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Abstract 

Oxidative metabolism is required to produce adequate energy to sustain human life. A primary 

example of deteriorating oxidative capacity is seen in the cardiac musculature during chronic 

heart failure. This suggests that by improving oxidative potential, chronic heart disease could be 

mitigated and one approach to accomplish this may be through targeting the mt-mRNA 

translation system. Purpose: This investigation’s purpose was to characterize disruptions in mt-

mRNA translation machinery in multiple forms of cardiomyopathy and to determine if 

mitochondrial mRNA translation initiation factor (mtIF2) is necessary to maintain oxidative 

capacity in cardiomyocytes. Methods Using a combination of animal and cell culture 

experiments, we first analyzed the oxidative detriments of the myocardium using an LLC tumor 

implantation model and followed by assessing how antioxidant protection against LLC-

conditioned culture media. Additionally, we used a model of concurrent aging and high fat-diet 

induced cardiac hypertrophy. After identifying mtIF2 as a potential contributor to oxidative 

detriments in the heart, we used genetic alterations of H9c2 cardiomyocytes to characterize its 

necessity. Analyses performed in animal and culture experiments include optical metabolic 

imaging, immunoblot of mitochondrial quality controllers, bioenergetics flux analysis and 

hypoxic resistance, Results: LLC-implanted animal hearts demonstrated ~15% lower optical 

redox ratio (FAD/FAD+NADH), a marker for greater glycolytic reliance compared to controls. 

mt-mRNA translation machinery was unchanged between groups relative to amount of 

mitochondria. Mitochondrial DNA-encoded CytB was ~30% lower in LLC hearts suggesting 

impairments in outcomes of mitochondrial mRNA translation. Aged mouse hearts were larger 

and contained less mtIF2 protein alongside reduced content of CytB. Reducing the content of 

mtIF2 is associated with reduced oxidative characteristics such as OXPHOS complex I and IV 



content, optical redox ratio, oxygen consumption, and viability following hypoxia. Conclusion: 

In conclusion, the research investigations presented within this dissertation are the first to 

establish mitochondrial mRNA translation as a process that is dysregulated during 

cardiometablic disease and as a potential therapeutic target to enhance oxidative characteristics 

of the myocardium. mtIF2 presents as a key regulator for the process of mt-mRNA translation 

and is necessary for maintain oxidative capacity in cardiac muscle. 
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Chapter 1 – Introduction 

Significance  

Total CVD is the most common cause of death worldwide (>31% of all deaths)1. This 

includes many of the costliest diseases in the developed world such as heart failure, myocardial 

infarction, coronary artery disease, and stroke1,2.  Over a century of research has contributed to 

the fields of heart diseases, biochemistry and oxidative metabolism, including the discovery and 

characterization of the organelle responsible for energy production within the heart – the 

mitochondrion3,4. Only recently have researchers been able to show the interconnectedness 

between energy production allowing the heart to pump blood and how it can lead to heart 

disease5. Heart disease, in turn, leads to degeneration of mitochondria through free radicals 

further damaging the energy production machinery and allowing the disease to progress6.  

Heart disease – Cardiomyopathy is clinically recognized by symptoms of congestive 

heart failure, reduced left ventricular ejection fraction, enlarged ventricular chamber walls, 

dilated left ventricle, or poor cardiopulmonary exercise test performance1. These symptoms 

occur when the contractile muscle cells of the heart become stiff as a result of buildup of non-

contractile tissue such as scar tissue and collagen. When the heart develops this buildup of 

fibrotic tissue, it is less efficient at pumping blood throughout the body and requires greater force 

to produce the same cardiac output. Furthermore, in order to compensate for this inefficiency, the 

cardiac cells contract more frequently and thus consume and metabolize more energy. Metabolic 

pressure alters the molecular behaviors of cardiac energy metabolism.  

Perinatal cardiomyocytes demonstrate a surprising reliance on glycolytic metabolism. At 

birth, a shift towards oxidative metabolism of fatty acids occurs concomitant with expansion of 

the number of mitochondria within the cardiomyocyte7. During healthy, adult myocardial 
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metabolism, up to 90% of the energy for contraction is generated through β-oxidation of fatty 

acids8. As heart disease progresses, the cardiomyocyte cannot provide the necessary energy 

through fatty acids and begins to rely on glycolytic metabolism9. This temporally shifts the cell 

back towards this perinatal state10. Current research attempts to mitigate heart disease 

progression by improving the reliance on fatty acid substrates for energy metabolism and this 

seems to contribute to decreased mortality. The location of fatty acid metabolism – the 

mitochondrion – seems to play a key role in this metabolic shift. Importantly, the mitochondria 

also generate many of the signals for the cell to begin apoptosis or shift metabolic states. For this 

reason, understanding how the mitochondria function during heart disease progression can 

improve understanding for approaches to treat the disease9.  

Mitochondria – Greater than 30% of the volume of cardiomyocytes is attributed to 

mitochondria. These organelles turnover roughly the body’s weight in ATP each day through 

oxidative metabolism11. This process is highly efficient and capable of operating in vivo at 80-

90% of the enzymatically defined maximal capacity11,12. Within the mitochondria are necessary 

enzymes for the processes of β-oxidation, the TCA cycle, redox handling, mtDNA, proteins to 

allow mtDNA expression as well as numerous other regulatory and functional processes. 

Evolution has maintained the necessity to use the mitochondria to produce energy efficiently but 

has done so by transferring >99.5% of the mitochondrial genome to nuclear DNA13–15. The fact 

that mammalian mitochondria still contain 13 protein-encoding genes that are vital for oxidative 

metabolism indicates a biological necessity to maintain a separate and energetically expensive 

set of mtDNA along with hundreds of associated proteins. Each of the proteins encoded by 

mtDNA are core subunits of the oxidative phosphorylation system complexes16. Mutations in 

these genes are associated with system-wide diseases that stem from poor energy production15. 
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Unfortunately, mtDNA is highly susceptible to mutation because of 1) lack of dedicated mtDNA 

repair machinery, 2) no sexual recombination upon replication, 3) an incomplete mitochondrial 

degradation that causes potential replication of damaged mtDNA and 4) proximity to the electron 

transfer machinery17. The latter is of importance because of the potential for improper electron 

transfer to generate mutagenic free radicals. 

Electron transport and ROS – Peter Mitchell’s chemiosmotic theory explains the 

movement of electrons through the ETS on the inner mitochondrial membrane to generate an 

electrochemical gradient, Δψm, used to produce ATP18,19. The electron transfer proteins 

(Complexes I-IV) are highly complex and utilize an elaborate series of oxidation/reduction 

reactions to transfer electrons through a number of electron carriers20. These electron carriers 

assist in generation of Δψm and allow complex V (ATP synthase) to use this potential to generate 

ATP21,22. This electron transport process is susceptible to producing harmful byproducts in the 

form of superoxide O2
- which rapidly generates other forms of reactive oxygen species 

(ROS)15,23. Under healthy metabolic conditions, the cell (and mitochondria) are able to neutralize 

these free radicals by using a combination of dismutase and catalase enzymes turning the 

superoxide into harmless water24. However, under conditions of impaired metabolism or 

oxidative stress, the ETS can generate enormous amounts of superoxide which exceed the 

capabilities of the ROS mitigation system of the cell. These free radicals induce serious damage 

to cellular components including lipid peroxidation of biomembranes, protein oxidation forming 

aggregates, advanced glycation end products, cleaved RNAs and greater than 25 known 

alterations to DNA24–26. The mutations in DNA include base modifications that prevent 

transcription or replication, alterations that generate SNPs, and single strand breaks from 

deoxyribose scission26–32. Because of the limited machinery for mtDNA repair, these mutations 
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accumulate and cause severe detriments to oxidative capabilities leading to even further ROS 

production and a self-propagating cycle ensues. Many of the ETS core proteins are encoded by 

mtDNA and synthesized within the matrix by mt-mRNA translation machinery33.  

mt-mRNA translation – Expression of mtDNA-encoded genes requires a discreet set of 

translation machinery within the mitochondrial matrix including mitoribosomes, mt-tRNAs, and 

a specialized set of proteins controlling the translation processes33–35. These proteins include 

initiation factors (mtIFs), elongation factors (mtEFs), and translation activators that govern each 

step of the mt-mRNA translation process. Because translation initiation is a committal step and 

polypeptide elongation is extremely energetically expensive (2-4 ATP/peptide), these translation 

factors are important controllers of the processes36. Specifically, mammalian mtIF2 has taken on 

the historical functions of both bacterial and eukaryotic IFs-1and -2 (binding of 28S 

mitoribosomal SSU and GTP-dependent association of fMet-tRNA with SSU P-site, 

respectively)37. mtIF3 contains a tether-like linker region with binding activity of both 

mitoribosomal subunits allowing formation of the complete initiation complex38. mtEFTu 

provides GTPase activity for peptide bond formation between multiple aa-tRNAs, and TACO is 

a translational activator which assists in colocalization of each piece of the translation system to 

the mitochondrial membrane where the protein will be inserted39,40. The tightly regulated process 

of mt-mRNA translation requires adequate maintenance of this machinery and is subject to 

alterations during metabolic stressors such as cardiomyopathies41.  

Previous Research – Decades of investigation have identified metabolic dysfunctions 

including mitochondrial detriments in the pathology of heart disease9,42,43. A transition away 

from fatty acid metabolism and increased oxidative demand to maintain cardiac output result in 

stress on key ETC complexes, greater reduction of electron carriers, and thus elevated rates of 
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ROS production44–4748. Previous research demonstrates that elevated ROS production enhances 

mtDNA mutations, causes early onset heart failure, and decreases lifespan17,26,49–51. However, the 

opposite holds true that enhancing ROS mitigation can limit mtDNA mutations and extend 

lifespan in rodents52. Mutations in key protein controllers of mt-mRNA translation result in 

altered ETC capacity and greater ROS production15. Furthermore, my previous research suggests 

mt-mRNA translation machinery as being sensitive to change by metabolic stimuli such as 

obesity or exercise (Figure 1)41,53. This suggests that mt-mRNA translation machinery may be 

dysregulated during cardiomyopathy. One approach to control heart disease may be to limit 

oxidative stress in the mitochondria by controlling the mt-mRNA translation/electron transport 

complex/ROS production circuit6. In order to assess this approach to combat heart disease, we 

must first identify how mt-mRNA translation machinery affects oxidative capacity and ROS 

production and if the mt-mRNA translation machinery is required for oxidative metabolism 

and is disrupted in myocardial pathologies. Experiments to test this central hypothesis will be 

designed according to these specific aims.  

Innovation  

Cancer is one of the deadliest diseases in the world second only to heart disease2. These 

experiments will examine an untouched area controlling oxidative metabolism – mt-mRNA 

translation. We will experimentally define the role of mt-mRNA translation in maintaining 

oxidative capacity and mitigating ROS production. In doing so, we will assess oxidative 

characteristics in two unique and understudied models of heart disease: cardiac hypertrophy 

resulting from the combination of aging-induced sarcopenia coupled with high fat diet-induced 

obesity as well as cardiac atrophy seen commonly as a side effect of cancer wasting syndromes. 

The approaches that we will use to assess oxidative capacity and redox states of the 
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cardiomyocytes are highly innovative because they have not been used previously, in this 

combination, to assess the oxidative characteristics of cardiac cells during these chronic disease 

states and the most appropriate in testing the central hypothesis. 
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Chapter 2 - Review of Literature 

Total CVD is the most common cause of death worldwide (>31% of all deaths). This 

includes many of the costliest diseases in the developed world such as HF, MI, CAD, and stroke.  

Over a century of research has contributed to the field of heart diseases, biochemistry and 

oxidative metabolism, followed by the discovery and characterization of the organelles 

responsible for energy production within the heart. Only recently have researches been able to 

show the interconnectedness between energy production to allow the heart to pump blood and 

how it can lead to heart disease. Heart disease, in turn, causes degeneration of mitochondria 

through free radicals further damaging the energy production machinery and causing the disease 

to get worse.  This review will define the current definitions and understandings over the areas of 

cardiovascular disease, cardiac bioenergetics, mitochondria, electron transport, and reactive 

oxygen species. These will include up-to-date evidence on the current knowledge in each 

respective field. In whole, this review will attempt to show how each of these topics can be 

formed into a working theory on the contribution of mt-mRNA translation in maintaining 

cellular oxidative metabolism. This will culminate in the development of a research proposal 

entitled: Mitochondrial mRNA translation is required for maintenance of oxidative 

capacity. 

1.Cardiovascular Disease 

1.1.Definitions As defined by the American Heart Association, total cardiovascular disease 

(CVD) includes rheumatic heart disease, hypertensive diseases, ischemic heart diseases, 

pulmonary heart diseases, pulmonary circulation diseases, other forms of heart diseases, 

cerebrovascular diseases, atherosclerosis, diseases of the arteries, arterioles, capillaries, veins, 

lymphatics not classified elsewhere, unspecified disorders of the circulatory system and 



 14 

congenital cardiovascular defects. Of those diseases included in total CVDs, coronary heart 

disease (CHD) is the most prevalent followed by heart failure. CHD includes acute myocardial 

infarction (MI), angina pectoralis (chest pain, AP) and heart failure (HF). The Center for Disease 

Control and Prevention (CDC) helps to outline defining characteristics of these specific 

conditions. HF, or congestive HF, results from the inability for the heart to provide adequate 

blood supply to other organs in the body. Conversely, MI results from the hearts inability to 

provide itself with sufficient blood supply due, usually, the blockage of coronary blood flow. An 

underlying cause and effect of many of these heart diseases is cardiomyopathy which is when the 

heart becomes enlarged and stiff decreasing the effectiveness of the heart pumping. 

1.2.Statistics Because of the overlapping nature of many different forms of CVD and CHD, 

many of the statistics cannot be added together to derive a meaningful total. 

1.2.1.Total CVD Total cardiovascular disease (CVD) includes rheumatic heart disease, 

hypertensive diseases, ischemic heart diseases, pulmonary heart diseases, pulmonary circulation 

diseases, other forms of heart diseases, cerebrovascular diseases, atherosclerosis, diseases of the 

arteries, arterioles, capillaries, veins, lymphatics not classified elsewhere, unspecified disorders 

of the circulatory system and congenital cardiovascular defects. 

1.2.1.1.Morbidity and Mortality Greater than 85 million Americans (~26% of the population) 

currently have at least one form of CVD. CVD has been the primary underlying condition of 

more deaths every year for more than a century in the United States. For the most recent annual 

records, CVD caused 30.8% (801,000) of deaths in the United States and CVD was mentioned in 

54% (1,402,000) of all death records. For adults >65 years of age, CVD was the leading cause of 

death regardless of sex and ethnicity. Greater than 155,000 Americans died before age 65 due to 

CVD. Greater than 1 in 3 deaths that occurred because of CVD happened before average life 
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expectancy was reached (78.8 years). On a global scale, CVD is still the leading cause of death 

and represents ~1/3 deaths worldwide1. Worldwide, the differences in mortality are seen between 

men and women but death rates are much greater in low to middle income countries2. 

1.2.1.2.Costs The estimated total costs of CVD in the United States is currently $317 billion 

(USD). Increases in CVD costs are projected through the year 2030 for the United States and 

will near $1,000 billion3. Similarly, an increase of nearly three times the current amount is 

projected for worldwide costs associated with CVD from $860 billion to > $2,000 billion by 

2030. 

1.2.2.Coronary Heart Disease Coronary heart disease includes acute MI, angina pectoralis and 

HF. 

1.2.2.1.Morbidity and Mortality Total prevalence of CHD among men and women in the US is 

6.2% of the population over 20 years aged. Because of the frequency of ‘silent’ MIs (that is MI 

where ischemic damage has occurred with no symptoms), there is some difficulty in estimating 

incidence of MI. Annual estimate of MIs in the United States is 550,000 new attacks and 

200,000 recurrent attacks. Assuming ~21% of first and recurrent attacks are silent, Americans 

will suffer ~660,000 first time heart attacks and ~305,000 will suffer recurrent attacks. Men and 

women suffer CHD at different rates. Average age for first MI in men is 65.1 years while 

average age for women is 72.0 years. The overall incidence lags behind in women by about 10 

years but for serious, life threatening or hospitalizing events such as MI or sudden death, women 

lag behind by ~20 years. CHD was the underlying cause of death in ~1 in 7 (370,000) American 

deaths. Specifically, MI contributed to ~1/3 of all CHD deaths (117,000). The estimated average 

years of life lost due to MI death is ~17 years. 
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1.2.2.2.Costs Average direct and indirect annual costs due to CHD in the United States is ~$210 

billion. MI and CHD were 2 of the top 10 most expensive hospital discharge statements (~$22 

billion combined). Average medical costs due to MI and CHD are expected to double in the next 

10 years to nearly $500 billion. 

1.2.3.Cardiomyopathy and heart failure Cardiomyopathy occurs when the striated muscle of 

the heart becomes stiff due to buildup of scar tissue or non-functional contractile tissue and 

causes the heart to become less functional at circulating blood to the organs of the body. 

Throughout the world, heart failure was most highly associated with hypertension4. 

1.2.3.1.Morbidity and mortality Cardiomyopathy is responsible for 23,000 deaths of 

Americans over the most recent year’s estimates and is mentioned in almost 50.000 of the 

records of all-cause mortality cases. Hypertrophic cardiomyopathy is the most common heart 

defect and occurs in ~500,000 Americans while most are not aware of its prescience5. In the last 

two decades, the global death rate attributed to cardiomyopathy has increased substantially 

(41%) to >403,000 deaths. Estimated projections show that HF will increase by almost 50% in 

the next decale to over 8,000,000 people over the age of 186.  Over ¾ of cases of heart failure 

have antecedent hypertension. After age 40, men and women both have the same risk for 

developing HF at 1 in 5 adults. One in nine deaths mentions HF on the death certificate7. 

Unbeffiting disease of the Western society, HF is common in sub-Saharan Africa at 44% of 

patients with CVD but occurs at a younger age8. It is worth noting that heart failure with 

conserved ejection fraction (EF) is associated with a greater survival rate over fifteen years9. 

1.2.3.2.Costs In the year 2012, HF attributed to an estimated cost of ~$31 billion6. Projections 

predict that heart failure will exceed $70 billion in 2012. This results in an estimated cost $250 

for every American adult. 
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1.3.Health Behaviors and other risk factors Risk of one developing total CVD is tightly 

connected to how a patient is characterized based on the AHA’s newly created list of 7 metrics. 

These include both lifestyle health behaviors (diet quality, physical activity levels, smoking, 

body composition) and health measurements/biomarkers (Total cholesterols, blood pressure, 

blood glucose). Each of these can be treated as if there exists a spectrum of cardiovascular health 

of ideal, intermediate, or poor health. Additionally, many of these 7 metrics can independently 

contribute to disease states that are additional risk factors for CVD (i.e. diabetes mellitus, 

metabolic syndrome). 

1.3.1.Smoking/Tobacco Use According to reports by the Surgeon General, smoking is a major 

risk factor for total CVD10. Smoking as a risk behavior is considered as an ideal behavior if one 

has never smoked or has quit smoking >12months ago. Additionally, risks of CHD, acute MI and 

stroke is increased for those who work or live in an environment with secondhand smoke. There 

is not enough evidence yet to determine a risk of electronic nicotine delivery systems such as e-

cigarettes on CVD risk11. 

1.3.2.Physical Inactivity Getting too little physical activity is a major risk factor for CVD12. One 

in 3 children and less than half of adults meet the requisite physical activity criteria. Although 

distinct from physical activity, measures of cardiorespiratory health is a stronger predictor of 

CVD risk13. In 2014, just 21.4% of adults met federal guidelines for adequate physical activity. 

Association of physical activity and decreasing metabolic risks is maintained regardless of 

weight loss from the physical activity14. 

1.3.3.Nutrition Multiple factors contribute to the contribution of dietary intake to CVD risk. 

Specifically, a DASH-type diet (dietary approach to stop hypertension) is recommended. These 

guidelines include increasing whole grains (>3 servings/day), increasing fruit (>2 servings/day), 
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increasing non-starchy vegetables (>2.5 servings/day), increasing fish and shellfish (>2 

servings/week), increasing nut and seeds (>4 servings/week), decreasing red meat, decreasing 

sugar-sweetened beverages, decreasing sweets and bakery desserts, decreasing saturated fats, 

increasing unsaturated fat and omega 3-fatty acids, increasing fiber, decreasing sodium, and 

increasing potassium intake. Improving healthy eating among the population is the most cost-

effective approach to decreasing risk of CVD compared to smoking cessation, statin therapy, and 

lifestyle advice15. 

1.3.4.Body Composition Maintaining a BMI ≤25kg/m2 is one of the 7 components of 

maintaining ideal cardiovascular health. Being overweight (25kg/m2 ≥ BMI ≥ 29.9kg/m2) or 

obese (BMI ≥ 30kg/m2) is considered a major risk factor for total CVD including CHD, AF, 

CHF, stroke, and venous embolism. Based on recent NHANES data, 69% of American adults are 

overweight or obese. Obese individuals pay ~$1,500 more for health care costs than normal-

weight individuals including 50% more inpatient costs, ~25% more outpatient costs, and ~80% 

more on prescription drugs16. Strong evidence exists for bariatric surgery among patients with a 

BMI ≥ 40kg/m2 though few clinical trials exist. Bariatric surgery can cause substantial weight 

loss, remission of DM, hypertension and dyslipidemia and reduce total medical expenses by 

~$10,000 within 5 years17. 

1.3.5.Family History First degree relatives share their genetic variation much more than a 

randomly selected individual. Likewise, those with similar racial/ethnic backgrounds tend to 

demonstrate similar genetic variations within the specific population. This contributes to 

complex genetic factors involved in CVD risk that might be ascertained via family history of 

CVD. Risk of premature heart attack, acute MI, AP, angioplasty, bypass surgery, CHD, aortic 

fibrosis, stroke, PAD, and venous embolism are all much higher in those who have a first degree 
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relative with history of the respective CVD. Recent consortia have produced genetic studies of 

CAD associated with specific genetic loci. While low odds ratios are seen, individuals may hold 

up to two alleles of a single gene and multiple genes involved in CVD risk18. 

1.3.6.Blood Cholesterols High cholesterol has been considered a major risk for total CVD with 

ideal levels for cardiovascular health being < 200mg/dL total cholesterol for adults. Less that 

50% of adults currently meet this ideal criterion. 

1.3.7.Blood Pressure High blood pressure is a major risk factor for CVD and stroke. The ideal 

blood pressure considered ideal for cardiovascular health is <120mmHg SBP and <80mmHg 

DBP. ~40% of American adults currently meet this standard. Over 400,000 deaths per year 

mention HBP in deaths. When compared with out causes of CVD deaths such as dietary, lifestyle 

and metabolic risk, HBP is the leading cause of death among women and the second-leading 

cause among men (behind smoking19. 

1.3.8.Diabetes Mellitus Untreated fasting blood glucose level of <100mg/dL is a component of 

ideal cardiovascular health. DM or uncontrolled hyperglucosemia is present in >50% of adults 

and is a major risk factor for CVD including CHD, stroke, PAD, HF, and AF. 

1.3.9.Metabolic Syndrome Combinations of cardiometabolic risks can be categorized as 

metabolic syndrome and can be beneficial in clinical and patient communications involving the 

nature and etiology of the diseases. Fasting glucose, dyslipidemia, adiposity, and blood pressure 

above ideal levels, when taken into combination, characterize metabolic syndrome. 

1.3.10.Chronic Kidney Disease End-stage renal disease (patients undergoing dialysis or 

receiving kidney transplantation) increases risk for CVD. While less common, renal disease is 

associated with DM and HBP due to altered filtration through the kidney tubules.  
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1.4.Functional Assessment of Heart Disease To understand the underlying etiology of heart 

diseases, it is valuable to understand how a patient’s heart is functioning. Electrical assessment, 

imaging modalities, circulating biomarkers and physical activity capacity (measured via CPET) 

are all ways in which one can assess various factors influencing cardiac health. The primary goal 

of these functional assessments is to determine the etiology of exertional fatigue and dyspnea20. 

CPET can determine where in the cardiopulmonary system is lacking while echocardiography is 

able to visually image the specific function of the heart that may be at fault. The most powerful 

tool in this regard is echocardiography due to its ability to assess systolic and diastolic function 

of ventricles as well as other issues21–23. 

1.4.1.Echocardiography While still undergoing refinement in the 1970s and 1980s, utilization 

of echocardiography to assess cardiac architecture has become an increasingly powerful tool for 

visualizing heart function. Initially, even with low quality sensors, much debate surrounded 

calculations that were viable, simple, and specific in detecting LVEF21,24. Many of these 

approaches were not sensitive in comparison to calculations that became available with improved 

piezoelectric crystals23. These and other advances would eventually lead to accurate evaluation 

of pulmonary hypertension, thrombus, valve dysfunction, ischemia, and viability in heart 

failure25–27. Multiple clear markers of heart failure are evident through echocardiograph 

assessment. Enlargement of the heart is highly associated with mortality and an important 

predictor of clinical outcomes in heart failure28–32. A stronger determinant of cardiac health, 

rather than chamber dimensions, is LVEF33. 

1.4.2.Cardiopulmonary exercise testing Cardiopulmonary exercise testing is quickly becoming 

a clinically relevant functional assessment predictive of HF prognosis34. Recently, the AHA has 

even suggested the cardiorespiratory fitness should be assessed clinically as a vital sign35,36. This 
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non-invasive testing process can determine if insufficiency in exercise capacity is due to 

myocardial/circulatory or gas exchange abnormalities20,37. Other testing methods have been used 

as well to predict functional capacity and mortality of those with heart disease including overall 

cardiorespiratory fitness38, heart rate recovery after activity39, a non-exercise testing method40, 

assessment of 6-minute walk test41, among other functional measurements42. 

1.5.Molecular alterations during heart disease A multitude of alterations are seen at the 

cellular and molecular level of cardiac cells including alteration in contractile tissues and a 

changing metabolic profile of the existing tissue. The common representation of the myocardium 

is a machine that is able to convert potential chemical energy into kinetic mechanical energy in 

the form of a hydraulic pump43. In the case of ischemic heart damage, alterations in cellular and 

metabolic components is due to apoptosis stimulated by hypoxia and a lack of energy 

substrate44,45. However, critics suggest this creates a circular argument in that a reduction in 

contractile components might propagate metabolic insufficiencies and that the true cause may be 

caused by transient intramyocardial bioenergetic stressors43. To demonstrate how cellular 

bioenergetics plays a crucial part in heart disease (similar to hemodynamic alterations), a review 

of the bioenergetic processes involved in cardiac disease and the molecular and cellular 

processes follows. 

2.Cardiac Energy Metabolism The heart contributes less than 0.5% to total body weight but 

nearly 10% to total energy consumption through ATP46 yet the amount of ATP stored in the 

myocardium is only sufficient to support a few heart beats47. Around 90% of the ATP in cardiac 

muscle is utilized in the contraction-relaxation cycle – both active processes. Both the release of 

actin from myosin during contraction/systole48 and cytoplasmic sequestration of calcium during 

relaxation/diastole requires significant amounts of ATP49. Between 60 and 70% of ATP 
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hydrolysis is used in contraction which the remaining 30-40% is used for sarcoplasmic Ca2+ 

uptake50,51. maintain such a high metabolic turnover rate, cardiac cells contain the greatest 

content of mitochondria compared to any other tissue in the body at nearly 30% of cell volume52. 

In vivo working hearts are able to produce ATP at 80-90% of the mitochondrial OXPHOS 

capacity53. To The cardiomyocyte has also developed a sensitive array of cytoplasmic sensors 

(Ca2+, ADP, Pi) that act as a control network over mitochondrial energy conversion to maintain 

myofibrillar potential energy homeostasis54. Mitochondria present as an integral part of cardiac 

energy metabolism allowing for : 1) utilization of carbon substrates, 2) the generation of high 

energy ATP through the electron transport system, and 3) the translocation of the ATP to the 

myofibrils to be used for contractile work45. 

2.1.Carbon substrate utilization Mitochondrial oxidative phosphorylation is fueled by 

electrons generated when carbon energy substrates are oxidized to form reduced NADH and 

FADH2 primarily in fatty acid β-oxidation, the TCA cycle, and in small part from pyruvate 

dehydrogenase and glycolysis reactions55. Carbon fuel sources for ATP generation are 

stoichiometrically linked to the contractile power produced by the myocardium. In a healthy, 

oxygenated heart, the primary carbon substrate of the TCA cycle, Acetyl-CoA, is generated 

predominantly by fatty acid β-oxidation over carbohydrates from glycolysis/lactate metabolism 

in a range from 60%/40% to 90%/10% (fatty acid/pyruvate)56–58. 

2.1.1.Glycolytic substrates The myocardium is a net consumer of lactate even under maximal 

workload except for cases of ischemia59 and insulin dependent diabetics60. The glycolytic 

substrates of the heart are circulating glucose or intracellular glycogen stores. Extracellular 

glucose is endocytosed in a GLUT-4 (and partly GLUT-1) dependent manner indicated 

susceptibility to contraction, AMPK, and insulin stimulation61. Internal glycogen stores can be 
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converted to G6P for glycolysis though cardiac glycogen stores are relatively small and turnover 

rapidly62. The end of the glycolytic process produces pyruvate which has three possible fates: 

becoming lactate, acetyl-CoA, or anaplerosis. Glycolytic reactions and pyruvate utilization is 

inversely related to plasma FFA levels as suggested by the Randle cycle or glucose-fatty acid 

cycle63,64. 

2.1.2.Β-oxidation substrate While glycolysis substrates are either stored within the cell 

(glycogen) or absorbed in response to insulin, contraction, or inadequate energy (blood glucose), 

fatty acids are not stored and must be taken up continually. The uptake of fatty acids is 

dependent on the concentration of plasma nonesterified free fatty acids which is highly variable 

and sensitive to both acute and chronic metabolic stimuli65–67. Fatty acids are extremely 

hydrophobic and as such require close association with carrier or transport proteins to move 

freely (i.e. bound to coenzyme A or covalently as triglycerides). The uptake of fatty acid by the 

cell also requires specialized transport proteins (fatty acyl translocases, fatty acyl binding 

proteins) or passive diffusion from an albumin bound form in the plasma to a cellular carrier68. 

Once inside the cell, fatty acids are generally esterified into a fatty acyl-CoA which cannot be 

directly transported through the mitochondrial membranes to the matrix where β-oxidation can 

occur69. A series of acyltranslocases allow the passage of the fatty acyl-CoA from the cytoplasm 

to the matrix -- primarily controlled through carnitine palmitoyltransferase-I. Carnitine 

palmitoyltransferase-I is the key regulator of fatty acid import into the mitochondrion and is 

negatively regulated by malonyl-CoA which is generated by acetyl-CoA carboxylase66. Once 

inside the mitochondrial matrix, the fatty acyl is oxidized through β-oxidation which cleaves off 

consecutive two-carbon acetyl-CoA molecules producing reduced NADH and FADH2
66,67. 



 24 

2.1.3.Ketone bodies It should be noted that ketone bodies such as β-hydroxybuterate and 

acetoacetate can be utilized for energy by the myocardium. This only occurs when plasma 

concentration reaches levels only seen during uncontrolled diabetes or starvation and is a very 

minor substrate70,71. 

2.2.ATP generation through the electron transport system Electron transport will be 

addressed in detail in section 4 but, briefly, carbon metabolites are utilized in glycolysis, the 

TCA cycle, and β-oxidation to generate reduced electron carriers NADH and FADH2. These 

electron donors are used in a series of redox reactions along each of four mitochondrial inner 

membrane complexes to generate an electrochemical gradient between the mitochondrial 

membranes. This proton motive force is utilized by F0/F1 ATP synthase to generate high energy 

ATP from ADP and Pi
72. 

2.3.Translocation of ATP to myofibrils for contraction ATP molecules are generated by the 

ATP synthase within the mitochondrial matrix but must be transferred to the myofibrils where 

the majority of energy is used within the myocardium50,51. ATP can be easily transported outside 

of the mitochondrion by Adenine Nucleotide Translocase where the high energy phosphate is 

temporarily stored with a creatine molecule by the creatine kinase reaction. This allows high 

energy phosphates to be generated within the mitochondrion but then transported and utilized at 

the sarcoplasmic reticulum and myofibrils for the processes of contraction and relaxation. Recent 

studies have shown how the speed of this movement is far too rapid for simple diffusion through 

the cell and instead use the mitochondria as a reticulum. This allows the generation of the proton 

motive gradient in one location (presumably near the source of carbon substrates) and use the 

energy to form ATP at a distant part of the mitochondrion (near the myofibrils/sacroplamic 

reticulum)55,73. Fragmentation of the mitochondria may lead to detriments in the distance the 



 25 

mitochondrial reticulum can transfer energy (see section 3.1.2). This mitochondrial reticulum is a 

highly regulated and dynamic concept that is heavily involved in cardiac health and disease. 

3.The Mitochondrion Cardiac mitochondria are organized in such a way as to allow energy 

production near the cellular locale in which the energy will be used -- near the SR 

(subsarcolemmal), nucleus (perinuclear), or contractile apparatus (intramyofibrillar)74. 

Mitochondria are extremely dynamic organelles which were investigated as soon as the early 

1900’s because they’re constantly being combined, separated, expanded, or destroyed75. Each of 

these processes are highly regulated and contribute to the structural and functional integrity of 

the organelle for optimal energy production76. This section will briefly detail each of these 

processes with particular interest in how they are affected in heart disease. It will then focus on 

mtDNA and the processes that allow mtDNA to facilitate proper energy production in the heart. 

3.1.Mitochondria in brief The mitochondria exist as a discreet organelle with symbiotic origins 

that now acts as the primary source of oxidative energy production in eukaryotic cells77. The 

mitochondria contain an outer membrane sectioning the organelle from other cellular 

components and an inner membrane that form cristae to increase surface area and form a discreet 

internal matrix. Within the mitochondrial matrix are the necessary enzymes for the processes of 

β-oxidation, the TCA cycle reactions, redox handling proteins, mtDNA and proteins to allow 

mtDNA transcription and translation as well as numerous other regulatory and functional 

processes. Integrated within the inner membrane are transporter proteins and the ETC complexes 

which use electron donors (NADH and FADH2) in a series of redox reactions to move protons 

from the mitochondrial matrix to the intermembrane space. This generates an electrochemical 

gradient or a proton motive force that is utilized by the F0/F1 ATP synthase to create energy. 
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3.1.1.Fusion of mitochondria Within a cell, multiple mitochondria may combine by joining 

their inner and outer mitochondrial membranes (IMM and OMM, respectively). This allows 

more efficient and homogenous sharing of components of the matrix and combining the 

electrochemical gradient within the intermembrane space78. Mitochondrial fusion proteins can 

contribute to larger, more stable and efficient mitochondria and thus energy production – vital to 

maintain oxidative metabolic potential during pathologies associated with heart disease. The 

combination on the membranes is primarily controlled by the protein mitofusin-1, mitofusin-2 

(both for OMM fusion), and optic-atrophy-1 (for IMM fusion)79,80. The expression levels of 

these proteins is sufficient to control the process of mitochondrial fusion but can be further 

modified through post-translational modifications including phosphorylation and 

ubiquitylation/degradation81. Mitochondrial fusion proteins seem to be particularly susceptible to 

ROS during reperfusion injury, are downregulated in diabetes and can dictate the preference for 

metabolic substrate82–84. 

3.1.2.Fission of mitochondria Mitochondrial fission is required to maintain a balance with 

mitochondrial fusion to maintain shape, size, number, and homogeneity of mitochondria 

populations85. The primary controller of mitochondrial fission is dynamin-related protein 1 

(DRP-1). DRP-1 is a GTPase (similar to each of the fusion proteins) that undergoes the catalytic 

activity to break apart the IMM and OMM of separating mitochondria. A key difference lies in 

that DRP-1 does not contain a mitochondrial membrane anchoring sequence and must be 

recruited from the cytosol to the OMM and bound to one of a few assembly proteins. These 

OMM proteins are key to recruitment of DRP-1 and aid in the process of mitochondrial fission: 

mitochondrial fission protein, mitochondrial fission factor, and mitochondrial dynamics proteins 

49 and 5186. Calcium induces the translocation of DRP-1 to the OMM and is seen prominently in 



 27 

reperfusion injury. Mitochondrial fission is strongly linked to mitochondrial deterioration during 

insulin resistance in skeletal muscle but has not been shown in cardiac muscle87. Finally, chronic 

alterations in mitochondrial fission can affect a population of small, isolated mitochondria that 

are a target for the process of selective autophagy. 

3.1.3.Autophagy of mitochondria It was recently revealed, in 2008, that selective fission and 

fusion of mitochondria creates two segregated populations. One group presents with disrupted 

membrane potentials and are subsequently broken down through the process of autophagy88. 

After further research in yeast and mammals, the process of mitochondrial specific autophagy or 

mitophagy was characterized. Beclin1 is a protein found on the initiated phagophore and during 

elongation, LC3 becomes incorporated into the phagophore. LC3 is a key protein on the 

developing phagophore that can bind specific OMM proteins and lead to complete destruction of 

the separated portion of the organelle through marcoautophagy. LC3 interacting molecules that 

have been identified including BNIP3/NIX, FUNDC, cardiolipin (when present on OMM), and 

Parkin recruited p6289,90. By selectively destroying damaged or mutated mitochondria, a cell can 

protect itself from accumulation of ROS and somatic mtDNA mutations that can be deleterious 

to the cell91. As yet, no study has specifically determined the functions of mitochondrial specific 

autophagy in cardiomyocytes though it has been seen that in Atg5 KO mice (loss-of-function for 

general autophagy), cardiac disease is present with oxidative maladies92. During cardiac stress 

(ischemia/reperfusion), autophagy seems to play an important role and may contribute to cardiac 

protection93,94. These studies, while opening the door for further research, indicate that 

mitophagy plays an invaluable part in the protection against heart disease by removing damaged 

and ineffective mitochondria from the cell. 
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3.1.4.Biogenesis of mitochondria As we’ve seen, mitochondria make up a large proportion of 

the mass of cardiac cells to allow constant energy production. During embryonic development, 

glucose is a preferred fuel source but during stem cell maturation, mitochondria become more 

abundant thus the cell can rely more on fatty acids for energy through adulthood95. This process 

of generating new mitochondria during early development is termed mitochondrial biogenesis. In 

the myocardium, a surge of mitochondrial biogenesis at birth allows the development of a 

remarkably dense array of mitochondria packed tightly between sarcomeres96–98. After this 

developmental stage and into adulthood, mitochondrial biogenesis is far less important compared 

to maintenance of fatty acid oxidation capabilities of existing mitochondria99. As mentioned, 

occasionally, mutations or disruptions in membrane potential warrant fission of small portions of 

a mitochondrion and selective destruction by autophagy. As this occurs, cardiac cells would 

progressively lose oxidative capacity over the lifespan if this same process of mitochondrial 

biogenesis did not replace functional organelles. Three groups of transcription factors appear 

responsible for the replication of mitochondria from existing mitochondria (rather than de novo): 

PPARs, ERRs, and NRFs. PPARs appear to aid in the regulation of genes involved in 

mitochondrial (and peroxisomal) fatty acid oxidation100. ERRs are a family of nuclear receptors 

that are involved in most mitochondrial metabolic pathways including TCA cycle components, 

β-oxidation, and oxidative phosphorylation101. NRFs are primarily involved in the regulation of 

genes controlling the OXPHOS components102. PGC-1α is a transcriptional coactivator that can 

coordinately activate each of these transcription factors and stimulate mitochondrial biogenesis 

in the cardiac muscle cell103,104. During pathological cardiac remodeling, mitophagy seems to 

play a key role in controlling ischemic damage but less is known about how mitochondrial 

biogenesis restores the damage organelles93. Speculation puts mitochondrial biogenesis in an 
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important position during exercise stressors, pregnancy responses, preconditioning and 

carioprotective processes in the heart muscle cell97. 

3.2.Mitochondrial Genetics Mitochondria are a defining characteristic of eukaryotic cells and 

result from an ancient α-proteobacterial endosymbiotic interaction105. This helps explain the 

presence of a circular genome within the mitochondria (mtDNA) that is highly variable between 

species106. The mtDNA has shortened dramatically and independently throughout genetic 

lineages with most of the still necessary genes having been transferred from the mtDNA to the 

nDNA. Evidence supports the evolutionary advantage of transferring genes from mtDNA to 

nDNA to mitigate mutations by allowing sexual recombination and lessened proximity to 

oxidative stressors107. Still, not all genes encoded by mtDNA can be successfully expressed from 

the nucleus108. This presents key questions as to the importance of the genes expressed by the 

mtDNA, and how to control of replication, transcription and translation of the mtDNA. 

3.2.1.The mitochondrial genome Mitochondrial DNA has shown extensive alterations 

phylogenetically in the eukaryotic domain but remain relatively unchanged within kingdom 

Metazoa106,109. A high degree of homology exists between mammals, especially mouse and 

man110,111. Human mtDNA is ~16.6kb, double stranded (a heavy and a light strand based on base 

composition), and encodes 37 genes comprised of two rRNAs, 22 tRNAs and 11 mRNAs. Two 

of the mRNAs are bicistronic and therefore, each becomes 2 proteins making the total number of 

mtDNA-encoded proteins thirteen112. Maintenance and expression of the mtDNA is vitally 

important in mammals. Maintaining the discreet genome and associated machinery for 

expression seems to evolutionarily outweigh the benefit of transferring the sequences for 13 

mtDNA encoded proteins to the nDNA because over one quarter of the mitochondrial proteome 

is involved in DNA maintenance, replication and expression113,114. 
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3.2.2.mtDNA Replication mtDNA replication is distinct from that of nDNA replication and as 

such has specialized replication machinery. mtDNA replication machinery has been related to 

the replication machinery of early bacteriophages115. A specialized DNA polymerase-γ maintain 

DNA binding, exonuclease, and lyase activity, TWINKLE aids in helicase unwinding of the 

mtDNA, and RNA polymerase contributes the primers for the polymerase process116–120. The 

light strand promoter region is ~200bp 5’ of the heavy strand origin of replication allowing for a 

3’ tail from RNA polymerase to act as the primer initiating heavy strand DNA replication. The 

primer is later cleaved by nucleases while replication continues121. MtDNA copy number is 

under control of multiple replication abortive processes but can be stimulated by overexpression 

of TWINKLE in mouse muscle and heart122. mtDNA is compacted into nucleoid structures 

similar to that of bacterial genomes to allow a more densely packed organization. The primary 

molecule forming the nucleoid structures is TFAM capable of binding the mtDNA every 16-

17bps123. The control of mtDNA compaction by TFAM is relevant to both levels of mtDNA 

replication and transcription124. 

3.2.3.mtDNA repair mechanisms mtDNA is in relatively close proximity to redox centers and 

mutation causing free radicals (as discussed in section 5). However, little evidence suggest that a 

faithful or dedicated repair process for mtDNA is present. However, some evidence does suggest 

a limited ability for mtDNA mutations to be corrected. Research has shown that base excision 

repair is partially active within the mitochondria and helps mitigate oxidative DNA damage. 

Mismatch repair mechanisms are lost from nDNA to the mtDNA but Polγ (the only polymerase 

located within the mitochondria) has a specific subunit for proofreading thus minimizing the 

need for mismatch repair. Base dimerization and crosslinking mutations cannot be repaired 

effectively. Some ligase activity does occur because blunt ends and linear fragments can be 
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rejoined. Certain proteins have been identified that function in these processes with nDNA and 

are localized to mtDNA. As yet, it does not appear that a robust mtDNA repair system is active 

within the mitochondria. Because no recombination, if a somatic mutation occurs it will: 1) be 

silent, 2) prevent transcription or replication and be destroyed, 3) create mutated genes/proteins 

and propagate to daughter mitochondria. These mutation, especially in a mothers’ egg, can create 

diseases with a wide array of clinical symptoms. Other theories suggest that a slow rate of 

mutation over lifespan can reduce oxidative potential of the mitochondria and cause aging and 

death125–131. 

3.2.4.mtDNA Transcription MtDNA contains two anti-parrellel strands with the outer strand 

being slightly heavier due to a higher proportion of guanine base pairs and thus is referred to as 

the heavy strand (while the complimentary is the light strand)132. The mtDNA is tightly packed 

with only one non-coding region used to regulate transcription of each strand with the LSP and 

HSP. Beginning transcription in this non-coding region produces mRNA transcripts that are near 

the length of the entire genome with termination sequences stopping transcription before 

completing circumscription. These polycistronic transcripts produce multiple mature mRNAs 

that are processed co-transcriptionally and seem to use intermittent tRNAs to ‘punctuate’ or 

flank the rRNAs and mRNA coding sequences133. The molecular machinery used for mtDNA 

transcription is similar to that of replication and involved a mtDNA-directed RNA polymerase 

(mtPol ), a subunit of DNA polymerase-γ, and TWINKLE helicase activity134. mtPol was 

identified based on sequence homology to yeast and the x-ray structure identifies an N-terminal 

promoter-binding region and a C-terminal catalytic domain135–137. mtPol is able to bind the 

promoter region but is not able to begin transcription without additional transcription factors. 

Mitochondrial transcription factor B2 (TFB2M) is required to aid in the initiation of transcription 
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but is dissociated from the Polymerase complex after leaving the promoter region and beginning 

elongation138–140. Transcription factor A (TFAM) additionally aids in the transcription initiation 

complex by its role in DNA binding and compaction into a U-turn shape without sequence 

specificity. These shapes aid in denaturing a small portion of the mtDNA which can create an 

area for transcription initiation on the promoter region141–143. Transcription initiation models 

suggest that TFAM first binds ~70-75bp upstream of the start sequence creating a bend in the 

DNA and associating with mtPol to recruit it to the promoter site. As it binds ~50bp upstream of 

the TSS, mtPol recruits TFB2M to surround the TSS and help generate the first phosphodiester 

bonds, the rate limiting step in transcription144. Transcription elongation is aided by 

mitochondrial transcription elongation factor that aids in polymerase activity especially where 

secondary RNA structures or oxidative damage on DNA basepairs (8-Oxo-2’-

deoxyguanosine)145,146. Mitochondrial transcription termination was thought to be controlled by a 

family of termination factors (MTERF 1-4) however only MTERF1 seems to play a role in 

transcription termination. The H-strand seems to have a short and long transcript size that 

transcribes the entire H-strand or just the first 4 genes with MTERF1 controlling the early 

termination for yet unknown reasons147–149. The role of MTERF2,3 and 4 have been identified 

but even with sequence similarity and sequence specific DNA binding motifs, evidence suggests 

they have now taken on roles in replication initiation and ribosomal assembly150–152. 

3.2.5.mt-mRNA Translation Of the >250 proteins localized to the mitochondria to aid in DNA 

processing, transcription and replication, they are all required because of the necessary outcome 

of mitochondrial translation and the few (13 in mammals) necessary proteins153,154. This requires 

maintenance of the requisite translation machinery including mRNAs, tRNAs, and ribosomes but 

huge disparities exist between cytosolic, bacterial, and mitochondrial translation. Almost all of 
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the requisite proteins for mitochondrial translation, across all species, are encoded by nDNA and 

must be imported into the mitochondria155. 

3.2.5.1.tRNAs While mitochondria originated form a common ancestor, many of the 

components of translation are substantially different between animals and bacteria. A primary 

example is the difference in the mammalian mitochondrial genetic code from that of the 

universal genetic code156. The mitochondrial code in mammals contain more stop codons and an 

extra Trp codon compared to the universal norm and contain fewer tRNAs than would be 

predicted with the traditional wobble rule. Among Metazoans, the majority of mt-tRNAs contain 

a traditional cloverleaf shape whereas some other eukaryotes contain simplified codon/anti-

codon fragments only157,158. This is most apparent when the structures for the mitochondrial 

ribosomes was revealed and showed striking differences among species. 

3.2.5.2.rRNAs and mitochondrial ribosomes The structure of mitochondrial ribosomes, or 

mitoribosomes, has changed dramatically across evolution but maintains similarity among higher 

organisms159–161. The mammalian mitoribosome can sediment as a 55S monosome consisting of 

a 28S SSU and a 39S LSU which contain a 12S and 16S mt-rRNA, respectively162. Bacteria 

maintain a 5S rRNA which is involved in coordination of the LSU and SSU during translation163. 

Modern mitochondria do not contain this small rRNA and instead, have evolved the interacting 

regions of the ribosomal subunits to compensate164. Despite the differences seen among 

mitoribosomal architecture, the catalytic active site remains constant between bacteria and 

mitochondria explaining side effects of many antibiotic treatments165. An additional 

responsibility of the mitoribosome is insertion of the nascent protein into the IMM. Each of the 

proteins encoded by mt-DNA are IMM proteins in the OXPHOS and are highly hydrophobic 

which may contribute to reasons why they cannot be encoded by nDNA108. The exit tunnel of 
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mammalian mitoribosomes has developed a similarly hydrophobic protein lining to mimic the 

protein folding necessary for membrane insertion159. Additionally, a ribosomal interatcting 

protein is anchored within the IMM and binds near the exit tunnel of the mitoribosome. Lastly, 

specific proteins such as Oxa1 interact with the nascent chain and acts as a protein insertase for 

the IMM though it Is not absolutely required166,167. 

3.2.5.3.Translation initiation Protein synthesis is an energetically expensive process and as 

such, translation initiation is generally a committal step. To begin translation requires specific 

interactions of all proteins and RNA molecules involved. In bacterial and eukaryotic translation, 

the process has been reconstructed in vitro using just this minimal necessary components but this 

has not been fully achieved using mitochondrial translation machinery alone168. Still, these 

experiments have shed much light on how the translation initiation process takes place. The 

working theory is that a preinitiation complex made up of the combined 55S mitoribosome is 

bound by mtIF3 which dissociates the 28S SSU and 39S LSU revealing a binding site for mtIF2 

on the 28S SSU. mtIF2 is able to recruit the fMet-tRNA bound to the start codon on the mRNA 

to the P site within the 28S SSU. mtIF2 then hydrolyzes GTP to GDP allowing the 39S LSU to 

join by removing the two initiation factors. This generates the initiation complex consisting of 

the 55S mitoribosome, and mRNA bound by the appropriate aminoacylated tRNA153. 

3.2.5.3.1.mtIF2 Comparisons are generally made between mammalian mtIF2 and IF2 of bacteria 

because it is no more dissimilar than that of yeast mtIF2. Mammalian mitochondria only contain 

one Met-tRNA used for both initiation and elongation. A Met-tRNA transformylase has been 

identified that generates a subset of fMet-tRNAs to be used for initiation while the non-

formylated Met-tRNA bind to mtEF-Tu for elongation169. mtIF2 will bind fMet-tRNA at a 

subdomain labeled VIC2. Domain III of mtIF2 is responsible for the binding to the 28S SSU 
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though this association constant is highly dependent on the presence of GDP. Because of this 

reliance on GDP, Domain IV removal eliminates 28S binding capability as the GDP binding 

domain170. Bacterial and eukaryotic cytoplasmic translation initiation utilize 3 ‘universal’ 

translation initiation factors (1,2, and 3) however this is not the case for the mitochondria. No 

equivalent of IF1 has been identified in mitochondria. There is a 37 amino acid insertion after 

Domain V of the mtIF2 protein that shows similar activity of the IF1 protein in prokaryotic 

systems. In an E. Coli system, mutants lacking IF1 and IF2 were lethal but could be rescued by 

replacing mtIF2 showing that within the mitochondria, a single initiation factor does the work of 

two bacterial initiation factors171,172. The function of bacterial IF1 that was taken on by mtIF2 is 

that of binding the 30S SSU covering the A-site until the fMet-tRNA is bound and the 

preinitiation complex is formed173. 

3.2.5.3.2.mtIF3 mtIF3 shows only a small degree of homology with bacterial IF3 and no 

homolog has been identified in Saccharomyces cerevisiae174.  The protein has not been isolated 

from mitochondria but sequence prediction indicates C-terminal α-helical regions similar to that 

seen in E. Coli and other bacteria as well as a flexible inter-domain linker region. The N-terminal 

portion is predicted to be unstructured in solution but develop a structure once associated to the 

ribosome175–177. This flexible linker is thought to play a role in its ability to bind the 55S 

mitoribosome and dissociate the large and small portions to all mRNA and fMet-tRNA binding 

to the P-site. mtIF3 is also able to stop translation from proceeding when an improper start codon 

is placed in to the ribosome, or when fMet-tRNA associates with the P-site without a bound 

mRNA178. This activity acts as a proofreading step preventing mt-mRNA translation initiation 

under inappropriate mRNA/tRNA combinations. Which mitoribosomal proteins are targeted and 

bound by mtIF3 and their location in the mitoribosomal subunits is not yet known179. 
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3.2.5.4.Translation elongation Mitochondrial translation elongation is highly conserved from 

prokaryotes to mammals180. Elongation proceeds when a ternary complex consisting of mtEF-

Tu, an aminoacylated-tRNA, and GTP associates with the A site and forms a complimentary 

codon:anticodon interaction. GTP is hydrolyzed to GDP by mtEF-Tu to generate a new peptide 

bond elongating the nascent chain. mtEFG-1 subsequently binds to the mitoribosomal complex 

at the A site, hydrolyzes GTP, and translocates the nascent peptide to the P site opening the A 

site for the next mRNA/mtEF-Tu/GTP ternary complex. Simultaneous to mtEF-G1 GTPase 

activity, mtEF-Tu interacts with mtEF-Ts to aid in the removal of GDP and replace the GTP on 

mtEF-Tu to allow subsequent recycling181–188. 

3.2.5.4.1.mtEF-Tu mtEF-Tu was originally identified because of high expression in tumor cells 

in 1995 and was characterized in Bos taurus189. The gene has only a short mitochondrial 

targeting sequence and results in a 45kDa protein that has high homolog with the bacterial 

counterpart. This is consistent with the mostly conserved process of translation elongation from 

bacteria to mitochondria190. The crystal structure of mtEF-Tu reveals 3 domains and a strong 

interaction with mtEF-Ts. Domain I binds GTP/GDP, domain II binds aa-tRNA and the 

mitoribosomal SSU, and domain III further interacts with the 5’ stem of the aa-tRNA191–193. 

These features allow bovine mtEF-Tu to function well in E. Coli but the conformational changes 

associated with tRNA codon:anticodon binding and Domain I are not strong enough to catalyze 

GTP hydrolysis194. 

3.2.5.4.2.mtEF-Ts The primary function of mtEF-Ts is to aid in guanine nucleotide exchange 

with mtEF-Tu. The crystal structure reveals extensive binding between mtEF-TS and mtEF-Tu at 

three particular domain interactions191. Further experiments nucleotide exchange in mtEF-Tu 

through the aid of mtEF-Ts requires multiple important steps including removal of bound Mg2+, 
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stabilization of GTP at the β-phosphate, and conformational changes that affect the hydrogen 

bonding with the mitoribosome and aa-tRNA195–198. 

3.2.5.4.3.mtEF-G1 mtEF-G1 is the main protein controlling the translocation step of 

mitochondrial translation elongation and involves GTP hydrolysis activity199,200. The GTPase 

activity requires specific activity from portions of the mitoribosomal LSU200 but very few other 

enzymatic experiments have been performed limiting out knowledge on the functional 

characteristics of mtEF-G1201. 

3.2.5.5.Translation termination In mitochondria, UAA and UAG serve as stop codons while 

UGA is replaced. When the stop codon enters the A site of the 55S ribosomal complex, it is 

recognized by the GTP bound mtRF1a activating the GTP hydrolysis to allow the release of the 

now completed polypeptide chain. Subsequently, mtRRF1 and mtRRF2 (mitoribosome recycling 

factors) dissociate the two mitoribosomal subunits to allow for ribosomal recycling202. 

3.2.5.6.Translation Activators Translational activators were first reported in 1989 and 1990 

from yeast models where research identified a nDNA-encoded protein that localized to the 

mitochondria and activated translation203–206. Translational activators are able to enhance mt-

mRNA translation by binding (with sequence specificity) to mt-mRNAs, the mitoribosome, and 

tethering to the IMM where the nascent peptide is to be inserted207. These translational activators 

have implication on feedback loops and in controlling the number of key subunits for OXPHOS 

components. The only known human translational activator is responsible for COX1 translation 

and assembly208,209. An additional mechanism implicated for activation of mitochondrial 

translation is through microRNAs interacting with AGO2210. These results are controversial and 

have yet to be confirmed because other transcriptomic approaches have not identified microRNA 

enrichment in isolated human mitochondria211. 
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3.3.Mitochondrial DNA-encoded proteins The 13 proteins that are generated as a result of the 

mtDNA expression system are necessary to generate the OXPHOS system212. These mt-DNA 

encoded proteins are assembled with proteins from the nDNA into the IMM and allow the 

OXPHOS system to function. These proteins are incorporated into subunits I, III, IV, and V213. 

Further detail on the function of these proteins within the OXPHOS complexes and the ETS as a 

whole follows. 

4.Electron Transport and Oxidative Phosphorylation The chemiosmotic theory of ATP 

synthesis in cholorplasts and mitochondria was originally proposed by Peter Mitchell in 1961214. 

This model explained that a proton gradient formed across a membrane space and that the 

electrochemical potential energy that formed across this membrane could be used to drive 

phosphorylation of ADP to generate ATP. This provided for a mitochondrial model accounting 

for a series of electron transfer reactions which electrons from O2 to produce H2O with the 

subsequent energy yield moving protons across the IMM against the concentration gradient. This 

provided an ATP-less mechanism to generate the gradient for the ATP synthase pump to make 

ATP215,216. This findings were confirmed by the development of a method to reconstitute the 

proteins into a biological membrane and measure the rates of proton pumping using pH 

indicators217. The OXPHOS system consists of: 3 proton pumping complexes (I, III, and IV), 

succinate dehydrogenase, two electron carriers (coenzyme Q/ ubiquinone and Cytochrome C), 

and finally the ATP synthase energy generating pump. 

4.1.NADH:ubiquinone oxidoreductase Complex I of the ETC completes the overall reaction of 

transferring electrons from NADH to ubiquinone by a series of redox reactions to pump protons 

across the IMM. Complex I is made up of 45 distinct protein subunits though 14 of these are 

highly conserved and sufficient for energy transduction. Of the 14 core proteins, seven are 
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hydrophilic and extend into the matrix of the mitochondria and are encoded by nDNA while the 

other seven create a hydrophobic intermembrane arm extends through the IMM. Each of the 

seven core subunits within the membrane arm is encoded by mtDNA and translationally inserted 

into the membrane. The seven mtDNA-encoded proteins are: ND1, ND2, ND3, ND4, ND5, 

ND6, and ND4L. These molecules contain between three and 16 transmembrane helices and thus 

are extremely hydrophobic, possibly contributing to their conservation in mtDNA. It is predicted 

that these ND subunits create antiporter-like half channels through the membrane and allow 

transfer of protons halfway connecting with a subsequent half channel to complete the 

translocation. These channels are thought to be filled with water molecules and act with a 

Grotthus–like mechanism whereby the protons are not translocated but rather exchanged 

between water molecules to allow more rapid movement. This would allow uncoupled leakage of 

protons across the membrane if no gating took place. The energy to use these channels against a 

gradient is generated distally from the ND channel subunits. In the hydrophilic arm within the 

matrix, NADH is oxidized to NAD+ transferring the electron to Flavin mononucleotide 

generating FMNH2. The oxidized NAD+ is returned to the mitochondrial matrix to replenish the 

pool of substrates for the TCA cycle or β-oxidation. The reduced FMNH2 transfers its electron to 

a series of seven FeS clusters that rapidly transfer the electron from the periphery of the complex 

towards to membrane-bound portion. At the FeS cluster nearest the membrane, ubiquinone 

accepts the electron and becomes the reduced ubiquinol. An α-helical subunit of the complex 

runs lengthwise from the electron transport centers to the membrane bound arm and is theorized 

to aid in the coordination of electron transfer to proton pumping.  The FMNH2 intermediate can 

react with molecular O2 to produce O2
- (superoxide) because of the low reduction potentials of 

the FeS clusters within complex I. Ubiquinone is reduced to ubiquinol (a 2-electron reaction) by 
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2 one-electron steps involving a semi-quinone intermediate. The predicted stoichiometry moves 

2 electrons from NADH to ubiquinone (generating NAD+ and ubiquinol) and allows the 

movement of ~4 protons from the matrix to the intermembrane space218. 

4.2.Succinate dehydrogenase Succinate dehydrogenase is considered an enzyme within the 

TCA cycle as well as complex II of the ETC complexes. The complex is made of four subunits 

tethered to the IMM. The subunit SDHA catalyzes the succinate to fumerate redox reaction 

generating the electrion donor FADH2 as part of the TCA cycle. SDHB is able to accept FADH2 

from the SDHA reaction or from other sources such as β-oxidation. SDHB transfers two 

electrons from FADH2 through three FeS clusters to a heme prostetic group within the SDHC/D 

membrane-bound portion of the complex. The heme prostetic group interacts with ubiquinone 

allowing two subsequent single electron reactions to generate ubiquinol similar to complex I. 

Complex II is far smaller than the other ETC complexes and contains zero proteins encoded by 

the mtDNA. Additionally, it only accepts electrons from FADH2 and does not pump any protons 

during the electron transfer meaning it does not contribute to the electrochemical gradient across 

the IMM. This explains why FADH2 contributes less to ATP production than NADH219. The 

reduced ubiquinol molecules from complex I and II are able to transfer electrons further down 

the ETC to complex III. 

4.3.Cytochrome bc1 oxidase Complex III of the ETC is also appropriately named cytochrome 

bc1 (due to the reaction intermediate) or ubiquinol:cytochchrome C oxidoreductase (based on the 

overall redox reaction). In mammals, this complex is composed of eleven protein subunits of 

which three subunits are necessary for electron transport function: Cyt b, Cyt c1, and ISP. Cyt B 

is the only protein of this complex that is encoded by mtDNA while the rest are encoded in 

nDNA. Cyt B is completely embedded within the IMM and contains two of the key redox 
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intermediates as b-type heme prosthetics, heme bL and heme bH. The other two core proteins are 

Cytochrome c1 (containing a c-type heme prosthetics) and an iron sulfur protein (ISP, containing 

the FeS clusters). The complex functions by undergoing two rounds of the Q-cycle reactions. 

The first series transfers two elections from a ubiquinol molecule (product of Complex I and II) – 

one to a FeS cluster and another to heme bL to transfer two protons. The electron from the FeS 

cluster is passed to the heme c prostetic on cyt c1 and then to a membrane diffusible carrier 

cytochrome C. The electron on the heme bL is transferred to heme bH and then to an oxidized 

ubiquinol to create a semiquinone intermediate. A second round of this cycle will take place to 

further reduce the semiquinone to ubiquinol and pumping two more protons across the IMM. In 

total, 4 protons are pumped to the intermembrane space, 2 cytochrome c molecules are reduced, 

and 1 ubiquinol is oxidized to ubiquinone. The Q-cycle will continually to transfer electrons 

to/from ubiquinol/ubiqinone/semiquinone. This ceaseless transfer of electrons will cause some 

leakage of electrons to O2 generating O2
-. This occurs to a low extent during normal electron 

transport, to a greater extent during excess ETC reduction, or if the transfer of electrons to the 

FeS clusters is blocked by an inhibitor such as Antimycin A. Both the semiquinone intermediate 

and the initial transfer of electron into the complex occurs with the heme bL acceptor in the Cyt b 

protein – the sole protein encoded within mtDNA220. The reduced cytochrome c molecule 

diffuses in the IMM to complex IV for further electron transport. 

4.4.Cytochrome c oxidase Complex IV of the ETC oxidizes cytochrome c from the reactions of 

complex III and transfers the electrons to O2 to form H2O. The complex is composed of 13 

subunits of which the three core subunits are encoded by mtDNA and are responsible for 

electron transport. The three subunits encoded by the mtDNA are the largest and most conserved 

showing homology to bacterial proteins. Similar to complex I and III, the mtDNA encoded 
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subunits make up the functional components of the complex. In complex IV, COXI (subunit I) 

contains hemea, hemea3, the copper center Cub, and the molecular O2 that is to be reduced to 

H2O. COXII (subunit II) contains the Cua center. The function of the final mtDNA-encoded 

subunit, COXIII is less understood. In a redox cycle of complex IV, cytochrome c (from reduced 

from complex III) transfers two electrons to Cua on COXII, then to hemea, hemea3, and Cub on 

COXI then finally to oxygen forming H2O and resulting in 4 protons being pumped to the 

intermembrane space. The full series of reactions uses 4 reduced Cytochrome C donors, one 

molecule of O2, and 8 protons to generate 2H2O molecules and pumping the remaining 4 protons 

across the membrane. While Complexes I and III are generally accepted as the primary, 

physiological sources of ROS production (and potentially Complex II through new evidence), 

Complex IV has long been controversial as it relates to production of O2
-. Generally, Complex 

IV does not produce any physiologically relevant amount of ROS but can be a contributor under 

hypoxic stress as the redox centers become completely reduced221–223. This is the final complex 

associated with electron transport to create the proton motive force across the IMM. To couple 

the electron transport to oxidative phosphorylation requires proper functioning of the F0/F1 ATP 

synthase, or Complex V. 

4.5.F0F1 ATP Synthase ATP synthase, or sometimes ATPase is the fifth and final complex of 

the OXPHOS system. ATP synthase is an enormous protein complex with a complicated 

structure involved a membrane bound portion, a matrix, soluble portion, and a ‘stator’ 

connecting the two. The central, rotating F1 portion bind ADP and Pi and rotates to combine the 

two into ATP before releasing the newly generated energetic molecule. This F1 portion is linked 

to the F0 membrane bound portion which rotates in response to protons flowing through a 

membrane channel, with the concentration gradient. This flow of protons along the concentration 
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gradient acts to rotate the c subunit ~20-30o per proton. This rotation is transferred to the F1 

portion through a γ[epsilon] neck resulting in ~1200 of rotation in the F1. This is sufficient to 

allow a conformational change of the ADP + Pi binding subunits into a tight confirmation 

generating ATP. After another series of protons is moved, and the F1 portion continues to rotate, 

the ATP will be released allowing subsequent ADP phosphorylation. Of the numerous proteins 

involved in this complex molecular engine, two subunits are encoded by mtDNA in mammals. 

The genes ATP6 and ATP8 encode the ATP synthase proteins mt-ATP-a and mt-ATP-A6L. 

Similar to the other mtDNA-encoded proteins, these are extremely hydrophobic and integrated 

deep within the membrane. They also seem to play key roles in the function of the protein 

complex. Subunit a is a primary transmembrane component of the proton channel that allows the 

H+ to travel across the IMM. Subunit A6L contributes to this as well by connecting subunit A to 

the F0 subunit c which is rotating in response to proton movement224–231. These are the last two 

protein examples encoded by the mtDNA and finalize the continuing theme of the primary 

importance of the mitochondrial genetic machinery to maintain aerobic life. 

5.Reactive Oxygen Species As described above, electrons move quickly and coordinately along 

the ETC to facilitate the development of the proton gradient (Δψm) from ATP synthesis. At 

certain key transfer steps, electrons can react with unintended acceptor molecules. Molecular O2 

is able to act as a single electron acceptor generating O2
-(superoxide). Superoxide then rapidly a 

dismutase and H2O to generate H2O2 (hydrogen peroxide). The instability of the peroxide bond 

results in H2O2 having high reactivity and readily transferring an electron to any acceptor 

molecule so that it can be oxidized back into H2O. Superoxide, hydrogen peroxide, among other 

unstable electron donors are termed reactive oxygen species (ROS) because of their propensity to 

oxidize and transfer a free electron radical to a reducing molecule. This section will discuss 
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sources of O2
- within the mitochondria, deleterious effects of excessive ROS and mechanisms to 

mitigate free radicals using anti-oxidant defenses. 

It should be noted that this section details the production of superoxide and its products 

from mitochondria as a source. Other forms of free radicals exist from sources such as 

cytoplasmic xanthine oxidases, catechols, transition metals (Cu2+, Fe2-), membrane 

lipooxygenases, prostaglandin synthesis, lysosomal peroxidases, peroxisome oxidases, and 

NADPH oxidases. 

5.1.Production of superoxide Diatomic oxygen is the final electron acceptor of the ETC to be 

transformed into water but when O2 accepts a single electron, it becomes superoxide by 

univalent reduction. This is the main ROS species of interest and is the direct result of imperfect 

redox exchanges along the IMM. Other species of ROS are generally formed through subsequent 

interactions with O2
-. The primary sources of O2

- have been identified as Complex I and III of the 

ETC and this can occur through multiple reactions. Categorically, the source of the electron 

donor within Complex I or III suggests the redox state and Δψm that could be expected to result 

in excess O2
- production: either a NADH/NAD+ isopotential source or Q/QH2 

(ubiquinone/ubiquinol) isopotential source232–234. 

5.1.1.NADH/NAD+ isopotential A group of redox enzymes is capable of producing O2
- based 

solely on the redox state of NADH/NAD+. These reactions involve a flavin molecular 

intermediate to assist in the redox reactions which is the source of the electron singlet. This mode 

of ROS production might be seen in mitochondria undergoing very low ATP production but with 

high amounts of energy substrate such as NADH. [NADH] is generally downregulated under 

physiological conditions to prevent this from occurring naturally. It can be seen experimentally 

by inhibiting electron flow to ubiquinone as with rotenone. These [NADH]/[NAD+] sensitive 
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reactions are: 1) Complex I Flavoprotein reduction, 2) pyruvate dehydrogenase, 3) branched 

chain keto acid dehydrogenase and 4) α-ketogluterate dehydrogenase. Predictive experiments 

show that complex I FMN does not relatively contribute much to the total superoxide pool 

compared to the other enzymes in this group. In fact, α-ketogluterate dehydrogenase is predicted 

to produce 8 times as much O2
- as FMN from complex I. 

5.1.1.1.Mechanisms of O2
- generation The complex I acceptor of NADH electrons is a Flavin 

mononucleotide (FMN) and if FMN becomes fully reduced (such as occurs when the ubiquinol 

is fully reduced through increased [succinate] or rotenone), the FMN will transfer electrons to 

O2
- because the FMNH2 is exposed to the aqueous phase. Pyruvate dehydrogenase (PDH) is 

under allosteric control of NADH such that under highly reduced conditions, [NADH] is 

increased and activity of PDH is decreased. This allosteric regulation prevents the flavin 

prosthetic group from donating an electron to NAD+. When PDH is fully reduced, this will result 

in the electron singlet reducing O2
 to form superoxide. Branched chain keto acid dehydrogenase 

catalyzes branched chain amino acids for entry into the TCA cycle. This enzyme shows a similar 

mechanism of superoxide generation as PDH. It is not under direct control of [NADH] but 

upstream molecular activators are involved in metabolic sensing. α-ketogluterate dehydrogenase 

uses a similar flavoprotein as PDH but is under tight allosteric control of NADH. 

5.1.2.Q/QH2 isopotential As mentioned in Section 4, Complex I and II transfer electrons to a 

carrier molecule ubiquinone and ubiquinol subsequently reacts at the Q-cycle within Complex 

III. This major electron transfer point does contain a other, less significant electron donors to the 

ubiquinol pool: Electron transfer flavoprotein:ubiquinone oxidoreductase (ETFQO), 

dihydroorotate dehydrogenase (DHODH), proline dehydrogenase (ProDH), G3PDH, 
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Succinate:quinone reductase (SQR) in addition to the canonical reactions of SDH (complex II) 

and complex III. 

5.1.2.1.Mechanism of O2
- generation For each of these redox controllers, an electron is 

transferred to the oxidized ubiquinone to generate a semiquinone intermediate or reduced 

ubiquinol. Under circumstances of excessively high Δψm, concentration of reduced ubiquinol can 

increase and cause the Q/QH2 ratio to shift towards reduction. This prevents ubiquinol from 

accepting electrons from any of the donors in this isopotential group. This, in turn, forces 

reduced ubiquinol within the complex I CoQ domain to transfer electrons to O2 generating O2
- 

and generating a ubiquinone that can accept the donor’s electron. The concept of the ETC 

reducing backwards towards complex I is referred to as reverse electron transport. This 

mechanism accounts for the contribution of each of these enzymes to superoxide production. 

5.2.ROS chemistry and deleterious effects Superoxide is a direct product from the 

mitochondrial electron transport processes but is only one of the ROS. Superoxide, however, has 

low reactivity with most organic molecules but will readily interact with other molecules (Fe2+, 

FeS clusters, NO-, and another O2
-) including as a substrate for dismutase enzymes generating 

H2O2. H2O2 is able to diffuse across biological membranes or use aquaporins to mobilize 

throughout the cell235. H2O2 can also interact with metal ions (Cu+, Fe2+) to generate a hydroxyl 

radical (-OH). -OH is the most reactive form of ROS and interacts with most organic molecules 

rapidly236. The reactive free radicals are capable of targeting cellular macromolecules and 

interacting to cause damage using hydrogen abstraction reactions. 

Lipid peroxidation is an example of such a reaction that targets unsaturated fatty acids 

generating a peroxyl-fatty acid radical. This radical can oxidize using another fatty acid to 

become a fatty acid peroxide and another fatty acid radical which can propogate the reaction. 
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This can lead to a series of fatty acid modifications in a region such as a membrane thus causing 

negative consequences to ion channels, membrane enzymes, transport proteins and altering the 

composition of the lipid bilayer236. 

Protein damage results from the interactions of free radicals with specific amino acid 

residues. Specifically, sulfhydryl groups are at risk in cysteine and methionine residues of 

becoming sulfoxides. Ring cleavage is possible in histidine and tryptophan residues. Other 

residues may form aldehyde or ketone carbonyls. All of these changes can alter structure and/or 

function of the peptide molecule. This will generally result in alter function of the protein and 

eventual proteolysis through the proteasome or lysosomal degradation. ROS can also directly 

interact with protein post-translational modifications to stabilize or destabilize specific signaling 

pathways as seen with ROS-induced stabilization of HIF-1α in the response to hypoxia. The 

proteolytic processes may be overwhelmed generating an abundance of dysfunctional protein 

aggregates237–244. 

Carbohydrates and sugars can interact with free radicals and amino acids to produce 

advanced glycation end products. These are amino acids that have been irreversibly altered by a 

carbohydrate to the extent that they cannot enter the 20S proteasome for degradation245. 

RNAs, which are already unstable in nature, can be oxidized by free radicals and 

truncated altering protein synthesis and resulting in abnormal protein translation,247. 

DNA can be oxidized by ROS at both the base and the deoxyribose sugar248,249. The cell 

generally maintains a robust DNA damage/repair response but this too can become overwhelmed 

in situations of chronic, excessive ROS production250,251.  nDNA oxidation has specific interest 

to those interested in radiation induced cancer generation but is of interest here because of the 

quantity of mitochondrial ROS produced in the ETC and the proximity to mtDNA for mutations. 
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ROS are able to react with DNA rapidly. Deoxyribose is bound to two phosphate at the 3’ and 5’ 

carbon. Each of these interact with an oxygen molecule on the PO3γ. The interacting oxygen 

(from either the 5’ or the 3’ phosphate) can be oxidized by the free radical thus causing a single 

strand break252,253. Additionally, the DNA bases can be altered biochemically by ROS. Thymine 

can be reduced to form an enol base thymine-glycol that interferes with DNApolymerase. 

Guanine and adenine can be hydroxylated creating lesions in DNA. Other DNA oxidation 

products include 2-hydroxyadenine, 5,8-dihydroxycytosine, and 5-hydroxymethyluracil. At least 

24 known alterations to DNA bases have been identified as products of ROS interactions. Each 

of these can cause mutations when replicated or inhibit transcription/replication unless repair 

mechanisms can compensate. Some mutations such as the 8-hydroxyguanine has no known 

repair mechanism because it is recognized as a different base254–258. 

5.3.Mitigation of ROS Free radicals are constantly generated by the cell and especially within 

the mitochondria but the damage that is associated with free radicals is generally mitigated by 

the cell in a series of mechanisms responsible for ROS homeostasis. Before ROS is even 

produced, uncoupling proteins embedded within the IMM are able to help control Δψm in such a 

way as to prevent ETC reduction and ROS formation259. However, once O2
- is formed, the 

antioxidant system must come into play. The primary proteins involved in the antioxidant 

response are: 1) superoxide dismutase enzymes (SODs) which convert superoxide into hydrogen 

peroxide, 2) catalase which converts hydrogen peroxides into water, and 3) glutathione 

peroxidases which neutralize hydrogen peroxide by using reducing equivalents from reduced 

glutathione. Cytochrome C is a basic electron acceptor within the IMM and transfers electrons 

from complex III to complex IV of the ETS. Antioxidant activity has been demonstrated in 

Cytochrome C of isolated mitochondria and this can further contribute to proton pumping for 
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proton gradient and ATP production260–264. An isoform of SOD, SOD2 is specifically localized to 

the mitochondrial matrix for ROS detoxification265–269. While the family of SOD proteins does 

mitigate superoxide effectively, H2O2 is still quite toxic and can be mitigated by catalase. 

Catalase aids in the removal of H2O2 by producing molecular O2 and H2O though its contribution 

to overall cellular ROS mitigation has been a point of debate270–272. Glutathione is a tripeptide 

that is able to utilize a cysteine residue thiol group to accept an electron and become reduced. 

While multiple mechanisms exist to replenish the pool of oxidized glutathione, the GPx family 

of proteins is able to oxidize glutathione and reduce H2O2 into H2O
273,274. The expression and 

activity of these enzymes can help to control the redox state and ROS protection of the cell275. 

6.Discussion In summary, this review has discussed: 1) various CVDs, prevalence, mortality 

rates, and economic costs, 2) biochemical energetics, 3) mitochondrial genetics, 4) electron 

transport, and 5) ROS production. It is clear how heart disease can be attributed to biochemical 

alterations which are directly connected to the mitochondria. When the mitochondria become 

stressed, electron transport can begin generating free radicals which cause a series of negative 

chemical interactions involving DNA mutations. The proximity of ROS production inside of the 

mitochondria can result it accumulated mtDNA mutations. Because each of the 13 proteins 

encoded by mtDNA are paramount for proper electron transport, mutations can further propagate 

stress on the mitochondria starting the cycle over. 

6.1.Bioenergetics in heart failure During HF, carbon substrate utilization is altered in the 

myocardium. The myocardial metabolic phenotype generally refers to the substrate and 

metabolic preferences of the myocardium and is useful in comparing HF patient phenotypes to 

healthy controls. The myocardial metabolic preferences are under the transient control of 

circulating glucose, lactate, fatty acids, insulin, catecholamines, and oxygen concentrations as 
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well as hemodynamics and inotropic state. The healthy heart generates the majority of energy 

from fatty acids that seem to be maintained during earlier stages of HF; however, fatty acid 

oxidation declines during end stage heart failure and shifts towards glycolytic substrates276–279. 

This is complicated, however, by age- and obesity-associated alterations in plasma FFA 

concentrations and insulin sensitivity. While this makes one associate greater fatty acid oxidation 

with healthy myocardia, cardiac lipotoxicity can occur by accumulation of triglycerides and 

ceramides causing increased apoptosis and contractile decline280. This situation is further 

complicated by an obesity paradox wherein obese patients are at greater risk to develop HF but 

once diagnosed, obesity is associated with greater mortality compared to lean HF patients 

especially following heart surgery281,282. This might be partly explained by other comorbidities in 

lean HF patients, specifically cachexia or wasting syndromes which would categorize one as lean 

but is associated with greatly reduced mortality. 

6.2.Mitochondrial quality in heart disease Each of these processes, when working in concert, 

can contribute to favorable mitochondrial quality. In cardiac disease, multiple dysfunctional 

characteristics of mitochondrial quality are involved. 

6.2.1.Dynamism and the heart Multiple studies have demonstrated that when balancing 

fission/fusion of mitochondria, development of large, elongated organelles seems beneficial 

when compared to small, fragmented mitochondria. In the heart, research demonstrates that 

ischemic injury causes increased fission and fragmentation of mitochondria and that genetically 

preventing fission to maintain a large, interconnected network improved cardiac outcomes283–286. 

But the case for fusion always being good and fission always being bad is more complicated, 

however. Genetically enhancing mitochondrial fission through Drp1 does not negatively affect 

cardiomyocyte function. Further, evidence in Drosophila melanogaster demonstrates that, while 
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fission can remove damaged mitochondrial components, fusion can ‘poison’ the reticulum with 

damaged components287. This is of severe detriment because the quick accumulation of mutated 

mtDNA products that are not selectively removed and destroyed but rather propagate and create 

mutated daughter organelles. 

6.2.2.Mitophagy The process of mitophagy is inherently involved with mitochondrial dynamics 

because the portion of mitochondria to be destroyed must first be separated. Deletion of PINK1 

results in adolescent onset cardiomyopathy. While assessments of mitophagy were not done, 

decreased respiratory function, overall mitochondrial quality and enlarged mitochondria were 

seen287,288. Deletion of Parkin also increased the hearts sensitivity to MI and leads to 

accumulation of damaged mitochondria with greater mtDNA mutations289,290. Similarly, genetic 

ablation of BNIP3 or Nix lead to cardiac hypertrophy through decreased cardiac function and 

abnormal mitochondria291,292. Overall, it would appear that too little or too much mitophagy 

leads to heart disease so the key questions that remain involve the balance and timing of 

mitophagic events. Genetically enhancing or limiting mitophagy over the lifespan of an organism 

both lead to chronic heart failure. Specifically, chronic overactivation seems to deplete the pool 

of healthy mitochondria contributing to oxidative deterioration while chronic lack of mitophagy 

allows damaged organelles to accumulate and propagate. Following acute stressors, however, 

such as MI or I/R, greater mitophagy allows enhanced clearance of damaged mitochondria to aid 

in recovery293. 

6.2.3.Biogenesis in heart disease If mitochondria are removed after ischemic damage, then the 

pool of oxidative organelles must be replenished through biogenesis. Unfortunately, the shift 

towards a ‘fetal gene program’ as seen in pathological cardiomyocytes decreases expression of 

genes involved in fatty acid metabolism including PPARs and PGC-1α294. The activity of the 
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TCA cycle as well as the contribution of β-oxidation-derived acetyl-CoA decreases at the end 

stages of heart failure295. This could be an end result of decreased transcriptional machinery for 

fatty acid oxidative. Studies have demonstrated that dilated cardiomyopathy is associated with 

decreased expression of PGC-1α and decreased mtDNA copy number (a surrogate for the 

amount of mitochondria) but no other markers for mitochondrial biogenesis were assessed296. 

Some evidence has emerged suggesting a potential cardioprotective effect of PGC-1α but more 

research is required to support these conclusions297. Others have reported impaired PGC-1α 

expression during heart disease but no causal results were demonstrated298,299. However, on the 

contrary, some approaches have demonstrated that PGC-1α can be detrimental to cardiac 

function during disease300. These studies demonstrate the need for further assessment of the 

coordination of mitochondrial biogenesis during heart disease. 

6.3.Mitochondrial genetics and heart disease Multiple studies have shown a clear presence of 

heart disease (specifically cardiomyopathy, dilated cardiomyopathy, and fatal infantile 

cardiomyopathy) in patients with point mutations throughout the mitochondrial genome301–303. 

These studies did not establish a causal relationship, however. It was also shown that in humans 

with cardiomyopathies, gene expression of mitochondrial transcripts was elevated, perhaps to 

compensate for inefficiencies within the OXPHOS system304. Overexpression of TFAM or 

Twinkle can protect mtDNA, increase mtDNA copy number and contribute to cardioprotection 

though it is unclear if this is due to replication or transcription mechanisms122. Some 

polymorphisms in the TFAM gene have also been linked to early MI305. Wang et al.306 

demonstrate that conditional TFAM knockout leads to early onset heart failure and dilated 

cardiomyopathy suggesting that the mitochondrial gene expression machinery is requisite post-

natally. Specific mtDNA mutations are highly associated with a variety of disease processes. The 
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majority of diseases with mtDNA mutation are due to tRNA mutations likely because they are so 

prevalent in the small mitochondrial genome and they will negatively affect each protein-

encoding gene213. Mutations in mtDNA over the lifespan can also contribute to worsening MI or 

I/R damage to cardiomyocytes307. In summary, it is clearly evident that mtDNA expression is 

vital to cardiac health through the use of the mtDNA-encoded OXPHOS proteins. Any 

alterations in global mtDNA expression (transcription/replication), global mtDNA mutations 

(tRNAs), or specific protein mutations (any of the thirteen mtDNA-encoded proteins) can cause 

or worsen heart disease and stress. 

6.4.Electron transport and heart disease Studies have shown a clear presence of heart disease 

(specifically cardiomyopathy, dilated cardiomyopathy, and fatal infantile cardiomyopathy) in 

patients with point mutations of ETC complexes I, III, IV, and V as well as tRNA mutations and 

large DNAa mutations301–303. However, these studies did not establish a causal relationship. 

Inhibition of electron movement can help reduce components of the ETS during ischemia and 

prevent reperfusion induced myocardial damage308,309. These results led to multiple studies 

attempting to identify which complex of the ETC contributes to mitochondrial damage during 

ischemia. Results have outlined that blockade of Complex I and III but not IV protect ischemic 

injury. It is puzzling though because the authors suggest the ischemic injury is from some point 

distal to complex III but proximal to complex IV with the only intermediary being cytochrome 

C, a simple electron carrier310–313. 

6.5.ROS and heart disease Under normal physiological conditions, the amount of ROS 

produced by the cell is easily managed by ROS mitigation enzymes. During pathological 

conditions such as chronic cardiomyopathies, alterations in normal electron transport function 

can cause substantial increases in ROS production and cause cellular damage. Acutely, during 
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ischemic episodes on the heart, the reintroduction of blood supply does not restore the hypoxic 

organ but rather causes a reperfusion injury increasing substantial amounts of ROS, 

inflammation, and apoptosis314. Indeed, aging related mutations in mtDNA contribute to 

cardiomyopathy and this can be mitigated by overexpression of catalase315. Mice lacking the 

gene for MnSOD are perinatally lethal due to advanced cardiomyopathy269. Even in young drug 

users, cocaine-induced cardiomyopathies have been attributed increased oxidative stress through 

impaired redox handling in the heart316. Current research is focusing on mitochondrion-

permiable antioxidants to help mitigate ROS damage, especially following ischemia317,318. While 

ROS can act as a normal cell signaling molecule when controlled, the consensus of literature 

suggests that overactive ROS production and impaired ROS handling are characteristics and 

causes of heart disease319. 

6.6.Conclusion In conclusion, the process of mt-mRNA translation is 1) vital to generate ETC 

components is 2) indispensable for proper OXPHOS within the mitochondrion, 3) susceptible to 

negative effects by ROS and mtDNA mutations, 4) can contribute to the oxidative capacity and 

redox state of the cell and thus must be highly involved in heart disease. This leads to the 

development of the following research aims: 

 

Specific Aim I: Hypertrophic heart disease induced by aging and obesity alters the 

machinery for mt-mRNA translation. Major cardiovascular disease is the leading cause of death 

in the United States and is linked to obesity and aging. Chronic heart failure is associated with 

fibrosis, systolic impairments, and reduced oxidative capacity leading to increased ROS 

production. The reductions in oxidative capacity have been explained, in part, by decreased 

electron transport through complexes I and IV of the ETC which contain a majority of subunits 
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encoded by mtDNA and are created by mt-mRNA translation machinery. For experiments in this 

aim, we will use a murine model of aging combined with obesity to induce cardiac hypertrophy. 

Using primarily immunoblot, we will test if deteriorations in protein content of mt-mRNA 

translation machinery could explain increases in ROS production and oxidative capacity seen in 

cardiac muscle of aged, obese mice. 

Specific Aim II: Pathophysiological cardiac atrophy is demonstrated with impaired mt-

mRNA translation machinery and shown to contribute to reduced oxidative capacity. Recently, 

evidence has emerged of an atrophic state seen in the cardiac musculature of cancer patients. 

This decrease in the myocardium has been associated with a decreased rate of protein synthesis 

and an increase in protein degradation signaling. While a decrease in ventricular size may be 

responsible for the relative increased incidence of heart failure among cancer patients, the 

mitochondrial oxidative state and ROS mitigation may play a critical role. Using LLC tumor 

implantation in mice, we will induce cardiac atrophy and use immunoblot procedures to 

determine if mitochondrial content, ROS mitigation, and mt-mRNA translation machinery are 

altered in a mouse model cancer-induced cardiac atrophy. 

Specific Aim III: mt-mRNA translation initiation is required for maintenance of oxidative 

potential and oxidation-reduction state. Oxidative capacity requires appropriate mitochondrial 

ETC components which are necessary for appropriate oxidative phosphorylation without excess 

production of ROS. While chronic heart disease and the associated production of ROS is partly 

due to reduced capacity for ROS mitigation, the potential exists for reduced efficiency of mt-

mRNA translation to result in both impaired oxidative capacity and increased production of 

ROS, simultaneously. Using cardiomyocytes in vitro, we will genetically inhibit mtIF2 mRNA 

and examine metabolic oxidative flux and redox characteristics. These experiments will help 
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determine how mtIF2 contributes to mt-mRNA translation as a candidate protein responsible for 

the detriments in ETC components, subsequent decrements in oxidative capacity and redox state 

of cardiac muscle cells. 

These experiments will demonstrate that mt-mRNA translation is required for oxidative 

metabolism and control of harmful ROS production. I have compiled these aims into two 

manuscripts based on the congruency of the results. Experiments from Aim II are presented in 

manuscript 1 entitled, “Cancer-induced Cardiac Atrophy Adversely Affects Myocardial Redox 

State and Mitochondrial Oxidative Capacity”. Aims I and III have been combined in manuscript 

2 entitled, “Mitochondrial Translation Initiation Factor 2 is Necessary for Cardiac Oxidative 

Capacity as Evident during Age-induced Cardiac Hypertrophy”. 
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Abstract: Cachexia presents in nearly 80% of advanced cancer patients; however, cardiac 

atrophy in cachectic patients has received little attention. This unique form of cardiomyopathy in 

cancer patients contributes to increased occurrence of myocardial ischemia and adverse cardiac 

events compared to age-matched population norms. Research on cardiac atrophy has focused on 

cardiac remodeling; however, alterations in oxidative metabolic properties may be a significant 

contributor to this form of cardiac disease.  Purpose: To determine how cancer-induced cardiac 

atrophy alters in-vivo mitochondrial turnover, mitochondrial mRNA translation machinery, ROS 

scavenging and in-vitro oxidative characteristics. Methods: PBS or Lewis lung carcinoma (LLC) 

tumors were implanted in mice and grown for 28 days to induce cardiac atrophy. Hearts were 

examined for endogenous optical metabolic species, and immunoblotted to assess markers of 

mitochondrial function. H9c2 cardiomyocytes were cultured in a control media or media 

collected from LLC cells in combination with a mitochondrially-targeted antioxidant 

(MitoTempo). Cells were analyzed for production of ROS, oxidative capacity, and resistance to 

hypoxic stress. Results: LLC hearts demonstrated ~15% lower optical redox ratio 

(FAD/FAD+NADH) indicating greater glycolytic reliance compared to PBS controls. When 

compared to PBS, LLC hearts showed ~50% greater mitochondrial content markers (COX-IV, 

VDAC) attributed to ~50% lower PINK1/Parkin-mediated mitophagy markers while 

mitochondrial protein synthesis and biogenic proteins PGC-1α, PPARα, and PPARδ were not 

different. Mitochondrial mRNA translation machinery was unchanged between groups relative to 

amount of mitochondria. Mitochondrial DNA-encoded CytB was ~30% lower in LLC hearts 

suggesting impairments in outcomes of mitochondrial mRNA translation. ROS scavengers GPx-

3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-

conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at 
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basal, 75% at maximal), and greater susceptibility to hypoxic-insult by ~25% -- all of which 

were reversed by addition of MitoTempo. Conclusion: These results substantiate metabolic 

cardiotoxic effects attributable to tumor-associated factors and provide new insight into 

interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and 

hypoxia resistance. 

Graphical Abstract: 

 

Figure: Graphical abstract outlining the key findings of this publication. 
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 Cancer leads to altered metabolism and atrophy of the heart 

 Mitochondrial turnover, mRNA translation, and ROS scavenging are all affected 

 Mitochondrial ROS scavengers protect aerobic capacity and hypoxia resistance 

 Antioxidant drugs mitigate the effects of tumor-associated changes to the heart 
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 Abbreviations: COX-IV – cytochrome oxidase subunit IV, CytB – mitochondrial-encoded Cytochrome B1, FAD – 

Flavin adenine dinucleotide, GPx – Glutathione peroxidase, HIF-1α – Hypoxia-inducible factor 1α, LLC – Lewis 

Lung Carcinoma, mtIF2/3 – mitochondrial translation initiation factors 2/3, mtDNA – mitochondrial-encoded DNA, 

mt-mRNA – mitochondrial-encoded mRNA, NADH – nicotinamide adenine dinucleotie, nDNA – nuclear encoded 
DNA, PBS – Phosphate-buffered saline, PGC-1α – PPARγ co-activator-1α, PPARα/δ – Peroxisome proliferator-

activated receptor α/δ, OXPHOS – Oxidative phosphorylation system, Redox – oxidation/reduction, ROS – Reactive 

Oxygen Species, SOD – Superoxide dismutase, TACO1 – Translational co-activator of COX1, TFAM – 

mitochondrial transcription factor A, TPEF – Two-photon excitation fluorescence, VDAC – voltage-dependent 

anion channel 

 



 90 

Introduction 

Cancer cachexia is a progressive deterioration of functional capacity characterized 

predominantly by a loss of skeletal muscle mass with impacts on multiple other organs1. While 

cachexia is present in as many as 80% of advanced cancer patients2, the comorbidity of cardiac 

atrophy in cachectic patients has received little attention3. The clinical focus in targeting the 

underlying malignancy often dismisses cardiotoxic effects of radiation and chemotherapeutic 

treatment approaches4,5. However, recent data demonstrates that advanced cancer contributes to 

detrimental cardiac alterations including reduced left ventricular systolic function and decreased 

cardiac musculature resulting from tumor-derived factors rather than from 

chemo/radiotherapies6,7. While the compounding effects of tumor-related cardiac alterations, 

treatment modalities, and potential of underlying heart disease make it difficult to determine the 

etiology of cardiac atrophy seen in cancer patients5, further research is desperately needed to 

understand how cancer contributes to changes in the cardiac metabolic state. 

Heart failure has been tightly linked to alterations in metabolic substrate utilization and 

detriments to mitochondrial oxidative capacity8,9. Specifically, patients with heart disease exhibit 

a shift from fatty acid oxidation towards greater reliance on glucose as a source for ATP10. 

Mitochondria have therefore become a key target in combatting this metabolic reprogramming in 

heart disease as these organelles contribute ~90% of ATP generated in the healthy 

myocardium11–13. Previous research supports these efforts to target mitochondria because 

electron transport through oxidative phosphorylation (OXPHOS) complexes I and III limits 

oxygen flux during left ventricular systolic dysfunction14. When electron transport at these 

specific OXPHOS sites decreases, they can become primary producers of reactive oxygen 

species (ROS)15. These free radicals, when left unmitigated16, can contribute to DNA mutations 
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and damage, protein modifications, and membrane lipid oxidation17–23. Because of the proximity 

to mitochondrial DNA (mtDNA), ROS produced at OXPHOS complexes has the potential to 

mutate mtDNA and further contribute to detriments in OXPHOS electron transport seen in heart 

failure24. This interconnected relationship between mtDNA mutations, OXPHOS deficits, and 

ROS production provides the basis for Harman’s free radical theory of aging25 and more 

specifically, the mitochondrial theory of heart disease26. While progressive loss of mtDNA copy 

number, increased mtDNA mutations27,28, OXPHOS deterioration14, and excess ROS29 are well 

established contributors to traditional cardiomyopathies, the mitochondrial alterations during 

cancer-induced cardiac atrophy remain unclear. 

Key to elucidating mitochondrial bioenergetics during cancer-induced cardiac atrophy is 

understanding the processes of mitochondrial turnover and maintenance of OXPHOS complex 

activity. The balance of mitochondrial biogenesis and mitophagy contribute to fluctuations in 

organelle volume within the myocardium, however, mitochondrial mRNA(mt-mRNA) 

translation machinery likewise contributes to OXPHOS activity and proper electron transport30–

35. A balance between mt-mRNA translation and cytoplasmic translation is required for proper 

assembly of OXPHOS complexes36 and during situations of impaired mt-mRNA translation, 

metabolic side-effects are evident37–39. Improper translational insertion40 by mt-mRNA 

translation machinery also contributes to ROS production and alters antioxidant defenses through 

the mitochondrial unfolded protein response41,42. The connection between mt-mRNA translation 

and cardiomyocyte oxidative capacity has not been well established43,44. 

In an effort to better understand the impact of cancer-induced cardiac atrophy on 

mitochondrial oxidative characteristics, the purpose of this investigation was to examine 

mitochondrial turnover and mt-mRNA translation alterations during this unique form of heart 
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disease. Furthermore, we investigated tumor-associated changes in antioxidant defense as a 

mechanism of excess ROS production and how this contributes to the deleterious effects on 

cardiac oxidative reserve capacity and resistance to hypoxia. By using an established, in-vivo 

model of cancer-induced cardiac atrophy we present label-free metabolic oxidation-reduction 

(redox) characteristics indicative of heart disease, alterations in mitochondrial content, mt-

mRNA translation, and ROS scavengers. We further demonstrate the potential efficacy of 

mitochondrially-targeted antioxidants to mitigate excessive ROS production and how this 

approach protects against hypoxic insult to cardiomyocytes in-vitro. 

Materials and Methods 

Animal model of cancer-induced cardiac atrophy 

All methods were approved by the Institutional Animal Care and Use Committee at the 

University of Arkansas. C57BL6/J mice were injected with 1x106 Lewis Lung Carcinoma cells 

(LLC) or equal volume sterile phosphate-buffered saline (PBS) as previously described45,46. LLC 

cells were purchased from American Type Culture Collection (ATCC, CRL-1642) and grown in 

DMEM containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (pen/strep) 

with media changed every second day. Cells were trypsinized, centrifuged, and counted prior to 

implantation. Tumors were allowed to grow for 28 days before mice were euthanized and hearts 

excised. Multiple small sections of the left ventricle were separated to allow protein and 

histological assessment of the same sample. Heart samples were snap frozen and stored at -80oC 

before further analysis. Mice were injected with 99.9% 2H2O in the peritoneum (20μL/g body 

weight, Sigma-Aldrich, St. Louis, MO, USA) 24 hours prior to euthanasia. 4% 2H2O in H2O 

(v/v) was provided as drinking water ad libitum for the entire 24 hour period as previously 

described47. 
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Two-photon excitation fluorescence of endogenous NADH and FAD 

Two-photon excitation fluorescence (TPEF) was used to measure endogenous 

fluorescence of NADH and FAD as previously described48. Briefly, laser excitation by MaiTai 

Ti:Sapphire laser source (Spectra-Physics, Santa Clara CA) was tuned to 755nm or 860nm. 

Images were acquired using a resonant-galvo scanner and GaAsP photomultipler tubes (H7422-

40, Hamamatsu) with 460/40nm (NADH), 525/45nm (FAD), and 600/70nm (Rhodamine) filters. 

10μm section of the left ventricle were cut along the short axis. Slides were imaged (512x512 

pixels, 16bit depth, 260μm2) and the pixel-wise FAD/(NADH+FAD) ratio normalized to 

rhodamine was calculated.  Multiple fields were imaged for each sample and averaged to 

represent an individual biological sample. NADH and FAD image analysis was completed using 

MATLAB (MathWorks, Natick, MA). 

Immunoblot analysis 

Protein was extracted from small fractions of muscle taken directly from the left 

ventricle, separated by 8% or 12% SDS-PAGE and transferred to polyvinylidene fluoride 

membrane as described49,50  alongside a molecular weight ladder. Membranes were blocked 

using 5% milk in TBS (w/v) with 0.2% tween and incubated with specific primary antibodies at 

4°C overnight. Primary antibodies were specific to HIF-1α (NB100-105, Novus Biologicals), 

COX-IV (Cell Signaling 4855S) VDAC (Cell Signaling, 4866S), PGC-1α (Santa Cruz sc-

13067), PPARα (Santa Cruz sc-9000), PPARδ (Santa Cruz sc-7197), BNIP3 (Cell Signaling 

3769), PINK-1 (Santa Cruz sc-33796), Parkin (Cell Signaling 42115), pSer65-Parkin (Abcam 

ab154995), mtIF2 (Santa Cruz sc-365477), mtIF3 (Origene TA800421), TACO1 (Abcam 

ab121688), CytB (Santa Cruz 11436), Total OXPHOS antibody cocktail (Abcam ab110413, 

Complex I – NDUFB8, Complex II – SDHB, Complex III – UQCRC2, Complex IV – MTCO1, 
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Complex V – ATP5A), SOD1 (Genetex GTX100554), SOD2 (Cell Signaling 131945), SOD3 (R 

and D Systems AF4817), GPx7 (Genetex GTX117516), GPx3 (Genetex GTX89142), and 

Catalase (Cell Signaling 140975). Using appropriate HRP-conjugated or fluorescent conjugated 

secondary antibodies, protein antigens were visualized within a linear range by either ECL on 

Protein Simple FluorChemM (Minneapolis, MN) or near-infrared fluorescence on Odyssey Fc 

(LI-COR, Lincoln, NE) and analyzed using ImageStudio Software (LI-COR). Bands were 

normalized to the 45kDa Actin band of PonceauS as loading control. For each experiment, all 

groups were represented on each membrane and normalized to control. 

Mitochondrial Isolation and 24-hour Protein Synthesis 

Isolation of mitochondrial subpopulations and fractional synthesis rates were determined 

from samples as previously described (34). Briefly, 30 mg of left ventricle was homogenized 

isolation buffer 1 (10 mM HEPES, 20 mM sucrose, 50 mN mannitol, 2mM EDTA, 0.25% v/v 

protease inhibitor cocktail, pH 7.4) and centrifuged at 650 x G. The supernatant was then further 

centrifuged at 10,000 x G for 10 minutes and pellet collected for analysis of subsarcolemmal 

(SS) mitochondria. SS mitochondria were washed in isolation buffer 2 (50 mM HEPES, 5mM 

EGTA, 1mM ATP, 100mMKCL, 5 mM MgSO4, 0.25% v/v protease inhibitor cocktail, pH 7.4) 

The intermyofibrillar (IMF) mitochondria were separated from the myofibrils in pellet created in 

the first centrifugation first by dounce homogenization in isolation buffer 3 (100 mM KCl, 50 

mM Tris, 5 mM MgCl2, 1 mM EDTA, 10 mM Beta-glycerophosphate, 1.5% w/v BSA, 0.25% 

v/v protease inhibitor cocktail, pH 7.5). The resulting homogenate was centrifuged at 650 x G 

and the resulting supernatant was centrifuged at 10,000 x G for 10 minutes and mitochondrial-

rich pellet collected. SS and IMF proteins were hydrolyzed into individual amino acids by 

heating for 24 hours at 100°C in 6N HCl. An aliquot of the hydrolysate was dried down and 
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mixed with a 3:2:1 solution of methyl-8, methanol, and acetonitrile to determine 2H-labeling of 

alanine on its methyl-8 derivative. The solution was then placed in a GC-MS and analyzed for 

the ratio of labeled alanine to unlabeled alanine was used to calculate protein synthesis. In order 

to normalize results based on the precursor pool of 2H2O, plasma was reacted with 10 M NaOH 

and a 5% solution of acetone in acetonitrile for 24 h in order to conjugate the free 2H2O to 

acetone. The solution was extracted by adding Na2SO4 and chloroform, and analyzed on the 

GCMS. FSR of proteins was calculated using the equation EA × [EBW × 3.7 × t (h)]−1 × 100, 

where EA represents amount of protein-bound [2H]alanine (mole% excess), EBW is the quantity 

of 2H2O in body water (mole% excess), 3.7 represents the exchange of 2H between body water 

and alanine (3.7 of 4 carbon-bound hydrogens of alanine exchange with water) and t(h) 

represents the time the label was present in hours. 

H9c2 Culture experiments 

H9c2 ventricular cardiomyocytes were purchased from ATCC (CRL-1446) and grown at 

370C, 5%CO2, and 20% O2 in DMEM containing 10% FBS and 1% pen/strep (GM) and changed 

every second day. When cells were ~75% confluent, 2x104 cells/well were sub-cultured in 96-

well plates for 24 hours before media was replaced with control media (CM; DMEM containing 

2.5% FBS, 1% pen/strep) or LLC-conditioned media (LCM) as previously described51,52. To 

generate LCM, LLC growth media was collected after two days of incubation in 162cm2 flask 

with LLC density ending ~75% confluence. Media was centrifuged and filtered to remove cells 

and cell debris and diluted 1:4 (v/v) with serum-free DMEM. MitoTEMPO (MitoT; SML0737, 

Sigma-Aldrich, St. Louis, MO) diluted in PBS was added to CM or LCM at a concentration of 2 

μM. After 2 hours incubation in respective media, 5μM MitoSOX Red (M36008, Invitrogen) in 

PBS was added to cells for 10 minutes, rinsed, and cells were visualized at 510/580nm (ex/em) 
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on Nikon TiS epifluorescent microscope (Melville, NY) to assess mitochondrial superoxide 

production. 

Bioenergetic flux analysis 

Oxygen consumption rates (OCR) were analyzed using Seahorse XFp extracellular flux 

analyzer (Agilent, Santa Clara, CA) according to manufacturer instructions and as previously 

described53. Briefly, 2x104 cells were seeded per well in GM. After 24 hours, media was 

removed, cells were rinsed with sterile PBS, and replaced with CM or LCM with or without 2 

μM MitoT. After 24 hours incubation, media was removed and replaced with Seahorse Assay 

media containing 7 mM glucose, 2 mM pyruvate, and 2 mM glutamine. OCR was measured 

prior to and following sequential addition of 1 μM oligomycin, 1 μM FCCP, and 1 μM 

rotenone/Antimycin A. This allowed assessment of cellular OCR related to basal respiration and 

maximal uncoupled respiration. Reserve respiration was determined as the difference between 

maximal and basal after normalizing to non-mitochondrial oxygen consumption. 

Hypoxic exposure and MTT viability assessment 

In order to assess the resistance of H9c2 cells to hypoxic challenge, 2x104 cells/well were 

plated in 96-well plate and incubated in GM for 24 hours. Media was replaced with CM or LCM 

with or without 2 μM MitoT. After 24 hours incubation at 5% CO2 and 20% O2, media was 

replaced with serum-free DMEM and cells were placed in a dual gas controlled (Oxycycler C42, 

Biospherix, Parish, NY) incubator sub-chamber. Oxygen was flushed by nitrogen and maintained 

at 1% O2 and 5% CO2 for 6 hours. The combination of serum-free media with a hypoxic 

environment was used to simulate ischemic conditions54. Following hypoxic exposure, 1 mM 

MTT (M6494, Invitrogen) was added to cells and incubated ~21% O2 for 2 hours. The resulting 

formazan crystals were solubilized by addition of 100 μL of 350 mM SDS in 0.01% HCl and 
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absorbance was read at 570 nm. A separate plate was maintained at ~21% O2 to serve as 100% 

viability control. 

Statistical Analysis 

Statistics were calculated and visualized using GraphPad Prism v6.0. To compare PBS to 

LLC groups, Student’s t-test was used with α set at 0.05. For cell culture experiments, a 2x2 

ANOVA was used to compare main effects or interactions between groups (CM x LCM vs. 

Control x MitoT). Where significant omnibus differences occurred, Tukey’s post-hoc analysis 

was used to investigate changes within groups. Cell culture experiments were analyzed using 3 

biological replicates and at least 3 technical replicates. Data presented represent mean ± SEM. 

Results and Discussion 

Cancer cachexia contributes to cardiac atrophy and altered optical metabolic properties 

Four weeks of LLC tumor implantation resulted in severe skeletal muscle and fat mass loss 

including a ~30% reduction in muscle cross-sectional area as we previously reported in the same 

animals demonstrating cancer cachexia in this model45,46. In the current study, we used the same 

animal cohort to analyze cardiac alterations associated with tumor implantation45,46. Total wet 

weight of the heart was 10% lower in LLC compared to PBS demonstrating atrophy of the 

myocardium (p < 0.01, Table 1). Tibia lengths were not different between experimental 

conditions suggesting body size was similar between groups so we have presented raw heart 

mass.  

To further characterize the metabolic alterations associated with this form of cardiac 

atrophy, we performed TPEF of endogenous FAD and NADH. This approach has demonstrated 

to be a powerful, label-free assessment of metabolic characteristics in a variety of cell and tissue 

types53,55–58. TPEF is a powerful new technique to identify metabolic intermediates in a label-free 
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assessment of cellular metabolic state59. In calculating the optical redox ratio, we identified a 

significantly lower redox ratio in LLC heart samples compared to PBS (Figure 1A, B; mean of 

0.75 in PBS vs. 0.68 in LLC, p < 0.01). A lower optical redox ratio is indicative of less 

utilization of mitochondrial oxidative metabolism and greater reliance on glucose56. 

Additionally, immunoblot analysis of HIF-1α indicates ~100% greater content in LLC compared 

to PBS (Figure 1C). HIF-1α is a key sensor of oxygen levels and can downregulate 

mitochondrial oxidative metabolism while promoting glycolytic enzymes; a characteristic of 

cardiomyopathy metabolic changes60,61. These results extend upon previous evidence of showing 

decreased heart size in colorectal cancer-induced cardiac atrophy62 and the shift away from β-

oxidation towards glycolysis seen in heart failure8. 

Cardiac atrophy disrupts mitochondrial clearance 

Mitochondrial function has been a target for heart failure treatments to combat against the 

metabolic shift that occurs13; therefore, we analyzed proteins associated with mitochondrial 

content and biogenesis. Both COX-IV and VDAC levels were significantly greater in LLC 

compared to PBS by ~40% and ~75%, respectively (Figure 2B, p < 0.05) indicating elevated 

mitochondrial content in LLC hearts. There were no differences measured between experimental 

groups in subsarcolemmal or intermyofibrillar mitochondria fractional synthetic rates nor in 

protein content of regulators of mitochondrial biogenesis including PGC-1α, PPARα, or PPARδ 

(Figure 2B,C; p > 0.05). In other models of heart failure, downregulation of proteins associated 

with lipid metabolism including PPARα and PGC-1α as well as respiratory-chain complex 

activity has been reported63. However, electron microscopy reveals that the amount of 

mitochondria are increased in many forms of cardiomyopathy despite other structural 

malformations64. Greater mitochondrial content (COX-IV, VDAC) absent upregulation of 
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mitochondrial biogenesis (i.e. mitochondrial FSR, PPARs, PGC-1α) suggests alternate processes 

contributing to the overall mitochondria pool. Total mitochondrial content is a highly regulated 

balance between biogenesis and mitochondrial-specific autophagy (mitophagy)30, thus an 

imbalance in mitochondrial content between PBS and LLC with no alteration in biogenesis 

predicates mitophagy as a contributing factor. This led us to examine markers of two common 

mitophagic pathways, BNIP3 and PINK1/Parkin. Protein content of BNIP3 was unchanged 

between PBS and LLC hearts (p > 0.05) while the total content of PINK1 and the ratio of 

phosphorylated to total Parkin were both decreased by ~50% (Figure 3; p < 0.05). These markers 

indicate PINK1/Parkin mediated mitophagy detriments may contribute to a build-up of 

(presumably) defective mitochondria which has, as yet, remained unclear during chronic heart 

disease31. Parkin-deficient mouse models present with accumulation of depolarized mitochondria 

following myocardial infarction indicating the importance of this pathway in the clearance of 

these damaged organelles in the myocardium65. These results suggest an important role for 

Parkin-dependent mitochondrial clearance in cancer-induced cardiomyopathies which could 

result in accumulation of depolarized mitochondria. The consequences of depolarized 

mitochondria that are not efficiently broken down in the myocardium remains uncertain. 

LLC myocardial mt-mRNA translation machinery is unable to maintain mtDNA-encoded 

OXPHOS subunits 

mt-mRNA translation machinery allows proper translation of 13 protein subunits encoded 

by mt-DNA which are required for proper production of core portions of OXPHOS complexes34. 

TFAM is a key factor involved in mtDNA transcription66 and the primary controllers of mt-

mRNA translation are two mammalian mitochondrial initiation factors mtIF2 and mtIF367. 

Additionally, co-translational insertion using translational coactivators – such as TACO1 in 



 100 

mammals – is required for proper assembly of OXPHOS complexes40. These factors work to 

create a balance between mt-mRNA translation and cytoplasmic translation to produce and 

assemble OXPHOS complexes in a manner that optimizes electron transport and ATP 

production36. TFAM, mtIF2, mtIF3, and TACO1 protein contents were all significantly higher in 

LLC compared to PBS by ~50-125% (p < 0.05). However, the mt-mRNA translation product 

CytB was not significantly altered by the LLC tumor (Figure 4A; p > 0.05). To assess content of 

proteins relative to the total mitochondrial pool, we normalized mt-mRNA translation proteins to 

VDAC protein. We observed no differences seen in TFAM, mtIF2, mtIF3, or TACO1 between 

experimental groups (p > 0.05); however, CytB, when normalized to VDAC as a marker of 

mitochondrial content, was ~45% lower in LLC compared to PBS (Figure 4B; p < 0.05). When 

complex content was assessed using immunoblot analysis of individual core subunits, we found 

no significant difference between groups for Complex I, III, or V (p > 0.05) but found 

significantly elevated content of Complexes II and III (Figure 4C ,p < 0.05). The proteins 

encoded by mtDNA are integral, core subunits in OXPHOS complexes I, III, IV, and V34. In 

each complex, the mtDNA-encoded channels are vital for appropriate electron transport or 

proton translocation across the membrane68. Where mutations or alterations in expression of 

mtDNA-encoded proteins arise, oxidative complications associated with cardiac illness are 

evident19,24.  The results presented here suggest that during this form of cardiomyopathy, the 

machinery responsible for expression of mtDNA-encoded transcripts is maintained relative to the 

mitochondrial content as measured by VDAC. However, resulting mtDNA-encoded protein 

subunits of OXPHOS may not be equally maintained suggesting other possible issues 

responsible for deficient mitochondria-encoded protein expression. By assessing amount of 

complex formation through immunoblot of subunits that are labile when not assembled, we 
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found that complexes with a large proportion of mtDNA-encoded proteins were no different 

between groups (Complex I, IV, V) while those with primarily nDNA-encoded portions 

(Complex II, III) were elevated concomitant with mitochondrial content markers. This reduced 

content of mtDNA-encoded proteins can result in misincorporation of OXPHOS subunits and 

prevent efficient electron flow through complexes I and III and result in greater production of 

superoxide, presumably through reverse electron transport69. Mitigation of free radicals by 

antioxidant enzymes may present as a potential mechanism to protect against excessive ROS 

produced during heart disease29. 

LLC contributes to altered ROS scavenger protein levels 

In an effort to better understand handling of ROS, we assessed various proteins involved in 

superoxide (superoxide dismutases: SOD1, 2, 3) and hydrogen peroxide dissipation (Catalase, 

Glutathione Peroxidases: GPx-3,7). No differences in protein content of SOD-1, 2, or 3 were 

found between PBS and LLC hearts (Figure 5A; p > 0.05). Protein content of Catalase was 80% 

more abundant in LLC animals compared to PBS (p < 0.05), while GPx-3 and GPx-7 were both 

significantly lower in LLC compared to PBS by ~60% (p < 0.01) and ~50% (Figure 5B; p < 

0.05), respectively. Taken together, these results suggest no alterations in the control of 

superoxide radicals through dismutase proteins. However, alterations appear in proteins involved 

in hydrogen peroxide (H2O2) clearance. Specifically, the elevation seen in Catalase content was 

unexpected because, previously, elevated Catalase has been linked to mitigation of age-

dependent heart disease in mice70. The levels of GPx-3 and -7 were both reduced by the tumor-

associated cardiomyopathy. Taken together, this could signify an overall decrease in ability to 

handle H2O2 because GPx’s maintain greater affinity for71 and reactivity with H2O2 compared to 

catalase at physiologically relevant concentrations72. Excessive H2O2  has been seen in aging-
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induced heart disease despite greater activity of Catalase73,  which may contribute to cardiac cell 

death74 and reduced mitochondrial oxygen consumption75. While direct measurements of ROS 

production and OCR were not assessed in PBS and LLC hearts, we next sought to determine 

how tumor-associated factors could alter mitochondrial ROS production and OCR in cardiac 

cells in-vitro. 

Mitochondrial antioxidants mitigate effects of tumor-associated factors on cardiomyocyte ROS 

production and oxidative capacity 

To directly assess impacts of tumor-associated factors on the myocardium, independent 

of circulating factors (immune cells, compliment), cardiomyocytes were cultured in CM or LCM 

alone or in combination with MitoT, a mitochondria-targeted antioxidant. Two hours following 

treatment, ROS accumulation was assessed using MitoSOX fluorescence. H9c2 cardiomyocytes 

showed ~25% greater MitoSOX fluorescence when incubated in LCM alone (p < 0.001). The 

combination with MitoT had no effect on MitoSOX in CM-treated cells (p > 0.05), however, 

combined LCM and MitoT treatment showed significantly lower MitoSOX fluorescence 

compared to LCM alone (p < 0.001) to the point that LCM + MitoT was not different compared 

to CM (Figure 6A, B; p > 0.05). To further test the detrimental effects of LCM, cardiomyocytes 

were treated for 24 hours and oxygen flux analysis was assessed (Figure 6C). Basal OCR was 

~15% lower following 24 hours of LCM treatment compared to CM (p < 0.01) with no effects of 

MitoT on LCM treated cells (Figure 6D; p > 0.05). When cells were treated with FCCP to 

simulate maximal OCR rates, LCM control cells had a maximal OCR that was ~1/3 that of the 

CM (p < 0.01). When combining LCM with MitoT, maximal OCR was higher than LCM control 

(p < 0.01) and not different from either CM treatment (Figure 6E; p > 0.05). Using these values, 

we were able to calculate the reserve OCR which followed a similar pattern of severe reduction 
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(~75% capacity) relative to CM following 24 hours LCM (p < 0.01) but not when combined with 

MitoT (Figure 6F; p > 0.05). These results demonstrate a clear connection between tumor-

associated factors and alterations in mitochondrial metabolic characteristics in cardiac muscle 

cells. The initial increases in ROS production following LCM treatment can be mitigated using a 

mitochondrial antioxidant and overtime can result in functional rescue of mitochondrial 

oxidative reserve. One way myocardial oxidative capacity contributes to cardioprotection is 

through resistance to hypoxic-insult76–78. In order to test if our results in OCR reflected 

susceptibility to hypoxia-induced cell death, we exposed cells to 1% O2 for 6 hours and assessed 

cell viability. All groups demonstrated significantly lower viability following hypoxia compared 

to normoxic control (dashed line) with LCM control being significantly lower compared to CM 

and LCM + MitoT cells by ~30% (Figure 7A; p < 0.001). These data suggest that cancer-induced 

oxidative alterations may be rescued through mitigation of mitochondrial ROS. There is 

considerable need to better characterize the oxidative metabolic properties of the myocardium 

undergoing cancer-induced structural alterations. These results substantiate cardiotoxic effects 

attributable to tumor-associated factors and provide new insight into interactions between ROS 

mitigation, cardiac oxidation and hypoxia resistance. 

Our findings suggest cancer-induced cardiac atrophy presents with altered metabolic 

properties associated with heart disease including greater reliance on glycolysis assessed using a 

label free measurement of endogenous redox species and elevation in HIF-1α. We additionally 

present impaired mitochondrial clearance, disruptions in mt-encoded protein expression, and less 

protein involved in ROS mitigation. Finally, in-vitro experiments show that tumor-specific 

factors exacerbate cardiac ROS production, lead to detriments in oxidative reserve, and enhanced 

susceptibility to hypoxic challenge – all of which can be reversed using mitochondria targeted 
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antioxidants. The results presented here extend previous research (focused specifically on cardiac 

remodeling) by demonstrating metabolic and mitochondrial alterations in this unique form of 

heart disease. Maintenance of mitochondrial oxidative function is key in tailoring therapeutic 

approaches to limit cardiotoxic effects in treating the primary malignancy as well as limiting 

tumor-specific cardiomyopathy (Figure 7B). This is paramount in a clinical setting because 

cancer patients have increased occurrence of both myocardial ischemia79 and adverse cardiac 

events80 compared to age-matched population norms.  We now provide evidence for the utility of 

mitochondrial antioxidants to combat cancer-induced oxidative impairments in the myocardium. 

Others have attempted to use pharmaceutical approaches to treat excessive ROS production in 

heart disease81–83 but present with adverse effects on physiological ROS signaling in multiple 

other systems84. Our results suggest two pathways involved in pathological accumulation of free 

radicals through 1) loss of functional expression of mt-mRNA translation products for OXPHOS 

and 2) downregulation of GPx proteins for H2O2 clearance. An alternative approach to combat 

excess ROS may be utilizing alternative pharmaceuticals which could indirectly reduce 

myocardial ROS85. 

Conclusion 

In summary, we present evidence of mitochondrial alterations contributing to ROS generation 

during cancer-induced cardiac atrophy in-vivo. We build on these results by demonstrating 

factors produced by the tumor cells contribute to reduction in cardiomyocyte oxidative reserve 

in-vitro. With heart disease and cancer competing for the leading cause of mortality worldwide, 

the contribution of malignancy to cardiomyopathy must be made clear and approaches to 

mitigate it researched. Further research should focus on the compounding effects of cancer and 
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chemotherapeutics on cardiac function and how other cancers less associated with cachexia may 

still contribute to heart disease. 
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Data represent M±SEM. * - p < 0.05 compared to PBS. 

 

  

Table 1. Descriptive statistics of heart weight. 

 
Heart wet weight (mg) 

PBS 120.08±3.15 

LLC 108.21±3.36* 
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Figure 1. Cancer-induced cardiac atrophy demonstrates metabolic characteristics of heart 

disease. (A) Representative images of FAD, NADH, and redox ratio of TPEF of endogenous 

redox species within the myocardium of PBS and LLC left ventricle sections. (B) Calculated 

optical redox ratio and (C) HIF-1α protein content of PBS and LLC hearts. * indicates p < 0.05. 
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Figure 2. Cancer-induced cardiac atrophy alters mitochondrial content markers but not 

mitochondrial biogenesis protein content. (A) Markers of mitochondrial content, (B) 

subsarcolemmal and intermyofibrillar mitochondral FSRs and (C) markers of mitochondrial 

biogenesis in PBS and LLC hearts. (D) Sample immunoblot images of protein target indicated. 

Bands were cropped at indicated molecular weight and to show each group side-by-side. * 

indicates p < 0.05. 
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Figure 3. (A) Cancer-induced cardiac atrophy disrupts mitochondrial clearance. Markers of 

mitochondrial autophagy BNIP3, PINK, and phosphorylated to total Parkin in PBS and LLC 

hearts. (B) Sample immunoblot images of protein target indicated. Bands were cropped at 

indicated molecular weight and to show each group side-by-side. * indicates p < 0.05. 
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Figure 4. Cancer-induced cardiac atrophy disrupts mt-mRNA translation products but not mt-

mRNA translation machinery. (A) Mitochondrial transcription and translation machinery 

(TFAM, mtIF2, mtIF3, TACO1) and a mt-mRNA translation product (CytB) normalized to total 

protein content by PonceauS and (B) normalized to mitochondrial content marker COX-IV in 

PBS and LLC hearts. (C) Immunoblot analysis of OXPHOS complex content as determined 

through protein subunits required for complex formation. Specific target for each subunit is 

indicated in the materials and methods section. (D) Sample immunoblot images of protein target 

indicated. Bands were cropped at indicated molecular weight and to show each group side-by-

side. * indicates p < 0.05. 
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Figure 5. Cancer-induced cardiac atrophy disrupts hydrogen peroxide clearance protein content. 

(A) Superoxide dismutase protein isoforms and (B) hydrogen peroxide mitigation proteins 

catalase, and glutathione peroxidases -3 and -7 in PBS and LLC hearts. (C) Sample immunoblot 

images of protein target indicated. Bands were cropped at indicated molecular weight and to 

show each group side-by-side. * indicates p < 0.05 

 



 120 

 

Figure 6. Media from LLC cancer cells contribute to greater ROS and reduced oxidative 

capacity. H9c2 cells were treated with a combination of LLC media (LCM) and 2μM of the 

mitochondrial targeted antioxidant (MitoT) for 2 hours and ROS assessed using MitoSOX (A,B) 

or similar treatment for 24 hours analyzing cellular bioenergetic flux analysis (C) to analyze 

oxygen consumption rates at (D) basal and (E) maximal rates, or calculated reserve rates (F). 

Scale bar = 100μm. * indicated p < 0.05 vs. control media (CM) with no MitoT (con); † 

indicated p < 0.05 vs. con cells receiving same media condition. 
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Figure 7. Media from LLC cancer cells reduces resistance to hypoxic insult in cardiomyocytes. 

(A) H9c2 cells were treated with a combination of LLC media (LCM) and 2μM of the 

mitochondrial targeted antioxidant (MitoT) for 24 hours and exposed to 1% oxygen and serum-

free media for 6 hours followed by MTT viability assessment. * indicates p < 0.05 vs. control 

media (CM) with no MitoT (con); † indicates p < 0.05 vs. con cells receiving same media 

condition; dashed line at 100% indicates control cells that were maintained ~21% O2 in standard 

growth media. (B) Graphical representation of suggested relationship between cancer-induced 

cardiac atrophy and oxidative characteristics. 
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Abstract: Age and obesity each contributes to cardiac hypertrophy in a unique manner as 

it pertains to mitochondrial electron transport. Electron transport complexes I and IV are 

implicated in defective electron transport during cardiomyopathy and contain the majority of 

protein subunits that are transcribed and translated within the mitochondria. Purpose: To assess 

myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-

encoded protein products using a mouse model of aged obesity and to test the necessity of mt-

mRNA translation initiation factor 2 (mtIF2) in maintaining oxidative capacity and the cellular 

oxidation-reduction (redox) state in cardiomyocytes. Methods: C56BL/6J mice fed lean or high 

fat diet were aged to either ~3 months or ~22 months and the myocardium assessed using 

immunoblot and qPCR to determine differences in mitochondrial mRNA translation machinery. 

Using H9c2 cardiomyocytes, mtIF2 was knocked-down and two-photon excitation fluorescence 

(TPEF) of optical redox ratio (FAD/NADH + FAD), oxygen consumption, and hypoxic 

resistance was tested. Results: Aged mouse hearts were larger and contained less mtIF2 protein 

alongside reduced content of proteins encoded by mtDNA (CytB). Reducing the content of 

mtIF2 is associated with reduced oxidative characteristics such as OXPHOS complex I and IV 

content, optical redox ratio, oxygen consumption, and viability following hypoxia. Conclusion: 

We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged 

obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining 

oxidative characteristics of cardiac muscle cells. 

Keywords: Cardiac Hypertrophy; Optical redox Imaging; bioenergetics; Hypoxia-

reoxygenation; mitochondrial quality.  
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Introduction 

Aging and obesity -- by themselves -- both contribute to cardiovascular diseases (CVD) 

such as congestive heart failure and coronary artery disease (8, 25); however, when combined in 

aged, obese patients, the risk for cardiac event, CVD mortality and all-cause mortality is greater 

than either condition alone (4, 35, 49). Each of these conditions are particularly relevant because 

of the increasing prevalence of both aging and obesity in recent years (5, 33). Being both 

advanced in age and obese each contributes to cardiac hypertrophy in a unique manner (6). 

Counterintuitively, epidemiological data suggests that obese patients with diagnosed heart 

disease have improved mortality rates compared to their age-matched, lean counterparts (1). This 

‘obesity paradox’ is thought to be a result of greater circulating plasma free fatty acids 

contributing to the pool of metabolic substrates in the myocardium. This reduces the contribution 

of glycolysis to total ATP production and prevents the shift towards a more glycolytic phenotype 

that is characteristic of heart failure (11, 15, 45). This suggests a unique set of metabolic 

stressors that is placed on the myocardium of aged, obese cardiac patients. 

Heart failure is characterized by a reduction in mitochondrial oxidative capacity and an 

associated increase in mitochondrial production of reactive oxygen species (ROS) due to 

inefficient electron transport through oxidative phosphorylation complexes (OXPHOS) (47). 

Deleterious OXPHOS byproducts produced over the lifespan may contribute to mutations in 

mitochondrial DNA (mtDNA) which is particularly susceptible due to its close proximity to 

electron transfer, lack of dedicated repair machinery, and propagation of mutated mtDNA copies 

(21, 24, 37). However, some research suggests mtDNA mutations may not result in greater 

deleterious OXPHOS byproduct production nor lead to the aging phenotype (39, 50). It is, thus, 
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unclear if greater ROS is a consequence of another process that alters electron transport 

efficiency in the diseased myocardium. 

Reductions in cardiac oxidative capacity have been explained, in part, by reduced 

electron transport through complexes I and IV of the electron transport chain (ETC) (34) which 

contain a majority of the subunits encoded by mtDNA (10). Alterations in mtDNA-encoded 

subunit expression can alter the balance between nuclear and mitochondrial constituents of the 

ETC and generate non-functional complexes (48). The process of mitochondrial-mRNA (mt-

mRNA) translation is responsible for synthesizing and inserting the 13 protein subunits of the 

ETC that remain encoded by mtDNA (22, 42). mt-mRNA translation is governed by a discrete 

set of translation machinery within the mitochondrial matrix including mitoribosomes, mt-

tRNAs, and a specialized set of nuclear-encoded proteins to orchestrate the process (31, 32). 

These proteins include mitochondrial initiation factors (mtIFs), elongation factors (mtEFs), and 

translation activators that help govern each step of the mt-mRNA translation process and is 

directly tied to ETC capacity and thus production of ROS in the myocardium. 

Mutations in key controllers of mt-mRNA translation result in altered ETC capacity 

thereby leading to greater production of ROS (42). Furthermore, we have demonstrated that gene 

and protein expressions of mt-mRNA translation machinery are subject to change from 

metabolic perturbations in various tissues (20, 28, 40) suggesting that mt-mRNA translation may 

be dysregulated during cardiomyopathy. Previous research establishes a link between elevated 

levels of ROS production and mtDNA mutations (37, 46) leading to early onset heart failure 

(51), and decreases in lifespan (18, 30). One approach to mitigate oxidative stress of heart 

disease may be to control the mt-mRNA translation/ETC/ROS production circuit (8); however, 
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no prior connections between mt-mRNA translation machinery and oxidative capacity have been 

determined. 

In an effort to better understand how mt-mRNA translation machinery affects oxidative 

characteristics of the myocardium, the purpose of this investigation was to assess myocardial mt-

mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein 

products using a mouse model of aged obesity. By using an established, in vivo model of cardiac 

hypertrophy, we were able to determine alterations attributable to aging, high fat diet-induced 

obesity, and a combination of both conditions. Additionally, we used murine cardiomyocytes in 

vitro to test the necessity of mt-mRNA translation initiation factor 2 (mtIF2) in maintaining 

oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. We 

demonstrate significant alterations in mt-mRNA translation associated with age- and obesity-

induced cardiac hypertrophy and use a variety of approaches to show mtIF2 is required to 

maintain functional characteristics of cardiomyocytes. This investigation provides novel insight 

into the connection of mt-mRNA translation to ETC components for control of cardiac oxidative 

capacity and has implications for ROS production, mtDNA mutation rates and aging. 

Materials and Methods 

Animal model of aged, obese mice 

All methods were approved by the Institutional Animal Care and Use Committee at the 

University of Arkansas. Thirty-two, male C57BL/6J mice were a generous gift from Rigel 

Pharmaceuticals and were housed in the University of Arkansas Central Laboratory Animal 

Facility. Animals were kept on a 12:12-hour light-dark cycle and given access to either normal 

(NC, 17% fat, Teklad 22/5 Rodent Diet, 86140, Teklad Diets, Madison, WI)) or high-fat (HF, 

60% kcals fat, D12492, Research Diets, Inc., New Brunswick, NJ) chow beginning at 3 weeks of 
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age. The study consisted of four groups: young lean (YL), young obese (YO), aged lean (AL), 

and aged obese (AO) (n = 8 per group). Mice that were 3-4 months and 22-24 months old were 

considered young and aged, respectively. Mice were given access to water and chow ad libitum.  

Following euthanasia, heart samples were snap frozen and stored at -80oC before further 

analysis. 

Immunoblot analysis 

Protein was extracted from small fractions of muscle taken from the hearts, separated by 

8% or 12% SDS-PAGE and transferred to polyvinylidene fluoride membrane as described (9, 

19)  alongside molecular weight ladder (BioRad #1610394). Membranes were blocked using 5% 

milk in TBS (w/v) with 0.2% tween and incubated with specific primary antibodies at 4°C 

overnight. Primary antibodies were specific to COX-IV (Cell Signaling Technologies, #4844), 

PGC-1α (Santa Cruz Biotechnologies, sc-13067), TFAM (Cell Signaling #7495), mtIF2 (Santa 

Cruz #365477), mtIF3 (Origene TA800421), mtEF-Tu (TUFM, Abcam ab67991), TACO1 

(FLJ36733, Abcam ab 121688), Cyt-B (Santa Cruz 11436), ND4 (Santa Cruz #20499), VDAC 

(Cell Signaling #4866), AMPK (Cell Signaling #2793), phosphorylated AMPKThr172 (Cell 

Signaling #2535), Total OXPHOS Cocktail (Abcam ab110413). Using appropriate HRP-

conjugated or fluorescent conjugated secondary antibodies, protein antigens were visualized 

within a linear range by either ECL on Protein Simple FluorChemM (Minneapolis, MN) or near-

infrared fluorescence on Odyssey Fc (LI-COR, Lincoln, NE) and analyzed using ImageStudio 

Software (LI-COR). Bands were normalized to the 45kDa Actin band of PonceauS as loading 

control. For each experiment, all groups were represented on each membrane and normalized to 

control. 
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Gene Expression Analysis 

RNA isolation followed by reverse transcription real time polymerase chain reaction was 

performed as previously described (20, 27, 29). Briefly, RNA was isolated using Trizol ragent 

and Ambion RNA Isolation Kit (Ambion, ThermoFisher Scientific, Grand Island, NY, USA), 

reverse transcription was performed using 1μg RNA and Superscript VILO cDNA synthesis kit 

(11754, Invitrogen) according to manufacturer protocol. cDNA was amplified in 25μL reaction 

containing TaqMan Gene Expression Mastermix and appropriate fluorescent probe for 18s 

(Mm03928990), or using SYBR Green chemistry with previously described primer sets for 12S 

rRNA and 16S rRNA(28).  Samples were incubated at 95°C for 4 min, followed by 40 cycles of 

denaturation, annealing, and extension at 95, 60, and 72°C. Fluorescence was measured at the 

end of the extension step for each cycle. Cycle Threshold (Ct) was determined and the ΔCt value 

calculated as the difference between Ct value and 18s Ct value. 18S Ct was not different among 

experimental groups. Final quantification of gene expression was calculated using the ΔΔCt 

method. Relative quantification was calculated as 2ΔΔCt. 

H9c2 Culture experiments 

H9c2 ventricular cardiomyocytes were purchased from ATCC (CRL-1446) and grown at 

370C, 5%CO2, and 20% O2 in DMEM containing 10% FBS and 1% pen/strep and changed every 

second day. When cells were ~75% confluent, 5x104 cells/well were sub-cultured in 6-well 

plates for 24 hours before liposome-mediated gene transfer was performed as previously 

described (29). Briefly, 1μg of shRNA-mtIF2 (sh-mtIF2; Catalog #RSH045068, Genecopeia, 

Rockville, MD, USA) or a shRNA scramble control sequence (sh-con) was diluted in 50μL 

reduced serum media combined with Lipofectamine 2000 (ThemoFisher Scientific). Cells were 

incubated for 5 hours before rinsing and replacement with standard growth media. 
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Two-photon excitation fluorescence of endogenous NADH and FAD 

Two-photon excitation fluorescence (TPEF) was used to measure endogenous 

fluorescence of NADH and FAD as previously described (2). Briefly, laser excitation by MaiTai 

Ti:Sapphire laser source (Spectra-Physics, Santa Clara CA) was tuned to 755nm or 860nm. 

Images were acquired using a resonant-galvo scanner and GaAsP photomultipler tubes (H7422-

40, Hamamatsu) with 460/40 nm(NADH), 525/45 nm(FAD), and 600/70 nm (Rhodamine) 

filters. 10μm section of the left ventricle were cut along the short axis. Slides were imaged 

(512x512 pixels, 16-bit depth, 260 μm2) and the pixel-wise FAD/(NADH+FAD) ratio 

normalized to rhodamine was calculated.  Multiple fields were imaged for each sample and 

averaged to represent an individual biological sample. NADH and FAD image analysis was 

completed using MATLAB (MathWorks, Natick, MA). 

Bioenergetic flux analysis 

Oxygen consumption rates (OCR) were analyzed using Seahorse XFp extracellular flux 

analyzer (Agilent, Santa Clara, CA) according to manufacturer instructions and as previously 

described (3). Briefly, 24 hours following shRNA transfection, cells were trypsinized, rinsed 

with PBS, and 2x104 cells were seeded per well in growth medium. After 24 hours incubation, 

media was removed and replaced with Seahorse Assay media containing 7 mM glucose, 2 mM 

pyruvate, and 2 mM glutamine. OCR was measured prior to and following sequential addition of 

1 μM oligomycin, 1 μM FCCP, and 1 μM rotenone/Antimycin A. This allowed assessment of 

cellular OCR related to basal respiration and maximal uncoupled respiration. Reserve respiration 

was determined as the difference between maximal and basal after normalizing to non-

mitochondrial oxygen consumption. 
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Hypoxic exposure and MTT viability assessment 

To assess the resistance of H9c2 cells to hypoxia similar to that seen during ischemic 

challenge, 48 hours following shRNA transfection, media was replaced with serum-free DMEM 

and cells were placed in a dual gas controlled (Oxycycler C42, Biospherix, Parish, NY) 

incubator sub-chamber. Oxygen was flushed by nitrogen and maintained at 1% O2 and 5% CO2 

for 6 hours. The combination of serum-free media with a hypoxic environment was used to 

simulate ischemic conditions (26). Following hypoxic exposure, 1 mM MTT (M6494, 

Invitrogen) was added to cells and incubated ~20% O2 for 2 hours. The resulting formazan 

crystals were solubilized by addition of 1000 μL of 350 mM SDS in 0.01% HCl and absorbance 

was read at 570 nm. A separate plate was maintained at ~20% O2 to serve as 100% viability 

control. 

Statistical Analysis 

Statistics were calculated and visualized using GraphPad Prism v6.0. For animal studies, 

a 2x2 analysis of variance was used to compare conditions of age (young vs. aged) by diet (lean 

vs. obese). Where significant interactions occurred, Fisher’s LSD post hoc analysis was used to 

determine differences between groups. To compare shRNA-control to shRNA-mtIF2, Student’s 

t-test was used. For all experiments, α was set at 0.05 and data presented are mean ± SEM. 

Results 

The obesity, aging, and cardiac hypertrophy phenotype 

Phenotypic data regarding animal age, body weight, tibia size, and heart weights from 

this animal cohort have been previously published. Overall, the high-fat diet animals were 

significantly heavier than their age-matched lean counterparts. Absolute and relative to tibia 
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length, heart weight showed a main effect of age (~20% greater) and diet (~20% greater) as 

being significant contributors to elevated heart mass. 

Mitochondrial content alterations in the myocardium during aging and obesity 

To assess mitochondrial content of the heart in this animal model, we used immunoblot analysis 

of the surrogate marker COX-IV as well as controllers of mitochondrial biogenesis and 

replication, PGC-1α and TFAM. COX-IV protein was ~40% greater in both aged groups 

compared to young (p < 0.05) with no significant effect of diet (p > 0.05; Figure 1A). PGC-1α 

protein content was differentially expressed by both high-fat diet and age. YO and AL groups 

showed ~2-fold and 1.5-fold greater content of PGC-1α compared to YL and AO groups (p < 

0.05) while there was no difference between YL and AO groups (p > 0.05, Figure 1B). No 

significant differences were found in the protein content of TFAM between any groups (p < 0.05, 

Figure 1C). 

Mitochondrial mRNA-translation alterations in the myocardium during aging and obesity 

To understand the effects of aging and obesity on the process of mt-mRNA translation in the 

myocardium, we analyzed key controllers of the mt-mRNA translation process. First, we 

examined major components of the mitochondrial ribosomal subunits, mitochondrial 12S rRNA 

content was ~30% lower in high fat diet groups compared to lean (p < 0.05) and ~45% lower in 

aged groups compared to young (p < 0.05, Figure 2A). In the YO group, the 16S rRNA was only 

~25% that of the YL control (p < 0.05). Both aged groups had ~30% lower 16S rRNA compared 

to the YL controls (p < 0.05) but were not different than each other (p > 0.05, Figure 2B). High 

fat diet (~25%) and aging (~40%) both showed significantly lower levels of mtIF2 protein 

compared to lean and young controls, respectively (p < 0.05, Figure 2C). mtIF3 protein content 

was ~50% greater in AO group compared to YO and AL (p < 0.05) but when compared to YL, 
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this did not reach statistical significance (p = 0.083, Figure 2D). mtEF-Tu protein content was 

not different between young groups but the AL group was about 2-fold greater when compared 

to AO (p < 0.05, Figure 2E). TACO1 content was ~35% lower in both high fat diet groups 

compared to their lean counterparts, with no significant effect of age (p < 0.05, Figure 2F). 

Mitochondria-encoded CytB protein levels were ~25% lower in high fat diet groups compared to 

lean controls and ~25% lower in aged groups compared to young controls (p < 0.05, Figure 2G). 

When normalized to protein levels of COX-IV to account for mitochondrial content, CytB was 

~45% lower in both aged groups compared to young counterparts (p < 0.05, Figure 2H). 

Genetic downregulation of mtIF2 alters oxidative capacity of cardiomyocytes 

In order to assess the necessity of mtIF2, and thus limitations in mitochondrial mRNA 

translation, on oxidative capacity of cardiac muscle cells, we utilized a transient knockdown 

approach in vitro using H9c2 cardiomyocytes. Immunoblot analysis of sh-mtIF2 transfected cells 

reveals 22% lower protein content of mtIF2 compared to sh-Con (p < 0.05; Figure 3A). COX-IV 

and VDAC were used as markers of mitochondrial content with no differences found between 

sh-Con and sh-mtIF2 cells (p > 0.05; Figure 3A). The ratio of phosphorylated AMPK to total 

AMPK was significantly elevated by >2-fold in sh-mtIF2 cells compared to sh-Con (p < 0.05; 

Figure 3A). Cyt-B and ND4 are two proteins translated by mt-mRNA translation machinery and 

were found to be significantly lower in sh-mtIF2 compared to sh-Con by ~25% and ~15%, 

respectively (p < 0.05; Figure 3A). OXPHOS complex assembly was assessed by analyzing 

content of core proteins within each complex that are actively degraded when the complex is not 

adequately assembled. Markers for complexes I and IV had ~15-20% lower protein content in 

sh-mtIF2 compared to sh-Con (p < 0.05) with no differences seen between groups for markers of 

complex II, III, or V (p > 0.05; Figure 3B). TPEF was used to visualize the optical 
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oxidation/reduction state of the H9c2 myocytes. The ratio of FAD/(FAD + NADH) was 

significantly lower in sh-mtIF2 by ~30% (p < 0.05, Figure 4 A, B). Bioenergetic analysis 

revealed lower levels of basal OCR (~50%), maximal OCR (~30%), and reserve capacity 

(~40%) in sh-mtIF2 cells compared to sh-Con (p < 0.05, Figure 4 C, D). Upon exposure to 1% 

O2 for 6 hours, sh-mtIF2 cell viability was significantly lower (~20%) than that of control H9c2 

cells (p < 0.05; Figure 5). 

Discussion 

This investigation highlights specific alterations in mt-mRNA translation machinery during the 

pathogenesis of aging-induced and obesity-induced cardiac hypertrophy. Using a mouse model 

of aged obesity that has been previously characterized, we identified a loss of mtIF2 despite 

markers of greater mitochondrial content (COX-IV; Figure 2) alongside reductions in Cyt-B, a 

protein encoded by the mtDNA, suggesting impaired mt-mRNA translation in aged obesity. 

Furthermore, using in vitro genetic manipulation of cardiomyocytes, we identified the necessity 

of mtIF2 in maintaining oxidative characteristics of cardiac muscle (Figures 3-5). These results 

extend previous research on the metabolic alterations associated with aging-induced 

mitochondrial irregularities (13, 14, 41, 45). Specifically, novel evidence is presented on the 

contribution of mt-mRNA translation machinery to maintaining oxidative capacity in the 

myocardium. These data demonstrate a clear contribution of mtIF2 to the unique 

cardiomyopathy seen in aged obesity with implications on oxidative capacity, ROS production, 

and mtDNA mutations – all of which have been connected to the decline in cardiac function over 

time. 

 

 



 134 

Implications for mtIF2 during Cardiomyopathy 

In maintaining 13 ETC-subunit encoding genes in mtDNA, dedicated machinery to transcribe 

and translate each gene into a protein becomes necessary. We have assessed this machinery by 

analyzing regulators of mt-mRNA translation ribosomes, initiation, elongation, and the only 

known mammalian translational coactivator. From these analyses, we identified detriments in 

mtIF2 and mt-rRNAs during a form of cardiomyopathy. Bacterial and eukaryotic, cytoplasmic 

mRNA translation each contain three translation initiation factors; however, mammalian 

mitochondria contain only two with no currently known equivalent of the initiation factor 1 (IF-

1) (54). Functionally, the mammalian mtIF2 appears capable of replacing both IF-1 and -2 of E. 

Coli resulting from a 37 amino acid insertion from IF-1 into mammalian mtIF2 allowing mtIF2 

to bind the start codon (fMet-tRNA), GDP, and the small ribosomal subunit to generate a pre-

initiation complex (16). This predicates mtIF2 as a primary controller of mt-mRNA translation 

initiation. Heart disease has been associated with metabolic changes in the myocardium 

including a decrease in electron transport through ETC complexes I and IV (34) – two 

complexes that include >75% of the mtDNA-encoded proteins (32). Alterations in the expression 

of mtDNA-encoded subunits through changes in mt-mRNA translation are one potential 

mechanism contributing to metabolic irregularities present in cardiomyopathies. In support of 

this, we present evidence that mtIF2 protein and the mitochondrial rRNAs are downregulated in 

the myocardium by both aging and obesity and that this is concomitant with similar changes in 

CytB protein levels (a protein encoded by mtDNA) despite greater markers of mitochondrial 

content in aged hearts (Figures 1, 2). These results suggest detriments in oxidative capacity and 

ETC components of the myocardium may directly result from impaired mt-mRNA translation 

initiation and reductions in necessary mt-mRNA translation machinery due to insufficient levels 
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of mtIF2 and mitochondrial rRNAs, respectively. Reductions in proper mt-mRNA translation 

would likely trigger deficient oxidative capacity and perhaps lead to greater ROS production, 

mtDNA mutation rate and mitonuclear protein imbalance leading to the mitochondrial unfolded 

protein response further propagating the ETC deficits (8, 23, 36). The culmination of these 

detriments, overtime, may contribute to the metabolic alterations associated with age-induced or 

obesity-induced cardiac hypertrophy. 

Necessity of mtIF2 for maintaining cardiac oxidative capacity 

Our in vivo data suggests a potential contribution of mtIF2 towards altered metabolic 

characteristics of the heart by limiting translation of mt-mRNA; therefore, we sought to more 

clearly define the connection of mtIF2 to specific cardiomyocyte functional outcomes. Using 

shRNA knockdown of mtIF2 in H9c2 cardiomyocytes, we present novel evidence for the 

necessity of proper protein expression of mitochondrial translation initiation machinery to 

maintain the oxidative characteristics of cardiac muscle. The optical redox ratio of FAD/(NADH 

+ FAD) as visualized using TPEF is a non-destructive and label free method of live cell imaging 

that can ascertain relative contribution of glycolysis and oxidative phosphorylation (3, 38, 52). 

Using this approach, we are the first to report that reductions in protein content of mtIF2 can be 

directly associated with a relative increase in glycolytic utilization compared to oxidative 

phosphorylation (Figure 4).  Furthermore, we demonstrate that insufficient expression of mtIF2 

can reduce oxygen consumption capacity and exacerbate cardiomyocyte cell death following 

hypoxic exposure in vitro (Figure 4,5).  These results have clear implications for pathological 

cardiac hypertrophy as seen during aging and obesity which both present with downregulated 

cardiac mtIF2 protein content (Figure 2). 
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mt-mRNA translation and Mitochondrial Quality Control 

Traditional views of mitochondrial quality control encompass the processes of mitochondrial 

biogenesis, mitophagy, and mitochondrial dynamics (53). Recent published evidence has 

established other cellular processes and their importance for appropriate mitochondrial oxidative 

metabolism including the mitochondrial unfolded protein response (25), mitochondrial 

supercomplex formation (17), and mitochondrial mRNA translation (28, 44). Each of these 

cellular pathways contributes to the overall function and efficiency of the ETC in producing 

sufficient ATP without deleterious ROS production or a resulting increase in mtDNA mutation 

rate. Published literature predicates mitochondrial metabolism in combating the deleterious 

effects of aging on the heart (8) but these results, alongside other reports, suggest that 

maintenance of mt-mRNA translation machinery, specifically mtIF2, directly contributes to 

mitochondrial oxidative quality (7, 8, 48). Mitochondrial oxidative capacity should be a primary 

target to combat the deleterious effects of acquired cardiomyopathies including aged obesity-

induced cardiac hypertrophy and this should be accomplished through the appropriate quality 

control mechanisms including mt-mRNA translation. Further research should aim to directly 

connect mitochondrial translational outcomes to the rates of mtDNA mutation and subsequent 

ROS production. 

Conclusion 

In summary, we present evidence of altered mt-mRNA translation during age-induced and high 

fat diet-induced cardiac hypertrophy. We build on these results by demonstrating the necessity of 

mtIF2 in maintaining the redox state and oxidative capacity of cardiac muscle cells. With aging 

and obesity each contributing to heart disease in a unique manner, the contribution of each 

towards metabolic cardiomyopathy must be made clear. Further research should focus on the 
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mitigating effects mtIF2 overexpression may have on cardiac mitochondrial function (oxidative 

capacity, ROS, mtDNA mutations) and how this may contribute to increased lifespan or reduced 

risk for cardiovascular event. 
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Figure 1. Effects of Aging and Obesity on Cardiac Mitochondrial Content. Immunoblot analysis 

of mitochondrial content marker COX-IV (A) and controllers of mitochondrial biogenesis (PGC-

1α; B) and replication/transcription (TFAM, C). (D) Sample immunoblot images. Each group 

was represented equally across membranes and normalized across membranes using an internal 

control. * indicates p < 0.05 between groups connected by horizontal bar. 
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Figure 2. Effects of Aging and Obesity on Cardiac Mitochondrial mRNA translation. RT-qPCR 

analysis of mitochondrial rRNA content (A,B). (C-F) Immunoblot analysis of protein content of 

machinery involved in mitochondrial mRNA translation and CytB -- a protein encoded by 

mtDNA normalized to PonceauS (G) or mitochondrial content (H). (D) Sample immunoblot 

images. Each group was represented equally across membranes and normalized across 

membranes using an internal control. * indicates p < 0.05 between groups connected by 

horizontal bar. 
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Figure 3. shRNA-mtIF2 alters protein content of markers of mitochondrial metabolism. (A) 

Immunoblot analysis of mtIF2, COX-IV, VDAC, phosphorylation ratio of AMPK, Cyt-B and 

ND4 in shRNA-Con and shRNA-mtIF2 transfected H9c2 cardiomyocytes and  (B)  

mitochondrial OXPHOS complexes. (C) Sample immunoblot images. Analyses were performed 

in triplicate with multiple independent experiments. * indicates p < 0.05. 
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Figure 4. shRNA-mtIF2 alter oxidation/reduction state in H9c2 Cardiomyocytes. (A,B) TPEF of 

optical redox ratio [FAD/(FAD+NADH)] in H9c2 cardiomyocytes transfected with either 

shRNA-Control or shRNA-mtIF2.  Bioenergetic flux analysis of H9c2 cells over time (C) and 

resulting relative OCR as a proportion of the control basal rate.  Analyses were performed in 

triplicate with multiple independent experiments. * indicates p < 0.05. 
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Figure 5. (A) mtIF2 contributes to cardiomyocyte hypoxic resistance. MTT assay of cell 

viability conducted after 6 hours of incubation at 1% O2 in H9c2 cardiomyocytes transfected 

with either sh-Con or sh-mtIF2. Analyses were performed in triplicate with multiple independent 

experiments. * indicates p < 0.05. (B) Conceptual illustration of results. 
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Chapter 5 – Discussion 

 

This series of experiments has established the importance of the mt-mRNA translation 

machinery in maintaining mitochondrial oxidative capacity in the myocardium. The specific 

aims outlined within this dissertation have determined 1) mt-mRNA translation is altered in an 

aging- and obesity-induced model of cardiac hypertrophy, 2) mt-mRNA translation is 

dysregulated in the unique cardiac atrophic state seen in advanced cancer and 3) mt-mRNA 

translation initiation through mtIF2 is required to maintain cardiac oxidative characteristics. We 

have accomplished these experiments through a combination of unique in vivo mouse models of 

heart disease followed by specific in vitro genetic approaches targeting mt-mRNA translation 

machinery using a variety of biochemical and functional assessments. The implications of these 

experiments extend areas of cardiometabolic disease, cardio-oncology, and the basic science of 

mitochondrial quality control mechanisms to maintain oxidative characteristics of the most 

mitochondria-dense tissue within the human body. 

Until now, the primary focus of research into mitochondrial therapeutics to combat heart 

disease has been enhancing lipid utilization and improving mitochondrial quality control 

pathways (7, 22). The goal in targeting mitochondrial quality control pathways is to optimize the 

pool of mitochondria by eliminating non-functional organelles (mitophagy) (21) and optimizing 

the interconnectedness of the mitochondrial reticulum (dynamics) (4). Other attempts to promote 

mitochondrial biogenesis through overexpression of the master regulator PGC-1α have been 

limited because of a type of ceiling reached on mitochondrial content in the already extremely 

oxidative cardiac muscle (3, 11). These studies have suggested the insufficiency of approaches 

targeted towards canonical mitochondrial quality control mechanisms. The results of our 

investigations into mt-mRNA translation demonstrate the paramount importance of maintaining 
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the pool of mitochondrial OXPHOS subunits coded by mtDNA to maintain the integrity of the 

ETC. It should, therefore, be noted that mt-mRNA translation is now implicated as a key 

component of proper and sufficient mitochondrial oxidative quality in order to produce ATP 

required for oxidative muscle contraction of the heart. 

The cumulative results of these investigations have further supported the potential of 

mitochondrial oxidative capacity as a therapeutic target in cardiac myopathies. Specifically, we 

have extended upon previous evidence by demonstrating a specific area of cardiac mitochondrial 

characteristics responsible for poor metabolism during heart disease. We present novel evidence 

that the obesity paradox that is seen during aged obesity-induced cardiac hypertrophy could be 

counteracted by mitigating detrimental mt-mRNA translation initiation to improve functional 

characteristics (1, 15). Furthermore, we are the first to present evidence of mitochondrial 

oxidative alterations in the unique form cancer-induced cardiac atrophy – a more prevalent form 

of heart disease as efficacy of cancer treatments are improving (16). Many avenues of targeting 

mitochondrial therapeutics to treat cardiovascular disease have been anticipated but few have 

focused on the formation of mtDNA-encoded proteins in the development of ETC complexes for 

OXPHOS efficiency. A potential deterioration in the abundance of OXPHOS proteins encoded 

by mtDNA relative to total volume of the mitochondria has not been explored during heart 

disease. 

The relative contribution of mitochondrial content to total mass of contractile tissue in 

striated muscle is dysregulated during metabolic disease states such as insulin resistance or 

obesity in both skeletal and cardiac muscles (8–10, 12). Here, we present with markers of 

mitochondrial content in the heart indicating this condition is similar within the heart during 

various disease states. By utilizing multiple disease models with a common downregulation of 
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mtIF2 and genetic approaches to reduce expression of mtIF2 in cardiac musculature, we 

demonstrate that reduction in mt-mRNA translation are seen concomitant with an increase in 

markers of mitochondrial content. This suggests that an elevation in total mitochondrial content 

with insufficient OXPHOS machinery to match metabolic demand. It stands to reason that a 

reduction in mt-mRNA translation results in fewer ETC complexes and a reduction in the Δψ of 

the mitochondria limiting ATP production at complex V. Though not yet supported by 

experimental evidence, it is possible that a reduction in ATP production of the cardiac 

mitochondrial pool causes a reciprocal promotion of mitochondrial network expansion to cope 

with oxidative stress (5). This would mean an increase in mitochondrial content as a result of 

poor oxidative phosphorylation in the pool of mitochondria at the onset of disease provides a 

means to restore energy balance -- referred to in the literature as mitochondrial retrograde 

signaling (5). Of course, this is contrary to traditional scientific thought wherein an increase in 

mitochondrial content is a result of insufficient mitochondrial fusion and degradation of poorly 

function components (9). Our results support mitochondrial turnover as a causal proponent of 

greater mitochondrial content in cancer-induced cardiac metabolic perturbations. However, the 

former conclusion could be supported by our results in hypertrophic cardiomyopathy and 

genetically altered cardiomyocytes though further experiments would be needed to confirm 

mitophagy is not a factor. 

In conclusion, the research investigations presented within this dissertation are the first to 

establish mitochondrial mRNA translation as a process that is dysregulated during 

cardiometablic disease and as a potential therapeutic target to enhance oxidative characteristics 

of the myocardium. mtIF2 presents as a key regulator for the process of mt-mRNA translation 

and is necessary for maintain oxidative capacity in cardiac muscle. A disruption in the 
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expression of mtDNA has deleterious effects on the assembly of OXPHOS complexes; 

specifically complexes I and IV based on the number of core subunits encoded by mtDNA. 

Alterations in the flow of electrons through these specific complexes has strong implications for 

the production of ROS and the subsequent consequences on mtDNA integrity. Any metabolic 

alterations that result in mtDNA mutations can propagate to further detriments in OXPHOS 

complex assembly leading to further ROS production and even greater mtDNA mutations 

causing a ‘downward spiral’ of metabolic disturbances (23). This series of events has the 

potential for altering the future care of many cardiac disease states including cardiac 

hypertrophy, coronary artery disease, and age-induced congestive heart failure. 

Future Directions 

This series of experiments has taken clear steps to improve our knowledge in a series of 

cardiomyopathies; however, it leaves open many future lines of research to build upon these 

findings. Primary experiments that could be used with these experimental models would be the 

quantification of ROS production and mtDNA mutations and mutation rates. These experiments 

would directly connect our findings to a prolonged propensity for deleterious effects on the heart. 

Furthermore, these experiments have tested the necessity of mtIF2 in maintaining cardiac 

oxidative capacity -- it is yet to be seen if mtIF2 is sufficient to enhance hypoxic resistance in 

adult cardiac muscle. These future experiments would clearly pave the way for translational 

experiments to use mtIF2 exogenous expression to mitigate deleterious effects of 

cardiomyopathies. If this is extended to a mitigation of mtDNA mutation through reduction in 

ROS production, it would pave the way for age mitigating therapeutic approaches. 

Another area that requires future research is in characterization and mitigation of 

cardiotoxic effects of therapeutic pharmaceutical interventions already implemented in a clinical 



 151 

setting (16). While multiple approaches assist in treating diseases associated with aging and 

obesity (Metformin)(19) and cancer (Doxorubicin, Nivolumab)(17), the side-effects are often 

deleterious to cardiac musculature. Clinical interventions are improving that have greatly 

increased survival rates of metabolic diseases and cancers, but these are narrow minded and 

counterintuitive if the resulting outcome is an imminent, fatal cardiovascular event. Researchers 

need to clearly identify the adverse outcomes on the myocardium of interventions to treat cancer 

(radiation, chemotherapy, immunocheckpoint blockade) and other age-related disorders 

(hormone therapies, metabolic therapy, corticosteroid therapy, anti-dementia medications). The 

side-effects of these treatments have clear negative side-effects on the myocardium and could be 

contributors to greater mortality. Along these lines, a key initiative that should be the focus of 

future research in medical administration and organization is to identify the concern of primary 

care providers who administer these medications and if they are considerate of the complicating 

effects on patients with or predisposed to cardiovascular disease. A wonderful example of the 

positive outcomes possible is the rapidly progressing field of cardio-oncolgy wherein specialists 

combine expertise to identify optimal treatment approaches to enhance outcomes of both 

oncologists and cardiologists. 

Limitations 

Various limitations should be taken into account when attempting to generalize the 

results presented here. A primary limitation of concern is the lack of in vivo functional cardiac 

information including left ventricular ejection fraction, left ventricular internal diameter 

measures and ventricular wall dimensions. These are all primary markers of cardiovascular 

disease that can only be measured in a living animal and were not collected in either of the 

animal studies presented here. 
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For many of the findings taken from mouse diseases models, a primary concern in 

applying this to a broader application is the drastically different hemodynamic and microfluidic 

aspects of small animal cardiovascular system. In fact, when comparing characteristics of the 

heart across dozens of mammalian species, a relationship between body weight, heart mass, and 

heart rate is readily apparent (18). A smaller mammal such as a mouse may maintain a heart rate 

over 800bpm while a fully grown Asian elephant’s average heart rate is ~35bpm (2). Much of 

the differences relate to Frank-Startling contractile forces and outflow capacity through the aortic 

vasculature (6). This significant difference in the rate of contraction can result in differences in 

the metabolic characteristics of the myocardium across species. Similarly, the use of rat 

cardiomyocytes for cell culture experiments must take into account the progenitor phenotype 

(more glycolytic, less adult myosin content) compared to adult primary cardiac muscle cells (13, 

22). 

The use of TPEF to analyze redox species within tissue post mortum could be subject to 

changes caused by oxidation that occurs during sample processing though previous research 

suggests this is unlikely to alter data interpretation (24). There may also be some overlap in the 

endogenous fluorescence signal of NADH and collagen SHG potentially confounding these 

results. Likewise, NADPH and NADH species are indistinguishable using this endogenous 

fluorescence approach. While NADPH may only make us ~5% of the total pool of 

NADPH/NADH in a cell, it is assumed that this is included in our total measurements of NADH 

(20). 

Limitations that apply to the biochemical analyses must be taken into account as well. 

For the Seahorse Bioenergetics analysis, it must be assumed that the combination of Antimycin 

and Rotenone (combinations of Rotenone A, B and C) are sufficient to entirely block electron 
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flow through OXPHOS complexes though this has not been directly, experimentally confirmed. 

We were unable to determine production of ROS through MitoSOX analysis in sh-mtIF2 

experiments because of overlapping fluorescent signal with the mCherry-tagged plasmid. 

Additionally, measurements of mtDNA content and mtDNA mutation rates were not performed 

nor were activity measurements of the various OXPHOS complexes but only the content via 

immunoblot analysis. Finally, the MTT assay requires oxygen to generate formazan and is 

subject to alterations from ROS. While commonly used in the literature, this could be 

confounded by the hypoxia/reoxygenation required from the experimental protocols. While we 

attempted to only assess effects of hypoxia on the cardiomyocytes, the cells must be returned to 

normoxia (and thus reoxygenated) in order to perform MTT assay, the reoxygenation and ROS 

effects must be noted. 

Delimitations 

For the experiments presented here, we have decided to forego certain experiments that 

could be reasonably incorporated but have done so for specific reasons. We have attempted to 

characterize our mouse models of heart disease by highlighting alterations that are consistent 

with cardiomyopathy (HIF-1α, PGC-1α, fibrosis, altered oxidative metabolism) in an effort to 

demonstrate a diseased state even without function measurements of cardiac characteristics 

(echocardiographic assessment). While we could support these findings by using measures of 

glycolytic metabolism (immunoblot analysis, activity assays, glycolytic bioenergetics flux 

analysis), we have not performed these experiments because we feel that we can adequately 

characterize the stated heart disease with the experiments already performed. Similarly, the in 

vitro experiments have highlighted alterations in metabolic characteristics of cardiomyocytes 

rather than mature myotubes. This was done in order to mitigate any effects of mitochondrial 
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metabolism that contribute to muscle cell differentiation and because a primary characteristic of 

heart disease is a transition towards this embryonic cardiac cell phenotype (14). Additionally, 

while overexpression of the key mt-mRNA translation factors could improve the application of 

these findings in a diseased state, we have elected to simply test the necessity of mtIF2 for 

mitochondrial oxidative capacity. This was because prior to attempting to solve issues with 

deficient mt-mRNA translation during cardiac disease, we sought to determine if this translation 

initiation factor is required to maintain characteristics of healthy myocardium. Only then would 

the importance of extrinsically enhancing the expression of mtIF2 become apparent. While many 

more experimental approaches could be used to extend these results, we are confident that the 

findings presented here are sufficient for interpretation of the results as discussed. 
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Appendices 

1. Protocols 

H9c2 culture 

H9c2 rat ventricular cardiomyocytes were purchased through ATCC (CRL-1446) and 

cultured in DMEM containing 10% (v/v) fetal bovine serum and 1% (v/v) 

penicillin/streptomycin. Cells were incubated at 37 and 5% CO2 with media was changed every 

second day. Cells were grown until ~80% confluence and subcultured at desired densities for 

subsequent experimental procedures. 

Bioenergetics flux analysis 

 For cell bioenergetics flux analysis, a Seahorse XFp extracellular flux analyzer (Agilent, 

Santa Clara, CA) was used. Drug cartridges were preincubated with Seahorse Assay media 24 

hours prior to experimenst at 37°C in a non-CO2 incubator. 200μL of PBS was inserted into the 

cartridge moats to allow adequate humidification. Cells were cultured and plated in Seahorse cell 

plates at 2x104 cells/ well in 200μL of culture media. 200μL of PBS added to the cell plate moats 

to allow adequate humidification. On the day of the experiment, Seahorse assay medium was 

made using Seahorse XF base medium and adding 7mM glucose, 2mM sodium pyruvate, and 

2mM L-glutamine then pH was adjusted to 7.36-7.40. Using this complete assay media, drugs 

were reconstituted as follows: 252μL in oligomycin drug vial for a final concentration of 50μM, 

288μL in FCCP drug vial for a final concentration of 50μM, and 216μL in Rotenone/antimycinA 

vial for a final concentration of 25μM. From these stock drugs, 20μL of oligomycin was added to 

port A of the drug cartridge (1μM final concentration), 22μL of FCCP was added to port B of 

drug cartridge (1μM final concentration), and 25μL rotenone/antimycinA was added to port C 

(0.5μM final concentration. This prepared drug cartridge was loaded into the Seahorse XFp 
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analyzer at the start of the experiment as instructed by the machine’s GUI. The culture media for 

the cells was removed and rinsed thrice with complete Seahorse assay media and left at a final 

volume of 180μL/well to allow dilution to desired concentrations from drug cartridge. ~15 

minutes after inserting the drug cartridge into analyzer, the hydrating plate can be removed and 

the cell plate inserted according to instructions given by the machine’s GUI. Analysis will be 

performed over 100 minutes and the drug cartridge and cell plate can be removed and used for 

further analyses if desired. 

Cell Hypoxic exposure and MTT Assay 

 2x104 cells/well are plated in a 96-well plate and incubated with culture media for 24 

hours at 20% O2 and 5% CO2. After desired experimental intervention (transfection, drug 

incubation), media was replaced with media deplete of serum and cells were placed in a dual gas 

controlled incubator sub-chamber (Oxycycler C42, Biosperix, Parish, NY). Oxygen was flushed 

by nitrogen and maintained at 1% O2 and 5% CO2 for 6 hours. Following the hypoxic exposure, 

1mM MTT (M6494, Invitrogen) was added to cells and incubated at ~20% O2 for 2 hours. The 

resulting formazan crystals were solubilized by addition of 100μL af 350mM SDS in 0.01% HCl 

on gentle shaking for 2 hours. Absorbance was read at 570nm and compared to absorbance of a 

control plate incubated in normoxic conditions. 

Two photon excitation fluorescence 

 Two-photon excitation fluorescence (TPEF) was used to measure endogenous 

fluorescence of NADH, FAD, and the second harmonic generation signal of collagen (SHG). 

Laser excitation by MaiTai Ti:Sapphire laser source (Spectra-Physics, Santa Clara CA) was 

tuned to 755nm (NADH), 800nm (SHG), or 860nm (FAD). Images were acquired using a 

resonant-galvo scanner and GaAsP photomultipler tubes (H7422-40, Hamamatsu) with 
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460/40nm (NADH), 525/45nm (FAD), 400/40nm (SHG) and 600/70nm (Rhodamine) filters. 

10μm section of the left ventricle were cut along the short axis. Slides were imaged (512x512 

pixels, 16bit depth, 260μm2). The pixel-wise FAD/(NADH+FAD) ratio normalized to rhodamine 

was calculated to determine the optical oxidation/reduction ratio. Multiple fields were imaged for 

each sample and averaged to represent an individual biological sample. Image analysis was 

completed using MATLAB (MathWorks, Natick, MA). 
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2. MATLAB Editor Code 

Redox ratio calculations in whole tissue microscopy 

%Create a nice image (avgi2) by combining the FAD and NADH 

%channels 

 

% Select your highest level folder containing all the data 

start_path = uigetdir('Select a folder'); 

cd(start_path) 

 

% Creates a list of all NADH and FAD folders 

list_755 = dir('*750*'); 

list_860 = dir('*860*'); 

list_800 = dir('*800*'); 

 

 

% Goes into each folder, takes the Chan B or Chan C image depending on the 

% wavelength. 

for i = 1:length(list_755) 

redox_755 = 

imread(strcat(start_path,'/',list_755(i).name,'/','ChanB_0001_0001_0001_0001.tif')); 

avg_755{1,i} = mean(mean(redox_755)); 

redox_755=double(redox_755); 

redox_images{1,i} = redox_755; 



 162 

end 

for i = 1:length(list_860) 

redox_860 = 

imread(strcat(start_path,'/',list_860(i).name,'/','ChanC_0001_0001_0001_0001.tif')); 

avg_860{1,i} = mean(mean(redox_860)); 

redox_860=double(redox_860); 

redox_images{2,i} = redox_860; 

end 

for i = 1:length(list_800) 

redox_800 = 

imread(strcat(start_path,'/',list_800(i).name,'/','ChanA_0001_0001_0001_0001.tif')); 

avg_800{1,i} = mean(mean(redox_800)); 

redox_800=double(redox_800); 

redox_images{3,i} = redox_800; 

end 

 

%Calculate redox images 

for i = 1:length(list_755) 

redox_images{4,i} = redox_images{2,i}./(redox_images{2,i}+redox_images{1,i}); 

avg_redox{1,i} = mean(mean(redox_images{4,i})); 

end 

 

%save('AverageRedoxImage',imavgredox); 
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mf=max([avg_860{1,:}]); 

mn=max([avg_755{1,:}]); 

 

%smooth images and index redox_images structure using same color 

%limits for all images 

for i=1:length(list_755) 

h=fspecial('gaussian',[2 2],5/3); 

FADfilt=imfilter(redox_images{2,i},h); 

NADHfilt=imfilter(redox_images{1,i},h); 

redox = redox_images{4,i}; 

 

avgi=(mean(mean(redox_images{2,i}))+mean(mean(redox_images{1,i})))/2; 

 

%Keep this consistent for all your images. Lowering uplim will make it 

%brighter 

uplim=1000;%adjust these based on your image intensity values 

botlim=400;%adjust until you see the pixels gone from background 

 

avgi2=(avgi-botlim)/(uplim-botlim); 

avgi2=avgi2.*(avgi2<1)+(avgi2>=1); 

avgi2=avgi2.*(avgi2>=0); 

 

%reassign redox ratio jet colors to a range of your choosing based on uplim 
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%and botlim, then discretize the redox values from 1-64. 

cmj=jet; 

 

%DO NOT CHANGE THESE VALUES 

uplim=1.0; 

botlim=0.4; 

 

redoxfn=(redox-botlim)/(uplim-botlim); 

redoxfn=redoxfn.*(redoxfn<1)+(redoxfn>=1); 

redoxfn=round(63*(redoxfn.*(redoxfn>=0)))+1; 

 

uplim=750; 

botlim=400; 

 

SHGfn = (redox_images{3,i}-botlim)/(uplim-botlim); 

SHGfn = SHGfn.*(SHGfn<1)+(SHGfn>=1); 

SHGfn = round(63*(SHGfn.*(SHGfn>=0)))+1; 

 

%assemble the redox ratio map image in increments of different redox ratio values 

RYR24=zeros(size(redoxfn,1),size(redoxfn,2),3); 

 

for j=1:64 

imm=(redoxfn==j); 
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RYR24(:,:,1)=RYR24(:,:,1)+cmj(j,1).*imm.*avgi2; 

RYR24(:,:,2)=RYR24(:,:,2)+cmj(j,2).*imm.*avgi2; 

RYR24(:,:,3)=RYR24(:,:,3)+cmj(j,3).*imm.*avgi2; 

end 

redox_images{5,i} = RYR24; 

end 

%Save the image structure 

save('images_matrices.mat','redox_images') 

 

%Export matrix of values to excel with row1-4(NADH, 2HG, FAD, redox) and 

%row as the transposed averaged for each variable 

Excel_summary = [avg_755; avg_800; avg_860; avg_redox]; 

%Excel_summary{5,1} = mean([avg_755{1,:}]); 

%Excel_summary{5,2} = mean([avg_800{1,:}]); 

%Excel_summary{5,3} = mean([avg_860{1,:}]); 

%Excel_summary{5,4} = mean([avg_redox{1,:}]); 

excel_summary = cell2mat(Excel_summary); 

xlswrite('excel_summary',excel_summary); 

 

%Display redox image and filtered FAD and NADH images side by side 

figure;imagesc(redox_images{3,1}); colormap(gray); 

%subplot (1,3,1), imagesc(redox_images{5,2});colormap(jet); axis square; title 'redox'; 

%subplot (1,3,2), imagesc(redox_images{2,2});colormap(gray); axis square; title 'FAD'; 
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%subplot (1,3,3), imagesc(redox_images{1,2});colormap(gray); axis square; title 'NADH'; 

 

 

Redox ratio analysis in culture cells 

% Select your highest level folder containing all the data 

start_path = uigetdir('Select a folder'); 

cd(start_path) 

 

% Creates a list of all NADH and FAD folders 

list_755 = dir('*750*'); 

list_860 = dir('*860*'); 

 

% Parse out the folder names so data can be divided up correctly. This code 

% segment looks for the first part of the filename before the 755 or 860 

% in the filename 

 

celllabel = cell(1,length(list_755)); 

for i = 1:length(list_755) 

underscore_id(i,:) = strfind(list_755(i).name,'_'); 

celllabel{i} = list_755(i).name(1:underscore_id(i,2)-1); 

end 

clabel = unique(celllabel); 
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% Goes into each folder, takes the Chan B or Chan C image depending on the 

% wavelength. Based on the 755 folder, creates 7 ROIs - the first one 

% always corresponds to the background and the next six selections are 

% cells. Repeat this for all folders. Once you complete 1 folder, the image 

% for the next folder pops up immediately. 

roi_755 = cell(1,length(list_755)); 

roi_860 = cell(1,length(list_860)); 

for i = 1:length(list_755) 

redox_755 = 

imread(strcat(start_path,'/',list_755(i).name,'/','ChanB_0001_0001_0001_0001.tif')); 

roi_755{1,i} = kmultiroi(redox_755,3); 

redox_860 = 

imread(strcat(start_path,'/',list_860(i).name,'/','ChanC_0001_0001_0001_0001.tif')); 

roi_860{1,i} = kroistack(redox_860, roi_755{1,i}); 

close all 

end 

save 'analyzed_images.mat' roi_755 roi_860 

%% 

% Based on the initial filename groups we created, collects mean 

% fluorescence values from all plates that belong to the same experimental 

% group. 

k = 1; 

c = 1; 
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redox_values = struct('mean_755',[],'mean_860',[]); 

for i1 = 1:length(list_755) 

%if (~strcmp(list_755(i1).name(1:underscore_id(i1,2)-1),clabel{k})) 

%   k = k+1; 

%   c = 1; 

%   redox_values(k).mean_755 = []; 

%   redox_values(k).mean_860 = []; 

%end 

redox_values.mean_755 = cat(2,redox_values.mean_755,roi_755{i1}.mean(2:6)-

roi_755{i1}.mean(1)); 

redox_values.mean_860 = cat(2,redox_values.mean_860,roi_860{i1}.mean(2:6)-

roi_860{i1}.mean(1)); 

redox_values(c).cellplate = celllabel{i1}; 

redox_755 = 

imread(strcat(start_path,'/',list_755(i1).name,'/','ChanB_0001_0001_0001_0001.tif')); 

redox_values.img_755{c} = redox_755; 

redox_860 = 

imread(strcat(start_path,'/',list_860(i1).name,'/','ChanC_0001_0001_0001_0001.tif')); 

redox_values.img_860{c} = redox_860; 

c = c  + 1; 

end 

%% 

for k = 1:length(clabel) 
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redox_values(k).redox_ratio = redox_values(k).mean_860./(redox_values(k).mean_755 + 

redox_values(k).mean_860); 

end 

save 'analyzed_data.mat' redox_values 

 

Redox image generation to display for publications 

 

sampleid = 2; 

load analyzed_data.mat 

NADH = double(redox_values.img_755{1, sampleid}); 

FAD = double(redox_values.img_860{1, sampleid}); 

redox = FAD./(FAD+NADH); 

mf=max(FAD(:)); 

mn=max(NADH(:)); 

 

%h=fspecial('gaussian',[1 1],5/3); 

%FADfilt=imfilter(FAD,h); 

%NADHfilt=imfilter(NADH,h); 

%redox = imfilter(redox,h); 

 

avgi=(FAD+NADH)/2; 

 

%Keep this consistent for all your images. Lowering uplim will make it 
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%brighter 

uplim=100;%adjust these based on your image intensity values 

botlim=20;%adjust until you see the pixels gone from background 

 

avgi2=(avgi-botlim)/(uplim-botlim); 

avgi2=avgi2.*(avgi2<1)+(avgi2>=1); 

avgi2=avgi2.*(avgi2>=0); 

 

%reassign redox ratio jet colors to a range of your choosing based on uplim 

%and botlim, then discretize the redox values from 1-64. 

cmj=jet; 

 

%DO NOT CHANGE THESE VALUES 

uplim=1; 

botlim=0; 

 

redoxfn=(redox-botlim)/(uplim-botlim); 

redoxfn=redoxfn.*(redoxfn<1)+(redoxfn>=1); 

redoxfn=round(63*(redoxfn.*(redoxfn>=0)))+1; 

 

%assemble the redox ratio map image in increments of different redox ratio values 

RYR24=zeros(size(redoxfn,1),size(redoxfn,2),3); 
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for j=1:64 

imm=(redoxfn==j); 

RYR24(:,:,1)=RYR24(:,:,1)+cmj(j,1).*imm.*avgi2; 

RYR24(:,:,2)=RYR24(:,:,2)+cmj(j,2).*imm.*avgi2; 

RYR24(:,:,3)=RYR24(:,:,3)+cmj(j,3).*imm.*avgi2; 

end 

 

%Display redox image and filtered FAD and NADH images side by side 

figure; 

subplot (1,3,1), imagesc(RYR24); axis square; title 'redox' 

subplot (1,3,3), imagesc(NADHfilt);colormap(gray); axis square; title 'NADH' 

subplot (1,3,2), imagesc(FADfilt);colormap(gray); axis square; title 'FAD' 
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3. Ethics Committee Approval Letters 
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June 9, 2017 
 
 
MEMORANDUM 
 
TO: Dr. Nicholas P. Greene 
 
FROM: Ines Pinto, Biosafety Committee Chair 
 
RE: New Protocol 
 
PROTOCOL #: 17034 
 
PROTOCOL TITLE: Cardiac Oxidation Requires Mitochondrial Translation Initiation 
 
APPROVED PROJECT PERIOD: Start Date June 8, 2017 Expiration Date June 7, 2020 
 
The Institutional Biosafety Committee (IBC) has approved Protocol 17034, “Cardiac Oxidation Requires 
Mitochondrial Translation Initiation”. You may begin your study after certification of the biosafety 
cabinet in HPER 321K. 
 
If modifications are made to the protocol during the study, please submit a written request to the IBC 
for review and approval before initiating any changes.   
 
The IBC appreciates your assistance and cooperation in complying with University and Federal guidelines 
for research involving hazardous biological materials. 
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