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ABSTRACT 

Fusarium head blight (FHB) is a disease of small grains caused by the fungal pathogen Fusarium 

graminearum. FHB poses potential economic losses and health risks due to the accumulation of 

the mycotoxin deoxynivalenol (DON) on infected seed heads. The objectives of this study are: 1) 

evaluate soft red winter wheat (SRWW) lines for resistance to FHB in terms of resistance to 

initial inoculum (incidence); resistance to spread within the head (severity); resistance to DON 

accumulation; and resistance to Fusarium damaged kernels (FDK), 2) determine the frequency 

and effect of known FHB resistance genes and quantitative trait loci (QTL), and 3) identify novel 

resistance loci using a genome wide association (GWA) approach. From 2014-2017, 360 SRWW 

breeding lines were evaluated in inoculated misted FHB nurseries in Fayetteville and Newport, 

AR and Winnsboro, LA (2017 only) in a randomized complete block design. At all locations, 

lines were sown in two row plots, inoculated with F. graminearum infected corn (Zea mays L.) 

and overhead misted throughout the months of April and May to provide optimal conditions for 

FHB infection. In addition to visual ratings and DON analysis, lines were screened with KASP® 

markers linked to known FHB resistance genes, including Fhb1. The known resistance QTL, 

Qfhb.nc-2B.1 (Bess), on chromosome 3B was significantly associated with a reduction in 

incidence, severity, and DON accumulation. Genome wide SNP markers generated through 

genotype by sequencing (GBS) were used to perform GWA in order to identify marker-trait 

associations for FHB resistance. The GWA analysis identified 58 highly significant SNPs 

associated with the four disease traits. The most highly significant SNP was found on 

chromosome 4A and the minor allele was found to significantly reduce incidence by 1.17%. 

Results from this study will facilitate the development of SRWW cultivars with improved 

resistance to FHB. 
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OBJECTIVES OF THIS PROJECT 

The overall goal of this research is to produce marketable wheat cultivars that show 

resistance to FHB and are well suited for growth in Arkansas and to do this using both traditional 

and molecular breeding methods, including marker assisted selection and genomic selection. The 

data generated on these lines will be used in future studies as a training panel for genomic 

selection practices at the University of Arkansas. The major objective of this proposal was to 

evaluate the frequency and genetic effect of known FHB resistance genes within the Arkansas 

breeding material and to identify new sources of resistance alleles through genome wide 

association analysis (GWAS). The specific objectives are as follows: 

Objective 1: Evaluate soft red winter wheat (SRWW) lines for resistance to FHB in terms 

of resistance to initial inoculum (incidence); resistance to spread within the head 

(severity); resistance to Fusarium damaged kernels (FDK); and resistance to 

accumulation of DON. This objective was accomplished through multi-year field 

evaluation of a panel of 360 genotypes for FHB resistance in misted and inoculated 

screening nurseries at two locations in Arkansas. Ratings included incidence, severity, 

FDK, and DON.  

Objective 2: Determine the frequency and effect of known FHB resistance genes and 

native quantitative trait loci (QTL). This objective was accomplished through screening 

lines with molecular markers for known resistance genes and comparing the genetic 

analysis to phenotypic data for each line. Lines were screened for native resistance genes, 

including those from ‘Bess’, ‘Jamestown’, and ‘Neuse’ as well as the exotic resistance 

gene Fhb1.  
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Objective 3: Identify novel resistance loci using a genome wide association (GWAS) 

approach. To identify resistance genes unique to this population, we genotyped each line 

using a genotype by sequencing (GBS) approach and input both genotypic data as well as 

phenotypic data for each line into a GWAS analysis program in R software. Using a 

GWAS approach allowed us to discover both unique, single nucleotide polymorphisms 

(SNPs) as well as pleiotropic alleles which may be affecting more than one trait. For 

example, height dwarfing genes in wheat may lead to lower Type 1 resistance (Yan 

2011). A genome wide study insures that we are able to evaluate the effect of all genes on 

resistance to FHB.  
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CHAPTER 1: LITERATURE REVIEW 

Wheat Production 

Wheat was first domesticated and cultivated in southwest Asia between the Tigris and 

Euphrates rivers in what is now present day Turkey, Syria, and Iraq. Today, wheat (Triticum 

aestivum) is produced on more hectares worldwide than any other cereal crop and is consistently 

the third highest yielding cereal crop behind corn and rice (FAO 2014). According to figures 

provided by the USDA, in the 2015-2016 season, wheat was grown on more than 220 million 

hectares worldwide and produced over 730 million metric tons of grain. In the United States, 

wheat is produced on over 19 million hectares and averages almost three metric tons per hectare 

(USDA 2016).  

Wheat plays an important role in human food and animal feed. Wheat contains more 

protein per 100 grams than any other cereal (Gobbetti 2013). Two important types of protein in 

wheat, gliadins and glutenin, combine to form the complex gluten protein. The presence of 

gluten in the endosperm of wheat kernels allows wheat flour to retain its elasticity when 

combined with water to produce leavened bread. According to the National Association of 

Wheat Growers, wheat is responsible for approximately 20% of calories consumed by humans 

each day around the world (FAO 2014).  

In addition to being recognized as the third most important crop worldwide behind corn 

and rice, wheat is also the third most important crop in the United States in terms of production 

following corn and soybean (USDA 2016). In the 2015-2016 growing season, the U.S. produced 

over 54 million metric tons of wheat (USDA 2016). The total production is sub-classified into 

six types of wheat based on kernel color, hardness, and growing season. The six types of wheat 
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include hard red winter (HRW), hard red spring (HRS), soft red winter (SRW), soft white winter 

(SWW), hard white winter (HWW), and durum wheat (Associates 2013).  

Classifications of Wheat 

Each classification of wheat is grown in different regions in the United States and 

processed to produce a unique product. Hard red winter wheat is the most commonly grown 

classification in the U.S. and is primarily produced in the Great Plains of Kansas, Nebraska, 

Oklahoma, and Texas. Hard red winter wheat is milled to make flour for bread, tortillas, and 

cereal (Committee 2012). The second most commonly grown classification in the U.S. is hard 

red spring wheat, grown primarily in the Dakotas and Minnesota. Hard red spring flour is used in 

producing products such as croissants, bagels, and pizza crust (Associates 2013). Soft red winter 

wheat is the third most popular classification of wheat in the U.S. and is grown in the eastern 

regions of the country. Soft red winter wheat is used to make flat breads, cookies, and other 

pastries (Associates 2013). Soft white winter wheat is grown primarily in the northwestern states 

of Washington and Oregon and is used to produce finer, whiter flour for cakes, pastries, and 

Asian style noodles (Commission 2014). Hard white winter wheat is the newest classification of 

wheat and production of this classification is scattered throughout the United States and used 

primarily for Asian style noodles and whole wheat white flour. The final class of wheat is durum 

wheat. Durum wheat is the hardest of all classes and is grown mainly in North Dakota and 

southern California. Durum flour has a high gluten content and is used for pasta products 

(Commission 2014). Of these six classifications, HRW, HRS, and SRW made up about 85% of 

total U.S. wheat production in the 2015 harvest season (USDA 2016).  

The primary classification of wheat produced in Arkansas is SRW wheat. In Arkansas, 

SRW wheat is planted in the fall and harvested in June the following year (Kelley 2016). It is 
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often found in rotation with summer annual crops such as corn, soybean, or rice and may also be 

used in animal production settings as a fall and winter forage or cover crop. In 2015-2016, SRW 

wheat was planted on over 188,000 hectares in Arkansas which is considerably lower than the 

243,000-hectare average over the past few years provided by the Arkansas Extension Service 

(Kelley 2016). On average SRW wheat produces 58 bushesl/acre in Arkansas. Soft Red Winter 

wheat is produced in three main regions in Arkansas, the Mississippi River Delta, the Arkansas 

River Valley, and the Red River Valley in the eastern, western, and southern regions of the state, 

respectively (Kelley 2016).  

Common Wheat Diseases 

Of the many problems that Arkansas wheat producers face, one of the most prevalent is 

disease susceptibility. The most common diseases of wheat in Arkansas are stripe rust 

(Puccinia striiformis), leaf rust (Puccinia triticina), Fusarium head blight or head scab 

(Fusarium graminearum), Septoria leaf blotch (Septoria tritici), and bacterial streak 

(Xanthomonas translucens) (Spurlock 2015). Pathogens causing disease in wheat may attack the 

roots, stems, leaves, or seed head of the plant with some diseases, such as stripe rust, spreading 

from one part of the plant to another. Of all the Arkansas wheat diseases, stripe rust causes the 

most damage from year to year. However, given the right circumstances, Fusarium head blight 

(FHB) poses as much or more of a problem than stripe rust (Rudd 2001).  

Fusarium Head Blight 

Fusarium head blight, also known as head scab, is mainly caused by the fungal pathogen 

Fusarium graminearum. Other members of the Fusarium species may contribute to this disease 

or be more prevalent in other wheat growing regions, however, F. graminearum is the main 

causal agent in the Midwest and southern United States (Wegulo S. N. 2008). F. graminearum 
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belongs to the division of fungi known as Ascomycota. Ascomycetes are characterized by their 

the ascus which is a sack within the fruiting body containing eight sexually produced ascospores 

(Schmale III 2003). The sexual stage, or teleomorph, of F. graminearum is Gibberella zeae.  

The environment plays a large role in the infection of small grains by Fusarium species. 

Chlamydospores, perithecia, or mycelia from this fungus must overwinter in the soil or on 

infected crop residue before maturing the next spring and releasing spores (Wegulo S. N. 2008). 

Sexually produced ascospores are formed in an ascus within a fruiting body known as a 

perithecium (Wegulo S. N. 2008). Ascospores make up the majority of primary inoculum each 

spring; however, fungal hyphae or asexually produced macroconidia may also contribute to 

primary inoculum. Macroconidia are produced in a sporodochium before being dispersed by to 

seed heads (Schmale III 2003). The majority of spores are distributed to seed heads by the wind, 

however, splash dispersal by water also plays a part in spore dispersal. 

For infection to occur, conditions must be favorable for the pathogen. F. graminearum 

spores require warm temperatures (23-26ºC) and adequate moisture to infect the seed heads of 

small grains during flowering (Schmale III 2003). Under ideal conditions, spores begin to 

germinate 6-12 hours after initial infection. Infections occur mainly during flowering as the 

pollen and extruded anthers of the wheat flower serve as food for the germinating ascospores 

(Wegulo S. N. 2008). After germination, spores produce a germ tube that gives rise to hyphae 

that grows through the protective walls of the lemma, glume, and palea. The movement of the 

fungus from infected tissue to uninfected tissue occurs through either passive or direct 

penetration. An example of passive infection occurs when hyphae grow into the floret through 

natural openings such as stomata (Walter 2010). Active penetration is characterized by the use of 

hydrolyzing enzymes to degrade the host cuticle to allow hyphae to enter the floret. Fungal 
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hyphae spread from the initial site of infection to neighboring florets in one of two ways: through 

vascular tissue or stomata. Spread of hyphae and microconidia through vascular tissues not only 

helps quickly disperse the fungus, but also reduces flow of water and nutrients to maturing seeds 

interrupting normal seed set (Cai 2012). 

 Once infected, the seed head turns white in what is recognized as the characteristic 

“bleached” head associated with FHB (Wegulo S. N. 2008). Other recognizable traits of this 

disease include orange or pink spores, black perithecia, and shrunken, wrinkled kernels (Schmale 

III 2003). After infecting a seed head, this fungus begins to produce the mycotoxins 

deoxynivalenol (DON) and nivalenol (NIV). DON serves as a virulence factor for this fungus 

and causes host cell death and release of nutrients to the fungus (Walter 2010). Fusarium head 

blight poses a serious threat to producers’ profit as well as consumer health because of the 

damage to the kernel and the production of mycotoxins (Pirgozliev 2003). Damaged and infected 

kernels may result in a drastically lower test weight thus decreasing yield and ultimately 

producer profits. In addition to a decreased yield, scabby seed may pose serious health risks to 

humans and animals alike because of the production of DON (FDA 2010).  

Effects of Deoxynivalenol  

If ingested by humans, DON may cause temporary nausea, vomiting, diarrhea, abdominal 

pain, headache, dizziness, and fever (Sobrova, Adam et al. 2010). If consumed in high levels by 

pregnant individuals, DON may lead to abortion of offspring. For this reason, the U.S. Food and 

Drug Administration (FDA) has restricted DON contamination to 1 ppm in products for human 

consumption such as flour, bran, and germ (FDA 2010). In addition to wheat products, animal 

products may also be a source of DON in the human diet. A study conducted in 2008 found 

animal products such as muscle and kidneys may contain low levels of DON if the animal had 
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been fed a contaminated diet (Sobrova, Adam et al. 2010). However, because of low levels of 

residual DON, it does not pose a significant risk to human health. Animals and humans are 

affected by DON in the same way, and to address this, the FDA also set acceptable limits to 

DON in animal feed. Since swine are the most susceptible to DON contamination, the acceptable 

limit set by the FDA for swine feed is 5 ppm with the recommendation that infected feed not 

exceed 20% of their diet. For contaminated feed destined for other animals, such as cattle and 

chickens, the allowable limit is 10 ppm with the recommendation that DON infected grain not 

surpass 50% of the animal’s diet (FDA 2010). 

Fusarium head blight poses a potential problem to producers around the world each year. 

Between 1990 and 2003, producers lost an estimated 3 billion dollars to epidemics of Fusarium 

head blight (Cowger 2005). This disease has been known to cause yield losses of up to 50% in 

severe cases (Rudd 2001). In the past twenty-five years, there have been several outbreaks of 

FHB in the United States. The most decimating of these outbreaks occurred during the 1993 

growing season. An epidemic of FHB reduced yield by 40% and by 50% in North Dakota and 

northwest Minnesota, respectively, compared to 1992 (McMullen 1997). Since the outbreaks in 

the 1990s, some regions of the country have continued to experience epidemics in small grain 

production.  

Data compiled by McMullen et al. in 2012 summarized the recent FHB epidemics of the 

United States. The northern states of North Dakota, South Dakota, and Montana recorded 

chronic losses of Hard Spring Wheat crops due to FHB from 1998-2010. The eastern states of 

Maryland, Virginia, and North Carolina experienced losses of SRW wheat to epidemics in 1998 

and 2003 (McMullen 2012). Epidemics drastically reduced production of SRW wheat in 

Kentucky and Illinois in 2004 as well as in 2009 when this region, along with Arkansas, Indiana, 
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Tennessee, and Virginia experienced a second outbreak. Perhaps the most severe losses due to 

FHB occurred in the great plains states of Nebraska, Kansas, and Oklahoma in 2007, 2008, and 

2009 (McMullen 2012). The most recent outbreaks of FHB in the southeast region of the country 

occurred in the 2014-2015 season. In addition to reducing yield, wheat harvested with extreme 

disease severity is further docked at grain mills resulting in an even lower profit for producers.  

As a result of the early devastating epidemics, the United States Wheat and Barley Scab 

Initiative (USWBSI) was formed in 1997 (Anderson 2010). The USWBSI is made up of a 

collection of producers, researchers, and representatives of the food processing industry (millers, 

brewers, bakers, etc.) (Anderson 2010). The goal of the U.S. Wheat and Barley Scab Initiative is 

to develop as quickly as possible effective control measures that minimize the threat of Fusarium 

head blight (scab) to the producers, processors, and consumers of wheat and barley (Anderson 

2010). The USWBSI provides research funding to 81 scientists in 24 different states. In addition, 

129 state university research projects are made possible through the Initiative (Mason 2015). The 

primary categories of research through the USWBSI include Variety Development and Host 

Resistance (VDHR), FHB Management (MGMT), Food Safety and Toxicology (FST), and Gene 

Discovery and Engineering Resistance (GDER), as well as others. 

Management of Fusarium Head Blight 

 Management of FHB can be broken down into two categories; prevention and control, 

with different types of management (biological, chemical, cultural, or genetic) falling into those 

two management categories (Pirgozliev 2003). Management practices such as planting 

genetically resistant seed, pre-planting seed treatments, adjusting crop rotation to prevent 

successive planting of FHB susceptible crops, and reducing the amount of infected residue left 

on the surface of the soil all fall into the prevention category. The control category is primarily 
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comprised of fungicide applications and biological control methods. Since resistance to FHB is a 

quantitative resistance, relying heavily upon the combined effects of several small-effect QTL, 

there are no completely resistant wheat varieties currently available (Pirgozliev 2003). Because 

of the lack of completely resistant varieties, other methods of FHB control must be used in 

conjunction with genetic resistance. 

 The most common complement to genetic resistance is a combination of cultural and 

chemical prevention. Cultural prevention practices such as crop rotation with non-host crops, 

such as soybean, and removal of infected crop debris through conventional tillage or burning are 

often used in conjunction with fungicide seed treatments and genetic resistance to reduce the 

potential of an FHB outbreak (Pirgozliev 2003). Cultural methods of control are effective only 

when the initial source of inoculum is from infected crop debris. The saprophytic capabilities of 

F. graminearum are dependent on the weather and a reduction occurs in inoculum available if it 

is not able to find another susceptible host within the next growing season (Wise 2015). 

However, if the initial inoculum is from infected neighboring fields or an infected seed source, 

cultural control alone will not prevent an outbreak of FHB.  

Chemical methods of FHB management may fall into either management category. Pre-

planting fungicide seed treatments are an example of preventative chemical control while 

application of fungicides at or after heading represent a form of chemical management that falls 

into the control category. The effectiveness of fungicides depends on three factors: application 

timing, spray coverage, and disease pressure (Wise 2015). Several fungicides are labeled for 

control of FHB; however, the most effective class of fungicides are the triazoles, while the least 

effective are fungicides containing a strobilurin (Wise 2015). 



11 

 

 While the use of biologic control methods is not as popular as genetic, chemical, or 

cultural methods, in recent years more effort has been made to identify biologic agents to combat 

FHB. In research performed at Duke University, applications of solutions with 1% of Chinese 

galls (Galla chinensis, GC) or 1% of tannic acid (TA) inhibited germination of conidia or 

mycelium growth of F. graminearum by 98%–100% or by 75%–80%, respectively (Forrer 

2014).  

Known Resistance Genes and QTL 

Resistance to FHB can be classified as either morphological (passive resistance) or 

physiological (active resistance) (Gilsinger 2005). Some examples of morphological resistance 

traits include plant height, heading date, presence of awns, and openness of flowers during 

anthesis. In contrast, physiological resistance involves a resistance pathway that inhibits 

infection and pathogen spread in some way (Gilsinger 2005). Resistance genes fall into this 

second category. There are four types of genetic resistance to Fusarium head blight, including: 

resistance to initial infection (Type 1); resistance to spread of disease within the seed head (Type 

II); resistance to Fusarium damaged kernels (Type III); and resistance to accumulation of 

mycotoxins (DON) (Type IV) (Rudd 2001). The most common form of resistance among 

resistant cultivars is Type II resistance or resistance to spread of disease within the seed head. 

Each of these types of resistance is the result of combined efforts of several minor genes or QTL. 

Resistance to FHB is a quantitative resistance meaning that it is a product of several resistance 

genes contributing to the overall resistance level of the plant. Known resistance genes for FHB 

fall into one of two categories: native or exotic.  

The most common example of exotic resistance comes from the Fhb1 gene first 

discovered on the short arm of chromosome 3B in the Chinese wheat cultivar Sumai 3. Exotic 
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resistance confers a high level of resistance in wheat to Fusarium head blight. Fhb1 provides the 

plant with Type II resistance or resistance to spread within the seed head after initial infection. In 

some studies, Fhb1 has been shown to reduce the impact of FHB and FHB symptoms by 20-25% 

overall (Anderson 2007). In comparison to exotic resistance, native resistance delivers a lower 

level of resistance. Some native sources of FHB resistance include those derived from ‘Bess’, 

‘Truman’, ‘Ernie’, ‘Jamestown’, and ‘Neuse’ (Griffey 2008). 

Genome-Wide Association Studies 

 Genome-wide association studies (GWAS) have historically been used for human 

genetics research, where segregating populations cannot be created. More recently, they have 

become popular for identifying molecular markers for utilization in plant breeding and as a step 

in genomic selection, which aims to predict performance of crosses (Hamblin 2011). GWAS 

have been used extensively in wheat and other small grains for quantitative traits such as yield, 

disease resistance, milling quality, and plant structure (Brachi 2011). In comparison to 

quantitative trait loci (QTL) mapping, which is performed on bi-parental mapping populations, a 

GWAS approach is capable of handling large panels of unrelated individuals (Brachi 2011). The 

use of unrelated lines results in increased variation among individuals due to past recombination 

events. As a result, higher mapping resolution is expected with GWAS compared to biparental 

QTL mapping (Myles 2009). 

 Several research projects have already made use of GWAS for studying disease 

resistance in wheat. One example screened 273 SRW wheat lines from the University of Illinois 

wheat breeding program and found ten significant SNPs associated with resistance to FHB 

(Arruda 2016). A similar study consisting of 455 European winter wheat lines was conducted by 
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Miedaner et al. and 9 significant SNPs were found to be related to FHB resistance (Miedaner 

2011). 
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CHAPTER 2: GENOME-WIDE ASSOCIATION ANALYSIS OF FUSARIUM HEAD 

BLIGHT RESISTANCE IN SOFT RED WINTER WHEAT USING A GENOTYPE-BY-

SEQUENCING APPROACH 

Abstract 

 Fusarium head blight (FHB) is a disease of wheat caused by the fungal pathogen F. 

graminearum. FHB poses potential economic losses and health risks due to the accumulation of 

the mycotoxin deoxynivalenol (DON) on infected seed heads. Genetic resistance to FHB is 

quantitative and relies on several small-effect QTL to provide partial resistance. A genome-wide 

association study (GWAS) was conducted on 360 soft red winter wheat (SRWW) inbred lines 

adapted to the southern US to identify novel QTL for FHB resistance. From 2013-2017, the 

association mapping panel (AMP) was evaluated for incidence, severity, Fusarium damaged 

kernels, and DON accumulation in inoculated misted FHB nurseries in a randomized complete 

block design.  Genotype-by-sequencing (GBS) identified 71,428 high quality single nucleotide 

polymorphisms (SNP) markers across all twenty-one wheat chromosomes. To determine 

significant marker-trait associations, a K-PC model accounting for the kinship (K) matrix and the 

first three principle components (PC) was included in a compressed mixed linear model (cMLM) 

using the GAPIT function in R software. Fifty-eight highly significant (p < 0.0001) SNPs were 

associated with one of four disease-related phenotypic traits. Highly significant SNPs were 

identified in the 1A, 2D, 3B, 4A, 4B, 7A, and 7D chromosomes. The minor allele for the most 

significant SNP associated with incidence was responsible for a reduction in incidence of 12.2% 

and an additive effect was observed when in combination with the favorable alleles from the 

second and third most significant SNPs associated with incidence. Overall, our results 
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demonstrate the potential of these SNPs for marker assisted selection for increased resistance to 

FHB in the University of Arkansas wheat breeding and genetics program. 
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Introduction 

 Fusarium head blight is a disease of small grains caused by fungal pathogens of the 

Fusarium species. Fusarium graminearum is the main causal organism in the United States, 

however, F. culmorum and F. avenaceum though less common, may also contribute to disease 

outbreaks. In the 2015-2016 growing season, economic losses incurred by U.S. wheat producers 

due to Fusarium head blight were estimated at $4.2 billion dollars (Nganje 2017). Economic 

losses may be due to yield decrease, mycotoxin accumulation, loss of grain quality, or failed 

preventative efforts such as late fungicide application.  

Accumulation of mycotoxins such as deoxynivalenol (DON) may not only increase 

financial loss for producers, but is also a potential health risk to consumers. Consuming high 

levels of DON infected grain has several adverse effects on health of both humans and animals 

including diarrhea, nausea, vomiting, and weight loss in animals (Sobrova, Adam et al. 2010).  

Several studies have found that mycotoxins are not decomposed in current production methods 

used in the food processing industry (Hazel 2004). The U.S. Food and Drug Administration 

limits the amount of DON in finished human food to less than one part per million and in animal 

feed to less than ten parts per million with the added recommendation that contaminated grains 

not exceed more than 50% of the animal’s diet (FDA 2010).  

Due to the substantial economic losses associated with this disease, breeders are actively 

looking to incorporate sources of genetic resistance into their breeding programs. There are four 

types of resistance to FHB including I) resistance to initial infection (incidence), II) resistance to 

spread within the spike (severity), III) resistance to Fusarium damaged kernels (FDK), and IV) 

resistance to the accumulation of mycotoxins (DON). Resistance may come in the form of native 

or exotic resistance. The most commonly recognized exotic resistance gene is Fhb1. Fhb1 was 
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first discovered in the Chinese cultivar Sumai3 and confers a type II resistance. Several native 

resistance quantitative trait loci (QTL) have been identified in the soft red winter wheat (SRWW) 

gene pool. Native resistance QTL which are currently in use in southern SRWW breeding 

programs include: ‘Bess’, ‘Ernie’, ‘Jamestown’, ‘Neuse’, and ‘Truman’ among others 

(McKendry 1995, Murphy 2004, McKendry 2005, McKendry 2007, Wright 2014) (Table 1). 

Once resistance is established in a breeding program, breeders may choose to take advantage of 

marker-assisted selection (MAS) in order to improve breeding efficiency. MAS is an effective 

tool to speed up classical breeding by indirectly selecting for desired traits by selecting for 

molecular markers associated with those traits (He 2014).  

 Marker assisted selection is a valuable tool for modern plant breeders as it saves time, 

money, and resources when compared to conventional breeding (Collard 2008). Markers are 

generated through linkage mapping studies. Several bi-parental linkage mapping studies have 

identified at least one QTL for FHB resistance on every wheat chromosome. An article published 

by Liu et al. in 2009 reviewed 249 resistance QTL to identify stable FHB resistance (Liu 2009). 

In comparison to bi-parental linkage mapping studies where all individuals are related, genome-

wide association studies (GWAS) capitalize on the genetic variation due to historical 

recombination events in a group of unrelated individuals (Lin, et al. 2016). The use of unrelated 

individuals with random recombination events results in a higher mapping resolution. An 

important consideration in GWAS is that there is enough marker coverage on the genome so that 

desired alleles will be in linkage disequilibrium with at least one molecular marker (Lin, et al. 

2016).   

 Several GWAS have been performed in wheat to identify resistance to FHB. In 2011, 

Miedaner et al. evaluated 455 European soft red winter wheat lines for FHB resistance using 115 
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simple sequence repeat (SSR) markers and found nine significant marker-trait associations 

(MTA) with two unique genomic regions on chromosomes 1D and 3A (Miedaner 2011). In 

comparison to the SSR marker technique, Kollers et al. used 732 short tandem repeats (STR) 

markers to identify MTA for FHB resistance in the form of incidence and severity (Kollers 

2013). This study detected significant associations on all chromosomes except 6B, several of 

which coincide with regions evaluated by Buerstmayr et al. in 2009. Arruda et al. (2016) used a 

panel of 273 soft red winter wheat lines and 19,992 SNPs to identify marker-trait associations on 

every wheat chromosome including significant associations on chromosomes 1D, 3B, 4A, 4D, 

6A, 7A, and 7D. Several of the SNPs found on chromosome 3B were associated with Fhb1.  

 This study accomplishes three objectives: 1) evaluate soft red winter wheat (SRWW) 

lines for resistance to FHB in terms of resistance to initial inoculum (incidence); resistance to 

spread within the head (severity); resistance to DON accumulation; and resistance to Fusarium 

damaged kernels (FDK), 2) determine the frequency and effect of known FHB resistance genes 

and quantitative trait loci (QTL), and 3) identify novel resistance loci using a genome wide 

association (GWA) approach.  

MATERIALS AND METHODS 

Plant Materials  

An association mapping panel (AMP) of 360 SRWW lines was used in this study which 

consisted of 240 lines developed by the University of Arkansas Wheat Breeding Program, and 40 

lines each from the University of Georgia, Louisiana State University, North Carolina State 

University (Appendix A). These public programs represent the majority of source germplasm 

used in the University of Arkansas wheat breeding program. In addition to the AMP, two checks 

were included: an FHB resistant check, ‘Bess’, and an FHB susceptible check, ‘Coker 9835’. 
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‘Bess’ shows native resistance to FHB in the form of type II resistance or resistance to spread 

within the head (severity). ‘Coker 9835’ shows susceptibility in terms of incidence and severity 

but to a lesser extent for accumulation of DON. 

Field Screening for Fusarium Head Blight Resistance 

The AMP was grown in inoculated and misted FHB disease nurseries in Fayetteville 

(FAY) and Newport (NPT) in Arkansas over four growing seasons from 2013-2017. In 2013-

2014 and 2014-2015 only a partial set of the AMP (120 different Arkansas lines each year) were 

evaluated. In both 2015-2016 and 2016-2017, all 360 lines were grown. For field experiments, 

lines were drill seeded at a rate of six grams per square meter plot for a seeding rate of ~65kg/ha 

in two-row plots in a randomized complete block design with two replications. Plots were 

managed according to the recommendations for wheat in Arkansas (Kelley, 2012). The plots in 

Fayetteville, AR received 100 kg/ha of urea while plots in Newport, AR received 77 kg/ha of 

urea and were also supplemented with 24 kg/ha of ammonium sulfate. A combination of 

herbicides including Axial XL (Syngenta), Harmony Extra (DuPont), and Osprey (Bayer) was 

used each year to control weeds. 

The disease nurseries were inoculated with F. graminearum infected corn (Zea mays L.). 

The inoculant consisted of seven different F. graminearum isolates collected at various research 

stations in Arkansas and grown each year on fermenting corn kernels. The isolates are stored 

from year to year at 4ºC and then grown at room temperature in petri dishes on potato dextrose 

agar to prepare the initial inoculum. To prepare the corn inoculum, kernels were first soaked in 

water and then autoclaved twice, 24 hours apart, to remove all other fungi and bacteria cells. 

After the corn was sterilized, it was divided among 14 metal trays and 1 cm2 pieces of active F. 

graminearum isolates were scattered evenly throughout the tray. The trays were covered and the 
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fungus permitted to grow for three weeks with weekly stirring of the corn to spread fungus as 

evenly as possible throughout the tray. When all corn kernels were covered with the fungus, the 

kernels were spread out on drying racks and allowed to dry for three days before being returned 

to their trays to await dispersal. Initially, the isolates were grown in separate trays; later, all 

isolate infected corn was combined before spreading the infected corn in the field. Inoculum was 

spread by hand in the field at a rate of ~65 kernels m-2 when wheat reached a growth stage 

between 6 and 8 on the Feekes scale, allowing for colonization of corn kernels in the field and 

production of black perithecia before the wheat began to head (Feekes 10.1) (Larson, 2015).  

Following the spread of inoculum, mist irrigation was set up every sixth row throughout 

the disease nursery to provide complete coverage. Mist irrigation commenced at the time 

perithecia were observed on the corn inoculum to provide optimal conditions for FHB infection 

and spread throughout the months of April and May. Duration of misting was adjusted for each 

location based on the available precipitation and dew point. In order for the fungus to spread it 

was important for the young seed heads to remain moist. Timing of misting as well as duration 

varied between locations and years. During a particularly dry spring, plots may be misted for 

longer or more often in comparison to a wet spring. In general, the Fayetteville location required 

less total misting time than the Newport location. In the 2014-2015 season, Fayetteville received 

a total of 720 minutes of misting while Newport received 784 minutes. Fayetteville received 480 

minutes for both the 2014-2015 and 2015-2016 seasons. In those same seasons, Newport 

received 720 and 520 minutes, respectively. In the 2016-2017 season, Fayetteville required 544 

minutes of misting while Newport totaled 704 minutes of misting. 
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Phenotypic Measurements 

Data were collected for four FHB resistance traits: incidence, severity, Fusarium 

damaged kernels (FDK), and deoxynivalenol accumulation (DON). In addition, heading date 

(HD) and plant height (HT) were also recorded for each line in this panel. Heading date was 

recorded in Julian days (days since January 1) when 50% of the seed heads have extended 50% 

of the way out of the flag leaf. As there was variation in heading date between lines in the AMP, 

heading notes were recorded every other day from the onset of heading and continuing until all 

plots in the nursery were headed. At maturity, plant height was recorded in inches from the 

surface of the soil to the tip of the awn. 

 Ratings for FHB resistance were recorded beginning at one week after the average 

heading date (Feekes 10.5) to allow time for disease infection and spread. At each location, 

incidence and severity ratings were collected on the same day first for incidence and then 

severity. The first set of field ratings were generally collected beginning in mid-May at the FAY 

location with the second set of ratings collected about ten days later than the first. In comparison, 

field ratings in NPT typically began in late May. Incidence was recorded as a percentage of the 

total number of heads in a plot that showed any sign of infection regardless of how severe or 

contained the infection was. Severity was estimated as a percentage of total infected spikelets 

within each head within the plot. Both incidence and severity were recorded on a scale of 0-9% 

with 1% increments in plots with infection occurrence less than 10% and on a scale of 10-100% 

with increments of 5% for plots with initial infection levels higher than 10%. Two sets of 

severity and incidence ratings were recorded each year for the FAY plots and in NPT one set of 

incidence and severity ratings were recorded for each plot with a second, incomplete, rating 

recorded ten days to two weeks later. In general the second set of ratings were used for further 
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analysis excluding cases where the first produced a higher disease rating. Severity ratings were 

collected immediately after incidence ratings had been recorded at each location.  

At maturity lines were hand harvested and threshed using a Vogel thresher. To retain as 

many damaged and shrunken kernels as possible, the thresher was set to a very low speed as 

seeds were collected. After the threshing of each plot, excessive chaff was removed by hand 

before threshing of the next plot began. Seeds were stored in labeled envelopes at room 

temperature before being evaluated for DON accumulation and Fusarium damaged kernels.  

 The total percentage of Fusarium damaged kernels (FDK) was evaluated after harvest. 

Samples from each line were compared to a set of standards to determine what percentage of 

kernels showed damage due to FHB. The standards ranged in percentage of FDK from 0-75% in 

increments of 10%. Standards were created by counting and combining damaged kernels with 

healthy kernels in a sample of 300 kernels for each increment of FDK.  

The analysis of deoxynivalenol (DON) accumulation was conducted by the Plant 

Pathology Department at the University of Minnesota. Post-harvest, 50 g samples of grain from 

each of the 360 lines and both checks were sent to the University of Minnesota where DON 

accumulation was conducted by gas chromatography.   

Phenotypic Data Analysis 

 For each of the four FHB-associated phenotypic traits, best linear unbiased predictions 

(BLUPs) were calculated using a mixed model approach following the model:  

𝑌𝑖𝑗𝑘 = 𝜇 + environment𝑖 + rep (environment) + 𝑙𝑖𝑛𝑒𝑘 + ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 + (environment 𝑥 𝑙𝑖𝑛𝑒) + 𝜀𝑖𝑗𝑘   

Where 𝑌𝑖𝑗𝑘 is the observed phenotype, 𝜇 is the overall mean, environment𝑖 is the random effect of 

the ith environment, rep(environment)𝑖𝑗 is the random effect of jth rep within the ith 

environment, 𝑙𝑖𝑛𝑒𝑘 is the random effect of the kth line, ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖𝑗𝑘 is a quantitative covariate 
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trait treated as fixed, consisting of the Julian day for the kth line in the jth rep within the ith 

environment, environment 𝑥 𝑙𝑖𝑛𝑒𝑖𝑘 is the random effect of the interaction between the ith 

environment and the kth line, and 𝜀𝑖𝑗𝑘 is the random error term. Correlations were determined 

between all four disease-related traits and two phenological traits, heading date and mature plant 

height. A strong correlation between heading date and all four disease traits was observed. To 

account for this correlation, heading date was included as a covariate when calculating BLUPs. 

The plot mean-based broad-sense heritability (H2) was calculated for each trait across long using 

the variance components estimated from the equation below. 

Heritability values (H2) were calculated using the following formula: 

𝐻2𝐸𝑛𝑡𝑟𝑦 =  
𝜎2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝜎2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +
𝜎2𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑥 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
+

𝜎2𝐸𝑟𝑟𝑜𝑟
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑥 𝑟𝑒𝑝𝑠

 
 

The variances were estimated by analysis of variance (ANOVA) using PROC MIXED function 

in SAS v 9.4 (SAS Institute Inc. Cary. NC). 

DNA Extraction 

For DNA extraction, the 360 AMP lines were germinated and allowed to grow for two 

weeks before tissue was harvested. Two 100-mg tissue samples were harvested from each of the 

360 lines in the AMP as well as from 2-3 positive controls for each of the five resistance QTL. 

Samples were immediately stored in Eppendorf tubes and placed in ice while sampling was 

taking place before being stored in -80ºC until extraction.  

Frozen tissue samples were ground using titanium beads in the Qaigen TissueLyser 

before DNA extraction was performed using a modified version of the cetyl trimethylammonium 

bromide (CTAB) protocol (Pallotta 2003). DNA concentration was determined using the 
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NanoDrop 2000 (Thermo Fisher Scienctific) spectrophotometer, diluted to 20 ng/µL and stored 

at 4ºC.  

KASP Genotyping 

 The AMP lines were screened using KASP assays for five known FHB resistance QTL 

using SNP markers designed by and currently being used to screen the Uniform FHB Nursery 

(UFHBN) at North Carolina State University (Murphy, personal communication). The five 

known FHB QTL included Fhb1 and four native resistance QTL (Qfhb.nc-2B.1 (Bess), Qfhb.nc-

3B.1 (Bess), QTL_1B (Jamestown), and QTL_1A (Neuse) (Table 2). The KASP protocol follows 

that developed by the AgriGenomics Lab at Texas A&M University. KASP reactions were 

performed in a total volume of 5µL, following the manufacturer’s instructions with some 

modifications. Before addition of the KASP mix (master mix + primer mix), 5µL of sample 

DNA were plated and dried for one hour. After one hour, 5µL of the KASP mix were added to 

each well. The conditions for thermal cycling using the Bio-Rad CFX96™ Real-Time system 

(Bio-Rad, CA, USA) were as follows: 94°C for 15 min (hot-start activation); 94°C for 20 sec, 

and 65-58°C (decrement of 0.8°C per cycle) for 9 cycles; 94°C 20 sec and 57°C for one minute 

for 25 cycles; 35°C for 3 min and a plate read step. Additional thermal cycling was used as 

needed to improve accuracy and precision of clustering. The profile for the cycling step is: 94°C 

for 20 seconds followed by 57.0°C for one minute for 2 cycles; and 35°C for one minute plus a 

plate read step. A single marker analysis (SMA) was run in SAS v. 9.4 to determine the effects 

of each known resistance QTL. 

Genotype-by-Sequencing 

All accessions in the AMP were genotyped by using genotyping by sequencing (GBS) in 

collaboration with the USDA Eastern Regional Small Grains Genotyping Lab in Raleigh, NC. 
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DNA was extracted using Mag-Bind® Plant DNA Plus kit from Omega Bio-tek (Norcross, GA, 

USA), following the manufacturer’s instructions. Genomic DNA was quantified using Quant-

iT™ PicoGreen® dsDNA Assay Kit and normalized to 20 ng µl-1. GBS libraries were created 

using Pst1-Msp1 and/or the Pst1-Mse1 restriction enzyme combinations (Poland, 2012). The 

samples were pooled together at 192-plex to create libraries and each library was sequenced on a 

single lane of Illumina Hi-Seq 2500.  

SNP calling was performed using the TASSEL 5 GBSv2 pipeline using 64 base kmer 

length and minimum kmer count of 5 (Bitbucket, 2017). Reads were aligned to wheat reference 

“IWGSC_WGAv0.4” using the alignment method of Burrows-Wheeler aligner (BWA) version 

0.7.10 (Li, et al., 2009). Raw SNP data generated from the TASSEL pipeline were filtered to 

remove taxa with more than 90% missing data. Genotypic data were then filtered to select for 

biallelic SNPs with maf ≥ 5%, missing data ≤ 50% and heterozygosity ≤ 10% (Li et al. 2009). 

Fast and accurate short read alignment was performed with Burrows-Wheeler transformation. 

Remaining missing data were imputed using the LD-kNNi function in TASSEL. 

Genome-Wide Association Analysis 

 The genome-wide association analysis was performed using the Genome Association and 

Prediction Integrated Tool (GAPIT) function in R software (Lipka 2012). Three types of GWAS 

models were used: 1) a naïve model, which used no principle components or kinship structure, 2) 

a kinship model using only the kinship structure, and 3) a K-PC model that took advantage of the 

kinship structure and the principle component analysis. In the K-PC model, which is the only 

model using the principle component analysis, the PCA was set equal to 3. The best fit model for 

this study was chosen by comparing the distribution of observed p-values to the cumulative p-

value (Bordes 2013). A diagonal line formed by the comparison of the negative log10 of the 
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observed p-values and the cumulative p-values indicates the reliability of the model. Any 

variation from this diagonal line indicates that the model includes false associations. The 

significance of marker-trait associations was based on a p-value of <0.0001. A total of ten 

datasets were used for association mapping. In addition to a combined dataset where BLUPs 

were calculated across all environments, BLUPs were also calculated for the individual site 

years: FAY14, NPT14, FAY15, NPT15, FAY16, NPT16, FAY17, NPT17, and LSU17. SMA 

run in SAS v. 9.4 were used to determine the allelic and additive effects of highly significant 

SNPs identified by GWAS for each trait. 

RESULTS 

Phenotypic Data 

 Significant genotype (line) variation was observed for all four FHB traits, with a range of 

0-100% observed for incidence in FAY16 and NPT17, severity in FAY16 and NPT17, and FDK 

in FAY16, NPT16, and LSU17. For DON, the largest single site-year range occurred in FAY16 

from 0.385 to 26.9 ppm. The highest mean value for DON was found in the FAY15 site-year 

with a value of 29.5 ppm, nearly 30 times the FDA limit restriction of 1 ppm for direct human 

consumption (FDA 2010).   

An analysis of variance showed a significant (p<0.0001) effect for genotype, 

environment, and genotype x environment for each of the four FHB traits (Table 3). A 

significant correlation (p< 0.0001) was observed between heading and incidence, severity, and 

FDK. DON was also correlated with heading at a p<0.001 significance level. Plant height was 

found to be significantly (p<0.01) correlated only with FDK (Table 4). 

The highest heritability value across all nine-site years was observed for FDK (H2 = 0.82) 

and the lowest for severity (H2 =0.38) (Table 3). In general, moderately high heritability values 
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were determined with significant environment x line variation minimized by evaluating the 

population across nine site-years.  

Native Resistance QTL 

 The frequency of known resistance QTL within the AMP was low, ranging from 0% for 

Qfhb.nc-2B.1 (Bess) and Fhb1 to 11% for QTL_1B (Jamestown) (Table 2). There were a total of 

66 lines in our AMP homozygous for the favorable allele at one or more native resistance QTL. 

Single marker analysis showed the favorable allele of Qfhb.nc-3B.1 (Bess) to significantly reduce 

incidence, severity, and DON accumulation (Table 2). Qfhb.nc-3B.1 (Bess) was present in the 

AMP at a frequency of 6.9%. A significant effect was not observed for the additional known 

resistance QTL.  

Population Structure 

 Genotype-by-sequence (GBS) identified 71,428 SNPs after the filtering criteria were 

applied. SNPs were distributed unevenly across the A, B, and D genomes with the highest 

number being from the B (33,530) followed by A (26,823) and the D (9,402) genomes with 

1,673 SNPs left unassigned to a chromosome.  

 Principle Component Analysis (PCA) showed two main clusters, with lines from each 

breeding program present in both (Figure 1). While some sub-clustering based on the program 

origin of the lines was observed within the main clusters, it is hypothesized that the main effect 

was due to the presence or absence of the stem rust resistance gene Sr36, which is the result of a 

translocation from Triticum timopheevii (Nyquist 1962). Overall, the population structure in this 

mapping panel was low with the first three PCs accounting for only 6.0, 5.0, and 3.8% of the 

total genetic variation, respectively (Figure 1).  
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Marker-Trait Associations 

 When BLUPs calculated across all site-years were used for GWAS, the K model detected 

the greatest number of significant SNPs (p<0.0001) at ninety-one marker-trait associations 

(MTA). The naïve model followed the K model with eighty-two significant SNPs and the K-PC 

model detected the fewest number with fifty-eight significant SNPs spread across the four traits 

(Table 5). The K-PC model was chosen as the best fit model for this study after examining QQ-

plots and further performing a comparison between the negative log10 of observed p values and 

cumulative p values. 

 Single Site-year Associations 

 In comparison to the dataset wherein BLUPs were calculated across all nine site-years, 

BLUPs calculated individually for each site-year gave a total of 289 significant MTA at a 

threshold of p<0.0001 spread out across eight of the nine site-years. Only FAY14 was found to 

have no significant marker-trait associations at a significance threshold of p<0.0001. Sixty-five 

of the 289 MTAs were highly significant for more than one site-year trait with forty-eight 

significant for two site-year traits, thirteen significant for three site-year traits, two significant for 

four site-year traits, and two significant for five site-year traits. SNPs significantly associated 

with two or more site-year traits were found in four site-years including: FAY16, FAY17, 

NPT16, and NPT17 (Table 6). Of the duplicated SNPs, FDK had the highest number of MTAs 

with 36 unique SNPs associated with this trait. In comparison to FDK, DON was found to have 

the fewest number of duplicated SNPs with only two SNPs found in association with 2 or more 

site-year traits. Both DON SNPs were significantly associated with DON in FAY17 and NPT17. 

There were two SNPs associated with five site-year traits located on chromosome 4B. The two 
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SNPs are in linkage and found to be highly significant for incidence (FAY16), severity (FAY16), 

and FDK (FAY16, NPT16, and NPT17) (Table 6).  

FHB-Related Traits 

 Incidence 

 GWAS used to evaluate data across all nine site-years in a K-PC model identified 19 

highly significant SNPs (p<0.00001) associated with incidence (Figure 2.A.). The most highly 

significant SNP, S4A_574518163 was on chromosome 4A and accounted for 14.7% of the 

variance for incidence within the population. The minor allele for S4A_574518163 was found at 

a frequency of 9.7% and is estimated to reduce incidence by 12.2% when compared to lines 

containing the unfavorable major allele (Table 7). The second and third most highly significant 

SNPs associated with incidence, S7A_11152072 and S2D_526929200, accounted for 13.4% and 

13.3% of the variance in incidence. At both loci, the minor allele was found to be favorable and 

reduced incidence by 10.7% (S7A_11152072) and 13.3% (S2D_526929200) (Table 7).  The 

minor allele was present a frequency of 11.8% for S7A_11152072 and 7.7% for 

S2D_526929200. An additive effect was observed when combining the favorable alleles (+) for 

each of the three most highly significant SNPs. A haplotype of ‘+ + +’ resulted in a mean 

incidence rating of only 3.9% compared to the unfavorable haplotype (- - -) which resulted in a 

mean rating of 30.1% (Figure 3.A). Two other combinations of alleles, ‘+ + -’ and ‘- + -’, 

resulted in mean ratings of 21.5% and 16.5%, respectively, which were not significantly different 

from the mean rating of our favorable allele combination.   
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Severity 

 Eight significant SNPs were identified for severity using the K-PC model and BLUPs 

calculated across all nine site-years (Figure 2.B). All eight of the SNPs were located on 

chromosome 3B, with S3B_784540562, S3B_795306092, and S3B_784573154 being the most 

highly significant and accounting for 12.1- 12.3% of the variance in severity within the AMP. 

The minor allele frequency for S3B_784540562, S3B_795306092, and S3B_784573154 were 

41.5%, 6.0%, and 41.6%, respectively (Table 7). In each case, the minor allele was responsible 

for higher severity and resistance was associated with the major allele. The major allele of the 

most significant SNP, S3B_784540562, reduced FHB severity by 4.6%. The second and third 

most significant SNPs, S3B_795306092 and S3B_784573154, were responsible for reductions of 

10.8% and 4.2%, respectively. An additive effect was not observed when comparing the 

favorable haplotype (+ + +) with the unfavorable haplotype (- - -) (Figure 3.B). 

 Fusarium damaged kernels 

 GWAS utilizing the K-PC model identified one highly significant MTA for FDK (Figure 

2.C.). The significant SNP, S3B_526480094, found on chromosome 3B and explained 10.8% of 

the variance for FDK within the panel. The minor allele in this case was responsible for a 

reduction in FDK of 7.7% and was present at a frequency of 5.7%.  

 Deoxynivalenol accumulation 

 A GWAS for DON was run with a limited set of environments (FAY15, NPT15, NPT16, 

and LSU17) due to low accumulation of DON in the other environments. Three SNPs identified 

on chromosomes 1A, 4B, and 7B were significantly associated with DON accumulation (Figure 

2.D.). The SNPs, S1A_282055814, S4B_21625964, and 7B_595827248 explained an estimated 
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variance within the panel of 7.3 to 7.6%. The major allele of the most highly significant SNP, 

S1A_282055814, was found at a frequency of 5.5% and was responsible for an estimated 

reduction in DON accumulation of 1.83 ppm though this reduction was not statistically 

significant based on a standard t-test (Table 7). The minor allele of the second most significant 

SNP, S4B_21625964, was found at a frequency of 30.0% in the AMP and was responsible for an 

estimated reduction in DON of 0.83 ppm. This was the only significant contribution to DON 

accumulation as the major allele of the third SNP reduced DON by 1.63 ppm and did not qualify 

as a statistically significant reduction. An additive effect was not observed when comparing any 

combination of favorable and unfavorable alleles (Figure 3.C).  

Discussion 

 FHB is an important disease in wheat as it causes yield losses due to shrunken, damaged 

kernels as well as economic losses due to the accumulation of DON. Breeding to develop 

resistant wheat varieties could help minimize the effects of this disease. Resistance to FHB is 

complex and relies on the combined effects of several resistance QTL. In this study it was 

hypothesized that there was untapped native resistance to FHB present in the mapping panel and 

that the resistance was controlled by SNPs. In order to test this hypothesis data were collected on 

four phenotypic disease traits and a genome-wide association analysis was used to associate 

lower levels of disease traits to the genome-wide SNP data which were generated through 

genotype-by-sequencing (GBS). A total of 71,428 SNPs were identified by GBS and used to 

determine MTAs. GWAS was performed on a mapping panel consisting of 360 soft red winter 

wheat lines from four breeding programs in the southeastern region of the United States. 

 Population structure can lead to false positives and accounting for this in GWAS is 

necessary (Rosenberg 2010). Population structure analyses based on principal components 
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revealed two major groups which did not cluster based on origin. A GWAS study relies on the 

historic recombination of semi-unrelated individuals, and neglecting to correct for relatedness or 

population structure present may lead to the detection of false positive marker-trait associations. 

The population structure was determined using a principle component analysis (PCA) where all 

SNPs were used.  The PCA results showed the panel clustering into two main groups with the 

first three principle components contributing a total 14.8% to total genetic variance. A high level 

of relatedness was expected as the lines originated from four breeding programs that share 

germplasm. In addition, two thirds of the lines in the AMP were advanced breeding lines from 

the University of Arkansas breeding program. Lines do not seem to cluster based solely on 

origin, and instead seem to cluster based on the presence or absence of Sr36, a stem rust 

resistance gene translocated from the grass species Triticum timopheevii. 

The best fit model was the K-PC which accounted for both kinship as well as principle 

components. Models lacking a correction for principle components and relatedness identified 

more MTAs than those that did not and thus I hypothesize that the additional MTAs identified by 

these models are most likely false positives. The four breeding programs contributing lines to 

this study did so as a part of a U.S. Wheat and Barley Scab Initiative (USWBSI) project and have 

been known to exchange germplasm in the past. There is an underlying relatedness factor in this 

study though it did not significantly impact our PCA. The inclusion of the kinship matrix in our 

GWA analysis was a vital component for controlling the underlying relatedness. 

Correlations were calculated between two phenological traits, heading date and mature 

plant height, and four disease-related phenotypic traits. While significant correlations were 

observed between heading date and each of the four disease related traits, height was not 

significantly correlated with any of the disease traits in the 2015-2016 growing season and with 
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only FDK at the Winnsboro, LA location in 2016-2017. The lack of correlation between height 

and disease traits was unexpected as studies have shown a relationship between plant height and 

FHB infection where shorter plants are more likely to become infected due to their closer 

proximity to splash-dispersed spores (Jenkinson 1994). 

Although researchers have described several QTL for FHB resistance, few of them are 

stable across environments and germplasms. Perhaps the most stable resistance QTL is Fhb1 

located on the short arm of chromosome 3B. KASP assays determined that there were no lines 

within the AMP that were homozygous for the favorable Fhb1 allele; however, three very highly 

significant SNPs, S3B_784540562, S3B_795306092, S3B_783061490, located on chromosome 

3B were identified which were significantly associated with severity. While it is assumed that 

these SNPs are not linked to Fhb1 due to the low frequency of Fhb1 in the AMP, two native 

resistance QTL, Qfhb.nc-3B.1 (Bess) and QTL_3BL (Massey), are also located on chromosome 

3B. KASP markers were used to determine that Qfhb.nc-3B.1 (Bess) is present in 6.9% of the 

AMP. Qfhb.nc-3B.1 (Bess) was responsible for a reduction in all four disease-related traits with a 

significant reduction in incidence, severity, and DON. Resistance in the AMP seems to be 

mainly type I and type II resistance. GWAS identified the majority of significant SNPs to be 

associated with incidence in this study. In addition to the sheer volume of significant SNPs 

associated with incidence and severity, significant additive effects were also evaluated for both 

of these traits (Table 3). 

Incidence 

The most significant SNPs showing a reduction in incidence due to the minor allele were 

S4A_574518163, S7A_11152072, and S2D_526929200, located on chromosomes 4A, 7A, and 

2D, respectively.  Both Buerstmayr et al. (2009) and Liu et al. (2009) published reviews of all 
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reported FHB resistance QTL to date and each showed QTL found on chromosomes 4A and 2D 

were responsible for a reduction in incidence. The QTL reviewed on chromosome 4A had been 

previously described by Steed et al. in 2005 and was known to reduce incidence (Steed 2005). 

Arruda et al. (2016) reported two SNPs on chromosome 4A and 7A responsible for a reduction 

in incidence. These two SNPs may be related to our SNPs found on the corresponding 

chromosomes as the panels used in the study share some background.  However, given the new 

marker technology that we are utilizing it is difficult to make a direct comparison to historical 

FHB mapping studies.  

Severity 

Chromosome 3B contained all eight highly significant MTAs for severity. A similar 

study by Arruda et al. (2016) also found four highly significant SNPs associated with severity to 

be found in chromosome 3B. The SNPs found by Arruda et al. (2016) were located between 

6.86cM and 18.32cM. In addition to the study conducted by Arruda et al. (2016), several other 

studies have also discovered significant SNPs associated with severity. Most significantly, 

Buerstmayr et al. (2013) discovered a QTL on chromosome 3B responsible for a reduction in 

severity of 29.1%. While the SNPs found in this study may not be related to Fhb1 which is found 

on the short arm of chromosome 3B, there are other known resistance QTL located on 3B 

including QTL_3BL (Massey), located on the long arm of 3B, and Qfhb.nc-3B.1 (Bess) which 

was found at a frequency of 6.9% in the AMP. 

Fusarium Damaged Kernels 

This study discovered one SNP significantly associated with FDK found on chromosome 

3B. A QTL associated with FDK has been previously described on this chromosome by Yang et 

al. (2006). Yang et al. (2006) screened a population of seventy-nine recombinant inbred lines 
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developed by crossing a resistant parent (Chokwang) and a susceptible parent (Clark). Yang et 

al. (2006) discovered a QTL on chromosome 3B with stable levels of type III resistance. 

Deoxynivalenol Accumulation 

This study identified three highly significant SNPs associated with DON accumulation 

located on chromosomes 1A, 4B, and 7B.  Several previous studies have described QTLs found 

on both the long arm and short arm in chromosome 1A that contribute to type IV resistance. 

Jiang et al. (2007) reported a QTL located on the short arm of chromosome 1A which explained 

4-6% of the variation for DON within the population. Also in 2007, a stable QTL was reported 

on chromosome 4B by McCartney et al. (2007) in a backcrossing population segregating for 

resistance genes contributed by FHB resistant line Wuhan-1. The significant SNP found in this 

study on chromosome 7B may potentially be unique to the AMP.  

Conclusion 

 The complexity of the wheat genome combined with the quantitative nature of FHB 

resistance leads to difficulty when breeding for resistance. This study identified several SNPs on 

chromosomes where previously reported resistance QTL were located. Identification of MTA on 

chromosome 3B resulting in a reduction in severity, FDK, and DON suggests that known QTL 

are contributing resistance in this panel and are a worthwhile target for MAS. The overall goal 

for this research is to one day use the SNPs identified by this study for marker assisted and 

genomic selection in the University of Arkansas Wheat Breeding Program. 
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Table 1. Previously reported resistance QTL associated with Fusarium head blight in wheat.  

Source Type Chromosome Type of Resistance Reference 

Sumai 3 Exotic 3B (Fhb1) Severity Waldron et al., 1999 

Bess Native 2B, 3B Severity McKendry et al., 2007 

Ernie Native 2B, 3B, 5A Severity Liu et al., 2007 

Goldfield Native 2B, 7B Incidence Gilsinger et al. 2005 

Jamestown Native 1B, 6A Inc, Sev Griffey et al., 2010 

Neuse Native 1A, 4A, 6A Inc, Sev, FDK Murphy et al., 2004 

Truman Native 2B, 3B Inc, Sev, FDK, DON McKendry et al., 1995 

Wuhan Exotic 2D Severity Jiang et al., 2007 
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Table 2. Frequency and effect of known resistance QTL within the association mapping panel 

(AMP). 

  Allelic Effect† 

QTL                            Chromosome Frequency Incidence Severity FDK DON 

Qfhb.nc-2B.1 (Bess)             2B                 0.0% - - - - 

Qfhb.nc-3B.1 (Bess)             3B 6.9% -5.8* -6.0* -5.8 -2.3* 

Sumai 3_Fhb1                       3B 0.0% - - - - 

QTL_1B (Jamestown)           1B 11.1% 1.3 1.2 0.6 0.1 

QTL_1A (Neuse)                   1A 0.56% -0.2 -1.8 2.0 3.9 

†Allelic effect reported in reference to the minor allele 

*Significant based on an LSD set at α=0.05 
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Table 3. Descriptive statistics and analysis of variance 360 soft red winter wheat lines.   

      Means Squared 

Trait Mean Min Max SD H2† Genotype Environment GxE 

Inc 28.9 0.8 80.0 35.4 0.78 4.26** 106.21** 3.19** 

Sev 24.8 0 70.0 24.8 0.38 8.38** 26.76** 2.90** 

FDK 31.5 3.2 83.0 29.7 0.82 15.93** 11.37** 4.18** 

DON‡ 10.1 1.7 27.6 11.4 0.79 13.05** 8.81* 3.90** 

** Significant at p<0.0001. 

*Significant at p<0.001 
†Broad sense heritability (H2) values calculated on an entry-mean basis for each of four 

phenotypic traits. 

† Inc, incidence; Sev, severity; FDK, Fusarium damaged kernels;  

‡ DON, deoxynivalenol accumulation. DON was measured in ppm, and the other parameters 

were measured in percentage. 
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Table 4. Correlations between physiological traits, heading date and mature plant 

height, and disease-related traits: incidence, severity, Fusarium damaged kernels, 

and deoxynivalenol accumulation. 

Trait Heading Height Incidence Severity FDK DON 

Heading -      

Height 0.01 -     

Incidence -0.37*** 0.02 -    

Severity -0.30*** 0.03 0.55*** -   

FDK -0.21*** 0.14* 0.30*** 0.37*** -  

DON 0.18** 0.01 -0.02 0.05 0.13 - 

***Indicates significance at p<0.0001 

**Indicates significance at p<0.001 

*Indicates significance at p<0.01 
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Table 5. Comparison of three statistical models for amount of quantitative trait loci (QTL) 

associated with each FHB related phenotypic trait with significance set at p<0.0001. Marker-trait 

associations were determined using a panel of 360 advanced breeding lines genotyped with 

71,428 single nucleotide polymorphisms.  

Trait Naïve K K-PC (cMLM) Chromosomes 

Incidence 55 66 46 2B, 2D, 3B, 4A, 5B, 6B, 7A,7B 

Severity 23 17 8 3B 

FDK 1 4 1 3B 

DON 3 4 3 1A, 4B, 7B 

Total 82 91 58  

‡ “naïve”, statistical model with no control for population structure and relatedness; K, 

relatedness controlled using a marker-based kinship (K) matrix, treated as random; cMLM, 

compressed mixed linear model. 
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Table 6. The mean and ranges for disease-related traits in nine site-years. 
 Incidence Severity FDK† DON‡ 

Site-yr Mean Range Geno† Mean Range Geno† Mean Range Geno† Mean Range Geno† 

FAY14 - - - 25.5 2.5-57.5 *** - - - - - - 

NPT14 - - - 46.0 15-75 *** - - - - - - 

FAY15 - - - 56.1 18.3-98.3 *** 68.1 30-97.5 *** 29.5 14.4-54.5 *** 

NPT15 - - - 50.1 10-95 *** 53.4 10-85 *** 25.1 7.9-58.6 *** 

FAY16 6.7 0-100 *** 8.2 0-100 *** 12.2 0-100 *** 4.7 0.39-26.9 *** 

NPT16 19.3 0-95 ns 36.2 0-85 ns 12.2 0-100 *** 15.6 2.2-43.0 *** 

FAY17 7.6 0-82.5 *** 4.0 0-72.5 *** 35.9 2-100 *** 0.88 0.13-4.1 *** 

NPT17 53.5 0-100 *** 35.6 0-100 *** 28.9 2-100 *** 5.9 0.7-22.3 *** 

LSU17 77.2 10-100 *** 26.1 10-80 *** 55.2 0-100 *** 15.5 0.82-50.9 *** 

***Significant at p<0.0001 

ns not significant  

† FDK, Fusarium damaged kernels; Geno, genotypic variation 

‡ DON, deoxynivalenol accumulation. DON was measured in ppm, and the other parameters 

were measured in percentage 
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Table 7. Single-nucleotide polymorphisms (SNPs) associated with Fusarium head blight 

resistance in a panel of 360 breeding lines, chromosomal position, p-values, frequency, and 

effects of favorable alleles. Unit of phenotypical traits are percent except DON (ppm). 

Trait SNP Chr Allele p-value Maf Allelic Effect‡ R2 

Inc S4A_574518163 4A A/T 6.31E-08 0.097 -1.17 0.147 

Inc S7A_11152072 7A C/T 5.89E-07 0.118 -0.98 0.134 

Inc S2D_526929200 2D C/A 7.05E-07 0.077 -1.11 0.133 

Sev S3B_784540562 3B A/G 4.00E-05 0.415 0.30 0.123 

Sev S3B_795306092 3B T/A 5.54E-05 0.060 -0.61 0.121 

Sev S3B_783061490 3B T/C 9.74E-05 0.423 0.29 0.118 

FDK S3B_526480094 3B G/T 9.53E-05 0.057 -0.75 0.108 

DON S1A_282055814 1A T/G 4.72E-05 0.055 1.83 0.076 

DON S4B_21625964 4B G/A 6.31E-05 0.300 -0.83 0.074 

DON S7B_595827248 7B T/C 7.59E-05 0.078 1.63 0.073 

*Significant at α= 0.05 level 

‡Allelic effect reported as a BLUP in reference to the minor allele.  

† Inc, incidence; Sev, severity; FDK, Fusarium damaged kernels; DON, deoxynivalenol 

accumulation  
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Table 8. All significant SNPs (p<0.0001) identified by GWAS calculated in individual site-

years associated with two or more site-year traits.   

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2 

Inc FAY16 S2D_427477848 2D 6.36E-06 0.054 A/G -11.133 0.176 

Inc FAY16 S2D_427477849 2D 6.36E-06 0.054 G/A -11.133 0.176 

Inc FAY16 S2D_427477862 2D 6.36E-06 0.054 A/G -11.133 0.176 

Inc FAY16 S2D_427477868 2D 6.36E-06 0.054 C/T -11.133 0.183 

Inc FAY16 S2D_632044079 2D 9.98E-05 0.103 G/C -8.398 0.180 

Inc FAY16 S2D_632044087 2D 9.98E-05 0.103 A/G -8.398 0.185 

Inc FAY16 S2D_632044091 2D 9.98E-05 0.103 G/A -8.398 0.179 

Inc FAY16 S3A_686904207 3A 2.68E-05 0.074 A/T -6.816 0.178 

Inc FAY16 S3D_191783666 3D 3.1E-07 0.082 G/A -9.502 0.194 

Inc FAY16 S4B_575510195 4B 9.87E-06 0.404 T/A -5.164 0.177 

Inc FAY16 S4B_577008759 4B 2.63E-05 0.415 C/T -5.121 0.182 

Inc FAY16 S4B_579987295 4B 5.8E-06 0.408 A/G -5.489 0.118 

Inc FAY16 S4B_580353549 4B 5.06E-05 0.365 C/G -4.479 0.293 

Inc FAY16 S6D_278102968 6D 1.47E-05 0.075 G/A -7.974 0.360 

Inc FAY16 S6D_278102986 6D 1.47E-05 0.075 G/A -7.974 0.370 

Inc NPT16 S3B_578568689 3B 1.02E-07 0.091 T/G -20.657 0.178 

Inc FAY17 S1B_631080970 1B 3.52E-06 0.167 G/A -4.380 0.185 

Inc FAY17 S1B_631081026 1B 3.52E-06 0.167 A/T -4.380 0.185 

Inc FAY17 S4A_647100324 4A 1.46E-05 0.089 G/C -5.114 0.175 

Inc FAY17 S4A_647100355 4A 1.46E-05 0.089 C/T -5.114 0.174 

Inc FAY17 S4A_654802393 4A 3.54E-05 0.047 A/T -7.040 0.174 

Inc FAY17 S4B_637387933 4B 2.57E-06 0.237 T/C -3.988 0.281 

Inc FAY17 S4B_637388270 4B 2.43E-06 0.234 C/T -4.019 0.281 

Inc FAY17 S4B_637576146 4B 1.99E-06 0.237 C/T -3.990 0.175 

Inc FAY17 S4B_637576156 4B 1.99E-06 0.237 T/C -3.990 0.111 

Inc FAY17 S6B_442425028 6B 1.95E-05 0.047 C/T -8.187 0.362 
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Table 8. Cont.       

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2 

Inc FAY17 S6B_482116417 6B 1.75E-05 0.088 G/T -6.738 0.362 

Inc FAY17 S6B_482116427 6B 1.75E-05 0.088 G/T -6.738 0.351 

Inc FAY17 S6B_694253050 6B 2.89E-06 0.106 A/G -5.340 0.138 

Inc FAY17 S7B_559002698 7B 1.05E-05 0.082 G/A -6.510 0.359 

Inc FAY17 S7B_559002717 7B 1.05E-05 0.082 T/C -6.510 0.353 

Inc FAY17 S7B_576532318 7B 1.41E-05 0.042 T/C -10.529 0.353 

Sev FAY16 S2D_427477848 2D 6.29E-05 0.054 A/G -10.671 0.176 
 

Sev FAY16 S2D_427477849 2D 6.29E-05 0.054 G/A -10.671 0.176 
 

Sev FAY16 S2D_427477862 2D 6.29E-05 0.054 A/G -10.671 0.176 
 

Sev FAY16 S2D_427477868 2D 6.29E-05 0.054 C/T -10.671 0.182 
 

Sev FAY16 S3A_686904207 3A 6.56E-05 0.074 A/T -7.034 0.179 
 

Sev FAY16 S3B_817385698 3B 2.4E-06 0.060 C/A -10.068 0.174 
 

Sev FAY16 S3B_817395079 3B 5.09E-06 0.061 C/T -9.492 0.179 
 

Sev FAY16 S3B_817476155 3B 6.52E-06 0.065 A/C -9.309 0.200 
 

Sev FAY16 S3B_817476198 3B 5.64E-06 0.061 C/G -9.600 0.199 
 

Sev FAY16 S3B_817476221 3B 5.64E-06 0.061 T/C -9.600 0.195 
 

Sev FAY16 S3D_191783666 3D 9.38E-05 0.082 G/A -7.800 0.193 
 

Sev FAY16 S4B_575510195 4B 7.81E-06 0.404 T/A -9.099 0.175 
 

Sev FAY16 S4B_577008759 4B 4.64E-06 0.415 C/T -5.726 0.184 
 

Sev FAY16 S4B_579987295 4B 6.8E-07 0.408 A/G -6.137 0.118 
 

Sev FAY16 S4B_580353549 4B 5.2E-05 0.365 C/G -6.605 0.293 
 

Sev FAY16 S4B_81499209 4B 8.61E-05 0.086 G/A -4.890 0.287 
 

Sev FAY16 S5B_16289326 5B 7.21E-05 0.043 C/T -12.224 0.106 
 

Sev FAY16 S5B_16336584 5B 8.11E-05 0.043 C/T -12.648 0.119 
 

Sev FAY16 S6D_278102968 6D 1.13E-05 0.075 G/A -8.762 0.362 
 

Sev FAY16 S6D_278102986 6D 1.13E-05 0.075 G/A -8.762 0.353 
 

Sev FAY16 S7A_4797458 7A 5.12E-05 0.099 A/T -8.935 0.351 
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Table 8. Cont.        

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2  

Sev FAY16 S7A_4797460 7A 5.12E-05 0.099 G/A -8.935 0.351 
 

Sev FAY16 S7A_4797474 7A 5.12E-05 0.099 C/T -8.935 0.122 
 

Sev FAY16 S7A_4797487 7A 5.12E-05 0.099 C/G -8.935 0.359 
 

Sev NPT16 S3B_578568689 3B 2.1E-06 0.091 T/G -9.761 0.180 
 

Sev FAY17 S1B_631080970 1B 8.77E-05 0.167 G/A -2.825 0.219 
 

Sev FAY17 S1B_631081026 1B 8.77E-05 0.167 A/T -2.825 0.219 
 

Sev FAY17 S4A_647100324 4A 2.06E-06 0.089 G/C -4.350 0.174 
 

Sev FAY17 S4A_647100355 4A 2.06E-06 0.089 C/T -4.350 0.174 
 

Sev FAY17 S4A_654802393 4A 1.99E-06 0.047 A/T -6.277 0.173 
 

Sev FAY17 S4B_637387933 4B 1.8E-06 0.237 T/C -3.267 0.281 
 

Sev FAY17 S4B_637388270 4B 1.57E-06 0.234 C/T -3.296 0.287 
 

Sev FAY17 S4B_637576146 4B 1.49E-06 0.237 C/T -3.252 0.306 
 

Sev FAY17 S4B_637576156 4B 1.49E-06 0.237 T/C -3.252 0.111 
 

Sev FAY17 S5B_16289326 5B 9.65E-05 0.043 C/T -5.541 0.119 
 

Sev FAY17 S5B_16336584 5B 7.22E-05 0.043 C/T -5.665 0.352 
 

Sev FAY17 S6B_442425028 6B 9.85E-06 0.047 C/T -6.937 0.361 
 

Sev FAY17 S6B_482116417 6B 4.38E-05 0.088 G/T -5.326 0.362 
 

Sev FAY17 S6B_482116427 6B 4.38E-05 0.088 G/T -5.326 0.138 
 

Sev FAY17 S6B_694253050 6B 5.8E-07 0.106 A/G -4.439 0.138 
 

Sev FAY17 S7B_559002698 7B 8E-07 0.082 G/A -5.670 0.353 
 

Sev FAY17 S7B_559002717 7B 8E-07 0.082 T/C -5.670 0.353 
 

Sev FAY17 S7B_576532318 7B 3.1E-06 0.042 T/C -8.987 0.143 
 

FDK FAY16 S1B_77632553 1B 3.55E-05 0.089 C/T -10.596 0.178 

FDK FAY16 S1B_77632584 1B 3.55E-05 0.089 G/A -10.596 0.178 

FDK FAY16 S2A_460777961 2A 6.41E-06 0.089 C/A -10.594 0.187 

FDK FAY16 S2D_632044079 2D 5.33E-05 0.103 G/C -11.825 0.182 

FDK FAY16 S2D_632044087 2D 5.33E-05 0.103 A/G -11.825 0.179 
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Table 8. Cont.       

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2 

FDK FAY16 S2D_632044091 2D 5.33E-05 0.103 G/A -11.825 0.186 

FDK FAY16 S3B_817385698 3B 1.4E-05 0.060 C/A -11.661 0.178 

FDK FAY16 S3B_817395079 3B 1.58E-05 0.061 C/T -11.322 0.182 

FDK FAY16 S3B_817476155 3B 2.63E-05 0.065 A/C -10.866 0.178 

FDK FAY16 S3B_817476198 3B 6.82E-06 0.061 C/G -11.934 0.202 

FDK FAY16 S3B_817476221 3B 6.82E-06 0.061 T/C -11.934 0.203 

FDK FAY16 S4A_159918210 4A 3.39E-05 0.067 A/T -10.499 0.179 

FDK FAY16 S4A_159918229 4A 3.39E-05 0.067 C/T -10.499 0.176 

FDK FAY16 S4B_453250321 4B 2.78E-05 0.116 T/C -11.941 0.174 

FDK FAY16 S4B_542683613 4B 7.43E-05 0.419 G/A -11.237 0.177 

FDK FAY16 S4B_543903651 4B 1.64E-05 0.421 C/T -10.777 0.178 

FDK FAY16 S4B_570472978 4B 3.45E-05 0.337 C/T -10.834 0.179 

FDK FAY16 S4B_575510195 4B 3.8E-07 0.404 T/A -10.663 0.178 

FDK FAY16 S4B_577008759 4B 3.3E-07 0.415 C/T -10.663 0.184 

FDK FAY16 S4B_579987295 4B 2.7E-07 0.408 A/G -11.339 0.182 

FDK FAY16 S4B_580353549 4B 1.39E-06 0.365 C/G -11.526 0.293 

FDK FAY16 S4B_81499209 4B 2.84E-05 0.086 G/A -9.346 0.106 

FDK FAY16 S4B_82018887 4B 5.97E-05 0.086 G/C -6.660 0.293 

FDK FAY16 S4B_82773235 4B 7.08E-05 0.088 A/G -7.051 0.120 

FDK FAY16 S4B_84231602 4B 8.01E-05 0.086 G/A -6.771 0.121 

FDK FAY16 S4B_84535336 4B 8.17E-05 0.088 C/T -8.048 0.109 

FDK FAY16 S4B_84535373 4B 8.17E-05 0.088 G/T -8.376 0.110 

FDK FAY16 S4B_84943413 4B 4.83E-05 0.086 G/A -8.428 0.289 

FDK FAY16 S4B_85983933 4B 3.92E-05 0.086 G/C -7.333 0.112 

FDK FAY16 S5B_115862443 5B 2.85E-05 0.064 A/C -12.215 0.111 

FDK FAY16 S6A_21523672 6A 3.54E-05 0.039 G/A -17.558 0.352 

FDK FAY16 S6D_428745237 6D 5.03E-05 0.091 G/A -8.540 0.139 
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Table 8. Cont.       

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2 

FDK FAY16 S7A_4797458 7A 1.25E-05 0.099 A/T -12.661 0.140 

FDK FAY16 S7A_4797460 7A 1.25E-05 0.099 G/A -12.661 0.352 

FDK FAY16 S7A_4797474 7A 1.25E-05 0.099 C/T -12.661 0.120 

FDK FAY16 S7A_4797487 7A 1.25E-05 0.099 C/G -12.661 0.122 

FDK NPT16 S1B_77632553 1B 3.65E-05 0.089 C/T 1.010 0.177 

FDK NPT16 S1B_77632584 1B 3.65E-05 0.089 G/A 2.478 0.177 

FDK NPT16 S2A_460777961 2A 6.88E-06 0.089 C/A 2.478 0.185 

FDK NPT16 S2D_632044079 2D 5.15E-05 0.103 G/C 2.259 0.181 

FDK NPT16 S2D_632044087 2D 5.15E-05 0.103 A/G -5.042 0.186 

FDK NPT16 S2D_632044091 2D 5.15E-05 0.103 G/A 3.186 0.185 

FDK NPT16 S3B_817385698 3B 1.44E-05 0.060 C/A -0.570 0.175 

FDK NPT16 S3B_817395079 3B 1.61E-05 0.061 C/T 2.522 0.181 

FDK NPT16 S3B_817476155 3B 2.66E-05 0.065 A/C 2.522 0.201 

FDK NPT16 S3B_817476198 3B 6.95E-06 0.061 C/G 1.152 0.200 

FDK NPT16 S3B_817476221 3B 6.95E-06 0.061 T/C 2.616 0.201 

FDK NPT16 S4A_159918210 4A 3.44E-05 0.067 A/T 2.616 0.178 

FDK NPT16 S4A_159918229 4A 3.44E-05 0.067 C/T -4.960 0.175 

FDK NPT16 S4B_453250321 4B 3.27E-05 0.116 T/C -4.960 0.173 

FDK NPT16 S4B_542683613 4B 7.5E-05 0.419 G/A 0.197 0.176 

FDK NPT16 S4B_543903651 4B 1.7E-05 0.421 C/T 3.078 0.177 

FDK NPT16 S4B_570472978 4B 3.25E-05 0.337 C/T 0.928 0.180 

FDK NPT16 S4B_575510195 4B 3.9E-07 0.404 T/A 3.307 0.178 

FDK NPT16 S4B_577008759 4B 3.4E-07 0.415 C/T 3.138 0.182 

FDK NPT16 S4B_579987295 4B 2.9E-07 0.408 A/G 3.138 0.184 

FDK NPT16 S4B_580353549 4B 1.42E-06 0.365 C/G 3.138 0.293 

FDK NPT16 S4B_81499209 4B 2.81E-05 0.086 G/A -0.788 0.291 

FDK NPT16 S4B_82018887 4B 5.87E-05 0.086 G/C -0.897 0.284 
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Table 8. Cont.       

Trait Site-

year 

SNP Chr p-value Maf Allele Allelic 

Effect 

R2 

FDK NPT16 S4B_82773235 4B 6.94E-05 0.088 A/G 0.061 0.120 

FDK NPT16 S4B_84231602 4B 7.86E-05 0.086 G/A 1.005 0.121 

FDK NPT16 S4B_84535336 4B 8.1E-05 0.088 C/T 1.005 0.110 

FDK NPT16 S4B_84535373 4B 8.1E-05 0.088 G/T 1.005 0.119 

FDK NPT16 S4B_84943413 4B 4.73E-05 0.086 G/A -1.940 0.289 

FDK NPT16 S4B_85983933 4B 3.85E-05 0.086 G/C 1.005 0.112 

FDK NPT16 S5B_115862443 5B 2.13E-05 0.064 A/C 2.438 0.106 

FDK NPT16 S6A_21523672 6A 3.29E-05 0.039 G/A 2.558 0.352 

FDK NPT16 S6D_428745237 6D 5.94E-05 0.091 G/A 0.054 0.140 

FDK NPT16 S7A_4797458 7A 1.28E-05 0.099 A/T -1.066 0.140 

FDK NPT16 S7A_4797460 7A 1.28E-05 0.099 G/A 2.680 0.118 

FDK NPT16 S7A_4797474 7A 1.28E-05 0.099 C/T -0.517 0.130 

FDK NPT16 S7A_4797487 7A 1.28E-05 0.099 C/G -1.286 0.145 

FDK NPT17 S4B_577008759 4B 3.15E-05 0.415 C/T -7.310 0.184 

FDK NPT17 S4B_579987295 4B 8.12E-05 0.408 A/G -6.931 0.182 

DON FAY17 S6B_346973693 6B 2.95E-05 0.077 G/A -0.109 0.352 

DON FAY17 S6B_346973713 6B 2.95E-05 0.077 A/C -0.109 0.094 

DON NPT17 S6B_346973693 6B 8.69E-05 0.077 G/A -1.794 0.352 

DON NPT17 S6B_346973713 6B 8.69E-05 0.077 A/C -1.794 0.365 
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Figure 1. Population structure of 360 winter wheat breeding lines using 71,428 single-nucleotide 

polymorphisms. Colors represent the origin of the breeding lines. AR, University of Arkansas 

bred; ARLA, University of Arkansas and Louisiana State University backgrounds; GA, 

University of Georgia bred; GANC, University of Georgia and North Carolina State University 

backgrounds; LA, Louisiana State University bred; NC, North Carolina State University bred. 
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Figure 2. Manhattan plots for four phenotypic traits associated with Fusarium head blight 

resistance: (a) Incidence, (b) Severity, (c) Fusarium damaged kernels (FDK), and (d) 

Deoxynivalenol (DON) accumulation. The x-axis represents the 21 wheat chromosomes. The y-

axis represents the p-value of the marker–trait association on a −log10 scale. The horizontal line 

represents the threshold for declaring a marker as significant (p-value < 0.0001). 
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Figure 2. (Cont.) Manhattan plots for four phenotypic traits associated with Fusarium head 

blight resistance: (a) Incidence, (b) Severity, (c) Fusarium damaged kernels (FDK), and (d) 

Deoxynivalenol (DON) accumulation. The x-axis represents the 21 wheat chromosomes. The y-

axis represents the p-value of the marker–trait association on a −log10 scale. The horizontal line 

represents the threshold for declaring a marker as significant (p-value < 0.0001). 
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Figure 2. (Cont.) Manhattan plots for four phenotypic traits associated with Fusarium head 

blight resistance: (a) Incidence, (b) Severity, (c) Fusarium damaged kernels (FDK), and (d) 

Deoxynivalenol (DON) accumulation. The x-axis represents the 21 wheat chromosomes. The y-

axis represents the p-value of the marker–trait association on a −log10 scale. The horizontal line 

represents the threshold for declaring a marker as significant (p-value < 0.0001). 
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Figure 2. (Cont.) Manhattan plots for four phenotypic traits associated with Fusarium head 

blight resistance: (a) Incidence, (b) Severity, (c) Fusarium damaged kernels (FDK), and (d) 

Deoxynivalenol (DON) accumulation. The x-axis represents the 21 wheat chromosomes. The y-

axis represents the p-value of the marker–trait association on a −log10 scale. The horizontal line 

represents the threshold for declaring a marker as significant (p-value < 0.0001). 
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Figure 3. A simple T-test comparison of mean of (A) incidence, (B) severity, (C) and 

deoxynivalenol (DON) accumulation for different haplotypes within the association mapping 

panel (AMP). T-test does not account for relatedness or population structure within the panel. 

The haplotypes are present at different frequencies. The haplotype combinations represent the 

three most significant SNPs (beginning with the most significant SNP in order from left to right) 

associated with that trait. A plus (+) symbol represents the favorable allele while a minus (-) 

symbol represents the unfavorable allele for that SNP. 
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Figure 3. (Cont.) A simple T-test comparison of mean of (A) incidence, (B) severity, (C) and 

deoxynivalenol (DON) accumulation for different haplotypes within the association mapping 

panel (AMP). T-test does not account for relatedness or population structure within the panel. 

The haplotypes are present at different frequencies. The haplotype combinations represent the 

three most significant SNPs (beginning with the most significant SNP in order from left to right) 

associated with that trait. A plus (+) symbol represents the favorable allele while a minus (-) 

symbol represents the unfavorable allele for that SNP. 
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Figure 3. (Cont.) A simple T-test comparison of mean of (A) incidence, (B) severity, (C) and 

deoxynivalenol (DON) accumulation for different haplotypes within the association mapping 

panel (AMP). T-test does not account for relatedness or population structure within the panel. 

The haplotypes are present at different frequencies. The haplotype combinations represent the 

three most significant SNPs (beginning with the most significant SNP in order from left to right) 

associated with that trait. A plus (+) symbol represents the favorable allele while a minus (-) 

symbol represents the unfavorable allele for that SNP. 
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Appendix 360 Soft red winter wheat lines included in the AMP. 

Entry Variety Pedigree 

ABB001 AR06004-5-1 AR01135/TERRAL TV8558 

ABB002 AR06016-9-4 AR800-1-3-1/BESS 

ABB003 AR06025-4-1 AR910-9-1/AR930035-4-1 

ABB004 AR06025-8-2 AR910-9-1/AR930035-4-1 

ABB005 AR06031-14-2 AR96077-7-2/AR01135 

ABB006 AR06037-10-3 AR96077-7-2/VA00W526 

ABB007 AR06048-16-2 CAYUGA/COKER 9553 

ABB008 AR06049-10-4 COKER 9553/AR930035-4-1 

ABB009 AR06050-12-1 COKER 9553/AR98084-4-1 

ABB010 AR06075-13-1 UGA951216-2E26/AR02066 

ABB011 AR06004-4-1 AR01135/TERRAL TV8558 

ABB012 AR06004-13-4 AR01135/TERRAL TV8558 

ABB013 AR06009-7-1 AR02136/AR930035-4-1 

ABB014 AR06009-9-2 AR02136/AR930035-4-1 

ABB015 AR06017-1-3 AR800-1-3-1/COKER 9663 

ABB016 AR06021-8-4 AR800-1-3-1/VA00W-526 

ABB017 AR06024-16-3 AR800-1-3-1/VA01W-476 

ABB018 AR06029-4-1 AR96052-4-2/P98154A1-10-4-5-3 

ABB019 AR06031-6-4 AR96077-7-2/AR01135 

ABB020 AR06031-7-4 AR96077-7-2/AR01135 

ABB021 AR06031-11-2 AR96077-7-2/AR01135 

ABB022 AR06037-17-2 AR96077-7-2/VA00W526 

ABB023 AR06040-3-4 AR97124-4-1/AR930035-4-1 

ABB024 AR06042-4-4 AR97124-4-1/PAT 

ABB025 AR06042-9-3 AR97124-4-1/PAT 

ABB026 AR06045-3-1 BESS/AR97124-4-1 

ABB027 AR06045-11-4 BESS/AR97124-4-1 

ABB028 AR06046-10-3 BESS/PAT 

ABB029 AR06050-5-1 COKER 9553/AR98084-4-1 

ABB030 AR06050-6-2 COKER 9553/AR98084-4-1 

ABB031 AR06050-7-2 COKER 9553/AR98084-4-1 

ABB032 AR06061-8-1 P961341A3-1-2/VA01W-476 

ABB033 AR06066-1-4 PAT/UGA971127-14-6-6 

ABB034 AR06066-3-2 PAT/UGA971127-14-6-6 

ABB035 AR06066-3-4 PAT/UGA971127-14-6-6 

ABB036 AR06069-9-1 PIONEER 25W60/AR96077-7-2 

ABB037 AR06072-11-1 TERRAL TV8558/VAN98W-342 

ABB038 AR06080-3-4 UGA971127-14-6-6/BESS 

ABB039 AR06081-11-1 VA00W-526/AR800-1-3-1 

ABB040 AR06084-10-1 VA00W-526/PIONEER 25W33 

ABB041 AR06004-4-2 AR01135/TERRAL TV8558 
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ABB042 AR06004-6-1 AR01135/TERRAL TV8558 

ABB043 AR06004-11-1 AR01135/TERRAL TV8558 

ABB044 AR06004-12-1 AR01135/TERRAL TV8558 

ABB045 AR06009-3-4 AR02136/AR930035-4-1 

ABB046 AR06009-6-1 AR02136/AR930035-4-1 

ABB047 AR06009-7-4 AR02136/AR930035-4-1 

ABB048 AR06009-8-2 AR02136/AR930035-4-1 

ABB049 AR06009-10-2 AR02136/AR930035-4-1 

ABB050 AR06015-1-2 AR800-1-3-1/AR02066 

ABB051 AR06015-3-4 AR800-1-3-1/AR02066 

ABB052 AR06017-6-2 AR800-1-3-1/COKER 9663 

ABB053 AR06025-4-4 AR910-9-1/AR930035-4-1 

ABB054 AR06025-5-4 AR910-9-1/AR930035-4-1 

ABB055 AR06028-11-3 AR96052-4-2/P961341A3-1-2 

ABB056 AR06029-9-2 AR96052-4-2/P98154A1-10-4-5-3 

ABB057 AR06031-8-2 AR96077-7-2/AR01135 

ABB058 AR06031-8-3 AR96077-7-2/AR01135 

ABB059 AR06031-17-2 AR96077-7-2/AR01135 

ABB060 AR06045-10-4 BESS/AR97124-4-1 

ABB061 AR06045-14-1 BESS/AR97124-4-1 

ABB062 AR06049-1-3 COKER 9553/AR930035-4-1 

ABB063 AR06049-2-2 COKER 9553/AR930035-4-1 

ABB064 AR06049-7-1 COKER 9553/AR930035-4-1 

ABB065 AR06049-7-2 COKER 9553/AR930035-4-1 

ABB066 AR06050-1-2 COKER 9553/AR98084-4-1 

ABB067 AR06050-12-4 COKER 9553/AR98084-4-1 

ABB068 AR06061-11-1 P961341A3-1-2/VA01W-476 

ABB069 AR06066-2-3 PAT/UGA971127-14-6-6 

ABB070 AR06066-4-3 PAT/UGA971127-14-6-6 

ABB071 AR06066-5-4 PAT/UGA971127-14-6-6 

ABB072 AR06066-6-4 PAT/UGA971127-14-6-6 

ABB073 AR06068-5-1 PIONEER 25W60/AR930035-4-1 

ABB074 AR06068-5-2 PIONEER 25W60/AR930035-4-1 

ABB075 AR06069-2-3 PIONEER 25W60/AR96077-7-2 

ABB076 AR06069-4-2 PIONEER 25W60/AR96077-7-2 

ABB077 AR06069-12-3 PIONEER 25W60/AR96077-7-2 

ABB078 AR06075-12-1 UGA951216-2E26/AR02066 

ABB079 AR06100-6-1 PIONEER26R61/AR96077-10-1 

ABB080 AR06100-6-2 PIONEER26R61/AR96077-10-1 

ABB081 AR06005-12-2 AR02066/AR839-10-1-1 

ABB082 AR06005-14-1 AR02066/AR839-10-1-1 
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ABB083 AR06006-3-3 AR02066/AR97002-2-1 

ABB084 AR06006-8-2 AR02066/AR97002-2-1 

ABB085 AR06012-6-3 AR02136/UGA951216-2E26 

ABB086 AR06012-7-2 AR02136/UGA951216-2E26 

ABB087 AR06013-4-2 AR02136/VA00W-526 

ABB088 AR06022-5-1 AR800-1-3-1/VA00W-526 

ABB089 AR06023-4-2 AR800-1-3-1/VA00W-526 

ABB090 AR06023-9-2 AR800-1-3-1/VA00W-526 

ABB091 AR06024-7-2 AR800-1-3-1/VA01W-476 

ABB092 AR06025-3-1 AR910-9-1/AR930035-4-1 

ABB093 AR06025-10-3 AR910-9-1/AR930035-4-1 

ABB094 AR06026-4-3 AR910-9-1/BESS 

ABB095 AR06027-6-4 AR96052-4-2/AR01135 

ABB096 AR06033-4-1 AR96077-7-2/AR930035-4-1 

ABB097 AR06035-2-4 AR96077-7-2/AR98084-4-1 

ABB098 AR06040-8-1 AR97124-4-1/AR930035-4-1 

ABB099 AR06042-6-4 AR97124-4-1/PAT 

ABB100 AR06042-11-4 AR97124-4-1/PAT 

ABB101 AR06045-2-4 BESS/AR97124-4-1 

ABB102 AR06045-16-4 BESS/AR97124-4-1 

ABB103 AR06046-5-2 BESS/PAT 

ABB104 AR06048-7-1 CAYUGA/COKER 9553 

ABB105 AR06049-6-3 COKER 9553/AR930035-4-1 

ABB106 AR06059-13-2 P961341A3-1-2/AR96052-4-2 

ABB107 AR06061-3-1 P961341A3-1-2/VA01W-476 

ABB108 AR06061-5-1 P961341A3-1-2/VA01W-476 

ABB109 AR06075-2-1 UGA951216-2E26/AR02066 

ABB110 AR06075-3-1 UGA951216-2E26/AR02066 

ABB111 AR06075-11-1 UGA951216-2E26/AR02066 

ABB112 AR06075-11-3 UGA951216-2E26/AR02066 

ABB113 AR06083-6-1 VA00W526/AR96077-7-2 

ABB114 AR06084-12-4 VA00W-526/PIONEER 25W33 

ABB115 AR06085-3-1 VAFE24-4-6/AR01135 

ABB116 AR06085-5-2 VAFE24-4-6/AR01135 

ABB117 AR06098-8-1 LA95181BUB40-1/VA02W-713 

ABB118 AR06099-8-1 LA98113DWF/LA96140BUA70-2 

ABB119 AR06099-10-2 LA98113DWF/LA96140BUA70-2 

ABB120 AR06100-3-4 PIONEER26R61/AR96077-10-1 

ABB121 GA07592-G1-3-2 051396 / 991371-6E11 

ABB122 GA07192-1-16-4 D 00*6874-9 / SS 8641 // 991336-6E9 

ABB123 GA06489-12-6-1 Panola / SS 8641  
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ABB124 GA06489-12-6-2 Panola / SS 8641  

ABB125 GA071703-15-5-4 991371 / 06069 

ABB126 GA071260-24-5-3 991371 / 01170 // 991336 

ABB127 GA101678-G1-G3-I1 AGS2000*3/ EL SYNTH #1-2// AGS 2020/3/ HAAS 

797/ 3* AGS2020 

ABB128 GA10041-G1-G1-G1-

I2 

AGS2020*2/021715//HAAS 797/2*AGS2020/3/AGS 

2020 

ABB129 GA061050-6-6-4 AGS 2031/Truman//SS8641 

ABB130 GA07026-14LE4 AGS 2020*2/ USG 3555 

ABB131 GA081628-14LE6 BALDWIN*4//051666/051717 

ABB132 GA06489-14LE8 PANOLA / 96229-3A41//96229-3A41 

ABB133 GA07506-14LE16 991371-14-4-8 / VA 02W433 // SS 8641 

ABB134 GA07103-14LE17 SS 8641 / 98401-29-2-5 // Baldwin 

ABB135 GA061530-14LE21 D 00*6874 / SS 8641 

ABB136 GAJT 152-14LE37 JAMESTOWN/ AGS 2026 

ABB137 061349-13E4 SS8641*2/981622-1-4-4 

ABB138 071614-12-2-2-3 991371-6E13 *2 / AGS 2031 (Sr36) 

ABB139 071621-1-7-1-3 991371-6E11 / 051740-G1-G1-G4 

ABB140 071621-1-7-7-5 991371-6E11 / 051740-G1-G1-G4 

ABB141 LA06020E-P16 DK(Westbred W1-0814 = TV8558)/PIO26R61 

ABB142 LA05145D-16 JAMESTOWN/LA97113UC-124 

ABB143 LA05038F-P1 SS8641/P26R61 

ABB144 LA08005C-33 AGS2026/LA841 

ABB145 LA08009C-40 AGS2026/VA02W-500 

ABB146 LA08041C-P2 AR98003-7-1/LA821 

ABB147 LA08173C-6 (LA99005UC-31-3/VA05W-

500)LA07133,F1/LA07039,F1(AGS2026/LA99005UC

-31-3) 

ABB148 LA08184C-14 (NC03-5921/SS8641)LA07142,F1/LA841 

ABB149 LA08221C-37 LA841/LA07045,F1(GA9811622-1-40-1/APCB02-

8486) 

ABB150 LA08254C-9 LA99005UC-31-3/LA07124,F1(LA98094BUB-58-

5/VA03W-211) 

ABB151 LA09062UB-48 LA01029D-139-3-C / AGS2026 

ABB152 LA09080C-P5 LA01139D-56-1 / GA 041619-1-1-2-7-2-2-11 

ABB153 LA09081C-P8 LA01139D-56-1 / GA001170-7E26 

ABB154 LA09130UB-18 LA95135 / GA 051754-G1-1-8-1- 

ABB155 LA08062C-19 GA00138-31-1-3/LA821 

ABB156 LA08080C-40 GA951298-6E44/LA07177,F1(JAMESTOWN/LA841) 

ABB157 LA08200C-6 (JAMESTOWN/LA95135)LA07178,F1/GA9811622-1-

40-1 
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ABB158 LA08201C-54 (JAMESTOWN/LA95135)LA07178,F1/GA991227-

6A33 

ABB159 LA05057D-115 (LA04026)95283CA78-1-2/GA941208E35//LA841 

ABB160 LA08015C-1 AGS2060/LA07004,F1(AGS2060/LA98094BUB-58-5) 

ABB161 NC12-20850 GA951395-3E27 / NC01-27750 // USG 3555 

ABB162 NC12-20859 GA951395-3E27 / NC01-27750 // USG 3555 

ABB163 NC12-21568 IL96-6472/VA04W-561 // SS8641 

ABB164 NC12-22686 McCORMICK / SS 8641 // C 9553 

ABB165 NC12-21940 NC04-15460 / VA04W-259 

ABB166 NC12-22768 NC99BGTAG11G / C 9511 // Jamestown (Pm37) 

ABB167 NC12-22844 NC-Neuse / C 9511 // NC02-11158 

ABB168 NC12-22846 NC-Neuse / C 9511 // NC02-11158 

ABB169 NC12-21164 NC-Neuse / C 9511 // NC02-11158 

ABB170 NC10014-1 NC06-19896 / NC08-140 (Bdv2) 

ABB171 NC10034-11 NC-Yadkin / Shirley 

ABB172 NC10080-10 GA05052-G1-21 / Jamestown 

ABB173 NC10157-2 GA051714-G112 / NC-Yadkin 

ABB174 NB26 NC-Neuse / Bess 

ABB175 NC10-24889 C9184 / NC00-14622 // C9553 

ABB176 NC11-22233 C9511 /  / NC96BGTD3 / NC-NEUSE 

ABB177 NC11-20725 NC99BGTAG11G / AGS 2010 /  / NC01-27764 

ABB178 NC11-21960 NC-NEUSE / AGS 2010 /  / C9553 

ABB179 NC9485-14 VA05-510 / Bess 

ABB180 NC8401-5 NC03-11465 / VA04W-264 

ABB181 AR07016-2-1 AR97044-10-1/Magnolia 

ABB182 AR07020-14-3 AR97044-10-2/AR99097W-11-2 

ABB183 AR07022-10-1 AR97044-10-2/GA96693-4E16          

ABB184 AR07023-1-1 AR97044-10-2/GA96693-4E-16 

ABB185 AR07027-1-1 AR97124-4-2/AR96052-4-3 

ABB186 AR07031-7-4 AR97124-4-2/AR99110W-12-1 

ABB187 AR07034-5-4 AR97124-4-3/TERRAL LA482  

ABB188 AR07035-17-4 AR97139-11-2/Magnolia 

ABB189 AR07037-11-1 AR97139-11-2/TERRAL LA482 

ABB190 AR07039-3-1 AR98001-5-1/AR96077-7-2 

ABB191 AR07047-13-2 98023-5-1/98068-4-1 

ABB192 AR07066-8-4 99110W-12-1/AGS 2000     2x 

ABB193 AR07068-10-4 99110W-12-1/DK 9577 

ABB194 AR07076-20-1 99122W-5-1/LA978UC-36-1-1-B 

ABB195 AR07078-10-4 AGS2000/DK9577       2x 

ABB196 AR07090-1-4 DK9577/97044-10-1 

ABB197 AR07114-3-4 GA96693-4E16/LA978UC-36-1-1-B 2x 
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ABB198 AR07116-20-1 GA96693-4E-16/DK9577 

ABB199 AR07117-12-1 GA96693-4E16/PAT 

ABB200 AR07119-1-4 LA978UC-36-1-1-B/98001-5-1      2x 

ABB201 AR07121-16-4 LA978UC-36-1-1-B/99012W-1-3 

ABB202 AR07122-1-4 LA978UC-36-1-1-B/DK9577 

ABB203 AR07122-16-1 LA978UC-36-1-1-B/DK9577 

ABB204 AR07124-1-4 Magnolia/97124-4-3    2x 

ABB205 AR07154-16-3 TERRAL LA482/DK9577 

ABB206 AR07155-16-2 TERRAL LA482/MAGNOLIA 

ABB207 AR07155-7-1 TERRAL LA482/MAGNOLIA 

ABB208 ARLA05001F-16-1 COKER 9553/LA841 

ABB209 ARLA05009F-1-4 DK 9577/LA841 

ABB210 ARLA05104F-18-1 LA96408D-89-3-2-B/NC03-5921 

ABB211 ARLA05111F-7-1 LA97113UC-124-3-B/SS8641 

ABB212 ARLA06016E-3-2 DKGR9108/LA95135 

ABB213 ARLA06027E-3-1 AGS2010/AGS2060 

ABB214 ARLA06030E-19-4 AGS2010/LA95135 

ABB215 ARLA06040E-13-4 GA951216-2E26/LA841 

ABB216 ARLA07053C-14-4 GA98244-1-14-5-4/MAGNOLIA 

ABB217 ARLA07058C-4-4 GA98401-44-1-6/PIO/26R61 

ABB218 ARLA07072C-13-4 LA06018,F1/LA841 

ABB219 ARLA07080C-3-4 LA06090,F1/AR98003-7-1 

ABB220 ARLA07084C-10-1 LA06101,F1/LA99005UC-31-3-C 

ABB221 AR07025-2-1 AR97044-10-2/LA978UC-36-1-1-B 

ABB222 AR07035-7-1 AR97139-11-2/Magnolia 

ABB223 AR07039-1-4 AR98001-5-1/AR96077-7-2 

ABB224 AR07049-2-1 98023-5-1/DK 9577 

ABB225 AR07067-1-4 UNKNOWN 

ABB226 AR07078-7-4 AGS2000/DK9577       2x 

ABB227 AR07079-1-4 UNKNOWN 

ABB228 AR07114-20-3 GA96693-4E16/LA978UC-36-1-1-B 2x 

ABB229 AR07115-13-4 UNKNOWN 

ABB230 AR07116-11-4 GA96693-4E-16/DK9577 

ABB231 AR07116-1-3 GA96693-4E-16/DK9577 

ABB232 AR07116-8-4 GA96693-4E-16/DK9577 

ABB233 AR07117-1-4 GA96693-4E16/PAT 

ABB234 AR07117-2-1 GA96693-4E16/PAT 

ABB235 AR07117-5-4 GA96693-4E16/PAT 

ABB236 AR07119-9-1 LA978UC-36-1-1-B/98001-5-1      2x 

ABB237 AR07122-14-4 LA978UC-36-1-1-B/DK9577 

ABB238 AR07122-17-1 LA978UC-36-1-1-B/DK9577 
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ABB239 AR07122-9-1 LA978UC-36-1-1-B/DK9577 

ABB240 AR07130-16-1 UNKNOWN 

ABB241 AR07139-11-1 PAT/LA978UC-36-1-1-B          2X 

ABB242 AR07140-11-1 UNKNOWN 

ABB243 AR07140-1-4 UNKNOWN 

ABB244 AR07157-10-1 UNKNOWN 

ABB245 AR07158-1-4 TERRAL TV8558/98001-5-1 

ABB246 AR07158-19-1 TERRAL TV8558/98001-5-1 

ABB247 ARLA05001F-17-1 COKER 9553/LA841 

ABB248 ARLA05001F-2-1 COKER 9553/LA841 

ABB249 ARLA05001F-7-1 COKER 9553/LA841 

ABB250 ARLA05009F-19-1 DK 9577/LA841 

ABB251 ARLA05009F-4-1 DK 9577/LA841 

ABB252 ARLA05111F-11-4 LA97113UC-124-3-B/SS8641 

ABB253 ARLA05111F-4-1 LA97113UC-124-3-B/SS8641 

ABB254 ARLA06007E-12-1 APCK B02-8443/LA95135 

ABB255 ARLA06030E-3-4 AGS2010/LA95135 

ABB256 ARLA06040E-5-1 GA951216-2E26/LA841 

ABB257 ARLA07040C-1-4 SS8641/APC B02-8486 

ABB258 ARLA07053C-7-1 GA98244-1-14-5-4/MAGNOLIA 

ABB259 ARLA07058C-17-4 GA98401-44-1-6/PIO/26R61 

ABB260 ARLA07072C-6-1 LA06018,F1/LA841 

ABB261 AR07006-5-4 AR96077-7-2/AR96052-4-3 

ABB262 AR07011-11-1 AR96077-10-1/TX02D5406 

ABB263 AR07037-15-4 AR97139-11-2/TERRAL LA482 

ABB264 AR07041-19-4 AR98001-5-1/AR97124-4-2 

ABB265 AR07051-14-3 98023-5-1/Magnolia         2X 

ABB266 AR07053-13-1 98068-4-1/97124-4-2 

ABB267 AR07061-4-1 99097W-11-2/ORHO10920 

ABB268 AR07073-18-4 99122W-5-1/98001-5-1 

ABB269 AR07080-7-1 AGS 2000/DK GR9108 

ABB270 AR07091-15-4 DK9577/98068-4-1 

ABB271 AR07092-20-1 DK9577/99122W-5-1 

ABB272 AR07108-6-1 FFR8302/BESS 

ABB273 AR07110-14-4 GA96693-4E16/96052-4-3 

ABB274 AR07128-4-1 UNKNOWN 

ABB275 AR07138-2-1 PAT/DK GR9108 

ABB276 AR07152-1-1 TERRAL LA482/98023-5-1 

ABB277 ARLA05027F-20-1 GA951395-3E27/PIO26R61 

ABB278 ARLA05038F-2-1 SS8641/P26R61 
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ABB279 ARLA05066F-4-3 (LA04059)LA98007BUB-37-4-

C/AWD00*6832,F1//LA841 

ABB280 ARLA05066F-7-1 (LA04059)LA98007BUB-37-4-

C/AWD00*6832,F1//LA841 

ABB281 ARLA05104F-14-3 LA96408D-89-3-2-B/NC03-5921 

ABB282 ARLA06053E-20-1 SS8641/PIO26R61 

ABB283 ARLA06064E-1-1 LA95135/AGS2060 

ABB284 ARLA06096E-1-1 LA97113UC-124-3/GA951216-2E26 

ABB285 ARLA06102E-13-4 LA98094BUB-58-5-B/LA99003UC-59-3 

ABB286 ARLA06117E-5-1 LA99042E-62/LA841 

ABB287 ARLA06128E-6-4 NC02-4518/AGS2060 

ABB288 ARLA07019C-20-4 AR98003-7-1/AGS2060 

ABB289 ARLA07023C-18-1 AR98003-7-1/MAGNOLIA 

ABB290 ARLA07025C-3-1 ARGE97-1060-5-5/LA01096D-98(ND2928/LA841) 

ABB291 ARLA07048C-11-1 GA9811622-1-40-1/LA98205D-17-2-4 

ABB292 ARLA07056C-10-1 GA98401-44-1-6/AGS2060 

ABB293 ARLA07095C-17-1 LA06112,F1/VA02W-713 

ABB294 ARLA07097C-5-1 LA06113,F1/AR98003-7-1 

ABB295 ARLA07102C-2-4 LA06146,F1/LA841 

ABB296 ARLA07128C-1-3 LA98205D-17-2-4/LA01110D-88 

ABB297 ARLA07128C-17-1 LA98205D-17-2-4/LA01110D-88 

ABB298 ARLA07133C-19-4 LA99005UC-31-3/VA05W-500 

ABB299 ARLA07133C-2-4 LA99005UC-31-3/VA05W-500 

ABB300 ARLA07133C-3-4 LA99005UC-31-3/VA05W-500 

ABB301 GA07323-19-4-4 991371 / AGS 2020 

ABB302 GA081018-3-1 011177-9-4-5 / AGS 2035 

ABB303 GA081104-24-1 991371-6E13 / 011177-9-4 

ABB304 GA081625-4-6-8 061654-G7(BDV3) / 07393-G5-G3(IN97219) 

ABB305 GA081176-24-6 Baldwin / 00219-7-4-8 

ABB306 GA071468-1-3 Jamestown / 991371-6E12 

ABB307 GA071092-B-5-3 USG 3120 *2 / Jamestown 

ABB308 GA071171-6-3-2 Jamestown / 991371-6E12 

ABB309 GA08028-21-5 02197-4-8 / AGS 2035 

ABB310 GA081018-15-4 011177-9-4 / AGS 2035 

ABB311 GA081305-22-12 02207-18-9 / 01129-1-3 

ABB312 GA081627-5-1 991227-6A33 /4/ 00440 *2 // 03144(IN97219) / 97186 

/3/ 2* 051396 

ABB313 GA081067-24-5 02148-46-6 / 011177-9-4 

ABB314 GA05450-28-8 96229-3E39 / C 9553 

ABB315 GA061157-5-3 AGS 2020 *2 / 96229-3E39 

ABB316 GA10365-G1-G1-G1-2 071728 /3/ 07498 // AGS 2000 *3 / EL SYN #1-2 
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Appendix Cont.  

Entry Variety Pedigree 

ABB317 GA08250-15-1 Jamestown / 991336-6E9 

ABB318 GANC 10014-38  NC 06-19896 / NC 08-140 

ABB319 GANC9337-25 Jamestown / SS 8641   

ABB320 GA081248-1-2 031238-7E34 / AGS 2020 

ABB321 LA05038F-P1 SS8641/P26R61 

ABB322 LA05102C-8-8 . 

ABB323 LA08090C-26-3 GA991336-6E9/AGS 2060 

ABB324 LA08172D-2 (LA95135/GA011341-

1LA07121)F1/LA07047,F1(GA9811622-1-40-

1/LA95135) 

ABB325 LA08249D-24 LA821-B/LA07174,F1(JAMESTOWN/AGS2026) 

ABB326 LA08249D-29 LA821-B/LA07174,F1(JAMESTOWN/AGS2026) 

ABB327 LA09021UB-6-3 CROPLAN 8302 / LA482 

ABB328 LA09061UB-25-3 LA01*425 / LA95135 

ABB329 LA09072UC-22 LA01034D-235-1-C /BALDWIN 

ABB330 LA09082C-17 LA01139D-56-1 / GA081057,F1(LA821/MO050146) 

ABB331 LA09135C-36 LA95135 / LA01172D-27-5-4 

ABB332 LA09159C-7 NC05-21642 / LA01172D-27-5-4 

ABB333 LA09163C-12 NC06-27 / LA01172D-27-5-4 

ABB334 LA09164C-52 NC06-27 / LA08035,F1(AR98003-7-1/LA01164D-94-

2) 

ABB335 LA09164C-P4 NC06-27 / LA08035,F1(AR98003-7-1/LA01164D-94-

2) 

ABB336 LA09172C-10 P04287A1-10 / LA482 

ABB337 LA09208C-5 ARS03-5358 / LA01029D-139-3 

ABB338 LA09225C-33 LA01139D-56-1 / GA001492-7E9 

ABB339 LA11154S-P1 LA04041D-10 / VA08W-176 

ABB340 LANC9337-60 Jamestown / SS8641 

ABB341 NC13-20227 NC06BGTAG12 / USG3209/ / Jamestown 

ABB342 NC13-22726 BESS / SS 8641 / / NC-NEUSE 

ABB343 NC13-22591 C 9553 / VA02W-513/ / AGS 2035 

ABB344 NC13-20737 Jamestown / /NC-Neuse / NC03-11158 

ABB345 NC13-22114 Jamestown / /USG 3555 / NC03-11158 

ABB346 NC13-20698 Jamestown //NC03-11158 / SS 8641 

ABB347 NC09-22206-3 NC00-16203 // P26R24 / NC96-13965 

ABB348 NC13-22349 NC03-11457 / SS 8641/ / McCORMICK Fhb1 and 5A 

ABB349 NC13-21682 NC04-15533 / VA05W-500 // VA05W-108 

ABB350 NC10014-52 NC06-19896 / NC08-140 Bdv2 

ABB351 NC13-21261 NC-NEUSE / Jamestown 

ABB352 NC9356-23 NC-Yadkin / Oakes 

ABB353 NC10034-13 NC-Yadkin / Shirley 
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Appendix Cont.  

Entry Variety Pedigree 

ABB354 NC10034-47 NC-Yadkin / Shirley 

ABB355 NC13-21213 Oglethorpe / Jamestown 

ABB356 NC13-21217 Oglethorpe / Jamestown 

ABB357 NC11-5-16-21 USG3209 // GA081631-G2-G10 / NC06-27-11 /3/ 

USG3209 (Lr34, 46, Sr2) 

ABB358 NC13-21445 VA04W-259 / Jamestown 

ABB359 SS8641 Check 

ABB360 Branson Check 
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