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Abstract 
 

 Anthocyanins (ACYs) are polyphenol compounds found in nature, which contribute vivid 

colors to many fruits and vegetables, while also possessing significant health benefits. These 

pigments range in color from orange-red to blue-violet and could serve as natural colorants to 

replace artificial additives. There is a great demand from consumers to have fewer artificial 

compounds in their foods. However, the relatively instability of ACYs must be further 

understood in order to limit color degradation before they can completely replace synthetic 

colorants.  

ACYs slowly degrade over time, but there is a knowledge gap on their fate and 

mechanisms causing degradation. In order to understand the mechanistic changes, different 

techniques were employed to understand ACY transformations over storage.  Various types of 

solid phase extraction, high-pressure liquid chromatography columns, and gel electrophoresis 

analyses were used in an attempt to separate anthocyanin-tannin polymers by degree of 

polymerization. These compounds were detected using mass spectrometry, but separation by 

chromatographic techniques was not possible.  

Ascorbic acid accelerates ACY degradation, but the mechanism was controversial. Model 

systems of a pure ACY, cyanidin-3-glucoside (C3G), and blackberry juice supplemented with 

ascorbic acid were prepared and hydroxyl radicals formed via the Haber-Weiss reaction. 

Hydroxyl radicals are highly unstable and reacted with C3G forming 6-hydroxy-C3G, which 

degrades faster than C3G. The combination of identifying the hydroxylated ACY using tandem 

mass spectrometry and detection the hydroxyl radicals via electron spin resonance verified the 

reaction mechanism of ascorbic acid catalyzed degradation of ACYs. Next, blackberry juice was 

supplemented with various additives to understand ACY stabilization mechanisms. Glutathione 



  

 
 

significantly improved anthocyanin retention over storage, so combinations of glutathione with 

lipoic and ascorbic acids were added to assess a potential antioxidant recycling mechanism. The 

combination was not more effective at stabilizing ACYs than glutathione alone. Finally, novel 

ACY compounds were created from radishes through a reaction originally found in wine 

fermentation. Using acetaldehyde as a polymerization agent, radish ACYs reacted with catechin 

to form stable pigments that were identified by mass spectrometry.  This research furthers the 

understanding of anthocyanin reactions and degradation mechanisms, which improves their use 

as natural colorants in the food and beverage industry.  
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CHAPTER 1. Introduction 

 

 Eating a rainbow of different colored fruits and vegetables provides an appealing plate as 

well as offering health benefits from the array of phytochemicals in the food.  Some of those 

vivid colors are provided by anthocyanins (ACYs), which are water-soluble compounds with 

antioxidant and anti-inflammatory properties as well as other potential health benefits. An 

individual’s diet can have a profound effect on their health status, including modulation of a 

variety of chronic diseases.  Foods with benefits beyond their direct nutritional value are termed 

functional foods and are a growing market trend with vibrant foods gathering plenty of attention. 

Replacing artificial colorants with natural alternatives, like ACYs, allows a consumer reading the 

product’s label to perceive an ingredient instead of an additive.  

Much of the ACY research has been performed on wine, but these compounds are 

frequently found in nature from apples to berries to purple potatoes (Wu, Prior 2005, Giusti 

2003). Throughout nature, there are six main ACY forms: cyanidin, malvidin, pelargonidin, 

peonidin, petunidin, and pelargonidin.  These polyphenol compounds fall into the category of 

flavonoids, which also contains tannins, flavonols, and isoflavonoids. Structurally, ACYs are 

interesting compounds because of the unique flavylium ion that is unlike any other flavonoid.  

The flavylium ion encompasses a positively charged oxygen atom, which negatively affects the 

stability of the molecule. This ion allows conjugation through the fused rings and that 

conjugation is the reason for the vibrant colors. The array of colors that ACYs contribute to 

juices is appealing; however, the concentration of ACYs in chokeberry juice stored for 6 months 

degrades to 25% of the levels in 1 month stored juice (Wilkes 2014).  This instability is 

concerning since the health attributes of the compound clearly cannot be exerted on the body if 

the concentration has dissipated.  The identity of some breakdown products has been elucidated, 
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but this does not account for all of the original ACY content. Along with this decline, the color 

of the chokeberry juice remains as vibrant as ever, which is puzzling.  

 ACYs and other flavonoids are degraded as a result of processing, while 

tannins/procyanidins can change in their relative degree of polymerization (Wilkes et al. 2014).  

Perhaps most intriguing of all the changes is the tendency toward the formation of polymeric 

pigments (PPs), also called anthocyanin-tannin polymers.  These pigments can be produced by a 

condensation reaction between an ACY and either flavan-3-ols or their polymeric counterpart, 

procyanidins (Singleton and Trousdale 1992).  This is a compelling lead in determining the fate 

of ACYs, but the difficulty arises in the measurement of PPs.  Currently, PPs are determined as a 

ratio to ACY content by means of a percent polymeric color assay (Giusti and Wrolstad 2001). 

Qualitative data can be obtained using matrix assisted laser desorption ionization-time of flight-

mass spectrometry (MALDI-TOF-MS), but this type of mass spectrometer does not permit 

quantification (Reed et al. 2005).  

 Other than PPs as a source of a natural colorant in the food industry, ACY extracts from 

root vegetables are potential candidates. Root vegetables have larger ACYs than those in berries 

due to acylation and multiple glycosidic moieties. Radishes, black carrots, and purple potatoes all 

produce acylated ACYs and exhibit excellent color stability at low pH values (Giusti 2003, 

Cevallos 2004). ACYs are not stable at neutral and elevated pH values. In order for a natural 

colorant to compete with current synthetic colorants, the cost of production must be economical. 

Radishes are an inexpensive source of acylated ACYs and closely match the hue of FD&C Red 

No. 40/E129 (Giusti 2003). Using a reaction originally discovered in wine, this research applied 

the fermentation reaction to non-grape sources for the first time. Radish extracts were combined 

with catechin using acetaldehyde as a polymerization agent. The resulting compounds formed a 
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violet solution that had a stable hue over six months of storage. The colored compounds were 

identified using liquid chromatography-mass spectrometry.  These purple pigments could serve 

as the next generation of natural colorants and replace both FD&C Red No. 40 and Blue No. 1 in 

purple beverages.  

This doctoral dissertation explores ACY degradation and stabilization mechanisms. The 

objectives were: 

1. Create a new HPLC method to separate and quantify PPs in order to resolve their 

changes during storage. 

2. Clarify the degradation mechanism of ACYs in the presence of ascorbic acid. 

3. Identify transformation products of ACYs from degradation reactions. 

4. Determine the effect of potential additives on ACY stabilization. 

5. Develop a novel and stable ACY-based colorant for the food and beverage industry.   
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CHAPTER 2. Literature Review 

Anthocyanins 

Many fruits, vegetables, and flowers owe their vibrant colors to ACYs.  The beautiful 

color change of the leaves in autumn is due to chlorophyll degradation and ACY content 

emerging (Field, Lee, Holbrook 2001).  The aglycone structures, called anthocyanidins, appear 

in nature in six common forms, while there are other less common anthocyanidins with different 

substituents.  Figure 1 depicts the six main anthocyanidins and their respective substituents on 

the B ring.  Their antioxidant potential is affected by the hydroxylation and methoxylation 

patterns on the B ring (Wang et al. 1997).  Increasing the number of hydroxyl groups increases 

the antioxidant potential, but increasing the number of methoxy groups does not function as 

efficiently as hydroxyl substituents.  The relative abundance of ACYs in a wide variety fruits and 

vegetables is shown in Table 1 (Simmons 2012). 

Flavonoids are a class of polyphenols and possess a C6-C3-C6 multi-ring skeleton 

containing a central heterocyclic oxygen ring.  ACYs fall into the broader class of flavonoids and 

contain a unique heterocyclic oxygen ring with a positive charge, called a flavylium ion.  The 

cation is electron-deficient, which makes it more vulnerable to nucleophilic attack from ascorbic 

acid, water or peroxides (Jackman 1987).  The nucleophilic addition removes the conjugation 

around the central ring, therefore removing the vibrant color.  The newly formed hydrate is often 

called a carbinol pseudobase that is colorless, but actually has absorption near 330 nm 

(Brouillard & Delaporte 1977).  Approximately 90% of all ACYs have a glucosyl moiety 

attached to the skeleton (Andersen and Markham 2006) and a glucosyl unit bonded to carbon 3 is 

2.5 times as common as diglucosides on carbons 3 and 5, with cyanidin-3-glucoside as the most 

frequently found anthocyanin in nature (Kong et al. 2003).  Many researchers cleave the 
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glycosidic bonds using acid hydrolysis in order to quantify the aglycones due to the vast number 

of possible arrangements of sugar moieties (Cho et al. 2004).   

A plant’s production of ACYs is based on the available soil nutrients, UV radiation, 

temperature fluctuations, predatory interactions and other factors (Harbone & Williams 2000, 

Gould & Lee 2002, Simmonds 2003).  Within plant cells, the ACYs are located in the vacuoles 

and sometimes found attached to the cell wall (Vowinkel 1975).  This is very important in the 

extraction of ACYs since the time, temperature, and solvents are based on the location of the 

analyte and its surroundings.  Pectinases are used in juice processing in order to release more of 

these compounds from the cell walls and increase juice yield (Skrede 1996).  The biosynthetic 

pathways in plants involves multiple enzymes, including flavanone hydroxylase, flavonol 

synthase, and anthocyanidin synthase, to create the unique stereochemistry and substituent 

positioning of polyphenols (Turnbull et al. 2004).   

The majority of purchasable ACYs are extracted from plant material in a tedious process 

resulting in high cost per unit mass.  Many of the publications about synthetic means of 

producing ACYs were published a few decades ago and few breakthroughs have been produced 

since.  The two basic routes of synthesis involve starting materials that are closely related in 

structure, like flavonols and other flavonoids, or else starting with much smaller reagents and 

building the molecule through Diels-Alder, Grignard, or other synthesis techniques (Iacobucci 

and Sweeny 1983, Andersen & Markham 2006).  One interesting manner in generating 

isotopically labeled polyphenols comes from developing the plants in a growth chamber filled 

with 13CO2, therefore limiting the plant to produce solely isotopically labeled molecules 

(Gleichenhagen et al. 2013).  This research did not use plants that produced notable quantities of 

ACYs, but the process should be transferrable for many varieties of plants.   
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Figure 1 displays the structures of the major ACYs, which affects their color based on B 

ring substituents.  Greater methoxylation increases the red and blue hues to reach purple colors 

and this can be seen in the flowers where the ACYs get their respective names. Meanwhile, 

Figure 2 shows the variability of the ACY structure with varying pH and temperature.  The 

proton transfer, hydration, and tautomeric reactions are all endothermic, so any increase in 

temperature will result in the chalcone structure being favored (Brouillard & Delaporte 1977).  

Hydrating carbon 2 with a hydroxyl group removes the conjugation that is present in the 

flavylium ion, which brings the λmax to near 330 nm.  Water will always be present in a juice 

system, so this reaction is a constant threat to the long-term color stability.   

Red radishes are fast growing vegetables with vibrant and stable pigmentation providing 

ideal natural colorant potential.  Red radish ACYs were first identified in the 1960’s (Harborne 

1963, Fuleki 1969) with predominantly pelargonidin forms, while purple radishes are composed 

mainly of cyanidin derivatives (Hanlon 2011).  The two major ACYs in red radish are 

pelargonidin-3-sophoroside-5-glucoside (P) with malonic acid and either ferulic (PFM) or p-

coumaric acid (PCM) moieties, while the two secondary ACYs are P with either ferulic (PF) or 

p-coumaric acid (PC) (Giusti 1996).  These ACYs were characterized on a divinylbenzene HPLC 

column with mass spectrometric detection.  The phenolic acids provide unique spectrometric 

profiles that aid in identification of the acylated ACYs with a shoulder near 440 nm (Giusti 

1996).  Pigments were quantified and compared based on variety, harvest time, and location with 

differences between each criterion.  Spring varieties had red skin with white flesh and a total 

ACY content ranging from 39.3-185 mg ACY/100g skin, while the winter cultivars had red flesh 

and contained 12.2-53 mg ACY/100g root (Giusti 1998).  This would allow a pigment yield of 

1.3-14 kg/ha and an ideal substrate for red colored product development.  
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  Maraschino cherries were colored with radish extract, evaluated for color characteristics 

similar to FD&C Red No. 40, and tested exceptionally close to the original red color over six 

months of storage.   There was no significant difference in color among the L*, a*, or b* 

between FD&C Red No. 40 (200 ppm) and red radish extract at either 600 or 1200 mg/L.  The 

half-lives of radish ACYs were 29 and 33 weeks for the 600 and 1200 mg/L, respectively.  The 

remarkable ACY stability is attributed to the phenolic acids bound to the glycosidic moieties.  

The sugar groups can act as hinges allowing the acyl groups to protect the flavylium cation from 

hydrolysis by stacking around the pyrylium ring (Brouillard 1981).  

 Another example of red radish colorants used in a model juice product by Rodriguez-

Saona et al., which also compared red-fleshed potato extract to FD&C Red No. 40.  Half-lives of 

ACYs at ambient temperature were 22 weeks for red radish, while just 10 weeks for red potato 

juice concentrate and this difference could be caused by the monoacylation of red potatoes 

compared to the diacylation of red radishes (Rodriguez-Saona et al. 1999).  The percent 

polymeric color assay measured at the start of storage for the potato and radish juices were 20% 

and 8%, ending with near 60% and 40%, respectively for 35 weeks.  Typically ACY degradation 

follows first order kinetics (Daravingas et al. 1968); however, the red radish and potato ACYs in 

the model juices fit a quadratic model, which agrees with the nonlinear degradation of other 

acylated ACYs potentially caused by the flexible moieties protecting the flavylium ion 

(Rodriguez-Saona et al. 1999, Baublis et al. 1994). 

 

Fruit processing 

 Berries are one of the most popular sources of ACYs and a high value crop. The growing 

season for berry fruit is short and the shelf life is limited due to mold growth, so berries can be 
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made into juices, jams, jellies, or wines for preservation.  Nearly 75% of the sugars in berry 

fruits are glucose and fructose, which are excellent substrates for mold growth. Hence, almost all 

commercial berry products are pasteurized even though the process greatly decreases the ACY 

content (Mikulic-Petkvsek et al. 2012, Wilkes et al. 2014).   There are several organic acids, 

including citric, malic, tartaric, and shikimic acids, found in blueberries, blackberries, 

raspberries, strawberries, currants, elderberries, and chokeberries (Mikulic-Petkvsek et al. 2012).  

Fumaric acid is found in each of these berries, except for blueberries and chokeberries, and the 

heat applied in certain stages of processing potentially encourages each organic acid to react with 

other constituents, including ACYs.  Processing of berries illustrated in Figure 3 and involves 

applying heat to the fruit, separation of liquid and solid materials, which affect extraction 

efficiencies, and pasteurization.  The fruit is treated with enzymes, such as pectinases, to disrupt 

the cell walls to release beneficial compounds, including ACYs, while all enzymes should be 

deactivated through pasteurization (Skrede 1996).  ACYs degrade over storage of these products, 

which affects quality. In order to maintain high quality and vivid color, this research examines 

the mechanistic causes of ACY degradation over storage. 

 

Color and copigmentation 

 Color is in the eye of the beholder; however, this reworded cliché is not completely true.  

Depending if you are reading this on a computer or mobile phone screen or on printed-paper, the 

origin of color is slightly different.  Screens produce color from combinations of red-green-blue 

pixels, since those are the three colors the human eye detects through its cones. The visible 

spectrum can be broken into individual nanometer segments, each with a different wavelength 

from 450-700 nm; however, the eye cannot detect all of these wavelengths.  The cones perceive 
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colors through the mixtures of different wavelengths that activate either the red, green, or blue or 

combinations of them.  Color originating from a fruit in your hand is caused by subtractive color, 

which means the fruit absorbs all the wavelengths of visible light, except for the color that is 

seen.  Much of this research is centered on color and the fate of the pigmented molecules.  Color 

can be divided into three categories: hue (color), lightness, and saturation (vividness). A 

colorimeter can detect each of these parameters and display the units in the CIELAB format, 

which is closely related to the L*C*h color space (Konica Minolta 2007). 

An important characteristic in the pigmentation of colored juices is copigmentation, 

which is the shift in color due to intra- or intermolecular interactions.  Metal complexation, 

hydrophobic interactions, and π-π stacking are some of the mechanisms behind copigmentation 

(Mazza & Brouillard 1990).  The various sugar and acid moieties attached to the ACY can 

greatly affect the coloration (Andersen & Markham 2006).  Solubility, stability, and hydrogen 

bonding increase with an increasing number of these moieties (Giusti & Wrolstad 2003).  The 

phenyl rings of the substituent acids and sugars can provide steric protection from nucleophilic 

attack, thus limiting the formation of colorless compounds and preserving pigment (Brouillard 

1981, Mazza & Brouillard 1990).  A high degree of intramolecular copigmentation from several 

acyl moieties causes a greater efficiency in stabilizing ACY color compared to high ratios of 

intermolecular copigmentation from aromatic acids (Dangles et al. 1993).  The sugar substituents 

function as joints allowing the acyl moieties to bend around and shield the flavylium ion.  This 

has been described as a sandwich effect where the aromatic rings wrap around and stack on top 

of each other to protect carbon 2 from hydration (Berke & de Freitas 2005).  Figure 4 illustrates 

the sandwich effect with two caffeoyl esters surrounding the ACY (Mistry et al. 1991).  This 
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effect can increase with increasing levels of acylation and glycosylation.  Common sources of 

acylated ACYs are radishes, red cabbage, purple potatoes, and black carrots.  

On the other hand, there is a phenomenon called anti-copigmentation where the colored 

compounds are encapsulated inside a β-cyclodextrin cavity (Dangles et al. 1992a).  The typical 

copigmentation effect results in a bathochromic shift, while this anti-copigmentation produces a 

dampened absorbance.  Dangles et al. (1992a) reports “a macrocycle to callistephin ratio of 50, 

the absorbance drops to less than half of its initial value in the absence of cyclodextrin.”   The 

color reduction is favored with nonplanar structures, such as the chalcone and hemiacetal 

configurations as opposed to the planar flavylium ion (Dangles et al. 1992b).  The interaction 

with cyclodextrin decreased with an increasing number of substituents on the B ring of the ACY 

(Dangles et al. 1992a).  This illustrates the complicated process and multitude of interactions that 

can affect color.   

Comparing a sandwich structure to a polymeric structure, researchers found the sandwich 

structure much more likely to form since it will have a very low activation energy compared to 

the high energy of the polymer formation.  Creating a polymer involves the breaking of two C-H 

bonds, which cause the high energy of activation, followed by the formation of a more stable C-

C bond (Kunsagi-Mate et al. 2011).  Elevated temperatures above 20 oC cause copigmentation 

complexes to decay and increase the rate of polymerization (Kunsagi-Mate et al. 2011).   

 

Health benefits and bioavailability  

ACYs have long been thought to have a low bioavailability because of the instability of 

the flavylium ion in the physiological pH of 7.4; however, there are many metabolites and 

smaller degradation products along with the ACYs that appear in human serum, urine, fecal, and 
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breath.  The primary metabolic pathways for the intact ACY are glucuronidated, sulfated, or 

methylated conjugates (Hackett 1986).  It is possible for one ACY to become methylated and 

therefore be classified as a different ACY.  There is evidence of cyanidin methylation in vivo and 

changing into peonidin (Wu et al. 2002).   

Humans are very different from each other so there is quite often a high standard error for 

human studies.  The variation is even greater when the subjects are both male and female, so for 

this reason, studies are frequently conducted on a single gender.  Fortunately, the excretion time 

of many medications is slightly longer on average for men than women due to their larger size 

(Schwartz 2003).  One study fed blueberries or elderberry extract to four elderly women and 

found cyanidin-3-sambubioside, cyanidin-3-glucoside, peonidin-3-glucoside, peonidin-3-

sambubioside, peonidin monoglucuronide, cyanidin-3-glucoside monoglucuronide in their urine 

(Wu et al. 2002).  The mean intake of those metabolites, as a percent of the intake volume, is 

0.077 ± 0.013%, which was collected between 0-4 hours after consuming elderberry extract.  

This is measured solely from urine, so much of the intake volume could likely be found in fecal 

material, breath, serum/blood, or even stored in organs for extended time periods.  One of the 

great difficulties in measuring bioavailability of molecules or plant extracts is the timing for 

collection.  Many studies record samples at various time points, often ceasing within 48 hours, 

and from multiple avenues of excretion in order to capture as much initial ingested volume as 

possible.   

In a groundbreaking study, Czank et al. used stable carbon isotopes to synthesize C3G 

that contained five 13C atoms in the 6, 8, 10, 3’, and 5’ positions so there were three 13C atoms on 

the A ring, along with two on the B ring.  The isotopically labeled C3G was used to investigate 

the absorption, distribution, metabolism, and elimination of ACYs in humans.  Eight male 
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subjects were provided with 500 mg of the sample, and then urine, breath, fecal, and blood 

samples were acquired over 48 hours.  Intact C3G was found in the serum and urine over the 

course of 48 hours with recoveries of 9.99 ± 3.90 and 36.47 ± 20.27 ng, respectively.  This is the 

believed to be the first published evidence of ACY-derived carbon to be found in the breath.  The 

Cmax in breath occurred at 24 hours and maintained levels 13CO2 over 48 hours, which might be 

caused by continued absorption of small molecules from fecal material.  The other significant 

findings from this research are the comparable relative bioavailability of C3G (12.38 ± 1.38%), 

and presumably other ACYs, to flavan-3-ols (2.5%) and flavones (18.5%) (Czank et al. 2013, 

Williamson & Manach 2005).   

 

Proanthocyanidins and polymeric pigments  

 Also called condensed tannins, proanthocyanidins (PACs) are important for a myriad of 

health benefits, but also for their interactions with ACYs in forming polymers, which will be 

discussed in the next section. (Jurd 1969, Somers 1971).  PACs are a category of flavonoids that 

includes the likes of procyanidins, prodelphinidins, propelargonidins, and others.  They are 

named as such because the procyanidins compounds can be hydrolyzed, under either acidic or 

alkaline conditions, into cyanidin.  Proanthocyanidins have an estimated daily intake volume of 

57.7 mg/person and the major sources in the American diet are apples, chocolate, and grapes (Gu 

et al. 2004).  Upon incubation with human microbiota, A-type and B-type procyanidins are 

digested by the microbes into benzoic, 2-phenylacetic, 3-phenylpropionic, and other small 

phenyl acids (Ou et al. 2014).  This is beneficial to human health because smaller molecular 

weight molecules are more readily absorbed into the body than the large polymeric procyanidins.   
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Free radical reactions, including Fenton and Haber-Weiss, are catalyzed by iron and 

cooper ions in a solution (Cos et al. 2004).  The Fenton reaction can produce hydroxyl radicals 

that will react with most any organic compound and negatively impact their stability.  

Procyanidins can form strong complexes with iron and copper with stoichiometric binding ratios 

of 2:1 for Fe2+:procyanidin and 4:1 for Cu2+:procyanidin (Facino et al. 1996).  The strength of 

the procyanidin binding to the iron is five orders of magnitude lower than the binding strength of 

iron to EDTA, as assessed by the stability constant values of log K equaling 9.35 and 14.4, 

respectively (Facino et al. 1996).  There is certainly a large difference between those binding 

strengths, but it does indicate the metal binding potency of the procyanidin.  Also interesting to 

note is the longer the procyanidin chain, the greater the stability between the metal and the PAC 

complex (Yoneda et al. 1998).  A similar trend is shown with o-dihydroxylphenyl groups, also 

called catechol groups.  Therefore, the metal ion will complex with the PAC and not be reactive 

with other parts of the system.  This protective effect can be found in food systems as well as 

biological systems.  Superoxide radicals are more efficiently scavenged with metal-flavonoid 

complexes than the flavonoid alone, which infers a cytoprotective function (Moridani et al. 

2003).   

 Analysis of procyanidins is often accomplished using HPLC with fluorescence detection 

because UV detection at 280 nm reveals many other phenolic compounds and is not as sensitive 

or selective as fluorescence (Lazarus et al. 1999).  As illustrated in Figure 5, procyanidins often 

have a linear order to their polymerization, with bonds between carbons 4 and 8, which is a B-

type procyanidin; however, there is a less common form of B-type that is branched with bonds 

between carbons 4 and 6, shown with a dashed bond in Figure 5.  The A-type procyanidins have 
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an ether bond from carbon 2 to the A or B ring hydroxyl group as well as a carbon-carbon bond 

(Kelm et al. 2005).  The ether bond in Figure 5 is shown as a dashed bond to the B ring.   

Due to the similarity between units of the polymer and the many combinations of 

potential bonding patterns between the oligomers and polymers, separation via HPLC can be 

very difficult.  HILIC phase HPLC using a diol column can be used to cleanly separate 

procyanidins up to decamers; however, normal phase has better separation within the same 

number of monomeric units of one PAC, as seen in Figure 6 (Khanal et al. 2009).  Notice how 

the chromatogram elutes the larger polymers as one, large peak.  Further research is needed to 

better resolve polymers with DP > 10, while remaining intact.  Thiolysis treatment breaks PACs 

using benzyl mercaptan or toluene α-thiol to measure the average degree of polymerization by 

detecting the number of terminal units (Gu et al. 2002).  A-type PACs, often found in 

cranberries, contain an ether bond and another carbon-carbon bond, as seen in the dashed bonds 

in Figure 5, that severely limit thiolysis from occurring (Kerchesy and Hemingway 1986). 

 PACs can combine with ACYs to form polymeric pigments (PPs), which are colored 

polymers. PPs might be the source of long-term color in aged juices and wines, but currently 

there is no method to separate and quantify PPs to determine if this is true. Methodology needs to 

be developed to separate PACs from PPs and PPs by degree of polymerization.  

 

Degradation products and mechanisms  

 The purpose of this research is to discover novel degradation products of ACYs, and to 

determine their mechanism of formation, impact on color, and stability over time.  Each of these 

poses unique problems for identification and analysis.  In particular, the mechanisms are mostly 

theoretical functions based in fundamental organic chemistry.  ACYs follow the breakdown 
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pattern shown in Fig. 2, from the quinodal base to the flavylium ion to the carbinol pseudobase 

to the chalcone, the last of which is thermolabile and quickly cleaved (Sadilova et al. 2007). 

 Cyanidin produces two primary degradation products: phloroglucinaldehyde and 

protocatechuic acid, as seen in Figure 7 (Sadilova et al. 2007).  Thermal degradation pathways 

are different at pH 1 and pH 3.5, with pH 3.5 prolonging the life of cyanidin-3-galactoside-

xyloside-glucoside.  The xyloside is believed to function in ring stacking/ sandwich stabilizing 

effect shown in Figure 4.  Protocatechuic acid and phloroglucinaldehyde account for most of the 

carbons in cyanidin; however, the red-colored carbon in Figure 7 is not included in these 

products and may form carbon dioxide. Polymeric pigments, which were discussed previously, 

are technically not a degradation product, but a reaction product, and a likely source of the 

persisting red color during storage.   

 It is possible for hydrogen peroxide to form in solution as a product of oxidation in the 

presence of metal ions (Bradshaw 2011).  The catechol group depicted in Figure 8 is found in 

cyanidin, C3G, and other polyphenols and frequently produces hydrogen peroxide in 

combination with the metal ions naturally found in fruit juices.  The catechol group reacts to 

form a quinone and hydrogen peroxide in the presence of metal ions and oxygen (Danilewicz 

2003).  Once the radical is generated from peroxide breakdown, a vast array of reactions can take 

place and model systems will be used to isolate and identify the degradation products.  Predicting 

the pattern of reactions that will follow the radical relies on knowing which forms of compounds 

are present at the pH, temperature, storage time, and other factors, which makes the process 

extremely difficult.   

 Building on the reactivity of radicals in solution, Lopes et al. found a novel degradation 

product of malvidin 3-O-glucoside in a model wine system.  Proposing a Baeyer-Villiger 
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oxidation, hydrogen peroxide attacks carbon 2 and the peroxyl group initiates rearrangement to 

become a seven-membered ring with carbon 2 as a carbocation, along with the loss of water.  

The resulting malvone is cleaved, similar to a chalcone breakdown, into anthocyanone A and 

syringic acid, which would be protocatechuic acid if the starting reagent was cyanidin (Lopes et 

al. 2007).  

Ascorbic acid (Vitamin C) is a highly reducing compound that is found in many fruits, as 

well as berry juice and wine.  Many model systems are prepared with ascorbic acid, yet there are 

many other model system elements that affect reactions, such as pH, buffer solutions, 

temperature, metal ions, different metal oxidation states, and oxygen availability, among others.  

The multitude of variants makes direct comparisons difficult, but some conclusions can be 

drawn.  The most reactive components of ascorbic acid are the enediol between carbons 3 and 4, 

and the hydroxyl groups on carbons 6 and 7.  The first proton to be removed from ascorbic acid 

is quite acidic with a pKa of 4.25 and assists in its antioxidant properties (Bradshaw 2011).  

After several hydrogen transfers, ascorbic acid becomes dehydroascorbic acid (DHA) with two 

ketones replacing the enediol.  Both ascorbic acid and DHA have vitamin C activity and each are 

measured to determine total vitamin C content on nutrition labels. (Nielsen 2010).  As seen in 

Figure 9, the two carbonyl carbons can undergo hydration reactions to become the hydrated 

dehydroascorbic acid.  Each of these structures has a different mass, which must be accounted 

for in mass spectrometric analysis of the degradation products of model systems.   

The chelating property of ascorbic acid with different metals and organic compounds is a 

common topic and the resonance surrounding the enediol is a key component.  The enediol is 

located between carbons 2 and 3, with a ketone on carbon 4; however, the oxygen in the 

heterocyclic ring provides the electron density to stabilize the ketone at carbon 2.  As previously 
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mentioned, the first hydrogen is quickly removed to form mono-anionic ascorbic acid (HA-), 

with a hydroxyl group at carbon 3.  The hydroxyl group can form a hydrogen bond with either 

the anionic oxygen or the carbonyl oxygen, allowing the metal to form a connection with carbon 

3 and the non-hydrogen bonded atom.  Whether copper or iron, the positions of the chelation 

remain the same and result in the production of dehydroascorbic acid (Martell 1982).  Chelation 

is important to the mechanism of oxidation and reduction of ascorbic acid.  A lack of dissolved 

oxygen (DO) with a metal chelate causes a slower oxidation of ascorbic acid than DO in 

combination a metal (Dekker et al. 1940).  Figure 10 illustrates several of the aforementioned 

reactions and resonance structures, focusing on diatomic oxygen becoming hydrogen peroxide.  

This highlights the importance of water purity along with metal removal and other contaminants 

for model systems.  One experiment that will be accomplished with this research is monitoring 

ACY content in the presence and absence of ascorbic acid using model systems.  Also, EDTA 

will be used to determine the effect of metals on ACYs and the degradation products resulting 

from their degradation.  

There are numerous studies published on ascorbic acid degradation and there are nearly 

as many breakdown products, depending on the reaction conditions.  Although ACY-rich juices 

are the focus of the research, many publications concentrate on ethanolic systems, such as red 

wine.  Most fruit juices and wines have a pH of approximately 3.5, which affects the degradation 

pathways of ascorbic acid (Hsu et al. 2012).  A general breakdown pathway of ascorbic acid can 

be seen in Figure 11: DHA opens its ring to become 2,3-diketogulonic acid and has a carboxyl 

group removed as carbon dioxide to create xylosone (Kimoto et al. 1993). Xylosone (XLS) can 

further degrade into several compounds, the most common of which are 3-hydroxy-2-pyrone 

(3H2P) and 2-furoic acid (FA).  An entire breakdown schematic, including the intermediates 
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between XLS and 3H2P and FA, can be seen in Figure 11.  The compounds 3-hydroxy-2-pyrone 

and 2-furoic acid have the same empirical formula and mass, but differ in their structure, λmax, 

and LC retention time.  2-furoic acid elutes after 3-hydroxy-2-pyrone, as well as the former 

being electrochemically inactive (Kimoto et al 1993).  While 3-hydroxy-2-pyrone has a λmax at 

295 nm, 2-furoic acid has its λmax at 245 nm at pH 7 and 255 nm in acidic conditions (Kimoto et 

al 1993).  This difference in absorbance is understandable with knowledge of UV/visible spectral 

absorption patterns.  Each carbon in 3-hydroxy-2-pyrone has some π characteristic, which 

delocalizes the electron density and thus lowers the energy needed for absorption.  The lower 

energy related to the absorbance of a molecule produces a longer wavelength for the λmax, which 

is why 3-hydroxy-2-pyrone strongly absorbs at 295 nm.  There is less delocalization in 2-furoic 

acid around its ring and therefore results in a slightly lower lambda max.  Detection of each of 

the degradation products of ascorbic acid, as well as their potential conjugates with ACYs can be 

difficult, but necessary to determine the fate of ACYs in the presence of ascorbic acid.   

 Besides ascorbic acid and hydrogen peroxide altering ACY structures, some phenolic 

acids can bind to ACYs to form pyranoanthocyanins.  These compounds have a secondary pyran 

ring between carbon 4 and the hydroxyl moiety on carbon 5.  Pyranoanthocyanins possess an 

orange hue and retain much more color than ACYs when the pH is raised from 1 to 5 (Mazza 

and Miniati 1993).  Blocking the nucleophilic hydration to carbon 4 with the newly formed pyran 

ring likely causes this increased stability. The mechanism between malvidin-3-glucoside and 

caffeic acid (Fig. 12) involves an initial loss of conjugation with carbocation formation, then loss 

of carbon dioxide, 2 hydrogen atoms, and 2 electrons and ultimately conjugation returns, and 

thus the color (Rentzsch 2007).  Pyranoanthocyanins are not affected by bisulfite bleaching due 

to the pyran ring protecting carbon 4 (He et al. 2010).  
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A subdivision of pyranoanthocyanins, called portisins, have two doubled bonded carbons 

attached to the carbon adjacent to the oxygen in the pyran ring followed by at least one aromatic 

ring.  First found in Port wines, the aptly named portisins have unique spectral properties with 

blue hues and λmax near 580 nm (Mateus et al. 2003).  Portisins are a secondary degradation 

product being formed from the primary degradation product of pyranoanthocyanins; likewise, 

pyranoanthocyanins can form an oligomer (Fig. 13) with acylated or non-acylated flavanols (He 

et al. 2006). Using flavanol monomers creates a similar molecule to polymeric pigments, so the 

mass of the pyranoanthocyanin polymer must be monitored upon analysis.  Pyranoanthocyanin 

dimers with single carbon bridge (m/z [M+]= 1337) that encompass one charged ion and a large 

conjugated system have been detected in wines, lees, and model wine solutions (Oliveira et al. 

2010).  The majority of the dimers were found in the wine lees likely due to the limited 

solubility, so the turquoise color at pH 2 (λmax= 676 nm) would not contribute much to the 

overall wine coloration. (Oliveira et al. 2010).  The carboxypyranomalvidin-3-glucoside dimer 

first appeared in the model system “in less than 1 day and attained the maximum formation after 

14 days in a much higher quantity (~12 mg; yield of 20%)” (Oliveira et al. 2010).  The potential 

possibilities for long-term color are near limitless with the known variety of different acylation, 

glycosylation, and monomeric units.   

 Much of the published research on pyranoanthocyanins has focused on wine, but the 

chemistry of formation does not restrict their synthesis in berry or other fruit juices.  Of course, 

malvidin 3-glucoside is the most common ACY in wine, so pyranoanthocyanins research has 

been focused on pyranomalvidin compounds, but pyranocyanidin structures have been 

discovered in black carrot juice (Schwartz et al. 2004).  Stored cherry juices contain 5-

carboxypyranoanthocyanin: a pyruvic acid adduct of glycosylated cyanidin (Rentzsch et al. 
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2007).  There is little evidence of pyranoanthocyanins in berry juices, but one group added 

ferulic and sinapic acid, along with 4-vinylsyringol to strawberry and raspberry juices in a 10:1 

ratio to ACYs and found pyranoanthocyanins formed from each added reagent (Rein et al. 2005).  

The pyranoanthocyanins in the strawberry and raspberry juices were purposely formed as means 

of improving color stability over time, which the pyranoanthocyanins provided.  Rein et al. 

illustrated a mechanism of formation that included a Michael addition of ferulic acid to 

pelargonidin-3-glucoside along with a loss of carbon dioxide to produce the pyranopelargonidin.  

There is one type of pyranoanthocyanin without a charged ion and therefore no red hue, but this 

compound does show a yellowish color.  The so-called oxovitisin A was formed from a 

pyranocyanidin with an acylated sugar moiety on carbon 3, and hydrated at pH 4.5 and 50 oC to 

remove the conjugation (He et al. 2011).  Oxovitisin A is a type of pyranone that has a λmax of 

370 nm, was formed in minor quantities at 25 oC, and had a near bell curved shaped production 

between pH 2.5 to 7, with the mean at pH 4.5 (He et al. 2011).  

 

Anthocyanin model systems  

 Due to the complex matrix in a fruit juice, model systems are made with only a few 

components to isolate and identify specific products.  The model systems will attempt to 

determine novel breakdown products of ACYs by combining cyanidin-3-glucoside with various 

compounds found in berry juices.  ACYs will be mixed with ascorbic acid and temperature, pH, 

color, and time will be monitored as well.  There are several analytical techniques to determine 

the identity of new degradation products, including LC-MS-MS, NMR, and UV/Vis absorbance.  

 There are many factors dictating the reactivity of an ACY with other products found in 

juices.  The charged flavylium ion is electron deficient and prone to nucleophilic attacks.  
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Therefore the yellowish, hydrated, hemiketal form is formed with a significant loss of red color 

due to the loss of conjugation.  A few publications have looked at aldehydes reacting with ACYs 

because aldehydes are more reactive than a carboxylic acid; however, there are more carboxylic 

acids found in juices.  

 An interesting approach in a model system to study degradation products is the addition 

of a free radical generator to initiate the process.  Cyanidin 3-O-β-D-glucoside was subjected to 

ten times its concentration of 2,2’-azobis(2,4-dimethylvaleronitrile) in order to facilitate radical 

reactions (Tsuda 1996).  Three main products were formed from C3G: protocatechuic acid and 

two diastereomers of 4,6-dihydroxy-2-O-β-D-glucosyl-3-oxo-2,3-dihydrobenzofuran, with the 

glucosyl group possessing the choices in stereochemistry.  It is unusual that the high 

concentration of radical generator took over eight hours to breakdown the majority of the 

cyanidin, based on the absorbance at 530 nm compared to the control (Tsuda 1996).  One of the 

diastereomers rose in concentration faster and reached a higher Cmax than the other, which 

demonstrates the selectivity of the bond reformation during the breakdown of the ACY.  Using a 

radical generator can cause product formation that may not occur during regular storage 

conditions, so it is unlikely that this type of model system will be used for this research.  

However, it could be useful to compare a system with and without the radical generator to 

monitor which types of compounds are formed and hypothesize a mechanism of formation.   

Current research has confirmed several degradation products of ACYs using model 

systems.  Phloroglucinaldehyde and protocatechuic acid are formed after heating ACYs from the 

A and B rings, respectively.  Another unique degradation product found using model systems is 

the trimeric ACY oligomer of malvidin-3-glucoside, which was formed in 20% ethanol with 5 

g/L tartaric acid at pH 3.5 (Oliveira et al. 2013).  This trimer was also found in grape skin 
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extract, as well as the young port wine made from those grapes.  There are two bonds joining 

each unit producing an A-type polymeric pigment: a C4-C8 bond and the ether C7-O-C2 bond.  

With a λmax of 547 nm, it is bathochromically shifted compared to other monomeric ACYs, and 

this trimer could be one source of the red color of wines over time (Oliveira et al. 2013).  

Stability of the compound could be measured and compared to the degradation rate of similar 

molecules for further investigation.  Computational studies were performed on the trimer and 

found the optimized geometry to be in a star shape with each of the B rings and the sugar 

moieties facing outward (Oliveira et al. 2013).   

An important variable to monitor is the oxygen level in the model system.  Flushing the 

system with nitrogen can lead to slightly improved retention of ACY content over 30 days, as 

seen in Figure 14 (Poei-Langston & Wrolstad 1981).  The aforementioned ascorbic acid 

produces the more noticeable effect in Figure 17, with a dramatic decline in ACY retention over 

a short time.  A similar dichotomy was found in their percent polymeric color results since the 

ACY had degraded when incorporated with ascorbic acid, the relative amount of polymeric color 

greatly increased.  This would seem to indicate that C4 was blocked by ascorbic acid. This study 

used 5.96 mg/mL of ascorbic acid combined with 3.73 mg/mL of pelargonidin-3-glucoside.   

 

Acetaldehyde effect on wine color  

 Acetaldehyde is a small, volatile molecule found in fruits, bread, and wine through 

microbial growth.  It is an oxidized form of ethanol and could be a cause of the hangover feeling 

(Swift & Davidson 1998).  Grassy and apple-like descriptors have been associated with 

acetaldehyde in beer, cider, and wine (Liu & Pilone 2000).  Yeasts excrete acetaldehyde largely 

during the growth stage (Ribereau-Gayon 1956) with variation in production due to temperature, 

oxygen, and SO2 (Ough 1958).  Levels can vary from 5-12 mg/L in beer to 90-500 mg/L in 
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sherry (Liu & Pilone 2000), with measurements conducted chemically, enzymatically, or using 

GC (Ough 1988). 

 In the presence of ACYs and flavanols, like catechin or procyanidins, acetaldehyde can 

act as a polymerization agent by reacting at carbon 8 (Timberlake 1976).  The authors found 

yellow xanthylium ion compounds were formed, but the more significant products were violet.  

The reaction between malvidin-3-glucoside (M3G), acetaldehyde, and either catechin, 

epicatechin, procyanidin dimer B2, or procyanidin trimer C1, occurred rapidly and tended 

toward a violet hue.  The optimum pH for the reaction is between 3.75-4.0 according to 

Timberlake and Bridle (1976).  The authors stipulated the monomeric epicatechin was more 

reactive than the dimeric or trimeric procyanidins. Also, the monoglucoside was more reactive 

than the diglucoside of malvidin, due to the electron withdrawing power of the 5-glucoside.  

After seven days of reacting M3G, acetaldehyde, and the phenolics, precipitation occurred. This 

sedimentation is notable and would be undesired in a formulated product.  

This reaction is possible with other aldehydes, including formaldehyde, isobutyraldehyde, 

isovaleraldehyde, propionaldehyde, and benzaldehyde; however, acetaldehyde reacts faster and 

more efficiently when using M3G and catechin (Pissarra et al. 2003).  Multiple products were 

identified in the reaction of M3G, acetaldehyde, and procyanidin B2; these include two reddish-

blue enantiomers of M3G with an ethyl linkage to B2, along with a red-orange compound 

thought to contain two flavylium forms: malvidin and pelargonidin (Francia-Aricha 1997).  

Violet precipitation was also noted in this study.   

If excess acetaldehyde is present, oligomeric products are possible by propagation 

reactions with available monomeric species.  Using thiolysis and mass spectrometric techniques, 

Es-Safi et al. found trimeric and tetrameric compounds, detecting doubly charged molecules 
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containing two ACY and two flavanol moieties (Es-Safi 1999). One ACY and three epicatechin 

units were found polymerized with three ethyl-linkages to form a tetramer.  In a different 

experiment in the absence of ACYs, catechin reacted with acetaldehyde to form large polymers 

measured with gel permeation chromatography with light scattering detection.  The average peak 

mass was near 6000 Da described as a dodecamer peracetate (Saucier 1997).  Once again, 

precipitation occurred and these authors noted the precipitate was ethanol soluble, but not water-

soluble.  

Garcia-Viguera et al. measured the effect of pH on the polymerization reaction with 

ACYs and catechin, finding pH 2 having the most rapid production of ethyl-linked dimers 

compared to pH values of 3, 3.7, 4, and 5 (Garcia-Viguera 1994). Timberlake and Bridle found 

the most reactivity at pH 3.75-4.00. Other researchers found cyanidin- and peonidin-3-glucoside 

more reactive than M3G (Dallas et al. 1996).   

 Acetaldehyde and pyruvic acid can react with ACYs at carbon 4 to produce 

pyranoanthocyanins (Morata 2007).  Acetaldehyde and pyruvic acid together formed fewer 

pyranoanthocyanins than either reagent individually; acetaldehyde reacted with ACYs more than 

pyruvic acid (Morata 2007).  The by-products of yeast fermentation, aldehydes and carboxylic 

acids can react with ACYs forming stable pigments with a more reddish-orange color as opposed 

to the red-purple of young wines (Marquez et al. 2013).  There are several possible products in a 

model system containing standards of ACYs, acetaldehyde, and phenolic compounds, which 

necessitate high-resolution chromatographic separation.  Using fruit and vegetable extracts will 

further complicate the separation and lead to possible overlapping peaks.  

 

 

 



  

26 
 

Analytical Techniques  

HPLC 

 High-pressure liquid chromatography is the most common means of separating and 

characterizing polyphenols.  The modern alternative uses ultra high pressure, UPLC, and is more 

efficient at accomplishing the same degree of separation.  The wide ranges of detectors that can 

be attached to the HPLC allow great quantities of information to be collected about the analyte.  

The most widespread detector is the photodiode array detector (PDA), which measures light in 

the UV/Visible range (200-750 nm).  Other detectors are fluorescence, refractive index, and 

electrochemical, and mass spectrometers. Mass spectrometry will be covered in more detail next.   

 Another vital component of the HPLC is the column and its corresponding solid phase 

packing material.  There are several types of columns that fall under a few main categories: 

normal phase, reverse phase, HILIC and cation & anion exchange.  Normal phase was created 

prior to reverse phase, hence its name, and uses nonpolar mobile phases with a more polar 

stationary phase.  Clearly reverse phase uses the opposite paradigm and is far more common 

since its introduction into the chromatography realm. In order to separate the polymeric 

pigments, a combination of columns may have to be utilized.   

Mass spectrometry: MALDI and ESI.   

 The innovation of mass spectrometry has enabled the detection of a key component in the 

identification of unknown molecules, their mass.  This is the only analytical technique that can 

obtain the mass of an unknown and there are multiple methods that all use a sample’s volatility 

to create an ion.  The ions are quantified by a mass to charge ratio (m/z), so a doubly charged ion 

will be reported as half the mass of the ion.  The two largest divisions of mass spectrometry are 

hard and soft ionization. Hard ionization produces a greater fractionation pattern by using high-
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energy electron impact; meanwhile soft ionization does not fragment the parent molecule to the 

same degree.  The two forms of soft ionization that will be used in this research are electrospray 

ionization (ESI) and matrix-assisted laser desorption ionization (MALDI).   

 To discern large amounts of information about the constituents in an unknown sample, 

liquid chromatography is often coupled with mass spectrometry, known as LC-MS.  Engaging a 

multitude of analytical techniques is an efficient way to gather the data to identify an unknown.  

The model systems will utilize LC-ESI-MS-MS for a soft ionization of peaks separated on a C18 

column.  MS-MS fragments each MS peak once more to learn even more about the structure; 

likewise MS3 can break an ion apart again.  Certain reactions occur with consecutive 

fragmentation, such as retro-Diels Alder (RDA) and dehydration. 

 

UV/Visible Spectrophotometry  

 The UV/Visible output is often noted by the lambda max of a compound and displays a 

broad peak and not a single line due to molecular vibrations and rotations.  Atomic absorptions 

are a single line since they do not have as many possible motions.  Increasing the conjugation of 

a molecule increases the λmax because the electrons are more delocalized around the  system.  

The increased delocalization of electrons requires less energy for absorption to occur; therefore 

the lower energy is a longer wavelength.  ACY have a heterocyclic ring as well as several 

hydroxyl or methoxyl moieties, which increases the λmax into the visible range and produces their 

attractive colors. The phenolic acids attached to acylated ACYs produces a UV/Visible spectrum 

with a distinct shoulder depending on the structure of the acid, which aides in identification. 
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Tables and figures 

 

 

Table 1: Anthocyanin frequency and fraction purity, content (---- = not present,    + = 

minimally present, ++ = some present, +++ = highly present, ++++ = vast majority). (Simmons 

2012). 
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Figure 1: General Anthocyanin Structure 
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Figure 2: Anthocyanin structure changes with differing pH (adapted from Brouillard, Delaporte 

1977) 
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Figure 3: Model juice processing (Hager et al. 2008) 
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Figure 4: Sandwich effect stabilizing anthocyanin (Mistry et al. 1991) 
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Figure 5: General procyanidin structure (Kelm et al. 2005) 
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Figure 6: Chromatogram of unextruded grape seed on normal and diol phases (Khanal et 

al. 2009) 
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Figure 7: Cyanidin breakdown into phloroglucinaldehyde and protocatechuic acid (Sadilova et 

al. 2007)   
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Figure 8: “The a) overall reaction and the b) proposed mechanism for the oxidation of phenolic 

compounds in wine.”  (Bradshaw et al. 2011) 
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Figure 9: Equilibria of ascorbic acid and some of its breakdown products (Bradshaw 

2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

45 
 

 

 

Figure 10: Oxidation of ascorbic acid from copper with the formation of hydrogen 

peroxide (Martell 1982) 
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Figure 11: Degradation of ascorbic acid (AsA). DHA=dehydroascorbic acid, DKG= 

diketogulonic acid, R-345= reducatant with λmax of 345 nm, 2FA=2-furoic acid, 3OH2P=3-

hydroxy-2pyrone, MDT= 5-methyl-3,4-dihydroxytetrone, EAsA= erythro-ascorbic acid, FF= 

furfural, RA= reductic acid (Kimoto et al. 1993)  
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Figure 12: Mechanism of the pyranoanthocyanins: pinotin A (Rentzsch et al. 2007) 
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Figure 13: Pyranomalvidin-3-glucoside oligomer (He et al. 2006). 
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Figure 14: Percent retention of anthocyanin pigment over storage. ACN= anthocyanin; ASC= 

ascorbic acid; FLV = catechin. (Poei-Langston & Wrolstad 1981) 
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CHAPTER 3. Assessment of methods to separate polymeric pigments 

 

Abstract 

 Anthocyanins (ACYs) provide color to many fruit and vegetables, but they decrease in 

concentration over storage of fruit juices and wines. The juices and wines retain vibrant color 

even though the ACY concentration is nearly zero over long-term storage and the fate of these 

molecules is not fully known. The source of long-term color in juices and wines could potentially 

be due to polymeric pigments (PPs).  ACYs can directly bind to a chain of flavanols, called 

procyanidins (PACs), to form PPs.  While it is possible to separate PACs by degree of 

polymerization (DP) using HPLC techniques, the addition of an ACY to the PAC chain changes 

the structure such that HPLC separation is no longer possible.  Mass spectrometry and 

UV/visible detectors can differentiate colored PPs from colorless PACs due to structural 

differences. Creating a method to separate these compounds would be well received by the juice 

and wine industry and others because it would allow purification and quantification of PPs that 

could potentially determine the fate of ACYs over storage. Once purified, PPs could also serve 

as a natural alternative to artificial colorants. The objectives were to develop methods to separate 

procyanidins from PPs and to separate PPs by DP. Multiple types of chromatographic stationary 

phases and techniques were evaluated, yet separation was not accomplished. Molecular weight 

cutoff filters displayed a color gradient for three-year-old chokeberry juice, which indicates the 

source of long-term color is potentially from PPs as large as 100 kDa. A fresh chokeberry juice 

did not display the same color gradient due to the increased concentrations of monomeric ACYs 

compared to the aged juice. 
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Introduction 

The polymerization of PACs with ACYs produces PPs, also called anthocyanin-tannin polymers 

in either the A-T or T-A+ formation as illustrated in Figure 1. A-T type polymers feature 

glycosylated ACYs in the flavene form since they are bonded to the next monomer on carbon 4 

and have yet to be oxidized to flavylium ion; therefore it is a colorless molecule (Hayasaka and 

Kennedy 2003).  The mass of the A-T type will be two Daltons greater than the T-A+ type 

because of this flavene and mass spectrometry can identify this difference.  Other researchers 

refer to these structures as A+-F (flavanol), which is the oxidized form of the A-T flavene and the 

charged ACY possesses color.  In some cases, the A+-F can undergo dehydration to form 

xanthylium ions (Figure 2), which develop a fused ring between monomeric units, often have an 

orange hue, and can be distinguished from the other polymers via mass spectrometry (Duenas et 

al. 2006).   The ACY can attach to the PAC by one of two main mechanisms: direct condensation 

or an ethyl bridge (Timberlake and Bridle 1976, Jurd 1969, Somers 1971).  The formation and 

breakage of bonds is pH dependent with a preference for low pH between 2.0 and 3.2, but 

nonexistent above pH 3.8 (Vidal et al. 2002, Salas et al. 2003).  Polymer complexity can increase 

when other compounds replace catechin as the monomeric links in the chain.  The linear 

appearance of the chain can potentially have branches emerging from carbon 6 on the A ring, 

which greatly complicates the structural analysis of these compounds.  The most unique 

chemical difference between PPs and PACs is the charged flavylium ion in the PP, which also 

conveys the conjugation that produces color.  It is very difficult to separate these two classes of 

compounds because of structural similarity.  However, one clue to separating these compounds is 

the charge on the PPs, which could be a target for cation exchange chromatography.  An ion 

exchange capsule named ‘Sartobind S’ has been used to fractionate bilberry polyphenols into 
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ACYs, copigments, and polymers (Juadjur and Winterhalter 2012).  Sartobind S uses sulfonic 

acid groups to retain the charged flavylium ion, which is eluted with 1 M NaCl in methanol; 

followed by salt removal using XAD-7 (Juadjur and Winterhalter 2012).  The copigments that 

were separated using Sartobind S were phenolic acids and flavonoids.  Figure 3 depicts a 

polymer fraction that was poorly resolved and eluted as the ‘polymer hump,’ which has been 

described by many researchers.   

Using a mixed-mode ion-exchange RP column, one group of researchers separated red 

wine ACYs in a well ordered manner: anthocyanidin monoglucosides, then acetyl-derivatives, 

coumaroyl-derivatives, and finally a polymeric peak (Vergara et al. 2010).  They also found a 

97% correlation between the age of the wine and the area under the polymeric peak, indicating 

that PPs increase with time.  Likewise, the percentage of PPs based on the color-bleaching assay 

increases with the age of red wines during storage (Somers 1971, Peng et al. 2002).   Somers 

found a nearly linear increase in polymeric pigment content from 2-year-old wines to 10 years 

old.  Wines and berry juices contain many similar ACYs and PACs, but differ in alcohol content, 

organic acids, sugar content, and other by products of fermentation. 

The primary means of measuring PPs is not quantitative, but a relative amount of PP 

compared to monomeric ACYs via the percent polymeric color assay (Giusti and Wrolstad 

2001).  The principle of this assay is the loss of conjugation (and color) via sulfate binding to 

carbon 4 of the ACY.  At one point, there was confusion on which carbon was attacked by the 

sulfate group, but 1H, 13C, and 33S NMR confirmed that carbon 2 was not attacked due to the 

steric hindrance of the B ring (Berke et al. 1998).  With this evidence, the polymeric color assay 

lost some credibility because the F-A+ polymers would be bleached at the open carbon 4, thus 

causing an underestimation of PPs.  There is a great need for an HPLC method that could 
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separate PPs by their degree of polymerization.  The development of this method is another 

avenue of this research and would be well received by other scientists working in the field.  The 

HPLC method will allow for the collection of each PP with semi-preparative HPLC, permitting 

quantification that can describe the changes through processing, aging, and a multitude of other 

functions.  This is a difficult method to produce and could require novel solid phase materials 

and sensitive detectors.  PAC’s are currently detected most often by fluorescence, so a 

combination of fluorescence and UV detection at 510 nm is a probable solution.  The PP and 

proanthocyanidins are very similar in structure and ideally should be separated before HPLC 

analysis.  Countercurrent chromatography (CCC) has been used to pre-fractionate a synthesized 

F-A+ polymer prior to HPLC analysis using t-butyl methyl ether, n-butanol, acetonitrile, and 

water in a 2:2:1:5 ratio acidified with 0.1% TFA (Salas et al. 2005a).  This 450-minute method 

produced four fractions with the final fraction containing catechin-catechin-malvidin-glucoside 

trimer eluting before the dimer, followed by malvidin-3-glucoside (Salas et al. 2005b).  Using a 

Fracto-gel column to fraction pigments from a two-year-old Cabernet Sauvignon, researchers 

used acidified ethanol and water to elute monomers, then 60:40 acetone/water to elute oligomeric 

and polymeric compounds.  The group further separated the acetone fraction with an iso-amyl 

alcohol extraction to remove the hump in the HPLC chromatogram, shown in Figure 3 (Remy et 

al. 2000).  

 Most of the experimental data about PPs is from mass spectrometry, especially MALDI-

TOF-MS due to the fact that “only one molecular ion is formed from each parent molecule, high 

sensitivity across a broad range of masses [that] allows detection of oligomeric series of 

compounds, ability to detect compounds of high molecular weight, and interpretation of isotope 

patterns allows the detection of oligomers with small differences in mass” (Reed et al. 2005).  
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The common linear PACs bound at C-4 to C-8 are called B-type PACs, while A-type types are 

bound at those positions and also C-2 to C-7. Mass spectroscopy can discriminate between A- 

and B-type PPs and PACs based on the two Dalton differences from the loss of two hydrogen 

atoms with the additional ether bond in A-types.  As the mass of each peak increases, the signal 

decreases, which can be attributed to detector saturation since the smaller molecular masses 

travel faster, reaching the detector before the heavier masses.  The second reason for this 

phenomenon is the velocity of the ion hitting the detector; the same energy voltage is applied to 

the entire sample, but the heavier analytes must have a slower velocity based on the kinetic 

energy equation: KE=(1/2)mv2.  Also, smaller molecule weight analytes are more likely to ionize 

so it is possible that some percentage of the larger polymers do not ionize and therefore cannot 

be detected.  A MALDI-TOF spectrum is shown in Figure 4 displaying the decreasing signal 

strength with increasing mass.  MALDI-TOF typically does not quantify peaks, but some 

scientists indicate the relative amounts of each mass can be compared.  The ions detected by 

MALDI-TOF are often sodium or potassium adducts, so the resulting m/z must account for those 

metals added onto the predicted mass of the analyte.   

 Another possible means for separation lies in the idea of a series of different solid phase 

extraction materials.  Oligomers of pyranoanthocyanins-flavanols from Port wine were separated 

using Toyopearl gel HW-40S (size exclusion) into two fractions: ACY and pyruvic acid adducts, 

then oligomeric and polymeric compounds (He et al. 2006).  The oligomeric fraction was then 

passed through a polyamide resin column yielding three fractions via increasing amounts of 

acidified methanol: non-anthocyanin flavonoids, oligomeric pyranoanthocyanins, and finally 

other flavonoids (He et al. 2006).  The oligomers were isolated and quantified in the range of 

0.4-20 mg/L.  More research must be accomplished in order to separate, and then quantify PPs.  
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To date, there is neither a method to separate polymeric pigments from procyanidins, nor 

a method to separate PPs by degree of polymerization.  One method exists to separate ACYs 

from PPs using a divinylbenzene column with acidified water and acetonitrile as the mobile 

phase (Peng et al. 2002).  The divinylbenzene method will be used to collect the late eluting 

polymeric pigment peak that also contains procyanidins.  This sample will be verified by LC-

ESI-MS and MALDI-TOF-MS.  Once confirmed, the PP + PAC sample will attempted to be 

separated by a battery of tests, including cation exchange mechanisms, diol absorbent, gel 

electrophoresis and other techniques.  A combination of UV/Vis and fluorescence detection is 

likely the answer for measuring both PACs and PPs.   

 

 

Materials and methods 

 

Materials 

 Cyanidin-3-O-glucoside was obtained from Chromadex (Irvine, CA, USA).  Chokeberry 

juice was made by a master’s student in our lab and samples were stored frozen before and after 

juice pasteurization, as well as from stored frozen at one through six months and again at three 

years of aging at ambient temperature in darkness. HPLC-grade solvents were purchased from 

EMD Millipore (Billerica, MA, USA) and formic acid from Fischer-Scientific (Fair Lawn, NJ, 

USA). Other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA). Strata-X-C 

solid phase extraction columns were purchased from Phenomenex (Torrance, CA, USA), while 

sulfoxyethyl cellulose, Sephadex LH-20, Amberlite XAD-16N, Supelco Dowex 50Wx4, CM 

Sephadex C-25, and alumina were purchased from Sigma-Aldrich. Oasis HLB column were 

purchased from Waters (Milford, MA, USA). Gel electrophoresis materials were purchased from 

VWR (Radnor, PA, USA).  
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HPLC-PDA-FLD analysis 

 HPLC analysis followed several methods including Peng et al. 2002, Cho et al. 2004, 

Kelm et al. 2006, and Yanagida et al. 2002. Aged chokeberry juice samples were passed through 

0.45 μm nylon syringe filters prior to HPLC injection. A Waters HPLC system (Waters Corp., 

Milford, MA) comprised of dual 515 pumps, a 717plus autosampler, a 996 photodiode array 

detector, and a 474 scanning fluorescence detector was used for chromatographic analyses. A 

Polymer Laboratories PLRP-S divinylbenzene column (250 x 4.6 mm, 5 μm), Waters Symmetry 

C18 column (250 x 4.6 mm, 5 μm), Develosil Diol column (250 x 4.6 mm, 5 μm), Waters 

Spherisorb S5 SCX column (100 x 4.6 mm, 5 μm), and Tosoh TSKgel α-3000 column (300 x 7.8 

mm, 7 μm) were used for separation. Solvents included acidified water, urea in water, methanol, 

acetone, acetonitrile, and subsequent mixtures in order to improve separation. Gradients were 

varied based on attempted separation methodologies. Flow rates were set by each column’s 

pressure limits and adjusted to improve separation. UV-visible spectra were monitored from 250-

600 nm and peak areas were integrated at 510 nm. Fluorescence was measured with excitation 

set to 276 nm and emission at 316 nm.  

 

HPLC-electrospray ionization tandem mass spectrometry (LC-ESI-MS) analysis of 

polymeric pigments  
 

 LC-ESI-MS analysis was conducted using an HP 1000 series HPLC and a Bruker Esquire 

2000 quadrapole ion trap mass spectrometer.  Samples were separated using columns and 

solvents as described above.  The mass spectrometry analysis was performed in positive ion 

mode under the following conditions: capillary voltage at 4 kV with polarity [-] for positive ion 
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mode analysis, nebulizer gas pressure 32 psi, dry gas flow 12 L/min, and skim voltage at 53.7 V.  

Ions were isolated and fragmented in quadrapole ion trap with excitation amplitude of 1.2 volts.   

 

Phenomenex Strata-X-C solid phase extraction 

 Triplicate samples of chokeberry juice of various ages were loaded on separate 

Phenomenex Strata-X-C cartridge columns (5 mL, 600 mg). The cartridges were conditioned 

with 2 mL of methanol, followed by 2 mL of 1% formic acid in water without allowing the 

cartridge to dry. Juice samples (1 mL) were loaded and allowed to absorb for 10 minutes. First, 

the columns were washed with 2 mL of acidified water, then 2 mL of acidified methanol. The 

pigment was eluted with 6 mL of 5% ammonium hydroxide in methanol. Some pigment 

remained and was eluted with 4 mL of 1% sodium hydroxide, which was quickly acidified with 

formic acid.  The eluent from the Strata-X-C had an orange-red color. Fractions were dried using 

a SpeedVac concentrator and suspended in methanol for further analysis. 

 

Sulfoxyethyl cellulose solid phase extraction 

 Methodology followed Spagna et al. 1992 with some alterations. Triplicate samples of 

chokeberry juice of various ages and the eluent from LH-20 purification were loaded on separate 

columns of 5 g sulfoxyethyl cellulose fast flow resin, which were hydrated overnight in 0.02 N 

hydrochloric acid. Samples (1 mL) were loaded and allowed to absorb for 10 minutes. The first 

elution appeared with 60 mL of 30% methanol and was pale orange-brown in color. Next, 60 mL 

of 70% acetone eluted a very faint pink fraction, followed by 40 mL of 2 M ammonium chloride 

in 50% methanol eluting a pale pink fraction. After that, 60 mL of isopropanol eluted a fraction 

with a hint of pink color. Finally, 40 mL of 2 N sodium hydroxide caused the bound analytes to 
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turn from reddish to green-brown with some of the brownish pigment detaching from the column 

and eluting. This fraction was quickly acidified with hydrochloric acid, which turned the sample 

a golden hue. All fractions were dried using a SpeedVac concentrator and suspended in methanol 

for further analysis. 

 

Confocal microscopy  

 Sulfoxyethyl cellulose fibers and three-year-old chokeberry juice were analyzed using a 

Leica TCS SP5 confocal microscope. Images were taken using an HyD 4 detector with 15% 

power on the 561 nm laser and 13% power on the 633 nm laser. Chokeberry juice was applied to 

a microscope slide and dried in a desiccator. A cover slip was placed over the dried juice and 

sealed with clear nail polish. Images were false colored to mimic the true sample colors: red for 

sulfoxyethyl cellulose fibers and purple for dried chokeberry juice.  

 

Sephadex LH-20 solid phase extraction  

 Methodology followed Kantz et al. 1990 with some alterations. Triplicate samples of 

chokeberry juice stored for one through six months and also three years were frozen at each time 

point.  Samples were loaded on separate columns of 4 g Sephadex LH-20, which were hydrated 

overnight in DI water. Samples were loaded onto columns atop the vacuum manifold, allowed to 

absorb onto the stationary phase, then washed with 30% methanol to remove sugars and small 

phenolic molecules, which included some monomeric anthocyanins. Next, 70% acetone was 

used to elute polymeric phenols that were then dried using a SpeedVac concentrator and 

suspended in 70% acetone for further analysis. LH-20 columns can be reconditioned for 
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immediate reuse by washing with several bed volumes of 30% methanol, then DI water.  No 

changes in chromatographic properties were observed after 8-10 separation cycles.  

 

Oasis HLB solid phase extraction 

 Methodology followed Jeffrey et al. 2008 with some alterations. Triplicate samples of 

chokeberry juice of various ages were loaded on separate Oasis HLB cartridge columns (6 mL, 

500 mg). The cartridge was conditioned with 2 mL of methanol, followed by 2 mL of DI water 

without allowing the cartridge to dry. Each juice sample (1 mL) was loaded onto the column and 

allowed to completely absorb until the column was dry. The first fraction (F1) was eluted with 

40 mL of 95:5 acetonitrile: 0.01 M hydrochloric acid. The second fraction (F2) was eluted with 5 

mL of methanol with 0.1% formic acid, while the third fraction (F3) was eluted with 0.3 mL of 

neat formic acid, then 2.7 mL of 95% methanol. There was color remaining on the column after 

F3 eluted, so 1 mL of neat formic acid followed by 4 mL of 95% methanol was used to create 

F4. All fractions were dried using a SpeedVac concentrator and suspended in methanol for 

further analysis.  

 

Amberlite XAD 16N solid phase extraction  

 Methodology followed Kammerer et al. 2005 with some alterations. Triplicate samples of 

chokeberry juice of various ages were loaded on separate columns of 8 g Amberlite XAD 16N, 

which were hydrated overnight in 90% ethanol. The columns were conditioned with 125 mL of 

DI water, then 50 mL of 3% formic acid in water. Juice samples (3 mL) were loaded onto the 

columns and washed with 50 mL of 3% formic acid. Some pigmented eluted in this step, but 
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most of the color was eluted with 50 mL of 2% formic acid in methanol. All fractions were dried 

using a SpeedVac concentrator and suspended in methanol for further analysis. 

 

Supelco Dowex 50Wx4 solid phase extraction 

 This strong cation exchange resin was assessed for its capacity to separate PPs from 

PACs due to its binding affinity for cations. The resin’s structure is divinylbenzene with sulfonic 

acid moieties attached. Triplicate samples of chokeberry juice of various ages were loaded on 

separate columns of 4 g Dowex 50Wx4 100-200 mesh, which were hydrated overnight in DI 

water.  Columns were washed with DI water, then loaded with 3 mL of juice. The first fraction 

was eluted with 30 mL of methanol, which had a pink-peach color. The following eluents did not 

elute the remaining pigment on the column: 50 mL of 5% formic acid in acetonitrile, 50 mL of 

70% acetone, 50 mL of 4 M urea in water (pH 4), 50 mL of 4 M urea in water (pH 11), 20 mL of 

2 M sodium hydroxide. The strong basic conditions caused the pigment to turn from red-purple 

to green-brown. Acidifying the column returned the red hue, but it would not release from the 

resin. All fractions were dried using a SpeedVac concentrator and suspended in methanol for 

further analysis. 

  

CM Sephadex C-25 solid phase extraction 

 This weak cation exchange resin was assessed for its capacity to separate PPs from PACs 

due to its weak binding affinity for cations. The resin’s structure is carboxymethyl cross-linked 

dextran. Triplicate samples of chokeberry juice of various ages were loaded on separate columns 

of 4 g CM Sephadex C-25, which were hydrated overnight in DI water. Columns were washed 

with methanol, then DI water, then loaded with 3 mL of juice. The first fraction was eluted with 
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30% methanol and had a pale pink color. The second fraction eluted the majority of the 

remaining pigment using methanol. Organic solvents and salts were applied, but did not elute the 

slight red pigment stuck on the column. The organic solvents caused the column bed to collapse 

and shrink to nearly 25% of the initial size. These fractions were not analyzed due to the collapse 

of the column material and loss of chromatographic integrity.  

 

Alumina solid phase extraction  

 Methodology followed Lin and Hilton 1980 with some alterations. Columns were 

prepared with 4 g of alumina (Fisher Scientific) and equilibrated with a 0.1 M sodium citrate 

buffer. Triplicate samples of chokeberry juice of various ages were loaded onto the columns and 

allowed to absorb for 10 minutes. The pigment was not well absorbed because most color eluted 

with 50 mL of citrate buffer. After that, 50 mL of ethanol eluted a slight pink color. All fractions 

were dried using a SpeedVac concentrator and suspended in methanol for further analysis. 

 

Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) analysis of 

polymeric pigments 

 Concentrated samples and a peptide standard were mixed with 1 M dihydroxybenzoic 

acid (DHB) matrix in methanol in an equal ratio and 1 μL was spotted onto a stainless steel 

MALDI plate. Analysis was conducted using a Bruker Reflex III MALDI-TOF-MS (Billerica, 

MA) equipped with a 337 nm N2 laser. BrukerDaltonics peptide standard consisting of 

angiotensin II, angiotensin I, substance P, bombesin, ACTH clip, and somatostatin was used for 

time of flight calibration. Data was obtained in positive ion reflectron mode with an accelerating 

voltage of 25 kV and a reflectron voltage of 28 kV. The PPs and PACs were identified as the 



  

62 
 

molecular ion and potassium and sodium adducts ([M+], [M-H+K]+ and [M-H+Na]+, 

respectively).   Peaks were statistically evaluated using BrukerClinProTools software. 

 

Molecular weight cutoff filters 

 Millipore Amicon ultra centrifugal filter devices ranged in cutoff size from 3,000, 10,000, 

30,000, 50,000, and 100,000 Daltons. Samples of chokeberry juice of various ages were 

centrifuged at 10,000 rpm for 30 minutes at 25oC. Filtrates were measured on a 

spectrophotometer to compare UV/visible absorbance at each molecular cutoff. Filtrates were 

passed through a 0.45 μm Nylon filter and injected into the HPLC.  

 

Gel electrophoresis 

 Bio-rad Mini-Protean Tris-tricine precast acrylamide gels were used to separate 

chokeberry juice samples of various ages and after molecular weight cutoff filters. A Dual Xtra 

protein standard was used to compare molecular weights. Samples were mixed (1:1 v/v) with a 

Tris-tricine loading buffer. Electrophoresis was performed at 150 V for 45 minutes or until the 

loading buffer reached the end of the gel. These gels were ran in an alkaline environment, so 

immediately after the electrophoresis reached completion, the gels were soaked in pH 2 DI water 

to stabilize anthocyanins. Next, gels capable of separation in acidic buffers were created 

following Saunders and Stites 2012. Briefly, a 15% acrylamide gel was created using 0.9 M 

acetic acid, 6 M urea, 1 mM sodium toluenesulfinate, 50 μM diphenyliodonium chloride, and 

100 μM methylene blue. In order for the gel to solidify, it must be placed in direct sunlight for 

about 10 minutes because ultraviolet light initiates polymerization. The running buffer is made of 

0.9 M acetic acid and 0.1 M glycine, while the loading buffer is made of 0.9 M acetic acid, 6 M 
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urea, and 1% methyl green. Finally, agarose gels were prepared using 1% agarose and required 

200 V and three hours to move the analytes approximately half way through the gel. After this 

time, the anthocyanins did not move any farther, so three hours was used for analysis. A 

Proteinsimple FluorChem M imaging system (SanJose, CA, USA) was used to scan the gels with 

a FluoroRGB filter.  Pigmented sections of gels were cut and removed, then extracted with 95% 

acidified methanol overnight. The extracts were quantified and analyzed using MALDI-TOF-

MS.  

 

Ultrasonication 

 A Cole-Parmer Ultrasonic Processor was operated in pulsed mode at 20 oC with 70% 

amplitude for 15 minutes in trial one, then 80% amplitude for 60 minutes in trial two. Fresh and 

aged chokeberry juice samples (20 mL each) were compared for the ability to release potentially 

bound ACYs from soluble complexes. After trials one and two, juice samples were filtered and 

injected into a Waters HPLC on a Waters Symmetry C18 column as described above. 

Chromatograms were compared for differences after ultrasonic treatment.  

 

Results and Discussion 

Polymeric pigment chromatographic separation 

 Separation of PPs and PACs is difficult due to their structural similarities, but they can be 

separated from monomeric ACYs using a divinylbenzene HPLC column (Peng et al. 2002). This 

publication claimed to separate pigmented polymers from red wine, but failed to show mass 

spectrometric data for PACs and PPs. Figure 5 shows the chromatogram of an aged chokeberry 

juice with a large polymer peak near 50 minutes. The mass spectrometric trace does not show a 
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corresponding peak; however, Fig. 5 (bottom) displays m/z of both PACs and PPs co-eluting in 

the chromatogram. Both the PP and PAC polymers have units of 288 Da, but PPs have an ACY 

on the end of the chain and that difference causes the two polymers to have different masses.  PP 

polymers made of cyanidin-3-glucoside have masses of 737, 1025, 1313, 1601, 1889, 2177, 

2465, 2753, and 3041 Da for one through 9 catechins attached to the ACY, which yields a dimer 

to decamer. PAC polymer masses start at 290 for the monomer, then 578, 866, 1154, 1442, 1730, 

2018, 2306, 2594, and 2883 Da for masses of a dimer to decamer. A trimeric ACY, made of 

three malvidin-3-glucosides, has been found in young Port wine (Oliveira et al. 2013), so the 

potential mass combinations are nearly endless if there are different potential permutations with 

different ACY structures depending on the source material. The two series of polymers occur 

evenly distributed and there is no chromatographic retention difference for larger or smaller 

polymers based on time. Although this is not the goal of this research, it is a start toward 

separating the molecules. Removing monomeric ACYs and other phenols is progress, so this 

polymer fraction was collected and pooled to use for further analysis. The pooled fractions were 

concentrated on a rotary evaporator to remove the organic solvent and then placed in a SpeedVac 

until dryness. The fraction was pigmented with a vibrant red color after the rotary evaporator, but 

after removal of all solvent using the SpeedVac it turned a dark brown hue. Upon concentrating, 

the sample was an oily brown sludge that did not acquire red color after acidification and had 

poor solubility in organic solvents. The solution to this issue was to remove the organic solvent 

and some water from the pool of collected fractions using a rotary evaporator and stop 

concentrating before browning occurs.  

 The polystyrene divinylbenzene HPLC column’s polymer peak can assess whether PACs 

and PPs have been separated by pre-HPLC solid phase extraction (SPE) techniques.  This 
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chapter will follow the pattern of evaluating different SPE techniques and different samples on 

HPLC columns for their ability to separate PACs and PPs, while also attempting to separate PPs 

by degree of polymerization. The first SPE technique to discuss is Phenomenex’s Strata-X-C due 

to its polymeric base comprised of sulfonated styrene divinylbenzene. This is a strong cation 

exchange resin and should retain the charged PPs while allowing the neutral PACs to elute out of 

the column.  Also, the styrene divinylbenzene polymer base has already been shown to have 

good retention of both PACs and PPs. Elution of pigment occurred with the addition of 5% 

ammonium hydroxide, which functions under two mechanisms: the cationic ammonium can 

replace PPs in the active site of the resin, while the hydroxide can neutralize the charge on the 

PP. ACYs are unstable at high pH values, so the eluent was quickly acidified with formic acid to 

stabilize the molecules. Upon addition of ammonium hydroxide, the bound analytes turn a green-

brown color, but the red hue returned after acidification. Rinses of acidified water, methanol, or 

acetonitrile did not elute any pigment. The fractions were concentrated to dryness and dissolved 

in methanol and then analyzed using LC-ESI-MS. Figure 6 displays a chromatogram and 

spectrum that greatly resemble that in Fig. 5.  This result demonstrates that both PACs and PPs 

were retained on the Strata-X-C column and eluted together. Perhaps the styrene divinylbenzene 

was the primary mechanism of retention, so next a similar strong cation exchange was used, 

composed of a cellulose base. 

 The aged chokeberry juice was applied to a strong cation exchange columns made of 

sulfoxyethyl cellulose. This resin does not have the π-π and aromatic binding capabilities of the 

styrene divinylbenzene resin, but has hydrogen bond interactions to improve retention. Once 

again a sulfoxyl moiety is attached the resin, which should retain the charged polymers and allow 

the uncharged PACs to flow through the column. Once the aged chokeberry juice attached to the 
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resin, 30% methanol eluted a pale brown-orange fraction, followed by 70% acetone eluting a 

pink-red fraction. Ammonium chloride (2 M) in 50 % methanol was used to displace the ions 

bound to the sulfoxyethyl cellulose, but only a slightly pink fraction eluted. Diluted sodium 

hydroxide (0.1 M) was used to alter the positive charge on the PPs, but only changed the bound 

analytes from red to a dark blue-black color and no detectable color eluted from the column. 

Isopropanol did not elute any pigment and finally 2 M sodium hydroxide eluted some of the 

brown color, which was quickly acidified with hydrochloric acid. Upon acidification, eluents 

usually return to a red hue, but this time the eluent turned golden brown. After all solvents and 

buffers were applied, there was still pigment on the column that could not be eluted. These 

fractions were concentrated and analyzed using the divinylbenzene column on the HPLC. The 

results were disappointing because the chromatograms (not shown) appeared nearly identical to 

previous analysis, similar to Fig. 5, meaning the sulfoxyethyl cellulose did not separate the PPs 

and PACs. In order to verify that the polymeric material was able to elute through the cation 

exchange resin, the aged juice was passed through Sephadex LH-20, which has been used to 

separate polymeric materials in grapes and wines previously (Kantz et al. 1990). It is composed 

of hydroxypropylated dextran, which should have comparable retention properties to the 

sulfoxyethyl cellulose without the cation exchange component. The hydrogen bonding from the 

polysaccharides and slight hydrophobic interaction due to the ethyl and propyl moieties should 

work well to elute the polymeric material. The acetone fraction from LH-20 contains both PACs 

and PPs. This fraction was applied to the sulfoxyethyl cellulose resin and allowed to absorb for 

10 minutes. The same series of solvents and buffers were applied to the column, but the result 

was the same. There were some lightly pigmented fractions, but the majority of the color 

remained bound to the resin and would not elute.  
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 The column chromatography using strong cation exchange resins did not seem to release 

the majority of color, but that pigment must be analyzed by some technique. We took the solid 

pigmented material from the top of the column and analyzed it using a MALDI-TOF mass 

spectrometer. It is possible to use this technique without extracting the sample in liquid, but it is 

difficult to obtain meaningful signals. The red colored resin was mixed with the MALDI matrix 

(dihydroxybenzoic acid) and ground together using a mortar and pestle. A control of unused 

sulfoxyethyl cellulose resin was used as a comparison. The samples were attached to the MALDI 

plate using double-sided tape and excess material was shaken off, so it would not come loose 

inside the instrument. Another application technique was used to limit the potential interferences 

from the polymers in the double-sided tape. The second application technique was to mix the 

colored resin with dihydroxybenzoic acid in methanol and place one drop onto the MALDI plate. 

Another drop of the matrix in methanol was applied over the resin to assist in adherence to the 

plate. Both application techniques produced signal, but only cellulose units were detected. The 

control showed the same m/z values and there was no indication that any PPs or PACs were 

bound to the resin although there was clear red pigment bound to the material. To identify the 

bound red pigment to the sulfoxyethyl cellulose, a cellulase enzyme was used to degrade the 

resin and release the bound analytes. The optimum conditions were used and the enzyme was 

allowed to react with the resin overnight, then the mixture was centrifuged to separate the soluble 

components. The supernatant was clear and pellet was dried and weighed in order to measure the 

enzyme degradation to the resin. Unfortunately, the mass was identical to the original mass, so 

the enzyme was unsuccessful in degrading the resin. This ineffectiveness could be caused by the 

structural changes to the cellulosic base by modifying it with sulfoxyethyl moieties.  



  

68 
 

 The red pigment could not be removed from sulfoxyethyl cellulose fibers, so microscopy 

was used to investigate any potential interference that inhibited pigment release. A confocal 

microscope examined the fibers and found a uniform distribution of color and no particulate 

matter on the fibers (Fig. 7). Further magnification of the fibers simply revealed the helical 

nature of the fibrous material. The color of Fig. 7 is not the true color, although the fibers were 

stained a reddish color after application of chokeberry juice. The three-year-old chokeberry juice 

was also examined using the confocal microscope. The juice was dried on a microscope slide and 

sealed under a cover slip with clear nail polish because the slide was inverted in the microscope. 

The majority of the slide was uniform and transparent with a red-purple hue, but there was a 

small particulate cluster shown in Fig. 8. A purple hue was applied to false-color the image (Fig. 

8) to mimic the juice color on the slide. Figure 8 displays several faint purple spheres in the large 

cluster and these area likely solids that fell out of solution over storage. They could be starch 

granules or a mixture of polysaccharides and other previously soluble solids that have 

precipitated over storage. 

 Perhaps the strong cation exchange resin SPE did not have enough backpressure to 

function at its highest capacity, so a Waters S5 SCX HPLC column was evaluated. This column 

has silica particles bound to propyl sulfonic acid, so the cation exchange should be the primary 

means of retention. There was limited knowledge in literature about ACY separation on HPLC 

cation exchange columns because the majority of cation exchange ACY research uses SPE. 

Using similar approaches to elute the PPs, the aged chokeberry juice was injected into the 

column and 20 mM ammonium phosphate in methanol was used to elute the pigment. The 

chromatogram of this elution pattern is shown in Fig. 9 and essentially no compounds were 

removed from the column that absorbed 510 nm light. This mobile phase was changed to 20 mM 
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ammonium phosphate in acetonitrile and a small peak eluted near the end of the chromatogram 

(Fig. 10). In fear of damaging the HPLC column beyond repair, no further injections were made 

on this column.  

 Due to the lack of separation of cation exchange materials, we returned to the standard 

HPLC column material: octadecylsilyl, or C18. To narrow our focus, we used the collected 

fraction from the divinylbenzene column using the Peng et al. method (2002). The 

chromatogram of this fraction on a C18 column appeared similar to the divinylbenzene column in 

that a large, wide peak appeared near the end of the run (Fig. 11). Efforts to elongate this peak by 

slowing the rate of change between solvents in the gradient did not yield any notable success. 

Subsequently, a modification of the method used by Kennedy and Waterhouse 2000 could assist 

the separation by combining an ion pair reagent with the C18 column. Heptanesulfonic acid is the 

ion pair reagent and can work with the C18 stationary phase in order to temporarily create an ion 

exchange system. The collected fraction of PPs and PACs was injected into the C18 column along 

with heptanesulfonic acid and the chromatogram showed no compounds with 510 nm absorption 

eluted (Fig. 12). The ion pairing was supposed to improve retention on the column and it may 

have worked too well. Other mobile phases were used to elute the combination of PPs and 

heptanesulfonic acid, but they were unsuccessful. The complexity of the PPs is proving to be a 

difficult matter to overcome with current analytical techniques.  

 Further searching the literature revealed a method published by Jeffery et al. (2008) 

focusing on solid phase extraction of wine polymers using an Oasis HLB stationary phase. The 

HLB column has a unique polymeric base that is composed of a hydrophilic portion from a 

cyclic amide next to a lipophilic portion from a benzyl ring. The PPs have both hydrophilic 

components from their multiple hydroxyl groups as well as a lipophilic core from the fused rings. 
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This method produced three fractions with the last fraction requiring neat formic acid to elute the 

polymers. Using aged chokeberry juice, this method eluted some colored material with neat 

formic acid and 95% methanol, but color remained on the column. In order to release the bound 

pigment, another larger volume of neat formic acid was added, followed by 4 mL of 95% 

methanol. This eluted more pigmented material, but regardless of how many series of formic 

acid and methanol were applied, there was still pigment bound to the HLB column. The second 

fraction used acetonitrile to elute some reddish pigment and this fraction was analyzed using a 

C18 HPLC column. The chromatogram of the second fraction (F2) is shown in Figure 13 and 

includes two peaks. The early peak is unusual because the pigmented compounds are often 

retained longer than 15 minutes on the HPLC columns, so MALDI-TOF was used to further 

analyze the fractions. Figure 14 illustrates the spectra of the second fraction of aged chokeberry 

juice that eluted from the HLB column. The signal to noise ratio was very poor in this spectrum 

and none of the small peaks matched the predicted masses of ACYs, PPs, or PACs. The 

spectrum of the third fraction (Fig. 15) produced a better signal to noise ratio with some 

matching peaks, but did not separate PACs from PPs. The MALDI spectrum for this sample (Fig. 

15) contains PP trimer (m/z 1026), sodiated tetramer  (m/z 1336), and sodiated pentamer (m/z 

1624). It also shows a PAC sodiated tetramer (m/z 1176) and sodiated pentamer (m/z 1464). 

Finally, the fourth fraction, which required increased amounts of neat formic acid and methanol, 

created a clean spectrum with notable peaks representing both PACs and PPs (Fig. 16). The 

MALDI spectrum for this sample contains a potassiated PAC trimer (m/z 906), PP pentamer (m/z 

1603), and a PAC hexamer (m/z 1730). MALDI-TOF has proved to be a capable technique of 

measuring high molecular masses and should be used to further examine the PPs and PACs.  
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 The two methods to separate PACs by degree of polymerization use normal phase HPLC 

with a silica column and reverse phase HPLC with a diol column (Kelm et al. 2006). The normal 

phase method uses dichloromethane, which is potentially harmless to laboratory workers and the 

environment, so this research will use the reverse phase method to compare the separation of 

PACs by DP and PPs by DP. The UV/visible signal requires a much higher concentration than 

fluorescence detection for PACs. This research will use both detectors to provide more 

information. The PACs will absorb at 280 nm, while the PPs will absorb at 280 and 510 nm.  It 

has been shown in Kelm et al. 2006 and others that PACs can be separated up to decamers with a 

fluorescence detector.  We injected the aged chokeberry juice into the diol column and detected 

very little signal, so we used some of the LH-20 eluent because it is a concentrated sample 

containing both PACs and PPs. The chromatogram of LH-20 processed juice is shown in Figure 

17. The late peak in this chromatogram was collected, concentrated, and then analyzed using the 

MALDI-TOF-MS. The resulting spectrum (Fig. 18) shows that peak contained two series of 

polymers, which relates to the m/z values of PACs and PPs. The PPs in this sample included a 

sodiated tetramer (m/z 1336), sodiated pentamer (m/z 1624), and sodiated hexamer (m/z 1914), 

while the PACs included a potassiated trimer (m/z 906), sodiated tetramer (m/z 1178), 

potassiated pentamer (m/z 1480), sodiated hexamer (m/z 1754), and a sodiated heptamer (m/z 

2042).  Once again, the desired separation was not achieved. This method did not separate PPs 

by DP, nor separate PACs from PPs.  We also ran the sulfoxyethyl cellulose eluent on the diol 

column, but the result was an odd chromatogram with very low signal intensity (Fig. 19). Khanal 

et al. 2009 used a silica column with a mass spectrometer detector to separate PACs and added 

10 mM ammonium acetate post-column to facilitate ionization. This author only detected PACs 

in grape pomace although ACYs and presumably PPs are rich in this waste product. The PPs 
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may not be detected by the mass spectrometer because they bind so strongly to the inlet of the 

column and this issue may be the cause of poor detection in our study.  

 Due to the MALDI-TOF data suggesting the PPs and PACs are large molecular weight 

compounds and some literature indicating the same idea (Lin and Hilton 1980), we decided to 

use size exclusion chromatography to measure the changes in molecular composition over 

storage, as well as potentially separation the PPs by DP.  Lin and Hilton (1980) speculated the 

average mass of grape PPs was approximately 12,000 Daltons through comparisons of 

chromatographic techniques, diffusion and sedimentation rates, and paper electrophoresis.  A 

Tosoh TSKgel HPLC column α-3000, which has a size limit of approximately 3000 Da, was 

used because the MALDI-TOF signal intensity decreases above 3,000 Da due to the saturation of 

the detector with smaller masses.  This column has been used in the past to describe large 

pigments from rose cider before and after fermentation as well as the change in pigment size 

from grape juice to red wine (Yanagida 2002).  This author found the red wine pigments to 

weigh between 1,150 and 1,400 Da based on a polyethylene oxide standard.  The reliability of 

this standard reference material to the mass of PPs is questionable.  Figure 20 shows the signal 

intensity at 510 nm of chokeberry juice from pasteurization (20A), one month of storage (20B), 

and six months of storage (20C), while Fig. 20D represents a typical fluorescence detection of 

these molecules. The lack of fluorescence signal is not new, but confirms the difficulty in 

detection of PPs.  In general, larger molecules elute earlier on a size exclusion column because 

they are not retained in the particles, while small analytes will be caught in the channels inside 

the column’s particles causing a longer retention. Looking at Fig. 20A-C, it is clear that the first 

peak in each chromatogram decreases with increasing storage time. It is well known that 

monomeric ACYs decrease over storage (Wilkes et al. 2014), but it is confusing that the latter 
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eluting shoulders/peaks are relatively constant over storage.  The monomeric ACYs should be 

the latter eluting peaks. Upon several uses of the TSKgel column, the reproducibility of each run 

decreased. After several attempts to clean the column using various organic solvents, the 

pressure and reproducibility were not improving. The inlet cap was removed to check for 

potential blockages and surprisingly the inlet was bright red (Fig. 21). The cap was replaced and 

the column was installed on the HPLC with flow moving in the reverse direction from what is 

specified on the column. Cleaning the column in the reverse direction allowed some of the bound 

pigments to be removed, but upon further inspection the inlet retained a light pink hue (Fig. 21).  

  

Molecular weight cutoff filters 

 In order to analyze the size of PPs in a non-chromatographic manner, molecular weight 

cutoff filters (MWCO) were evaluated. The Millipore Amicon devices are made of regenerated 

cellulose with different pore sizes to separate a range of molecular weights. Using these filters to 

separate the pigmented compounds of different ages may lead to an estimation of PP size and the 

source of long-term color in anthocyanin-rich juices.  Comparing filter output of a three year 

aged chokeberry juice from cutoffs of 3,000, 30,000, 50,000, and 100,000 Da illustrates a color 

gradient without increasing molecular weight (Fig. 22). The most vibrantly colored fraction 

comes from the 100,000 Da cutoff meaning the compounds eluting through the filter are smaller 

than 100,000 Da. This sample has nearly twice the absorbance of the 50,000 Da cutoff eluent and 

this trend continues in a nearly linear fashion (Fig. 23).  Comparing the aged chokeberry juice to 

a pasteurized juice does not reveal the same trend because of the high concentration of 

monomeric ACYs in the young juice (Fig. 24). This data indicates that the source of pigment in 

the aged juice may originate from very large molecules greater than 50,000 Da and potentially 
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greater than 100,000 Da.  In order to get a better understanding of the composition of these 

MWCO filters, we attempted to identify some of the components using MALDI-TOF-MS 

because this mass range is much greater than the capacity of LC-ESI-MS. Also, concentration 

and detector saturation greatly factors into the signal to noise ratio when using MALDI-TOF, so 

we analyzed the eluents directly, but also passed the eluent through the next cutoff size smaller. 

This created a narrower range of molecular weights. The mass spectrum of the 30,000-50,000 Da 

MWCO is shown in Figure 25. This spectrum had the greatest signal to noise ratio compared to 

all other samples measured and the other MWCO samples had similar spectra. The spectrum had 

no signal at the high mass ranges related to the cutoff filters and only small peaks below 3000 

Da, none of which aligned with PPs, nor PACs. The lack of signal is unlikely to be due to 

concentration because replicate samples were pooled and concentrated prior to analysis.  In a 

related note, dialysis tubing was tested for its ability to separate PPs by molecular weight and 

produced a slight correlation with more vibrant color due to increasing molecular weight. 

However, the dialysis tubing did not correlate as well as the MWCO filters. 

 

Gel electrophoresis 

 When molecular weight cutoff filters provided a color gradient with increasing color 

aligning with increasing mass, it probed the question of how to separate very high molecular 

weight compounds. The most common example of such a technique is gel electrophoresis, which 

is commonly used to separate large proteins from each other in fine bands along the gel. This 

method should work well for the PPs because of the electrical charge flowing through the gel 

should separate the charged PPs.  The combination of the cutoff filters and gel electrophoresis 

may provide more information about PP changes over storage.  
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 Polyacrylamide gels required a pH 8.3 buffer, which turned the red ACYs to a dark grey-

green color while electrophoretic separation took place. Figure 26 shows the separation of 

chokeberry juice of various ages and passed through different MWCO filters in order to detect 

some differences in electrophoretic separation as well as differences in pigmentation over 

storage.  All samples show a smeared pattern with no defined bands, except for the protein 

standard. Lane one of Fig. 26 is a pale brown-orange color of straight three-year-old chokeberry 

juice. Interestingly, lane one was visually not very vibrant at pH 8.3 or acidified in pH 2 DI 

water, but upon scanning on the Fluoro RGB setting a bright blue spot appeared. This spot aligns 

with 20 kDa protein standard.  The next two lanes are six months old juice passed through 0-50 

and 0-100 kDa MWCO filters. There is no significant difference between lanes two and three, 

which means the compounds producing pigment in the six month chokeberry juice are likely 

smaller than 50 kDa. The pigmented smears of lanes two and three align with the protein 

standard representing a range from 2-250 kDa. This is unlikely to truly represent the mass of the 

PPs because the MWCO filters should elute only molecules smaller than 50 or 100 kDa, 

respectively. The samples in lanes four and five are six months old juice after two series of 

MWCO filters to get a narrow mass range: lane four contains 10-30 kDa and lane five has a 

range of 30-50 kDa. The top two sections of Fig. 26 show little visual difference between lanes 

four and five, but the Fluoro RGB scan shows more red color in the 30-50 kDa (lane five).  

Lanes six through nine follow the same pattern as lanes two through five, but use pasteurized 

chokeberry juice instead of six months old juice. In this instance, lane seven has a stronger red 

color than lane six, which means there could be PPs between 50 and 100 kDa in the pasteurized 

juice. PPs are present in fresh chokeberries and pasteurized juice (Wilkes et al. 2014), and this 

data could indicate a change in average mass between pasteurization and six months of storage. 
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Lanes eight and nine show the same trend in pasteurized juice as was shown in the six months 

juice; there is greater pigmentation in the 30-50 kDa range than 10-30 kDa range.  

 The pigmented areas of the gel were sliced and extracted in 90% methanol, then extracted 

in 70% acetone. Neither solvent fraction was very strongly pigmented, regardless of the pigment 

strength in the gel even after concentration from 50 mL to 0.5 mL. The samples were analyzed 

using MALDI-TOF-MS, but unfortunately did not show any high molecular weight compounds. 

Also, the low molecular masses did not align with either PPs or PACs.  

 Next, a different type of polyacrylamide gel was created that is capable of running in an 

acidic buffer system (Saunders et al. 2012).  This gel took on a blue appearance, which made 

visual ACY identification difficult. Various samples were analyzed using this type of gel and the 

results were overall similar, with one example shown in Fig. 27. The effect of C18 SepPak 

purification on unpasteurized, pasteurized, and six months old chokeberry juice was shown in 

lanes one through six.  Generally, the SepPak improved concentration of the pigmented analytes, 

which allowed for the identification of cyanidin-3-galactoside. This is the predominant ACY in 

chokeberry juice and decreases quickly over storage. The darkest spot that is pictured 

approximately half way down the gel in Fig. 27 likely corresponds to cyanidin-3- galactoside. 

The relatively small molecule should progress faster through the gel than the larger PPs and this 

spot is hardly visible in lanes four and five because cyanidin-3- galactoside is in the six months 

old juice in low concentration. The cyanidin-3- galactoside spot aligns with the 20 kDa band in 

the protein standard, which further indicates that ACYs do not separate in gel electrophoresis 

according to the same principles as the protein standards. This band and other pigmented regions 

were cut and extracted with solvent, but the extraction had a poor recovery rate just as the 

alkaline polyacrylamide gels. The mildly pigmented extracts were concentrated and analyzed 
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using MALDI-TOF-MS and no expected masses appeared. The MALDI spectra had very little 

signal.  

 In order to extract the analytes to learn more about their identity, agarose gels was used 

instead of polyacrylamide. A 1% agarose solution was poured to make the gel and larger wells 

had to be created because of the poor visibility of ACYs and PPs in the agarose matrix. The 

separation produced in the agarose gel was similar to the polyacrylamide gels in that a spot of 

cyandin-3-galactoside was visible in unpasteurized juice (Fig. 28 lane one) and decreased in 

intensity in the pasteurized juice (lane two) and was hardly visible in the six months old 

chokeberry juice (lane three). The protein standard is in lane five and is nearly invisible in Fig. 

28, which illustrates how little visibility there is in agarose gels compared to polyacrylamide 

gels.  Lane eight contains the eluent of a six months old juice after MWCO filtering of 0-100 

kDa, which is notably more vibrant than the 0-50 kDa sample in lane seven. This was the same 

trend in the pasteurized juice in the acrylamide gels; however both the six-month-old juice 0-50 

and 0-100 kDa MWCO samples appeared similar in the polyacrylamide gels. Perhaps the 

agarose gels provide less separation of the larger molecular weight compounds, which makes the 

bands appear darker or maybe the light reacts differently through the agarose than the 

polyacrylamide, which makes this sample appear different.  Once again, the pigmented regions 

of the gels were extracted for mass spectrometric analysis, but no notable peaks were detected.  

 

Ultrasonication 

 It is possible that large molecules, such as polysaccharides, can entangle with each other 

through π-π or hydrophobic interactions. Therefore it is possible that PPs form complexes with 

soluble polysaccharides in fruit juices. Potentially, ACYs can be incorporated in these complexes 
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and applying the proper force could interrupt the complex causing the release of monomeric 

ACYs. These potential ACYs could be tightly bound to the complex and not be detected during 

HPLC measurement; however, if they were freed from the complex, HPLC detection would 

show an increase in ACY peak area.  An ultrasonic processor was used due to its ability to exert 

high shear force and disruptive capabilities. 

 Both fresh and three-year-old chokeberry juice samples were compared after two separate 

trials of pulsed ultrasonication of 15 and 60 minutes. Visually there was no color difference 

between the samples before and after treatment; next the samples were analyzed by HPLC-PDA 

to detect any change in ACY composition and concentration. Figure 29 shows chromatograms of 

fresh chokeberry juice ACYs before and after ultrasonication of 60 minutes. These results 

indicate the ultrasonication treatment did not affect ACY composition or concentration. 

Chromatograms for the three-year-old juice also appeared the same before and after treatment 

(data not shown).  There was no difference between the 15 and 60 minute treatments. It was 

postulated that copigmentation, π-π stacking, or hydrophobic interactions might be retaining 

ACYs in complexes with soluble solid materials, such as polysaccharides or PPs.  Using 

molecular dynamic simulations, it was found that ACY-ACY copigmentation could occur as 

quickly as ten nanoseconds (Oliveira et al. 2014). This could indicate that ultrasonication could 

disrupt the copigmentation, but compounds reorganize immediately after treatment terminates. 

This treatment was a unique approach to PP detection and identifying the source of long-term 

color in ACY-rich juices.  
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Conclusion 

 To recapitulate, many different forms of chromatographic techniques and materials were 

tested for their ability to separate PPs from PACs and PPs by DP.  Both series of polymers can 

be detected using mass spectrometric techniques (ESI-MS and MALDI-TOF-MS); however, 

separation of the two polymeric compounds was unsuccessful. Using MWCO filters, a color 

gradient appeared in aged juices containing very little to no monomeric ACY, which could 

indicate that the long-term source of color in this juice is due to molecules weighing over 50 or 

100 kDa. Attempts to separate the large PPs using gel electrophoresis and identification of bands 

using mass spectrometry were unsuccessful. Perhaps the current technology is not capable of 

separating these molecules. This research aids in the advancement of polymeric pigment 

separation by demonstrating the inefficiencies of numerous methods that do not separate these 

molecules.  
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Figures 

 
Figure 1: Polymeric Pigment Structures (adapted from Hayasaka and Kennedy 2003) 
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Figure 2: Direct anthocyanin-flavanol reactions and structure of A-F adducts. (a) Flavene, (b) 

flavylium cation, (c) xanthylium cation, and (d) A(-O-)F (A-type) dimer (Duenas et al. 2006). 
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Figure 3: Chromatogram recorded on Nucleosil C18 column at 520 nm of (a) fraction 1 and its 

(b) organic and (c) aqueous phase after iso-amyl alcohol extraction (Remy et al. 2000). 
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Figure 4: MALDI-TOF mass spectrum (m/z 2000-3850) of (A) pasteurized and (B) aged juice in 

reflection mode showing the [M – H + K]+ of cyanidin-3-galactoside plus 6 flavan-3-ol units 

(m/z 2214.9) to cyanidin-3-galactoside plus 10 flavan-3-ol units (m/z 3366.9) and procyanidin 

series ranging from DP7 (m/z 2056.9) to DP12 (m/z 3496.9). CA= cyanidin-3-arbinoside;  

CG=cyanidin-3-galactoside; F= flavan-3-ol (Howard et al. 2012). 
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Figure 5: Chromatogram of aged chokeberry juice on divinylbenzene HPLC column with detection at 510 nm. The UV trace is in red 

and MS trace is in black. (top); Spectrum of procyanidins and polymeric pigments eluting throughout this chromatogram (bottom). 
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Figure 6: Chromatogram of aged chokeberry juice on divinylbenzene column after Strata-XC ion exchange solid phase extraction. The 

UV trace is in red and MS trace is in black. (top); Spectrum of procyanidins and polymeric pigments eluting in this chromatogram 

(bottom).
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Figure 7: Confocal laser scanning microscope false-colored image of sulfoxyethyl cellulose after application of three year old 

chokeberry juice (left). Further magnification (right). 
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Figure 8: Confocal laser scanning microscope false-colored image of juice residue from a three year old chokeberry juice. 

 

 

 



  

 
 

9
1 91 

 

 

 

 

 

 

 

 

 

Figure 9: Chromatogram of aged chokeberry juice on Waters S5 SCX column with a gradient elution of water and 20 mM ammonium 

phosphate in methanol with detection at 510 nm. 
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Figure 10: Chromatogram of aged chokeberry juice on Waters S5 SCX column with a gradient elution of water and 20 mM 

ammonium phosphate in acetonitrile with detection at 510 nm.   
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Figure 11: Chromatogram of collected fraction of PACs and PPs from Peng et al. 2002 method using a Waters Symmetry C18 column 

at 510 nm.  
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Figure 12: Chromatogram of collected fraction of PACs and PPs from Peng et al. 2002 method using a Waters Symmetry C18 column 

with heptanesulfonic acid in the mobile phase at 510 nm.  
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Figure 13: Chromatogram of the acetonitrile fraction (F2) of HLB SPE column using a Waters Symmetry C18 column at 510 nm.  
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Figure 14: MALDI-TOF mass spectrum of fraction two (F2) of aged chokeberry juice after HLB 

solid phase extraction. 
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Figure 15: MALDI-TOF mass spectrum of fraction three (F3) of aged chokeberry juice after 

HLB solid phase extraction. 
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Figure 16: MALDI-TOF mass spectrum of fraction four (F4) of aged chokeberry juice after HLB 

solid phase extraction.
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Figure 17: Chromatogram of aged chokeberry juice after Sephadex LH-20 solid phase extraction on diol HPLC column with detection 

at 510 nm. 
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Figure 18. MALDI-TOF mass spectrum of the collected fraction from a diol column of aged 

chokeberry juice after LH-20 solid phase extraction.  
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Figure 19: Chromatogram of sulfoxyethyl cellulose SPE eluent on Develosil diol column at 510 nm. 
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Figure 20: Chromatogram of chokeberry juice on TSKgel size exclusion HPLC column. 

Pasteurized juice at 510 nm (A), 1 month aged juice at 510 nm (B), 6 month aged juice at 510 

nm (C), and fluorescence signal of average juice sample (D). 
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Figure 21: Photograph of TSKgel column inlet before and after reversed flow cleaning.  
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Figure 22: Photograph of molecular weight cutoff filters of 3,000, 30,000, 50,000, and 100,000 after centrifugation of aged chokeberry 

juice. 
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Figure 23: Absorbance (510 nm) of molecular weight cutoff filters of aged chokeberry juice (blue) and pasteurized chokeberry juice 

(red).  
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Figure 24: Photograph of molecular weight cutoff filters of 3,000, 10,000, 30,000, 50,000, and 100,000 after centrifugation of 

pasteurized chokeberry juice. 
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Figure 25: MALDI-TOF mass spectrum of 30,000-50,000 Dalton molecular weight cutoff filters 

of aged chokeberry juice. 
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Figure 26: Polyacrylamide gel electrophoresis of chokeberry juice at running pH 8.3 (top), 

acidified to pH 2 (middle), Fluoro RGB scan (bottom). Lane 1: 3 year aged juice, lanes 2-5: 6 

months aged juice after MWCO filters: 0-50 kDa (2), 0-100 kDa (3), 10-30 kDa (4), 30-50 kDa 

(5), lanes 6-9: pasteurized juice after MWCO filters: 0-50 kDa (6), 0-100 kDa (7), 10-30 kDa (8), 

30-50 kDa (9), lane 10: protein standard.  

 



  

109 
 

 
 

Figure 27: Low pH polyacrylamide gel electrophoresis of chokeberry juice. Lane 1: 

unpasteurized juice after C18 SepPak, lane 2: unpasteurized juice, lane 3: pasteurized juice after 

C18 SepPak, lane 4: pasteurized juice, lane 5: 6 months aged juice after C18 SepPak, lane 6: 6 

months aged juice, lane 7: pasteurized juice after MWCO filter 0-50 kDa, lane 8: pasteurized 

juice after MWCO filter 0-100 kDa, lane 9: 6 months aged juice after MWCO filter 0-50 kDa, 

lane 10: protein standard. 
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Figure 28: Agarose gel electrophoresis of chokeberry juice. Lane 1: unpasteurized juice after 

C18 SepPak, lane 2: pasteurized juice after C18 SepPak, lane 3: 6 months aged juice after C18 

SepPak, lane 4: pasteurized juice after MWCO filter 0-50 kDa, lane 5: protein standard, lane 6: 

pasteurized juice after MWCO filter 0-100 kDa, lane 7: 6 months aged juice after MWCO filter 

0-50 kDa, lane 8: 6 months aged juice after MWCO filter 0-100 kDa, lane 9: unpasteurized juice, 

lane 10: pasteurized juice. 
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Figure 29: Fresh chokeberry juice chromatograms at 510 nm before (top) and after (bottom) ultrasonication for 60 minutes.
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CHAPTER 4. Ascorbic acid-catalyzed degradation of cyanidin-3-glucoside: Proposed 

mechanism and identification of a novel hydroxylated product 
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Abstract 

  

BACKGROUND: Many brightly colored fruits and vegetables owe their pigmentation and 

beneficial health effects to anthocyanins.  Unfortunately, anthocyanins in the presence of 

ascorbic acid are readily degraded over juice processing and storage, which adversely affects 

color stability and potential health benefits.   

OBJECTIVE: This project focused on the effect of ascorbic acid as a catalyst in anthocyanin 

degradation.  

METHODS: The project involved searching for novel pigmented compounds in a simple model 

system composed of the most common anthocyanin cyanidin-3-O-β-glucoside and ascorbic acid, 

and a second model system consisting of blackberry extract supplemented with ascorbic acid.  

Degradation products were identified by HPLC-PDA and HPLC-MS. ESR was used to monitor 

hydroxyl radical formation in the model systems. 

mailto:lukeh@uark.edu
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RESULTS: Over 72 hours at ambient temperature, 67% of cyanidin-3-glucoside was lost in the 

model system during which time an unknown pigmented compound was formed. The unknown 

compound was also formed in a more complex model system consisting of blackberry extract 

and ascorbic acid. HPLC with PDA monitoring at 510 nm was used to detect a novel compound 

and LC-ESI-MS3 allowed a proposed structure to be built based on the fragmentation patterns. 

The unknown structure formed via oxidation of cyanidin 3-glucoside by ascorbic acid was 

identified as 6-hydroxy-cyanidin-3-glucoside. Production of hydroxyl radical in the base and 

blackberry model systems was confirmed by ESR.   

CONCLUSIONS: We propose that the pigmented compound is formed from hydroxyl radicals 

via the Haber-Weiss reaction. The addition of food grade hydroxyl radical scavengers to juices 

may be a viable treatment to prevent ascorbic acid catalyzed degradation of anthocyanins.   

 

Keywords: Anthocyanin, ascorbic acid, blackberry, cyanidin-3-glucoside, degradation product, 

hydroxyl radical, tandem mass spectrometry 

 

Introduction 

 

The vibrant blue, red, and purple colors of berries and many other fruits are due to 

anthocyanins.  In addition to serving as pigments, anthocyanins are thought to afford protection 

against chronic diseases through antioxidant, anti-inflammatory, and anti-cancer activities [1]. 

Fresh berry consumption is limited by seasonal availability and short shelf life. Therefore, many 

berries are processed and consumed in shelf stable products such as juices, jellies, and jams.  

Unfortunately, anthocyanins are susceptible to degradation during berry processing and storage 

of processed products at ambient temperature [2]. Anthocyanin losses have been attributed to 

many factors including exposure to heat, oxygen, enzymes, metals, and ascorbic acid [3-6]. 
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Oxidation by secondary oxidizing agents, such as hydroxyl radicals and superoxide, are thought 

to be contributing factors to color deterioration [7].    

Many studies report that anthocyanins and the color of processed berry products are 

unstable in the presence of ascorbic acid [8-11].  Two different mechanisms have been proposed 

for ascorbic acid (AA) catalyzed degradation of anthocyanins. The first involves a condensation 

reaction between anthocyanins and other components, such as ascorbic or organic acids [3, 8], 

and the second involves a radical mechanism leading to cleavage of the anthocyanin into 

phenolic acids [11, 12].  Much of the research related to structural changes in anthocyanins has 

been conducted on wine.  Pyranoanthocyanins, which are anthocyanin conjugates with an 

additional pyran ring between C-4 and the 5-OH have been identified in several studies [13-15].  

Pyranoanthocyanins can be formed from reactions between anthocyanins and fermentation 

products, such as acetaldehyde, pyruvic and acetoacetic acids [13, 16], as well as 

hydroxycinnamic acids [17, 18].  These compounds, which are consistent with the condensation 

product hypothesis proposed by Jurd [8] appear more pH stable [19] and have been detected in 

wine stored for several years [20].  Other than pyranoanthocyanins, polymeric pigments are a 

potential source of long-term color stability [21].  Polymeric pigments are the condensation 

product of anthocyanins and flavanols [22] and most often detected by MALDI-TOF-MS [23-

25].  

The fate of anthocyanins in the presence of AA is unclear. This study was undertaken to 

identify novel degradation products of anthocyanins formed via AA mediated oxidation using a 

C3G model system and blackberry model system. 
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Materials and methods 

Materials  

Cyanidin-3-O-β-glucoside standard (>95%) was purchased from Chromadex (Irvine, CA, 

USA).  HPLC grade methanol was purchased from EMD Millipore (Billerica, MA, USA) and 

formic acid from Fischer-Scientific (Fair Lawn, NJ, USA). ACS grade L-ascorbic acid was 

obtained from VWR International (Radnor, PA, USA), Dimethyl sulfoxide (DMSO) was 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  High-purity α-(4-pyridyl-1-oxide)-N-tert-

butylnitrone (POBN) was purchased from Alexis Biochemicals (San Diego, CA, USA). The 

University of Arkansas Horticulture department provided frozen blackberries. 

 

Formulation model systems 

Formulation of base model system and blackberry model system for HPLC and HPLC/MS 

analyses  

The base model system contained cyanidin-3-O-β-glucoside (200 µg/mL) and ascorbic 

acid (320 µg/mL) dissolved in water acidified to pH 3.6 by HCl. Each 4 mL replicate was 

injected once every 70 minutes based on the HPLC gradient duration over 72 hours. The aqueous 

blackberry extract was concentrated to 200 µg/mLC3G and supplemented to contain 320 µg/mL 

AA forming the blackberry model system.  Duplicates of each system were performed. 

 

Formulation of base model system and blackberry model system for ESR analysis  

 500 µL of 200 ppm blackberry extract solution (or 200 ppm C3G solution) was mixed 

with 5 µL of AA stock solution (32 mg/mL) to generate 320 ppm (0.32 mg/mL, final 

concentration) in the sample. In order to trap free radicals generated from the system, 50 mM 
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POBN and 10 mM DMSO was added to the sample. The system was maintained at room 

temperature. After mixing the AA, DMSO, POBN and blackberry extract (or C3G), the samples 

were injected into ESR for analysis.  

 

Anthocyanin analysis 

Blackberry extraction  

Frozen blackberries (18.74 g) were thawed at room temperature and triple extracted with 

20 mL methanol/water/formic acid (60:37:3 v/v/v), followed by 20 mL acetone/water/acetic acid 

(70:29.5:0.5 v/v/v) using an IKA-T18 Ultra-Turrax (Wilmington, NC, USA) [26].  After filtering 

through Miracloth (CalBiochem, La Jolla, CA), the combined filtrates were evaporated to 

dryness in a Speed Vac Plus SC210A (Cambridge Scientific, Cambridge, MA) and brought up 

into 1 mL acidified water (pH 3.6 via HCl).   

 

Alstroemeria extraction 

Dark red Alstroemeria flowers (11.09 g) (species and variety unknown) were extracted 

with 50 mL methanol/water/formic acid (60:37:3) using an IKA-T18 Ultra-Turrax (Wilmington, 

NC, USA).  Samples were injected without further concentration for qualitative analysis and 

used the following HPLC-PDA and HPLC-ESI-MS3 methodology. 

 

HPLC-PDA analysis of anthocyanins and degradation products    

 Chromatographic analyses were performed using dual Waters 515 pumps, 717plus 

autosampler, and a Waters 996 photodiode array detector (Milford, MA, USA).  A Waters 

Symmetry C18 column (4.6 x 250 mm; 5μm) separated the analytes using a 1.2 mL/min flow rate 
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with 5% formic acid in water (Solvent A) and methanol (Solvent B).  The elution began with 5% 

B and rose to 15% B in 10 min, from 15% to 35% B in 35 min, from 35% to 100% B in 5 min, 

followed by an isocratic wash for 10 min at 100% B, then re-equilibration of the column with 5% 

B for 10 min. UV-visible spectra were monitored from 200-700 nm and peak areas were 

recorded at 510 nm.   

  

HPLC-electrospray ionization tandem mass spectrometry (LC-ESI-MSn) analysis of degradation 

products 

 LC-ESI-MSn analysis was conducted using an HP 1000 series HPLC and a Bruker 

Esquire 2000 quadrapole ion trap mass spectrometer.  Samples from both model system and 

blackberry extracts were separated using a Waters Symmetry (4.6 x 250 mm; 5μm) column and 

gradient as described above.  The mass spectrometry analysis was performed in both positive and 

negative ion modes under the following conditions: capillary voltage at 4 kV with polarity [+] 

for negative ion mode and [-] for positive ion mode analysis, nebulizer gas pressure 32 psi, dry 

gas flow  12 L/min, and skim voltage  at 53.7 V and again polarity switched for respective mode.  

Ions were isolated and fragmented in quadrapole ion trap with excitation amplitude of 1.2 volts.   

 

Direct infusion electrospray ionization ion cyclotron resonance (ICR) mass spectrometry 

analysis of degradation product 

 Bruker ApexOe 9.4 T ion cyclotron resonance mass spectrometer was used in its positive 

ion mode by infusing the sample using syringe pump operating at 180 l/hr.  Capillary voltage at 

4.4 kV, spray shield voltage at 3.8 kV with polarity [-], nebulizer gas pressure at 1.2 L/min, dry 

gas flow at 4.4 L/min with dry gas temperature at 200 OC conditions were used during the 
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analysis. The settings favor both low and high molecular weight trapping conditions in the ICR 

cell.   

 

Electron spin resolution (ESR) analysis 

Electron spin resonance analyses were operated on a Bruker Elexsys spectrometer at 9.76 

GHz and room temperature. ESR settings were modulation frequency, 100 kHz; modulation 

amplitude, 1.0 G; microwave power, 20 mW; receiver gain, 2.5 × 105; sweep width, 70 G; and 

time constant, 0.65 s. 

 

Results and discussion 

Unknown formation in base model and blackberry systems 

 Cyanidin-3-O-β-glucoside was selected for study in the model system since it is the most 

common anthocyanin in blackberries [27] and in nature [28]. The ascorbic acid:anthocyanin ratio 

used in the model system is similar to that found in strawberries [29, 30].   

To search for potential degradation products of anthocyanins, the base model system 

containing C3G and AA was scanned for emerging peaks at 510 nm.  One salient peak appeared 

to increase as soon as one hour after addition of AA to the base model system.  The unknown 

peak continued to increase in area for approximately 30 hours before quickly falling to near zero 

area under the curve by 72 hours.  Compound 1 had a λmax of 500.6 nm; therefore Fig. 2 displays 

the PDA signals of Compound 1 and C3G at 500 nm at 30 hrs. Compound 1 demonstrated 

greater hydrophilicity than C3G eluting about 10 minutes earlier than C3G.  The same peak in 

the blackberry system also had an earlier retention time and lower λmax than C3G, but had nearly 

a 10-fold drop in peak area.  The greater number of polyphenolic, radical-scavenging analytes in 
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the blackberry system likely quenched the reaction mechanism resulting in protracted formation 

and lower production of Compound 1.   

The dramatic effect of AA on the degradation of C3G is featured in Fig. 4.  In the C3G 

control, the peak area remains nearly constant over 70 hours, while the addition of AA resulted 

in a rapid decrease in C3G peak area.  This agrees with the findings of other researchers that 

anthocyanins are readily degraded in the presence of AA [10, 11].   

 

Structural elucidation of compound 1 

Tandem mass spectrometry yielded beneficial data toward structural elucidation, as seen 

in Table 1 and Fig. 5.  Electrospray and tandem mass spectrometry are excellent tools for 

anthocyanin identification [31].  Comparing spectra of C3G and Compound 1, it was clear that 

Compound 1 had an m/z value 16 amu greater than C3G.  We suspect Compound 1 to contain an 

additional hydroxyl group on one of the unsubstituted carbons.  Compound 1 eluted earlier than 

C3G, which demonstrates increased hydrophilicity, strengthening the argument for an additional 

hydroxyl group.  Anthocyanins often form polymers with a C4C8 linkage, but sometimes 

feature a C4C6 [32].  The dearth of reactivity at C6 in polymers is likely due to steric 

hindrance, which is not an issue in the hydroxyl addition. A related compound is 6-hydroxy-

cyanidin-3-rutinoside, which is found in Alstroemeria flowers and described as less stable than 

cyanidin [33].  An extract of dark red Alstroemeria flowers was analyzed with tandem mass 

spectrometry and compared to the MS3 of Compound 1 (Fig. 5).  Although Alstroemeria contains 

a rutinoside, the sugar is fragmented by tandem mass spectrometry allowing a direct comparison 

between the aglycone: 6-hydroxycyanidin.  Therefore we propose that Compound 1 is 6-

hydroxy-cyanidin-3-O-β-glucoside (Fig. 1).  This is further validated by the observed peak at m/z 
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465.1030 by high resolution mass data for Compound 1 in the base model system.  Mass error of 

0.5 ppm between observed and expected mass (465.1028) lead to possible elemental composition 

as the targeted compound elemental composition, C21H21O12. The search for the elemental 

composition was done by making no assumptions for the presence or absence of any elements.  

 

Proposed mechanism responsible for the formation of compound 1 

Ascorbic acid can have varied effects on anthocyanin content.  It has been reported that 

AA can reduce enzymatic degradation of anthocyanins in grape juice [34]. Alternatively, AA 

could produce hydrogen peroxide that would bleach anthocyanins [35-37].  Regardless of the 

presence of oxygen or nitrogen, AA had a significant effect on anthocyanin degradation [3].  

This finding led to an agreement with Jurd [8] that a condensation reaction occurred between the 

anthocyanin and AA, which broke the conjugation and resulted in a loss of color.  However, 

Jurd’s condensation reaction mechanism includes a pentavalent carbon in the final product. The 

current research did not detect a condensation product between AA and C3G.  In the absence of 

AA, a nitrogen flush had a small protective effect on anthocyanin retention compared to an 

oxygen rich environment [3], demonstrating a greater effect of AA than oxygen.  

 

(I)    Fe3+ + O2
.- ⇌ Fe2+ + O2    

(II)   2O2
.- + 2H+  ⇌ H2O2 + O2  

(III)  Fe2+ + H2O2 ⇌ .OH + -OH + Fe3+ 

 

Hydrogen peroxide formed via the Haber-Weiss reaction (Eq. 1-3) [38] of AA and iron or copper 

is the likely catalyst in forming Compound 1 from C3G [39].  There is very little iron and copper 
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in the water used in the model system, but it may be enough to initiate the Haber-Weiss reaction.  

Although iron is a more efficient catalyst than copper [36], the model system contains more 

copper. Martell found that extremely low levels (0.7 μM) of copper still exhibited catalytic 

activity and led to hydroxyl radical production [40].  The water used in the model and blackberry 

systems contained 0.2 μM copper, which is a comparable concentration. Several researchers have 

studied the degradation kinetics of anthocyanin by H2O2 [41-44], but none reported the presence 

of Compound 1.  Additionally, Tsuda et al. used a strong radical initiator in a model system with 

C3G, which resulted in the formation of protocatechuic acid and 4,6-dihydroxy-2-O-β-glucosyl-

3-oxo-2,3-dihydrobenzofuran [45].  However, neither of these compounds were detected at 280 

nm in our model systems.  

Figure 6 depicts our proposed mechanism of formation for Compound 1 involving the 

hydroxyl radical from hydrogen peroxide.  Since Compound 1’s λmax is 500.6 nm, it must retain 

conjugation throughout the π system and the mechanism must agree with the preservation of 

conjugation.  The hydroxyl radical likely attacks C-6 because that follows an ortho-addition 

between two hydroxyl groups on C-5 and C-7.  Hydroxyl radical ortho-additions had the highest 

rate constants and lowest activation energy compared to meta- and para-additions to aromatic 

compounds [46].  There is potential for the hydroxyl group to add to C-8, but we do not see any 

peak separation or splitting via HPLC indicating a majority, if not the entire reaction proceeds to 

C-6 or the two positional isomers elute simultaneously.  The instability of Compound 1 could be 

caused by the increase in o-quinone formation since the additional hydroxyl group allows o-

quinone formation with either C-5 & C-6 or C-6 & C-7.  Given the similarity in structure 

between C3G and Compound 1, their molar absorptivity constants would be similar and allow 

comparison of their peak areas. In the model system, the area at Compound 1’s Cmax is 7.56 ± 
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0.53 % of the area of C3G’s degradation at that time. The blackberry system had even less of a 

conversion of C3G to Compound 1 with 1.03 ± 0.22% of the area converted.  The low 

transformation rate is indicative of a radical mechanism.  

Confirmation of hydroxyl radical in the formation of compound 1 

 To confirm the presence of hydroxyl radical, electron spin resonance (ESR) was used to 

analyze the base model system and blackberry model system supplemented with AA.  Due to the 

low stability of HO˙ spin adduct, the reaction between dimethyl sulfoxide (DMSO) and HO˙ has 

been used to enhance the spin trapping detection of HO˙ [47].  This method detects the methyl 

radical (˙CH3) generated from the reaction of DMSO and HO˙ instead of directly trapping HO˙. 

In Fig. 7, the ESR spectrum we see in 5) showed the signals of ˙CH3 indicating HO˙ is formed 

from the system containing blackberry extract, ascorbic acid, POBN, and DMSO. The signals we 

see in 6) are stronger than those in 5) mainly due to the use of pure compound C3G. The 

generation of HO˙ from the reaction of blackberry extract and ascorbic acid support our proposed 

mechanism. 

 

Conclusions 

The addition of AA led to an increased rate of degradation of C3G in a model system 

based on the AA:C3G ratio found in strawberries.  The degradation products of C3G were 

monitored for red colored compounds and the proposed structure of 6-hydroxy-cyanidin-3-

glucoside was detected and described based on tandem mass spectrometric results.  The role of 

hydroxyl radical in formation of the novel compound was confirmed by ESR analysis. The peak 

area of the degradation product accounted for less than 8% of the area of C3G degraded over 

time. Additional research is needed to identify other degradation products of anthocyanins 
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catalyzed by ascorbic acid and to determine if hydroxylation of other polyphenols occurs via AA 

catalyzed oxidation.  The addition of food grade hydroxyl radical scavengers to berry juices may 

be a viable treatment to prevent ascorbic acid catalyzed degradation of anthocyanins.  
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Figure captions 

 

Figure 1. Cyanidin-3-glucoside and proposed structure of Compound 1. 

 

Figure 2. HPLC chromatogram (500 nm) of Compound 1 and C3G at 30 hours in the base model 

system. 

 

 

 

 with ascorbic acid (Ο).  

 

Figure 5. HPLC/MS3 analysis of C3G (A), Compound 1 (B), and 6-hydroxycyanidin (C) 

 

Figure 6. Proposed mechanism of formation of Compound 1. 

 

Figure 7. ESR spectra from the complete blackberry extract-ascorbic acid system. The reaction 

mixture contained 200 ppm blackberry extract (BE) solution (or 200 ppm C3G solution), 320 

ppm ascorbic acid, 50 mM POBN, and 10 mM DMSO. 1) ESR spectrum of the reaction 

excluding ascorbic acid. No ESR signals were detected. 2) ESR spectrum of the reaction 

excluding POBN. No ESR signals were detected. 3) ESR spectrum of the reaction excluding 

DMSO. No ESR signals were detected. 4) ESR spectrum of the reaction excluding blackberry 

extract. No ESR signals were detected. 5) ESR spectrum of the complete system reaction. ESR 

signals were detected from the combination of blackberry extract, ascorbic acid, DMSO, and 

POBN. 6) ESR spectrum of the complete system reaction replacing blackberry extract with pure 

C3G. Stronger ESR signals were detected from the combination of C3G, ascorbic acid, DMSO 

and POBN. 
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Abstract 
  

 Blackberry anthocyanins provide a vivid attractive color and antioxidant activity; 

however, anthocyanins degrade during juice processing and storage. Maintaining high 

anthocyanin concentrations in berry juices may lead to greater antioxidant and health benefits for 

the consumer. The objective of this study was to evaluate potential additives to stabilize 

anthocyanins during storage of blackberry juice. The anthocyanin stabilizing agents; glutathione, 

galacturonic acid, diethylenetriaminepentaacetic acid and tannic acid were added to blackberry 

juice at concentration of 500 mg/L. Juices were evaluated over five weeks of accelerated storage 

at 30oC for anthocyanin, flavonol, and ellagitannin contents by HPLC and percent polymeric 

color. Glutathione had the greatest protective effect with 11% greater retention (P=0.04) of total 

anthocyanins and polymeric color was reduced to 25.83% from 33.06% in the control juice 

receiving no additive following five weeks of storage. Therefore, a second study was performed 

with glutathione in combination with lipoic and ascorbic acids in an effort to use antioxidant 

recycling to achieve a synergistic effect. There was no difference in total anthocyanins between 

glutathione and any of the combinations. There was a similar protective effect of treatments in 

mailto:lukeh@uark.edu
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total anthocyanins and percent polymeric color during storage, suggesting that the antioxidant 

recycling system had no protective effect relative to glutathione alone.  Anthocyanin degradation 

was modeled in both studies and the best fit was an exponential decay. The models illustrate how 

glutathione supplementation provides an additional 1.2 weeks of storage compared to the control, 

while this time can be approximately doubled based on the elevated temperatures of accelerated 

storage. There were no notable changes in ellagitannin or flavonol content among additives or 

over storage. Two flavonols, quercetin-3-glucuronide and quercetin-3-pentosyl-glucuronide, 

were identified and quantified in blackberries for the first time. Glutathione appears to be a 

promising blackberry juice additive to protect against anthocyanin degradation during storage.  

 

Keywords: anthocyanin, antioxidant, blackberry, juice, stabilizer, glutathione 

†Electronic supplementary information (ESI) available: Figures S1–S10.  

 

Introduction 

 

 Blackberries are a popular fruit with high concentrations of antioxidants, particularly 

anthocyanins and ellagitannins that possess positive health effects.1-3 Fresh berries have limited 

shelf-life and thus need to be processed into jams, juice, or frozen to limit postharvest losses. 

Anthocyanin content decreases over processing and storage, which most likely has an adverse 

effect on health benefits. Various additives have been added to berry juices to stabilize 

anthocyanins, including β-cyclodextrin,4 pectins and other polysaccharides,5 and copigments 

such as phenolic acids.6-7 Cyclodextrin’s effectiveness may be due to inclusion of the 

anthocyanin within the ring shape of the molecule and/or hydrophobic interactions, both of 

which could restrict the hydration reaction responsible for anthocyanin bleaching.4 Pectin can 
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interact with anthocyanins through ionic and hydrogen bonding potentially limiting the hydration 

reaction as well.8 Galacturonic acid, the monomeric unit of pectin, may protect anthocyanins by 

electrostatic interactions.9 Protection via copigments is frequently described by π-π stacking of 

phenolic compounds above and below the anthocyanin in a “sandwich” effect.10   

Often very high additive concentrations are needed to limit anthocyanin degradation, 

therefore a recycling mechanism of multiple additives could be effective at lower concentrations. 

An antioxidant recycling approach may be advantageous since both enzymatic and non-

enzymatic oxidation are reported to play a role in anthocyanin degradation 11-12.  Antioxidant 

recycling has been demonstrated in both in vitro and in vivo cellular systems;13 however, to the 

best of our knowledge this mechanism has not been tested in a juice product. Combinations of 

glutathione, lipoic acid, ascorbic acid, and vitamin E have been linked in recycling 

mechanisms.14-17 Recycling mechanisms involve equilibria between each component in an effort 

to keep all antioxidants active for greater periods of time. The concentration of each component 

in the system must be balanced in order to prevent a pro-oxidant environment.18 The objective of 

this study was to evaluate the effect of stabilizing agents with different mechanistic tactics on 

blackberry juice color and an antioxidant recycling mechanism on anthocyanin, flavonol, and 

ellagitannin content in blackberry juice over accelerated storage.  

 

 

Materials and methods 

 

Materials 

 Cyanidin-3-O-glucoside was obtained from Chromadex (Irvine, CA, USA), whereas 

other standards: ellagic acid, ascorbic acid, lipoic acid, glutathione, galacturonic acid, 

diethylenetriaminepentaacetic acid (DTPA), tannic acid, potassium metabisulfite were purchased 
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from Sigma Aldrich (St. Louis, MO, USA). HPLC-grade methanol was purchased from EMD 

Millipore (Billerica, MA, USA) and formic acid from Fischer-Scientific (Fair Lawn, NJ, USA). 

Frozen blackberries (Mexican origin) were purchased from a local supermarket. 

 

Juice production 

 Frozen blackberries were thawed while heating in a steam kettle until boiling and then 

held for three minutes.  The berries were cooled and centrifuged at 9,447 x g for 10 min.  Since 

we were not interested in improving juice yield, no commercial enzyme cocktail was used to 

macerate cell wall polysaccharides prior to centrifugation. The supernatant was pooled and 500 

mg/L of each stabilizing agent was added to the respective volume of blackberry juice.  We 

selected this concentration of stabilizing agents based on the range of maximum concentrations 

(2-1000 mg/L) allowed by the FDA for the synthetic antioxidants BHA and BHT in foods 19. 

Two separate studies were performed. In stage one, the stabilizing agents glutathione, 

galacturonic acid, tannic acid and diethylenetriaminepentacetic acid (DTPA) were studied and in 

stage two glutathione, lipoic acid, ascorbic acid alone and the combinations (500 mg/L of each) 

of glutathione + lipoic acid and glutathione + lipoic acid + ascorbic acid were studied. A 

different lot of frozen blackberries was used for each study. Juice samples in triplicate stored in 8 

mL glass tubes were pasteurized in a water bath at 90oC for 1.5 min. The pasteurization 

conditions were comparable to those used in previous studies on blackberry juice 20-22. Although 

we did not measure polyphenol oxidase activity in the juices following processing, we believe 

the two thermal treatments used during processing were sufficient to inactivate the enzyme. 

Pasteurized juices were stored in a 30oC oven for accelerated storage until analysis.  New 

samples were removed from the oven each week and analyzed for five weeks.  
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HPLC-PDA analysis of anthocyanins 

 Anthocyanin analysis followed the method of Cho et al. 2004.23 Juice samples were 

passed through 0.45 μm nylon syringe filters prior to HPLC injection. A Waters HPLC system 

(Waters Corp., Milford, MA) comprised of dual 515 pumps, a 717plus autosampler, and a 996 

photodiode array detector was used for chromatographic analyses. A Waters Symmetry C18 

column (4.6 x 250 mm, 5 μm) was used for separation of anthocyanins with a 1 mL/min flow 

rate and solvent A as 5% formic acid and solvent B as methanol. Elution started with 5% B, 

increased to 15% B in 10 min, from 15% to 35% in 35 min, then 100% in 5 min, with an 

isocratic wash at 100% B for 10 min, finishing with 5% B for a 10 min re-equilibration. UV-

visible spectra were monitored from 250-600 nm and peak areas were integrated at 510 nm. 

Anthocyanins were quantified as cyanidin-3-glucoside equivalents using external calibration 

curves ranging from 1-200 µg/mL.  

 

HPLC-PDA analysis of ellagitannins and flavonols 

 Ellagitannin and flavonol analysis followed the method of Hager et al. 200824 using the 

same HPLC system described above for anthocyanins. Juice samples were passed through 0.45 

μm nylon syringe filters prior to HPLC injection.  Separation was accomplished on a 250 x 4.6 

mm Phenomenex Aqua 5 μm C18 column (Torrance, CA) with solvent A as 2% acetic acid and 

solvent B as 0.5% acetic acid in water/acetonitrile (1:1 v/v) at 1 mL/min. A gradient was run 

from 10% to 55% B (0-50 min), from 55% to 100% B (50-60) min, decreasing to 10% B (60-65 

min), finishing with a 15 min re-equilibration. UV-visible spectra were monitored from 250-600 

nm, with peak areas integrated at 255 nm for ellagitannins and 360 nm for flavonols. 

Ellagitannins were quantified as ellagic acid equivalents and flavonols were quantified as rutin 

equivalents using external calibration of authentic standards ranging from 1-100 µg/mL.  
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HPLC-electrospray ionization tandem mass spectrometry (LC-ESI-MS) analysis of 

degradation products 
 

 LC-ESI-MS analysis was conducted using an HP 1000 series HPLC and a Bruker Esquire 

2000 quadrapole ion trap mass spectrometer.  Anthocyanins were separated using a Waters 

Symmetry (250 x 4.6 mm; 5μm) column and ellagitannins and flavonols on a Phenomenex Aqua 

(250 x 4.6 mm; 5 μm) column with gradients as described above.  The mass spectrometry 

analysis was performed in positive ion mode for anthocyanins and negative ion mode for 

ellagitannins and flavonols under the following conditions: capillary voltage at 4 kV with 

polarity [+] for negative ion mode and [-] for positive ion mode analysis, nebulizer gas pressure 

32 psi, dry gas flow 12 L/min, and skim voltage at 53.7 V and again polarity switched for 

respective mode.  Ions were isolated and fragmented in quadrapole ion trap with excitation 

amplitude of 1.2 volts.   

 

Polymeric color analysis 

 Percent polymeric color was measured according to the method of Giusti and Wrolstad 

2001.25 The juice was diluted to have an absorbance reading between 0.5 to 1.0 at 510 nm, 

detected by an 8452A diode array spectrophotometer (Hewlett-Packard, Palo Alto, CA). A 

control, unbleached sample was prepared with 0.2 mL of DI water and 2.8 mL of the diluted 

juice and a bleached sample consisted of 2.8 mL of diluted juice and 0.2 mL of 0.9 M potassium 

metabisulfite. The samples were allowed to equilibrate for 15 min and absorbance readings were 

recorded at λ = 420, 510, and 700 nm. Color density was calculated from the control sample and 

polymeric color from the bleached sample using the following formulas:  

 

color density = [(A420nm – A700nm) + (A510nm – A700nm)] x dilution factor 



  

142 
 

 

polymeric color = [(A420nm – A700nm) + (A510nm – A700nm)] x dilution factor 

 

Percent polymeric color was calculated from the result of these formulas: 

 

% polymeric color = (polymeric color/color density) x 100 

 

Color monitoring 

 A Konica Minolta Chroma meter CR-400 and data processor DP-400 was used to 

measure lightness (L), chroma (C), and hue (h) in the L*C*h color scheme (Konica Minolta, 

Japan). The chroma meter was calibrated with a white tile: x= 92.41, y= 0.3145, z= 0.3200, 

observer = 2o prior to each use. Color measurements were taken at the end of each five-week 

study. Juice samples were frozen (-20oC) until the time of analysis.  

 

Statistical Analysis 

 Three samples stored in different individual tubes per treatment were analyzed and 

graphed at each storage time using JMP Pro 13.  The Fit Model platform in SAS was used to 

analyzed all continuous responses for both experiments with a two factor (Treatments and 

Storage TIME) factorial design with 5 and 7 Treatments respectively and Time (Week with 6 

levels:0_PAST, 1, 2, 3, 4, and 5 weeks) and their interaction.  Due to the highly significant 

interactions for the most important responses such as the anthocyanins and polymeric color the 

Treatment*WEEK combination LSmeans (there were few missing values) were sliced and 

simple effect comparisons among the Treatment LSMEANS for Week5 were performed.   Also 

comparisons among any differences of the interaction LSmeans were assessed using Tukey’s 

HSD test (α = 0.05). 
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Nonlinear regression modeling was perform using the Nonlinear curve fitting platform of 

JMP Pro 13 to model and compare the decay rates of the Total anthocyanins (and Polymeric 

Color) of the various treatments for each experiment.  Several linear and nonlinear curves were 

fitted to the data varying for 2-4 parameters and the best fit was in every case the three parameter 

exponential decay model a+b*e(c*week)  (where a was the asymptote, b the scale and c the rate.  

The analysis provided with ANOM type of comparison of the three individual Treatment 

nonlinear parameter estimates to their overall mean for each experiment.  In addition useful 

inverse predictions allowed us to estimate and compare the amount of time it will take on 

average for each treatment in both experiments starting the similar initial amounts of Total 

anthocyanins to reduce to 1000 mg/L (> 50% of the starting anthocyanins total for each 

experiment).   

All analysis presented in this paper used SAS/Stat ®, Version 9.4 and the Fit Model and 

Nonlinear univariate platforms of JMP Pro ®, Version 13.1.  

 

Results and discussion 

 

Stabilizer effect on monomeric anthocyanins and percent polymeric color throughout 

accelerated storage 

 

Following pasteurization, blackberry juice with the addition of DTPA had the highest 

total anthocyanin content compared to other stabilizing agents in Stage 1 (Fig. 1). Blackberries 

have 0.62 mg iron and 0.17 mg copper/ 100 g berry.26 It is possible for small quantities of iron or 

copper to generate hydroxyl radicals that could degrade anthocyanins.27-28 DTPA is a strong 

chelator and likely functions as a protective agent to anthocyanin content by chelating the free 

iron and copper in the blackberry juice, thus limiting hydroxyl radical formation. Following 
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pasteurization, the control in Stage 1 had the lowest content of total anthocyanins demonstrating 

a protective effect by all additives. However in Stage 2, the control and lipoic acid additive had 

lower contents of total anthocyanins than all other treatments (Fig. 2). All glutathione-containing 

juices had a protective effect on total anthocyanin content as well as the juice with solely 

ascorbic acid added. There was no notable pH change with the addition of ascorbic acid or any of 

the additives. Glutathione and other thiols are reported to protect semi-purified extracts of 

bilberry and black currant anthocyanins (35-37% concentration) and double their absorption in 

Caco-2 cells and human plasma.  Glutathione is described as having superior functionality to 

other thiols due to two carboxylic acid moieties. The thiols were postulated to be tightly 

associated with the anthocyanidin at position 4 or the sugar moiety, which is the basis for thiol 

stabilization.29 The author included a structure showing a thiol bound to C-4 on delphinidin; 

however we did not detect any new anthocyanin peaks over the course of storage. 

Following five weeks of storage, glutathione treated juices had 13% more anthocyanins 

than control juices (p=0.0477), while all other treatments were similar to the control (Fig. 1). 

Galacturonic acid was nearly identical to the control (no stabilizing agent added) with regard to 

total anthocyanin content. Galacturonic acid was chosen for this study because of the potential 

for anthocyanin stabilization by electrostatic interactions between the molecules.9 Co-pigments 

and self-association are believed to protect anthocyanins from the hydration reaction by 

excluding water from the vicinity of the flavylium ion.30 Our results indicate galacturonic acid 

and tannic acid at 500 mg/L concentration had no protective or degradative effect on 

anthocyanins over five weeks of storage. The structure of tannic acid has a multitude of phenolic 

moieties that could physically protect the flavylium cation from hydration via a sandwich effect. 

Previous studies have shown tannic acid’s potential to stabilize anthocyanins in other fruit 
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juices.31-33 Other researchers have used tannic acid in a 1:1 ratio to anthocyanin concentration in 

model system using grape skins with significant stabilizing effects.33 A copigmentation review of 

literature using model systems and fruits juice depicted copigment:anthocyanin ratios ranging 

from 0.1 to 200 with the addition of various copigments, including flavonoids, cinnamic acids, or 

phenolic acids.7 The majority of research used very high ratios that are unrealistic for industrial 

application. 

The changes in the major blackberry anthocyanins, cyanidin-3-glucoside, cyanidin-3-

rutinoside, and cyanidin-3-xyloside throughout accelerated storage are shown in Fig. 3 for Stage 

1 and Fig. 4 for Stage 2. In Fig. 3, it is clear that glutathione provided the greatest stabilizing 

effect to each cyanidin glycoside compared to other additives analyzed. Following five weeks of 

storage glutathione treated juices had 13% and 12% higher levels of cyanidin-3-glucoside and 

cyanidin-3-rutinoside than the control (p = 0.05 and 0.003). Glutathione did not significantly 

preserve cyanidin-3-xyloside during the final two weeks of storage.  

 Due to the significant stabilizing effect of glutathione in Stage 1, combinations of 

glutathione with lipoic acid, and glutathione with both lipoic and ascorbic acids were added at 

500 mg/L of each component in an attempt to stabilize anthocyanins via antioxidant recycling in 

blackberry juice. Control and juice samples containing solely lipoic acid or ascorbic acid were 

also included in Stage 2. Cyanidin-3-xyloside decreased below the limit of quantification (5 

mg/L) following week four and showed a nonlinear decline.  As in Stage 1, cyandin-3-glucoside 

was the prevalent anthocyanin in blackberry juice, accounting for 92% of total anthocyanins after 

five weeks of storage, but showed a nonlinear decline over accelerated storage in Stage 2. 

Following five weeks of storage, all treatment combination with  
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 The percent polymeric color assay measures the ratio of bleachable monomeric 

anthocyanins to non-bleachable anthocyanins (presumably anthocyanin-tannin polymers) in a 

sample, which typically negatively correlates with total anthocyanin content. An increase in 

percent polymeric color could indicate anthocyanin-tannin polymers forming over storage or the 

same concentration of anthocyanin-tannin polymers accompanied by a decreasing concentration 

of monomeric anthocyanins.  Pyranoanthocyanins are also resistant to bleaching in the presence 

of SO2 
34, but we saw no evidence of these compounds in our HPLC chromatograms. Our 

findings mirror the anthocyanin quantification by HPLC, indicating a greater likelihood that the 

percent polymeric color values are caused by a decrease in monomeric anthocyanins and not an 

increase in anthocyanin-tannin polymers. A strong inverse relationship between percent 

polymeric color and total anthocyanins was observed in Stage 1 (R2=0.937) and Stage 2 

(R2=0.941) indicating that the low amount of anthocyanins remaining following storage are 

resistant to SO2 bleaching and may be polymeric compounds.  

 

Stabilizer effect on ellagitannins throughout accelerated storage 

 

 The three predominant ellagitannins in blackberries were previously identified using 

mass spectrometry and two of the compounds have identical m/z values: sanguiin H-6 and 

lambertianin A (m/z = 1868.7).35 Due to the lack of differentiation among the isomers, these two 

compound totals were summed in Figs. S1 and S2 for Stage 1 and 2, respectively. Lambertianin 

C was identified with m/z of 1401.1 with doubly charged ion peaks (MW = 2802.2). 

Collectively, these compounds were fairly stable over accelerated storage of blackberry juice 

regardless of stabilizer treatment.  
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 After pasteurization, ellagitannin concentration increased slightly (Figs. S1 and S2) and 

this may be caused by either the depolymerization of larger ellagitannins we detected or the 

release of bound ellagitannins from soluble cell wall polysaccharides by the thermal treatment. 

Gancel et al.22 also found an increase in ellagitannin content after pasteurization; however they 

used blackberry puree and attributed the increase to extraction from seeds. This author performed 

a second pasteurization on the juice and found a decline in ellagitannins accompanied by an 

increase in ellagic acid. We found the ellagitannins to be stable over accelerated storage at 30 oC, 

which is in contrast to the linear decline of lambertianin C and sanguiin H6 found at the same 

temperature in tropical highland blackberry juice storage over 35 days.22   

 The concentration of blackberry juice ellagitannins in this study were nearly 10-fold 

lower than values reported in a previous study using identical HPLC methodology.22,35 In the 

previous studies cv. Apache and tropical highland blackberries were used, while in the present 

study berries of Mexican origin, likely cv. Tupy, were used so the concentration difference could 

be due to different cultivars or varying environmental growing conditions. Stage 2 displayed 

higher total sanguiin H-6/lambertianin A levels with nearly 20 mg/L than Stage 1, which only 

had 8.6 mg/L in the sample with greatest concentration. The lower ellagitannin content found in 

our juice samples could be caused by a loss of ellagitannins in the pomace since the majority of 

ellagitannins are found in the seeds.24,36  

 

Stabilizer effect on flavonols throughout accelerated storage 

 

 The HPLC profile of flavonols in the blackberry juice is shown in Fig. 5 and includes 

exclusively quercetin derivatives. The flavonols were identified using mass spectrometry as 

quercetin-3-rutinoside (peak 1), quercetin-3-pentosyl-glucuronide (peak 2), quercetin-3-
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galactoside (peak 3), quercetin-3-glucoside (peak 4), and quercetin-3-glucuronide (peak 5) in 

Table 1. The sixth peak is also a quercetin moiety based on the mass fragment of m/z 301; 

however, the substituents were not identified. The mass spectra for each flavonol are depicted in 

Figs. S5-S10.  This is the first evidence in blackberries of quercetin-3-glucuronide (m/z 477, 

301), which was previously identified in strawberries,37 northern highbush blueberries,38 and 

raspberries39 and quercetin-3-pentosyl-glucuronide (m/z 609, 433, 301), which was previously 

identified in eastern teaberries.40   

 With respect to changes in pasteurization and storage, the quercetin derivatives, 

regardless of substituent, were stable through the five weeks of storage in Stage 1 (Fig. S3). In 

Stage 2, fluctuation in concentration occurred between weeks, but remained consistent 

throughout storage (Fig. S4). None of the additives had a stabilizing effect on flavonol content in 

Stage 1 or Stage 2. Other researchers found similar stability of quercetin derivatives in 

blackberry juice stored at temperatures ranging from 5-45 oC, with no effect of temperature on 

flavonol stability.22 Gancel et al. measured total quercetin derivatives as gallic acid equivalents 

and reported a concentration of 6.7 mg/L total quercetin derivatives in blackberry juice, while we 

used rutin equivalents and found 69.7 mg/L total quercetin derivatives in the pasteurized 

blackberry juice.22 

 

Changes in blackberry juice color 

 

 Color was measured using L*C*h and there was a significant increase in lightness values 

in all samples over accelerated storage in both Stages 1 and 2 (data not shown). This was likely 

caused by the decline in anthocyanin content measured by HPLC.  A similar trend of increasing 

lightness value was shown in blood orange juice stored over seven weeks at 4.5 oC.41 
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Elderberries contain high quantities of cyanidin-3-glucoside, which is comparable to 

blackberries, and the lightness of elderberry juice and concentrate at pH 3.5 increased 

significantly after thermal processing at 95 oC.42 Anthocyanins are sensitive to elevated 

temperature; therefore pasteurization must be accomplished quickly. Marchese43 demonstrated 

fluctuations in anthocyanin content and color change over a range of pasteurization temperatures 

and times, recommending pasteurization at 80oC.  

 There were no major changes in hue over storage with all Stage 1 samples averaging 

17.20 ± 5.77, while Stage 2 had an average hue value of 9.54 ± 2.89. With regard to chroma, 

tannic acid produced the most notable effect with a significant hyperchromic effect through 

pasteurization and storage. The same behavior was seen in model systems of pure anthocyanins 

after addition of tannic acid.9 Tannic acid was shown to improve color stability, but not 

necessarily chroma, in blood orange juice.31 Several studies have reported on the degradative 

effect of ascorbic acid on anthocyanins;11, 28,44-45 however, ascorbic acid at 500 mg/L did not 

significantly affect any color measurements in the present study. After extreme thermal 

treatment, elderberry juice hue increased from 10.79 to 40.75 and the chroma decreased from 

24.77 to 10.61.42 The change in chroma is related to a drastic decline in anthocyanins after 

heating, while the hue change is indicative of more yellow color. These authors compared 

strawberry, elderberry, and black carrot juice, which are all pigmented due to anthocyanins, 

finding food matrix critical to color stability.42   

 

Antioxidant recycling and redox potentials 

 

 The relative redox potentials of each component in our recycling mechanism allow a 

comparison of the reduction probability over time. The greater the potential, the greater the 
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likelihood of that compound being reduced. The anthocyanin profile of blackberries is composed 

primarily of cyanidin-3-glucoside and is one of the simplest anthocyanin profiles among berries. 

This allows for easier analysis, especially with redox potentials. At pH 3.5 of blackberry juice, 

cyanidin-3-glucoside is reported to have a redox potential of 490 mV by differential pulse 

voltammetry,46 which aligns with 584 mV in the aglycone, cyanidin.47 Glycosylation lowers 

redox potential.  Other researchers have measured redox potential in blackberries finding 468 

mV and 400 mV in Romanian and Croatian blackberries, respectively.48,49  

 The other components of the antioxidant recycling mechanism in Stage 2 are shown in 

Fig. 6, where lipoic acid has a redox potential of 1100 mV,50 ascorbic acid is 282 mV, and 

glutathione disulfide is -1500 mV.51 This illustrates lipoic acid will be the first to be reduced, 

while glutathione disulfide will be the first to be oxidized. These two compounds can potentially 

recycle each other and then assist in anthocyanin recycling. Cyanidin-3-glucoside and ascorbic 

acid will be intermediates in the process due to their median redox potentials. It is 

thermodynamically favorable to exchange electrons between ascorbic acid/C3G and lipoic acid 

radical cation in order to regenerate lipoic acid. Ascorbic acid radicals are easily recycled and are 

“relatively harmless, being neither strongly oxidizing, nor strongly reducing.”51 The recycling 

mechanism allows lipoic acid to function as an antioxidant for ROS (reactive oxygen species), 

but would not recycle any oxidized anthocyanins due to the difference in redox potentials. On the 

other hand, reduced glutathione has a redox potential of -258 mV52 and could serve as the 

reducing agent for any anthocyanin oxidation in the samples containing glutathione. This is 

likely why the addition of lipoic acid or lipoic and ascorbic acids did not improve anthocyanin 

content over storage of blackberry juice more than glutathione alone.  
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Conclusion 

 

 The addition of glutathione to blackberry juice resulted in greater retention of 

anthocyanins over accelerated storage compared to other stabilizing agents. Color was not 

visibly different over the course of storage, but lightness values increased presumably in 

response to anthocyanin degradation. Glutathione in combination with lipoic acid and ascorbic 

acid was tested to determine if an antioxidant recycling mechanism would reduce the 

concentration of stabilizing agents needed and stabilize anthocyanins more successfully; 

however, the combination was not more effective than glutathione alone. Glutathione did not 

bind to the anthocyanins, so further research is needed to determine the mechanism of 

stabilization.  
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Tables 

 

 

Table 1: Flavonol identification depicted in Figure 5. 

 

 

Peak Tentative identification 

m/z 

M- Fragments 

1 Quercetin-3-rutinoside 609 301 

2 
Quercetin-3-pentosyl-

glucuronide 
609 433, 301 

3 Quercetin-3-galactoside 463 301 

4 Quercetin-3-glucoside 463 301 

5 Quercetin-3-glucuronide 477 301 

6 Unidentified 505 465, 301 
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Table 2: Three parameter exponential decay model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage Variable AICc BIC SSE MSE RMSE R-

Square 

1 Total ACY 1044.559 1076.821 417873.66 5646.941 75.146 0.972 

1 % Polymeric 

Color 

328.596 
360.859 134.077 1.811 1.346 0.973 

2 Total ACY 12380.013 1280.337 390633.281 4340.369 65.881 
0.987 

2 % Polymeric 

Color 

443.907 486.231 250.307 2.781 1.667 0.967 
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Table 3: Goodness of fit measures for the fitted three parameter exponential decay model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage Treatment Total ACY Percent polymeric color 

1 Control 
888 + 1220e(-0.48*week) 47 - 38e(-0.20*week) 

1 Glutathione 512 + 1662e(-0.20*week) 102 - 92e(-0.04*week) 

1 DTPA 898 + 1344e(-0.47*week) 34 - 25e(-0.30*week) 

1 Galacturonic Acid 770 + 1387e(-0.42*week) 49 - 40e(-0.16*week) 

1 Tannic Acid 819 + 1371e(-0.46*week) 62 - 52e(-0.12*week) 

2 Control 557 + 1569e(-0.45*week) 51 - 26e(-0.47*week) 

2 Glutathione 745 + 1627e(-0.45*week) 42 - 22e(-0.67*week) 

2 Glutathione + Lipoic 691 + 1757e(-0.45*week) 47 - 26e(-0.37*week) 

2 GLA 759 + 1670e(-0.49*week) 43 - 20e(-0.40*week) 

2 Lipoic Acid 664 + 1540e(-0.50*week) 49 - 26e(-0.49*week) 

2 Ascorbic Acid 631 + 1708e(-0.68*week) 53 - 30e(-0.40*week) 
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Table 4: Inverse prediction of total anthocyanin retention based on nonlinear regression model 

 

Stage Treatment 

Specified 

Total ACY 

(mg/L) 

Predicted 

week Std error 

Lower 

95% Upper 95% 

1 Control 1000 5.04 0.66 3.75 6.33 

1 Glutathione 1000 6.21 0.69 4.87 7.56 

1 DTPA 1000 5.46 0.82 3.85 7.06 

1 Galacturonic acid 1000 4.28 0.28 3.73 4.82 

1 Tannic acid 1000 4.4 0.35 3.71 5.09 

2 Control 1000 2.84 0.1 2.64 3.04 

2 Glutathione 1000 4.09 0.19 3.72 4.47 

2 

Glutathione + 

Lipoic 1000 3.86 0.15 3.57 4.15 

2 GLA 1000 3.95 0.18 3.6 4.31 

2 Lipoic acid 1000 3.04 0.11 2.81 3.26 

2 Ascorbic acid 1000 2.25 0.09 2.08 2.42 
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Figure captions 
 

Figure 1. Total anthocyanin concentrations in blackberry juice fortified with stabilizing agents 

through pasteurization and accelerated storage in Stage 1 (LSmeans Treatment*Time ± one 

standard error based on the fitted model). 

 

Figure 2. Three parameter exponential decay model of total anthocyanins in Stage 1. 

 

Figure 3. Total anthocyanin concentrations in blackberry juice fortified with stabilizing agents 

through pasteurization and accelerated storage in Stage 2 (LSmeans Treatment*Time ± one 

standard error based on the fitted model). 

 

Figure 4. Three parameter exponential decay model of total anthocyanins in Stage 2. 

 

Figure 5. Individual anthocyanin concentrations in blackberry juice fortified with stabilizing 

agents over accelerated storage in Stage 1 (LSmeans Treatment*Time ± one standard error based 

on the fitted model). 

 

Figure 6. Individual anthocyanin concentrations in blackberry juice fortified with stabilizing 

agents over accelerated storage in Stage 2 (LSmeans Treatment*Time ± one standard error based 

on the fitted model). 

 

Figure 7. HPLC chromatogram (360 nm) of flavonols in blackberry juice 

 

Figure 8. Proposed antioxidant recycling mechanism (adapted from Lu & Liu 2002) 
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Appendix: Supplementary table: 

 

 

Table S1: Inverse prediction of percent polymeric color based on nonlinear regression model 

 

Stage Treatment 

Specified 

Percent 

Polymeric 

Color (%) Predicted week Std error Lower 95% Upper 95% 

1 Control 25 2.76 0.11 2.56 2.97 

1 Glutathione 25 4.75 0.20 4.35 5.14 

1 DTPA 25 3.23 0.14 2.95 3.50 

1 Galacturonic acid 25 3.02 0.11 2.80 3.24 

1 Tannic acid 25 3.01 0.11 2.80 3.22 

2 Control 40 1.83 0.12 1.59 2.07 

2 Glutathione 40 3.55 0.35 2.85 4.24 

2 Glutathione + Lipoic 40 3.49 0.18 3.14 3.85 

2 GLA 40 4.36 0.42 3.53 5.19 

2 Lipoic acid 40 2.02 0.13 1.77 2.27 

2 Ascorbic acid 40 2.01 0.11 1.78 2.23 
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Supplementary figures:  

 

Figure S1. Three parameter exponential decay model of percent polymeric color in Stage 1. 

 

Figure S2. Three parameter exponential decay model of percent polymeric color in Stage 2. 

 

Figure S3. Anom plots of predicted week and growth rate of total anthocyanins and percent 

polymeric color in Stage 1. 

 

Figure S4. Anom plots of predicted week and growth rate of total anthocyanins and percent 

polymeric color in Stage 2. 

 

Figure S5. Ellagitannin concentrations in blackberry juice fortified with stabilizing agents over 

accelerated storage in Stage 1 (LSmeans Treatment*Time ± one standard error based on the 

fitted model). 

 

Figure S6. Ellagitannin concentrations in blackberry juice fortified with stabilizing agents over 

accelerated storage in Stage 2 (LSmeans Treatment*Time ± one standard error based on the 

fitted model). 

 

Figure S7. Flavonol concentrations in blackberry juice fortified with stabilizing agents over 

accelerated storage in Stage 1 (LSmeans Treatment*Time ± one standard error based on the 

fitted model). 

 

Figure S8. Flavonol concentrations in blackberry juice fortified with stabilizing agents over 

accelerated storage in Stage 2 (LSmeans Treatment*Time ± one standard error based on the 

fitted model). 

 

Figure S9. Mass spectra of quercetin-3-rutinoside in negative mode.  

 

Figure S10. Mass spectra of quercetin-3-pentosyl-glucuronide in negative mode.  

 

Figure S11. Mass spectra of quercetin-3-galactoside in negative mode.  

 

Figure S12. Mass spectra of quercetin-3-glucoside in negative mode.  

 

Figure S13. Mass spectra of quercetin-3-glucuronide in negative mode.  

 

Figure S14. Mass spectra of unidentified blackberry flavonol in negative mode.  
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Figure S10 
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Figure S11 
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Figure S12 
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Figure S13 
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Figure S14 
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CHAPTER 6. Formation, mass spectrometric identification, and color stability of 

acetaldehyde-catalyzed condensation of red radish (Raphanus sativus) anthocyanins and 

(+)-catechin 
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Abstract 
There is great demand to replace artificial colors with natural alternatives. However, 

many natural colorants face issues with solubility, off flavors, and poor stability to pH, 

temperature, light and ascorbic acid. Anthocyanins are a class of pigments found in many fruits 

and vegetables that are water-soluble and range from red to purple.  Red radish anthocyanins are 

particularly stable due to acylation of anthocyanin with organic and phenolic acid moieties.  We 

combined radish anthocyanins with acetaldehyde and catechin in a model system to form ethyl-

bridged dimers that retain color. After incubation at ambient temperature for one week the 

reaction mixture with acetaldehyde and catechin turned from bright red to a vivid purple color.  

The newly formed compounds were identified with LC-ESI-MS. Color stability was monitored 

over six months with CIEL*C*h and anthocyanin stability was evaluated by HPLC.  Next, 

radishes were fermented by Zymomonas mobilis, which are known as high acetaldehyde 

producing bacteria. Natural sources of catechin were used to replace the catechin standard, but 

the same purple color did not appear with the addition of cranberry, grape seed, cocoa, fava 

beans, blueberry pomace, muscadine grape pomace, or tea extracts. The ethyl-bridged radish 

anthocyanins possess excellent color stability and could serve as natural colorants to synthetic 

food additives. 

Keywords: anthocyanin, acetaldehyde, radish, catechin, natural color 

mailto:lukeh@uark.edu
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Introduction 

 Anthocyanins are an obvious candidate to replace artificial dyes in the food industry, but 

these natural colorants currently have stability issues. There is a need for stable natural colorants 

to satisfy consumer demands, especially in beverages, because some believe artificial dyes may 

impose negative health effects, such as ADHD (Feingold 1976). Using anthocyanins from 

natural sources allows a cleaner product label and removal of E number/artificial colorants from 

the label. Some sources of anthocyanins include berries, red cabbage, eggplant, and radishes. 

Adding one of these to a label can deliver the appeal of an ingredient over an additive (Stintzing 

and Carle 2004). 

In the presence of anthocyanins and flavanols, like catechin or procyanidins, 

acetaldehyde can act as a polymerization agent by reacting at carbon-8 in red wines (Timberlake 

1976). The reaction of anthocyanins, acetaldehyde, and flavanols has been well documented in 

wine, but has not been studied extensively in other fruits and vegetables. Authors have found 

yellow xanthylium ion compounds formed in wine, but the more significant products were violet.  

Others have found reddish-blue enantiomers of malvidin-3-glucoside (the main anthocyanin in 

wine) with an ethyl linkage to procyanidin B2 catalyzed by acetaldehyde (Francia-Aricha 1997).  

Violet compounds were also noted in this study.  Acetaldehyde is formed through fermentation 

and also through oxidation of ethanol. This volatile compound can react with flavanols to form 

ethyl-bridged flavanol polymers that correlate with wine age (Drinkine et al. 2007), indicating 

the slow rate of this reaction. By reacting at carbon-4 instead of carbon-8, acetaldehyde can 

combine with anthocyanins to form pyranoanthocyanins that are highly stable compounds, but 

found in low concentrations in wine (Morata et al. 2007).  
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 Acylated anthocyanins possess greater color stability than non-acylated anthocyanins 

(Cevallos-Casals et al. 2004, Eiro et al. 2002, Malien-Aubert et al. 2001) and the acylated 

anthocyanins from radishes are a suitable replacement for FD&C Red No. 40 (Giusti et al. 1996). 

Both Red No. 40 and Blue No. 1 are frequently used in dark blue and purple beverages. In an 

effort to further enhance the stability of acylated ACYs and replace both FD&C Red No. 40 and 

Blue No. 1, the objective of this study was to naturally create and identify a novel acylated 

anthocyanin with a stable violet color from red radishes in the presence of acetaldehyde and 

catechin.   

 

Materials and methods  

 

Materials 

 Cyanidin-3-O-glucoside was obtained from Chromadex (Irvine, CA, USA).  

Acetaldehyde, (O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA),  

glucose, yeast extract, dipotassium phosphate, and catechin were purchased from Sigma Aldrich 

(St. Louis, MO, USA). HPLC-grade methanol was purchased from EMD Millipore (Billerica, 

MA, USA) and formic acid from Fischer-Scientific (Fair Lawn, NJ, USA). Zymomonas mobilis 

strain ATCC 31821 was purchased from American Type Culture Collection (Manassas, VA). 

Radishes, Hershey’s special dark cocoa powder, Dagoba cocoa powder, fresh blueberries, 

cranberry sauce, Lipton green tea, and fava beans were purchased from a local supermarket. 

MegaNatural gold grape seed extract was obtained from Polyphenolics (Madera, CA). 
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Extraction of polyphenolics and formulation of model systems 

 Radishes were hand peeled and the anthocyanin-containing skins were extracted with 

methanol/water/ formic acid (60:37:3 v/v/v) and acetone/water/acetic acid (70:29.5:0.5 v/v/v) 

using a Euro Turrax Tissuemizer (Tekmar-Dohrman Corp., Mason, OH).  Natural sources of 

catechin: cranberry, grape seed, cocoa, fava beans, blueberry pomace, muscadine grape pomace, 

and tea were extracted in a similar manner using acetone/water/acetic acid (70:29.5:0.5 v/v/v). 

Extracts were filtered using Miracloth (Calbiochem, LaJolla, CA) and concentrated using a 

Buchi rotary evaporator at 35 oC. Catechin sources were diluted for model systems to 500 mg/L 

catechin equivalents. Radish extracts were diluted to match the absorbance and color properties 

of Red No. 40 in sports beverages. The samples contained either the radish extract alone 

(control), or 70 mM acetaldehyde (RA), 70 mM acetaldehyde and 1.7 mM catechin (RAC) or 

catechin equivalents in water acidified to pH 3.5 by HCl. Triplicates samples of 5 mL each were 

repeatedly measured over storage for six months. The natural sources of catechin were added in 

500 mg/L equivalents of catechin.  

 

Color monitoring 

 A Konica Minolta Chroma meter CR-400 and data processor DP-400 was used to 

measure lightness (L), chroma (C), and hue (h) in the L*C*h color scheme (Konica Minolta, 

Japan). The chroma meter was calibrated with a white tile: x= 92.41, y= 0.3145, z= 0.3200, 

observer = 2o prior to each use. Color measurements were taken using five mL of sample with 

repeated measures at specified time intervals. 
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HPLC-PDA analysis of anthocyanins 

 Anthocyanin analysis followed the method of Cho et al. 2004. Radish samples were 

passed through 0.45 μm nylon syringe filters prior to HPLC injection. A Waters HPLC system 

(Waters Corp., Milford, MA) comprised of dual 515 pumps, a 717plus autosampler, and a 996 

photodiode array detector was used for chromatographic analyses. A Waters Symmetry C18 

column (4.6 x 250 mm, 5 μm) was used for separation of anthocyanins with a 1 mL/min flow 

rate and solvent A as 5% formic acid and solvent B as methanol. Elution started with 15% B, 

increased to 60% B in 60 min, from 60% to 100% in 2 min, with an isocratic wash at 100% B for 

10 min, finishing with 15% B for a 10 min re-equilibration. UV-visible spectra were monitored 

from 250-600 nm and peak areas were integrated at 510 nm. Anthocyanins were quantified as 

cyanidin-3-glucoside equivalents using external calibration curves ranging from 1-200 µg/mL.  

 After Sephadex LH-20 purification, the one month aged RAC sample was fractionated 

from the Waters Symmetry HPLC column. Fractions were collected every minute, evaporated to 

dryness, then dissolved in a small volume of methanol and used for MALDI-TOF-MS analysis. 

 

HPLC-electrospray ionization tandem mass spectrometry (LC-ESI-MS) analysis of 

degradation products 
 

 LC-ESI-MS analysis was conducted using an HP 1000 series HPLC and a Bruker Esquire 

2000 quadrapole ion trap mass spectrometer.  Radish samples were separated using a Waters 

Symmetry (250 x 4.6 mm; 5μm) column with gradients as described above.  The mass 

spectrometry analysis was performed in positive ion mode under the following conditions: 

capillary voltage at 4 kV with polarity [-] for positive ion mode analysis, nebulizer gas pressure 

32 psi, dry gas flow 12 L/min, and skim voltage at 53.7 V.  Ions were isolated and fragmented in 

quadrapole ion trap with excitation amplitude of 1.2 volts.   
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Sephadex LH-20 solid phase extraction  

 Methodology followed Kantz et al. 1990 with some alterations. Triplicate samples were 

purified and concentrated using Sephadex LH-20 and stored for one month, four months, and one 

year. Samples were loaded on separate columns of 4 g Sephadex LH-20, which were hydrated 

overnight in DI water. Samples were loaded onto columns atop the vacuum manifold, allowed to 

absorb onto the stationary phase, then washed with 30% methanol to remove sugars and small 

phenolic molecules, which included some monomeric anthocyanins. Next, 70% acetone was 

used to elute polymeric phenols that were then dried using a SpeedVac concentrator and 

suspended in 70% acetone for further analysis. LH-20 columns can be reconditioned for 

immediate reuse by washing with several bed volumes of 30% methanol, then DI water.  No 

changes in chromatographic properties were observed after 8-10 separation cycles.  

 

Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) analysis 

 Radish samples and a peptide standard were mixed with 1 M dihydroxybenzoic acid 

(DHB) matrix in methanol in an equal ratio and 1 μL was spotted onto a stainless steel MALDI 

plate. Analysis was conducted using a Bruker Reflex III MALDI-TOF-MS (Billerica, MA) 

equipped with a 337 nm N2 laser. BrukerDaltonics peptide standard consisting of angiotensin II, 

angiotensin I, substance P, bombesin, ACTH clip, and somatostatin was used for time of flight 

calibration. Data was obtained in positive ion reflectron mode with an accelerating voltage of 25 

kV and a reflectron voltage of 28 kV. Peaks were statistically evaluated using 

BrukerClinProTools software. 

 



   

192 
 

On-fiber derivatization headspace solid phase microextraction gas chromatography- mass 

spectrometry (OFD-HS-SPME-GC-MS) and OFD-HS-SPME-GC-FID analysis of 

acetaldehyde 

 PFBHA was used to derivatize acetaldehyde to limit analysis to aldehydes. A 

carboxen/polydimethylsiloxane SPME fiber was inserted into a 20 mL glass headspace vial with 

one mL of PFBHA (15 mg/mL) and incubated for 15 min at 50 oC with magnetic stirrer (Wang 

2005, Carlton 2007). The SPME fiber loaded with PFBHA was transferred to a vial with 5 mL of 

sample and incubated for 15 min at 50 oC with magnetic stirrer. The SPME was desorbed for 10 

min into a Varian 450-GC connected to a Varian 320-MS triple quadrupole mass spectrometer 

with an EI ionization source on an Agilent 5% phenyl-methylpolysiloxane column (30 m x 250 

um x 1 μm). The injector temperature was 270 oC with a split ratio 0f 5:1. The column oven 

started at 25 oC, held for 4 min, and then increased to 280 oC at 10 oC/min with a helium flow of 

1.0 mL/min. The transfer line and ionization source temperatures were 270 oC and 200 oC, 

respectively. The ionization energy was 70 eV with m/z range of 35-350. GC-FID conditions 

followed the same methodology. 

 

Radish fermentation in bioreactor 

 Batch fermentations of Zymomonas mobilis were carried out in ATCC medium #1341, 

which consisted of 20 g glucose, 10 g yeast extract, 2 g dipotassium phosphate in one L of 

deionized water. Inoculations were prepared by transferring a single colony to 5 mL of medium 

and incubated overnight at 30 oC and shaken at 250 rpm. This seed culture was added to 500 mL 

of medium in a two L Applikon reactor vessel connected to a Bio console ADI 1025 and Bio 

controller ADI 1010 at 30 oC with constant agitation at 200 rpm and aeration. 100 g of radish 
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peels was added to each batch, along with a source of catechin (500 mg/L equivalent).  

Acetaldehyde content was measured daily over a week for each sample. After each week, the 

bioreactor was cleaned and sanitized in preparation for the next sample.  

 

Distillation of Zymomonas fermentation and distillate model system formation 

 A Buchi Rotavapor R-114 at 40 oC was used to vacuum distill the Zymomonas mobilis 

growth for 15 min. under 28 in. Hg. The collected distillate was measured using the OFD-HS-

SPME-GC-FID method described above. The model system contained radish extract, 1.7 mM 

catechin, and 70 mM pure acetaldehyde (RAC) or 70 mM acetaldehyde from the Zymomonas 

distillate (RD1Cat). Triplicate samples were monitored for color and chromatographic changes 

on days 0, 2, 4, 7, and 14. The next model system used two and five fold higher concentrations of 

distillate to create samples: RD2Cat and RD5Cat. Again, triplicate samples were monitored for 

color and chromatographic changes on days 0, 2, 4, 7, and 14. 

 

Statistical Analysis 

Triplicate samples were analyzed at each storage time using JMP Pro 13 with data 

expressed as mean ± standard error. Differences between means were assessed using Tukey’s 

HSD test (α = 0.05). 

 

Results and discussion  

Color properties of radish samples 

 Red radish pigments have comparable color properties to FD&C Red No. 40 and function 

as a natural replacement in maraschino cherries as described by Giusti et al. (1996). There was 
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no significant difference in color among L*, a*, or b* between FD&C Red No. 40 (200 ppm) and 

red radish extract at either 600 and 1200 mg/L at the initial time, but the lightness increased, 

while the chroma and hue decreased (Giusti 1996).  After matching the color properties of Red 

40, our radish samples exhibited similar color stability over six months of storage.  

 In Figure 1, the lightness value increased for all radish samples, which agrees with 

previous literature using red-fleshed potatoes and red radishes that were stored as juice 

concentrates at room temperature at pH 3.5 (Rodriguez-Saona 1999).  The RAC sample 

darkened over the first four days of storage and developed a purple hue. Over six months of 

storage, RAC increased in lightness and visually became a red-purple shade. The lightness of all 

samples with natural sources of catechin mirrored the lightness of the RA sample. This 

potentially indicates that the natural sources of catechin contained competing reactants for 

acetaldehyde, which may decrease the reactivity of acetaldehyde and halt the formation of the 

anthocyanin-catechin dimer.  

After mixing the model system, the chroma values decreased in all samples. However, 

RAC showed a linear decline and slowest rate of decline compared to the other samples 

containing acetaldehyde, which quickly declined in the first month, then the rate lessened from 

months two through six. The radish control initially increased in chroma slightly, then gradually 

declined below the chroma value of RAC to the level of other acetaldehyde containing samples. 

This relative stability of the chroma of RAC is an important characteristic of a natural colorant 

and demonstrates its potential application to the beverage industry.  

A sample’s hue angle provides a numerical assessment of its color. Similar to the 

lightness of RAC, the hue quickly decreased in the first month. There was no notable change in 

the hue of RAC for the remainder of the storage time and this stability is another important 
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character for a potential natural colorant. The sample containing radish, acetaldehyde, and fava 

bean extract mirrored the RAC’s decrease in hue, but visually did not produce the same purple 

color because of the difference in lightness and chroma between these two samples. There was 

no visual difference between RA and other acetaldehyde containing samples.  

In agreement with these findings, an increase in lightness and decrease in chroma was 

shown in red-fleshed potatoes and red radishes at pH 3.5 (Rodriguez-Saona 1999).  Surprisingly 

those radish samples, which were in a juice concentrate, exhibited an increase in hue toward 

orange/yellow, while our radish control declined in hue over storage and eventually reached a 

plateau. The yellowing of anthocyanins over storage has been previously recognized (Cevallos 

2004).  

 

Identification and quantification of radish anthocyanins and anthocyanin-catechin ethyl-

bridged dimers over storage: 

Anthocyanins in red radishes were first identified in the 1960’s (Harborne 1963, Fuleki 

1969) with predominantly pelargonidin forms, while purple radishes are composed mainly of 

cyanidin derivatives (Hanlon 2011).  The major anthocyanins in red radish are pelargonidin-3-

sophoroside-5-glucoside (P) with malonic acid and either ferulic (PFM) or p-coumaric acid 

(PCM) moieties, while the two secondary anthocyanins are P with either ferulic or p-coumaric 

acid (Giusti 1996).  These anthocyanins were initially characterized on a divinylbenzene HPLC 

column; however, our newly formed dimeric compounds were better separated on a C18 column, 

as they co-eluted on a divinylbenzene column. The C18 column resulted in co-elution of the two 

major radish anthocyanins (PFM and PCM), so neither column was faultless. In Figure 2, the 

wide peak at 41 min. contains both PFM and PCM, which are subtly differentiated by their mass 
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spectrometric signals at the front and tail edges of the peak. These acylating moieties induce a 

bathochromic shift, moving the color toward red-purple depending on the acylation (Dangles 

1993) and the stability of these anthocyanins is attributed to the phenolic acids bound to the 

glycosidic moieties.  The sugar groups can act as hinges allowing the acyl groups to protect the 

flavylium cation from hydrolysis by stacking around the pyrylium ring (Brouillard 1981). 

 Each of the numbered peaks in Figure 2 relates to an anthocyanin-catechin ethyl-bridged 

dimer. The first peak is identified from mass spectral fragmentation patterns as P+C and elutes 

nearly seven minutes after P. This is unusual because the PFM+C and PCM+C elute 

approximately ten minutes earlier than their respective monomeric anthocyanins.  Others have 

found malvidin-3-glucoside ethyl-bridged to catechin, epicatechin, or procyanidin B2 elute after 

malvidin-3-glucoside in model systems (Escribano-Bailon 2001, Es-Safi 1999, Dallas 1996). 

Figure 3 depicts the mass spectra for the two largest anthocyanin-catechin bridged dimers. 

Comparing Figure 3A and 3B, there is a clear difference of m/z 30 for the two greatest mass 

peaks, which is the difference between ferulic and coumaric acids. Figure 3A corresponds to 

peak 1 and the spectra suggests this compound is PCM+C, while Fig. 3B is peak 2 and PFM+C. 

The aglycone mass peak of m/z 287, which is the m/z of cyanidin, is distinctive because radishes 

contain pelargonidin, having a m/z of 271. It is unclear where the additional m/z of 16 originates. 

The proposed structure of PFM+C is shown in Figure 4. We propose the ethyl-bridged catechin 

is attached to the anthocyanin via C-8, although it is possible to attach at C-6 as well.  

  The change in concentration and formation of radish anthocyanins and anthocyanin-

catechin bridged dimers over storage are pictured in Figure 5. This figure illustrates the 

combined concentration of the two major anthocyanins in radishes because they co-elute using 

our method.  The maximum concentration of the bridged dimers was approximately 100-fold less 
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than the starting concentration of the radish anthocyanins. The rapid degradation of anthocyanins 

in the presence of acetaldehyde has been shown in previous literature; however, malvidin-3-

glucoside decayed precipitously in 20 hours (Garcia 1994), opposed to 20 days needed for 

anthocyanin decay in our model system. This difference is likely caused by the enhanced 

stability caused by acylation of radish anthocyanins. In the absence of acetaldehyde, the radish 

control demonstrated greater anthocyanin stability.  The formation of the bridged dimers started 

promptly after mixing the model system. Their maximum concentration was reached four days 

after mixing, then slowly declined over 20 days of measurement. A similar concentration pattern 

of bridged dimers was shown using each of the six main anthocyanin monoglucosides (Weber 

2014). These anthocyanins reached maximum concentration around 12 hours after mixing, then 

decreased within 48 hours (Weber 2014). The authors detected and quantified oligomeric 

compounds from the monoglucosides, which followed a similar concentration profile, just offset 

six hours.  

 To examine the oligomeric and polymeric products of the acetaldehyde catalyzed 

reaction, radish samples were stored for one month, four months, and one year. The time course 

was purified on Sephadex LH-20 and compounds were separated on a C18 HPLC column. 

Sephadex LH-20 is a unique sorbent known for purifying polymeric phenolic compounds (Kantz 

et al. 1991).  The chromatogram changed dramatically before (Fig. 2) and after (Fig. 6) Sephadex 

LH-20 purification. A large hump is featured in Fig. 6 and remains through one year of storage, 

although the size of the hump decreases over time. The hue is stable through storage so it is 

puzzling where the source of this stability originates. 

Next, mass spectrometry was used to identify the compounds within the polymeric hump. 

The one month, four month, and one year old RAC samples were analyzed using LC-ESI-MS to 
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determine if the pigment is stemming from molecules under 2000 Da, a range which 

encompasses a radish ACY with up to three ethyl bridged catechins. The mass spectra of the two 

peaks at 42 and 46 minutes emerging from the hump did not produce any identifiable m/z values. 

In the middle of the hump, the m/z value of 1937.1 (PFM+3C) was detected; however, there was 

only a single m/z peak without any isotopic peaks, so this is simply a noise peak and should not 

be considered. Unfortunately, there were no true peaks (with isotopic peaks) over 1500 Da 

through the chromatographic hump in any of the samples through the year-long storage. 

 Perhaps the polymeric compounds were larger than 2000 Da and could not be detected by 

the ESI-MS, so MALDI-TOF-MS was used to seek larger pigmented molecules. Figure 7 

displays the spectrum of the one month RAC sample and no m/z values were detected over 1000 

Da. Figure 8 and 9 show the MALDI-TOF specta for the four month and one year old RAC 

samples, respectively. Once again, these spectra do not contain any m/z values greater than 1000 

Da. This result aligns with the ESI-MS data and may indicate the polymeric compounds are too 

low in concentration. Consequently, the one month aged RAC sample was fractionated by HPLC 

and samples were collected each minute. The fractions were evaporated to dryness and dissolved 

in a small volume of methanol for MALDI-TOF analysis with higher concentrations. The 

majority of the fractions did not detect any m/z values greater than 1000 Da; however, one 

fraction (Fig. 10) revealed several peaks over 1000 Da. Figure 10 displays the forty-third 

fraction, which eluted in the middle of the chromatographic hump, with m/z 1133.6 and 1368.6 

as two of the primary peaks. None of these masses aligned with radish anthocyanins with any 

degree of ethyl-bridged catechins and were not identified. The source of the long-term pigment 

in the radish mixture remains to be identified even though color data is stable over storage.  
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Zymomonas mobilis fermentation: 

 Zymomonas mobilis, a high acetaldehyde-producing bacterium, was used to naturally 

produce acetaldehyde in an effort to form bridged dimers. This bacterium also produced notable 

quantities of ethanol, which aided anthocyanin extraction from radish peels into the media. Pure 

catechin and equivalent concentrations of natural sources of catechin were added to radish peels 

in the growing media to be fermented by Z. mobilis. Taking into account the yellow-brown color 

of the media, the purple hue of the bridged dimers never appeared and HPLC data confirmed this 

finding.  To determine the possible effect of the bacteria on the reaction, the same model system 

was created using radish extract, pure acetaldehyde, and pure catechin in water and in media and 

monitored via HPLC for 20 days. The dimers were detected in the water based model system, but 

not in the media based system. The components of the media must be scavenging the 

acetaldehyde before it can react with the anthocyanins.  

Next, the volatile fraction of Z. mobilis growth was collected (in the absence of radish 

peels and catechin) and the acetaldehyde-containing distillate was used in a model system. Z. 

mobilis produces a maximum concentration of acetaldehyde after 48 hours of growth (Fig. 11) 

and the fermentation was distilled at this time. The concentration of acetaldehyde declines over 

the following 48 hours because the glucose content, and thus Z. mobilis growth declines. If the 

medium were restocked with glucose on a daily basis, the acetaldehyde content would remain at 

its maximum (Roy 2016).  

A model system of radish extract, catechin, and Z. mobilis distillate (RD1Cat) was 

prepared with the same concentration of acetaldehyde as previous model systems and monitored 

over two weeks for color change and HPLC detection of dimeric compounds. Figure 12A shows 

color data for this model system with the RAC sample reacting to form the purple hue.  However 
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the radish control and RD1Cat were identical and no purple color appeared. Chromatograms (not 

shown) of the radish control and RD1Cat were indistinguishable and confirm no dimeric ethyl 

bridged ACYs formed. Although the concentration of acetaldehyde was identical between RAC 

and RD1Cat samples, it is unclear as to why the dimeric compounds were not formed. A follow-

up experiment used higher concentrations of Z. mobilis distillate in samples RD2Cat and RD5Cat 

with two and five times the concentration of acetaldehyde compared to RD1Cat, respectively. 

The results followed the same pattern as the first distillate model system. Color changes over two 

weeks of storage is shown in Fig. 12B. The color values are slightly different than the first 

distillate model system because a different batch of radishes was used. Although the values are 

not the same, the trend is, which means the higher concentrations of acetaldehyde did not 

produce a purple pigment and HPLC data confirms the lack of dimeric radish anthocyanins.  

 

Conclusion 

 To recapitulate, radishes are an inexpensive source of acylated ACYs that can be used in 

a reaction found in wine production in order to produce dimeric compounds that could serve as 

natural colorants to replace synthetic colors in foods and beverages. This is the first evidence of 

tailoring the acetaldehyde-catalyzed reaction in an acylated ACY source. Radish extract 

combined with pure acetaldehyde and catechin produce dimeric compounds with stable red-

purple color. Zymomonas mobilis was used to naturally produce acetaldehyde in a fermentation 

with radishes and natural sources of catechin; however, the dimeric compounds were not formed. 

This reaction can be expanded to other acylated ACY sources in an effort to produce natural 

colorants for the food and beverage industries. The ethyl-bridged ACYs have a remarkably stable 
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hue over six months of ambient storage and can serve as a replacement for artificial color 

additives.  
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Figures 

 

Figure 1. Changes in L*C*h color of radish samples over six months of storage. Bars represent 

standard error (n=3). 

 

Figure 2. Chromatogram (510 nm) of radish model system with acetaldehyde and catechin 

(Numbered peaks are anthocyanin-catechin ethyl-bridged compounds). 

 

Figure 3. LC-ESI-MS spectra of PCM+C (A) and PFM+C (B). 

 

Figure 4. Proposed structure of PFM+C.  

 

Figure 5. Changes in anthocyanin content over storage. Bars represent standard error (n=3). 

 

Figure 6. Chromatogram (510 nm) of LH-20 purified radish model system acetaldehyde and 

catechin samples after one month (A), four months (B), and one year (C) of storage.  

 

Figure 7. MALDI-TOF-MS spectrum of one month aged RAC after Sephadex LH-20 

purification.  

 

Figure 8. MALDI-TOF-MS spectrum of four month aged RAC after Sephadex LH-20 

purification. 

 

Figure 9. MALDI-TOF-MS spectrum of one year aged RAC after Sephadex LH-20 purification. 

 

Figure 10. MALDI-TOF-MS spectrum of a collected fraction of one month aged RAC after 

Sephadex LH-20 purification. 

 

Figure 11. Time course of acetaldehyde concentration from Zymomonas mobilis. Bars represent 

standard error (n=3). 

 

Figure 12. Changes in L*C*h color of radish samples with Zymomonas distillate of 70 mM 

acetaldehyde (A), and two and five times the concentration of distilled-derived acetaldehyde (B). 

Bars represent standard error (n=3). 
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Figure 6 
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Figure 8 
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Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

540.7

500 1000 1500 2000 2500 3000 3500 m/z

0

1000

2000

3000

4000

Intens.

0_D13\1: +MS, 100%=4629



   

215 
 

 
 

Figure 10 
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CHAPTER 7. Conclusion 
 

 Recent trends show that consumers desire fewer artificial additives in foods and 

beverages, which translates to natural substitutions on the ingredient list. Artificial colors are one 

of the most common targets for replacement because appearance is the first assessment of a 

product. Anthocyanins are water-soluble, pigmented compounds found throughout nature.  These 

vibrant compounds range from orange-red to blue-violet, but do not have the same color stability 

as the artificial colorants. Anthocyanins degrade in the presence of heat, oxygen, metal ions, 

ascorbic acid, and other factors that are commonly found in food processing. The long-term fate 

of anthocyanins is not fully known and this dissertation attempted to advance the understanding 

of mechanisms responsible for the degradation and stabilization of anthocyanins throughout 

storage using a plethora of different techniques.   

 This collection of published and unpublished research details the method development 

process intended to separate anthocyanin-tannin polymers by degree of polymerization (Chapter 

3), clarification of the mechanism of anthocyanin degradation by ascorbic acid (Chapter 4), 

stabilization of anthocyanins in blackberry juice via glutathione addition (Chapter 5), and 

preparation of a new natural colorant from an acetaldehyde-catalyzed reaction of radish 

anthocyanins (Chapter 6). 

 As anthocyanin concentration decreases over storage, it is believed they combine with 

tannins (procyanidins) to form large polymers called polymeric pigments (PPs). There is no 

current method to separate PPs from procyanidins, nor PPs by degree of polymerization and this 

research attempted many different techniques to create separation. Although PPs are cationic and 

procyanidins are neutral, ion exchange chromatography did not separate these compounds. One 

issue that arose was the strong association between the analytes and the stationary phase 
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indicated by red pigment remaining bound regardless of solvent used on the column. A strong 

adherence to the column inlet was found in several of the materials evaluated.  Chapter 3 

discusses the results of numerous forms of chromatography, electrophoresis, and molecular 

weight filters. A notable finding was a color gradient in a three-year-old chokeberry juice applied 

to centrifuge filters varying in molecular weight cutoff. The retentate from the 50,000 Da cutoff 

filter was highly pigmented, and the retentate from the 100,000 Da cutoff filter was even more 

pigmented. This trend was observed in a fresh chokeberry juice and could indicate the fate of 

anthocyanins is large molecular weight compounds.  

 Chapter 4 clarified the mechanism of anthocyanin degradation by ascorbic acid that has 

been debated for over forty years. Understanding this mechanism is important because of the 

prevalence of ascorbic acid addition to many anthocyanin-rich juices. In the presence of ascorbic 

acid, micromolar concentrations of iron or copper catalyze the formation of hydrogen peroxide 

through the Haber-Weiss reaction. Hydrogen peroxide quickly splits into two hydroxyl radicals, 

which combine with anthocyanins to form hydroxylated products. The hydroxylated anthocyanin 

is less stable than the native compound causing an accelerated degradation rate compared to 

ascorbic acid-free systems.  Adding a chelator can bind free metal ions and prevent the Haber-

Weiss reaction, thus prolonging anthocyanin content and color. 

 Chapter 5 evaluated the stabilizing effect of different additives on anthocyanin content in 

blackberry juice. The additives included glutathione, galacturonic acid, 

diethylenetriaminepentaacetic acid, and tannic acid, and each had a different mechanistic 

approach for stabilizing anthocyanins. Glutathione provided the greatest stabilizing effect, so an 

antioxidant recycling mechanism was applied to blackberry juice. The hypothesis was 

glutathione could be recycled by lipoic acid and ascorbic acid in order to extend high 
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anthocyanin content in juice.  Although there was no significant difference, the combination of 

three antioxidants protected anthocyanins by 29%, while glutathione and lipoic acid afforded 

24% protection, and glutathione alone had a 23% protective effect over five weeks of accelerated 

storage at 30 oC compared to control juices.  Glutathione appears to be a promising blackberry 

juice additive to protect against anthocyanin degradation during storage.  

 Finally, Chapter 6 describes the development a new natural colorant made from radishes 

using a reaction naturally occurring in wine. Acetaldehyde produced during fermentation can 

polymerize anthocyanins and catechin in winemaking, so the acetaldehyde-catalyzed reaction 

was applied to radishes anthocyanins. Radishes contain acylated anthocyanins that are more 

stable than their monoglucoside counterparts. This was the first synthesis of acylated 

anthocyanins ethyl-bridged to catechin and the compounds remarkable color stability over six 

months of storage. The color changed from bright red to vivid purple as acetaldehyde reacted 

with anthocyanins. The ethyl-bridged dimeric radish anthocyanins possess excellent color 

stability and could serve as natural alternatives to synthetic food additives. 

 This dissertation offers an in-depth analysis of factors influencing anthocyanin 

degradation and stabilization that can hopefully aid future research in this area.  
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