of valuable nutrients. One advantage is that unsweetened tart cherries products have low sugars and calories.

Tart cherries impact on exercise

The antioxidant effect phytochemicals in powdered tart cherry has been suggested to improve muscle function recovery and reduce inflammation, oxidative stress and pain associated with intensive exercise (Bell et al. 2014a). Consumption of tart cherry juice blend have been shown to reduce significantly muscle damage symptoms caused by intensive strength exercise or running in humans (Connolly et al. 2006,Kuehl et al. 2010,Howatson et al. 2010,Bowtell et al. 2011) and horses (Ducharme et al. 2009).Tart cherries supplementation intake was shown to improve the average of race pace, as well as modulating the balance in oxidative stress, decreasing inflammation markers and improving muscle recovery (Levers et al. 2015,Levers et al. 2016). Another study investigated the potential effect of tart cherry concentrate on muscle recovery after prolonged and intermittent exercise such as soccer Tart cherry supplementation resulted in faster
recovery and lower muscle soreness suggesting modulation of oxidative stress and inflammation post-exercise (Bell et al. 2016). Similar results were reported in water-polo players consuming tart cherry products (McCormick et al. 2016) as well as other type of high intensity exercise (Bell et al. 2015) including cycling (Bell et al. 2014b). Another concern about extended exercise recovery has to do with airway inflammation (respiratory mucosal inflammation) directly linked with induced pulmonary stress. Tart cherry juices seemed to have a modulatory effect as well as reducing inflammatory markers in the respiratory tract of healthy athletes, leading to faster recovery (Dimitriou et al. 2015).

Antioxidant and anti-inflammatory potential

Tart cherries have been shown to modulate inflammatory and oxidative stress expression in HAPI cells (rat microglial cells) such as nitric oxide, inducible nitric oxide synthase and cyclooxygenase-2 in dose and time dependent manner (Shukitt-Hale et al. 2016a). The inflammatory activity in the hippocampus of older rats, measured through COX-2 expression, decreased significantly after six weeks of tart cherry supplementation (Thangthaeng et al. 2016). Similar anti-inflammatory potential was observed in mice consuming tart cherry juice (Saric et al. 2009). A double-blind, placebo-controlled, crossover dietary intervention demonstrated that consumption of tart cherry juice improved the ability of older men and women to resist oxidative damage and stress (Traustadottir et al. 2009). Another study demonstrated that various tart cherry products possessed remarkable antioxidant (ORAC properties), but that concentrates in particular have higher anti-inflammatory properties as measured by COX-1 inhibition in vitro (Ou et al. 2012).
Tart cherry have also been used as supplementation for treatment of rheumatoid arthritis, in this case tart cherry seeds were used to investigate its promoting health activity over inflammatory disorder. Blood leukocytes from rheumatic arthritis patients were used and subjected to lipopolysaccharide and seeds extract for 24 hours and was reported a decreased expression of heme oxygenase-1 (inflammatory marker) that control oxidative stress and therefore intervene on inflammation expression (Mahmoud et al. 2014,Mahmoud et al. 2013).

POTENTIAL IMPACT OF METABOLIC DISEASES

Diabetes and Obesity

Phenolic compounds have shown promising results associated with neutralization of development and progression of diabetes and its complications (Lachin. 2014). Although further in vivo studies are needed, this may represent an alternative to current treatments.

Two enzymes are in charge to hydrolyze carbohydrates: pancreatic alpha-amylase and intestinal alpha-glucosidase needed to break down to monosaccharides. Therefore, one postulated manner to control hyperglycemia and type 2 diabetes is to interfere the role of these enzymes. Nowicka et al (2016) showed effective inhibition of those enzymes in in vitro assays through consumption of smoothies made of tart cherry and other fruits rich in phytochemicals. Comparable in vitro results were found with tart cherries anthocyanins having inhibitory activity towards alpha-amylase (Homoki et al. 2016).

A recent study was carried out to evaluate the hypoglycemic effect of tart cherry extracts in acute and sub-chronic injections to mice, both leading to dose-dependent restorative effects. The acute injection resulted in a decrease of blood glucose level and the sub-chronic scenario an even
stronger amelioration of glucose levels as well as effects on weight loss and oxidative stress and significant pancreatic cell regeneration (Saleh et al. 2017). Another health problem associated with diabetes is obesity and the harmful impact of adiposity over metabolism. Here again the consumptions of tart cherry extracts also resulted in lower blood glucose in obese mice fed with polyphenol-rich cherry extract after food deprivation. The extract consumption also reduced lipid accumulation, adiposity accumulation in the liver tissue and remediate the uncontrolled accumulation of fat cultured cells (Snyder et al. 2016).

The potential to use by-products such as pomace of juice production has been considered due to the elevated content of phytochemicals. A human randomized crossover trial (one test meal followed by glycemic response measurements) was performed using tart cherry pomace as ingredient of muffins replacing part of the flour (20 or 30%). The results in terms of controlling glucose levels were similar to other studies mentioned before but the enriched muffins were also effective managing hunger and food intake. Those food products could be a suitable alternative for a healthy breakfast or snack in additions to its sensorial acceptance (Bajerska et al. 2016).

Certain phytochemicals are also associated with antihyperlipidemic effect. An investigation in rats showed reduction of lipid accumulation in liver tissue, which appeared to be linked with phenolic acids in tart cherry such as chlorogenic acid and more specifically its metabolites rather than anthocyanins. Such metabolites may have a connection with enzymes of hypocholesterolemic functions (Papp et al. 2015). In a similar way another study was done with a cell culture model which explained a dose-dependent influence decreasing lipid accumulation when the cells are expose to 100 μmol/L of quercetin (Snyder et al. 2016). More studies will be needed to conclude on the potential antihyperlipidemic and antiadiposity properties of tart cherries.
Cardiovascular disease

Cardiovascular dysfunction is a leading cause of death among chronic diseases in industrialized countries. Polyphenol-rich fruits have seen increased interest for potential cardiovascular health protective effects (Habauzit and Morand. 2012, Habauzit et al. 2015). Tart cherries kernel extracts were shown to alleviate ischemia reperfusion-induced damage in isolated rat (Bak et al. 2006) and rabbit (Juhasz et al. 2013) hearts. Only marginal impact was observed when humans where given similar extracts in a limited double-blind study (Csiki et al. 2015).

An acute, placebo-controlled, double-blinded, cross-over, randomized intervention was performed in a group of middle age volunteers with early hypertension. Volunteers consumed tart cherry concentrates (60mL equivalent to 180 cherries). The concentrate consumption was effective in reducing their systolic blood pressure but not microvascular reactivity nor arterial stiffness. This effect maybe associated to the phenolic acids content and could be extended to other rich phytochemical fruits which can serve as systolic blood pressure modulators (Keane et al. 2016b). Another study reported no detectable effect on the same cardiovascular disease biomarkers, however the study focused on healthy subjects consuming only 30 mL of the same concentrate (Lynn et al. 2014).

Other potential health benefits

Tart cherries consumption was shown to improve the working memory in aged rats having an influence on reducing inflammation linked with aging and therefore promoting delay on neurodegenerative diseases (Thangthaeng et al. 2016). Furthermore, tart cherry anthocyanins were reported to accumulate in brain cells of rats after three weeks in a dose-dependent manner as well
Casedas et al. (2016) reported that tart cherry juice may have protective effect against neurological diseases, with antidepressant and anxiolytic properties, possibly due to the ability to inhibit monoamine oxidase A and tyrosinase. In addition, another study showed improved memory and cognition in older adults affected with dementia through consumption of (sweet) cherry juice (Kent et al. 2017).

Tart cherries, in fact all cherries; have been increasingly suggested as beneficial to reduce the risk of gout attacks, a specific inflammatory arthritis condition. However, FDA has warned several cherry producers about claims based on unsubstantiated data, and an epidemiological dietary study provided limited evidence for potential gout protective effect (Zhang et al. 2012) and a later internet based survey suggested that any correlation seen may be due to the fact that patients with milder symptoms are more likely to consume cherries or other plant-based supplements and no treatment, effectively skewing the data (Singh et al. 2015). However, a human study showed that tart cherry concentrate consumption resulted in significant decrease of plasma uric acid, which is purported as the main driver of gout attacks (Bell et al. 2014c).

FATE OF CHERRY POLYPHENOLS IN THE DIGESTIVE SYSTEM

It has been assumed for a long time that the impact of polyphenols on health could be identified by exposing human cell lines to more or less purified fractions from fruits (or other plant material) (Haddad et al. 2013, Hanbali et al. 2013, Mahmoud et al. 2014, Mahmoud et al. 2013, Martin and Wooden. 2012, Shukitt-Hale et al. 2016b). However, it is also well known that most polyphenols cannot be absorbed by cells or reach the blood circulation due to their high molecular size (Moco et al. 2012a, Marin et al. 2015). In the mammalian digestive system, large non-digestible dietary...
molecules are subject to fermentation, modifications and degradation by the resident microbes (designed under the terms microbiome or microbiota) (Sheflin et al. 2017). The human colonic microbiome has therefore become the subject of intense research (Flint et al. 2012, Holmes et al. 2011), in particular in relation to health and diseases (Candela et al. 2014, Carbonero et al. 2012b, Carbonero et al. 2012a, O'Keefe et al. 2015, Everard and Cani. 2013, Sartor. 2008, Kostic et al. 2014) It is now well known that diet composition strongly influences the gut microbiome taxonomic composition and metabolic functions (Flint. 2012, Sheflin et al. 2017). A corollary research field is metabolomics; the study of the metabolites deriving from gut microbe activities (Wishart et al. 2016, Moco et al. 2012b). The human metabolome is known to include thousands of small molecules detected in stool, urine and blood; which are far more bioavailable than parent molecules. As far as we know, there has been no attempt to decipher the impact of tart cherries consumption on the human gut microbiome and metabolome. Therefore, in this section, we will describe the potential effects based on published data on relevant pure polyphenols or fruits/plants with similar polyphenolic profiles.

Polyphenols and polyphenol-rich food impact on the gut microbiota

Several reviews on the impact of dietary polyphenols on the gut microbiota are available (Duda-Chodak et al. 2015, Tomas-Barberan et al. 2016, Sheflin et al. 2017). The two genera that are reported the most often as being stimulated by polyphenols are *Bifidobacterium* and *Lactobacillus*, both known for their probiotic properties (Larrosa et al. 2009b, Chen et al. 2016, Li et al. 2015, Espley et al. 2014, Faria et al. 2014a, Mills et al. 2015). In addition, it has been shown that those genera are the primary converters of quercetin (Zhang et al. 2014), and chlorogenic acid (Ludwig et al. 2013), while their role in bioconversion of other polyphenols remains elusive. Quercetin has been shown to be degraded by *Escherichia coli* and *Bacteroides fragilis* (Zhang et
Isoflavones are converted by *Aldercreutzia* spp. and *Slackia* spp (Guadamuro et al. 2017). Elagitannins were found to increase the numbers of *Akkermansia* in vivo (Li et al. 2015).

Tea, coffee, cocoa, berries mango and pomegranate, all rich in polyphenols were all found to stimulate *Lactobacillus* and *Bifidobacterium* (Jaquet et al. 2009, Bialonska et al. 2010, Ojo et al. 2016, Jakobsdottir et al. 2013, Truchado et al. 2012, Puupponen-Pimiä et al. 2013, van Duynhoven et al. 2013). The main exception is lingonberries, which have been shown to increase *Faecalibacterium, Bacteroides* and *Clostridium* levels (Heyman-Linden et al. 2016, Matziouridou et al. 2016).

To the best of our knowledge, there have been no in vitro, animal or human dietary intervention studies on the impact of tart cherries (and sweet cherries) consumption on the gut microbiome. Based on cherries polyphenolic profiles, stimulation of *Lactobacillus, Bifidobacterium* and/or *Bacteroides* can be hypothesized, but the bioavailability of specific polyphenols in various tart cherry products probably influence their impact on gut microbiota. It can be hypothesized that other phytochemicals would have limited impact because of very low concentration; and the near-absence of fibers suggests that tart cherries would provide low amounts of polysaccharides for microbial fermentation.

Microbial derived metabolites from dietary polyphenols

Isoflavones have been studied extensively because microbial biotransformation leads to the very beneficial equol metabolite (Satchell and Clerici. 2010, Setchell et al. 2002). However, it was also shown that equol production is not universally distributed (Frankenfeld et al. 2014, Reverri et al. 2016) leading to the concept of metatypes. While the potential health benefits of resveratrol
have been put under scrutiny, it is known that equol producing bacteria are able to convert trans-
resveratrol to dihydroresveratrol (Bode et al. 2013). There is extensive evidence that elagittannins
are converted to urolithins (Espin et al. 2013, Selma et al. 2014, Puupponen-Pimia et al.
2013, Gimenez-Bastida et al. 2012) and proanthocyanidins to phloroglucinol and benzoic acid

Metabolomics studies have been conducted on different food types. Tea catechins were found
to be converted to conjugated catechins, valerolactones, valeric acids and other phenolic
acids (Grun et al. 2008, Gross et al. 2010). Berries and pomegranate were shown to enrich
metabolomes in urolithins, phloroglucinol and benzoic acid derivatives (Truchado et al. 2012,
Jakobsdottir et al. 2013). Studies on citrus fruits, which are rich in esperetin, naringenin, and ferulic
acid, showed microbial production of different hydroxyphenyl propionic acids (Pereira-Caro et al.
2015).

Chlorogenic acid from coffee was shown to be converted to dihydrocaffeic acid, dihydroferulic
acid, and 3-(3'-hydroxyphenyl) propionic acid in rats (Gonthier et al. 2003) and in humans (Ludwig
et al. 2013). The anthocyanin cyanidin-3-glucoside was shown to be converted mainly to phenolic,
hippuric, phenylacetic, and phenylpropenoic acids in humans through isotope pulse-chase studies
(Czank et al. 2013). These metabolites were shown to modulate vascular reactivity (Edwards et al.
2015) and reducing the expression of inflammatory mediators (Amin et al. 2015) in vitro.
Protocatechuic acid in particular has been reported as the main metabolite of gut microbiota
fermentation of cyaniding glucosides and has been shown to exert several potential health benefits
2016, Woodward et al. 2011, Seeram et al. 2001b). It is expected that similar metabolites are
produced through gut microbiota fermentation of tart cherries, though it is possible that the unique polyphenol profile results in different metabolic pathways and metabolomics profiles.

Conclusions and perspectives

This review provides an update on the current investigation in regard to the promising phytochemicals content in tart or sour cherries. Improvements in agricultural practices and processing combined with health claims have resulted increased worldwide production. Health claims are mainly associated with high polyphenol concentration, as well as specific profile. However, it is necessary to determine the fate of those polyphenols in the human gastrointestinal tract. Based on studies on other polyphenol-rich fruits, it is expected that tart cherries consumption has potential to significantly modulate the gut microbiota composition and metabolic activities, leading to the release of specific phenolic metabolites. The potential health benefits of modulated gut microbiota and phenolic metabolites presumably differs from health properties described by in vitro studies of native polyphenols extracts from tart cherries.

ACKNOWLEDGMENTS

AM and FC were supported by a grant from the Cherry Research Committee (which was not involved and had no influence on the content of the review).
REFERENCES

Bell, P. G., Walshe, I. H., Davison, G. W., Stevenson, E., and Howatson, G. (2014b). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. *Nutrients.* **6:** 829-843.

Table 1: Description of tart cherry juice processing steps.

<table>
<thead>
<tr>
<th>Processing step</th>
<th>Treatment & conditions</th>
<th>Aim</th>
<th>Weight data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh fruit</td>
<td>Washing and selection</td>
<td>Removal of unwanted material</td>
<td>3.5% reduction in wet-weight</td>
</tr>
<tr>
<td>Fresh fruit and stalk</td>
<td>Separation of stalks</td>
<td>Stalk removal</td>
<td>2% and 4% reduction in wet- and dry-weight bases</td>
</tr>
<tr>
<td>Mash heat</td>
<td>Mash heating 80°C for 90s</td>
<td>Enzyme inactivation</td>
<td>No change</td>
</tr>
<tr>
<td>Mash press</td>
<td>Pressing; 110bar-horizontal press</td>
<td>Obtaining the juicy part</td>
<td>73% juice yield</td>
</tr>
<tr>
<td>Mash press cake extract</td>
<td>Mash press extraction-(repeated 3 times)</td>
<td>Increasing the yield of juice</td>
<td>Juice yield increased to 85%</td>
</tr>
<tr>
<td>Press cake with seeds</td>
<td>Press cake resulting after mash press</td>
<td>Removal of insoluble fruit parts</td>
<td>15% reduction wet-weight; 29% dry-weight</td>
</tr>
<tr>
<td>Pasteurized juice</td>
<td>Pasteurization of pressed juice; 95°C for 90s</td>
<td>Microbial inactivation</td>
<td>No change</td>
</tr>
<tr>
<td>Enzyme treated juice</td>
<td>Enzymation; 50°C for 2h</td>
<td>Degradation of pectic substances and starch</td>
<td>pectolytic enzyme and amylolytic enzyme</td>
</tr>
<tr>
<td>Clarified juice</td>
<td>Clarification; 50°C for 1h</td>
<td>Precipitating haze precursors</td>
<td>780 g gelatin/t juice 1.2 kg bentonitef/t juice</td>
</tr>
<tr>
<td>Filtered juice and filtration residue</td>
<td>Ultrafiltration</td>
<td>Obtaining the clear juice by removing precipitates</td>
<td>6% and 7% reduction in wet- and dry-weight -</td>
</tr>
<tr>
<td>Concentrated juice</td>
<td>Evaporation to 65*Brix (Bx); 65-80°C</td>
<td>Volume reduction for storage</td>
<td>12.5Bx evaporated to 65Bx</td>
</tr>
<tr>
<td>Non-paper-filtered and paper-filtered</td>
<td>Paper filtration</td>
<td>Elimination of Alyceylonbacillus bacteria</td>
<td>Negligible</td>
</tr>
<tr>
<td>Nectar</td>
<td>Addition of sucrose and citric acid</td>
<td>Production of nectar</td>
<td>56% sucrose on dry-weight basis with:</td>
</tr>
<tr>
<td>Pasteurized nectar</td>
<td>Pasteurization of final nectar; 95°C for 45s</td>
<td>Microbial inactivation</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Polyphenols distribution and concentration in the tart cherry fruit.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Portion</th>
<th>Anthocyanins (mg cy-3-glu/100gfw)</th>
<th>Total phenolics (mg GAE/g fw)</th>
<th>ORAC (μmoles TE/g fw)</th>
<th>FRAP (μmolesTE/g fw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montmorency</td>
<td>Flesh</td>
<td>0 ± 0.1</td>
<td>3.± 0.3</td>
<td>15 ± 1</td>
<td>13.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Pits</td>
<td>0.8 ± 0.1</td>
<td>1.6 ± 0.02</td>
<td>9.8 ± 0.3</td>
<td>8.5 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>Skins</td>
<td>36.5 ± 1.6</td>
<td>5.6 ± 0.3</td>
<td>51 ± 2</td>
<td>48 ± 1.3</td>
</tr>
</tbody>
</table>
Table 3: Phytochemical profiles and antioxidant properties in different tart cherries food products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Total anthocyanin</th>
<th>Phenolic acids</th>
<th>Total phenolic</th>
<th>Antioxidant capacity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puree (mg/100g)</td>
<td>21.5-25.1</td>
<td>9.3-23.3</td>
<td>147.2-200</td>
<td>2000-2600 µmol TE/100g fw</td>
<td>(Nowicka and Wojdylo. 2016)</td>
</tr>
<tr>
<td>Fruit (Italian cultivars)</td>
<td>27.8-80.4</td>
<td></td>
<td></td>
<td></td>
<td>(Blando et al. 2004)</td>
</tr>
<tr>
<td>(mg/100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit (Turkish cultivars)</td>
<td>21-285</td>
<td></td>
<td></td>
<td>19 mmol TE/Kg</td>
<td>(Damar and Eksi. 2012)</td>
</tr>
<tr>
<td>(mg/100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit (Turkish cultivars)</td>
<td>45</td>
<td>275.4</td>
<td></td>
<td></td>
<td>(Karaaslan et al. 2016)</td>
</tr>
<tr>
<td>(mg/100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried (µg/g)</td>
<td>62-564<sup>a</sup></td>
<td>3522-7813<sup>b</sup></td>
<td>3.3.5 mmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frozen (µg/g)</td>
<td>533-1741<sup>a</sup></td>
<td>6742-12665<sup>b</sup></td>
<td>4.4-4.5 mmol/L</td>
<td></td>
<td>(Kirakosyan et al. 2009)</td>
</tr>
<tr>
<td>Concentrate (µg/g)</td>
<td>213-722<sup>a</sup></td>
<td>2541-4013<sup>b</sup></td>
<td>3.5 mmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQF powder(µg/g)</td>
<td>482-1063<sup>a</sup></td>
<td>7752-10323<sup>b</sup></td>
<td>9.8-9.9 mmol/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyophilized juice (mg/Kg)</td>
<td>0.19</td>
<td></td>
<td>9.84</td>
<td></td>
<td>(Casedas et al. 2016)</td>
</tr>
</tbody>
</table>

^a dry weight of cyanidin-3-glucoside equivalent; ^b dry weight of gallic acid equivalent
Table 4: Anthocyanins concentrations across varieties and product presentation.

<table>
<thead>
<tr>
<th>Product</th>
<th>Cyanidin-3-sophoroside (mg/100g)</th>
<th>Cyanidin-3-glucosylrutinoside (mg/100g)</th>
<th>Cyanidin-3-glucoside (mg/L)</th>
<th>Cyanidin-3-rutinoside (mg/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit (Italian cultivars)</td>
<td>0.7-2.3</td>
<td>17.3-71.9</td>
<td>0.5-0.9</td>
<td>9.3-25.3</td>
<td>(Blando et al. 2004)</td>
</tr>
<tr>
<td>Fruit (Turkish cultivars)</td>
<td>0.48</td>
<td>28.1</td>
<td>1.2</td>
<td>9.2</td>
<td>(Karaaslan et al. 2016)</td>
</tr>
<tr>
<td>Juice (German and Hungarian cultivars)</td>
<td>39-185</td>
<td>361-515</td>
<td>125-213</td>
<td></td>
<td>(Bonerz et al. 2007)</td>
</tr>
<tr>
<td>Juice (Turkish cultivars)</td>
<td>2.6-21.5</td>
<td>140.3-320.9</td>
<td>35.4-85.5</td>
<td></td>
<td>(Damar and Eksi. 2012)</td>
</tr>
<tr>
<td>Dry (μg/g)</td>
<td>1.9-15.7</td>
<td>11.1-203.6</td>
<td>0.7-7.6</td>
<td>6.9-95.8</td>
<td>(Kirakosyan et al. 2009)</td>
</tr>
<tr>
<td>Lyophilized juice (μg/g)</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td>(Casedas et al. 2016)</td>
</tr>
</tbody>
</table>
Table 5: Flavonols profile and concentration in tart cherry products.

<table>
<thead>
<tr>
<th>Flavonol/Unit</th>
<th>Dry µg/g</th>
<th>Frozen µg/g</th>
<th>Concentrate µg/g</th>
<th>IQF powder µg/g</th>
<th>Juice mg/L</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isorhamnetin rutinoside</td>
<td>35.8-383.1</td>
<td>250.2-328.9</td>
<td>163.7-288.1</td>
<td>62.9-176.6</td>
<td>14-33</td>
<td>(Kirakosyan et al. 2009)</td>
</tr>
<tr>
<td>kaempferol</td>
<td>12.9-42.9</td>
<td>3.8-13.1</td>
<td>5.2-11.9</td>
<td>16.8-85.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>1.9-8.8</td>
<td>5.9-8.5</td>
<td>2.1-6.7</td>
<td>556.2-292.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melatonin</td>
<td>nd</td>
<td>2.9-12.3</td>
<td>nd</td>
<td>1.7-7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercetin-3-(2-glucosylrutinoside)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11-31</td>
<td></td>
</tr>
<tr>
<td>Quercetin-3-rutinoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18-59</td>
<td></td>
</tr>
<tr>
<td>Quercetin-3-glucoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-8</td>
<td></td>
</tr>
<tr>
<td>Kaemferol-3-rutinoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-13</td>
<td>(Bonerz et al. 2007)</td>
</tr>
</tbody>
</table>
Table 6: Phenolic acids profile in tart cherry.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Neochlorogenic acid</th>
<th>Chlorogenic acid</th>
<th>Caffeic acid</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit (mg/Kg)</td>
<td>584.7</td>
<td>-</td>
<td>33.3</td>
<td>(Karaaslan et al. 2016)</td>
</tr>
<tr>
<td>Lyophilized juice</td>
<td>1.6</td>
<td>0.6</td>
<td></td>
<td>(Casedas et al. 2016)</td>
</tr>
<tr>
<td>Lyophilized juice (mg/Kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Nutrient composition of Tart cherry compared to Sweet cherry (values in 100 grams: Adapted from USDA ARS 2017).

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Unit</th>
<th>Sweet cherry Value/100 g</th>
<th>Tart Cherry Value/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>kcal</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>Protein</td>
<td>g</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>Fiber, total dietary</td>
<td>g</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Sugars, total</td>
<td>g</td>
<td>12.8</td>
<td>8.5</td>
</tr>
<tr>
<td>Minerals</td>
<td>mg</td>
<td>267.4</td>
<td>216.4</td>
</tr>
<tr>
<td>Vitamin C, total ascorbic acid</td>
<td>mg</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Thiamin</td>
<td>mg</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Vitamin A, IU</td>
<td>IU</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Vitamin E (alpha-tocopherol)</td>
<td>mg</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Vitamin K (phylloquinone)</td>
<td>µg</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Chapter 2

Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo

Mayta-Apaza, Alba C.1; Pottgen, Ellen1; De Bodt Jana2; Papp Nora3; Daya Marasini1; Luke Howard1; Abranko Laszlo3,4; Vandewiele Tom2; Lee, Sun-Ok1 and Carbonero, Franck1*

1Food Science, University of Arkansas, Fayetteville, AR, United States.
2Laboratory of Microbial Ecology and Technology (LabMET); Faculty of BioScience Engineering; Ghent University; Coupure Links 653, B-9000 Gent, Belgium
3Corvinus University of Budapest, Faculty of Food Science, 29-33 Villanyi, Budapest, 1118 Hungary
4Faculty of Food Science, Department of Applied Chemistry, Szent István University 1118 Budapest, Hungary

*Corresponding author:

Franck Carbonero: Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA \
Phone: 479-575-6822
fgcarbon@uark.edu

Running title: Tart cherries modulation of human gut microbiota

This research was partly funded by a research grants from the Cherry Marketing Institute to FC, SOL and LH.

Keywords: Tart cherry, Gut microbiota, Polyphenols.
ABSTRACT

Tart cherries have been reported to exert potential health benefits, which has been attributed to their specific and abundant polyphenol content. However, there is a need to study the impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherry, apricots and pure polyphenols were submitted to in vitro assays and assessed through to 16S rRNA gene sequence sequencing and metabolomics. A short-term dietary intervention study was also conducted for microbiota analyses.

Tart cherry concentrate juices were found to contain expected abundances of anthocyanins and flavonols and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics confirmed that gut microbes were able to degrade those polyphenols, leading to the release mainly of 4-hydroxyphenylpropionic acid and to lower amounts of epicatechins and 4-hydroxybenzoic acid. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption were associated with initial levels of Bacteroides. High Bacteroides individuals responded with a decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus and Collinsella. Low Bacteroides individuals responded with an increase in Bacteroides or Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and Collinsella. These data confirm that gut microbiota metabolism, in particular the potential existence of different metabotypes, needs to be considered in studies attempting to link tart cherries consumption and health.

Keywords: Tart cherry, Apricots; Gut microbiota, Polyphenols; Metabolites.
INTRODUCTION

Tart cherries (Prunus cerasus) are stone fruits from the rosaceae family which have become a significant agricultural commodity after centuries of small-scale cultivation [1]. This increased popularity is due to: (1) greater resistance to environmental factors than other Prunus species [2], (2) improvements in food processing technologies allowing for the production of less acidic derived products [3,4] and (3) purported health-promoting properties leading to higher customer demand [5,6].

Tart cherries, like other red-colored fruits [7], contain remarkably high amounts of phytochemicals, polyphenols in particular [8-11]. It is well known that plant-derived polyphenols possess high antioxidant properties [12,13], and this property has led to extensive research on potential health benefits [14-16]. Tart cherries are particularly rich in anthocyanins and flavonols like other red-colored fruits [8,17]. A recent study reported that tart cherries may be rich sources of chlorogenic (3-caffeoylquinic acid (3-CQA)) and neochlorogenic (5-caffeoylquinic acid (5-CQA)) acids [18], which have only been described as abundant polyphenols in apricots [19], coffee [20] and blueberries [21]. Another study described significant amounts of genistein, an isoflavone typically found in soybeans, in certain tart cherry cultivars [22]. Indeed, there have been numerous reports of potential health benefits incurred by tart cherries consumption in sport medicine [23,24], diabetes and metabolic syndrome [25,26] and cardiovascular health in particular [27-29].

However, the antioxidant potential of dietary polyphenols has traditionally been measured from the native phenolics extracted from the fruits [30,31]. Only a limited fraction of low molecular weight phenolic compounds can be absorbed in the upper intestinal tract, and those compounds may have different antioxidant potential than large molecular weight polyphenol molecules. It is now well established that polyphenolic molecules undergo biotransformation in
The human colon [32-34]. Those metabolic processes are performed by bacterial members of the human gut microbiota [35,36]. While ellagitannins bioconversions to urolithins [34] and bacterial equol production from isoflavones [37] have been studied extensively; there is limited knowledge on how other polyphenols or polyphenol-rich fruits impact the human gut microbiota and its metabolic potential [38].

The objective of this study was to investigate the impact of tart cherries and tart cherry juices on the human gut microbiota composition and to determine the fate of polyphenols through metabolomics. In vitro fermentations were used to test a variety of cherries and cherry concentrates. Because it is known that basal gut microbiota composition strongly drives the metabolism of dietary polyphenols [39], a human dietary intervention was also conducted with one tart cherry juice concentrate.

MATERIALS AND METHODS

Materials and reagents

Plant materials and pure polyphenols

Concentrate juices (King Orchards) of Montmorency tart cherries grown in Michigan were provided by the Cherry Marketing Institute. Commercially available tart (Balaton and Montmorency tart cherries blend; All Natural) and sweet (Black cherries, Tree of Life) cherry concentrates were also used. Fruits of two tart cherries genotypes (Pipacs1 and Érdi bőtermő) cultivars harvested in 2010 at the Research and Extension Centre for Fruit Growing (Újfehétró, Eastern Hungary), were used in this study. In addition, fruits of two apricot (*P. armeniaca* L.) cultivars (‘Gönci magyarkajszi’ and m604 cultivars) obtained from 2010 vintage of the apricot
breeding program conducted at the Department of Genetics and Plant Breeding, Szent István University (Budapest) were also evaluated.

Reagents

Crystalline 3-caffeoylquinic acid (3-CQA), 5-caffeoylquinic acid (5-CQA), rutin, kaempferol-rutinoside were purchased from Sigma-Aldrich (St. Louis, USA) and cyanidin-glucoside from Extrasynthese (Genay, France). Acetonitrile (HPLC Gradient Grade), methanol (HPLC Gradient Grade) were obtained from Fisher Scientific (Loughborough, UK) and Sigma-Aldrich (St. Louis, MO, USA), respectively. Formic acid (≥98% for mass spectrometry) was obtained from Fluka (Sigma-Aldrich). High-purity (18 MΩ cm⁻¹) water was obtained from a Milli-Q Plus ultrapure water system from Millipore (Milford, MA, USA).

In vitro digestion experiments

In vitro batch incubations were performed by sampling 25 ml of the distal colon compartments from the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). This gastrointestinal model is made of five double-jacketed fermentation vessels simulating the stomach, small intestine and the three colonic regions conditions [40]. The SHIME was seeded with enrichment cultures from human stool samples. Microbial suspensions (25 ml) were placed into bottles containing apricots or cherries (5 mL or g) and were incubated for 48 h at 37 °C. To maintain anaerobic conditions, L-cysteine (0.5 g/l) was added to bottles before flushing with N₂ during 15 cycles of 2 min each at 800 mbar over pressure and 900 mbar under pressure. Bottles were then closed with butyl rubber stoppers and placed at atmospheric pressure. Samples (1 mL each) were taken with a syringe and needle at 0, 4, 24 and 48 h. After each sampling, batch cultures
were flushed with N2 to maintain anaerobic conditions. Samples were centrifuged (14,000g, for 10 min at 4 °C) and pellets and supernatants were stored at −20 °C until further analysis.

Analytical chemistry

Sample preparation for analytical chemistry

Two hundred µL of fruit juice (Tree of Life, King Orchard or Royal Farms) were diluted to 10 mL with methanol: water:formic acid (60:39:1, v/v) and ultrasonicated for 30 min at room temperature (< 35 °C at the end). After centrifugation at 3,000g for 10 min, 2.5 mL of the supernatant was diluted to 5 mL with water, and filtered through a 0.2 μm PTFE filter (SMI-LabHut Ltd, Gloucester, U.K.) before injection on the analytical column for analysis.

Apricot and cherry fruits were halved after harvesting; stones were removed and stored at -80 °C until lyophilization. Lyophilized samples were manually pulverized in a mortar and stored at -20 °C until dilution of 200 mg into 10mL of methanol: water:formic acid (60:39:1, v/v). Sample preparation was then performed as described in the previous paragraph.

Fluids (from simulated stomach, small and large intestine) of *in vitro* digestions were homogenised after thawing, and 250 µL mixed with 725 µL MeOH containing 1% (v/v) formic acid and 25 µL daidzein internal standard (50 µg mL⁻¹). Samples were homogenised for 30 secs using a vortex mixer, then centrifuged at 15,000g (10 min, 4°C). After centrifugation, 500 µl aliquots of the supernatant were transferred to clean micro-centrifuge tubes and concentrated to final volumes below 200 µL with a speed-vacuum. Then 25 µL of MeOH containing 5 % (v/v) formic acid was added final volume adjusted to 250 µL with water. Finally, samples were filtered through a 0.2 μm PTFE filter before injecting 10 µL on the analytical column for analysis.
LC/MS analysis

The LC/MS profiling of fruit juices and *in vitro* gastric samples were based on the approach detailed previously [19,22]. The HPLC system (Agilent 1200, Agilent Technologies, Waldbronn, Germany) including a binary pump and a diode array detector (DAD) was coupled to an Agilent 6350 quadrupole–time-of-flight (Q/TOF) hybrid tandem mass spectrometer (Agilent Technologies, Santa Clara, CA USA) equipped with a dual-spray ESI source. Chromatographic separation was carried out on a Phenomenex Kinetex Phenyl-hexyl RP (Phenomenex, Macclesfield, UK), 4.6 × 150 mm, 2.6 μm particle size column using 0.5% (v/v) formic acid in water (mobile phase A) and 0.5% (v/v) formic acid in acetonitrile (mobile phase B) as mobile phases at a flow rate of 500 μL/min. The gradient program was started at 8% B and after 5 min of isocratic run, solvent B was increased linearly and reached 45% at 35 min and then 100% at 40 min. Finally, 100% B was kept constant for 5 min, followed by 10 min isocratic re-equilibration for initial conditions.

Mass spectrometer was used either in negative or positive ion mode, with the following parameters: electrospray capillary voltage, 4000 V; nebulizer pressure, 40 psig; drying gas flow rate, 13 L/min; gas temperature, 325 C; skimmer voltage, 65 V. Fragmented voltage was triggered automatically between 160 V and 210 V in positive mode and 140 and 240 V in negative mode. The instrument performed internal mass calibration automatically, using a reference ESI nebulizer with an automated calibrating delivery system, which introduces the flow from the outlet of the chromatograph together with a low flow of a calibrating solution. The calibrating solution contains internal reference masses of purine and HP-0921 ([hexakis-(1H,1H,3H-tetrafluoropentoxy)-phosphazene]). Protonated molecules of purine ([C₅H₅N₄]⁺ at m/z 121.0509) and HP-0921 ([C₁₈H₁₀O₆N₃P₃F₂₄]⁺ at m/z 922.0098) were used as reference masses in positive ion mode, while
deprotonated purine at \(m/z \) 119.0363 and the formate adduct of HP-0921 ([C\(_{10} \)H\(_{19} \)O\(_{8} \)N\(_{3} \)P\(_{3} \)F\(_{24} \)]\(^{-} \) at \(m/z \) 966.000725) were used for the same purpose in negative ion mode.

High resolution (> 20 000 FWHM at \(m/z \) 922) full-scan TOF spectra were recorded in the range of \(m/z \) 50–1100 at a frequency of 1.4 spectra/s. Agilent Mass Hunter Qualitative Analysis Software (version B.04.00 build 3.1.346.0) was applied for data evaluation. The DAD acquired data in the range of 200-800 nm in 2-nm steps at 0.5 spectra/s acquisition speed.

Quantitative determination of selected polyphenols

Quantitation of chlorogenic acid (3-CQA), neochlorogenic acid (5-CQA), rutin, kaempferol-rutinoside, was carried out using the standard addition calibration technique and reference standards, whereas cyanidin-dH-H-H, Cyanidin-dH-H and cyanidin-glucoside were all quantified as cyanidin-glucoside equivalents. Anthocyanins, rutin and kaempferol-rutinoside were quantified in positive ion mode using the \([M+H]^+\) ion, whereas 3-CQA and 5-CQA were quantified in negative ion mode based on their \([M-H]^−\) ions.

Dietary intervention

The study was approved by the University of Arkansas IRB (IRB# 15-02-476). A cohort of 10 healthy participants of five of each gender from 23 to 30 years old were recruited. All individuals took part in a screening session where they signed a consent form and completed a Food Frequency Questionnaire (FFQ). The individuals where generally healthy, with normal digestive function, non-smokers, and had not consumed any type of antibiotics for twelve weeks prior and during the intervention Each individual received tart cherry concentrate (King Orchard,
provided by the Cherry Marketing Institute) for the length of the study. Subjects were instructed to consume 8 oz of juice daily for five days. Additionally, they received a stool collection kit (commode Specimen Collection System; Fisher Scientific, Pittsburg, PA, USA) and provided a stool samples before and after the dietary intervention. Once the samples were collected they were stored at -80°C until analysis.

Microbial Analyses

DNA extraction

Bacterial DNA was extracted and purified from the stool samples with the QIAamp Fast DNA Stool Mini Kit (Qiagen, Valencia, CA) following the manufacturer’ recommendations with addition of an initial bead-beading step (autoclaved 100 mg of 0.1 mm and 0.5 mm diameter Zirconia-silicate beads - BioSpec Products) for 30 s at 30 Hz repeated 3 times using FastPrep-24 sample preparation system (MP Biomedical, CA) [41]. The genomic DNA quantification was measured with a Qubit Fluorometer (Life Technologies, Carlsbad, CA). A polymerase chain reaction (PCR) was set up in a 96 well plate for confirmation of the bacterial DNA quality with universal 8F and 1541R primers for bacteria [42]. The quality was checked with 12% of samples randomly selected on a gel electrophoresis of 1% agarose gel to ensure amplification was normal and verify the presence of bacterial DNA from the stool sample [43].

Library Preparation for sequencing

After bacterial DNA quality check, a second polymerase chain reaction (PCR) was performed to amplify the V4 region of the 16S rRNA gene using dual-indexed Illumina primers [43]. PCR reaction mixtures were set up with Accuprime Pfx SuperMix (Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol, forward and reverse primers (200nM final
concentration) and template DNA (15 ng) in a 96 well plate; each plate contained a negative control (water). The amplification was carried out in an Eppendorf Mastercycler pro S (Eppendorf) under the following conditions 95°C for 5 min for initiation with 30 cycles of thermal program (denaturation, 95°C for 30 s; annealing, 55°C for 30 s; extension, 72°C for 60 s) and finally 72°C for 5 min. Then all samples were run in a 1% gel electrophoresis at 100v for 40 min for quality control of the PRC product.

Normalization and purification of the amplicon was performed using Invitrogen SequalPrep Kit (Life Technologies, Carlbad, CA) following the manufacturer’s recommendations in order to remove residual salts or short oligonucleotide primers and normalize the concentration. To ensure success of the step a 1% gel electrophoresis was run with all the samples. Then, aliquots of 5 μL of each sample were pooled together. Pooled samples quality was checked on a TapeStation (Agilent). Real-time quantitative PCR was performed using Eppendorf Realplex Mastercycler ep gradient S (Eppendorf, Hamburg, Germany) using the PerfeCta NGS library Quantification Kit (Quanta Biosiences, Beverly, MA) according to the manufacturer’s protocol.

The prepared library was mixed and diluted with 0.2 N NaOH and HT1 buffer, along with the control mix of PhiX control V4 and both solutions brought up to 8 pM of final concentration. The diluted amplicon and control were combined and loaded to the Illumina Miseq reagent cartridge along to the index, read 1 and read 2 sequencing primers.

Sequence and Statistical Analysis

The sequencing reads were downloaded from the Illumina Basespace server in Fastq files format. The sequences were demultiplexed in read 1 and read 2 with approximately 250bp in length. The sequencing analyses were carried out using SILVA database as reference for
assignation of operational taxonomic units (OTUs) with 97% of identity. Further analysis was done using Mothur 1.35.1 pipeline [44]. Non-metric multidimensional scaling (NMDS) plots and analysis of similarities (ANOSIM), both based on the Bray-Curtis index, were obtained in PAST 3.15. In addition, Kruskal Wallis and Mann-Whitney tests were performed to detect significant differences in bacterial taxa between samples and time points (by convention, differences were considered significant when p<0.05).

RESULTS AND DISCUSSION

Tart cherry juices phenolic profiles

To the best of our knowledge, this is the first time that concentrated juices of Montmorency and Balaton tart cherries grown in the U.S. were profiled for their phenolic content. In comparison with previous studies on sweet cherries or European sour cherries, profiles were similar in the composition of anthocyanins, hydroxycinnamic acids and flavonols (Table 1) [4,17,45,46]. The most notable difference was the absence of detection of catechins and epicatechins which were reported in European sour cherries cultivars. While anthocyanins have received more attention for tart cherries, we report here that the most abundant polyphenols in the concentrated juices were the hydroxycinnamic acids: chlorogenic (3-CQA) and neochlorogenic (5-CQA) acids (Table 1). Remarkably, 3-CQA, but not 5-CQA was much less abundant in the sweet cherry concentrated juice. The only other food containing high levels of 3-CQA are coffee [20,47,48], apricots [49] and blueberries [21].
Polyphenol degradation and associated phenolic metabolites in vitro

As expected, in the initial stages (stomach and small intestine SHIME compartments), 3-CQA, quercetin-3-O rutinoside and glucoside, and kaempferol-rutinoside were among the most abundant polyphenols. However, metabolomics also revealed the presence of significant amounts of catechin and epicatechin in tart cherry concentrates only, indicating that tart cherry contained tannins (Figure 1A). Somewhat surprisingly, the concentration of those polyphenols decreased significantly in the stomach and small intestine. The concentration of all the detected native polyphenols declined steadily with time in the colonic fermentation, confirming that resident microbiota was responsible for their bioconversion.

3-CQA catabolism was somewhat constant during the 48 hr of fermentation. 3-CQA derivatives included caffeic acid at very low concentrations, but the main metabolite was dihydrocoumaric acid (Figure 1B) as described before [50,51]. In the early stages of the SHIIME experiment, large amounts of 4-hydroxyphenylacetic acid were detected and decreased to stable amounts in the colon compartment (Supplementary Figure 1), which makes it difficult to assess if this metabolite originates from bacterial metabolism. However, this metabolite is known to derive from quercetin and kaempferol from different berries [52]. At this point, very small amounts of quercetin-3-O-glucoside were detected compared with quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside that were still present at higher concentrations. The rutinoside derivatives concentrations decreased subsequently, suggesting that gut microbes preferentially used the glucoside forms before the rutinosides. Quercetin was apparently converted to 3,4 and 4-hydroxybenzoic acid, but catechins may represent another origin for these metabolites (Figure 1B), as both pathways have been described [53].
Impact of tart cherries and apricots on gut microbiota in vitro

A total of 68 samples were subjected to DNA extraction and sequencing (replicate samples derived from concentrated juices and control were also sequenced due to low read counts in the first sequencing run). Overall 202,239 high quality reads (2974±1760) were obtained, 192,459 (3262±1700) when excluding low read (<1,500) counts.

The control fermentation with only stool samples yielded a low diversity microbiota dominated by Verrumicrobia then Synergistetes (Figure 2A), two marginal phyla in the human colon. Remarkably, the two major genera present in the control fermentation, Akkermansia and Cloacibacillus (Supplementary Figure 2) are well known for their strict metabolism of feeding from host-derived mucins rather than dietary elements in the lumen [54-56]. In addition, Bifidobacterium (Actinobacteria), present in relatively high abundance, have also been shown to be able to feed on host mucins [57,58], and the third most abundant genera, Bilophila, is able to metabolize host bile acids [59,60]. It appears that fermentation of dietary elements present in the batch cultures was primarily conducted by Bacteroides and several members of the Firmicutes in succession (Veillonella (0hr), then Lachnospiraceae (4-24 hr) and Lachnospiraceae, Eubacteriaceae and Clostridium XIVa (48 hr). Somewhat surprisingly, some genera typically present in high abundance and known as polysaccharides and fiber fermenters [61-63] were detected in marginal relative abundance (though it does not mean they were not active), in particular Prevotella and Ruminococcus.

As expected, fermentation with polyphenols and to a greater extent with fruit matrices significantly shifted the microbiota, primarily with a dramatic and consistent decrease in Verrumicrobia then
Synergistes and increase in Bacteroidetes primarily, and to a lesser extent Firmicutes and Proteobacteria (Figure 2B-D).

Impact of tart cherries powder and tart cherries concentrated juices

All tart and sweet cherries products lead to similar gut microbiota modulation (Figure 3A), driven by very significant increase of *Bacteroides* relative abundance at all time-points (Figure 3B), probably reflecting fermentation of sugars and carbohydrates which are the main energy source for *Bacteroides* [64]. Other genera that were significantly increased included *Veillonella*, *Bilophila* Enterobacteriaceae and *Escherichia* and *Clostridium* XIVa. These dynamics probably reflects carbohydrates fermentation rather than polyphenols biotransformation.

Similar trends were observed for sweet cherry juice (Supplementary Figure 2), however the increase in Bacteroides was less marked, and *Clostridium* XIVa, Lachnospiraceae and Eubacteriaceae increased slightly, presumably because of the higher sugar and polysaccharides content of this juice.

Impact of apricot powder on the gut microbiota

Apricots have been shown to contain high amounts of 3-CQA, and to be generally rich in a diversity of polyphenols [19,49]. Two apricot varieties were subjected to in vitro fermentation and induce a very significant modulation of the gut microbiota (Figure 4A). As with tart cherries, apricots fermentation resulted in an overwhelming increase of Bacteroidetes (Figure 1B), *Bacteroides* in particular (Figure 4B). Remarkably, and in contrast with tart cherries, a significant increase of Lactobacillales, Lactobacillaceae and *Lactobacillus* (around 15%) was observed after 48 hours of fermentation. While *Lactobacillus* has been identified as able to metabolize 3-CQA [66], this is to the best of our knowledge the first time that a very strong potential prebiotic impact
is suggested for apricots. However, it should be reminded that 48 hours in vitro fermentation may not really be representative of in vivo metabolism, and thus further analyses with apricots would be needed.

Impact of representative pure polyphenols

Since the microbiota in cherries’ batch fermentation were likely more influenced by nutrient than polyphenol content, representative polyphenols were subjected to similar fermentation to better determine their potential impact on human gut microbiota. Indeed, gut microbiota dynamics was different in terms of abundance (Figure 5), but with similar responsive taxa.

As confirmed by our concentrated juices’ polyphenols profiling, tart cherries are particularly rich in 3-CQA and 5-CQA yielded a notable increase in *Bifidobacterium* in the first three time-points (Supplementary Figure 7), which is in accordance with previous reports of *Bifidobacterium* species’ ability to catabolize CA [48,67,68]. However, these studies also reported *Lactobacillus* species as common CA degraders [69], while in our case there was no visible change in Lactobacillus and other lactic acid bacteria (if anything, there was often a very slight decrease). Other taxa stimulated included *Bacteroides* to a small extent, *Bilophila, Veillonella* and members of the *Clostridium* XIVa cluster. The latter observation lines up with the report of increased *Clostridium coccoides-Eubacterium rectale* group by pure 3-CQA [48]. *Bacteroides* has been reported as a primary degrader of complex carbohydrates that are used as source of energy [64]. The stimulation of *Veillonella* and *Bilophila* is more enigmatic. As a lactate fermenter [70,71], the increase of *Veillonella* may be explained by cross-feeding on lactate produced by *Bifidobacterium*, however lactate production has only been shown from oligosaccharides in *Bifidobacterium* [72].
Bilophila is known to ferment polysaccharides with taurine or hydrogen as final electron acceptors [73]. It is thus possible that *Bilophila* disposes of the hydrogen released through fermentation of dietary molecules, a process that would likely be performed by other hydrogenotrophic bacteria and archaea in vivo [74,75].

Quercetin-rutinoside (QR) was the second most abundant polyphenol in concentrated tart cherry juices. Somewhat similarly to, QR led to an increase in *Bacteroides, Bifidobacterium, Veillonella* and *Bilophila* (Supplementary Figure 8). The most notable difference was a strong increase in members of *Clostridium* cluster XIVa with a peak at 4hr, mirroring the *Bifidobacterium* dynamics. It seems likely that *Clostridium* XIVa cross-feed on rutinoside derived from *Bifidobacterium* [76,77] and possibly *Bacteroides* breakdown of QR, while *Bilophila* disposed of hydrogen produced by this fermentation.

To the best of our knowledge, cyanidin rutinoside impact on human gut microbiota was never tested before. Cyanidin rutinoside resulted in a marked increase of *Bacteroides*, but limited bifidogenic effect (Supplementary Figure 8). *Veillonella* and *Clostridium* XIVa were again stimulated as well as *Bilophila*, presumably because of similar metabolic requirements and properties as described for QR.

While genistein was not measured in the tart cherry concentrates, its abundance has been shown in other tart cherry cultivars [22]. Genistein (Supplementary Figure 9) induced a significant bifidogenic effect as well as increases of *Collinsella* and *Assacharobacter*, which have been reported as degraders of isoflavones that do not produce equol [78].
Since *Bifidobacterium* relative numbers were not affected in contrast with other mucin degraders, we can hypothesize that polyphenols in tart cherries and concentrates were to a certain extent metabolized by *Bifidobacterium*.

Impact of tart cherries on gut microbiota in vivo

One individual’s sample yielded very low read counts, and thus sequences from nine subjects were analyzed. A total number of 124,172 high quality reads (6898±2455) were obtained. When comparing all individuals before and after dietary intervention, very little difference in microbiota was observed (Supplementary Figure 10). However, it was found that individuals initial microbiota were highly variable, with the relative abundances of *Bacteroides* being the main driver. Since *Bacteroides* was the genus primarily impacted by concentrated juice in vitro, it was decided to split the individuals in two groups: low (<10%; n= 4; LB) and high (>20%; n= 5; HB) *Bacteroides* in the initial gut microbiota (it should be noted that no individual exhibited relative abundance between 10 and 20%). Separating human cohorts according to their enterotypes [79,80] or metabotypes [39,81] is an increasingly common approach to overcome the inherent interindividual variability in gut microbiota profiles. Here, we observed that the microbiota were significantly different (ANOSIM: p<0.05) before and after dietary intervention among both groups (Figure 6). In addition, the grouping revealed significant differences in dietary habits, with higher intake of carbohydrates, sugar and fibers associated with LB (and high Firmicutes) gut microbiota (Table 2). LB individuals also tended to have lower BMI.

At the phylum level, the HB group initially had higher Bacteroidetes than the LB, and LB had more Firmicutes. In the HB group, tart cherry consumption resulted in a sharp significant decrease of *Bacteroides, Parabacteroides* and *Alistipes*, as well as suggestive decrease of the low abundant
Barnesiella, Butyricimonas, Odoribacter, Porphyromonas and other Prevotellaceae (Figure 7A). These trends were mirrored with significant or suggestive increases in many Firmicutes (Ruminococcus, Lachnospiraceae, Clostridium and Clostridium XI, Dialister, Coprococcus, Lactobacillus and Streptococcus), with the notable exception of a significant decrease in Faecalibacterium relative abundance. Somewhat surprisingly, Bifidobacterium numbers tended to decrease, but a significant increase in other Actinobacteria and Collinsella was observed. Remarkably, the dynamics were almost completely opposite in the LB group (Figure 7B). All abundant Bacteroidetes genera increased though generally only in a suggestive manner. In particular it should be noted that the apparent increases in Prevotella for each group was entirely driven by one individual in each group increasing from less than 1% to more than 15%. Prevotella is considered a major genus in driving “enterotypes”, and has been consistently associated with consumption of plant-rich diets [82-86]. More specifically, it was shown that short-term dietary intervention with “extreme” plant-based diets can drive strong Prevotella expansion, with responsiveness varying greatly between individuals [62], in agreement with our findings. The increase in Bacteroidetes genera was mirrored with decreases in some Firmicutes members (Lachnospiraceae, Streptococcus, Dialister, Blautia and Roseburia), however, increase in Clostridium IV and XI, Subdoligranulum and Lactobacillus (numerical) were also observed. Bifidobacterium relative abundance increased numerically, associated with significant decrease in Collinsella and suggestive decrease in Assacharobacter and other Actinobacteria. Therefore, the only common response for the HB and LB were a maintenance or slight increase of Ruminococcus and a sharp decrease of Faecalibacterium. Ruminococcus are well known to degrade complex polysaccharides (cellulose, xylan, pectins…) and dietary fibers in the human colon [61,63], while Faecalibacterium has been particularly associated with high fiber consumption [87-89]. Since tart
cherry juice contains no dietary fiber, these trends may be due to lower dietary fiber intake by the subjects during the dietary intervention, because of the important fruit intake through juice consumption. Since the HB group had lower regular intake of carbohydrates, it is likely that the large intake of complex polysaccharides stimulated Lachnospiraceae and other Clostridiales typically involved in the metabolism of those molecules [90-92]. It appears that in HB individuals, high 3-CQA and 5CQA intake selected more Collinsella than Bifidobacterium, bringing more evidence for Collinsella’s potential role in polyphenol degradation. The LB group response was more in line with the In vitro dynamics, indicating that the donor(s) gut microbiota was likely similar. It can be hypothesized that the LB response is more driven by the high polyphenol intake, since their gut microbiota was presumably adapted to higher complex polysaccharides intake. The increases in Bacteroides and Bifidobacterium would then be explained by their known abilities to metabolize 3-CQA, 5-CQA and many polyphenols present in tart cherries [93-97]. Based on previous studies [66,98], a significant increase may have been expected in Lactobacillus, however Lactobacillus were, surprisingly, not prevalent and abundant in this human cohort.

CONCLUSIONS

To the best of our knowledge, this study represents the first microbiota/metabolome investigation of the impact and fate of tart cherries and their polyphenols in the human colon. The metabolomics from in vitro fermentation showed that 3-CQA and 5-CQA, the dominant polyphenols, were mainly converted to dihydrocoumaric acid. In vitro fermentation of tart cherry powder and concentrated juices (and apricots) resulted in large increases in Bacteroides and Collinsella and moderate increases of specific Firmicutes, Enterobacteriaceae and Bilophila. In vitro fermentation of pure polyphenols indicated bifidogenic effects for 3-CQA and 5-CQA,
genistin and to a lesser extent rutin and cyanidin. *Bacteroides* appeared to be more involved in rutin and cyanidin metabolism. The human dietary intervention demonstrated strikingly different responses due to initial microbiota composition, apparently driven by individuals’ habitual consumption of carbohydrates and fiber. The high Bacteroides group (low carbohydrates and fiber) responded to tart cherry juice consumption with decrease of Bacteroides and increase of fermentative Firmicutes and potential polyphenol metabolizer *Collinsella*. The low Bacteroides group responded with an increase in Bacteroides and *Bifidobacterium* (presumably due largely to polyphenols availability) and decrease in in the relative abundance of fermentative Firmicutes.

Overall, our results confirm that gut microbiota strongly influences polyphenol metabolites from polyphenol-rich tart cherries in the human colon. Further, the data suggests that gut microbiota of individuals consuming a more Western diet may have lower ability to metabolize polyphenols, thereby reducing bioavailability and any potential health benefits.

ACKNOWLEDGMENTS
In vitro and in vivo gut microbiota analyses of tart cherries were funded by a research grant from the Cherry Marketing Institute to FC, SOL and LH. Metabolome analyses were performed by NP and LA in exchange for microbiota analyses of their apricots and cherries.
REFERENCES

[63] Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6:1535-1543.

[81] Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R, Nunez-Sanchez MA, Selma MV, Garcia-Conesa MT, Espin JC. Urolithins, the rescue of 'old' metabolites to understand a
'new' concept: metabotypes as a nexus between phenolic metabolism, microbiota dysbiosis and host health status. Mol Nutr Food Res. 2016.

<table>
<thead>
<tr>
<th>Phenolic compound</th>
<th>Concentration (mg/100g)</th>
<th>King Orchard</th>
<th>Royal Farms</th>
<th>Tree of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxycinnamic acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>25.5±1.9</td>
<td>22.8±1.9</td>
<td>3.6±0.1</td>
<td></td>
</tr>
<tr>
<td>Neochlorogenic acid</td>
<td>21.1±2.5</td>
<td>33.9±1.8</td>
<td>NQ</td>
<td>39.2±5.5</td>
</tr>
<tr>
<td>Caffeoyl-quinic acid isomers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumaroyl-quinic acid isomers</td>
<td></td>
<td></td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td>Feruloylquinic acid</td>
<td></td>
<td></td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td>Di-cafeoyl-quinic acid</td>
<td></td>
<td></td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td>Flavonoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutin</td>
<td>10.3±0.5</td>
<td>6.0±0.1</td>
<td>5.0±0.2</td>
<td></td>
</tr>
<tr>
<td>Kaempferol-rutinoside</td>
<td>3.6±0.3</td>
<td>1.9±0.1</td>
<td>0.8±0.1</td>
<td></td>
</tr>
<tr>
<td>Quercetin-deoxyhexose--exose-hexose</td>
<td></td>
<td></td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td>Isorhamnetin-deoxyhexose-hexose</td>
<td></td>
<td></td>
<td>NQ</td>
<td></td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keracyanin*</td>
<td>1.4±0.2</td>
<td>0.3</td>
<td>1.4±0.0</td>
<td></td>
</tr>
<tr>
<td>Cyanidin-dH-H-H*</td>
<td>4.9±0.3</td>
<td>4.4±0.2</td>
<td><0.02</td>
<td></td>
</tr>
</tbody>
</table>

* Cyanidin compounds quantification was carried out based on cyanidin-glucoside standard, therefore given concentrations are cyanidin-glucoside equivalents.
Table 9: Demographic and dietary intake data of the High and Low Bacteroides groups.

<table>
<thead>
<tr>
<th></th>
<th>High Bacteroides</th>
<th>Low Bacteroides</th>
<th>T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>3M-2F</td>
<td>1M-2F</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>26.2</td>
<td>25.5</td>
<td>0.379</td>
</tr>
<tr>
<td>BMI</td>
<td>26.1</td>
<td>22</td>
<td>0.068</td>
</tr>
<tr>
<td>Avg FBG</td>
<td>90.1</td>
<td>89.6</td>
<td>0.445</td>
</tr>
<tr>
<td>kilocalories</td>
<td>1543</td>
<td>1830</td>
<td>0.161</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>75</td>
<td>75</td>
<td>0.49</td>
</tr>
<tr>
<td>CHO (g)</td>
<td>134.4</td>
<td>197.6</td>
<td>0.049</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>70.3</td>
<td>83.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Alcohol (g)</td>
<td>12.6</td>
<td>3.4</td>
<td>0.038</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>279.2</td>
<td>362.2</td>
<td>0.182</td>
</tr>
<tr>
<td>SFA (g)</td>
<td>21.3</td>
<td>27.3</td>
<td>0.122</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>28.1</td>
<td>32.6</td>
<td>0.26</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>15.5</td>
<td>17.1</td>
<td>0.342</td>
</tr>
<tr>
<td>PRO %</td>
<td>19.42</td>
<td>16.2</td>
<td>0.152</td>
</tr>
<tr>
<td>CHO %</td>
<td>34.3</td>
<td>42.2</td>
<td>0.034</td>
</tr>
<tr>
<td>Fat %</td>
<td>40.4</td>
<td>40.3</td>
<td>0.488</td>
</tr>
<tr>
<td>Alcohol %</td>
<td>5.86</td>
<td>1.3</td>
<td>0.028</td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>10.8</td>
<td>21.62</td>
<td>0.04</td>
</tr>
<tr>
<td>Sugar (g)</td>
<td>51.2</td>
<td>78.9</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Figure 1: Polyphenol metabolomics; Microbial degradation of the main native tart cherry polyphenols over the 48 hours of microbial fermentation in vitro A and B. Tart cherry and C. Sweet cherry concentrate juices; and detection of major metabolites from chlorogenic acid (DEF) and proanthocyanins (GHI) for King Orchard (DG) and All Natural (EH) tart cherry juices and Sweet cherry juice (FI).
Figure 2: Dynamics (phylum level) of microbiota in in vitro fermentation for A. Control, B. Apricots, C. All tart cherries and D. all polyphenols standards.
Figure 3: Tart cherries impact on in vitro gut microbiota. (A) Non-metric Multidimensional Scaling (NMDS) of control (filled squares), tart cherries (+) and sweet cherries (filled circles); (B) Relative abundances of significantly modulated taxa for all tart cherries samples.
Figure 4: Apricots impact on in vitro gut microbiota. (A) NMDS of control (filled squares), and apricots (open diamonds); (B) Relative abundances of significantly modulated taxa for all apricots samples.
Figure 5: Pure polyphenols impact on in vitro gut microbiota: relative abundances of significantly modulated taxa.
Figure 6: Stool microbiota dynamics (NMDS and phylum level) for human volunteers with A. High Bacteroides and B. Low Bacteroides initially; before (green) and after (red) dietary intervention with daily tart cherry juice consumption.
Figure 7: Bacterial genera significantly affected by tart cherry consumption for A the high Bacteroides group and B the low Bacteroides group.
Chapter 3

OVERALL CONCLUSION

The results of this research provide evidence and confirm an active intervention of the gut microbiota over the metabolism of polyphenols contained in tart cherry concentrate juices as well as fresh fruits. Additionally, the initial gut microbiota composition of an individual determines the ability to metabolize efficiently polyphenols into bioactive microbial metabolites with potential health benefits. Finally, such approaches are suggested when studying the association of polyphenols over any health claims.
MEMORANDUM

TO: Sun-Ok Lee
 Ellen Pottgen
 Tung Pham

FROM: Ro Windwalker
 IRB Coordinator

RE: New Protocol Approval

IRB Protocol #: 15-02-476

Protocol Title: Effect of Consumption of Cherry Juice on the Human Gut Microbiota

Review Type: ☑ EXPEDITED ❌ EXEMPT ❌ FULL IRB

Approved Project Period: Start Date: 03/17/2015 Expiration Date: 02/17/2016

Your protocol has been approved by the IRB. Protocols are approved for a maximum period of one year. If you wish to continue the project past the approved project period (see above), you must submit a request, using the form Continuing Review for IRB Approved Projects, prior to the expiration date. This form is available from the IRB Coordinator or on the Research Compliance website (https://vpred.uark.edu/units/rscp/index.php). As a courtesy, you will be sent a reminder two months in advance of that date. However, failure to receive a reminder does not negate your obligation to make the request in sufficient time for review and approval. Federal regulations prohibit retroactive approval of continuation. Failure to receive approval to continue the project prior to the expiration date will result in Termination of the protocol approval. The IRB Coordinator can give you guidance on submission times.

This protocol has been approved for 60 participants. If you wish to make any modifications in the approved protocol, including enrolling more than this number, you must seek approval prior to implementing those changes. All modifications should be requested in writing (email is acceptable) and must provide sufficient detail to assess the impact of the change.

If you have questions or need any assistance from the IRB, please contact me at 109 MLKG Building, 5-2208, or irb@uark.edu.