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ABSTRACT  

 The United States poultry industry generated 38.6 billion pounds (17,500 metric ton) of 

meat in 2014 which averaged to 121 pounds (55 kg) per individual of the U.S that same year. Of 

that meat generated by the poultry industry, an estimated 1 million cases of Salmonellosis will 

occur. Out of the 1 million cases approximately 40, 000 to 50,000 will be confirmed cases by the 

CDC. Recently, the USDA has requested changes in the inspection process and are currently 

allowing processors more freedom to utilize innovation to drive the increase in safer and more 

desirable foods. The new standards set forth by the USDA and the willingness to be more 

flexible with processors will create an atmosphere conducive for the development of new 

technologies, process design, and antimicrobial intervention strategies that are synergistic with 

the rate at which large scale production occurs. In this review, the production process will be 

explored in conjunction with the regulatory statutes that govern poultry slaughter. Additionally, 

the mechanism in which antimicrobials interact with bacteria and the employment of Next 

Generation Sequencing to gain better insight of how the intervention strategies decontaminate 

raw meat.  
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Introduction 

 Raw meat products are susceptible to both human pathogens and spoilage organism that 

degrade the quality of sensory and shelf-life. The most recent census of foodborne illness 

associated with non-typhoidal Salmonella spp. estimates 1.0 million cases, 19,336 

hospitalizations, and 378 deaths each year (Scallan et. al., 2011). As for spoilage or food waste, 

39 billion pounds of meat, poultry, and fish harvested for retailers and consumers went un-eaten 

(Buzby et. al., 2014). Foodborne illness and waste reports indicate the annual cost to be 51 

billion and 48 billion US dollars (USD), respectively (Scallan et. al., 2011; Buzby et. al., 2014). 

In addition to foodborne illness and food waste, meat processors are subject to laws that govern 

the production of sanitary food destined for human consumption (FSIS-USDA, 1996b). These 

laws set forth rules in which processors are required to validate their production systems to 

prevent the contamination of meat products with human pathogens (FSIS-USDA, 1996a). When 

taking consideration to food borne illness, spoilage, and regulatory compliance, it is in the best 

interest of the meat industry to collaborate on matters pertaining to food safety.   

Researchers and industry have worked together to address the industry’s food safety 

needs by developing technologies, Good Manufacturing Practices, and Hazard Analysis Critical 

Control Point (HACCP) programs (Kramer et. al., 2005). Throughout the evisceration process, 

there are many hurdles with antimicrobial properties, physical or chemical treatments, that 

reduce the microbial load of broilers brought to the slaughter facility. Birds are reportedly 

contaminated with aerobic bacterial levels between mean log10 6 to 9 CFU/mL or 4 x 108 to 4 x 

1011 CFU/carcass (Kotula and Pandya, 1995; Lillard, 1989; 1990a) and are reduced to mean log10 

2.5 to 3.7 (Mead and Thomas, 1973; Izat et. al., 1988; Lillard 1989; James et. al., 1992; Blank 

and Powell, 1995; Brewer et. al., 1995; Cason et. al., 1997; Bilgili et. al., 2002; Northcutt et. al., 
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2003; Handley et. al., 2010). Researchers often validate the efficacy of new intervention 

strategies pre- and post intervention application (Millilo and Ricke, 2010, Millilo et. al., 2011). 

Industry validates the processing system pre- and post process per regulation (FSIS-USDA, 

1996a). An effective means to quantitate the multi-hurdle process is through bio-mapping. 

 Bio-mapping measures the microbial recovery pre- and post intervention for the whole 

process. This map will effectively reveal where intervention strategies are successful or failing. 

In order to determine the effectiveness against potential pathogens, the employment of indicator 

organism proves useful (Russel, 2000; Whyte et. al., 2004; James et. al., 2006; Handley et. al., 

2015; Kim et. al., 2017). For instance, Enterobacteriaceae is a family of bacteria that contains 

pathogens such E. coli O157:H7 and Salmonella (Whyte et. al., 2004). Ideally, an indicator 

organism would be a non-pathogenic microorganism that behaves similarly to the environmental 

conditions as a target human pathogen.  

Currently, there is not an ideal indicator organism that can be utilized to validate new 

intervention strategies within in a commercial processing abattoir. Recently, microbiome-based 

16S sequencing has been applied to samples across the farm to fork continuum and they include 

both environmental and carcass samples, such as litter, fecal samples, carcass rinsates, and 

carcass weeps (Oakley et. al. 2013; Rothrock et. al. 2016; Kim et. al. 2017). Next generation 

sequencing has proven that it can be an effective tool in identifying the microbiomes of complex 

samples (Ricke et. al., 2015, 2017) 

The current study was undertaken to establish next generation sequencing as an 

applicable tool in conjunction with current quantitative plating techniques used to validate the 

multi-hurdle interventions employed through the evisceration process. Commercially processed 

carcass microbiomes were characterized to establish a typical processing microbiome profile and 
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quantitative data was collected to measure the antimicrobial reduction capacity of rehang to post 

chill interventions. Lastly, this study may shed light onto the complex microbiota that includes 

both human pathogens and meat spoilage microorganisms on poultry carcasses and may identify 

individual bacteria or groups of bacteria as potential indicator organisms.   
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Microbiome of Commercial Broilers Through Evisceration and Immersion Chilling 
 
Introduction 

 Consumers of both retail and food service establishments today often hear about food 

recalls due to illness associated with human pathogens either viral or bacterial. Through social 

media, internet, newspaper, journals, radio and television, consumers have more access to 

current world events than ever before in history. In 2011, Jill McCluskey and Johan Swinnen 

reported that news coverage over food and biotechnology products was received through popular 

press and television outlets of which privately held news agencies focused on shareholders and 

mass audience expectations (McCluskey and Swinnen, 2011). Therefore, extensive media 

coverage is provided during these recalls which causes consumers to develop a heightened 

perception of food being more at risk and amplifies the consequences of the recalled product 

type. The time interval at which consumers are informed of food recalls can be attributed to the 

populations’ connection to various media platforms, such as social media, internet or television. 

However, the excessive reporting by various media outlets, can at times, cause a perception of 

unsafe food; which is simply not true. Food scares are prime examples of how a flood of media 

coverage can lead to a decline in demand for the product in question, often concomitant with a 

level of panic that scientists would argue is not appropriate, given the actual risks (McCluskey 

and Swinnen, 2011). Even though food is far safer today than the first days of food processing, 

epidemiological evidence indicates that there are still far too many cases of illness to be 

complacent. According to the Salmonella Annual Summary of 2002 from the Center of Disease 

Control (CDC), 164,044 Salmonella infections were reported by the National Salmonella 

Surveillance System from 1998 to 2002; which was approximately 32,000 illnesses annually. In 

the 2006 Salmonella Annual Summary by the CDC, there was approximately 40,666 confirmed 
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Salmonella cases (CDC, 2006a). In the 2009 Salmonella Annual Summary by the CDC, there 

was approximately 40,828 confirmed Salmonella cases. In the more recently published report, 

the 2013 Salmonella Annual Summary by the CDC indicated that there were 45,735 confirmed 

Salmonella cases. It was once estimated that there were 76 million illnesses and 5,000 deaths that 

occurred each year due to foodborne illnesses, of which Salmonella caused an estimated 1.4 

million cases (Mead et. al., 1999). However, in the more current estimate by Scallan et.al. 

(2011), 37.2 million illnesses occurred in the United States and were caused by 31 pathogens. Of 

the 37.2 million cases, it was estimated that 9.4 million cases were foodborne related and 1.0 

million of those estimated cases was caused by non-typhoidal Salmonella spp. As for 

hospitalization and deaths caused by non-typhoidal Salmonella spp., it was estimated that 

foodborne illness was responsible for 19,336 hospitalizations and 378 deaths.  

 In regard to the estimated monetary cost of foodborne illness, it has been suggested that 

the annual health-related cost of all foodborne illness was $51.0 billion and includes medical 

care, productivity loss, and mortality (Scharff, 2012). Food production companies continue to 

improve, but there are still no single solutions to achieve complete reduction. In 2009, Buzby and 

Roberts estimated that annual costs for foodborne illness in the United States were between $6.5 

billion to $34.9 billion USD for six bacterial pathogens and one parasite. Previously, Roberts 

(2007) projected the cost of all foodborne disease to be $1.4 trillion USD.  

  Another cost to food processors and customers is product spoilage. Buzby et. al. (2014) 

reported food waste in 2010 to be 31% or 133 billion pounds out of 430 billion pounds destined 

for retail and consumer consumption went un-eaten and was equivalent to $161.6 billion USD. 

Of the 133 billion pounds wasted, meat, poultry, and fish accounted for 30% or 39.9 billion 

pounds and $48 billion USD. These types of staggering losses for wasted meat, poultry, and fish 
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products by food retailers, food service and consumers had been reported previously and was 

estimated to be as much as 8.5% (8.2 billion pounds) of the 96 billion pounds of lost edible food 

(Kantor et. al., 1997). The loss of meats accounts for bacterial spoilage, inadequate packaging, 

temperature abuse, plate waste, and other transportation and mishandling occurrences during 

distribution due to frequent handling of the commodity (Kantor et. al., 1997, Buzby et. al., 

2014). The estimated cost of illness and product spoilage impact consumers and food processors. 

Therefore, it is in the best interest of the food industry to provide their consumers with the 

highest quality product, which includes providing microbiologically safe food. In order to 

provide safe and quality products to consumers, meat and poultry firms have aggressively 

addressed the industry's food safety needs by developing new technologies and sharing these 

advancements amongst each other, along with the employment of Good Manufacturing Practices 

(GMPs) and Hazard Analysis Critical Control Points (HACCP) (Kramer et. al., 2005). The GMP 

and HACCP programs have been implemented and are monitored by the processing firms and 

government employees to ensure a safe food supply for consumers. In this review, the 

evisceration process will be explored to better determine factors and interventions that impact the 

microbial ecology of post chill, eviscerated, whole chicken carcasses as well as how next 

generation sequencing can be employed to characterize and detect shifts in microbial 

communities present during evisceration.  

Food safety regulations in poultry processing 

 During the late 1990's, the government initiated HACCP which required plans to be 

developed by meat processing establishments where the risk analysis included the reduction of 

pathogens in the processed product. According to the Code of Federal Regulation (CFR), 9 CFR 

417.2 (b)(1), “every food processing establishment must develop and implement a written 
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HACCP plan covering each product produced by that establishment whenever a hazard analysis 

revealed one or more food safety hazards that are likely to occur” (FSIS-USDA, 1996a). Critical 

control points are defined as “a point, step, or procedure in a food process at which control can 

be applied and, as a result, a food safety hazard can be prevented, eliminated, or reduced to 

acceptable levels” (Ingham, 2007). Additionally, microbiological criteria was included in the 

original regulation. In the case of poultry meat and the onset of HACCP in 1997, the Food Safety 

Inspection Service of the United States of America Department of Agriculture (FSIS-USDA) 

determined that both Escherichia coli Biotype I and Salmonella would be measured via 

microbiological methods to measure process control. In 2008, FSIS-USDA released its 2008 

progress report indicating a broiler chickens to be 7.3% positive for Salmonella, where at the 

onset of HACCP broilers were  23% for Salmonella (FSIS-USDA, 1996b). Therefore, the 

poultry industry had made significant strides over 12 years in decreasing the incidence of 

Salmonella, but there was still more room for improvement due to the impact associated with 

illness. 

 Poultry processors must work with USDA to ensure that both slaughter and raw ground 

facilities are producing products below the current national Salmonella baseline rate (Schlosser 

et. al., 2000). The previous pathogen reduction performance standards for raw poultry products 

was 20% positive for Salmonella tested by the USDA FSIS, which was a maximum of 12 

positive samples out of a set of 51 (FSIS-USDA, 1996b). However, according to the USDA FSIS 

new performance standards for Salmonella and Campylobacter (USDA-FSIS, 2010) the 

performance standard will require processing establishments to have no more than 5 positive 

samples out of a 51sample set (7.5%) for Salmonella. Depending on how often Salmonella is 

recovered from the sample set of 51, processing plants are placed into categories where the 
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criteria is as follows: Category 1) allows two positives for two consecutive sample sets; Category 

2T) allows two positives or fewer in the last set and 3 or more positives in the prior set; Category 

2)  allows the last set to have 3 to 5 positives and any result for the prior set; Category 3) last set 

with six or more positives, any result for the prior set (USDA-FSIS, 2010). Processing facilities 

in Category 1 and 2T will not be posted on the USDA website, but Category 2 and 3 

establishments will remain posted for the public.  

 Also, according to the USDA FSIS performance standards (2010) Campylobacter will 

now be monitored with the performance standard of 1) 8 positive samples using the 1 ml direct 

plating method per USDA-FSIS Microbiological Laboratory Guidebook (MLG) and 2) 27 

qualitative positives out of 51 samples (52%) from either the 1 mL or 30 mL rinsate. The first 

percentage will be based on a 1 ml sample being directly plated from a 400 mL rinsate, which 

will yield qualitative and quantitative data. The second percentage will be determined by the 1 

ml sample having detectable colony forming units per milliliter (CFU/mL) or a 30 mL sample 

undergoing an enrichment step, thus allowing a qualitative result for Campylobacter.  

 In addition, each official establishment that slaughters poultry has to demonstrate process 

control (FSIS-USDA, 1996a). According to 9 CFR 381.94 (a)(3), establishments are required to 

test for Escherichia coli Biotype I using an AOAC approved method at the end of the chilling 

process with a frequency of 1 sample for every 3,000 carcasses (FSIS-USDA, 1996b). Also, the 

establishment must report their data in CFU/mL and record the test results on a process control 

chart or table showing the most recent 13 tests performed. E. coli data must be evaluated using 

statistical process control (SPC) techniques and failure to maintain process control may indicate 

the inability of the establishment to prevent fecal contamination. In the event of a failure, FSIS 

will take appropriate action to ensure that the applicable provisions of the law are met. 
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Harvesting poultry and practices that promote flock colonization by microorganisms 

Harvesting broiler meat begins on the farms with live animals being cared for by farmers, 

veterinarians, and staff dedicated to the well-being of the animals, this stage is referred to as Live 

Production (Figure 1).  The broiler chicken lifecycle begins as an egg being fertilized by the 

parent flock and then collecting them on site at the breeder farms. The eggs are then delivered to 

the hatcheries, where they will remain until hatched (Keener et. al., 2004). Once hatched, they 

are relocated to broiler growout farms until they achieve the desired slaughter weight, typically 6 

to 8 weeks (Keener et. al., 2004; Oakley et. al., 2013). Once the broilers are the proper weight 

for slaughter, they are transported to the slaughter abattoir. A team of individuals, the catching 

crew, are responsible for collecting the birds on the farm, placing them into transport crates and 

subsequently onto trucks where they are delivered to the slaughter plant (Clouser et. al., 1995; 

Corry et. al., 2002; Keener et. al., 2004; Oakley et. al., 2013). Upon reception to the slaughter 

facility, the process of harvesting the chicken meat is as follows (Figure 2): live hang, 

exsanguination, bleed-out, head removal, de-feathering, feet removal, evisceration, and chilling 

(Keener et. al., 2004; Handley et. al., 2015). After chilling, the whole carcass will undergo more 

processing designed to harvest breast, tenders, wings, and thighs for sale as raw parts or taken to 

further processing for marinade addition, seasoning, or fully cooking (Figure 1) (Handley et. al., 

2015). Through this lifecycle, contamination and shifts in the microbial ecology occur through 

bird to bird or environment to bird contact.  These are some of the major contributing factors that 

influence the microbiota of broiler chickens throughout the farm to fork continuum.
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Figure 1. The farm to fork continuum for poultry production begins with live production and end on the consumers’ plate.  

 



 

 

15 

Figure 2. The process flow of poultry evisceration and the stars indicate sampling points.  
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Horizontal Transmission 

 Poultry are exposed to an array of environmental conditions that contribute to their 

microbiota and the transmission of bacteria to a chicken or the flock have been described as 

being either vertical or horizontal transmission (Keener et. al., 2004). Vertical transmission of 

microorganisms occurs when the infectious agent is passed from the parent to the progeny (Corry 

et. al., 2002; Cox et. al., 2012). Many studies have successfully demonstrated the concept of 

vertical transmission through naturally and artificially contaminated breeder hens with 

Salmonella serovars and recovering them in shell eggs (Cox et. al., 2012; Cowden et. al., 1989; 

Crespo et. al., 2004; Kim et. al., 2007; Lee et. al., 2007; Liljebjelke et. al., 2005; Sanders et.al., 

2001; Murase et. al., 2001). As for horizontal transmission, individual broilers or the flock 

become contaminated through external sources and they include other farm animals, pets, 

wildlife, insects, rodents, workers, equipment, litter, feed and water (Keener et. al., 2004; Cox et. 

al., 2012). In regards to the evolving microbiota, vertical transmission can be an originating 

source for colonization, however, horizontal transmission is a large contributor to shifts in 

microbiota of one chicken and the flock (Mead, 2004).  

Hatchery 

During live production, the hatchery offers the first opportunity for bacterial 

contamination by horizontal transmission in day-of-hatch chicks and has been noted as an 

important vector for horizontal transfer of microorganisms (Byrd et. al., 1998a; Cox et. al., 

1990a, 1991). Eggs from various parent flocks are pooled together at the hatchery; upon 

hatching, chicks are exposed to potential contaminants from their littermates and the hatchery 

environment. For example, Cox et. al. (1990a) evaluated several commercial hatcheries for 

Salmonella spp. and reported 75% of the environmental samples as Salmonella spp. positive; 
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samples included egg shell fragments, belting material, and chick paper pads. However, various 

research and surveys of commercial hatcheries have noted that only 5 to 9% of newly hatched 

chicks leaving the hatchery are positive for Salmonella (Byrd et. al., 1998a; Jones et. al., 1991; 

Cox et. al., 1990b; Bailey et. al., 1987). The low incidence of Salmonella spp. for hatched chicks 

does correlate to percentages found during screenings of table and breeder eggs of which 0.4% to 

6.5% reported positive for Salmonella Enteritidis (Humphrey et. al., 1989, 1991; Poppe et. al., 

1992; Cox et. al., 2012). Therefore, it is possible that the recovered Salmonella positive chicks in 

the hatchery were due to vertical transmission. An additional factor for such a low incidence in 

the hatchery may be attributed to the required incubation time for a newly hatched chicken to 

become colonized with enough Salmonella cells to be detected. It has been noted that un-

colonized chicks become colonized within a week during growout (Byrd et. al., 1998a; Leaney 

et. al., 1978). Therefore, colonization does require several days to be colonized. Colonization can 

occur with a limited number of viable Salmonella cells as Leaney et. al. (1978) demonstrated 

that as few as 2 CFU of Salmonella introduced intercloacally in day-of-hatch chicks could 

successfully colonize the gastrointestinal tract. Byrd et. al. (1998a), reported 100 CFU of 

Salmonella ingested orally as a threshold to cause infection. As for the horizontal transfer of 

Campylobacter at the hatchery level, current research suggests that day-of-hatch chicks are 

negative for the presence of Campylobacter in both samples in the hatchery and the chick 

themselves (Herman et. al., 2003; Keener et. al., 2004; Cox et. al., 2012; Oakley et. al., 2013) 

Additionally, day-of-hatch chicks reportedly have a naïve intestinal community where such a 

nearly sterile environment permits for colonization of a pathogen upon exposure (Byrd et. al., 

1998a; Oakley et. al., 2013) 
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Broiler Farm 

During the next stage of live production, the day-old chicks arrive on the growout farm 

and will remain on the farm until the broilers grow to the desired slaughter weight. During this 

time on the farm, horizontal transmission is still highly probable. Primary sources of horizontal 

contamination include the growout house litter, water, external surfaces of equipment and the 

house interior, insects, rodents, feathers of broilers and boots of farm employees (Keener et. al., 

2004; Corrier et. al., 1999; Cox et. al., 2012). For instance, Byrd et. al. (1998a) reported as little 

as 5% of the hatched chicks being exposed to even 100 CFU of Salmonella yielded a more than 

50% infection of broilers in the growout house. Once a broiler has been infected with 

Salmonella, it can be shed through feces where other chickens encounter Salmonella in the 

broiler house litter. Instances of litter contaminated with Salmonella have been well documented 

(Byrd et. al., 1998a; Corrier et. al.,1999). Campylobacter has also been identified in litter 

(Herman et. al., 2003; Keener et. al., 2004; Cox et. al., 2012). In a Campylobacter assessment 

from hatchery to slaughter, Campylobacter was not recovered in either the one day old chicks or 

the growout farm, but the percent positive rate increased over seven weeks of sampling to 90% 

Campylobacter positive (Herman et. al., 2003). Others have reported similar horizontal transfer 

of Campylobacter infection to the flock as the duration of time increased on the growout farm 

(Keener et. al., 2004; Cox et. al., 2012). Water was also a vector contamination, as Herman et. 

al. (2003) found contamination occurred in 5 of the 6 flocks. Water has served as a carrier that 

has enabled Campylobacter to spread (Keener et. al., 2004; Cox et. al., 2012).  

Feed withdrawal  

This stage of the growout process is typically the last hours on the farm prior to being 

transported to the slaughter facility. Feed withdrawal requires farmers to remove all feed from 
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the growout house so that there is minimal to no ingesta present during the slaughter process; 

however, water does remain available to prevent dehydration of the chickens. Feed withdrawal 

has been established to minimize the amount of fecal material coming into the production 

facility. According to 9 CFR 381.65, “Poultry carcasses contaminated with visible fecal material 

shall be prevented from entering the chilling tank” (USDA-FSIS, 1972a). Additionally, carcasses 

or tissues that are contaminated with digesta or feces from the crop, cloaca, or due to a torn or 

cut gastrointestinal tract (GIT) will result in condemnation or trimming of the carcass (Doyle and 

Erickson, 2006; USDA-FSIS, 1972c). Therefore, it is necessary to perform feed withdrawal to 

prevent the un-necessary trimming and or condemnation of carcasses contaminated with ingesta 

or feces. 

Feed withdrawal typically occurs between 8 and 12 hours prior to evisceration. During 

this period of feed deprivation, physiological changes occur in the chicken GIT. These 

physiological changes increase the potential for horizontal transmission of bacterial 

communities. The practice of feed withdrawal has shown to impact the crop significantly as it 

relates as a vector for carcass contamination during processing (Hargis et. al., 1995; Humphrey 

et. al., 1993; Ramirez et. al.,1997; Corrier et. al., 1999). The crop is a nonsecretory organ in 

which food is stored prior to passage into the gizzard (Durant et. al., 1999; Fuller and Brooker, 

1974). It has a pH of approximately 5.0 due to the colonization of Lactobacilli in the stratified 

squamous epithelium of the crop; however, evidence suggests that the feed withdrawal process 

diminishes the number of colonized Lactobacilli (Durant et. al., 1999; Hinton et.al., 2000). In a 

challenge, where crops of laying hens were assessed during a feed withdrawal induced molt, the 

pH of the crop increased from near 5.0 to 6.2 (Durant et. al., 1999). Several research studies have 

identified the role in which pH can influence shifts in the microbiota of the crop (Durant et. al., 
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1999; Hinton et. al., 2000; Keener et. al., 2004; Doyle and Erickson, 2006). Feed withdrawal 

studies have demonstrated the colonization and increase of Salmonella and Campylobacter 

incidence in the crop (Humphrey et. al., 1993; Ramirez et. al.,1997; Byrd et. al., 1998b; Corrier 

et. al., 1999; Hinton et. al., 2000) Corrier et. al. (1999) reported a 5.3-fold increase in the 

prevalence of Salmonella positive crop from before and after feed withdrawal. Ramirez et. al. 

(1997) noted that Salmonella was greater after 8 hours of feed withdrawal than before 

undergoing feed withdrawal. Byrd et. al. (1998b) recorded a 45% increase in Salmonella 

incidence while evaluating pre- and post feed withdrawal effects, 90 out of 360 birds or 25% and 

254 out of 359 birds or 70% respectively. These studies are analogous of other feed withdrawal 

trials in regards to shifts in microbiota. As for the root cause, Corrier et. al. (1999) observed and 

recorded an increase in pecking activity of the flock pre- to post feed removal which also 

correlated to a higher Salmonella crop incidence for those broiler houses with positive 

Salmonella drag swabs. As poultry commonly forage for food, it does seem plausible for 

colonization to occur in the crop seeing as the organisms may have been recently consumed 

during the feed withdrawal process.   

The ceca has also been studied extensively during feed withdrawal challenges and the 

assessments indicate it as a potential vector of contamination during processing, but at a 

relatively infrequent occurrence (Hargis et. al., 1995). For instance, Corrier et. al., (1999) 

reported a lack of significant increase in ceca Salmonella positive broilers before (14/240 or 

5.8%) and after (19/240 or 7.9%) feed withdrawal. Hargis et. al. (1995) examined both ceca and 

crops during the evisceration process and found that 6 of 2,100 (0.3%) ceca were ruptured 

whereas 48 of 187 (25.7%) crops collected were ruptured. They also sampled 550 crops and 500 

ceca of 3 commercial flocks prior to evisceration for Salmonella; crops for plant 1, 2, and 3 were 



 

 21 

62%, 16% and 86.7% positive, while the ceca were 12.5%, 16.5%, and 14.6%, respectively 

(Hargis et. al., 1995). Ramirez et. al. (1997) noted that 8 hours of feed withdrawal exhibited a 

minimal impact in Salmonella colonization of the ceca for commercial broilers. Humphrey et. al. 

(1993) reported that feed withdrawal slowed down colonization of the ceca in Leghorn laying 

hens orally administered 106 Salmonella Enteritidis; however, survival increased in the crop. 

While the ceca certainly harbors Salmonella, colonization does not occur as rapidly as the crop 

and the physical structure of the organ does not seem to be compromised as easily during the 

evisceration process.  

The intestines also pose another risk factor in the contamination of other broilers and 

evisceration equipment due to feed withdrawal. The physical integrity of the GIT and its 

contents, ingesta and feces, become altered during the withdrawal time (Bolder, 2007). Russell 

(2000) stated the importance of proper feed withdrawal practices, where a shortened (less than 8 

hours) withdrawal time would not allow the intestines to become emptied and full intestines are 

subject to breaking, allowing ingesta to leak on the carcasses; conversely, long (greater than 12 

hours) withdrawal causes the intestines to slough the mucosal lining and to develop gas, 

providing a weakened state that may tear more easily or when cut allow any remaining feces to 

explode. Northcutt et. al. (1997) evaluated the physical attributes of poultry viscera after feed 

withdrawal times of 0, 3, 9, 12, 14, 16, and 18 hours; the results demonstrated substantial 

intestinal sloughing and bacterial fermentation for sampling times greater than 12 hours. Bolder 

(2007) discussed similar points in that watery intestines can lead to a leakage in the contents and 

a decrease in GIT integrity where the probability of intestinal damage and spillage of digesta 

occur during evisceration. Fluid contents in the intestines have been shown to increase (Warriss 

et. al., 2004). Proper feed withdrawal will lead to an overall reduction in the potential 
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contamination of a carcass, adjacent carcasses, and machinery by limiting the amount of fecal 

material into the processing abattoir. However, the practice is also contributes to the horizontal 

transfer of bacteria leading to shifts in the microbiota. 

Transportation 

This processing step is the last phase of the live production continuum and is another 

potential vector for flock contamination. During transportation, the catching crew must handle 

the live animals to place them into crates and handling live animals has been identified as a 

stressor resulting in excessive shedding of fecal matter (Bolder, 2007). Additionally, increased 

stress and dehydration during transport has been associated with increased shedding of fecal 

material (Corry et. al., 2002; Bolder, 2007). Lastly, the broilers are still undergoing feed 

withdrawal; therefore, it is plausible that transportation exacerbates the increased shedding 

already occurring during feed withdrawal.  

With the presence of fecal material on, in, or around the transport crates, transport 

containers themselves can pose a potential threat toward contaminating live poultry, as Lillard 

(1989) reported Salmonella being isolated from the breasts of caged broilers arriving for 

slaughter. Clouser et. al. (1995) identified transport crates as a vector of cross-contamination for 

the flock being transported and Rasschaert et. al. (2007) reported 11% of the transport containers 

sampled being contaminated with Salmonella. In an investigation of crate cleaning efficacy, 

Corry et. al. (2002) noted contamination of cleaned transport crates with Salmonella serovars not 

isolated from either the farm or the flock that was surveyed during transportation. Contamination 

of the crates was attributed to 3 findings related to poor cleaning procedures: 1) one plant used 

waste water to clean the crates, 2) disinfectants were applied in lower than recommended 

concentrations, and 3) fecal material was visibly observed post cleaning and disinfection. 
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Therefore, Salmonella isolated from the crates were likely from flocks previously transported for 

slaughter.  

Modes of cross contamination within the processing abattoir. 

Upon arrival of live poultry to the slaughter facility, more sources of potential microbial 

contamination can occur. Sources of cross contamination may include bird to bird, flock to flock, 

processing equipment, processing water and even personnel. As the birds enter the slaughter 

abattoir, they are usually filthy with dirt, litter, and fecal matter that they may have encountered 

during rearing and transportation (Mead, 1974; Owens et. al., 2010). Researchers have reported 

that the skin and feathers are contaminated with feces upon arrival to the slaughter house (Kotula 

and Pandya, 1995; Jorgensen et. al., 2002; Franchin et. al., 2005) and the fecal matter has been 

identified as a source of Salmonella contamination on caged bird breasts (Lillard, 1989). The 

farm environment and the transportation process impact the microbiota present on broiler 

destined for evisceration and feathers contribute to horizontal transmission of microorganisms 

into the processing plant.  

During evisceration, live birds will undergo exsanguination and then proceed to a series 

of mechanical processes (Figure 2) to remove the blood, feathers, and internal organs, 

respectively. Water is commonly employed to wash carcasses during the evisceration process, as 

it is used for scalding, chilling, evisceration equipment, sanitation and is used to dilute 

concentrated antimicrobials prior to their application on carcasses (Owens et. al., 2010; Handley 

et. al., 2015; Blevins et. al., 2017). As these are the major elements in a processing facility, 

cross-contamination has been commonly associated with scalding, plucking, evisceration, and 

chilling of carcasses (Carrasco et. al., 2012). Many researchers have previously investigated 

evisceration equipment, processing water, and personnel to better understand the movement of 
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bacteria through the slaughter facility and the impact on the microbial quality of carcasses 

(Lillard, 1990b; James et. al., 1992; Sarlin et. al., 1998; Cason and Hinton, 2006; Rasschaert et 

al. 2007; Handley et. al., 2010; Oakley et. al., 2013; Kim et. al., 2017). 

Scalder 

 After the birds are stunned, exsanguinated and bleed out, they undergo scalding. 

Scalding prepares the feather follicles to allow more efficient feather removal by mechanical 

pickers and it can remove the cuticle depending on the temperature of the scald water 

temperature (Blevins et. al., 2017; Bowker et. al., 2014). Hard scalding is the practice of placing 

the birds through water temperatures of 145qF (62.7qC) to 160qF (71.1qC) and soft scalding 

occurs at temperatures between 120qF (48.8qC) to 135qF (57.2qC) (Buhr et. al., 2005; Bowker et. 

al., 2014; Blevins). Most in the U.S are a combination of both (Buhr et. al., 2005; Cason et. al., 

1999; Cason and Hinton, 2006; Blevins et. al., 2017). The scalder has been designed as a series 

of tanks in which water is counterflowed, such that the clean water inlets are at the end of a tank 

so birds go from dirty water to clean water (Cason and Hinton, 2006; Blevins et. al, 2017). These 

tanks are considered a risk for cross-contamination by pathogens, such as Salmonella and 

Campylobacter, as the tanks are not typically drained during production and birds from 

subsequent flocks continue to be processed during the day (Genigeorgis et. al, 1986; Oosterom 

et. al., 1983; Whyte et. al., 2004). However, Whyte et. al. (2004) observed that levels of 

contamination in the scalder do not continuously increase during the subsequent passage of birds 

through the tank. Also, assessment of three-stage scalders reported up to 3.0 log reduction from 

the first to last stage scalder, thus  less contaminated carcasses from the multi-tank scalder design 

as opposed to a single-stage tank (Buhr et. al., 2005; Cason et. al., 1999; Cason and Hinton, 

2006; Blevins et. al., 2017). Evidence suggests that the bacterial level is reduced during scalding, 
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however, it is still  a means of microbial translocation from one bird to another and from one 

flock to another.  

Immersion Chiller  

The immersion chiller is another step that provides an opportunity for carcasses to 

become cross-contaminated. The purpose of using the chiller is to immediately reduce the 

temperature of whole carcasses, parts, and giblets after evisceration so there is no increase in 

pathogens (USDA-FSIS 1972b). Chilling is carried out in large tanks of cold water with an 

added antimicrobial and must be monitored closely by the slaughter establishment so as to 

maintain regulatory compliance with USDA (Blevins et. al., 2017). The chiller allows whole 

carcasses to encounter an antimicrobial with a dwell time ranging from 60 to 120 minutes, 

providing an optimal application to reduce the microbial load (Stopforth et. al, 2007). Immersion 

chilling has been noted as being a successful mode of carcass decontamination (Mead, 2004), but 

has also been criticized for cross-contamination potential (Lillard, 1990b; James et. al., 1992; 

Sarlin et. al., 1998; Bilgili et.al., 2002; Carraco et. al, 2012; Blevins et. al, 2017) Water 

immersion has been recorded as being able to reduce the microbial load of coliform and E. coli 

by as much as 2.5 log10 CFU/mL (James et. al., 2006). Conversely, Brewer et. al. (1995) 

observed a microbial reduction as little as 0.5 log10 CFU/mL while examining the effects of 

various line speeds on chiller efficacy; no impact from line speed was established. Lillard 

(1990b) evaluated the chilling process and recorded a washing effect resulting in a mean 0.91 

log10 CFU/carcass reduction in Plant A  and mean 0.73 log10 CFU/carcass reduction in Plant B 

for Aerobic Plate Count (APC); as for Salmonella incidence it went up from pre-chill to post 

chill, 15% and 28%, respectively. While the chiller has proven a capable and effective means in 
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reducing the microbial load, it equally contributes to a re-distribution effect of carcass microbiota 

to other broilers and flocks. 

Equipment 

Processing equipment for a large poultry processor could contact between 150,000 to 

250,000 head between full sanitation cycles where the equipment is fully broken down for daily 

cleaning (Rothrock et. al., 2016). Therefore, processing equipment becomes an important mode 

of transmission between birds and flocks. In a survey of the evisceration environment and 

equipment, Rasschaert et al. (2007) found the plucking and scalding areas yielded a higher 

incidence of contamination than the evisceration room prior to slaughter activities. These 

findings seem appropriate being that the scalding and picking room are the location in which 

feathers are removed and is segregated from evisceration department. Feather removal is 

accomplished by using scalders and pickers, finger-like rubber attachments that massage the 

carcass to remove the feathers from the feather follicle (Blevins et. al., 2017). Both steps are 

required for feather removal, but certainly are points of microbial contamination throughout the 

production day (Berrang and Dickens, 2000). Additionally, the environmental conditions in the 

picking area are conducive to supporting microbial persistence due to the moist and warmer 

room conditions. 

In a study comparing the Salmonella positive rates between birds contaminated with fecal 

material and those without, reported a 20.0% incidence for non-fecal birds and a 20.8% 

incidence for fecal contaminated birds (Jimenez, 2002). The two sample types exhibited nearly 

the same percent positive results, which may indicate cross-contamination by processing 

equipment during evisceration since the samples were pulled from a single flock. Also, research 

has shown that equipment can be positive for Salmonella after sanitation and possibly after 
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multiple rounds of sanitation. Such was the case with Rasschaert et. al. (2007) when a 

Salmonella negative flock tested positive for Salmonella spp. isolated from a known positive 

Salmonella positive flock, processed days earlier. Olsen et. al. (2003) reported some Salmonella 

strains can survive up to 5 days in the commercial slaughter environment despite the daily 

cleaning and disinfection procedures. It is probable that the contaminated equipment would 

immediately effect the first carcasses entering evisceration, demonstrating both bird to bird and 

flock to flock contamination.  

Biofilms 

Contamination of equipment with microorganisms that should have been eliminated 

during a cycle of sanitation may be due to their refuge in biofilms. Biofilm formations offer 

bacterial cells a protective barrier to grow and survive in harsh environmental conditions, such as 

sanitation (Reuter et. al., 2010; Carrasco et. al., 2012; Steenackers et. al., 2012). It has been 

reported that Salmonella has the capability of attaching itself to inert surfaces in the food 

processing environment and producing biofilms (Hood and Zottola, 1997; Joseph et. al., 2001; 

Stepanovic et. al., 2004; Carrasco et. al., 2012). Biofilms are characterized as bacterial cells or 

communities encapsulated in an exopolysaccharide matrix which enables cells to adhere to one 

another and to surfaces (Costerton et. al., 1987; Chmielewski and Frank, 2003; Hood and 

Zottola, 1995). This exopolysaccharide matrix is also known as an extracellular polymeric 

substances (EPS) which contain polysaccharides, proteins, phospholipids, teichoic and nucleic 

acids, and other polymeric substances hydrated with 85 to 95% water (Costerton et. al., 1987; 

Sutherland, 1983; Chmielewski and Frank, 2003). Cells aggregate to form micro-colonies 

enclosed within a hydrated, predominately anionic, matrix with pores or channels throughout the 
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structure to allow transportation of oxygen, nutrients and waste (Costerton et. al., 1987; Sofos, 

2010).  

Current research has attributed biofilm formation to the expression of genes producing 

curli fibers, exopolysaccharide, and cellulose (de Rezende et. al., 2005; Solomon et. al., 2005; 

Kim and Wei, 2009; Steenackers et. al., 2012). Depending on the surface at which these biofilms 

attach, the structural composition may vary. For instance, biofilm development on glass surfaces 

and gallstones differed in flagellum expression, lipopolysaccharide (LPS) and exopolymeric 

substance composition (Kim and Wei, 2009). Additionally, gene knock out studies have 

demonstrated that mutants are more susceptible to desiccation; these mutants lacked genes 

associated with the regulation of cellulose, O-Ag-capsule, curli fimbriae and other CsgD-

regulated components (White et. al., 2006; Gibson et. al., 2006; Steenackers et. al., 2012) 

Biofilm forming bacteria have been associated with both pathogens and spoilage 

microorganisms, such as Listeria, Salmonella, Campylobacter, E. coli, Pseudomonas and lactic 

acid producing bacteria, and they may be dominated by one specie or a mixed culture 

(Chmielewski and Frank, 2003; Hood and Zottola, 1995).  

Regardless of bacterial species present, the cell matrices form a network which facilitates 

formation and maintenance of the biofilm structure, and increases the resistance of biofilms to 

sanitizers (Costerton et. al., 1987; Chmielewski and Frank, 2003; Sofos, 2010). It has been noted 

that Salmonella biofilms can be formed on plastic, cement, and stainless steel and are more 

resistant to sanitizers than their planktonic counterpart (Joseph et. al., 2001). Sofos (2010) noted 

that biofilm associated bacteria could be up to 500 times more resistant to sanitizers, such as 

lactic acid, quaternary ammonium, sodium hypochlorite or hydrogen peroxide-based, than their 

free flowing planktonic counterparts; in some cases, a marginal increase of 10 to 100-fold in 
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concentration level or exposure time may be effective against biofilm associated bacteria as 

compared to planktonic cells. Such was the case with Joseph et. al. (2001), where two sanitizers, 

100 ppm chlorine solution and 50 ppm iodine, removed the biofilm after 15 minutes’ contact 

time as opposed to planktonic cells being susceptible with either 10 ppm of chlorine or 10 ppm 

of iodine and contact time of 10 and 5 minutes respectively (Steenackers et. al., 2012). 

Conversely, Moretro et. al. (2009) noted 400 ppm of hypochlorite on stainless steel for 5 minutes 

was not sufficient for the removal of Salmonella biofilms (Steenackers et. al., 2012). Increased 

resistance may be due to a smaller surface area exposed to sanitizers and potentially the 

expression of genes associated with sanitizer resistance (Sofos, 2010). Clearly, biofilms and the 

bacteria associated with them provide an opportunity for horizontal transmission on equipment 

and considered in the contribution to microbiota of post chill carcasses. 

Personnel 

 Another source of contamination can be from employees and their practices during a 

typical working shift (Todd et. al., 2010; Carrasco et. al., 2012). Personnel can transfer bacteria 

throughout a production facility. If the employee by-passes certain interventions dedicated to 

preventing cross-contamination, then they would contribute to the contamination of an otherwise 

clean environment. Contamination of food products have been traced back to hands, gloves, dirty 

clothes, and coughing. The CDC (2006b) has ranked hands as a high-risk factor associated with 

outbreak investigations. As early as 1938 Price reported bacterial counts on the area from the 

hands to 2 inches above the elbow to be between 2 x 106 and 1 x 107 CFU total aerobic plate 

count with 90% of these organisms residing on the hand (Todd et. al., 2010). Taylor et. al. 

(2000), recovered bacterial counts of 102 to 106 CFU/hand swab samples (Todd et. al., 2010).

 Recommendations in the FDA Food Code (2013) guidance document emphasizes the 
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benefits of using gloves. While gloves will reduce the transmission of bacteria from employee 

hands to the food, gloves will only be effective so long as they are maintained in a sanitary 

manner (Todd et. al., 2010). More recently, Pellegrino (2015) found that posters emphasizing 

proper hand washing may be ineffective in hand washing habits. Rather their observations noted 

that smell increased the probability of hand washing compared to the control, auditory, and 

visual ques (Pellegrino et. al., 2015). Therefore, utilizing the olfactory sense to improve the 

hygiene practices of personnel in conjunction with training could reduce the horizontal 

transmission of bacteria.  

Factors contributing to the persistence of microorganisms in processing abattoirs 

During the rearing, transportation, and evisceration process, bacteria are subjected to a 

variety of conditions that may induce the upregulation and deregulation of genes that prepare 

them for surviving harsh conditions. Feed withdrawal and transportation, discussed previously, 

stress the birds and disrupts normal intestinal functions; subjecting the animal to opportunistic 

pathogens (Keener et. al., 2004). Since the digestive tract is experiencing increased shedding of 

microorganisms, bacteria are exposed to environmental conditions of digestive tract which 

include a lower pH, the presence of volatile fatty acids, and lower oxidation-reduction potential 

(Ricke, 2003b). These new environmental stresses may aid in the adaptation of resistance to 

more lethal concentrations of antimicrobials present during evisceration. Microbial resistance to 

an antimicrobial can occur when a sub-lethal dosage is encountered, as it is a cellular response to 

increase protective mechanisms for that environment which may lead to protection from a 

similar antimicrobial (Kwon and Ricke, 1998; Kwon et al., 2000; Leyer and Johnson, 1993; 

Rishi et. al., 2005; Calhoun and Kwon, 2010). Another reason may simply be due to the numbers 

of organisms present. If there are 1000 cells and the multiple hurdle in the process can only 
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remove 95% of all organisms, then there are still 50 viable cells remaining. Lastly, survival may 

be enhanced by a cells ability to fully attachment itself to the skin or equipment surface (Lillard, 

1989).  

Genetic coding either on the extrachromosomal genetic element or on a plasmid is a way 

cells can survive acid treatments (Ricke, 2003a). This type of resistance is possibly passed to 

other organisms of the same species or populations of genetically different organisms and has 

been well documented in antibiotic and inorganic chemical-based disinfectants (Ricke, 2003a). 

One mechanism to pass on genetic information is for the cell to take up a plasmid followed by 

subsequent replication during microbial multiplication (Davies, 1994; Koutsolioutsou et. al., 

2001). An example of such a system that would enable a microorganism to survive acidic 

conditions is the acid tolerance response (ATR) system (Kwon and Ricke, 1998). Such a system 

reportedly becomes more robust with longer exposure to short chain SCFA, anaerobiosis, and 

acid pH (Kwon and Ricke, 1998), which all three conditions exist in the gut. The ATR system is 

seen in both Gram positive and Gram negative organisms and is an environmental stress 

response system that enables cells to survive pH values as low as pH 3 (Park et. al., 1996; Brul 

and Coote, 1999). Other research has demonstrated that Salmonella Typhimurium can survive up 

to 4 hours under acidic conditions at approximately pH 3.0 after the initiation of the ATR system 

(Rishi et. al., 2005).  

Additionally, it may explain how Salmonella and Campylobacter could survive in the 

previously described feed withdrawal studies. The induction of ATR allows for the transcription 

of genes responsible for synthesizing a series of acid shock proteins that enable cells to maintain 

homeostasis under extreme acidic conditions that would normally be lethal (Foster, 1999; Ricke, 

2003a). Treatment of organic acids at mild to neutral pH have shown to be an environmental 
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stimuli for ATR and provide further protection against more extreme acidic conditions. Listeria 

monocytogenes possesses the ability to utilize an acid tolerance response at pH 3 after prior 

exposure to pH 5.0 (Davies et. al., 1996 Brul and Coote, 1999). High concentrations of short 

chain fatty acids at neutral pH have been found to provide an ATR in both E. coli and S. 

typhimurium (Kwon and Ricke, 1998; Arnold et. al., 2001). Kwon and Ricke (1998) also noted 

that inorganic acid resistance of S. Typhimurium increased after exposure to high concentrations 

of SCFA and was further enhanced by acidic pH, anaerobiosis, and prolonged exposure to the 

SCFA (Ricke 2003a). Conversely, E. coli O157:H7 demonstrated resistance against benzoic acid 

once treated with a strong acid at pH 2.0 (Lin et. al., 1996; Brul and Coote, 1999). It is evident 

that increased resistance to acid conditions are likely to be induced in the food processing 

systems. 

Another mechanism of resistance may be a metabolically transient or expressed system 

that excludes the antimicrobial compound from interacting with the cell by breaking it down 

extracellularly, secreting it from within the cell, or detoxifying itself by utilizing it in a metabolic 

pathway. An example of detoxification would be the glutamate decarboxylase (GAD) system 

where the cell reduces the amount of protons present within the cytoplasm. The GAD system 

operates by catalyzing the irreversible reaction of an extracellular glutamate to one extracellular 

gamma-aminobutyrate and one CO2 by consuming an internal proton (Alonso-Hernando et. al., 

2009). Another mode of action employed by cells against an extracellular compound was noted 

by Hugo and Foster (1964) where Pseudomonas aeruginosa employed a specific extracellular 

esterase enzyme to degrade methyl para (4)-hydroxybenzoate (methylparaben), a food 

preservative, to methyl alcohol and 4-hydroxybenzoic acid (Brul and Coote, 1999). Valkova et. 

al. (2002) demonstrated that resistance could be transmitted to other organisms not known to 
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have resistance to parabens by inserting the gene prbA. Under aerobic conditions, the enzyme ρ-

hydroxybenzoate hydroxylase catalyzes the hydroxylation of ρ-hydroxybenzoate to form 

protocatechuic acid, also known as 3,4-dihydroxybenzoic acid (Cole et. al., 2005) where it can 

then be further metabolized utilizing the β-ketoadipate pathway (Valkova et. al., 2001). Under 

anaerobic conditions, ρ-hydroxybenzoic acid is converted into a phenol by a decarboxylase 

(Valkova et. al., 2001). However, Valkova et. al. (2001) demonstrated the ability of 

Enterobacter cloacae to break down methylparaben to a phenol via the anaerobic pathway under 

aerobic conditions and was resistant up to 800 mg/liter of methylparaben. Regardless of the 

method to resist antimicrobial and toxic compounds, organisms have been identified that can 

utilize extracellular enzymes and other metabolic pathways to break down inhibitors and or 

prevent the acidification of the inner cell. 

Cell attachment 

  Pathogens and spoilage organisms are recovered in small numbers from the poultry  

product after the chilling process. A plausible explanation for this phenomenon has been 

investigated by Lillard (1989) which concluded that Salmonella cells present on the skin were 

initially entrapped in a water film on the skin and then migrated to the skin; where they were 

entrapped in ridges and crevices that became more pronounced in the skin after immersion in 

water. Prior to this conclusion, chicken skin was submersed in a cellular suspension of 

Salmonella Typhimurium for 15 seconds, 30 minutes, and 60 minutes where 90% of cells were 

recovered in the water film or less than 10% absorbed by the skin; the 30 minute and 60 minute 

immersion times recovered 40% and 60% of bacterial cells from the skin, respectively (Lillard, 

1989). Additionally, confirmation of cellular attachment was concluded by performing scanning 

electron microscopy (Lillard, 1989) and was in agreement with other published research 
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(Notermans and Kampelmacher, 1974; McMeekin and Thomas, 1978). The ability to bind onto 

chicken skin was also demonstrated with E. coli, Lactobacillus brevis, Klebsiella sp., and three 

Pseudomonas ssp. and adherence was optimal at 20 ºC (Notermans and Kampelmacher, 1974). It 

remains clear that bacterial cells do become more closely associated with the skin as time 

increases and the greater the time allowed for microbial attachment the more firmly attached they 

become. Evidence of this was demonstrated by Lillard (1989) where aerobic bacteria and 

Enterobacteriaceae were recovered after 40 consecutive whole bird carcass rinses. 

 Currently, there are two theories for bacterial attachment to meat where one is either 

thought to be a two-stage process (Figure 3A, 3B) (Marshall et. al., 1971) or a three-stage 

process (Figure 3C) (Busscher and Weerkamp, 1987). The two-stage process consists of 

reversible and irreversible attachment (Marshall et. al., 1971; Selgas et. al., 1993). Reversible 

attachment occurs when bacteria become entrapped in a water film on the contact surface (Selgas 

et. al., 1993).  In addition, Hood and Zottola (1995) noted that the bacteria can be removed by 

simply washing. Irreversible attachment is described as a more permanent physical attachment of 

the bacterial cell to the surface (Selgas et. al., 1993) and involves the production of an 

extracellular polysaccharide (Hood and Zottola, 1995). The other cellular attachment theory was 

proposed by Busscher and Weerkemp (1987) and consists of a three-stage process. The first 

stage only involves long range forces such as electrostatic charges and van der Waals forces that 

occur at distances greater than 50 nm. The second stage begins as the microorganism approaches 

20 nm and is reversible at first, but as time progresses it becomes irreversible. The third stage 

occurs at distances less than 15 nm and involves adhesive polymers produced by bacterial cells 

(Hood and Zottola, 1995). Regardless of the proposed model for bacterial attachment to surfaces, 

physiochemical forces such as electrostatic charge and van der Waals forces are only part of the 
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equation. Bacterial cells must be able to sustain the permanent bond between the inert surface in 

which the bacteria has affixed themselves. 



 

  

36 

 

Figure 3A. Two-stage process - Reversible attachment of bacteria entrapped in water. Adapted from Marshall et al. (1971)  
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Figure 3B. Two-stage process - Irreversible attachment of bacteria due to extracellular polysaccharide adapted from Marshall et al. 
(1971). 
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Figure 3C. Three-stage process of bacterial attachment. Adapted from Busscher and Weerkamp, (1987) 
 

 
 



 

 39 

Originally attachment was thought to be due to the flagella and fimbriae. Since then, 

numerous studies have indicated the bacterial cells with or without flagella and fimbriae still 

attach at similar rates (McMeekin and Thomas, 1978; Noterman et. al., 1980; Lillard, 1985; 

Selgas et. al., 1993). However, more recent molecular and biochemical work on biofilms has 

indicated the presence of curli fibers, thin aggregative fibers, that are expressed in almost all 

Salmonella spp., E. coli (Bäumler et. al., 1997; Collinson et. al., 1996, Doran et. al., 1993) and 

perhaps in other Enterobacteriaceae, such as Shigella, Citrobacter, and Enterobacter spp. 

(Doran et. al., 1993). Curli fibers in Salmonella require the operons csgDEFG and csgBAC to be 

fully functional (Bäumler et. al., 1997; Kim and Wei, 2009). Additionally, cellulose and curli 

production require the activation protein CsgD and expression typically occurs at temperatures 

below 86 ºF (30 ºC) (Kader et. al., 2006; Kim and Wei, 2009). In an assessment of flagellated 

bacteria attaching to broiler skin, Notermans and Kampelmacher (1974) reported that optimal 

binding occurred at 20 ºC, further reinforcing the current data in that temperature plays a role in 

the regulation of CsgD protein expression.  

Reduction of Microbial Load in the Processing Plant by Antimicrobials 

There are several factors that contribute to the bacterial load of processed poultry 

carcasses, such as, level of contamination from live birds, numbers and genera of organisms 

introduced at pre-harvest, and the extent of contamination or cross-contamination during post 

harvest processing (Whyte et. al., 2004). Aerobic bacterial levels of poultry entering the 

processing abattoir can be anywhere from mean log10 6 to 9 CFU/mL or 4 x 108 to 4 x 1011 

CFU/carcass and are mainly present on the feathers and skin (Kotula and Pandya, 1995; Lillard, 

1989; 1990a). Broilers are first brought into the live hang department where birds are exposed to 

physical treatment hurdles to remove organic matter and feathers. Scalding water and feather 
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removal reduce the bacterial and organic matter significantly where mean bacterial counts of 

post pick carcasses are log10 4.0 to 5.5 (James et. al., 1992; Lillard, 1989; Whyte et. al., 2004 ; 

Brewer et. al., 1995). The reduction in microbial load by the physical processes of feather 

removal and hot water can be as much as two logs, as reported by Lillard (1989; 1990a).  

Carcasses subsequently undergo evisceration processes where the microbial load is 

reduced again because of a washing affect (Carrasco et. al., 2012). The evisceration process 

utilizes potable water to clean the equipment and carcasses during processing. The Inside 

Outside Bird Wash (IOBW) operates with pressure nozzles at 40 to 180 psi (Keener et. al., 2004) 

and can use up to 50 ppm of free chlorine to remove visible fecal contamination. Typical counts 

for carcasses post evisceration or pre-chill range from mean log10 3.0 to 5.5 (James et. al., 1992; 

Lillard, 1989; Whyte et. al., 2004; Brewer et. al., 1995). The last step in slaughter is to cool the 

eviscerated carcasses. Bacterial counts post immersion chilling range in mean log10 from 2.5 to 

3.7 CFU/mL (Mead and Thomas, 1973; Izat et. al., 1988; Lillard 1989; James et. al., 1992; Blank 

and Powell, 1995; Brewer et. al., 1995; Cason et. al., 1997; Bilgili et. al., 2002; Northcutt et. al., 

2003; Handley et. al., 2010). James et.al. (2006) reported a 2.5 log10 CFU/mL reduction for 

coliform and E. coli is possible with the addition of chlorine to an immersion chiller. Northcutt 

et. al. (2008) also collected microbial data where E. coli, coliform, and Campylobacter were 

reduced by 1.5, 1.5, and 2.0 log10 CFU/mL from pre-chill to post chill samples. Bacterial counts 

post air chilling were from mean log10 3.4 to 5.5 (Barbut et. al., 2009; Clouser et. al., 1995; 

Whyte et. al., 2004; Salvat et. al., 1993). The difference of microbial numbers in air chilling and 

immersion chilling may be attributed to the washing effect of water, as Mead (2004) noted no 

modern air chilling system has the washing effect of immersion chilling.  
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The application methods for antimicrobials can be accomplished through dips or spray 

cabinets. Poultry processors can utilize antimicrobials from the USDA's Safe and Suitable 

Ingredients Used in the Production of Meat, Poultry, and Egg Product list (2011) that has been 

approved for such an application. Loretz et. al. (2010), noted variation in directly comparing 

antibacterial activity between treatments and studies due to varying processing conditions, such 

as the mode of application (spraying, immersion, immersion chilling), the concentration, the 

application temperature, the exposure time, the point of application during processing, or the 

contamination level of the carcasses (Corry et. al., 2007; Purnell et. al., 2014). Lastly, the 

production floor layout may not allow for a properly sized dip tank required to achieve an 

adequate kill. For instance, immersion chillers with antimicrobials provide a high contact time in 

low temperature water with dwell times anywhere from 60 to 120 minutes; depending on the size 

of the chill tank, the carcass size, and processing line speed (Stopforth et. al, 2007). Conversely, 

spray-based systems would be easier to implement (retrofit) in an industrial situation, but it 

would need to be confirmed that the spray is coming in contact with the bird and ensure they are 

not clogged (Purnell et. al., 2014). Either system has its benefits and short comings, but when 

choosing such interventions plant management must consider the efficiency and effectiveness of 

the treatment, the cost of the chemical, overall safety to employees and the environment. 

Laboratory investigations commonly perform dipping trials of small inoculated meat 

samples in order to gain perspective on their antimicrobial potential (Millilo and Ricke 2010; 

Millilo et. al., 2011; Cosansu and Ayhan, 2012; Alonso-Hernando et al. 2012, 2013). These 

studies offer a glimpse into how an antimicrobial may perform, but they need to be validated in 

the production facility to verify efficacy. In order to reduce the microbial load, it is paramount to 

utilize an intervention strategy and monitor its efficacy to meet the demands of both customer 



 

 42 

and USDA regulatory compliance (Stopforth et. al., 2007). Compliance with 9 CFR 417 requires 

the HACCP plan to be validated to ensure that the critical control points are operating as 

expected to reduce, control, and eliminate biological hazards (USDA-FSIS, 1996). When 

considering antimicrobial chemical interventions, the method of application and the 

antimicrobial compound type must also be considered. As for the antimicrobial compound, it is 

necessary to understand how the mechanism works in addition to the necessary operating 

parameters, such as time of contact, concentration and temperature (Stopforth et. al., 2007; 

Purnell et. al., 2014).  

Common anti-microbial compounds used in poultry production  

Chlorine  

 Chlorine has been a common antimicrobial for poultry processors in chiller water for 

years due to its broad-spectrum disinfecting property. (Milillo et. al., 2011; Ricke et. al., 2005; 

Keener et. al., 2004). Typically, chlorine is added to the water system where it will react with 

water to form hypochlorous acid (HOCL), which acts as the antimicrobial agent (Hinton et. al., 

2007; Keener et. al., 2004; Bailey et. al., 1986). The efficacy is dependent on contact time, the 

temperature, pH, chemical composition of water, and most importantly concentrations as free 

chlorine levels (Stopforth et. al, 2007; Tsai et. al., 1992).  The USDA requires the use of 20 to 50 

ppm chlorine in chiller water for the prevention of cross-contamination (Stopforth et. al., 2007). 

However, the USDA's Safe and Suitable Ingredients Used in the Production of Meat, Poultry, 

and Egg Product list (2011) (Table 1), has identified other chlorine compounds available for use, 

such as acidified sodium chlorite, calcium hypochlorite, chlorine gas, chlorine dioxide, sodium 

hypochlorite per USDA’s specified parts per million and application purpose. For chlorine to be 

efficacious, the pH of water must remain in a range of 5.8 to 6.8 as nearly 100% of chlorine 
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added becomes hypochlorous acid (HOCL); at a pH of 8.5, only 8% of the chlorine added is 

converted to HOCL (Keener et. al., 2004). Chlorine has shown to be lethal in low doses. Blaser 

et. al. (1986) presented data where as little as 0.1 mg/L (0.1 ppm) free available chlorine at pH 

6.0 effectively reduced the Campylobacter population by 99%. However, chlorine binds readily 

to organic material and when added to a body of water free chlorine will bind until total chlorine 

demand has been met (Stopforth et.al., 2007). After the total demand is achieved, then any free 

chlorine remaining will remain free to act as an antimicrobial (Tsai et. al. , 1992; Stopforth et.al., 

2007). Therefore, organic material from the skin of the bird, such as fats and dirt can bind to the 

free chlorine which would require more chlorine to be added. Therefore, it must be monitored 

closely in order to maintain effective chemical composition during slaughter. 

 The antimicrobial action of chlorine has been suggested to disrupt the transportation of 

extracellular nutrients (Campers and McFeters, 1979). Green and Stumpf (1946) noted that 

sulphydryl (-SH) groups for enzymes may be irreversibly oxidized, therefore destroying 

enzymatic activity. The high reaction rate at which active chlorine (OCl-) reacts with free thiol 

groups in cysteine residues is 3.0 X 107 M-1 s-1 at a pH of 7.4 (Imlay, 2003; Wang, 2009). 

Chlorine is also able to react with other amino acid side chains that enable it to easily oxidize 

protein residues exposed on the surface or transiently cross the cell membrane, thus leading to 

more oxidative damage (Pattison and Davies, 2001; Wang, 2009). In a genetic analysis of E. coli 

O157:H7 under oxidative stress conditions performed by Wang (2009), significant upregulation 

of the following genes and operons occurred: the multiple antibiotic resistance (marRAB) 

operon, the pathway for degradation of formaldehyde frmRAB, expression of the envelope stress 

response gene spy, the iron sulfur (Fe-S) cluster isc operon, the cysteine amino acid cys operons 

CND, JIH, PUWAM, and ZK. In addition, heat shock protein (Hsp) chaperone genes and two 
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biofilm inhibiting genes ycfR and ybiM were induced under oxidative stress caused by chlorine 

(Wang, 2009). Multiple cellular defense mechanisms are initiated by oxidative damage and 

requires the cell to expend ATP for the necessary repair of the cell. Therefore, chlorine is a 

popular choice as an antimicrobial due to its low cost and ability to destroy both spoilage and 

pathogenic bacteria (Lillard, 1979; Bailey et. al., 1986; Hinton et al., 2007; Keener et. al., 2004).  

 There has been some drawbacks for chlorine even though it is extremely successful as an 

antimicrobial. Chlorine may have adverse reactions with organic compounds and amino acids 

present in all food, forming chlororganic compounds and chloramines. These compounds possess 

toxic properties including mutagenicity, teratogenicity, and carcinogenicity (Wei et. al., 1985; 

Kuo et. al, 2000). Due to this potential issue, the European Union (EU) has prohibited chlorine 

and any other form of chemical decontamination (Mead, 2004). In response to concerns 

presented by the EU, a scientific panel was assembled to evaluate the concerns presented by the 

EU. During the analysis, various concentrations and time intervals of common poultry meat 

decontaminants were exposed to poultry meat and found to be of no safety concern so long as 

they were applied as prescribed by the manufacturer’s (Anton et. al., 2005). Since chlorine has 

been banned by the EU and preference changes by consumers to consume food with less or no 

additives, other solutions have been investigated (Corry et. al., 2007). These changes in 

consumer trends had led to research on other antimicrobial hurdles besides chlorine, such as 

organic acids, steam, or hot water treatment. 
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Table 1. List of poultry chlorinated antimicrobials from the Safe and Suitable Ingredients Used 
in the Production of Meat, Poultry, and Egg Products. 
 

Antimicrobial Trade Name or 
Product form Concentration 

Location of 
processing 
application 

Acidified 
Sodium Chlorite Sanova 

500-1200 ppm in combination with any 
GRAS acid at a level to achieve a pH of 

2.3 to 2.9 in accordance with 21 CFR 
173.325. 

Spray or dip 

Acidified 
Sodium Chlorite Sanova 

50-150 ppm in combination with any 
GRAS acid at a level to achieve a pH of 

2.3 to 2.9 in accordance with 21 CFR 
173.325. 

Pre-chiller or 
chiller 

Calcium 
hypochlorite 

Granular/ pellet 
form 

50 ppm calculated as free available 
chlorine 

Spray, dip, 
and chiller 

Calcium 
hypochlorite 

Granular/ pellet 
form 

20 ppm calculated as free available 
chlorine. USDA has allowed the use of 

up to 50 ppm. 9 CFR 381.91 

Re-work 
spray 

Calcium 
hypochlorite 

Granular/ pellet 
form 

Not to exceed 5 ppm calculated as free 
available chlorine from the influent to 

the chiller 

Red Water 
(poultry 

chiller water 
re-circulated 

through a 
heat 

exchanger to 
then re-enter 

into the 
chiller 

Cetylpyridinium 
chloride (CPC) Cecure 

As an ambient temperature spray that 
must contain propylene glycol 

complying with 21 CFR 184.1666 in a 
concentration 1.5 times greater than that 
of CPC. Must also comply with 21 CFR 

173.375. Applied before or after 
chilling, CPC cannot exceed 5 gallons 
per carcass provided that the system 

recaptures 99% of the solution and the 
concentration may not exceed 0.8% of 
carcass weight. Plus the application of 

CPC to the carcass must undergo 
washing either by a potable water spray 

or immersion chilling. 

The surface 
of raw 
poultry 

carcasses or 
giblets before 

or after 
chilling 
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Table 1. (Cont.) 

Antimicrobial Trade Name or 
Product form Concentration 

Location of 
processing 
application 

Chlorine gas gas 50 ppm calculated as free available 
chlorine 

Spray or 
chiller water 
influent 

Chlorine gas gas 5 ppm Red water 

Chlorine gas gas 
20 ppm calculated as free available 
chlorine. USDA has allowed the use of 
up to 50 ppm. 9 CFR 381.91 

Reprocessing 
contaminated 
birds 

Chlorine 
dioxide gas 

Not to exceed 3 ppm residual chlorine 
dioxide determined by Method 4500-
ClO2 E in the "Standard Methods for the 
Examination of Water and Wastewater", 
18th ed., 1992, or an equivalent method 
and in accordance with 21 CFR 173.300 

Water used 
in poultry 
processing 

Sodium 
hypochlorite solution 50 ppm calculated as free available 

chlorine 
Spray, chiller 
water 

Sodium 
hypochlorite solution 5 ppm calculated as free available 

chlorine Red water 

Sodium 
hypochlorite solution 

20 ppm calculated as free available 
chlorine. USDA has allowed the use of 
up to 50 ppm. 9 CFR 381.91 

Reprocessing 
contaminated 
poultry 
carcasses 
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Short Chain Fatty Acids  

Several organic short chain fatty acids have been studied for application with the food 

industry and they include, acetic, benzoic, formic, citric, lactic, and propionic acid (Mulder et. 

al., 1987; Izat et. al., 1990; Dickens et. al., 1994; Theron and Lues, 2007;Bauermeister et. al., 

2008). Additionally, they exist in a pure or buffered state containing 10 or less even-numbered 

carbons in their structural backbone (Theron and Lues, 2007). The application of organic acids or 

short chain fatty acids (SCFA) is best at a low or more acidic pH as the organic acid remains in 

an uncharged, un-dissociated state where the molecule is able to freely pass through the plasma 

membrane (Brul and Coot, 1999; Theron and Lues, 2007). The organic acid will continue to 

diffuse into the cell until equilibrium is achieved across the membrane in accordance with the pH 

gradient (Booth and Kroll, 1989; Brul and Coote, 1999). It is believed that the organic acids 

penetrate the lipid bi-layer of the cell membrane where the neutral pH of the cytoplasm promotes 

the organic acid to dissociate into the anions and protons (Eklund, 1983, 1985; Salmond et. al., 

1984; Cherrington et. al.,1990; Davidson, 2001; Ricke, 2003a). The un-dissociated organic acid 

is then thought to disrupt the membrane and its proteins involved in electron transport essential 

for ATP cycles, which then has the following cascade effect of inhibiting necessary metabolic 

reactions, causing an increased stress on intracellular homeostasis, and finally an accumulation 

of toxic anions (Brul and Coot, 1999; Ricke, 2003a; Theron and Lues, 2007).  

In a study performed by Price-Carter et al. (2005), Salmonella enterica with mutations in 

polyphosphate kinase were able demonstrate an intracellular pH drop following exposure to the 

organic acids acetate and propionate by monitoring the inactivation of the acid and temperature 

sensitive enzyme MetA. It is suggested that polyphosphate kinase stimulates ATP-dependent 

proteolysis of ribosomal proteins during starvation to provide a source of amino acids (Kuroda 
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et. al., 1999; 2000) and MetA is one of these proteins involved in protein synthesis, therefore 

making the enzyme an appropriate target to study (Price-Carter et al., 2005). The ability of un-

dissociated organic acid to react with or disrupt membrane integrity and membrane protein 

structure function, along with cytoplasmic proteins and DNA located within the cell (Davidson, 

2001; Ricke, 2003a) allows for the accumulation of toxic anions and protons requiring the cell to 

rid itself of these to maintain homeostasis. Depending on the concentration of protons and anions 

present, the cell must rely on the buffering capacity of the cytoplasm, proton pumps, the 

glutamate decarboxylase system, acid tolerance response (ATR), proteins that repair or 

breakdown cell components, or alterations in the cell envelope (Theron and Lues, 2007; Alonso-

Hernando et. al., 2009).  Therefore, the cell possesses mechanisms to remove these toxins from 

within the cell, but a bacterial cell only has limited ATP available to remove them. Purging 

excess protons requires ATP; once the cell has consumed all available ATP, then the cell’s 

defense mechanism has been compromised due to depletion or exhaustion (Davidson, 2001; 

Ricke, 2003a). Compromising the integrity of the cell structure or depleting it of all available 

energy are the necessary targets required for processors to overcome microbial contamination 

leading to microbially safe food yet maintaining quality products.  

Peroxy Acetic Acid 

Peroxyacetic acid or peracetic acid (PAA) has also become more widely used due to its 

antimicrobial efficacy with chemical properties associated with an oxidizer. (Kitis, 2004; 

McDonnell and Russell, 1999; Block, 1991). PAA at equilibrium contains acetic acid, hydrogen 

peroxide, peroxy acetic acid, and water (Kitis, 2004; Block, 1991). The equilibrium state of PAA 

contains three disinfectants which act as a multi-hurdle within one solution. However, it should 

be noted that the disinfecting power of hydrogen peroxide is not equivalent to PAA, due to the 
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concentration present in the prepared mixture (Wagner et. al., 2002; Kitis, 2004). PAA’s 

antimicrobial action is the dual action from reactive oxygen as a peroxide within the organic acid 

molecule, acetic acid, and is considered an organic peroxide. Peroxides are high-energy-state 

compounds that are thermodynamically unstable which promote instability and combustion. 

(Block, 1991; Kitis, 2004).  

Peracetic acid is believed to oxidize sulfhydryl (-SH) and sulfur bonds (S-S) in proteins, 

enzymes, and other metabolites with double bonds (Kitis, 2004; McDonnell and Russell, 1999). 

Therefore, PAA disrupts chemiosmosis function of lipoproteins in cytoplasmic membranes and 

transport mechanisms associated with cell walls (Kitis, 2004; Baldry and Fraser, 1988; Leaper, 

1984) The ability to disrupt protein function has been attributed to its property as a sporicide and 

ovicide (Block, 1991). PAA, intracellularly, has been characterized as disrupting essential 

enzymes, vital biochemical pathways, active transport in organelle membrane pathways, 

interaction with DNA bases, and inactivation of catalase (Kitis, 2004; Fraser, 1984; Leaper, 

1984; Tutumi et. al., 1973; Block, 1991).  

Spontaneous decomposition of PAA occurs between the pH range of 5.5 and 8.2, but the 

biocidal form of PAA is the undissociated acid form (Kitis, 2004; Gehr et. al., 2002; Colgan and 

Gehr, 2001). Additionally, the pka is 8.2; in more alkaline conditions, greater than pH 9, the 

dissociated form of PAA exists in solution, thus a decreased antimicrobial activity (Kitis, 2004; 

Baldry and French, 1989; Sanchez-Ruiz et. al., 1995; Tutumi et. al., 1973). Evidence of pH 

affecting antimicrobial efficacy was reported by Sanchez-Ruiz (1995) where a 2 to 3 log 

reduction of coliforms was exhibited at a pH of 7 as opposed to 10 (Kitis, 2004). Additionally, 

Baldry and French (1989) reported PAA being more efficacious at neutral and or more acidic 

conditions (Kitis, 2004). Lastly, PAA has been found to effective as an antimicrobial at a wide 
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range of temperatures, but it was more efficacious as the temperature increased (Kitis, 2004; 

Stampi et. al., 2001) 

As one of the active compounds in PAA, hydrogen peroxide (HP) has broad spectrum 

against bacteria, bacterial spores, viruses, and yeast (McDonnell and Russell, 1999; Block, 

1991). Hydrogen peroxide is decomposed by peroxidases and catalase, commonly found in Gram 

negative bacteria (McDonnell and Russell, 1999). Additionally, it produces –OH radicals that 

react readily with essential cell components, lipids, proteins, and DNA, especially those with 

double bonds or sulfhydryl groups. (McDonnell and Russell, 1999; Block, 1991). 

Trisodium Phosphate 

Trisodium phosphate (TSP) is also another antimicrobial available for use in poultry 

processing and has been reported as an effective carcass decontaminant (Ricke et. al., 2005; 

Anton et. al., 2005; Stopforth et. al., 2007; Purnell et. al., 2014). TSP is applied as a spray or dip 

and is an 8 to 12% aqueous solution with a pH value of approximately 12 (Ricke et. al., 2005; 

Anton et. al., 2005; Sofos et. al., 2013). The high alkalinity (pH 12) of the prepared 

antimicrobial disrupts the cell membrane causing the cell to leak and it also acts as a detergent 

with its surfactant like properties (Anton et. al., 2005). Ricke et. al. (2005) also reported that 

reactive hydroxyl radicals may provide residual antimicrobial activity. However, due to the 

treatment generating large volumes of phosphate, TSP can a problem for both the environment 

and effluent disposal (Ricke et. al., 2005; Purnell et. al., 2014). 

Multiple Hurdle Effect 

The multiple hurdle effect is the process of subjecting bacteria to constantly increasing 

harsh conditions that require an organism to repeatedly adapt to new environments where death 

occurs due to exhausting all a cell’s resources. This strategy is best described as a series of 
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antimicrobial treatments that when employed alone would yield a limited reduction, whereas the 

series eliminates or significantly reduces the presence of pathogens on a food surface (Leistner 

and Gorris, 1995; Sirsat et. al., 2009). The slaughter process (Figure 1.0) includes multiple steps 

requiring either chemical or physical interventions that effect the viability of bacterial organisms, 

therefore is considered a multi-hurdle process. In order to demonstrate the effectiveness of 

poultry processing interventions, Stopforth et. al. (2007) validated the antimicrobial capacity of 

each dip and spray cabinet in multiple processing plants where each individual intervention 

resulted in statistically significant reductions of bacterial loads. During this investigation, the 

multiple spray cabinets demonstrated that the total system produced an effect similar to the 

multiple hurdle effect which reduced microbial populations much greater than each individual 

hurdle. 

Current interventions available for meat processors to reduce pathogens and microbial 

load on carcasses include steam, hot water dips, and carcass rinses with chlorine, trisodium 

phosphate or organic acids (Hogue et. al., 1998, Corry et. al., 2007; Purnell et. al., 2014). 

Researchers and processors have begun to add multiple processing technologies within an 

individual processing step to increase effectiveness of the treatment (Millilo and Ricke, 2010; 

Millilo et. al., 2011). The food industry has many antimicrobial applications available (Table 5) 

and combining any number of these may be possible provided they are synergistic in nature.  

Hurdle technology allows individual interventions to be applied at either shorter time 

intervals or lower concentrations yet be more impactful (Leistner, 2000). Millilo et. al. (2011) 

demonstrated the effects of utilizing a mild heat, low pH, and select organic salts. The designer 

multihurdle treatment was very effective in reducing Salmonella. The same investigation 

examined a room temperature, 50°C, 55°C, and 60°C hot water dip with acidified organic acids 
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at either 1.25% or 2.5% sodium lactate, sodium acetate, and sodium propionate adjusted to a pH 

4 and another group at pH 7. The dip was applied for one minute and they observed a greater 

than log10 4 reduction using a 2.5% sodium propionate solution of pH 4 at 55°C. Millilo et. al. 

(2011) found that the heat increased membrane fluidity allowing the acid to penetrate more 

easily and the acidic condition of pH 4 created a significant pH gradient between the cytoplasm 

and the extracellular space.  

The combination of heat, acid, and pH created a synergy that resulted in considerable 

microbial reductions. Millilo et. al., (2011) reported that transcription of 203 genes was 

repressed and 150 genes were induced. Interestingly, those genes repressed were related to 

functions of heat shock response or molecular chaperones and those genes upregulated were 

related to cell attachment and/or mobility (Millilo et. al., 2011). Such a demand on the microbial 

cell creates a considerable demand for the consumption of ATP. Typically, cells undergo a lag 

phase upon exposure to new environments or sublethal injury, this period allows the cell to adapt 

to the physiological elements (Swinnen et. al., 2004). Employing similar synergistic 

antimicrobial hurdles are a promising strategy as it compromises multiple cellular components 

and functions rendering it too weak to survive. 
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Table 2. Hurdles used in food preservation (Leistner and Gorris, 1995) 

Physical Physiochemical Microbially 
derived 

Miscellaneous 

High temperature, 
low temperature, 
ultraviolet radiation, 
ionizing radiation, 
electromagnetic 
energy (microwave, 
radiofrequency 
energy, oscillating 
magnetic field 
pulses and high 
electric field pulses), 
photodynamic 
inactivation, 
ultrahigh pressure, 
ultrasonication, 
packaging film, 
modified-
atmosphere 
packaging, aseptic 
packaging, and food 
microstructure 

Low water activity, 
low pH, low redox 
potential, salt, 
nitrite, nitrate, 
carbon dioxide, 
oxygen, ozone, 
organic acids, lactic 
acid, lactate, acetic 
acid, acetate, 
ascorbic acid, 
sulfite, smoking, 
phosphates, 
glucono-δ-lactone, 
phenols, chelators, 
surface treatment 
agents, ethanol, 
propylene glycol, 
Maillard reaction 
products, spices, 
herbs, 
lactoperoxidase, 
and lysozyme 

Competitive 
microbiota, 
protective cultures, 
bacteriocins, and 
antibiotics 

Monolaurin, free 
fatty acids, 
chitosan, and 
chlorine 
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Measuring the Efficacy of the Antimicrobial System 

Antimicrobials commonly undergo evaluations by researchers and industry to better 

understand the efficacy and to investigate potentially new improvements for the current system. 

From a regulatory standpoint, monitoring is required per 9 CFR 381.94 (USDA-FSIS, 1996b) 

and validation of the hurdles in place verifies the HACCP Plan per 9 CFR 417 (USDA-FSIS, 

1996a). Monitoring the intervention will ensure the optimization of the intervention strategy to 

effectively reduce the microbial load from live hang to post chill (Stopforth et. al., 2007). A 

method to measure the intervention process is to perform bio-mapping. 

 Bio-mapping allows for the slaughter process interventions to be analyzed pre- and post-

intervention throughout the whole plant (Figure 4A-C). The data obtained yields a visual map of 

the interventions being employed to produce a raw chicken carcass. The y-axis indicates the log 

10 transformed microbial count and the x-axis is the sampling location. There are times in the 

process where the post testing location is the same as a pre- testing location and vice a versa, 

such as pre-OLR and post OLR. Post OLR is the same as Pre-chill in the examples (Figure 4A-

C). The ideal state for the production system is a bar graph where each testing location has less 

CFU than the site before it. Figure 4A is an example of an ideal state; each processing hurdle is 

working within the designed parameters and is effectively reducing the bacterial load. Figure 4B 

is as effective as 4A in terms of the bacteria recovered at post chill. However, if the OLR had 

been operating within the designated limits, then the bacterial level could have been less than the 

results in 4A since the chiller reduced the microbial load by 4.5 logs. Figure 4C indicates that the 

chiller was not operating as expected due to the increase in bacteria recovered from the post chill 

samples. Even though testing is performed on individual hurdles, bio-mapping is a means of 

collectively analyzing the entire production system.
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Figure 4A. Ideal theoretical bio-map of the evisceration process. All hurdles are working as expected. 
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Figure 4B. Theoretical bio-map where the on-line reprocessing (OLR) intervention is not operating as expected. 
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Figure 4C. Theoretical bio-map where the chiller is not operating as expected.  
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Microbial Ecology in Meat and Poultry 

 The microbiota of post chill broiler meat impact the quality and the shelf-life of the final 

product. Understanding the microorganisms present on post chill carcasses, provide insight into 

the good manufacturing practices and effectiveness of the processing abattoir multihurdle 

system. Refrigerated chicken meat is extremely susceptible to spoilage by psychrophilic 

microorganisms due the inherent physical properties of the harvested meat, such as its high water 

activity, neutral pH, and abundance of nutrients (Morales et. al., 2016). Current data reflects 

evidence of bacteria present in post chill samples and how these organisms translocate will 

impact further processing of these carcasses and their quality for the consumer.  

 Typically, bacteria found on fresh processed poultry are mesophilic organisms that grow 

at moderate temperatures and some are considered pyschrotrophs, capable of metabolic activity 

in refrigerated (0.5 to 8.0°C) environments (Rao et. al., 1998; Dickens et. al., 2004; Forsythe, 

2010; Blevins et. al., 2017). They are considered spoilage organisms that are responsible for the 

breakdown of refrigerated meat products and their metabolites may produce off-odors as they 

consume the poultry product substrates available to them (Blevins et. al, 2017). Typical 

psychrotrophic spoilage genera found on aerobically stored, refrigerated raw meat have been 

isolated from feathers, feet of broilers, intervention water samples like chill tanks, and processing 

equipment (Russell et. al., 1996).  

The complex nature of spoilage can be directly linked to live animals and their processing 

environment. Pseudomonas spp. has been noted as the predominant microorganism of spoilage 

microbiota and impacts quality and shelf-life of raw poultry meat (Morales et. al., 2016; Arnaut-

Rollier et. al. 1999; Hanning et. al., 2009) Researchers have commonly reported the following 

Pseudomonas spp as being recovered from raw spoiled poultry meat, P.  fragi, P. putida, P. 
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fluorescens, P. lundensis, and P. chlororaphis (Arnaut-Rollier et. al., 1999; Hanning et. al., 

2009; Hilbert et. al., 2010; Morales et. al., 2016). Nychas et al. (2008) concluded that under 

aerobic storage conditions three species of Pseudomonas, P. fragi, P. fluorescens, and P. 

lundensis, were responsible for slime and off-odors when they were present at log10 7 to 8 CFU/ 

g. Other organisms have been reported as contributors of meat spoilage in addition to 

Pseudomonas, such as those stated by James et. al. (2006), Acinetobacter, Moraxella, 

Brochothrix thermosphacta, Aeromonas spp., Psychrobacter spp. and Enterobacteriaceae. This is 

in agreement with others (Barnes and Thronley, 1966; Ellis, 2001; Charles et. al., 2006; Hilbert 

et. al., 2010)  

In more recent surveys of evisceration interventions utilizing microbiome 16S 

sequencing, Kim et. al. (2017) observed the following predominant bacteria Paenibacillaceae , 

Bacillus, Gallibacterium, Lactobacillus, Rikenellaceae, Bacillales, Bacteroides, 

Ruminococcaceae, Pseudomonas, Veillonella, and Lentibacillus. During a chill tank microbiome 

assessment Rothrock et. al. (2016) reported the presence of Acinetobacter, Pseudomonas, 

Pseudomondaceae, Enterobacteriaceae, Pasturellaceae, Neisseria, Burkholderia, Streptococcus, 

and Lactobacillus. Lastly, Oakley et. al., (2013) characterized the microbiome of raw chicken 

parts exudate from retail packages and found Pseudomonas to have a 98% relative abundance, 

which other have commonly isolated (Barnes, 1972; Fung, 1987; Russell et al., 1996; Cox et al., 

1998; Hinton et al., 2004). 

In order to further improve bacterial reduction in the poultry slaughter system, it is 

necessary to better understand the remaining viable microbiota and how current intervention 

strategies may impact them. Discerning their origin and translocation to the final meat product 

enables further opportunity for greater process enhancements that will improve carcass and meat 
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product quality. Research has recovered various organisms using traditional techniques, but now 

next generation sequencing (NGS) may be able to close the gap in assessing carcass quality and 

origin of finished product microbiomes. More importantly, NGS may shed insight on to more 

ideal non-pathogenic indicator organisms that mirror the behavior of pathogens. 
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Table 3. Common spoilage bacteria genera for raw meat 

Spoilage 
Organism Authors 

Pseudomonas 

Barnes and Thronley, 1966; Barnes, 1972; Fung, 1987; Russell et. al., 1996; 
Cox et. al., 1998; Arnaut-Rollier et. al. 1999; Ellis, 2001; Hinton et al., 2004; 
Charles et al., 2006; James et. al., 2006; Nychas et. al., 2008; Hanning et. al., 
2009; Hilbert et. al., 2010; Oakley et. al., 2013; Morales et. al., 2016; Rothrock 
et. al. 2016; Kim et. al. (2017) 

Pseudomondaceae Rothrock et. al. 2016 

Acinetobacter Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Brochothrix 
thermospacta 

Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Aeromonas Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Psychrobacter Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Enterobacteriaceae Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Paenibacillaceae Kim et. al. 2017 
Bacillus Kim et. al. 2017 
Gallibacterium Kim et. al. 2017 
Lactobacillus Rothrock et. al. 2016; Kim et. al. 2017 
Rikenellaceae Kim et. al. 2017  
Bacillales Kim et. al. 2017) 
Bacteroides Kim et. al. 2017  
Ruminococcaceae Kim et. al. 2017  
Veillonella Kim et. al. 2017  
Lentibacillus Kim et. al. 2017  

Moraxella Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Psychrobacter Barnes and Thornley, 1966; Russell et al., 1996; Ellis, 2001; James et. al., 2006; 
Charles et al., 2006; Hilbert et. al., 2010; Rothrock et. al. 2016 

Pasturellaceae Rothrock et. al. 2016 

Neisseria Rothrock et. al. 2016 

Burkholderia Rothrock et. al. 2016 

Streptococcus Rothrock et. al. 2016 
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Indicator Organisms 

The poultry industry has previously used indicator organisms for the assessment of food 

safety and quality attributes (Russel, 2000; Whyte et. al., 2004; James et. al., 2006; Kim et. al., 

2017). Indicator organisms have also been utilized as a means to measure good manufacturing 

practices (Russell, 2000). Researchers and processors have used the bacterial family 

Enterobacteriaceae to indicate the possible presence of Salmonella and Escherichia as these 

pathogens are in the same taxonomic family (Whyte et. al., 2004). Others have used coliforms 

and E.coli as a means to detect fecal organisms on carcasses, post water immersion chilling 

(James et. al., 2006). The USDA considers E. coli an indicator of fecal contamination and 

requires processors to use any quantitative method to analyze for E. coli (USDA-FSIS, 1996b). 

While it has been noted that meat products have a diverse population and focusing on one 

specific microorganism or group may not be all that informative (Rouger et. al., 2017), 

microbiome-based research has suggested the opposite. As poultry carcasses approach the end of 

the slaughter process, the microbiota shifts to a less diverse population compared to live 

production (Kim et. al., 2017; Oakley et. al., 2013).   

Ideally an indicator organism shares similar characteristics as the target organism, but is 

also in a much greater abundance than the organism of interest (Cason et. al., 1997; Handley et. 

al., 2015). In the case of poultry slaughter, Salmonella and Campylobacter are the target 

organisms of interest due to their ability to cause foodborne illness, but are in relatively low 

abundance in post chill samples. For example, broiler chicken whole carcass rinses are often 

cited as having an MPN value of 30 (Cox et. al., 2011). Whereas evidence of the post chill 

microbial load for aerobic bacteria was mean log10 2.5 to 3.7 CFU/mL (Mead and Thomas, 1973; 

Izat et. al., 1988; Lillard 1989; James et. al., 1992; Blank and Powell, 1995; Brewer et. al., 1995; 
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Cason et. al., 1997; Bilgili et. al., 2002; Northcutt et. al., 2003; Handley et. al., 2010). These 

organisms are more likely to be spoilage organisms and are present in much greater abundance 

than pathogens. Therefore, it is likely an organism present through the entire process of the farm 

to fork continuum may present itself as a candidate that could behave similarly to Salmonella 

and Campylobacter. Identification of an indicator organism will enable researchers and 

processors to assess the absolute efficacy of an antimicrobial as it would be deployed in a 

commercial processing environment (Cason et. al., 1997; Handley et. al., 2015; Blevins et. al., 

2017). 

Current Microbial Ecology Sampling 

Detecting microbial shifts in the microbiota of poultry carcasses during interventions 

provides valuable data sets in relation to how an antimicrobial may target specific groups of 

bacteria (Sofos et. al., 2013; Giombelli and Gloria, 2014; Handley et. al., 2015; Blevins et. al., 

2017). There are several nucleic acid based technologies (Table 4) that have been used over the 

years, but next generation sequencing (NGS) has begun replacing the other techniques for 

microbiome characterization (Oakley et. al., 2013, Rothrock et. al., 2016; Koo et. al., 2016; Kim 

et. al., 2017). The techniques used prior to NGS included Terminal Restriction Fragment Length 

Polymorphism (TRFLP), Automated Intergenic Spacer Analysis (ARISA), Denaturing / 

Temperature Gradient Gel Electrophoresis (D/TGGE) (Foster et al., 2012; Bokulich and Mills, 

2012; Justé et. al., 2008) and a more recently developed method, denaturing high performance 

liquid chromatography (dHPLC) (Wagner et. al., 2009). TRFLP and DGGE methods have been 

more commonly utilized in food matrices (Justé et. al., 2008) and dHPLC was a tool more 

recently developed and utilized for soil ecology and mutation analysis of single nucleotide 

polymorphisms. TRFLP was utilized for the differentiation of microbial populations by utilizing 
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a 5’ fluorescently labeled primer to amplify the targeted gene (Justé et. al., 2008; Bokulich and 

Mills, 2012). The amplified PCR product would be subjected to multiple terminal restriction 

enzymes and subsequently separated by capillary electrophoresis where the 5’ fluorescently 

labeled terminal fragment was detected (Justé et. al., 2008) and compared to an internally 

generated library (Bokulich and Mills, 2012). DGGE was a microbial characterization tool that 

exploited variable regions of 16S ribosomal RNA (rRNA) gene sequence fragments of the same 

length between 200 and 700 base pairs on an acrylamide gel with a denaturing gradient, 

formamide or urea (Muyzer et. al., 1993; Muyzer and Smalla, 1998; Justé et. al., 2008). A 

Guanine and Cytosine (GC) clamp was used to prevent 100% denaturation of double stranded 

DNA (dsDNA) and bands developed once the double stranded DNA separated with exception to 

the GC clamp (Justé et. al., 2008; Bokulich and Mills, 2012).Lastly, dHPLC had utilized 

traditional ion-pair reversed phase HPLC systems with minor modifications to separate same 

length PCR products based on Guanine and Cytosine percent content (Wagner et. al., 2009). 

Similar to other microbial profiling tools, a GC clamp was added to a variable region 16S rRNA 

gene primer (Barlaan et. al., 2005). The sample was processed utilizing a nucleic acid column for 

HPLC; as the acetonitrile denaturing gradient increased, the partially denatured dsDNA strand 

released from the column generating a peak profile (Barlaan et. al., 2005; Wagner et. al., 2009) 

  More recent advancements in NGS have made the platform advantageous and appealing 

for researchers assessing the microbiota of various environments. Commercially available next-

generation sequencer platforms have been developed for genomic and molecular research, such 

as Illumina MiSeq, Ion Torrent, and Pacific Biosciences (Quail et. al, 2012; Fichot and Norman, 

2013; Escobar-Zapeda et. al., 2015; Ricke et. al., 2015, 2017; Comeau et. al., 2017; Roumpeka 

et. al., 2017). Application of 16S rRNA gene-based NGS has enabled researchers to census and 
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generate microbial profiles of complex ecosystems and environmental microbiomes (Ricke et. 

al., 2017). Such an example would be the assessment of the farm to fork continuum in poultry 

production performed by Oakley et. al. (2013). They utilized high-throughput sequencing (HTS) 

to characterize the microbiome of chicken samples that included fecal, litter, carcass rinsates, and 

carcass weeps. Rothrock et. al. (2016) generated a microbial profile of both scalder and chiller 

tank waters from a commercial poultry processing plant over 3 days. Lastly, Kim et. al. (2017) 

reported the microbiota of whole carcasses undergoing the evisceration process. These studies 

identify discernible shifts in the microbiota present over a time and space continuum from live 

production to post evisceration.  

 Metagenomics is a powerful tool for the exploration of microbiomes and their dynamic 

communities, but processing the data can be difficult (Foster et. al., 2012). Typically, the 16S 

rRNA gene is the target sequence because all bacteria and acrchaea contain conserved genomic 

sequence regions and variable regions (V1-V9) specific to taxanomic groups (Robinson et. al., 

2016; Amato, 2017; Ricke et. al., 2017). In some cases, it is more optimal to sequence multiple 

regions or a single region depending on the project objective; the more common choice is either 

the V1 to V3 region or the V4 region (Robinson et. al., 2016; Amato, 2017; Ricke et. al., 2017). 

There is also a limit to how many base reads can be used in the target, commercially available 

HTS like Illumina use base read lengths of 100 to 350 base pair (Robinson et. al., 2016; Amato, 

2017; Ricke et. al., 2017). After sequencing, the raw data will have to be converted into digital 

data (Ricke et. al., 2017). NGS raw data conversion uses databases with DNA sequences of 

organisms uploaded and the DNA matches are only as good as the genomes uploaded in the 

database (Justé et. al., 2008). Therefore, using a well-managed and curated database is best as 

they will minimize the addition of poorly sequenced microbial genomes (Foster et. al., 2012). 
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Some more commonly used databases are Greengenes, Silva, and the Ribosomal database project 

(Bokulich and Mills, 2012).   

Current analysis of metagenomic data is best described by alpha and beta diversity as 

they provide insight into the diversity of the population and the relatedness of the organisms 

associated with the microbiome (Kim et. al., 2017; Rothrock et. al., 2016; Ricke et. al., 2017). 

Alpha diversity assesses the taxonomic complexity of the microbial community by providing the 

total number of genetically distinct operational taxonomic units (OTUs) within a sample (Ricke 

et. al., 2017). Statistical tests commonly utilized to report alpha diversity are as follows: they 

measure the richness (Chao 1), evenness (Equitability), and diversity (Shannon) (Rothrock et. 

al., 2016). Rarefaction curves depict the above mentioned statistical test (Kim et. al. 2017). Beta 

diversity has best been described “accounting for the shared taxa among the sample microbial 

population versus missing taxa among these samples” (Ricke et. al., 2017). The comparison 

between samples can be measured in terms of distance by comparing the presence or absence of 

OTUs and/or their abundance (Robinson et. al., 2016;). As for beta diversity statistical analyses, 

weighted and/or unweighted, three-dimensional principal coordinated analysis (PCoA) UniFrac 

plots exhibit the relative abundance of OTUs among samples and their respective phylogenetic 

distances between the other samples. Commonly used bioinformatics program pipelines are 

mother and QIIME (Schloss et. al., 2009; Schloss, 2010; Caporaso et. al., 2010; Gonzalez and 

Knight, 2012; Huse et. al., 2014; Nilakanta et. al., 2014; Ricke et. al., 2017). 
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Table 4: Microbial profiling tools in analyzing a microbiome 
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Nucleic acid technique (requires PCR) x x x x 

Restriction enzyme usage  x   

Phylogenetic variation x x x x 

Point mutation detection    x  

Quantitative  Pseudo  Pseudo 

Sequence length (base pairs) 200-700 Random 200-1400 100-600 

Throughput  x x x 
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Conclusions 

 The poultry slaughter process is a very complex network as the broiler traverses the farm 

to fork continuum. Evidence strongly supports the impact of horizontal transmission of 

microorganisms throughout live production and evisceration stages. It is imperative for food 

processors to develop and implement strategies to reduce microbial loads for reasons of food 

safety and consumer preference. In order to develop more effective antimicrobial hurdles, the 

employment of non-pathogenic indicator organisms that behave similar to pathogens are 

necessary. In the pursuit of establishing a suitable indicator organism, nucleic acid based 

research tools such as HTS of 16S rRNA genes have begun to provide new insight in regards to 

the microbial characterization of poultry throughout live production and evisceration (Oakley et. 

al., 2013; Handley et. al. 2015; Rothrock et. al., 2016; Kim et. al.,2017; Blevins et. al. 2017). 

Additionally, NGS is more than capable of detecting discernable shifts in the microbiota of 

poultry undergoing stages in mechanical evisceration and in the processing abattoir environment 

(Rothrock et. al., 2016; Kim et. al.,2017) As demonstrated, NGS is the future of molecular 

biology (Oakley et. al., 2013; Rothrock et. al., 2016; Kim et. al.,2017) and as more data of the 

poultry microbiome increases so will the advancements in hurdle technology and food safety.  

Premise for study 

NGS has recently been employed as a tool to characterize whole carcasses in the poultry 

production system. This study will utilize microbiome-based 16S sequencing in conjunction with 

current quantitative plating techniques to profile the microbiota of chicken carcasses and 

determine the efficacy of the multi hurdle interventions in the poultry processing system.  

Commercially processed broilers will be sampled from 3 different plants and at the 

locations with a star in Figure 2. Whole bird carcass rinses will be aseptically collected and 



 

  69 

aliquot plated for quantitative analysis, validating the multi hurdle process. Another aliquot will 

have the DNA extracted for metagenomic analysis. The characterized microbiota will be used to 

validate the multi hurdle interventions employed in evisceration. Additionally, profiling the 

microbiome may identify potential indicator organisms that could be used in the future 

assessments of new antimicrobial interventions within a slaughter facility.  
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Abstract 

 Commercial poultry abattoirs were evaluated to determine the efficacy of the multi-

hurdle antimicrobial strategy employed to reduce the microbial load present on incoming broilers 

from the farm. As next generation sequencing (NGS) has been recently employed to characterize 

the poultry production system, this study utilized 16S High throughput sequencing (HTS) and 

quantitative plating data to profile the microbiota of chicken carcasses and determine the efficacy 

of the multi-hurdle antimicrobial system. Aerobic plate count (APC) and Enterobacteriaceae 

(EB) microbial counts were quantified from whole bird carcass rinsates (WBCR). The remaining 

rinsates underwent microbiome analysis using 16S rRNA gene fragments on an Illumina MiSeq 

and were analyzed by Quantitative Insights into Microbial Ecology (QIIME). The key stages of 

processing were determined to be at rehang, pre-chill, and post chill as per the Salmonella 

Reduction Regulation (75 Fed. Reg. 27288-27294). The APC microbial data from rehang, pre-

chill, and post chill were mean log 4.63 CFU/mL, 3.21 CFU/mL, and 0.89 CFU/mL and EB 

counts were mean log 2.99 CFU/mL, 1.95 CFU/mL, and 0.35 CFU/mL. Next generation 

sequencing of WBCR identified 222 Operational Taxonomic Units’ (OTU’s) of which only 23 

OTU’s or 10% of the population was recovered post chill. Microbiome data suggested a high 

relative abundance of Pseudomonas at post chill. Additionally, Pseudomonas, 

Enterobacteriaceae, and Weeksellaceae Chryseobacterium have been identified as potential 

indicator organisms having been isolated from all processing abattoirs and sampling locations. 

This study provides insight into the microbiota of commercial broilers during poultry processing.  
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Introduction 

The meat processing industry is subject to many regulatory requirements due to the 

association of foodborne illness outbreaks in which Salmonella spp. has been been the etiological 

agent in an estimated 1.0 million food borne illness cases (Scallan et. al., 2011; 75 Fed. Reg. 

27288-27294). Regulatory requirements established in 1996, set forth by the United States 

Department of Agriculture Food Safety Inspection Service (USDA-FSIS), required broiler 

processors to implement both a Hazard Analysis Critical Control Point System (HACCP) and to 

comply with performance standards for Salmonella spp. and Escherichia coli Biotype I (FSIS, 

1996 a,b,c). In 2010, the USDA-FSIS introduced modifications to the regulation that both 

updated existing performance standards and added Campylobacter spp. performance standards 

for broilers (75 Fed. Reg. 27288-27294). Within the Code of Federal Regulations, 9 CFR 381.94 

(USDA-FSIS, 1996b), poultry abattoirs are to test carcasses to demonstrate process control. 

Additionally, the HACCP plan must be validated annually per 9 CFR 417 (USDA-FSIS, 1996a) 

and interventions are apart of the HACCP plan. 

Aside from the regulatory requirments, monitoring the microbial intervention will ensure 

optimal performance in reducing the bacterial load from live hang to post chill (Stopforth et. al., 

2007). Broilers brought into the slaughterhouse have been recorded as having aerobic bacterial 

levels ranging from mean log10 6 to 9 CFU/mL or 4 x 108 to 4 x 1011 CFU/carcass (Kotula and 

Pandya, 1995; Lillard, 1989; 1990). In order to reduce the microbial load effectively, research 

efforts have focused on the reduction and elimination of both pathogenic and spoilage bacteria 

(Kim et. al., 2017; Purnell et. al., 2014; Millilo et. al., 2011; Bauermeister et. al., 2008; 

Northcutt et. al., 2008; Stopforth et. al., 2007; Mulder et al., 1987; Izat et al., 1990; Dickens et 

al., 1994; Yang et al., 1998; Lillard, 1994; Doyle and Waldroup, 1996). Therefore, 
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antimicrobials commonly undergo evaluations by researchers, both academic and industry, to 

investigate the efficacy and for improvements to the current system. A method to measure the 

intervention process is to perform bio-mapping.  

Bio-mapping measures the microbial recovery pre- and post intervention for the whole 

process. Thus, a systematic analysis of each individual hurdle comprising the whole system. This 

map will effectively reveal where intervention strategies are successful or failing. In order to 

measure the effectiveness of commercial intervention strategies against potential pathogens, the 

employment of indicator organism can prove useful (Russel, 2000; Whyte et. al., 2004; James et. 

al., 2006; Handley et. al., 2015; Kim et. al., 2017). For instance, Enterobacteriaceae is a family 

of bacteria that contains pathogens such E. coli O157:H7 and Salmonella spp. (Whyte et. al., 

2004). An indicator organism would ideally be a non-pathogenic microorganism that behaves 

similarly to the environmental conditions as a target human pathogen and the population present 

in large enough quantities to be detected using cost effective microbiological techniques.  

Carcasses entering the abattoir yield high levels of bacteria capable of degrading the 

product quality and/or causing human pathogenesis (Kotula and Pandya, 1995; Lillard, 1989; 

1990; Stopforth et. al., 2007). The identified microbiota present through various stages of food 

processing should enable researchers and industry experts to better develop product and 

intervention strategies (Hunter et. al., 2009; Stern et. al., 2001; Solow, 1993). The bacterial 

populations that are present can be indicative of contamination or it may be inherent to the 

product. Employing next generation sequencing tools, such as 16s RNA gene based microbiome 

sequencing could allow researchers to gain further insight into the microbial populations present 

through various niches in processing.  
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In this study, 16S high throughput sequencing (HTS) was utilized to establish a typical 

microbiome of commercially processed broilers. Furthermore, establishing next generation 

sequencing as an applicable tool, in conjunction with currently available plating techniques, to 

validate and measure the reduction in microorganisms by the antimicrobial multi-hurdle system 

of commercial processors.  Lastly, this study evaluated the microbiome profile to identify 

potential indicator organisms that could benefit the broiler industry during bio-mapping.  

Materials and Methods 

Sample Collection 

 Whole chicken carcass rinsates were collected from three commercial broiler abattoirs. 

The birds were aseptically removed from the production line shackles during 1st shift production; 

each location had been processing for a minimum of 3 hours prior to sampling. A total of 30 

rinsates were collected at each slaughter facility and each facility had 3 sampling points (Figure 

1) defined as rehang, pre-chill, or post chill. In all, 90 carcasses were aseptically collected from 

the processing line and rinsed in pre-chilled 400 mL Butterfield’s Phosphate diluent as 

prescribed in the FSIS-USDA Microbiological Laboratory Guidebook (MLG) (2017). The 

rinsates was placed back into the original Butterfield’s Phosphate diluent container with screw 

lids sealed. They were placed on ice for transport and returned to the testing lab for analysis. 

Upon arrival the samples were placed into the refrigerator.   

Bacterial enumeration 

 All samples were plated as described by the USDA MLG  Chapters 3 and 41.5 on 

following media: 3M Aerobic Plate Count (APC) PetriFilm and 3M Enterobacteriaceae 

PetriFilm (3M Microbiology, St. Paul, MN, USA). Prior to enumeration, samples were re-

suspended in their respective jars by shaking vigorously and subsequently performing 1:10 serial 
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dilutions in Butterfield’s Diluent (BF’s) (Edge Biologicals, Inc., Memphis, TN, USA). One 

milliliter aliquots were directly plated from the sample and dilution tubes onto the corresponding 

PetriFilm. PetriFilm plates were incubated at 35°C in aerobic conditions per the manufacturer’s 

directions. Samples were incubated per the manufacturer's directions and colonies were 

enumerated and calculated as total colony forming units (CFU) per mL for each dilution. 

DNA Extraction 

A 50 mL subsample of the original 400 mL WBCR was transferred into a sterile 60 mL 

conical tube. The conical tubes were spun down using an Thermo Scientific Sorvall Lynx 6000 

(Langenselbold, Germany) at 8,000 x g for 15 minutes. The supernatants were poured off and the 

pellets were subsequently re-suspended in 2 mL of phosphate buffered saline (PBS). DNA 

extractions were performed using a Fisher Scientific AccuSpin Micro 17 (Langenselbold, 

Germany) and a QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA, USA) with modifications 

to increase DNA yield (Park et. al., 2014, 2016). The specific modifications were performed 

prior to the QIAamp Stool Mini Kit (Qiagen, Valencia, CA, USA) and included the addition of 

0.7 mm garnet beads (MO BIO Laboratories Inc., Carlsbad, CA, USA) and vortexing for 1 

minute. The samples were centrifuged and the supernatant was transferred to a fresh 2 mL 

microcentrifuge tube containing 0.1 mm glass beads (MO BIO Laboratories Inc., Carlsbad, CA, 

USA). Those tubes underwent horizontal vortexing for 10 min. and then incubated in a 95°C heat 

block for 6 min. (Park et. al., 2014). QIAamp DNA Stool Mini Kit was performed as prescribed 

by the manufacturer. All samples were analyzed on a Qubit® 2.0 Fluorometer (Life Technology, 

Carlsbad, CA, USA) to determine the isolated DNA concentration followed by dilution to 10 

ng/µL. 
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Library Preparation 

The isolated DNA aliquots were utilized to construct a sequencing library that targeted 

the V4 region of 16S rRNA as suggested by Kozich (2013). Individual DNA samples were 

amplified with dual-index primers through PCR and amplicons were normalized using the 

SequalPrepTM Normalization Kit (Life Technology) per the manufacturer’s recommendation. 

Each sample contained unique barcode sequences, at both the front and end of the PCR 

amplicon, to distinguish each sample sequence in a pooled library. The pooled library contained 

a 5 µL aliquot of each normalized sample and was used for further assays. Once pooled, the 

library concentration and the exact DNA product size were measured using a KAPA Library 

Quantification Kit (Kapa Biosystems, Woburn, MA, USA) through quantitative PCR (qPCR, 

Eppendorf, Westbury, NY, USA) assay and an Agilent 2100 Bioanalyzer System (Agilent, Santa 

Clara, CA, USA), respectively. Based on the qPCR and bioanalyzer results, the pooled library 

was subsequently diluted to 4 nM prior to sequencing. 

Sequencing via an Illumina MiSeq Platform 157 

A pooled library (20 nM) and a PhiX control v3 (20 nM) (Illumina) were mixed with 0.2  

 N fresh NaOH and HT1 buffer (Illumina) to produce the final concentration of 12 pM’s each. 

The resulting library was mixed with the PhiX control v3 (5%, v/v) (Illumina) and 600 uL loaded 

on a MiSeq® v2 (500 cycle) Reagent cartridge for sequencing. All sequencing procedures were   

monitored through the Illumina BaseSpace® website.  

Sequencing Data Processing 

Both demultiplexed R1 and R2 sequencing read (approximately 250 bp in length) files   

were acquired from the Illumina BaseSpace® website and data processing was performed using   
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the Quantitative Insights into Microbial Ecology (QIIME) pipeline (version 1.9.1) (Park et. al., 

2016; Caporaso et. al., 2010). Clustered sequences were used to assemble Operational 

Taxonomic Units (OTUs) tables with 93.93% identity and classified into the respective 

taxonomical level from domain to genus based on the Greengenes 16s rRNA gene database. 

Within the QIIME 1.9.1 package, both alpha diversity and beta diversity data were obtained. 

Alpha diversity data included rarefaction curves for OTUs and Chao1, while beta diversity data 

included weighted and unweighted UniFrac distances to characterize the microbial population. 

Statistical Analysis 

All bacterial counts were log 10 transformed, prior to analyzing the mean and standard 

deviation of each individual plant. A One-way Analysis of Variance (ANOVA) or Tukey’s 

Honest Significant Difference Test was performed using JMP£ (version 13.1.0). Microbiome 

alpha and beta diversity were calculated by using QIIME pipeline (version 1.9.1). Additionally, 

quality metrics from the Illumina Mi-seq runs were obtained from Illumina BaseSpace® website. 

Results 

Quantitative Bio-mapping Results 

The log means of individual and all evisceration microbial data for both APC and 

Enterobacteriaceae are presented in Table 1. The microbial reduction from rehang to post chill 

did have a statistically significant reduction, p-value <0.001, as indicated by Table 2. The APC 

all plant mean log CFU/mL bacterial counts for rehang, pre-chill, and post chill were 4.63, 3.15, 

and 0.81, respectively; Enterobacteriaceae was 2.99, 1.79 and 0.12 respectively. In terms of 

bacterial load per carcass at rehang, pre-chill, and post chill, APC was 17,063,180 CFU/carcass, 

565,015 CFU/carcass, 2,582 CFU/carcass, respectively; Enterobacteriaceae was 390,894 

CFU/carcasss, 24,663 CFU/carcass, and 527 CFU/carcass, respectively. This data was utilized to 
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build the bio-map in Figure 2. The reduction from rehang to post chill for APC was 3.82 log 

CFU/mL and Enterobacteriaceae was 2.86 log CFU/mL. Each step reduced the microbial 

populations significantly and Figure 2 illustrates the reduction throughout the evisceration 

process. In summary, bacterial counts continued to drop significantly from rehang to post chill 

which yielded a negative slope, indicative of a processing system in control.  

Taxonomic Summary 

The microbiome data suggests that 95.01% of the organisms present were identified as 

organisms from the phyla Bacteroides, Firmicutes, Proteobacteria and Actinobacteria. However, 

the most abundant phyla, as noted in Figure 3, was Proteobacteria. Proteobacteria represented 

48.0% of all genomes recovered, followed by Firmicutes with 31.7%, and Bacteroidetes with 

11.3%. During the genome analysis of all the rinsates collected at the genus level, a total of 222 

OTU’s were identified and only 23 OTU’s or 9.65% was recovered after post chill. 

Since one objective was to investigate non-pathogenic indicator candidate organisms, the 

ideal organism would be present at rehang, pre-chill, and post chill. Therefore, the genera were 

first filtered by those observed in the post chill samples only. Therefore, Table 3 contains a list of 

all genera recovered at all three post chill abattoirs. The list of organisms was further filtered by 

requiring all organisms to be present in rehang, pre-chill, and post chill samples. Therefore, 

Figure 4 indicates genera identified during all sampling stages and abattoirs for a total of 7 

OTU’s at the taxonomic level Family or Genus. The two taxonomic groups with the highest 

relative abundance were Pseudomonas and Enterobacteriaceae. The post chill relative 

abundance of Pseudomonas and Enterobacteriaceae was 83.5% and 2.2%, respectively. 

Identified genera with a relative abundance >1.0% were analyzed at the species level (Table 4). 

Few species at post chill were identified (Table 4) and those identified were <1.0%. The OTU’s 
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most abundant were closely related to Pseudomonas, Enterobacteriaceae, and Chryseobacterium 

with a relative abundance of 94.8%, 2.2% and 1.13%.  

QIIME Sequencing Metrics 

During sequencing, 18,879,978 reads were generated and 17,730,162 of those reads 

passed filtering. Therefore, 93.93 r0.53% of the sequence clusters passed filtration with an error 

rate of 1.75 percent. Additionally, BaseSpace reported 82.1% of base calls having a Q30 score or 

better; a quality metric indicating that 1 in 1000 base calls have a possible error. The summarized 

Illumina Mi-Seq read lengths and Shannon Diversity values obtained from QIIME are identified 

in Table 3. The standard deviations associated with Shannon diversity scores were obtained 

using JMP. As expected, the samples exhibited a more diverse population in the less processed 

rehang rinsates and as the carcasses were further processed they become less diverse. Additional 

alpha diversity results are from Chao1 and OTU’s rarefaction curves presented in Figures 5 and 

6. Both Figures 5 and 6 indicate the read lengths and the number of organisms’ present for the 

associated sample location. These curves indicate that the diversity within the sample were 

higher during rehang and became less diverse by the end of post chill. The loss in community 

richness should be expected as the carcasses are undergoing cleaning steps and does resemble the 

finding obtained in the bio-map.   

Beta diversity principle coordinate analyses, Figure 7, depicted the relatedness of 

identified OTU’s between samples. Both weighted and unweighted UniFrac plots (Figure 7) 

were generated for plants 1, 2 and 3. The weighted PCoA UniFrac plot quantitativly measured 

the relative abundance of OTU's among a group. The unweighted PCoA UniFrac plot was a 

qualitative representation of phylogenetic distance based on the presence/absence of OTU’s 

among samples in a group. Initial analysis of the PCoA plots for all organisms present indicated 
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less genetic diversity among the total population of young broilers (Figure 7E). As the birds 

increased in age the population grew in genetic diversity (Figure 7A). However, the inverse was 

true for the PCoA plots generated for Pseudomonas (Figure 8). Rather, the PCoA plots in Figure 

8 indicate that broilers with an older slaughter age had greater similarity in genetic diversity for 

the population of Pseudomonas spp. Since Pseudomanas spp. had the highest relative abundance 

in all samples and locations collected, Figure 8 depicts weighted and unweighted  PCoA plots 

generated for Pseudomonas spp. only. Figure 8 A, C, and E are the weighted PCoA plots for 

Plants 1, 2, and 3. These figures depict shifts in the relative abundance in Pseudomonas spp. as 

the birds increase in slaughter age, where Plant 1 (Fig. 8A) is the oldest and Plant 3 (Fig. 8E) is 

the youngest. As for the unweighted PCoA plots, Figure 8 B, D, and F, indicate a greater 

phylogenetic difference for Pseudomonas spp. in Fig. 8F and an increase in similarity in Fig. 8B.   

Discussion 

 The quantitative data obtained in this investigation demonstrate the successful reduction 

of the bacterial load during the stages of evisceration. The data was utilized to build a biological 

map of the process and the additional microbiome profiles provided further insight into the 

organisms that were most prevalent through the evisceration process. In previous research, 

Zhang and others (2011) reported post chill results with an APC mean log 1.79 CFU/mL. 

Additionally, APC and Enterobacteriaceae exhibited post chill results of mean log 2.86 and 0.66 

CFU/mL, respectively (Handley et. al., 2010). An investigation on the effectiveness of 

chlorinated chill water, James and others (1992) reported post chill carcasses yielding mean log 

2.51 CFU/mL for APC and mean log 1.75 CFU/mL for Enterobacteriaceae. Similarly, Berrang 

and Dickens (2000) noted APC pre-chill and post chill carcass counts of mean log 3.6 CFU/mL 
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and 2.9 CFU/mL. As for pre-chill, Bauermeister (2008) recovered APC mean log CFU/mL 4.24 

from commercially processed carcasses.  

Interestingly, the microbial counts obtained over these last 20 years have decreased as 

expected per changes in processing intervention strategies. Alternative antimicrobial strategies 

have been extensively investigated and are currently approved for the USDA Safe and Suitable 

List, such as formic acid, citric acid, lactic acid, propionic acid, peroxyacetic acid, tri-sodium 

phosphate, chlorine dioxide, acidified sodium chlorite and cetylpyridium chloride (Kim et. al., 

2017; Sofos et. al., 2013; Bauermeister et. al., 2008; Ricke et. al., 2005; Ricke, 2003; Mulder et 

al., 1987; Izat et al., 1990; Dickens et al., 1994; Yang et al., 1998; Lillard, 1994; Doyle and 

Waldroup, 1996). These research studies and reviews have provided evidence that each 

antimicrobial has an optimal mode of application, such as dips, rinses, sprays or chill tank use.  

Additionally, each intervention can be more effective on certain bacterial groups than others. For 

instance, it has been noted previously that citric acid was more effective against Gram positive 

bacteria than Gram negative bacteria (Alonso-Hernando et.al., 2009; Del Rio et. al., 2007a, b). 

Hunter et. al. (2009) reported a reduction in the Campylobacter subspecies diversity from rehang 

to post chill using NGS.  

More recently, microbiome analyses have been performed on the following poultry 

matrices, fecal, litter, carcasses, carcass weeps, and chlorinated chill tank water (Kim et. al., 

2017; Rothrock et. al., 2016; Oakley et al., 2013). These studies noted shifts in the microbiota 

through the production process and noted within this study. The multiple interventions in the 

slaughter and evisceration process reduced both the microbial load and the diversity of the 

microbiome. Kim et. al. (2017) observed a similar sample profile as this study, where 98.7% of 

the phyla present were identified as Firmicutes, Proteobacteria, Bacteriodetes, Actinobacteria, 



 

  101 

and Cyanobacteria. The organisms present in this study have also been previously reported by 

other researchers analyzing meat sample microbiomes or from meat spoilage investigations (Kim 

et. al., 2017; Rothcock et. al., 2016; Handley et. al., 2010; Nychas et. al., 2008; Patsias et. al., 

2006; Borch et. al., 1996). The presence of Pseudomonas in fresh carcasses is consistent with 

observations made by Hanning et al. (2009) when they used PCR to detect and differentiate 

Pseudomonas spp. from retail poultry carcasses. Additionally, Pseudomonas spp. have been 

found to differ between fresh versus refrigerated poultry meat (Arnaut-Rollier et al., 1999; 

Morales et al., 2016).  In characterizing Pseudomonas recovered from spoiled poultry fillets, 

Morales et al (2016) observed considerable genotypic and phenotypic variability between and 

within species. Given the predominance of Pseudomonas observed in the current study and the 

genetic variability reported by Morales et al., (2016), whole genome sequencing of Pseudomonas 

spp. throughout processing and cold storage may reveal a pattern of particular strain succession 

during processing and cold storage. Likewise, the appearance of a particular strain at certain 

phases of processing may be indicative of the types of antimicrobials being employed. Finally, 

particular strains could be predictive indicators for increased likelihood of biofilm formation 

and/or favoring survival of certain foodborne pathogens such as Campylobacter (Hanning et. al., 

2009; Hilbert et. al., 2010; Morales et. al., 2016) 

 In conclusion, the evisceration process largely impacted the microbial diversity on 

carcass quality. This study identified the potential use of NGS in association with quantitative 

microbial data to determine the efficacy of a commercial antimicrobial multi-hurdle system. 

Additionally, broiler carcasses were characterized to establish a typical commercial microbiome 

profile. As for the identification of potential indicator organisms, Pseudomonas, 
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Enterobacteriaceae, and Weeksellaceae Chryseobacterium were identified as potential indicator 

organisms because they were isolated from all processing abattoirs and sampling locations.  
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Figure Legends 
 
Figure 1. Diagram of the broiler slaughter process. The stars represent sampling locations. 
 
Figure 2. Bio-map of evisceration. The bacterial mean log CFU/mL counts for both 
Enterobacteriaceae and aerobic plate counts (APC) 
 
Figure 3. All phylum present through re-hang, pre-chill, and post Chill. 
 
Figure 4. Bio-map of microorganisms through evisceration when the genera were identified at 
all sampling locations and abattoirs. 
 
Figure 5. Chao 1 rarefaction curve. The measure of richness within a community at each 
processing abattoir and testing location within the plant. 
 
Figure 6. OTU rarefaction curves. The number of observed OTU’s versus the length of sequence 
read at each processing plant and testing location within the plant. 
 
Figure 7. Beta diversity between sampling locations and individual processing abattoir. 
Weighted and unweighted UniFrac PCoA plots A) Plant 1 weighted. B) Plant 1 unweighted. C) 
Plant 2 weighted. D) Plant 2 unweighted. E) Plant 3 weighted. F) Plant 3 unweighted. Orange is 
for rehang, blue is for pre-chill, and red is for post chill. 
 
Figure 8. Beta diversity among Pseudomonas spp. between sampling locations and individual 
processing abattoir. Weighted and unweighted UniFrac PCoA plots A) Plant 1 weighted. B) 
Plant 1 unweighted. C) Plant 2 weighted. D) Plant 2 unweighted. E) Plant 3 weighted. F) Plant 3 
unweighted. Orange is for rehang, blue is for pre-chill, and red is for post chill. 
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Table 1. Microbial log CFU/mL reduction on Whole Bird Carcasses Rinses 

Step 
Plant A Plant B Plant C All Plant 

APC Mean EB  Mean APC Mean EB  Mean APC Mean EB  Mean APC Mean EB  Mean 

Rehang 4.92 r 0.28 
a* 

3.37 r 0.24 
a 

4.52 r 0.20 
a 

2.64 r 0.28 
a 

4.45 r 0.29 
a 

2.94 r 0.20 
a 

4.63 r 0.33 
a 

2.99 r 0.38 
a 

Pre-chill 3.94 r 0.50 b 2.65 r 0.44 
b 

2.83 r 0.62 
b 

1.14 r 0.94 
b 

2.69 r 0.12 
b 

1.59 r 0.26 
b 

3.15 r 0.73 
b 

1.79 r 0.88 
b 

Post 
Chill 1.12 r 0.96 c 0.19 r 0.42 

c 
0.90 r 0.51 

c 
0.16 r 0.29 

c 
0.40 r 0.36 

c 
0.00 r 0.00 

c 
0.81 r 0.71 

c 
0.12 r 0.30 

c 
 

* For each individual plant, testing locations that do not share a similar letter designation are significantly different with a p-Value 
<0.01.  
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Table 2. Tukey-Kramer  HSD  for all plant microbial counts log CFU/mL. 

Tukey-Kramer HSD APC Enterobacteriaceae 

Level - Level Difference p-Value Difference p-Value 

Rehang Post Chill 3.82 <0.001 2.86 <0.001 

Pre-chill Post Chill 2.34 <0.001 1.67 <0.001 

Rehang Pre-chill 1.47 <0.001 1.19 <0.001 
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Table 3. All identified microorganisms present at post chill and processing abattoirs 

OTU ID All Plant Mean % 
Abundance 

Pseudomonas 83.51 
Enterobacteriaceae  2.23 
Bacteroides 1.46 
Chryseobacterium 1.13 
Flavobacterium 0.37 
Moraxellaceae  0.36 
Aeromonadaceae  0.30 
Ruminococcaceae  0.21 
Clostridium 0.20 
Mycoplana 0.14 
Psychrobacter 0.14 
Oxalobacteraceae  0.13 
Acinetobacter 0.12 
Sphingobacterium 0.10 
Microvirgula 0.06 
Pseudomonadaceae  0.06 
Paenibacillus 0.04 
Comamonadaceae  0.03 
Lachnospiraceae  0.03 
Clostridiaceae  0.02 
Gammaproteobacteria Other 0.02 
Clostridiaceae Other 0.01 
Pelosinus 0.01 
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Table 4. List of microorganisms present during all testing locations and abattoirs are in bold. 
Species identified when the genera were present in >1.0% relative abundance at post chill. 
 

#OTU ID Rehang % 
Abundance 

Pre-chill % 
Abundance 

Post chill % 
Abundance 

Enterobacteriaceae 4.3 5.8 2.2 
Citrobacter  0.0 0.0 0.0 
Erwinia  0.6 0.0  

Enterobacteriaceae Other 0.1 0.1 0.0 
Serratia  0.0 0.0  

Yersinia  0.0 0.0  

Pseudomonadaceae  1.7 0.1 0.1 
Pseudomonadaceae Other 0.0 0.0 0.0 
Pseudomonas 45.9 60.6 71.7 
Pseudomonas fragi 0.0  0.0 
Pseudomonas Other 10.7 1.9 23.0 
Pseudomonas veronii 0.5 0.2 0.3 
Pseudomonas viridiflava 1.3 0.3 0.1 
Chryseobacterium 4.0 0.2 1.1 
Sphingobacterium  faecium 7.5 0.9 0.1 
Aeromonadaceae  6.8 4.5 0.3 
Microvirgula 4.3 9.1 0.1 
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Table 5. Summary of Illumina Mi-Seq Read Lengths and QIIME Shannon Diversity 

Alpha Diversity 

Sample Location Read Length Shannon Standard Deviation 

Plant 1 

Re-hang 38000 2.98 0.51 

Pre-Chill 38000 2.94 0.42 

Post Chill 38000 0.85 0.64 

Plant 2 

Re-hang 40000 2.52 0.54 

Pre-Chill 40000 2.05 1.56 

Post Chill 40000 1.50 2.19 

Plant 3 

Re-hang 62000 1.90 0.30 

Pre-Chill 62000 1.27 0.54 

Post Chill 62000 NA NA 
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Figure 1. Diagram of the broiler slaughter process. The stars represent sampling locations. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 114 

 

Figure 2. Evisceration microbial reduction. The bacterial mean log CFU/mL counts for both 
Enterobacteriaceae and aerobic plate counts (APC) 
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Figure 3. All phylum present through re-hang, pre-chill, and post chill. 
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Figure 4. Genera present during all sampling stages at all processing abattoirs. 
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Figure 5. Chao 1 rarefaction curve. 
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Figure 6. OTU rarefaction curves.  
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Figure 7. Beta diversity between sampling locations and individual processing abattoir. Weighted and unweighted UniFrac PCoA 
plots A) Plant 1 weighted. B) Plant 1 unweighted. C) Plant 2 weighted. D) Plant 2 unweighted. E) Plant 3 weighted. F) Plant 3 
unweighted. Orange is for rehang, blue is for pre-chill, and red is for post chill. 
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Figure 8. Beta diversity among Pseudomonas sp. between sampling locations and individual processing abattoir. Weighted and 
unweighted UniFrac PCoA plots A) Plant 1 weighted. B) Plant 1 unweighted. C) Plant 2 weighted. D) Plant 2 unweighted. E) Plant 3 
weighted. F) Plant 3 unweighted. Orange is for rehang, blue is for pre-chill, and red is for post chill. 
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Chapter 4 
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Conclusion 
 

 As broilers traverse the farm to fork continuum, the complex variables associated with 

live production and evisceration impact the microbiota of raw post chill chicken carcasses. These 

microorganisms may become etiological agents associated with food borne illness or meat 

spoilage. There are strong indications that horizontal transmission contributes to the distribution 

of bacteria throughout the various phases in the production system. In order for researchers and 

industry processors to continue developing and implementing new antimicrobial reduction 

strategies, establishing an indicator organism could prove to be beneficial. Such an organism 

would behave similarly to pathogens of interest when exposed to environmental stimuli. 

Additionally, the indicator organism could be utilized in studies performed in commercial 

processing facilities. 

 High throughput sequencing of 16S rRNA genes has become more available to the 

research community and have begun demonstrating the impact characterizing the microbiota of 

several sample types through farm to fork continuum. NGS is the future in microbiome analysis 

and provides more detailed data on the effects antimicrobial hurdle may have on one or more 

taxonic groups.  

 The current study identified the potential use of NGS in association with quantitative 

microbial data to determine the efficacy of poultry processing systems. In this study, 

commercially processed carcass microbiomes were characterized to establish a typical 

processing microbiome profile. Quantitative data indicated that the production systems reduced 

the microbial load as expected. The microbiota also reflected a similar reduction where the 

WBCR identified 222 Operational Taxonomic Units’ (OTU’s) at rehang and of which only 23 

OTU’s or 10% of the population was recovered post chill. Microbiome data suggested a high 
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relative abundance of Pseudomonas at post chill and indicated other potential indicator 

organisms to be Enterobacteriaceae, Bacteroidetes, Weeksellaceae, and Chryseobacterium due to 

having been isolated from all processing abattoirs and sampling locations.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 134 

DISSERTATION APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 135 

Figure 1. Plant A rehang, pre-chill, and post chill APC Tukey HSD report with means and 
standard deviation table from JMP.  
 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 3.797000 0.2904373 3.076885 4.517115 <.0001* 

Pre-chill Post chill 2.827000 0.2904373 2.106885 3.547115 <.0001* 

Rehang Pre-chill 0.970000 0.2904373 0.249885 1.690115 0.0067* 
 

 

 

 

 

 



 

 136 

Figure 2. Plant A rehang, pre-chill, and post chill Enterobacteriaceae Tukey HSD report with 
means and standard deviation table from JMP. 
 

 

 

 

 

 

 

 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 3.179000 0.1677489 2.763080 3.594920 <.0001* 

Pre-chill Post chill 2.461000 0.1677489 2.045080 2.876920 <.0001* 

Rehang Pre-chill 0.718000 0.1677489 0.302080 1.133920 0.0006* 
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Figure 3. Plant B rehang, pre-chill, and post chill APC Tukey HSD report with means and 
standard deviation table from JMP. 
 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 3.616000 0.2132507 3.087262 4.144738 <.0001* 

Pre-chill Post chill 1.926000 0.2132507 1.397262 2.454738 <.0001* 

Rehang Pre-chill 1.690000 0.2132507 1.161262 2.218738 <.0001* 
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Figure 4. Plant B rehang, pre-chill, and post chill Enterobacteriaceae Tukey HSD report with 
means and standard deviation table from JMP. 
 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 2.486000 0.2647373 1.829606 3.142394 <.0001* 

Rehang Pre-chill 1.508000 0.2647373 0.851606 2.164394 <.0001* 

Pre-chill Post chill 0.978000 0.2647373 0.321606 1.634394 0.0028* 
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Figure 5. Plant C rehang, pre-chill, and post chill APC Tukey HSD report with means and 
standard deviation table from JMP. 
 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 4.053000 0.1240161 3.745512 4.360488 <.0001* 

Pre-chill Post chill 2.292000 0.1240161 1.984512 2.599488 <.0001* 

Rehang Pre-chill 1.761000 0.1240161 1.453512 2.068488 <.0001* 
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Figure 6. Plant C rehang, pre-chill, and post chill Enterobacteriaceae Tukey HSD report with 
means and standard deviation table from JMP. 
 

 

 

Level  - Level Difference Std Err Dif Lower CL Upper CL p-Value 

Rehang Post chill 2.935000 0.0859328 2.721937 3.148063 <.0001* 

Pre-chill Post chill 1.585000 0.0859328 1.371937 1.798063 <.0001* 

Rehang Pre-chill 1.350000 0.0859328 1.136937 1.563063 <.0001* 
 

 

 

 

 

 

 

 



 

 141 

Figure 7. Curriculum vitae 

John A Handley III 
405 Angel Falls Ln. 

Springdale, AR, 72762 
479-530-3731 

handleysq@gmail.com 
 

EDUCATION 
  

August 2010 – Present, University of Arkansas, Fayetteville, AR 
• Ph.D. Candidate for Cellular and Molecular Biology 
• Dissertation: Microbiome of Commercial Broilers through Evisceration and Immersion 

Chilling 
• Dissertation Advisors: Steven C. Ricke, Ph.D., Ravi D. Barabote, Ph.D., Bennie J. 

Bench, Ph.D., Young Min Kwon, Ph.D., Jeffrey A. Lewis, Ph.D. 
 
June 2011, Advanced HACCP Administrator Course 

• International HACCP Alliance 
 
August 2006 – August 2010, University of Arkansas, Fayetteville, AR 

• M.S. Food Science 
• Thesis: Microbial Ecology of Whole Poultry Carcasses Stored at Room Temperature in 

Commercial Processing Combos 
• Thesis Advisor: Steven C. Ricke, Ph.D., Robert O. Apple, Ph.D., Michael G. Johnson, 

Ph.D., Frank T. Jones, Ph.D. 
   

August 2001 – December 2005, University of Arkansas, Fayetteville, AR 
• B.S. Biology 

 
EMPLOYMENT 

 
Nov. 2016 – Current, Cedar Lake Products, Inc. 
Director of Food Safety and Quality Assurance 
 

Manage and provide direction on all matters pertaining to food safety and quality 
control. Perform annual audits to ensure that the manufacturing facilities are in 
compliance with customer requirements and regulatory agencies. Provide 
consulting services for processors regarding the implementation of GFSI food 
safety schemes, SSOP and GMP related activities that mitigate food safety risks 
associated with daily production activities. Develop, implement, and review data 
over SSOP and GMPs for production plants.  

 
Feb. 2015 – Nov. 2016, Tyson Foods, Corporate Food Safety Research Laboratory 
Food Safety and Technical Auditor 

 
Perform detailed documented audits for plant laboratory procedures that verify the 
plants are compliant with government and/or FSQA Corporate policies and 

mailto:handleysq@gmail.com


 

 142 

calibrating lab equipment while on-site. Both assist and instruct a Microbiology 
Laboratory course to Tyson Foods personnel. Also, share responsibility in 
conducting proficiency testing program for Prepared Foods and Poultry Prepared 
business units. Developing and implementing emergency on-site and remote 
computer training of plant personnel. Other duties include teaching and 
customizing LabWare LIMS computer software, consulting with plant personnel 
in regards to government regulations or Corporate FSQA programs or policies, 
and lab procedures. Provide trouble shooting assistance to processing facilities, 
which includes writing detailed reports covering the finding and 
recommendations of the lab team. Maintaining public folders of the lab manual, 
plant audits, and proficiency testing files as well maintaining and optimizing 
LIMS database for all Tyson Foods production plants. Knowledge of ISO Quality 
System principles and tasks including training, calibration, internal ISO audits of 
corporate and regional labs. 

 
Jan. 2014 – Feb. 2015, Tyson Foods, Raw and Further Processing Plant 
Food Safety Quality Assurance Supervisor 
 

Managed a team of FSQA technicians to ensure the plant had appropriate FSQA 
presence during operations. Responsible for interviewing, monitoring, and 
administering the job duties for FSQA hourly personnel. This includes monitoring 
and maintaining Quality Assurance programs to verify that product specifications 
are met, communicating with all levels of management and USDA, and ensuring 
compliance with applicable regulatory requirements. Performed GMP audits of 
various plant departments and worked with maintenance and production on a joint 
task force to reduce potential foreign material incidence. Assisted in multiple 
FSA, FSQA, and BRC audits by collecting and reviewing Plant.View data along 
with reviewing and implementing new food safety and quality plant programs to 
ensure alignment with corporate mandated policies. Reviewed specifications and 
production data for accuracy. Experience with Plant.View, PPS, MITTS, BOM, 
and EIM.  

 
April 2010 – Jan. 2014, Tyson Foods, Corporate Food Safety Research Laboratory  
Microbiologist 
 

Provide a direct contact to customers and lead a group of Lab 
Microbiologist/Chemist direct reports. Review microbiological data and approve 
results before sending them to customers. Investigate root cause when a corrective 
action is needed. Maintain ISO documents and participate in management reviews 
of our quality system. Also provide consulting services to plant FSQA personnel. 
Trouble shoot problems with equipment. Perform tasks of a Lab Microbiologist V 
on an as needed basis.  

  
Jan. 2006 - April 2010, Tyson Foods, Corporate Food Safety Research Laboratory  
Lab Microbiologist IV and V 

 



 

 143 

Perform general microbiological techniques that include plating and reading of 
PetriFilm for various organisms. Interpret selective agar plates for confirming 
spoilage and pathogenic bacteria isolated from meat samples. Responsible for 
running samples on the Bio Merieux Vidas, Bio Merieux Vitek, the Dupont Bax 
machines, and BioControl GDS system. Work with the Research Team to carry 
out various validation studies for in plant equipment and future chemical and 
physical interventions.  Maintain and perform calibrations on equipment. 
Responsible for inventory.  

 
COMPUTER SKILLS 
 
 Labware LIMS V.5, MS Word, Excel, PowerPoint, JMP, SAS 
 
PUBLICATIONS 
  

Handley J, Hanning I, Ricke SC, Johnson MG, Jones FT, Apple RO.2010. Temperature 
and Bacterial Profile of Post Chill Poultry Carcasses Stored in Processing Combo Held at 
Room Temperature. Journal of Food Science. 75 (8): 515-520 

 
Handley J, Zhaohao S, Park SH, Dawoud T, Kwon YM, Ricke SC. 2015. Salmonella and 
the potential role for methods to develop microbial process indicators on chicken 
carcasses. In Food Safety Emerging Issues, Technologies and Systems (pp. 81-104) 
London, UK: Academic Press 2015 

 
PROFESSIONAL MEMBERSHIP 
 

Member of Arkansas Association of Food Protection 
 

 

 

 

 

 

 

 

 

 



 

 144 

Figure 8. Letter of approval from Tyson Foods, Inc. 

 


	Microbiome of Commercial Broilers through Evisceration and Immersion Chilling
	Citation

	tmp.1523393718.pdf.GUdlK

