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Abstract 

 Targeting of proteins is a critical component of cellular function. A universally conserved 

targeting system of the cytosol utilizes a signal recognition particle (SRP) to target many proteins 

contranslationally to the endoplasmic reticulum in eukaryotes or the inner membrane in 

prokaryotes. A homologous SRP system exists in the chloroplast that delivers light harvesting 

chlorophyll binding proteins (LHCP) to they thylakoid membrane. The chloroplast SRP (cpSRP) 

is a heterodimer composed of a novel 43 kDa subunit and a 54 kDa subunit homologous to a 

component of the SRP system, SRP54. Many details regarding the interactions between the 

proteins of the cpSRP system have been determined. However, the three-dimensional 

arrangement of the cpSRP43 and cpSRP54 domains as well as their influence on one another has 

not been determined. The results of this study demonstrate both cpSRP43 and cpSRP54 are 

characterized by a significant amount of structural flexibility. Specifically, the domains of 

cpSRP43 and cpSRP54 are flexibly linked allowing for rapid conformational sampling of the 

domains. This flexibility allows cpSRP43 to sense the presence of cpSRP54 and subsequently 

alter its affinity for LHCP. Conversely, cpSRP54 domain flexibility allows it to scan cpSRP43 

for the third transmembrane segment of LHCP in a manner surprisingly similar to SRP54 

scanning for signal sequences at the ribosome. Together, the results of this structural 

investigation of the free and bound proteins has lead to the speculation of a cpSRP-LHCP transit 

complex structure capable of rationalizing the steps leading to the integration of LHCP. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
©2016 by Rory Henderson 

All Rights Reserved 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table of Contents 
I. Introduction ........................................................................................................................... 1 

Co-translational Cellular Protein Targeting .........................................................................................1 
Post-translational Cellular Protein Targeting ......................................................................................2 
Nuclear Protein Localization ..................................................................................................................3 
Mitochondrial Protein Localization .......................................................................................................4 
Chloroplast Protein Localization ...........................................................................................................5 
Light Harvesting Chlorophyll Binding Protein ....................................................................................7 
The Chloroplast Signal Recognition Particle Pathway ........................................................................8 
cpSRP Structural Arrangement and Homology ...................................................................................9 
cpSRP43 Interactions ............................................................................................................................10 
cpSRP54 Interactions ............................................................................................................................11 
cpFtsY Interactions ...............................................................................................................................12 
YidC/Oxa1/Alb3 Family of Translocases ............................................................................................13 
Albino 3 Interactions .............................................................................................................................14 
Research Plan .........................................................................................................................................15 
References ..............................................................................................................................................17 
Figures ....................................................................................................................................................22 

II. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes 
Binding of Protein Targeting Substrates .................................................................................. 32 

Abstract ..................................................................................................................................................33 
Introduction ...........................................................................................................................................33 
Methods ..................................................................................................................................................38 

All-Atom Molecular Dynamics Simulations ........................................................................................38 
Shape Based Coarse Grained (SBCG) Modeling ...............................................................................40 
Isothermal Titration Calorimetry ........................................................................................................41 

Results and Discussion ..........................................................................................................................42 
Molecular dynamics (MD) simulations suggest support for multiple conformational states in 
cpSRP43 ..............................................................................................................................................42 
Reducing the flexibility of cpSRP43 upon binding to cpSRP54 increases its affinity for the LHCP 
substrate ..............................................................................................................................................44 
Functional implications for LHCP targeting ......................................................................................46 

Summary an Conclusion .......................................................................................................................48 
References ..............................................................................................................................................49 
Tables and Figures ................................................................................................................................53 

III. Domain Organization in the 54kDa Subunit of the Chloroplast Signal Recognition 
Particle ......................................................................................................................................... 58 

Abstract ..................................................................................................................................................59 
Introduction ...........................................................................................................................................59 
Methods ..................................................................................................................................................62 

Homology Modeling ............................................................................................................................62 
Molecular Dynamics Simulation .........................................................................................................63 
Steered molecular dynamics ...............................................................................................................64 
Bioinformatics .....................................................................................................................................65 
Cloning of cpSRP proteins ..................................................................................................................65 
Co-precipitation assays .......................................................................................................................66 
Transit Complex Formation ................................................................................................................66 
Single Molecule FRET ........................................................................................................................67 



 

 

Small Angle X-Ray Scattering .............................................................................................................68 
Results .....................................................................................................................................................69 

Orientation of the M-domain varies in different SRP54s/Ffhs ...........................................................69 
cpSRP54 exists in multiple conformational states ..............................................................................70 
Differences in the M-domain to NG-domain interaction exist between cpSRP54 and Thermus 
aquaticus Ffh .......................................................................................................................................71 
Interaction between the intrinsically disordered M-domain linker and finger loop in cpSRP54 is 
crucial for domain organization .........................................................................................................73 
Mutation in the M-domain and deletion of the finger Loop hinder substrate binding .......................75 

Discussion ...............................................................................................................................................77 
References ..............................................................................................................................................81 
Figures ....................................................................................................................................................87 
Supporting Material Methods ..............................................................................................................92 

Bioinformatics .....................................................................................................................................92 
Supporting Material Results ................................................................................................................94 

Bioinformatics .....................................................................................................................................94 
M-domain to NG-domain Interaction Details .....................................................................................95 
M-domain Recouping Interaction Residues ........................................................................................96 
Control Experiments for smFRET .......................................................................................................96 

Supporting References ..........................................................................................................................98 
Supporting Tables and Figures ............................................................................................................99 

IV. Ribosome Mimicry: cpSRP54 Scans the cpSRP43 “Exit Tunnel” for TM3 ........... 113 
Abstract ................................................................................................................................................114 
Introduction .........................................................................................................................................114 
Methods ................................................................................................................................................116 

Expression and Purification ..............................................................................................................116 
Ensemble FRET .................................................................................................................................116 
Single Molecule FRET ......................................................................................................................118 
SAXS Data Collection & Fitting .......................................................................................................118 
FRET PDA ........................................................................................................................................120 

Results & Discussion ...........................................................................................................................121 
cpSRP54 cycles rapidly between three states ...................................................................................121 
The cpSRP54 M-domain remains flexible when bound to cpSRP43 .................................................122 
The cpSRP54 scans the TM3 exit site of cpSRP43 ............................................................................125 

Conclusions ..........................................................................................................................................128 
References ............................................................................................................................................131 
Figures ..................................................................................................................................................134 

V. An Efficient Algorithm for the Generation of Conformational Ensembles for Fitting of 
Small and Wide Angle X-ray Scattering Data ....................................................................... 141 

Abstract ................................................................................................................................................142 
Introduction .........................................................................................................................................142 
Results and Discussion ........................................................................................................................144 
Conclusion ............................................................................................................................................145 
Experimental Methods ........................................................................................................................146 

Expression and Purification ..............................................................................................................146 
SAXS Data Collection and Processing .............................................................................................146 

Conformational Ensemble Generation Method ...............................................................................147 
References ............................................................................................................................................156 
Figures ..................................................................................................................................................160 



 

 

IV. Conclusion ..................................................................................................................... 163 
References ............................................................................................................................................168 
Figures ..................................................................................................................................................169 

 
 
 

 

 

 

 

 

 

 



 

 

Portions of chapters II and III have been previously published: 
 
II. Gao, F. et al. Regulation of Structural Dynamics within a Signal Recognition Particle 

Promotes Binding of Protein Targeting Substrates. Journal of Biological Chemistry, 
doi:10.1074/jbc.M114.624346 (2015). 

 
III. Henderson, Rory C. et al. Domain Organization in the 54-kDa Subunit of the Chloroplast 

Signal Recognition Particle. Biophysical Journal 111, 1151-1162, 
doi:10.1016/j.bpj.2016.08.004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 1 

 

I. Introduction 

Co-translational Cellular Protein Targeting 

 Targeting of proteins to their proper cellular location is a critical aspect of proper cellular 

function. Many targeting systems exist to ensure proper localization of proteins in the cell. Of the 

30% of proteins destined for the endoplasmic reticulum (ER), most are targeted co-

translationally by the signal recognition particle (SRP) pathway. This pathway delivers proteins 

to the endoplasmic reticulum in eukaryotes or the inner membrane in prokaryotes.1 This delivery 

utilizes an N-terminal sequence recognized by a signal recognition particle (SRP). The SRP 

binds to the signal sequence during synthesis, halting the process while the m-RNA-ribosome-

peptide-SRP complex reaches the appropriate SRP receptor on the membrane of the endoplasmic 

reticulum (ER).2 Binding and hydrolysis of GTP results in the release of the SRP from the 

ribosome/peptide chain complex.  Thereafter, protein synthesis continues through a translocation 

pore, co-translationally placing the protein into the ER lumen.1,3 Once in the lumen the N-

terminal signal sequence is cleaved. Additional sequences on the protein then allow for its 

direction to remain in the ER or move on to the Golgi apparatus, lysosome or exterior of the cell 

(Figure 1A. a.).2  

 The signal recognition particle is composed of a 54kDa GTPase protein, SRP54 in 

eukaryotes and archaea or Ffh in prokaryotes, and an SRP RNA. SRP54/Ffh is contains a four 

helix bundle N-terminal N-domain, a GTPase G-domain, and a methionine rich M-domain. The 

M-domain contains a hydrophobic pocket responsible for binding hydrophobic signal sequences 

as they emerge from the ribosome. The M-domain is linked to the G-domain via a flexible 

linking segment that allows the M-domain to change position relative to the N and G-domains.1 



 

 2 

In fact, the M-domain positioning undergoes significant changes in position throughout the 

signaling process.1 The SRP RNA is a universally conserved element in the cytosolic SRP 

pathway, acting as a scaffold for changes in the M-domain positioning and as a tether to 

accelerate NG-domain interaction with its receptor protein.1 The SRP receptor (SR) protein in 

prokaryotes, FtsY, is homologous to the NG-domain of SRP54, containing an N-domain and 

GTPase G-domain. It contains an additional membrane binding segment termed the A-domain at 

its N-terminus.1,4,5 The eukaryotic receptor is a heterodimer composed of an SRP54 binding α-

subunit homologous to FtsY and a membrane associating GTPase β-subunit. The β-subunit 

GTPase element shares significant homology with the Arf family of GTPases. The GTPase 

active sites of both the SRP54/Ffh and the FtsY/α-subunit face one another in the bound 

configuration. However, association kinetics between the domains in the absence of SRP RNA a 

quite slow, as significant domain reorganization is required for efficient binding. The SRP RNA 

has therefore been proposed to act as a transient tether for SR to ensure these transition may 

occur. Upon binding of the receptor the RNC-SRP-SR complex is delivered to a translocation 

pore for delivery across or into the membrane.1 This translocation pore is a transmembrane 

protein termed Sec61p in eukaryotes or Sec-YEG in prokaryotes. Upon delivery of the RNC to 

the translocation pore GTP hydrolysis signals the handover of cargo, destabilizing the SRP-SR 

interaction and resulting in the recycling of the SRP. The protein is then synthesized through the 

pore or into the membrane via a lateral gate in the translocon (Figure 1A & B).1  

Post-translational Cellular Protein Targeting 

 Differing from the typical SRP-mediated targeting of cellular proteins, proteins destined 

for the nucleus, mitochondrion and chloroplasts follow an SRP-independent, post-translational 

path. Protein-specific chaperones direct the targeting process, which is generally more 
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complicated than the SRP mediated targeting due to the many different locations for the proteins 

in these organelles. These chaperones bind the completely synthesized protein in a conformation 

conducive to import and translocation across the organelle membrane. As in the ER lumen, the 

N-terminal sequence is cleaved, after which sequences on the native protein may be used for 

further targeting in the organelle. This is the case for thylakoid proteins, for instance, which must 

undergo further chaperone directed targeting to reach their intended location within the 

chloroplast.2 Targeting to other organelles follows a similar scheme, utilizing signal 

sequence/chaperone specific receptors to capture proteins on the membrane surface.6  

Two SRP-independent paths exist for targeting of bacterial proteins to the inner 

membrane as well. SRP-independent transport of cytosolic bacterial proteins occurs via the 

SecB-dependent and twin-arginine translocation (Tat), ΔpH pathways.7,8 The SecB path uses a 

tetramer of acidic, 17kDa subunits. SecB binds the mature domain of the pre-protein maintaining 

it in a loosely folded state. SecB then transfers the pre-protein to Sec for for transport across the 

membrane.8,9 The Sec-independent Tat transport requires a pH-gradient across the membrane. 

The Tat pathway depends on a twinned arginine signal sequence at the N-terminus containing an 

SRR-X-FLK consensus motif and is homologous to a chloroplastic pH-gradient dependent 

targeting system.7,8 

Nuclear Protein Localization 

 Transport across the nuclear envelope involves a complex of nucleoporin proteins termed 

nuclear pore complexes (NPCs). While some small proteins passively diffuse through the NPC, 

larger proteins require chaperones called karyopherins (importins and exportins). Transport is 

controlled via binding of karyopherins to a small GTPase termed Ran. Ran’s activity is 

controlled by exchange between GTP and GDP bound states. GTPase-activating proteins (GAPs) 
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activate the GTPase activity of Ran while guanine nucleotide-exchange factor proteins (GEFs) 

facilitated exchange of GDP for GTP. After traversing the pore for nuclear import, the protein-

karyopherin complex is dissociated via Ran-GTP binding. For protein export, Ran-GTP bound 

karyopherins bind the export cargo and traverse the NPC. Once in the cytosol GAPs facilitate 

GTP hydrolysis and thereby the release of the karyopherin and target protein. The protein NTF2 

may then facilitate Ran transition back into the nucleus where GEFs exchange Ran GDP for GTP 

to allow for another cycle of transport. Karyopherins typically recognize cargo based upon 

unstructured loops or tails in the targeted protein. However, some nuclear proteins are targeted 

based upon fold or by piggyback binding partners containing nuclear localization signals. For 

instance, proteins such as NTF2 and mRNA export protein PAP:p15 bypass the need for 

karyopherins for transport across the nuclear pore.6 

Mitochondrial Protein Localization 

 The majority of mitochondrial proteins are encoded in the nucleus. A small number of 

tRNAs, rRNAs and respiratory complexe proteins are encoded in the mitochondrial genome. 

Transport of nuclear encoded proteins synthesized in the cytosol is controlled by the translocase 

of the outer membrane (TOM). Mitochondrial matrix proteins are directed via an N-terminal 

amphipathic sequence. The polar portion of the sequence carries a net positive charge recognized 

by the translocase at in inner membrane (TIM) during transport across TOM to the inner 

membrane space. This ATP driven process continues until the protein is transported into the 

matrix where the signal sequence is cleaved and degraded. Transport to the intermembrane space 

utilizes TOM and TIM as well. However, upon recognition of a specific hydrophobic sequence, 

TIM stops transport, releasing the protein to the intermembrane space where the signal is 

cleaved. An additional mechanism for intermembrane protein transport involves TOM and inner 
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membrane-anchored mitochondrial intermembrane space assembly machinery. This mechanism 

is utilized by certain cysteine rich proteins which utilize disulfide bond formation for transport. 

Inner membrane proteins utilize a path similar to the TOM/TIM intermembrane space proteins 

or, after transport in the cytosol by chaperones such as Hsp70 to TOC, are recruited by special 

chaperones in the intermembrane space to facilitate TIM insertion. Finally, outer membrane 

proteins are imported as in inner membrane protein involving TOM or by TOM-independent 

means.6  

Chloroplast Protein Localization  

Plastids are a ubiquitous, heterogeneous family of organelles in plants and algea that 

include chloroplast and others such as starch storing amyloplasts and carotenoid collecting 

chromoplasts.10 Chloroplasts are a type of plastid containing 6 distinct compartments (Figure 3). 

In addition to photosynthesis, the chloroplast performs functions such as fatty acid and amino 

acid biosynthesis.11 The chloroplasts of eukaryotes contain ~3,000 proteins of which 350 are 

thylakoid membrane proteins. Most chloroplast proteins are nuclear encoded and therefore 

follow a post translational targeting scheme.12 Targeting for chloroplast proteins involves the 

general steps mentioned above: direction to the chloroplast, movement across the two envelope 

membranes and localization within the compartment. Typically, an N-terminal transit peptide 

directs proteins through both membrane structures within the chloroplast and is subsequently 

cleaved. In some cases, this transit peptide is bipartite, with one transit sequence responsible for 

transport to the stroma and the other to direct the protein further once in the stroma. Each is 

cleaved as the protein reaches its destination. In addition to, or in place of, a transit peptide, some 

proteins contain additional targeting sites within their structures (Figure 2).11 
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 While the signal peptide provides information regarding where the proteins should go, 

the primary method for helping them reach their destination involves molecular chaperones such 

as Hsp70 and various import machinery.10,11 The proteins first reach the outer envelope 

membrane of the chloroplast where they become reversibly associated with the membrane 

through protein-protein interactions and signal peptide interaction with the membrane. 

Translocation thereafter requires the input of ATP.11 The proteins TOC and TIC (Translocon at 

the Outer and Inner envelop membrane of Chloroplasts respectively) are responsible for 

translocation of most cytosol synthesized proteins bound for the chloroplast. After the first 

membrane interaction step the TOC system begins the translocation of the protein followed by 

the simultaneous transfer of the protein through the TIC system into the stroma where the transit 

peptide is cleaved, leaving the mature protein in the stroma.12,13 Thereafter, proteins destined for 

the thylakoids may use one of four different localization systems:  the twin-arginine translocation 

(Tat) ΔpH pathway, a spontaneous insertion mechanism, a chloroplast Sec-dependent (cpSec) 

path and the cpSRP path.3,11,12,14,15  

The cpSec-dependent pathway is a bacterial Sec-pathway homologue responsible for the 

delivery of certain photosynthetic proteins, acting as a translocon for the thylakoid. The cpSec 

pathway is composed of bacterial homologues of the ATP-dependent SecA translocation motor 

and SecYE translocation pore. Interestingly, typical bacterial Sec proteins including SecB, SecG, 

SecD, SecF and YajC are not found in the Arabidopsis genome suggesting the cpSec system 

operates on a minimum of translocation machinery.10,11 The cpSec pathway delivers both luminal 

proteins, such as plastocyanin and the 33kDa oxygen-evolving protein, and thylakoid membrane 

proteins such as D1 (Figure 2A).10 
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The chloroplast Tat ΔpH pathway is homologous to the bacterial Tat pathway, utilizing a 

twin arginine motif in its signal sequence to facilitate targeting by Tat proteins.16 The chloroplast 

Tat targeting system is composed of Hcf106,  Tha4, and cpTatC, all orthologs of the E. coli. Tat 

system. cpTatC is an integral membrane protein that binds Hcf 106 to form a ~700kDa complex. 

The complex binds precursor proteins with cpTatC recognizing the twin-arginine motif. 17 Upon 

recognition of cargo Tha4 oligomerizes with the complex resulting in transport of the protein 

across the membrane. The primary driver of translocation is the pH gradient across the thylakoid 

membrane.18 Interestingly, it was shown that the chloroplast Tat system uses the transmembrane 

electric potential as well as the proton gradient to facilitate protein transfer.19 Two models for 

translocation have been proposed, one involving the formation of a translocation pore and 

another involving temporary weakening of the bilayer to allow the folded protein to transition 

through the membrane (Figure 2B).18 

Several proteins destined for the thylakoid insert spontaneously without a requirement for 

any of the typical targeting and translocation machinery present in the chloroplast. These include 

photosystem proteins PsbS, PsbW, PsbX, PsbY, and PSI-G.20,21 The significant hydrophobicity of 

the transmembrane helices is proposed to play a central role in the spontaneous insertion 

mechanism. However, loop regions have been shown to play an important role as well (Figure 

2D).21 

Light Harvesting Chlorophyll Binding Protein 

The photosystems to which light harvesting chlorophyll binding proteins (LHCPs) belong 

are located in the thylakoid membrane. LHCP, a nuclear encoded protein, follows the cpSRP 

path for its integration. These three transmembrane helix, light harvesting complexes act as 

antennae, carrying chlorophylls a and b as well as carotenoid molecules all with specific 
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absorption bands in the visible spectrum (Figure 5D).  The molecules absorb light and facilitate 

chemical energy production in plants.22,23 LHCPs are the most abundant membrane proteins on 

earth and comprise roughly one third of the thylakoid membrane proteins, binding half of all the 

chlorophyll molecules.15,22  It is synthesized in the cytosol where a transit peptide directs its 

movement across both membranes of the chloroplast through the TOC and TIC systems. The 

transit peptide is subsequently cleaved in the stroma where LHCP becomes involved with 

another transit complex, cpSRP.24,25 

LHCP is targeted to the thylakoid membrane in a GTP dependent manner by the cpSRP 

system located in the stroma and consisting of a 54kDa protein homologue of the cytosolic SRP 

system and a unique 43kDa protein, each lacking the RNA present in the cytosolic system (figure 

4).15,26 LHCP has a large hydrophobic surface leaving it prone to aggregation, hence the need to 

form a soluble complex in the stroma.27,28 It was shown that cpSRP54, cpFtsY and C-term Alb3, 

all interaction partners in the cpSRP system, could not prevent LHCP aggregation while 

cpSRP43 could. Further, LHCP copurifies with cpSRP43 in a manner that is not affected by salt 

concentrations. A Kd value of 97nM was obtained for this interaction demonstrating a high 

affinity of LHCP for cpSRP43.27 This evidence indicates cpSRP43 is critical for the interaction 

with LHCP in this pathway and that the interaction is predominately hydrophobic in nature.28 

The Chloroplast Signal Recognition Particle Pathway 

Using knock-out mutants known as ffc and chaos, indicating the removal of coding 

regions for cpSRP54 and cpSRP43 respectively, early investigations demonstrated that plants 

grown without either of these two proteins produce pale green leaves.( 6, 7) Removal of cpSRP54 

through imunoprecipitation in vitro results in a reduction in LHCP integration. However, it was 

shown LHCP insertion did not increase upon reintroduction of cpSRP54 suggesting another 
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protein is involved in the process. This protein was identified as cpSRP43. Plant mutants lacking 

the genes coding for cpSRP43, CAO mutant, were deficient in chlorophyll b, only present in 

LHCP proteins, and certain carotenoids demonstrating the importance of cpSRP43 in the 

targeting of LHCPs to the thylakoid membrane. This deletion reduces oxygen production, and 

therefore light harvesting, without effecting electron transport in the photosystems.15 It was 

shown that seven LHCP’s were deficient in these plants.  Removal of the gene coding for the 

protein ClpC in addition to cpSRP54 resulted in plant death, suggesting ClpC compensates for 

the lack of cpSRP54. Considering this and that about half of the stromal cpSRP54 is bound to 

ribosomes, cpSRP54 is likely involved in cotranslational targeting of many chloroplast 

proteins.14,15 In fact, the ffc mutant results in several photosystem reaction center proteins failing 

to reach their intended location.29 Important for the LHCP targeting path, cpSRP43 has been 

shown to operate absent cpSRP54 and cpFtsY. This was shown using cpSRP43ΔCD2 that is 

unable to bind cpSRP54.12 The deletion of cpSRP54 resulted in similar deficiencies as well as a 

reduction in several chloroplast encoded thylakoid proteins.14,30  

cpSRP Structural Arrangement and Homology 

The domains of cpSRP43 include three chromodomains and four ankyrin repeats. 

Chromodomain 1 (CD1) at the N-terminus is fused to ankyrin 1 (Ank1) with chromodomain 2 

(CD2) following from ankyrin 4 (Ank4) and followed thereafter by chromodomain 3 (CD3) 

(Figure 5A). Pairs of chromodomains are usually flexibly linked, however, this does not appear 

to be the case for cpSRP43.31 The second protein of cpSRP, cpSRP54, is homologous to SRP54 

in the cytosol, containing a four helix bundle N-domain, five conserved GTPase elements that 

make up a G-domain and a C-terminal M-domain (Figure 5B). The M-domain of SRP54, named 

for its methionine rich composition, is responsible for binding RNA as well as containing a 
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hydrophobic interaction site.12,32,33 The M-domain of cpSRP54 may bind the transmembrane 

domains of LHCP, although some investigations are conflicting.26,34 Structures are available in 

the protein data bank for eukaryotic SRP54 and prokaryotic SRP54. The eukaryotic G-domain of 

SRP54 is 62% similar to cpSRP54 while it is 73% similar to the prokaryotic SRP54. The M-

domain’s homology for the eukaryotic and prokaryotic proteins to cpSRP54 is 52% and 51%, 

respectively.33  

An early study utilizing gel filtration and crosslinking demonstrated the possibility that 

cpSRP43 exists as a dimer. A subsequent investigation identified the location of the dimerization 

to be at the third and fourth ankyrin repeats.31 The entire cpSRP complex was determined to be a 

heterotrimer consisting of two cpSRP43 molecules and one cpSRP54 molecule. However, 

conflicting reports suggest the cpSRP43 dimer is not a part of the functioning cpSRP system. It 

was also demonstrated that cpFtsY exists as a monomer.35 

cpSRP43 Interactions 

The 43kDa protein, cpSRP43, binds an 18 reside sequence on LHCP termed L18 (Figure 

5D).3,34 L-18 occurs in LHCP between the second and third transmembrane domains and binds 

cpSRP43 between ankyrin two to four. Furthermore, a deletion mutant of cpSRP43 containing 

only the N-terminal region (CD1-Ank1) still interacts with L18, albeit weaker than with full 

length cpSRP43.31 However, other data has shown that deletion of any of the ankyrin repeats 

results in a loss of binding.27 LHCP is bound in an extended form except for a DPLG type I turn. 

Without this turn it was shown in one study that L18 would not bind cpSRP43 while another 

investigation showed it was not necessary.34 Hydrophobic interactions appear to play an 

important role as well since mutation of key hydrophobic residues result in a reduction in 

binding strength. Mutation of the tyrosine on the “hook” region of ankyrin 4 appeared to 
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eliminate binding altogether. However, another study could not confirm this, demonstrating that 

the L18 interaction was stabilized by complex formation with cpSRP54.28,34 It was also 

demonstrated that positive charge around this site is important for binding. The L-18 region 

bound to cpSRP43 is very similar in appearance to unbound LHCP in the membrane, forming a 

complex around the tyrosine hook that is similar to the way LHCP interacts with a carotenoid 

molecule.36 Some studies have also demonstrated the need for transmembrane segment 3 (TM3) 

for efficient interaction between LHCP and cpSRP43.3,34 In fact, full length LHCP was shown to 

bind cpSRP43 with a 60-fold great affinity that the L18 peptide.28 

cpSRP54 Interactions 

Binding studies investigating the interaction between cpSRP54 and cpSRP43 have 

demonstrated that the C-terminal chromodomains are necessary for the interaction. Using 

deletion mutants it appeared that residues 259-282, at the N-terminus of chromodomain 2, were 

necessary for cpSRP54 interaction with cpSRP43 in addition to amino acids 259-339 of the third 

chromodomain.31 It was demonstrated that CD2 alone could interact with cpSRP54, although 

weaker than full length cpSRP43.32,37 The M-region of cpSRP54 appears to be responsible for 

this interaction.31 In another study it was shown that binding would occur in the absence of CD3 

and that CD2 interacts with cpSRP54 using an RRKR sequence on CD2.36 An x-ray crystal 

structure of cpSRP43ΔCD3 complexed with the C-terminal tail of the M-region of cpSRP54 (M-

peptide) showed the interaction takes place between Ank4 and CD2 on cpSRP43. A twinned 

cage-like interaction between two of M-peptide’s arginines with both aromatic and one 

negatively charged amino acid in cpSRP43 mediates the interaction, forming a beta-completed 

structure. It was shown through mutation, however, that the negative charge was not the primary 

contributor to this interaction. Small angle x-ray scattering data demonstrated that CD2 is 
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flexible and is brought closer to Ank4 in the presence of the M-peptide (56). Another study 

demonstrated the importance of the negatively charged α-helix of CD2 for the interaction.32 In 

fact, CD2 appears to undergo significant structural changes upon binding the cpSRP54 C-

terminal tail region.37 Other investigations have demonstrated the ability of cpSRP54 to interact 

with cpSRP43 with the C-terminal 26 residues containing the M-peptide removed. 

Chromodomain 1 of cpSRP43 has been shown to regulate the GTPase activity of cpSRP54. In 

vitro integration studies investigating LHCP integration into whole thylakoids demonstrated a 

marked reduction for integration when a cpSRP43ΔCD1 mutant was used in place of cpSRP43. 

However, this deletion did not affect transit complex formation suggesting CD1 is involved in 

function downstream. This same investigation demonstrated negative modulation of GTPase 

activity of cpSRP by CD1.38 Removal of CD3 has been shown in several cases to have little 

effect on the interaction of cpSRP54 with cpSRP43.32,36,38     

cpFtsY Interactions 

In order to complete targeting of LHCP to the thylakoid membrane, the protein cpFtsY 

interacts with cpSRP54. This is similar to the bacterial SRP system which also contains a 

homologue to cpFtsY. The cpFtsY receptor is composed of domains homologous to the cpSRP54 

NG-domains preceded by an A-domain (Figure 5C). This protein exists in both a membrane 

bound and stromal pool where an N-terminal, amphipathic helix, termed the A-domain, mediates 

membrane association. GTP hydrolysis by both cpSRP54 and cpFtsY is required to effectively 

transfer the complex to the membrane insertion apparatuses.24 Utilizing non-hydrolyzable GTP it 

was shown that the cpSRP-cpFtsY complex is stable; however, the complex is will not 

disassemble 39. Upon arrival to the thylakoid membrane, the LHCP-cpSRP complex then 

interacts with the membrane bound protein Albino 3. The interaction takes place between 
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cpSRP43 and the C-terminus as well as a transmembrane helix in Albino 3.26 To determine the 

necessity of the three proteins for LHCP integration, all were placed in a thylakoid containing 

solution in addition to GTP. Together, efficient integration of LHCP was achieved but the 

removal of any component, including GTP, eliminated integration.35 Interestingly, while no 

ATPase was found in this system, the presence of ATP stimulates LHCP integration.12 

YidC/Oxa1/Alb3 Family of Translocases 

Albino 3 (Alb3) belongs to a family of homologous proteins involved in nucleotide 

triphosphate hydrolysis independent membrane protein insertion and translocation pathways. 

These proteins are YidC, in the inner membrane of bacteria, Oxa1, in mitochondrial inner 

membrane, and Alb3 in chloroplast’s thylakoid membrane. Usually more than one Oxa1 and/or 

Alb3 homologs are found in eukaryotes 40,41. For example, in Arabidopsis thaliana there are six 

homologs, three in the mitochondria and three in the chloroplasts. Both Alb3 and Oxa1 contain 

five transmembrane helices in an NinCout orientation in the thylakoid  and mitochondrial inner 

membranes repectively (Figure 5E).41,42 YidC contains six transmembrane domains with the C-

terminus exposed to the cytosol.43 Between the first and second transmebrane segments of YidC 

is an additional periplasmic, soluble protein domain. YidC function in a Sec-dependent and Sec-

indepdenent fashion for insertion of innermembrane proteins. It has also been shown to act as a 

chaperone for some innermembrane proteins helping them to fold properly. In particular, it plays 

a critical role in respiratory complex delivery. Interestingly, YidC can be replaced by both Oxa1 

and Alb3 in E. coli for membrane protein insertion, demonstrating the significant similarity 

between the homologues. Cryoelectron microscopy has demonstrated the ability of YidC and 

Oxa1 to form dimers while associated with the ribosome leading to the speculation that they may 

form translocation pores. While the periplasmic domain was observed to facilitate the interaction 
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between YidC and SecF, its deletion did not interfere with Sec-dependent translocase activity. 

However, residues in TMs 2, 3 and 6 (TMs 1,2 and 5 in Oxa1) are critical for its activity.42 A 

recent YidC structure provides a Sec-independent mechanism by which transmembrane 

segments may be inserted. Polar residues lining the transmembrane helices were proposed to 

draw in negatively charged terminal segments in the TM-proteins, lowering the transition energy 

needed for translocation.  However, this mechanism is unable to explain the insertion of all YidC 

translocase Sec-independent proteins.43 Oxa1 is observed to play a similar role in the 

mitochondrial inner membrane, playing an important role in the transport of many energy-

transducing respiratory complexes. Interestingly, Oxa1, in addition to its translocase activity, 

was shown to act as a ribosome receptor for insertion of Cox II. This receptor activity required 

the C-terminus of Oxa1. Indeed, the C-terminus in the YidC/Oxa1/Alb3 familily plays a 

universally, albeit non-identical, role in their translocase activity. As in YidC, Oxa has been 

observed to ensure proper folding/assembly of proteins as well.42 Alb3 is involved in both post 

and co-translational thylakoid localization of proteins including the cpSRP path and the Sec-

dependent paths.22,39,40,42 Furthermore, Alb3 is observed to play a role in folding and assembly of 

thylakoid membrane proteins, similar to the activities of YidC and Oxa1.42 An albino phenotype 

is observed for plants that do not produce Albino 3 and is seedling lethal.14,44  

Albino 3 Interactions 

The C-terminus of Alb3 (C-term Alb3) has been shown to be disordered due to it’s larger 

than predicted Stokes radius and by the results of circular dichroism (CD) experiments. C-term 

Alb3 binds cpSRP43, forming alpha helices as monitored by CD.22,39 This binding results in an 

increased thermal stability for cpSRP43 (~8oC).  The interaction occurs at the CD2CD3 domains 

of cpSRP43 and the ankyrin region.22,45,46 The removal of CD3 reduces the binding affinity by 
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one fifth. However, it is believed CD2 plays a critical role in binding. This interaction appears to 

be mediated by aromatic residues on cpSRP43 and an SKRS sequence at the extreme C-terminus 

of Alb3 as well as an AKRS sequence near the center of the C-term Alb3 protein.22,45 

Demonstrating the importance of positive charge for this interaction, mutation of lysine or 

arginine to alanine in the C-terminal most site results in a tenfold decrease in binding affinity and 

mutating both abolishes binding. C-term Alb3 is able to bind cpSRP43 in the presence of 

cpSRP54 although the binding strength appears to be reduced.22 An interaction between 

cpSRP43 and the fifth transmembrane helix of Alb3 has also been detected in addition to two 

stromal loops.45 An interaction between Alb3 and LHCP in the complex has also been observed 

through co-purification of C-term Alb3 with LHCP.47 Interestingly, full length Alb3 was 

demonstrated by blue native gel chromatography to exist in a monomeric and dimeric state.45 C-

term Alb3 has also been shown to stimulate GTP hydrolysis by cpSRP54/cpFtsY upon binding 

cpSRP43 which is an important step in regulating the release of LHCP.46 It has been 

demonstrated that cpSRP43 is able to co-localize with Alb3 and continue LHCP integration in 

the absence of cpSRP54. However, it is still possible that other cellular machinery is necessary 

for this cpSRP54 absent integration.  

Research Plan 

 Few structural details for the proteins in the cpSRP dependent targeting of light 

harvesting proteins have been revealed. Crystal structures for cpSRP43 have determined the 

LHCP L18 interaction site on cpSRP43 as well as the interaction site for a short cpSRP54 

derived peptide. However, these structures lack the N-terminal tail and third chromodomain of 

cpSRP43. Additionally, a nearly complete crystal structure of cpFtsY has been determined. 

However, no three-dimensional structure for cpSRP54 or its domains has been determined. 
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Indeed, little is known regarding the structural details of the LHCP targeting and integration 

mechanism owing to lack of information regarding the spatial arrangement of the domains along 

the signaling path. Here, we set out to understand the structural significance of the interactions 

along the LHCP targeting pathway. In particular, we are interested in developing and supporting 

a structural model of the targeting system through to the first LHCP integration step. Because of 

the domain arrangement in cpSRP43, it is anticipated to be quite flexible in solution. Further, as 

major movement of the M-domain in SRP54/Ffh is observed along its signaling path, cpSRP54 

is expected to be quite flexible as well. Using this flexibility, cpSRP54 and cpSRP43 together 

may be adapted to facilitating LHCP loading and unloading, all of which are monitored and 

signaled by position changes with each interaction. Using a recently determined crystal structure 

and translocase mechanism for YidC, together with the cpSRP-cpSR model, we predict the first 

step in the mechanism for integration of LHCP to involve insertion of TM3. The first step in the 

process of determining this model involves the development of a three-dimensional model of 

free cpSRP54 and monitoring the domain arrangement(s) of both free cpSRP54 and free 

cpSRP43. After this has been determine the influence of cpSRP43 on cpSRP54 and cpSRP54 on 

cpSRP43 would provide information on the cpSRP structure.  Finally, the functional significance 

of these interactions can be determined to provide an overall picture of the signaling process 

(Figure 6).  
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Figure 1: An overview of the co-translational and post-translational targeting of proteins. 
(A) Targeting begins with the synthesis of the first twenty to seventy amino acids (a)
Proteins with a signal sequences specific for the co-translational targeting system are 
bound by SRP which halts protein synthesis. The RNC-SRP complex is then transported 
the SRP receptor and finally the translocon. GTP hydrolysis recycles the SRP-SR after 
which protein synthesis resumes, transporting the protein across the membrane. (b) 
Proteins without co-translational signal sequences are fully synthesized in the cytosol and 
transported to their proper location via specific chaperones and targeting machinery. (B) 
The SRP is composed of a 54kDa SRP54 which contains an N-terminal N-domain and a 
GTPase G-domain flexibly linked to a methionine rich M-domain. It is the M-domain that 
binds the universally conserved SRP RNA. The SR in prokaryotes is composed of a 
membrane binding A-domain and an SRP NG-domain homologous NG-domain. In 
eukaryotes the membrane binding and GTPase elements are split into a heterodimer. The 
SRP and SR form a twinned GTPase interaction which is transported to the translocon, 
SecYEG in bacteria. This figure was adapted from Akopain et. al., Annual review of 
biochemistry. 2013;82:693-721
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Figure 2: Targeting of proteins to and in the chloroplast. Nuclear encoded chloroplast 
proteins are synthesized in the cytosol and directed to the Toc/Tic translocation machinery 
by specific signal sequence or, for outer membrane proteins, may be directed by sequence 
specific attributes.  Once in the stroma the signal sequence is cleaved. For proteins 
destined for the thylakoid lumen or membrane, additional cleavable signal sequences or 
sequence attributes direct them to their proper location. Four different targeting 
mechanisms exist for this. (A) The Sec-dependent pathway is a bacterial SecA/Sec-YEG 
translocation homologue which utilizes ATP to drive proteins across the membrane. (B) 
An additional pathway exists which does not use nucleotide triphosphates, but rather the 
pH gradient across the membrane to drive translocation. (C) A special SRP in the 
chloroplast delivers light harvesting chlorophyll binding proteins to the thylakoid 
membrane via a heterodimer composed of an SRP54 homologue, cpSRP54, and a novel 
43kDa protein. Additionally, cpSRP54 is found to bind stromal ribosomes a facilitate the 
delivery of proteins via the traditional co-translational path. (D) A final mechanism for 
insertion of some thylakoid proteins occurs in the absence of translocation machinery. 
Targeting elements in the membrane helices and protein loops allow for spontaneous 
insertion of the proteins into the thylakoid membrane. This figure was adapted from 
Jarvis et. al. Current Biology, 2004;14:R1064–R1077
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Figure 3: The chloroplast. The chloroplast is a specialized plastid responsible primarily 
for the process of photosynthesis. It is enclosed by an outer and an inner membrane 
between which is an intermembrane space. Inside the inner membrane is the stroma which 
contains stacks of thylakoids referred to as grana which are connected via lamella. Inside 
the thylakoids is an acidic space called the thylakoid lumen. This figure was adapted from 
http://byjus.com/biology/chloroplasts//.
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Figure 4: Targeting of light harvesting chlorophyll binding proteins (LHCP) to the 
thylakoid membrane. The LHCP protein is first synthesized in the cytosol and transported 
to the chloroplast stroma via a signal sequence. After transport across the outer and inner 
membranes of the chloroplast the signal sequence is cleaved. In the absence of cpSRP
LHCP forms aggregates. The chloroplast signal recognition particle (cpSRP) heterodimer, 
composed of cpSRP43 and cpSRP54, binds LHCP to form transit complex. The transit 
complex then binds the cpSRP receptor cpFtsY, which transports the complex to the Alb3 
translocase. LHCP is then integrated into the thylakoid membrane followed by twinned 
cpSRP54/cpFtsY GTPase ativity which recycles the targeting machinery. This figure was 
adapted from Henry et. al. Nature 2012 Nature Structural & Molecular Biology 17, 676–
677 (2010)
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Figure 5: The domain structure of the chloroplast signal recognition particle (cpSRP) 
proteins. (A) cpSRP43; cpSRP43 contains an N-terminal tail followed by the first 
chromodomain (CD1) which is fused to the first and second ankyrin repeats (Ank1 and 
Ank2). These are followed by Ank3 and Ank4. The ankyrin repeats are responsible the 
binding of LHCP. Ank4 is linked by a short chain to chromodomain 2 (CD2) responsible 
for binding cpSRP54 CD2 is followed by chromodomain 3 (CD3) which is linked via 
another short chain. (B) cpSRP54; cpSRP54 is composed of an N-terminal N-domain 
closely associated to a GTPase G-domain. The G-domain is connected to the methionine 
rich M-domain by a long linking segment. The chloroplast SRP54 contains an additional 
C-terminal extension from the M-domain responsible for binding cpSRP43. (C) cpFtsY; 
cpFtsY is composed of a membrane binding, N-terminal A-domain followed by a 
cpSRP54 NG-domain homologue NG-domain (D) Light harvesting chlorophyll binding 
protein (LHCP); the N-terminal stromal segment of LHCP is followed by transmembrane 
segments TM1 and TM2. Between TM2 and TM3 is the cpSRP43 binding element L18. 
The remaining portion after TM3 resides in the luminal portion of the thylakoid. (E) 
Albino3; The translocase for the cpSRP system, Alb3 contains a luminal N-terminus 
followed by five transmembane helices. The stromal C-terminus is disordered and is 
responsible for binding of cpSRP43
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Figure 6: The current structural understanding of the chloroplast signal recognition 
particle (cpSRP) during the targeting of light harvesting chlorophyll binding protein 
(LHCP) to the thylakoid membrane. (A) Free cpSRP43. Based upon the connectivity of 
the domains in cpSRP43 a large degree of flexibility between Ank4-CD2 and CD2-CD3 
may be present. (B) Free cpSRP54. The conformational states in the cytosolic SRP system 
are quite variable and dependent upon SRP RNA. Due to the absence of SRP RNA in the 
cpSRP system it is uncertain what orientation or orientations the cpSRP54 M-domain 
takes relative to the NG-domain. (C) The cpSRP heterodimer. Little information is 
available for the full cpSRP. A small peptide derived from the C-terminus of cpSRP54 is 
bound to cpSRP43 between Ank4 and CD2 in a previously published crystal structure 
which provides some clues as to the positioning of the M-domain. (D) Light-harvesting 
chlorophyll binding protein. The three transmembrane helices bind chlorophylls and 
carotenoids present in the thylakoid membrane, holding them in a specific orientation. (E) 
Transit Complex. Binding of LHCP to cpSRP forms the transit complex. The M-domain 
may interact with TM3 of LHCP although this has yet to be confirmed in the cpSRP
system. (F) cpSRP54 receptor, cpFtsY. The A-domain of cpFtsY helps to anchor it in the 
thylakoid membrane with the cpSRP54 binding GTPase region facing away from the 
membrane. (G) No information is available to support a hypothetical configuration for the 
receptor bound transit complex relative to the thylakoid membrane. However, as the 
cpSRP54/cpFtsY homolouge Ffh/FtsY interaction orientation is known, and since cpFtsY
retains the FtsY NG-domain fold, the interaction with cpSRP54 and cpFtsY is likely 
identical. This limits the potential orientations of the transit complex/cpFtsY structure at 
the membrane. (H) Alb3 is known to interact with cpSRP43. However, little is known 
about the structural impact of this interaction.
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Abstract 

Protein targeting is critical in all living organisms and involves a signal recognition particle 

(SRP), an SRP receptor and a translocase. In co-translational targeting, interactions between 

these proteins is mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-

binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a 

ribosome. A multi-domain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take 

on the role of coordinating the sequence of targeting events. Here, we model the observed inter-

domain dynamics of cpSRP43. We show that the affinity of cpSRP43 for the binding motif of 

LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 

(cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP 

is modulated by protein structural dynamics, in which a major role of cpSRP54 is to improve 

substrate-binding efficiency to the cpSRP. 

 

Introduction 

Protein-targeting in cells occurs via a wide variety of sorting pathways, depending on 

both the synthesis site and target location of the protein. Some proteins are targeted co-

translationally, with central involvement of the ribosome, while other proteins are targeted post-

translationally. For example, in chloroplasts, nuclear-encoded thylakoid proteins are routed from 

the stroma to the thylakoid membrane following their import from the cytosol via multiple 

pathways 1,2. The multiple pathways accommodate the various transport requirements of a broad 

range of proteins that function in the thylakoid lumen or in the lipid bilayer.  One of the most 

important of these nuclear-encoded proteins is the light harvesting chlorophyll-binding proteins 

(the LHCPs). A unique chloroplast signal recognition particle (cpSRP) pathway has evolved in 
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the stroma to target this protein without the need for the ribosome to coordinate the sequence of 

targeting events.  Similar to SRPs in the cytosol of pro- and eukaryotes, cpSRP in the stroma 

contains a conserved 54 kDa GTPase (cpSRP54), although an RNA moiety is conspicuously 

absent 3.  Fractionation of chloroplast stroma proteins demonstrated that cpSRP54 is present in 

two pools 4.  One pool is associated with ribosomes and appears to function in co-translational 

targeting of proteins to the chloroplast. A second cpSRP54 pool is present in a heterodimeric 

complex bound to cpSRP43, a 43 kDa protein that is unique to chloroplasts 5-7. The cpSRP 

heterodimer functions post-translationally to bind and target full-length LHCP targeting 

substrates to the thylakoid membrane by a ribosome-independent mechanism 3. cpSRP43 

therefore appears to take on the role of the ribosome in coordinating the sequence of protein 

targeting events. 

The only known targeting substrates of the post-translational cpSRP localization pathway 

are LHCPs, a protein family encoded by lhca and lhcb genes in Arabidopsis. LHCPs coordinate 

pigment binding in peripheral photosystem 1 and 2 light harvesting complexes. The importance 

of the post-translational cpSRP-based targeting mechanism is apparent when considering that 

LHCPs can account for up to 50% of the bulk protein in thylakoids, making them one of the 

most abundant membrane proteins on earth 8. Like other nuclear-encoded thylakoid proteins, 

LHCPs are synthesized in the cytosol as full-length precursor proteins and imported into the 

chloroplast stroma as directed by a cleavable N-terminal chloroplast-targeting domain 1,2.  

Processing of the chloroplast targeting peptide yields a mature-sized LHCP in the stroma that is 

targeted to thylakoid membranes as a soluble cpSRP-LHCP complex termed ‘transit complex’ 

4,7,9.  
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Binding of LHCP to cpSRP serves to maintain the solubility and insertion competence of 

LHCPs 10.  In vitro studies demonstrate that addition of LHCPs to heterodimeric cpSRP, but not 

to cpSRP54 or cpSRP43 alone, reconstitutes transit complex formation and supports LHCP 

insertion into isolated thylakoids by a mechanism that requires GTP, the protein insertase 

Albino3 (Alb3), and cpFtsY, a GTPase homologue of the SRP receptor in bacteria 3,11.  Cross 

linking studies indicate that cpSRP54 interacts with LHCPs in transit complex 6, but cpSRP54 

alone shows no binding to LHCPs.  In contrast, cpSRP43 alone and in transit complex binds 

LHCPs owing to its interaction with a conserved LHCP motif, termed L18 12,13.  This interaction 

is required for transit complex formation and for ATP-independent chaperon activity exhibited 

by cpSRP43 alone 14,15.  The cpSRP43 chaperon activity is likely important for efficient transit 

complex formation that leads to additional interaction of LHCP transmembrane domains 2 and 3 

with cpSRP43 16,17. Vectorial LHC targeting to the thylakoid membrane relies on both cpSRP 

subunits. cpSRP54 exhibits affinity for lipid-bound cpFtsY 18 and cpSRP43 interacts with Alb3 

19-21.  Both the timing of LHCP release from cpSRP and release of cpSRP from its membrane-

bound receptor are triggered by interaction between cpSRP43 with Alb3 19. The central 

importance of cpSRP43 is underscored by its range of interaction partners and the abundance of 

interaction domains that dominate its structure; three chromatin-binding domains (CD) and four 

Ankyrin-repeats (Ank) 3. We hypothesize that the order of these interactions will be controlled 

through changes in cpSRP43 structural dynamics that alter the relative position of these domains 

in response to association of cpSRP43 with each of its binding partners. It is this hypothesis that 

forms the basis of the present study.  

Single molecule fluorescence has proven to be extremely powerful for studying the 

biophysics of complex biological systems, such as folding of proteins and RNA 22-26, 



 

 36 

biomolecular diffusion on membranes and cells 27-30, protein-protein interactions 31 and protein 

conformational dynamics 32-34. We employed single molecule FRET (smFRET) 35,36 to probe the 

inter-domain conformational dynamics of cpSRP43 and how they are affected by binding 

cpSRP54. We used the crystal 17,37 and NMR structures 38 as well as SAXS data 15 of cpSRP43 to 

design mutants for site-specific labeling within its various domains for the smFRET studies.  

Specifically, constructs containing two cysteines, one in each domain to be studied, were 

either retained for the two native cysteines in Ank2 and CD2, or modified such that the native 

cyteines were removed and new ones placed in the appropriate domains. The positions probed 

were Ank2-CD3, Ank2-Ank4, An2-CD2, CD2-CD3, CD1-Ank1 and a CD2-CD3 construct in 

which CD1-Ank4 was deleted. These were termed P1, P2, P3, P4, P5, and P4Δ, respectively 

(Table 1 and Figure 1) 39. 

 In order to ensure the observed smFRET corresponded specifically to changes in a native 

like cpSRP43, several control experiments were performed. First, the proteins were over-labeled 

in order to quantify the integration activity of the label cpSRP43. This was done to ensure the 

labels did not interfere with integration so that the experiments could be reliably related to the 

function of cpSRP43. The results indicated labeled cpSRP43 retained its ability to support 

integration. Next, the affinity between labeled cpSRP43 and cpSRP54 was demonstrated to be 

comparable to the already determined native affinity 40. The remaining two controls were specific 

to the smFRET experiment itself. First, the zero FRET peak, generated due to the presence of 

donor only and donor-donor labeling, in polyproline peptides was compared to the zero FRET 

peak in the cpSRP43 data. The similarity between the two allowed for the subtraction of the zero 

FRET portion of the histograms from cpSRP43 data, improving the clarity of the results. Finally, 

as changes in κ2 can affect the FRET histogram generation, the dyes on cpSRP43 were checked 
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for their ability to rotate freely. The results of polarization anisotropy experiments revealed to be 

~2/3, consistent for freely rotating dyes. Together, these control experiments allowed for the 

interpretation of the results as being consistent with the properties of an unlabeled, native 

cpSRP43 39. 

 The results showed that cpSRP43 is characterized by a large amount of structural 

heterogeneity. Specifically, histograms for each constructs displayed a wide distribution in the 

FRET efficiency. Further, the experimental distributions (red and blue) were markedly wider 

than the FRET peaks calculated from the available SAXS envelope (grey) (Figure 2) 41. 

Fluorescence correlation spectroscopy for cpSRP43 affixed to a PEG surface showed that the 

distributions represent a flexible particle rather than multiple static states. The various constructs 

compared cpSRP43 alone (red) and cpSRP54 bound cpSRP43 (blue) to determine the effect of 

cpSRP54 on cpSRP43 (Figure 2). The Ank2-CD3 (P4) histogram showed significant flexibility 

that was largely unchanged by the presence of cpSRP54. In contrast, both the Ank2-Ank4 and 

Ank2-CD2, P2 and P3, respectively, showed significant flexibility with a significant reduction in 

flexibility upon interaction with cpSRP54. The CD2-CD3 position (P4) gave similar results, 

albeit, with a less pronounced affect of cpSRP54 on the cpSRP43 flexibility. The CD2-CD3 only 

construct (P4Δ) was quite similar to the full length cpSRP43 CD2-CD3 probe suggesting CD2 

and CD3 form no interaction with the other domain capable of significantly affecting the 

flexibility. This is consistent with the fact that CD2 interactions strongly with cpSRP54 40. The 

final domains probed were between CD1 and Ank2 (P5). These domains showed the least 

flexibility and were unaffected by the presence of cpSRP54. Together, the data demonstrated 

cpSRP43 was characterized by a large amount of flexibility and that this flexibility is 
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dramatically reduced in regions near the LHCP L18 binding site 17 via interaction with cpSRP54 

39.  

All-atom and course-grained molecular dynamics simulations are used here to support the 

smFRET data and provide more detailed structural models. These results show that the dynamics 

observed in the smFRET experiments for cpSRP43 alone exhibits wide inter-domain 

conformational dynamic heterogeneity (i.e. high flexibility), and upon binding to cpSRP54 

shows reduced regional flexibility. We hypothesized that this reduced flexibility favors binding 

of LHCP targeting substrates, which was then tested using isothermal titration calorimetry (ITC). 

We found that the affinity of cpSRP43 for L18 increased by ~3-fold when cpSRP43 was 

complexed with a cpSRP54 peptide that corresponds to the cpSRP43 binding site on cpSRP54. 

Together, these findings support a model in which cpSRP54 modulates the structural dynamics 

of cpSRP43, which is critical for the promotion of efficient binding and localization of LHCP 

targeting substrates.  

 

Methods 

All-Atom Molecular Dynamics Simulations 

The crystal structure for cpSRP43 CD1-CD2 (PDB ID 3UI2) was used for the 100 ns simulations 

37. Two different structures were prepared, one containing the cpSRP54 peptide and one with the 

peptide removed. Both were equilibrated separately. Another construct in which the NMR CD3 

structure (PDB ID 1X3P) was attached to the C-terminus of the 3UI2 structure was produced 38. 

For this, structure eighteen of 1X3P was submitted to the ModRefine server followed by energy 

minimization in SYBYL-X using the AMBER-FF99 forcefield. Next, the CD1-CD2, 3UI2 

structure and the refined CD3 structure were aligned with the cpSRP43 SAXS density produced 
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from the dummy atom model (provided by the Shan group, Caltech) with SITUS using a 

combination of manual and automated fitting in UCSF Chimera 15,42,43. Since fitting required 

adjusting the linking region between Ank4 and CD2 such that CD2 is distant from Ank4, to keep 

the structure modifications to a minimum, this fitting was used as a guide to attach CD3 to CD2 

in the unaltered 3UI2 structure. This structure was used in the simulations needed to prepare the 

shape based coarse grained (SBCG) model. 

After an initial minimization of the structure, the protein was solvated, leaving a 

minimum of 10 Å distance between the protein and the solvent box edge. The system was 

neutralized with NaCl and the effective salt concentration was set to 0.150 M. To prepare the 

structure for production runs, the system was subjected to several refinement steps to relax the 

backbone, side chains, and surrounding water molecules and ions. Equilibration of the system 

was carried out in the NPT ensemble using NAMD 2.9 and the CHARMM27 forcefield 44,45. A 

temperature of 300 K was maintained using Langevin dynamics, with a damping coefficient of 1 

ps-1. A constant pressure of 1 atm was maintained using the Langevin piston method with a 

period of 100 fs and a decay time of 50 fs. Long-range electrostatic interactions were computed 

using the particle mesh Ewald method with periodic boundary conditions. Electrostatic and Van 

der Waals interactions were cut-off beyond a distance of 12 Å using switching functions 

beginning at 10 Å. All hydrogen atoms were kept rigid. The simulation time step was 1 fs unless 

stated otherwise. In the first step of preparation the protein side-chains were minimized for 

10,000 steps with the backbone atoms fixed in the absence of water and ions. The resulting 

structure was solvated as described above. To facilitate the relaxation of water around the 

protein, all protein atoms were fixed and the system was subjected to 1,500 steps of 

minimization and 50 ps of dynamics. For further relaxation of the solvent system around the 
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protein harmonic constraints were used on the protein atoms with a force constant of 1 kcal/(mol 

Å2). In the final step before production runs a gradual temperature increase from 0 K to 300 K 

was implemented. Temperature reassignment by an increment of 10 K every 2 ps was used to 

reach 300 K followed by 250 ps of dynamics. Production run preparedness was determined 

based upon leveling of the RMSD and energy fluctuations.  

In order to evaluate flexible regions in the 3UI2 proteins, simulations of 100 ns were 

performed. A 2 fs time step was used for these runs with all other parameters identical to the last 

250 ps of the final equilibration run. Backbone RMSDs were evaluated using the RMSD 

trajectory tool and the simulations visualized and C-α distances measured in VMD 46. The full 

length cpSRP43 structure was simulated similarly for a total of 5 ns with harmonic restraints on 

the backbone atoms of CD3 with a force constant of 1 kcal/(mol Å2). Restraints were used due to 

instability of the CD3 domain observed in prior simulations. 

 

Shape Based Coarse Grained (SBCG) Modeling 

 The minimized cpSRP43 from the all atom cpSRP43 CD1-CD3 run was used for the SBCG 

building. The coarse grained model building methods are as described 47. The VMD CGTools 

plugin was used to build a 30 bead model using 25,000 iterations following the chain 

connectivity of the all-atom structure. The mass and charge of each bead is determined based 

upon the atoms assigned to them. Hydrophobic interactions are modeled via a Leonard Jones 

(LJ) potential with the parameters determined from the all atom structure setting the maximum 

well depth to 10 kcal/mol and adding an additional 1 Å to the LJ radius. Bonded interactions are 

modeled via a harmonic potential. For further refinement the appropriate values are extracted 

from the restrained all-atom simulation. Briefly, several iterations of short SBCG simulation 
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were run to determine the effective Force constants in the coarse model which were individually 

adjusted between iterations to improve the agreement with the values obtained from the all-atom 

simulation. 

A temperature of 300K was maintained using Langevin dynamics, with a damping 

coefficient of 2 ps-1. Periodic boundary conditions were used with a cut-off beyond a distance of 

35 Å using switching functions beginning at 20 Å. Boundaries were selected such that the beads 

in the adjacent systems would be non-interacting. The simulation time step for simulations was 

100 fs. In order to improve sampling of configurational space, each construct was simulated a 

total of 40-50 μs twelve times using different random number seeds in each simulation.  

 

Isothermal Titration Calorimetry 

 All isothermal titration calorimetric experiments were performed at 25°C using a VP-ITC 

(MicroCal Inc. Northampton, MA). The concentration of protein samples used in the isothermal 

titration calorimetry was estimated using the Bradford micro-dye binding assay. The 

concentration of the peptides (cpSRP54pep and L18 peptide) was estimated by Scopes method 

using the 205 nm absorbance 48. Protein and peptide samples were centrifuged at 4oC at 13,000 

rpm for 15 minutes prior to the ITC experiments to remove any aggregated or precipitated 

material(s). All sample solutions were degassed under vacuum and equilibrated for 30 min prior 

to titration. 0.025 mM of cpSRP43 [10 mM HEPES, 10 mM MgCl2 buffer (pH 8.0)] was placed 

in a reaction cell and titrated with 0.25 mM of the L18 peptide dissolved in the same buffer. The 

contents of the syringe (L18 peptide) were added sequentially in 6 µl aliquots to the reaction cell 

(0.025 mM cpSRP43 alone or 5:1 mixture of cpSRP54pep and cpSRP43) at an interval of 120 

seconds. The titration curves were corrected by performing appropriate blank titrations. The data 
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were analyzed using Origin (MicroCal Inc). The raw ITC data were individually fitted to the 

one-set-of-sites binding model. 

 

Results and Discussion 

Molecular dynamics (MD) simulations suggest support for multiple conformational states in 

cpSRP43 

All-atom and shape-based coarse-grained (SBCG) simulations were run to lend support 

to the observations based on FRET data that cpSRP43 is a very flexible protein 39. All-atom 

simulations were run using the crystal structure of the CD1-Ank-CD2 portion of the protein 

(PDB ID 3UI2) in the presence and absence of the cpSRP54 peptide for a total of 100 ns each to 

examine the changes in the motion(s) of CD2 relative to CD1-Ank4 upon binding to cpSRP54. 

Movies of these simulations are provided in the supporting information (Movie S1 and S2, 

respectively). From these movies, the inter-domain distance between the Ca carbons of the 

labeled residues in Ank2 and CD2 was extracted as a function of time (Figure 3a). Figure 3a 

shows that the flexibility of the protein in this region is significantly reduced when the 

cpSRP54pep is bound.  

Shape based coarse graining (SBCG) of a protein structure allows for the assignment of 

clusters of atoms to a set of beads that inherit the aggregate properties of the atoms assigned to it 

helping to reduce the system size and achieve significantly increased simulation time scales. The 

SBCG simulations include CD3 and were run for 20 µs in order to reach timescales similar to 

those of the FRET experiments. The bead connectivity was adjusted to match the shape of 

cpSRP43. Based on the shape, the final selected construct included relatively flexible linkers 

between Ank4 and CD2 and between CD2 and CD3 (Figure 3b). An additional construct was 
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prepared via the addition of a restricting bond between the terminal Ank4 bead and a bead in 

CD2 to mimic the effect of the cpSRP54 peptide, which is known to bind to this region. 

Importantly, due to the close association of the Ankyrin repeats in the crystal structure, Ank4 

beads included bonds to its adjacent Ank3 beads. This was necessary due to the nature of the 

model building. It was not reasonable to assign Ank4 atoms to a single bead based on this 

structure and underscores a major difference in the potential of Ank4 movement versus the 

flexibly linked domain architecture of CD2 and CD3. Example movies of the course grained 

modeling are provided in the supporting information (Movies S3-S5).  Three major 

conformations, which are denoted as “closed”, “open” and “extended” were identified (Figure 

3c). The “open” conformation bears the closest resemblance to the published SAXS structure of 

cpSRP43 15. The “closed” structure is characterized by a strong interaction between CD3 and 

Ank4, and the “extended” structure depicts a particularly large inter-domain separation between 

the Ank domains and CD3. The “closed” conformation was observed in both simulations (i.e. 

whether the peptide constraint between Ank4 and CD2 was applied or not, movies S4 and S5), 

suggesting that binding of cpSRP54 does not hinder the ability for CD3 to interact with Ank4. 

However, the relative orientation of the CD2 domain to the CD3 is affected by cpSRP54 binding. 

Distances between the beads representing the residues in which cpSRP43 was labeled in 

the smFRET experiments were measured and plotted as a function of time. Figure 3d shows 

example traces highlighting transitions between the three dominant conformations. P1, which 

probes the distance between the Ca carbons on the labeled residues in Ank2 and CD3, shows 

states with distances at ~42 Å, 65 Å and 88 Å. These three distances between the labeled 

residues in Ank2 and CD3 describe the major conformations that we classified as “closed”, 

“open” and “extended”, respectively. It must be noted here that the orange trace in Figure 3 does 
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start at a distance of 65 Å (open), but there is a rapid decrease to 42 Å (closed) within the first 

few bins, which is not easily visible on this timescale. P3 probes the distance between residues in 

Ank2 and CD2 with the three major conformations at ~40 Å, 50 Å and 55 Å inter-residue 

separation. P4 shows major conformations with distances between residues in CD2 and CD3 at 

~22 Å, 30 Å and 46 Å, respectively. The simulations did not identify significant distance 

changes between the residues labeled in Ank2-Ank4 (P2) or CD1-Ank2 (P5), due to the 

limitations in bead connectivity described above. Multiple transitions between the three major 

conformations were not observed in a single trace, indicating that these states were long lived 

compared to the 50-100 µs simulation timescales. Therefore, in this study, we limit our 

discussion only to the fact that the SBCG model supports the existence of various states that 

underlie the structural dynamics observed in smFRET 39without consideration of their relative 

stabilities. While the 3 main conformations identified from the modeling may lend support, at 

least in part, to the fact that low, mid and high FRET efficiencies might be observed due to the 

“closed”, “open” and “extended” conformations, respectively, more refinements to the model are 

needed to make more robust conclusions. Future studies will examine the relative stabilities of 

the states in more detail and further refine the SBCG model toward this end. 

 

Reducing the flexibility of cpSRP43 upon binding to cpSRP54 increases its affinity for the LHCP 

substrate 

LHCP transport and integration into the thylakoid membrane is a multi-step process 

involving both sequential and concurrent protein-protein interactions between cpSRP43, 

cpSRP54, LHCP, cpFtsY, and Alb3. The formation of the ternary cpSRP43-cpSRP54-LHCP 

transit complex in the chloroplast stroma is the first key step in this process 11. Cross-linking 
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experiments have shown that the N-terminal portion of TM3 in LHCP binds to cpSRP43, 

independent of the presence of cpSRP54 17. Our smFRET results showed that the regional 

flexibility of cpSRP43 is reduced, particularly between Ank2 and Ank4 39. Two hydrophobic 

grooves were identified in the crystal structure of cpSRP43 17, one groove between Ank2 and 

Ank4 (Groove 1) and the other between CD1 and Ank1 (Groove 2), as shown in Figure 4a. 

Residues that are known to interact with both the L18 domain of LHCP and cpSRP54pep are in 

the Ank2-Ank4 region of the protein. MD simulations showed that the root-mean square 

fluctuations of the Ca carbons at the interaction sites of both L18 and cpSRP54pep in cpSRP43 

reduced upon binding cpSRP54pep (Figure 4b). smFRET experiments showed that cpSRP54pep 

reduces the flexibility of cpSRP43 in the Ank2-Ank4 region in a similar way to the full-length 

cpSRP54 (Figure 4c) 39. Figure 4c shows that cpSRP54pep changes the smFRET similar to the 

full-length cpSRP54, albeit to a lower extent. The combination of smFRET data and MD 

simulations led us to hypothesize that the affinity between cpSRP43 and the L18 domain of 

LHCP is increased by the reduced flexibility caused by cpSRP54 binding. To test this 

hypothesis, isothermal titration calorimetry (ITC) experiments were performed between 

cpSRP43 and L18 in the absence and presence of cpSRP54pep. The ITC data for the binding of 

L18 to cpSRP43 in the absence and presence of cpSRP54pep is shown in Figure 4d. There is a ~3-

fold increase in the affinity between cpSRP43 and L18 after cpSRP54pep is bound. Since 

cpSRP54pep changes the smFRET of cpSRP43 to a lower extent than full-length cpSRP54 (Figure 

4c), it is possible that other residues of cpSRP54 are involved in interactions with cpSRP43 and 

the 3-fold increase in affinity may actually be an underestimation of the effect of cpSRP54 

binding on the LHCP affinity.  However, it must also be noted that this change in affinity is only 

to the L18 loop region of LHCP and other regions of LHCP may be involved in the interaction 
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with cpSRP43 and/or cpSRP54 which may serve to either increase or decrease this effect. 

Clearly, more work on measuring the affinity changes of the other domains is needed.   

 

Functional implications for LHCP targeting 

The central role of cpSRP43 in LHCP post-translational targeting has been highlighted by 

a range of studies. cpSRP43 alone, but not cpSRP54, is able to solubilize LHCP aggregates in 

vitro 15,21. While the CD1 domain of cpSRP43 is not required for binding LHCP in the water 

soluble transit complex, it is required for LHCP integration and is involved in regulating the GTP 

hydrolysis rates of cpSRP54/cpFtsY 49. Clearly, cpSRP43 is absolutely necessary for both 

forming the water soluble LHCP transit complex and for membrane integration. In fact, 

cpSRP43’s ability to interact with both LHCP and the Alb3 integrase supports the operation of a 

less efficient LHCP targeting pathway that functions in the absence of cpSRP54 19,21. It was 

found that plants lacking both cpSRP54 and its membrane receptor cpFtsY recover to a great 

extent from the chlorotic phenotype observed when cpFtsY alone is missing 50. Hence, cpFtsY is 

only required when LHCP is targeted by a cpSRP43/cpSRP54 dimeric complex.   Therefore, the 

role of the two GTPases, cpSRP54 and cpFtsY, is to increase the efficiency of LHCP routing 

conducted by cpSRP43 and Alb3.  The data presented in this study supports that one role of 

cpSRP54 is to promote LHCP binding to cpSRP43 by reducing inter-domain protein dynamics in 

cpSRP43. Two grooves were identified in the crystal structure of cpSRP43 17. The P2 and P5 

smFRET proteins were designed to separately probe these two grooves (Figure 4a) 39. Based on 

the smFRET results for P2, altering the structure of groove 1 in the region of cpSRP43 is a 

strong candidate for the source of improved binding of the LHCP substrate 39.  
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A strong interaction of CD3 with the Ank4 region was found by SBCG MD simulations 

to form a “closed” conformation. It is interesting to speculate that this interaction helps to effect 

a conformational change in groove 1. The interaction of cpSRP54 with cpSRP43 still allows the 

“closed”, “open” and “extended” structures to be sampled, as evidenced from the wide smFRET 

histogram observed for P1 39. It has been postulated that a portion of the TM3 helix in LHCP also 

binds to cpSRP54 17. Since LHCP binding to cpSRP fails to occur when the L18 region of LHCP 

is mutated, LHCP binding to cpSRP is undoubtedly a multistep process initiated by L18 binding 

into groove 1 in which cpSRP54 helps to promote. Other portions of LHCP with groove 2 on 

cpSRP43 and cpSRP54 would follow, although the order of these interactions is uncertain. The 

continued flexibility of cpSRP43 after binding cpSRP54 may be necessary to allow LHCP to 

form these favorable interactions with both cpSRP43 and cpSRP54, extending an earlier model 

proposed by the Sinning group 17 to include structural dynamics in the formation of the transit 

complex. Finally, it is speculated that downstream interactions of cpSRP43 in the transit 

complex with Alb3 may be connected to inter-domain structural dynamics that enable both 

efficient binding of cpSRP43 to Alb3 and release of LHCP from cpSRP to Alb3 at the thylakoid 

membrane.  The fact that cpSRP43 alone binds LHCP, albeit with a lower affinity and 

subsequently integrates it into the thylakoid membrane by a cpSRP54-independent pathway 

could suggest that cpSRP54 may have evolved in chloroplasts after cpSRP43 as a way to 

improve LHCP-binding to the SRP and subsequent integration efficiency. A combination of 

smFRET, MD simulations and thermodynamic measurements is a powerful approach that will 

help further identify the roles of protein dynamics in protein-targeting mechanisms. 
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Summary and Conclusions  

We have combined MD simulations and ITC with the previous smFRET to relate the 

inter-domain structural dynamics of cpSRP43 to its function in post-translational targeting of 

LHCP. 3 major conformations were speculated – “open”, “closed” and “extended” – that leads to 

cpSRP43 showing a high degree of flexibility across the whole protein. Certain regions showed 

decreased flexibility upon binding to its cpSRP binding partner, cpSRP54, particularly in the 

Ank2-Ank4 and CD2-CD3 regions 39. We demonstrated that this decreased flexibility upon 

binding cpSRP54 is connected with an increased affinity of cpSRP43 to the L18 motif of LHCP. 

These results support a model in which changes in the flexibility of cpSRP43 are related to its 

ability to bind multiple substrates and promote its post-translational targeting function and may 

provide a clue that the evolutionary development of cpSRP54 in the chloroplast protein-targeting 

pathway may have come after the cpSRP43 pathway as a way to improve targeting efficiency.  
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Tables and Figures 

 
Table 1: cpSRP43 mutants used in this study 
Designation Site Descriptions Domains Labeled 
P1 mcpSRP43 C179A R181C C301A R333C Ank2 / CD3 
P2 mcpSRP43 C179 V265C C301A Ank2 / Ank4 
P3 mcpSRP43 wild-type C179 C301 Ank2 / CD2 
P4 mcpSRP43 C179A C301 R333C CD2 / CD3 
P4Δ CD2CD3 C301 R333C CD2 / CD3 
P5 mcpSRP43 E89C C179 C301A CD1 / Ank2 
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Figure 1 

 
Figure 1. a) The arrangement of domains in cpSPR43 b) The amino acid positions used for 
fluorescence labeling highlighted in red for five double Cys cpSRP43 proteins, labeled P1-P5. 
The structure for the CD1-Ank1-4-CD2 region is taken from pdb code 3UI2, and the structure 
for CD3 is taken from pdb code 1X3P. c) LHCP integration assays confirming that fluorescently-
labeled cpSRP43 are able to transport and integrate LHCP into thylakoid membranes. TP: 
translation product; (+) positive control with native cpSRP43/54; (-) negative control with no 
cpSPR43/54; (1) wt cpSRP54 + Ank2-labeled cpSRP43; (2) wt cpSRP54 + Ank4-labeled 
cpSRP43; (3) wt cpSRP54 + CD2 labeled cpSRP43; (4) wt cpSRP54 + CD3 labeled cpSRP43. 
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Figure 2 

 
 
Figure 2. a) smFRET histograms of cpSRP43 proteins without (red) and with (blue) bound 
cpSRP54. The expected Poisson noise-limited smFRET histograms from the average FRET 
based on the SAXS structure are overlaid (gray). Insets are schematic representations of the 
labeled proteins. b) Calculated difference histograms of the cpSRP43 proteins after binding 
cpSRP54. 
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Figure 3 

Figure 3. a) Distance between the labeled residues on the Ank2 and CD2 domains (P3) as a 
function of time from all-atom simulations in the absence (red) and presence (blue) of 
cpSRP54pep. b) Overlay of the all-atom structure with the SBCG model (spheres). c) The 3 main 
conformations identified from the SBCG simulations, “extended”, “open” and “closed. The 
“closed” structure for both the unrestricted (cpSRP54 unbound) and the restricted (cpSRP54 
bound) simulations are shown.  d) Distances between the labeled residues of cpSRP43 probed in 
P1 (Ank2-CD3), P3 (Ank2-CD2) and P4 (CD2-CD3) during open-to-extended or open-to-closed 
transitions. 
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Figure 4 
 

 
Figure 4. a) CD1-Ank4 region of cpSRP43 highlighting the relationship between the FRET 
labels in P2 and P5 with groove 1, to which the L18 motif binds, and groove 2. b) Root mean 
square fluctuations in the Ca carbons of residues in the Ank2-Ank4 region in the absence (red) 
and presence (blue) of cpSRP54pep. The L18 and cpSRP54pep interaction residues on cpSRP43 are 
shown on the x-axis. c) smFRET histograms for P2 in the absence (red) and presence of different 
concentrations of cpSRP54pep (green, 100 nM; orange 100 µM). No significant difference 
between adding 100 nM or 100 µM cpSRP54pep was observed, suggesting that the change in the 
smFRET of P2 is already saturated at 100 nM cpSRP54pep. For comparison, the smFRET of P2 + 
100 nM cpSRP54 protein (blue) is shown. d) ITC data for the addition of L18 to cpSRP43 in the 
absence (left) and presence (right) of cpSRP54pep. 
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Abstract 

Chloroplast signal recognition particle (cpSRP) is a heterodimer composed of an 

evolutionarily conserved 54kDa GTPase (cpSRP54) and a unique 43kDa subunit (cpSRP43) 

responsible for delivering light harvesting chlorophyll binding proteins (LHCP) to the thylakoid 

membrane. While a nearly complete three-dimensional structure of cpSRP43 has been 

determined, no high-resolution structure is yet available for cpSRP54. In this study, we 

developed and examined an in silico three-dimensional model of the structure of cpSRP54 by 

homology modeling using cytosolic homologues.  Model selection was guided by single 

molecule FRET experiments, which revealed the presence of at least two distinct conformations. 

Small angle x-ray scattering showed that the linking region between the GTPase (G-domain) and 

methionine rich (M-domain) domains, an M-domain loop, and the cpSRP43 binding c-terminal 

extension of cpSRP54 are predominantly disordered.  Interestingly, the linker and loop segments 

were observed to play an important role in organizing the domain arrangement of cpSRP54. 

Further, deletion of the finger loop abolished loading of the cpSRP cargo, LHCP. These data 

highlight important structural dynamics relevant to cpSRP54’s role in the post- and co-

translational signaling processes.  

 

Introduction 

The signal recognition particle (SRP) protein sorting pathway is universally conserved 

and utilized in both eukaryotes and prokaryotes as a means to deliver newly synthesized 

polypeptides to their appropriate cellular locations.(1-3) This process is initiated in the cytosol 

via a co-translational mechanism whereby a conserved 54kDa SRP subunit (SRP54 in eukaryotes 

and Ffh in bacteria) binds to a nascent polypeptide chain as it emerges from the ribosome. In 
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eukaryotes, this binding event halts synthesis of the ribosome-associated nascent chain. The 

ribosome/nascent chain complex is then delivered to the endoplasmic reticulum membrane 

where SRP54 interacts with its receptor.(4) GTP hydrolysis by SRP54 and its receptor coordinate 

SRP release of the nascent polypeptide chain to a protein translocase. This is followed by 

recycling of SRP.(5-7) Protein synthesis is resumed and the nascent chain is either inserted into 

the membrane or transported across the lipid bilayer.(4) 

Targeting to the thylakoid of a subset of integral membrane proteins is achieved via a 

novel post-translational targeting mechanism that relies on a heterodimeric signal recognition 

particle in chloroplasts (cpSRP).(8) Unlike cytosolic SRPs, the cpSRP dimer functions 

exclusively by a post-translational mechanism.(8-10) The only known substrates of the post-

translational cpSRP targeting system are light harvesting chlorophyll-binding proteins (LHCPs), 

which bind chlorophyll-a/b and serve as the peripheral antennae for PS2 and PS1 in 

photosynthetic light capture.(4, 8) 

The cpSRP heterodimer is composed of an SRP54 homolog, cpSRP54, and a unique 

43kDa protein, cpSRP43.(8, 11) A cpSRP-LHCP targeting complex, termed transit complex, is 

formed in the stroma following LHCP import into the chloroplast.(11, 12) A critical binding site 

for LHCP occurs on cpSRP43 in a groove between its four ankyrin repeats that interact with an 

18 amino acid segment (L18) of LHCP located between the second and third transmembrane 

(TM) helices (TM2 and TM3, respectively).(11-13) Based upon homology, cpSRP54 contains a 

four-helix bundle N-domain and five conserved GTPase elements that make up a G-domain, 

which together comprise the NG-domain. A c-terminal methionine rich M-domain lacks the 

RNA binding motif found in cytosolic SRPs but has retained a hydrophobic interaction site 

suitable for binding hydrophobic signal sequences. A flexible linker connects the G-domain and 
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M-domain. This segment is capable of forming a helix-turn-helix motif referred to as the greasy 

slide due to hydrophobic contacts between the helices. An additional flexible segment occurs 

between the first and second helices of the M-domain and is referred to as the finger loop. The 

linker and finger loop appear to facilitate signal sequence binding based upon crystal structure 

data.(14-16) The M-domain of cpSRP54 has been proposed to bind TM3 of LHCP via evidence 

of cross-linking between TM3 and cpSRP54 in elongation arrested ribosomes.(17) However, a 

cross-link was not observed between cpSRP54 and LHCP in cpSRP leaving some question as to 

whether cpSRP54 interacts with LHCP in the transit complex.(17, 18) Although cpSRP54 

functions post-translationaly in the cpSRP system, approximately half of the cpSRP54 in stroma 

is bound to ribosomes and it is known that cpSRP54 is involved in co-translational targeting of 

some chloroplast synthesized proteins.(19-22) Interestingly, unlike its cytosolic counterpart, 

cpSRP54 does not interact with SRP RNA leaving some question as to how cpSRP54 retains 

these co-translational targeting abilities.(8) 

Protein flexibility is known to play a major role in molecular recognition allowing single 

proteins to occupy multiple roles in a system.(23, 24) Flexibility via the G-domain to M-domain 

linker has been observed in the cytosolic SRP system using crystallography and FRET. These 

studies indicate large movements of the M-domain relative to the NG-domain of SRP54 

throughout the signaling process.(4, 25, 26) Additionally, flexibility in the finger loop of the M-

domain likely confers the ability to recognize various signal sequences at the ribosome.(4) 

Atomic level details of LHCP targeting by cpSRP, however, remain elusive. Recent work has 

demonstrated significant conformational dynamics in cpSRP43 that support downstream 

interactions.(27) However, little structural information exists to explain how cpSRP54 is able to 

function in the classical, co-translational signaling process as well as in the non-traditional, post-
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translational targeting of LHCP. In this study, we examine the conformational states of cpSRP54 

both before and after the formation of heterodimeric cpSRP. We also study the significance of 

these conformational states on the loading of LHCP to form the transit complex. Results from 

molecular modeling and FRET indicate that cpSRP54 exists in at least two distinct 

conformations. Additionally, mutational data and molecular dynamics simulations suggest 

cpSRP54 interacts with TM3 of LHCP and that, prior to LHCP binding, two intrinsically 

disordered segments of cpSRP54 coordinate to organize cpSRP into an LHCP binding competent 

state. Deletion of one of these segments, the M-domain finger loop, abolishes LHCP uptake by 

cpSRP. 

 

Methods 

Homology Modeling 

 The sequence for mature cpSRP54 (residues 76-564) was obtained from the UniProt database 

(accession number P37107; Arabidopisis thaliana).(28) As a first step in producing a three-

dimensional model for cpSRP54, a gapped BLAST search of the Protein Data Bank (PDB) was 

performed for the full-length protein using the Swiss Model template identification tool and the 

NCBI BLAST tool using an e-value cut-off of 1x10-10 and the BLOSSUM64 matrix.(29-31) 

Since the M-domain shares less sequence similarity with cytosolic SRPs, a BLAST search 

against the PDB was performed for the M-domain residues 371-564 using an e-value cut-off of 

1x10-10 and the BLOSSUM64 matrix. Of the sequences specified in the full-length search, four 

were identified in this search. These included cpSRP54/Ffh from Canis familiaris (PDB ID 2J37, 

chain W), Sulfolobus solfataricus (S. sol. SRP54) (PDB ID 1QZW, chain A), Thermus aquaticus 

(T. aq. Ffh) (PDB ID 2FFH, chain A), and Escherichia coli (E. col. Ffh) (PDB ID 2XXA, chain 
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A).(14, 16, 32, 33) A multiple sequence alignment of these four structures and cpSRP54 was 

performed using ClustalW2 and Clustal Omega.(34, 35) The ClustalW2 alignment was used in 

Modeller v9.12 to produce a multi-template 3D structure of cpSRP54.(36) In order to evaluate 

model quality and to determine the effect(s) of individual sequence similarity on the final model, 

I-TASSER was used to produce additional 3D structures.(37-39) Additionally, Ffh from 

Methanocaldococcus jannaschii (M. jan. SRP54) (PDB ID 3NDB, chain B) was submitted as a 

control template for cpSRP54 to I-TASSER to assess whether differences would appear with a 

reduction in sequence similarity to the M-domain.(15) I-TASSER was used to produce three-

dimensional structures using each template individually without alignment.  

Each structural model was evaluated visually using PyMOL and submitted to the Swiss-

Model structure assessment tool for structure quality validation.(40) Specifically, Anolea, 

Gromos, QMEAN and PROCHECK were used in the validation.(41-44) Template models were 

also submitted for use in determining the ideal template for modeling. Structural alignments were 

performed using PyMOL and MultiProt.(45)  

 

Molecular Dynamics Simulation 

The T. aq. Ffh crystal structure 2FFH and the cpSRP54 structure modeled from 2FFH were 

selected for simulation. The highest scoring I-TASSER model for cpSRP54 (1.40 C-score) was 

used. The crystal structure for 2FFH chain A was prepared from the downloaded pdb file. The 

NG to M linker resides 308G-K318 were missing in the structure due to weak electron density. 

These residues were added using the SYBYL-X suite.(46) Since the C-terminal residues of 

cpSRP54 were modeled using limited data, and since most cytosolic forms do not contain this C-

terminal extension, the segment was removed for simulation. Additionally, the intrinsic disorder 
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predictor, PONDR, indicates this segment is likely disordered (Suppl. Fig. 3), a prediction 

supported by an instability index of 47 as calculated using the ProtParam module in Expasy and 

confirmed via small angle x-ray scattering (SAXS). (47-50)  

To prepare the structures for production runs, the system was subjected to several 

refinement steps to relax the backbone, side chains, surrounding TIP3 water molecules, and Na+ 

and Cl- ions. The final system sizes were 52,586 atoms and 53,516 atoms for cpSRP54 and 2FFH 

respectively. Minimization and equilibration of the system was carried out in the NPT ensemble 

using NAMD 2.9 and the CHARMM27 or CHARMM36 forcefields.(51-53) The protein-solvent 

system was equilibrated as described previously.(27) In order to monitor the stability of the 

proteins and to evaluate structurally variable regions, simulations of 100ns using a 2fs time step 

were performed. Visual molecular dynamics (VMD) and tools therein were used for preliminary 

analysis and visualization.(54)  

 

Steered molecular dynamics 

SMD simulations were performed using constructs of 2FFH and the cpSRP54 model built using 

2FFH as a template. The G-M linking regions (2FFH residues 293G-L320 and cpSRP54 residues 

296G-F328) were removed from each protein. The direction for pulling was determined as the 

vector connecting the NG and M-domain’s centers of mass. The system was prepared as above 

leaving 25 Å space between the M-domain and the solvent box edge in the direction of pulling. 

The final system sizes were 61,460 atoms and 62,317 atoms for cpSRP54 and 2FFH 

respectively. The 2FFH L367E and cpSRP54 E379L mutant structures were prepared using the 

VMD Mutator plugin. Each protein was equilibrated for 50 nano second (ns) using a time-step of 

2 femto second (fs) with the backbone of the NG-domains restrained with a force constant of 1 
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kcal/(mol Å2). Constant velocity pulling was employed using a spring constant of 7 kcal/(mol Å2) 

pulling from the center of mass of the M-domain while maintaining the constraints on the NG-

domain’s backbone atoms. A pulling speed of 1x10-6 Å /step for a total distance of 18 Å using a 

1fs time-step. These conditions were selected after simulating several pulling conditions. Fifteen 

pulling simulations were performed and averaged for each construct with all other simulation 

conditions identical to those above. A pseudo-random number seed was used in each to ensure 

that no two simulations were identical. 

 

Bioinformatics 

The G-domain to M-domain interaction site residues from T. aq. Ffh were compared to a set of 

SRP54/Ffh/cpSRP54 proteins to examine the degree of conservation for this site. An additional, 

larger data set was used to examine the rate of mutation of the flexible G-domain to M-domain 

linker and the M-domain finger loop to determine whether these segments undergo an 

accelerated mutation rate compared to the rigid structural elements. The method used in these 

investigations is described in detail in the Supporting Material. 

 

Cloning of cpSRP proteins 

 Primer-encoded Asn point mutations were introduced by polymerase chain reaction (PCR) into 

the mature cpSRP54 coding sequence (starting with amino acid sequence MAFGQL and 

including a c-terminal 6 HIS tag) at positions V339 (QTRAVAKMG) and L370 

(AEKNLLVME) to make cpSRP54V339N L370N.  A loop deletion mutant, cpSRP54Δ345-359, was made 

by splicing via overlap extension (SOE) using internal overlapping primers to remove 15 amino 

acids (MTRVLGMIPGMGKVS).  The resulting PCR products were cloned into pGEM-4Z 
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(Promega) using KpnI and HindIII sites for in vitro transcription/translation. Cloning of a Cys 

replacement mutant for E. coli expression and labeling for single molecule FRET studies was 

produced by first using PCR to replace Cys residues in mature sized cpSRP54 with Ala.    The 

resulting cysteine-less construct (cpSRP54his-cys) served as a template to introduce Cys residues 

at position 54 and 407 resulting in cpSRP54S54C/K407C.  The resulting construct was then cloned 

into pPROLar.A122 (Clontech) using KpnI and HindIII and transformed into BL21 Star (Life 

Technologies).  Both cpSRP54S54C/K407C and cpSRP54 M-domain were produced as previously 

described.(55) All  constructs were sequence verified by Molecular Resource Laboratory, 

University of Arkansas for Medical Sciences, Little Rock. 

Co-precipitation assays  

A protein binding assay was performed as described in Goforth et al. using 100 pmol of GST-

cpSRP43 and 35S-labeled mcpSRP54 mutant produced by in vitro transcription/translation.(55) 

 

Transit Complex Formation 

 Mature sized cpSRP54 or mutants of cpSRP54 described above were examined for their ability 

to support transit complex formation as in Goforth et al. with the following changes.(55) 

Twenty-five picomoles of recombinant cpSRP43 was added to in vitro translated cpSRP54 or 

cpSRP54 mutant (indicated in the figure legend) along with 35S-labeled in vitro translated 

pLHCP or pLHCP ΔTM3, both of which are described in Delille et al.(13) One third of the assay 

was examined by native-PAGE as described in Goforth et al.(55) 
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Single Molecule FRET 

 A cpSRP54 double Cys mutant (cpSRP54S54C/K407C) was site-specifically labeled using Alexa488 

C5 maleimide and Alexa594 C5 maleimide (Life Technologies), and the smFRET experiments 

were performed in HKMK buffer (10 mM HEPES, 10 mM MgCl2, and 100 mM KCl, pH 8.0) 

and carried out with a MicroTime 200 microscope controlled by SymPhoTime software, 

collecting fluorescence photons on a photon-by-photon basis, as previously described.(27) 

Briefly, a water immersion objective with an N.A. value of 1.3 was used for efficient collection 

of single molecule fluorescence. A 100 µm pinhole in the fluorescence detection path served to 

suppress out of focus fluorescence. Excitation was initiated using a ~45 µw laser at 485 nm 

operating in continuous wave (cw) mode. A dichroic mirror FF562-Di03 served to split 

Alexa488 and Alexa594 fluorescence signal onto two Single Photon Avalanche Diode Detectors 

(SPAD, MPI, Microphotonic devices, Bolano, Italy). High quality fluorescence filters 520/35 

and 620/60 were placed in front of each SPAD detector respectively for collecting the Alexa488 

and Alexa594 fluorescence. The donor to acceptor leak-through was ~6% with ɤ of 0.5. ɤ is used 

to balance the donor and acceptor signals and was determined by measuring the fluorescence 

intensities of Alexa488 solution in the donor channel and of Alexa594 solution in the acceptor 

channel having the same optical density at 485 nm, using the same experimental set-up as for 

smFRET experiments. For smFRET experiments, the fluorescently labeled cpSRP54 protein 

concentration was ~150 pM. The femtoliter confocal laser focus was placed ~30 µm above a #1 

glass coverslip surface and ~20 minute long traces showing bursts of diffusing single cpSRP54 

proteins were collected. The donor and acceptor fluorescence traces were binned at 1-ms time-

resolution and analyzed using a homemade Matlab program to generate smFRET histograms. 

The single protein bursts were selected from the traces only when the total burst intensity met a 
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threshold of 10 counts/ms, then the FRET values were calculated using E=IA/(IA+ɤID), with ɤ of 

0.5. The smFRET histogram was then obtained by compiling the FRET values for all the 

detected bursts or molecules. Control experiments are described in the supplemental section 

(Figs. S6-S9). 

 

Small Angle X-Ray Scattering 

 SAXS data for the M-domain of cpSRP54 was collected at the Cornell High Energy 

Synchrotron Source (CHESS) as described at the G1 station.(56) A concentration series from 

1mg/ml to 5mg/ml was collected using ten one-second exposures each to a q range of 0.5 Å-1. 

Buffer scattering data was collected before and after exposures of the protein concentration 

series. Data was processed using the RAW software and visualized in the ATSAS package’s 

Primus. A slight concentration dependence was observed in addition to a shift at wider angles in 

the curve at concentrations above 3mg/ml. Only the data for 1-3mg/ml were used in Primus for 

extrapolation to zero concentration. This curve was used for analysis downstream. Structural 

fitting was performed using the Ensemble Optimization Method (EOM) as described.(57, 58) 

Briefly, randomly oriented c-α traces are generated to represent intrinsically disordered segments 

of the protein. A large pool of these structures was generated (10,000). This pool was then used 

to determine a minimum set of structures from the pool whose combined theoretical scattering 

curves were capable of fitting the experimental SAXS curve. This is accomplished via a genetic 

algorithm. Here, the sequence for the M-domain with the added histidine tag was used in the 

pool generation. The folded core was defined as α–M1 residues F328-K342 and α–M2 to α–M4 

residues K369-M427 built from the 2FFH template model. Ten separate runs of the genetic 
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algorithm (100 iterations per run) were performed and compiled to determine the size 

distribution of the protein. 

 

Results 

Orientation of the M-domain varies in different SRP54s/Ffhs 

In order to begin probing the structure of cpSRP54 and guide single molecule 

experiments a series of homology models were built. Crystal structures for cytosolic SRP54/Ffh 

proteins all feature a 4-helix bundle N-domain, an α/β GTPase G-domain that binds Mg2+ and 

GTP (collectively referred to together as the NG-domain), and a methionine rich M-domain (Fig. 

1). The M-domain is connected to the G-domain via a flexible linker that allows the M-domain 

to move relative to the NG-domain. Indeed, no two crystal structures for SRP54/Ffh result in a 

similar positioning of the M-domain and therefore homology models of cpSRP54 position the 

M-domain in differing positions depending on the template used (Figure 1). Sequence similarity 

suggests the T. aq structure should most closely represent the free cpSRP54 structure (Table S1). 

An important feature of the homology models is that, regardless of the starting template, 

the intra-domain backbone coordinates are quite similar as determined using PyMOL alignments, 

which is further supported by the high degree of similarity between templates observed from 

MultiProt data. Displacement of the first N-domain helix in 2XXA resulted in fewer aligned 

residues (Supplementary Table-2). Exclusion of the 2XXA structure from the N-domain 

alignment yields an RMSD of 1.40Å for 67 residues (77.0%). The discrepancy between the NG-

domain’s alignment and the individual N and G alignments is explained by the differences in 

orientation of the N-domain to the G-domain in each structure. The individual domain similarity 

is important since large differences in domain positioning exist in the templates. Ultimately, a 
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structural model(s) must be selected to represent the structure for cpSRP54 and internal domain 

differences would exacerbate the problem of model selection. The model quality statistics 

indicate that each model is of similar quality in terms of Ramachandran statistics and the scoring 

function QMEAN, as well as the overall z-scores for the models versus the Swiss Model 

database statistics for available crystal structures (Supplementary Table-1).  

 

cpSRP54 exists in multiple conformational states 

 As there is significant variability in the M-domain positioning in the homology models 

we next used single molecule FRET experiments to investigate the positing of the M-domain 

relative the the NG-domain in cpSRP54. In E. col. Ffh, FRET experiments have revealed that in 

solution the M-domain occupies a position consistent with the T. aq. Ffh crystal structure.(14, 

26) Since cpSRP54 shares significant homology with bacterial Ffh, we placed dyes in similar 

positions to those used in the E. col. FRET experiment, anticipating a similar positioning. The 

mutants produced were S54C in the N-domain and K407C in the M-domain of cpSRP54  

(cpSRP54S54C/K407C). The peak in the smFRET histogram is wider than expected from a single 

state as discussed previously(27), indicating at least two conformational states are present (Fig. 

2).  

Next, to learn more about the character of the interaction holding the M-domain in place, 

we used a KCl titration to determine whether the interaction(s) could be affected by ionic 

strength. A titration from 0mM to 1M additional KCl was performed. The results of this titration 

reveal that the high FRET peak observed at ~0.90 FRET, corresponding to a distance of ~42Å, 

decreases discernibly as the ionic strength is increased, indicating a significant electrostatic 

component to the interaction (Fig. 2A). The increase in FRET efficiency centered at ~0.54 FRET 
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becomes more predominant at high ionic strength, suggesting that the interaction holding the 

domains together for this state is predominantly hydrophobic. The ratio of the two FRET peaks 

shows a saturation with increasing KCl concentration, indicating that no further increase in ionic 

strength would alter the orientation of the domains (Fig. 2C).  

The cytosolic SRP54/Ffh undergoes gross domain movement as various interaction 

partners such as SRP RNA and ribosomal proteins become involved. Therefore, we asked what 

affect cpSRP43 might have on the positioning of the M-domain. The results indicate cpSRP54 

interaction with cpSRP43 alters the domain organization compared to cpSRP54 alone (Fig. 2D & 

2E). A new low FRET value of ~0.35 is observed when cpSRP43 binds to cpSRP54 which 

indicates that the relative position of the M-domain is similar, but not identical to that observed 

at high ionic strength.  

It is important to note that transitions occurring on the diffusion timescale in the smFRET 

experiments will result in broadening of the FRET peaks toward a weighted population average 

between the peaks. The rate of transition between the peaks can be determined using probability 

distribution analysis method.(59) Such fitting of the data is beyond the scope of this study, but 

will be explored further in a forthcoming publication.  

 

Differences in the M-domain to NG-domain interaction exist between cpSRP54 and Thermus 

aquaticus Ffh 

We next examined the residue specific differences between the T. aq. Ffh crystal 

structure and the cpSRP54 homology model M-domain to NG-domain interaction interface since 

smFRET experiment’s 0.90 FRET efficiency gives a distance consistent with the T. aq. Ffh 

crystal structure. Simulations on the cpSRP54 model and T. aq. Ffh (PDB ID) 2FFH were 
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performed to examine the M-NG-domain binding interface. Critical M-domain to NG binding 

residues were selected from the T. aq. Ffh simulations since this interface has experimental 

support from E. coli. FRET experiments (Fig. S5). Specifically, cross-linkers were placed at 

positions on the G-domain and M-domain in positions determined using the T. aq Ffh crystal 

structure and were found to produce a cross-link. Further, FRET data indicated the distance 

between the N-domain and M-domain was consistent with this structure. Finally, a relatively 

strong interaction was observed when isolated M-domain was titrated into NG-domain. (60) In T. 

aq. Ffh, a large contact surface between the M-domain and NG-domains is characterized by 

electrostatic, hydrogen bonding and hydrophobic interactions. Details of the residues involved 

are provided in the supplemental section.  

The previous E. coli. FRET experiments were used to determine the interaction strength 

via titration of isolated M-domain into isolated NG-domain. A Kd of ~62nM was obtained 

indicating relatively tight binding.(60) As the cpSRP54 smFRET experiments indicated rapid 

transitions between M-domain coupled states, we expected cpSRP54 M-domain to NG-domain 

interaction strength to be markedly weaker. Using the T. aq. Ffh crystal structure as a proxy for 

E. coli Ffh, we employed steered molecular dynamics (SMD) simulations to examine the relative 

strength of M-NG binding. The results indicate that the M-domain of the T. aq. Ffh is tightly 

bound to the NG domains, requiring ~45kcal/mol work to achieve decoupling (Fig. 4b). As 

expected, the binding of the M-domain of cpSRP54 is much weaker than that of 2FFH, requiring 

only ~17kcal/mol work.  

 We next used sequence analysis to determine first whether differences in the 23 

important residues could explain differences in the free SRP54/Ffh crystal structures and second 

to determine whether sufficient conservation exists between cpSRP54 and T. aq. Ffh that the 
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0.90 FRET state could be reasonably expected to occupy the same position as T. aq. Ffh in 

cpSRP54. Sequence analysis indicates the 23 residues involved in the M-domain to NG-domain 

interaction site tend to be conserved in bacterial Ffh and cpSRP54. However, significantly less 

conservation is observed in archaeal and eukaryotic SRP54 (Fig. S2 in the supporting material). 

This seems reasonable in view of available crystal structures that show a large degree of 

variability in the positioning of the M-domain, even in structures that contain no other binding 

partners such as SRP RNA or the ribosome.(14-16, 32, 33, 61-65) Indeed, little conservation is 

observed overall for surface residues in SRP54s, aside from the GTPase region (Fig. S1 in the 

supporting material). The sequence data is consistent with both the crystal structure data for 

SRP54s/Ffhs as well as the smFRET data for cpSRP54. Further, conservation between the T. aq. 

Ffh 23 residues and the cpSRP54 23 residues suggest the interaction could be retained (Fig. S4 in 

the supporting material).  

 

Interaction between the intrinsically disordered M-domain linker and finger loop in cpSRP54 is 

crucial for domain organization 

 In light of the apparent transitions observed in the smFRET experiments we attempted to 

determine a possible mechanism by which this could be accomplished. Several iterations of all-

atom molecular dynamics simulation were run to examine interplay between the G-domain to M-

domain linker and the M-domain finger loop as these play a significant role in the interaction 

observed in the S. sol. SRP54 crystal structure. Results of the simulations revealed interplay 

between the linker and finger loop (Fig. 4c). Indeed, interaction of the G-domain to M-domain 

Linker with the M-domain finger loop occurred in several simulations during model refinement. 

Herein, two particular interaction events are described in detail.  
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Firstly, the interaction between the G-domain to M-domain linker and α–M1, called the 

greasy slide (GL), forms in a manner similar to the interaction observed in the crystal structure of 

M. jan. SRP54 (3NDB).(15) This occurs in both the simulations of cpSRP54. Details of the 

residues involved are provided in the supplemental section. In general, it is known that 

intrinsically disordered segments tend to undergo an accelerated rate of mutation.(66) If the 

linker and finger loop were structural determinants of the heterogeneity in the M-domain 

positioning then they would be expected to undergo increased rates of mutation. Indeed, 

estimates of the rate of mutation in these two segments indicate the linker mutation rates are 

higher in archaea and eukaryota whereas mutations rates are high in all domains of life in the 

finger loop (Fig. S4). This is discussed further in the supplemental section. 

 The second simulation demonstrates the ability of the finger loop and G-domain to M-

domain linker to coordinate shuttling of the M-domain between conformations. In the initial 

moments of the simulation, the M-domain becomes decoupled from the NG-domain due to 

poorly formed M-domain to G-domain contacts (Fig. 4c).  The linker helix, however, quickly 

forms the GL with α-M1. Specifically, L319, I323 and F328 form close contacts in addition to 

K322 and D332 forming an electrostatic interaction. In this case, the core with the finger loop 

does not form. Instead the finger loop remains open, in a conformation reminiscent of that 

observed in a signal sequence bound crystal structure of SRP54 from Sulfobus solfataricus (PDB 

ID 3KL4).(15) While the new positioning of the M-domain relative to the NG-domains is not 

identical to the free S. sol. SRP54 structure (PDB ID 1QZX), the overall fold is quite similar.  

In order for the G-domain and M-domain linker and the finger loop to play a significant 

role in the M-domain positioning it is necessary that they possess significant disorder. Indeed, 

the cpSRP54 M-domain was predicted to contain several disordered segments (Fig. S3). These 



 

 75 

segments included the linker between the G-domain and M-domain, the finger loop and the C-

terminal extension. We therefore used an isolated M-domain construct for SAXS experiments 

the contains the G-domain to M-domain linker thorugh the cpSRP54 M-domain C-terminal 

extension. The results reveal the linker, finger loop, and C-terminal extension are indeed 

disordered with a fit χ2 of 1.09 (Fig. S10) to the extrapolated data. The size distribution is wide 

and supports an extended structure with large-scale disorder (Figure 4a). However, the 

distribution favors a more closed structure. A review of the structures indicates the primary 

driver of extension in the closed structure is the C-terminal extension. This is remarkably 

consistent with a closed state between the linker and the finger loop and is therefore supportive 

of an interaction between them.  

 

Mutation in the M-domain and deletion of the finger Loop hinder substrate binding  

 Considering the observations made in the smFRET experiments and the observation from 

the SAXS experiment that the M-domain C-terminal extension is highly disordered we 

hypothesized that the M-domain may be positioned for interaction with TM3 of LHCP. TM3  

exits cpSRP43 on the same side the M-domain is predicted to reside based upon the positioning 

of the M-domain C-terminal extension peptide in a cpSRP43 crystal structure (PDB ID 

3UI2).(67) Previously, crosslinking experiments were unable to determine whether cpSRP54 

interacts with TM3 when bound to cpSRP43 although it had been observed to cross-link with 

TM3 in elongation arrested ribosomes.(17, 18) However, cross-linkers placed at hydrophobic 

positions that the M-domain would need to interact with may have eliminated the ability of the 

M-domain to interact with TM3 and therefore prevent cross-linking. Although transit complex 

formation was nevertheless possible through cpSRP43 interaction, it remains possible cpSRP54 
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interacts with TM3 and that this interaction allows cpSRP54 to help regulate integration. As the 

M-domain in cytosolic SRP54/Ffh binds hydrophobic signal sequences and TM3 is significantly 

hydrophobic, we hypothesized a reduction in the hydrophobicity of the M-domain binding 

pocket would have a significant impact on M-domain interaction with TM3 if it occurs. If TM3 

binding occurs, it would likely have a dramatic affect on transit complex formation. To verify 

this hypothesis cpSRP54 was produced in which two hydrophobic residues in the M-domain 

signal sequence binding groove, Val339 and Leu370, were substituted with Asn.  This M-domain 

mutant (cpSRP54V339N/L370N) was produced by in vitro transcription/translation and compared with 

similarly produced wild type cpSRP54 for the ability to bind cpSRP43 (Figure 5a) and the ability 

to promote transit complex formation when mixed with recombinant cpSRP43 and in vitro 

translated radiolabeled LCHP (Figure 5b).  Co-precipitation assays with GST-43 and GST alone 

demonstrate that radiolabeled cpSRP54V339N/L370N is efficiently co-precipitated by glutathione 

sepharose only when GST is fused to cpSRP43, which demonstrates that the M-domain point 

mutations have no influence on cpSRP43 binding.  In contrast, when transit complex formation 

was examined using native-PAGE, cpSRP54V339N/L370N exhibited a severe deficiency in the ability 

to form transit complex.  Next, we reasoned if TM3 must form an interaction with cpSRP54 in 

the loading step, then deletion of TM3 would recover LHCP loading. Indeed, cpSRP54V339N/L370N 

exhibited a greater ability to support transit complex formation when LHCP was replaced with 

pLHCPΔTM3, which lacks TM3. This data suggests that an interaction of TM3 with the 

cpSRP54 M-domain has a significant impact on the formation of cpSRP-LHCP transit complex.  

 Since molecular dynamics simulations suggest a potential mechanism by which M-

domain shuttling may occur through interaction between the G-domain to M-domain linker and 

the finger loop, we next removed the finger loop (residues 345-359; cpSRP54Δ345-359) from the M-
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domain.  If the finger-loop plays a major role in transit complex formation beyond facilitating 

interaction of the M-domain with TM3 then the formation of transit complex would likely be 

affected to a greater degree than the double mutant cpSRP54V339N/L370N. That is, if the finger loop 

is also critical for orienting the NG-domain and M-domain, these results would differ 

significantly. Figure 5a shows that while the loop deletion did not affect cpSRP43 binding, 

transit complex formation was completely abolished and no recovery of transit complex 

formation was observed when TM3 was removed from the pLHCP targeting substrate as in the 

cpSRP54V339N/L370N double mutant (Fig. 5b). These results suggest that the finger loop is likely 

responsible for more than hydrophobic peptide binding, consistent with a role for the linker-loop 

interaction. 

 

Discussion 

The current study, along with recent findings for cpSRP43, reveals the cpSRP system is 

characterized by a large amount of structural heterogeneity.(27) While cpSRP43 prepares an 

energetic funnel favoring LHCP interactions downstream from cpSRP formation, cpSRP54 

appears to use various domain orientations to allow it to act in two different targeting systems. 

Indeed, there are significant differences between the traditional, co-translational signaling 

pathway of SRP54/Ffh versus the cpSRP54 post-translational targeting pathway. Our smFRET 

data indicates that at least two bound orientations exist for the M-domain relative to the NG-

domains in cpSRP54. In each of the three free SRP54s/Ffh crystal structure templates available 

for cpSRP54 homology modeling, the M-domain adopts different positions relative to the NG-

domains. (14, 33, 61) In a structure from S. sol. SRP54, the M-domain occupies a state stabilized 

by the “greasy slide” while a structure from T. aq. Ffh occupies a state in which the M-domain 
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interacts directly with the NG-domain.(14, 33) The  P. fur. SRP54 structure contains no apparent 

contact between the M-domain and NG-domains that would likely render the molecule quite 

flexible in solution.  

The 0.90 FRET peak corresponds well with the cpSRP54 model built from the T. aq. Ffh 

crystal structure after simulation with an M-N-domain distance of ~43Å. In the S. sol. SRP54 

structure, the M-domain is positioned near the N-domain, forming a hydrophobic interaction 

between the G-M-domain linker and α-M1. The positions between the FRET α-carbons from 

cpSRP54 modeled from S. sol. SRP54 is ~52 Å (~0.70 FRET) which is which is inconsistent 

with the apparent 0.54 FRET peak (Fig. 2A). However, the broad shoulder at lower FRET is 

suggestive of an additional state or states. A change in the rate of exchange between a 0.70 or 

0.90 FRET state with a lower FRET state centered at ~0.35 would lead to an increase in the 0.54 

FRET region as increasing ionic strength shifted the equilibrium toward the 0.70 FRET state. 

The 0.35 FRET efficiency corresponds to a distance of ~66 Å, which is only possible for a 

decoupled M-domain based upon the G-domain to M-domain linker distance.  

Using the results of the molecular dynamics simulations and sequence data, we propose 

that the G-domain to M-domain linker interacts with the finger loop to shuttle the M-domain 

between bound states through the decoupled state observed in the smFRET. Indeed, our results 

show that deletion of the finger loop has a dramatic affect on the loading of the LHCP cargo. 

Interestingly, a similar finger loop deletion in a cytosolic SRP54 efficiently bound targeting 

cargo, but was hindered in SRP RNA stimulation of GTP hydrolysis and cargo handover.(68) 

This difference suggests that complex assembly in the cpSRP system differs significantly from 

the signal peptide binding of the co-translational SRP system.  
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 In conclusion, we hypothesize the significance of this orientational plasticity is to 

overcome the necessity of SRP RNA for separation of the M-domain from the NG-domain and 

to allow the cpSRP54 M-domain to scan for TM3. The mutational data support our notion that 

the M-domain interacts with TM3 and that the finger loop of the M-domain is involved in more 

than facilitating the interaction between cpSRP54 and LHCP. The loss of LHCP binding in the 

absence of the finger loop may be related to the heterogeneity in M-domain positioning observed 

in the smFRET experiments in which cpSRP54 is bound to cpSRP43. It may be necessary that 

the M-domain of cpSRP54 remains flexible when bound to cpSRP43 in order to facilitate LHCP 

binding, a process likely facilitated by the finger loop. It remains uncertain at this point whether 

binding of cpSRP43 to cpSRP54 or binding of cpSRP54 to the ribosome requires one of the 

cpSRP54 conformations observed here, or if the ability of cpSRP54 to transition between bound 

and unbound M-NG states is responsible for facilitating these interactions. Further, the cpSRP 

structure in its entirety remains to be experimentally determined, as does the structure of the 

transit complex. Nevertheless, it is clear that domain heterogeneity of both cpSRP proteins plays 

a major role in the targeting process.  
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Figures 

 
 
Figure 1: Homology models for cpSRP54. The organism name listed is that of the template used 
to build each model. The NG-domain’s orientations are identical in each image to highlight the 
variability in the M-domain (black arrows) orientation in each template and therefore in each 
homology model. The PDB IDs for T. aquaticus, E. coli, M. jannaschii, C. familiaris, and S. 
solfataricus are 2FFH, 2XXA, 3NDB, 2J37, and 1QZX, respectively. The N-domain (red) and 
G-domain (green) are connected to the M-domain (blue) via a flexible linker (orange). The M-
domain contains two additional flexible segments, the finger loop (black) and the c-terminal 
extension (yellow). 
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Figure 2: A- The smoothed FRET histograms of cpSRP54 at different concentrations of KCl 
(smoothed histograms are provided here for visual clarity; the unsmoothd curves are provided in 
the supplementary section). As the KCl concentration is increased the 0.90 FRET peak is 
diminished while a 0.70 FRET peak begins to emerge. This suggests the high FRET state is 
stabilized by salt-bridges while the middle FRET state is primarily hydrophobic in nature. B- 
Subtracted FRET data as a function of KCl concentration. The subtraction is the KCl 
concentration FRET efficiency minus the initial 0mM additional KCl FRET efficiency. C- 
Titration curve showing the change in the ratio of the FRET efficiency at 0.54 versus 0.86 as the 
KCl concentration is increased D- FRET of cpSRP54 in the presence and absence of cpSRP43. 
Similar to the KCl titration results, the presence of cpSRP43 results in a conformational change to 
a middle FRET peak. However, this state appears at lower FRET suggesting the state is not 
identical to the state observed to increase at higher KCl concentration. E- Subtraction of cpSRP54 
alone from cpSRP43/cpSRP54 FRET. F- Structure of cpSRP54; beads indicate the location of the 
Dye molecules.
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Figure 3: Left- cpSRP path depicting events leading to the post- and co-translational pathways. 
cpSRP54 exists in at least two different conformations; low ionic strength favors a state similar 
to that observed for T. aq. Ffh while high ionic strength favors a state similar to S. sol SRP54. 
The S. sol SRP54 like state is consistent with the state occupied by bacterial Ffh when bound to 
SRP RNA and possibly allows cpSRP54 to act in the absence of SRP RNA. When bound to 
cpSRP43, cpSRP54 retains its structural heterogeneity. Upon binding LHCP cpSRP54’s M-
domain possibly interacts with TM3. Right- The traditional SRP54/Ffh co-translational signaling 
pathway. This pathway differs starkly in that it requires SRP RNA and functions only in a co-
translational pathway. Whether cpSRP54 continues to sample multiple conformations at the 
ribosome remains to be determined. 
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Figure 5: A- Size distribution determined using the ensemble optimization method for the M-
domain. The wide M-domain distribution (green) shifted toward higher size compared to the 
pool (blue) is indicative of a large amount of disorder. B- Profiles of the averaged accumulated 
work (solid lines) from the steered molecular dynamics simulations of 2FFH (blue) and cpSRP54 
(orange) with the standard deviations for each (dashed lines). The results indicate the 2FFH M-
domain is tightly bound to the NG-domains and that the cpSRP54 M-NG binding is significantly 
weaker. C- The M-domain position shift. The initial position in (1) quickly transitions to the 
decoupled M-domain (blue) in state (2). Folding of the linker (green) helix with α-M1 to form 
the “greasy slide” along with folding of the finger loop onto the linker results in recoupling of 
the M-domain to the N–domain (red) and G-domain (orange) as seen in (3) and (4). 
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Figure 5: cpSRP54 M-domain is critical for interaction with TM3 domain of LHCP.  A- In vitro 
translated radiolabeled cpSRP54 (WT cpSRP54) or cpSRP54 mutants (cpSRP54V340N/L371N and 
cpSRP54Δ346-360) were incubated with GST or GST-cpSRP43 (GST-43) and described in 
methods.  Proteins were recovered with glutathione sepharose and separated by SDS-PAGE.  
Radiolabeled translation product (TP) and co-precipitated cpSRP54 constructs were visualized 
by fluorography (top) or by protein staining (bottom).  B- The indicated cpSRP54 construct was 
produced by in vitro translation and incubated with recombinant cpSRP43 and radiolabeled in 
vitro translated pLHCP or pLHCP ΔTM3 as described in methods.   Transit complex (TC) 
containing the indicated radiolabeled LHCP construct was examined by native-
PAGE/fluorography as described in methods.  The position of aggregated LHCP constructs in 
the well is indicated in the figure. 
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Supporting Material Methods 

Bioinformatics 

The sequence for cpSRP54 used for homology modeling was used for conservation analysis. The 

sequence was submitted for a BLAST search using BLAST 2.2.29+ against the Swiss-Prot 

Database using an e-value cut-off of 1x10-10 using the BLOSSUM64 matrix. A total of one 

hundred and forty-one hits were obtained containing SRP54’s as well as SRP receptor proteins. 

The receptor proteins were removed from the data set, leaving a total of ninety-two unique hits. 

Sequences were collected from UniProt and aligned using Clustal Omega. The residues 

identified as important for M-NG coupling in the T. aq. Ffh simulation were checked for 

conservation in the multiple sequence alignment from Clustal Omega. A simple conservation 

scheme was employed in which substitutions compared to 2FFH residues between Arg and Lys, 

Glu and Asp, Gln and Asn, as well as Leu, Val, and Ile were considered conserved. Note, 

aromatic residue substitutions of Leu, Val, and Ile were not allowed as the positioning of these 

residues in the binding interface suggests core packing would be hindered in the presence of 

bulky, aromatic side-chains.  

Sequence conservation was calculated as the fraction of the total conserved residues 

versus the total searched. In order to determine whether the interaction site is more conserved 

than any specific set, twenty-three residues were selected at random among all surface residues 

of 2FFH since a total of twenty-three important residues were identified for the M-domain to 

NG-domain interaction site. Surface residues were selected as those with greater than 20Å2 of 

solvent-accessible surface area, as determined using VMD. These residues were evaluated for 

their conservation. This process was iterated 100,000 times to produce a dataset consisting of 



 

 93 

9,200,000 protein site percent-conservation totals. These sets were then separated into sets 

corresponding to totals for archaeal, eukaryotic and bacterial proteins. These were compared to 

the interaction site data set. Additionally, since cpSRP54 is particularly similar to 2FFH, the 

random site distribution for cpSRP54 was evaluated in the manner above. All analysis was 

performed using custom Perl scripts. 

The relative sequence conservation was also determined using ConSurf, an online server 

that weighs substitutions based on less stringent conservation rules as well as on the phylogenetic 

distribution in the data set.(2-5) The Bayesian method was used in this analysis and, since there 

are a greater number of residues covering more of all the proteins in the data set, the cpSRP54 

structure and sequence was used for submission.  

The rate of evolution for the G-domain to M-domain linker, the M-domain finger loop, 

and a set in which both the G-domain to M-domain linker and M-domain loop sequences were 

removed from the full SRP54/Ffh sequence (ordered set) was determined using the PHYLIP 

program protdist using the Dayhoff PAM matrix.(1, 6) The M-NG interaction site residues were 

evaluated similarly. The distance difference was determined by subtracting the 

disordered/interaction site distances from the ordered set distances.(1) For this, a new and larger 

dataset was generated. Rates were determined for bacteria, archaea and eukaryotes. BLAST 

searches were submitted for plants, eukaryotes, archaea and bacteria separately using the 

cpSRP54 against the TrEMBL database using an e-value cut-off of 1x10-4 and the BLOSSUM64 

matrix with a maximum of 1,000 hits each. The sequences were then combined after removing 

duplicates. In order to ensure only Ffh/SRP54/cpSRP54 proteins were included in the dataset, all 

sequences with fewer than four hundred amino acids were removed. Subsequently, the sequences 

were aligned using Clustal Omega followed by trimming of the sequences using Trimal 1.4 using 
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a gap threshold of 0.6, a residue overlap of 0.40, and a sequence overlap of 90 percent. Any 

sequence missing the linker and/or loop residues was removed leaving a total of 1,538 proteins in 

the dataset. Data processing was performed using custom Perl scripts. 

 

Supporting Material Results 

Bioinformatics 

A BLAST search of the SwissProt database for the cpSRP54 sequence was performed to 

examine the degree of conservation of the residues involved in the M-domain binding to the NG-

domains. A set of sequences for the BLAST hits in which the 23 M-domain to NG-domain 

interaction site residues were removed was prepared for random sampling. For all proteins in this 

set, the distribution of percent conservation in the interaction site residues is shifted toward 

greater conservation than the randomly selected set. Evolutionary distances determined using the 

PHYLIP program protdist indicates the M-domain to NG-domain binding residues in bacterial 

and eukaryotic proteins tend to be more conserved. However, these same residues are less 

conserved in archaeal SRP54s; this is consistent with the fact that the M-domain to NG-domain 

interaction site observed in bacteria is not observed in archaea. The most conserved interaction 

site residues are found in the sequences for bacterial Ffh. Importantly, the interaction site 

residues show significantly higher similarity than the random selection (Fig. S2). The M-domain 

to NG-domain interaction site conservation in cpSRP54 compared to the T. aq. Ffh interaction 

site is ~70%. Comparing this conservation to the randomly selected set of surface residues for 

cpSRP54 indicates that only ~7% of the sets will have greater conservation than this site. 

Considering that these sets are not necessarily clustered in the same location and can include the 

highly conserved GTPase residues suggests that the site is particularly well conserved in 
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cpSRP54. Several proteins in the data set have significantly low conservation as compared to the 

random sets, suggesting this interaction site is not well conserved across all SRP54s.  

The relative rate of mutation in the G-domain to M-domain linker and the M-domain 

finger loop was estimated for a large set of SRP54/Ffh sequences.  The difference in the rate of 

mutation in the linker versus ordered segments of bacterial Ffh is quite small (-0.04), however 

mutation rates among archaeal and eukaryotic SRP54 (-0.32 and -0.27 respectively) is 

considerably higher (Fig. S4). In contrast, the finger loop has a greater rate of mutation relative 

to the ordered segments in all domains of life (-0.43, -0.33 and -0.29 for bacteria, archaea and 

eukaryote, respectively) (Fig. S4). These results indicate increased sampling of residues in these 

regions of SRP54/Ffh that may explain differences observed in the structures of free 

SRP54s/Ffhs. 

M-domain to NG-domain Interaction Details 

The 2FFH packed hydrophobic core of residues formed between Leu367 of the M-

domain core and residues Leu106, Ile194, Val229 and Ala232 of the G-domain, remains in place 

throughout the simulations (Fig. S5). This region represents a significant contact surface between 

the M-domain and NG-domains and likely contributes to significant coupling of these domains. 

Backbone hydrogen bonding between Ile194(NH) of the G-domain and of Ser368(CO) of the M-

domain and G-domain Glu196(NH) and M-domain Gly391(CO) stabilizes the contact at the M-

domain core (Fig. S5). These contacts are further stabilized via side-chain interactions between 

G-domain Arg231 and M-domain Glu363, G-domain Gln224 and M-domain Lys327, G-domain 

Gln193 and M-domain Thr370, G-domain Gln193 and M-domain Ser368, as well as G-domain 

Glu225 and M-domain Arg374 (Fig. S5).  The latter three are somewhat transient and may not 

likely contribute significantly to the binding free energy. Although the M-domain core near the 
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G-domain appears to be the strongest region of interaction, several important contacts occur 

between the M and N-domain interface, particularly near the C-terminus of α-M1 and the N-

terminus of α-M2 (Fig. S5). Arg334 forms a close contact with the backbone of residue 

Val43(CO) and the Asp42 side-chain of the N-domain. This segment of the N-domain is 

relatively well conserved and has been implicated in mediating signal sequence binding.(7) 

Additional contacts were observed between N-domain Glu46 and M-domain Lys360, M-domain 

Glu356 and N-domain Arg49 in the simulation. In one simulation, the N-domain rotates to 

accommodate these interactions, consistent with previous SRP54 simulations in which the N-

domain is capable of rotation about the N-G-domain interface.(8, 9) 

M-domain Recouping Interaction Residues 

Prior to the formation of the GL, the finger loop (residues M346-M352) folds over the 

peptide-binding site close to the C-terminus of α–M4. The G-domain to M-domain linker then 

forms the GL via interaction of Ile323, Ala326 and Phe328 with a finger loop helix (Thr347-

M352) and Met427 in α–M4. The transition results in a packed core between the M-domain to 

NG-domain linker and finger loop residues V349 and M352, as well as a single electrostatic 

interaction between K322 and D332. 

Control Experiments for smFRET 

We performed several control experiments to ensure that changes in the smFRET 

histograms are due to structural changes in the protein and not due to environmental effects from 

change in the concentration of KCl. To examine for changes in the fluorescent properties of the 

dye-labeled proteins with KCl concentration at the ensemble and single-molecule level, we 

labeled the double-cysteine mutant cpSRP54 proteins with only Alexa488 or only Alexa594. As 

shown in figure S6, the fluorescence intensity of Alexa488 or Alexa594 labeled cpSRP54 
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proteins did not show a change with KCl concentration up to 1000 mM. Furthermore, Figure S7 

also shows that the photon counting histograms for single Alexa488-labeled cpSRP54 did not 

show KCl concentration dependent effect(s).  

Additionally, Figure S8 shows that the threshold chosen for detecting single molecule 

fluorescence bursts from the background does not affect the smFRET histograms at any of the 

KCl concentrations. The only difference is that the number of detected molecules decreases 

(from about ~7000 to ~5000 per trace) when a higher threshold is chosen (10 counts/ms vs 20 

counts/ms), and thus the statistical noise increases slightly. 

This data is further quantified in table S3, whereby the average intensity of the donor and 

acceptor signal is not affected by KCl concentration for a given threshold level and that the 

average dwell time in the laser focus is unaffected by either threshold or KCl. The numbers in 

parentheses are the standard deviations of the values. 

Taken together, this control data strongly supports that the both the ensemble and single 

molecule fluorescence properties of the dyes are unaffected by KCl concentration under the 

experimental conditions used, thus validating that changes in the smFRET histograms with KCl 

are due to protein structural changes and not due to dye photophysics. 

Figure S9 shows that neither smoothing of the smFRET data or choice of binning 

introduced artifacts. This is highlighted by the similar Kd values obtained in the titration; only 

the R2 values and standard errors are different due to differing levels of statistical noise. The 

smoothed data allows for better viewing of the trends by reducing statistical noise but does not 

bias the data analysis. 
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Supporting	Tables	and	Figures	

 
 Table S1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Modeling Statistics

cpSRP54
Structure

(Template)

Core
(%)

Allowed
(%)

Generously 
Allowed

(%)

Disallowed
(%)

QMEAN Z-Score

Modeller 88.1 8.4 2.6 1 0.575 -2.32

3NDB 92.1 6 1.4 0.5 0.606 -1.95

2XXA 21.4 6.2 1.4 1 0.599 -2.03

2J37 88.1 7.9 2.4 1.7 0.49 -3.34

1QZW 87.6 8.1 3.3 1 0.523 -2.95

2FFH 91.2 6 1.7 1.2 0.569 -2.4

cpSRP54
BLAST

(Template)

Bits e-value Identities
(ratio - %)

Positives
(ratio - %)

Gaps
(ratio - %)

Coverage
(%)

3NDB 254 1.00E-67 164/411 - 39 245/411 – 59 29/411 – 7 83

2XXA 340 1.00E-93 200/427 - 46 268/427 -62 18/427 – 4 86

2J37 217 2.00E-56 133/438 – 30 235/438 – 
53

11/438 – 2 87

1QZW 227 2.00E-59 143/391 – 36 226/391 – 
57

16/391 – 4 77

2FFH 308 6.00E-84 276/429 – 64 276/429 – 
64

24/429 – 5 87

cpSRP54 M-
domain
BLAST

(Template)

Bits e-value Identities
(ratio - %)

Positives
(ratio - %)

Gaps
(ratio - %)

Coverage
(%)

2XXA 68 4.00E-12 50/136 - 36 17/136 -52 17/136 -12 66

2J37 66 2.00E-11 44/152 -28 82/152 -53 9/152 – 5 74

1QZW 51 5.00E-07 41/121 – 33 64/121 -52 14/121 – 
11

57

2FFH 71 7.00E-13 44/124 – 35 74/124 – 59 6/124 – 4 69
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Table S2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mul$Prot)Mul$ple)Structure)Alignments)

Domain(s)*
(cpSRP54*models)*

RMSD*
(Å)*

Number*of*Residues**
(total*aligned*–*percent*aligned)*

NG*(E1BL295)* 1.61* 164*B*55.6%*

NBAll*(E1BM87)* 1.33* 46*B*52.9%*

NBMinus*2XXA*(E1BM87)* 1.40* 67*B77.0%*

G*(P101BL295)* 1.44* 150*B*76.9%*

MBcore*(K369BG432)* 0.99* 58*B*90.6%*
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Table S3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 102 

Figure S1. 
 

 
 
 
 
 
 
Figure S1: ConSurf conservation statistics depicted on the cpSRP54 structure. Conservation 
scores are represented as colors ranging from blue (least conserved) to white (moderately 
conserved) to red (highly conserved). As can be seen on the structure, surface residues tend to be 
poorly conserved for SRP54 proteins in this data set.  
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Figure S2. 
 

 
 
Figure S2: Conservation statistics for the 23 selected residues from the 2FFH simulation 
compared to a random selection of 100,000 sets of 23 residues for each protein compiled for 
eukaryotic, bacterial and archaeal proteins compared to 2FFH. The results show that the 
interaction site 23 tend toward greater conservation as compared to the random selection. In 
particular, the random selection leaves only ~6.5% of sets greater than the percent conservation 
for the 2FFH interaction site in cpSRP54. Smooth lines are drawn for visual clarity. 
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Figure S3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3: PONDR disorder prediction indicating disorder in the G-domain to M-domain linker 
region (red), the finger loop (purple), and the C-terminal extension (green). 
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Figure S4. 
 

 
 
 
 
 
 
 
 

N-domain 1          11         21         31         41         51          
         |          |          |          |          |          | 

2FFH     -FQ-QLSARL QEAIGRLRGR GRITE-EDLK ATLREIRRAL MDADVNLEVA \RDFVERVRE 

cpSRP54  M.G...TGG. EA.WSK.K.E EVL.K.DNIA EPM.D..... LE...S.P.V ..R..QS.SD 

1QZX     .--.M.ENI- RD.VRKFLTG STPY..KAVD EFIKDLQKS. ISS...VKLV .FSLTAKIK. 

3DM5     VLD.N.GKA. ANTLKKIARA SSVD..ALI. ELV.D.Q... IQ....VRLV .LQLTREIQR

 

 

G-domain 181        191        201        211        221        231         
         |          |          |          |          |          | 

2FFH     VEEKARLEAR DLILVDTAGR LQI\DEPLMG ELARLKEVLG PDEVLLVLDA MTGQEALSVA 

cpSRP54  GLKE.KKNNV .VVIM..... .....KGM.D ..KDV.KF.N .T.....V.. ......AALV 

1QZX     GVDIFVKNKM .I.I...... HGY.ETK.LE .MKEMYD..K ..D.I..I.. SI..K.YDL. 

3DM5     GVDYFKSKGV .I.I...... HKE..KA.IE .MKQISN.IH .H..I..I.G TI..Q.YNQ. 

 

M-domain 361        371        381        391        401        411         
         |          |          |          |          |          | 

2FFH     GLLPGVPQ-- ---GLKVD-E KAIKRLEAIV LSMTPEERKD PRIL-GS\RR KRIAKGSGTS 

cpSRP54  .MI..MGK.S P.AQIREA.. .NLLVM..MI EV......ER .EL..PE... .....D..KT 

1QZX     QHI..LGIMP SEDQ..IG.. EK.R.WL.AL N...YK.LEN .N.I.K...M R...E...LE 

3DM5     RMI..LGYS. PDDVISIG.. ERL.KFKV.M D...E..LLN .E.I.Y...I ....R.....
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Figure S4: A- Multiple sequence alignment of T. aq. Ffh, cpSRP54, S. sol. SRP54 & P. fur. 
SRP54 (PDB ID 3DM5) sequences depicting the residues at the interaction site (2FFH residues 
highlighted in black). Comparison of the sequences reveals 5 sites which are different in S. sol. 
SRP54 and Pyrococcus furiosus (red) but not in cpSRP54 (green). Changes in these residues 
likely contribute to the difference in M-domain positioning observed in crystal structures. In blue 
is the critical residue, L367, for the formation of a buried hydrophobic pocket between the M-
domain and G-domain in 2FFH. The alignment indicates this residue is hydrophilic in all three 
except T. aq. Ffh. B- Distance difference for SRP54/Ffh: (a) M-domain to NG-domain 
interaction site (b) G-domain to M-domain linker (c) M-domain finger loop. 
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Figure S5. 
 

 
 
Figure S5: A- T. aq. Ffh (2FFH) M-domain to NG-domain interaction site from molecular 
dynamics simulation: B- the hydrophobic core between the G & M-domains, C- the G & M-
domain polar contacts, D- and the N & M-domain polar contacts. 
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Figure S6. 
 

 
Figure S6: Ensemble fluorescence intensity at different concentrations of KCl for Alexa 488 
labeled cpSRP54 and Alexa594 labeled cpSRP54. The results indicate increasing concentrations 
of KCl do not significantly affect the fluorescence intensity of the dyes. 
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Figure S7. 

 
Figure S7: Single photon-counting histograms at different concentrations of KCl. The results 
indicate increasing concentrations of KCl do not significantly affect the photon counts. 
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Figure S8. 
 

 
 
Figure S8: FRET histograms resulting from using 10 (red) and 20 (blue) counts/ms thresholds. 
The results indicate the threshold has little effect on the shape of the histogram at the various 
KCl concentrations used. 
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Figure S9. 
 

 
Figure S9: Binning and smoothing of the KCl smFRET data. The results indicate bin size has 
little influence on the overall shape of the histograms. Further, smoothing of the data does not 
affect the overall shape and, therefore, the visual interpretation of the results. 
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Figure S10 

 
Figure S10: M-domain SAXS fit. The blue line represents the data while the green line 
represents the fit to the data.   
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Abstract 

The chloroplast signal recognition pathway is responsible for delivering light harvesting 

chlorophyll binding proteins post-translationally to the thylakoid membrane. The central binding 

machinery, cpSRP, is composed of an SRP54 homologue cpSRP54 and a novel 43kDa subunit 

cpSRP43. Previous FRET data demonstrated that both proteins were quite flexible even upon 

interaction with one another. Here, we examine the domain orientations of the cpSRP subunits 

using small angle x-ray scattering and FRET probability distribution analysis, revealing a large 

amount of flexibility between the domains of cpSRP54. Specifically, a C-terminal extension of 

the cpSRP54 M-domain allows the M-domain to sample the region of cpSRP43 where the third 

transmembrane segment of LHCP is expected to reside. These results help to rationalize the 

mechanism by which LHCP is loaded onto cpSRP to form transit complex and to predict a 

possible transit complex structure. 

 

Introduction 

 The chloroplast signal recognition particle (cpSRP) is a signal recognition particle (SRP) 

homologue responsible for the post-translational the delivery of light harvesting-chlorophyll 

binding proteins (LHCPs) to the thylakoid membrane.1 The chloroplast 54kDa subunit, 

cpSRP54, bears significant sequence and functional similarity to SRP54 found in the co-

translational, ribosome bound SRP pathway of the cytosol.1,2 Significantly, rather than the 

massive scaffold the ribosome and SRP RNA provide\, cpSRP54 operates with a novel 43kDa 

subunit, cpSRP43.2 cpSRP43 provides the majority of the interaction interface with LHCP 

leaving a small segment of its third transmembrane segment (TM3) available for interaction with 

cpSRP54’s M-domain.3,4 In addition to providing this interface, cpSRP43 has been observed to 
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replace SRP RNA, stimulating the GTPase activity of cpSRP54 and cpFtsY.2 However, it 

remains uncertain how cpSRP54 has been retrained to apply its co-translational signaling 

functionality in the absence of the typical ribosome machinery.  

 A recent surge in information regarding the molecular details of cpSRP signaling have 

revealed much information regarding the impact of interactions on cpSRP43’s structure and 

signaling influence. cpSRP43 was first revealed to be quite flexible. Further, interaction with a 

cpSRP54 derived peptide significantly reduce some of this flexibility while increasing the 

affinity of a critical cpSRP43 binding segment of LHCP, L18.5 This result was further 

substantiated, revealing greater detail regarding the specific changes occurring upon this 

interaction.6 Additionally, it was shown that Albino 3 (M2 and M4) derived peptides could 

reverse this increased L18 affinity suggesting a mechanism for release of LHCP to the 

membrane. The M4 region of Alb3 was recently shown to tether cpSRP43 at the second and 

third chromodomains (CD2 and CD3, respectively).7  

 While there has been a significant increase in our understanding of cpSRP43’s 

mechanistic role in LHCP targeting, details of the cpSRP54 three-dimensional structure as well 

as the full cpSRP structure have remained elusive. Recent work has revealed cpSRP54 is highly 

dynamic. (Ch. III.) Specifically, the cpSRP54 N-terminal, N-domain and GTPase, G-domain 

cycle through interactions with the methionine rich, M-domain, regulated by two flexible 

segments of the protein. The results of this study indicated that cpSRP43 causes a transition in 

the conformational composition of cpSRP54. Further, it was found that a reduction in the 

hydrophobicity of the M-domain resulted in difficulty in forming transit complex. The results 

suggested that M-domain forms an interaction with TM3 of LHCP.(Ch. III.) 
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Nevertheless, the molecular mechanism by which the M-domain facilitates loading of 

LHCP remains uncertain. In the ribosome bound co-translational system, SRP54/Ffh samples the 

ribosomal exit tunnel scanning for signal sequences.8 We show here using small angle x-ray 

scattering (SAXS) that an intrinsically disordered, C-terminal segment of cpSRP54 allows the 

cpSRP54 M-domain to scan the region of cpSRP43 in which TM3 is expected to be exposed. 

Results of ensemble FRET experiments confirm cpSRP is characterized by a large amount of 

flexibility while probability distribution analysis (PDA) of the previous single molecule FRET 

experiments for cpSRP54 reveal that cpSRP43 alters the organizational equilibrium to favor a 

decoupled M-domain from the NG-domain. The results provide a mechanistic picture of the 

LHCP loading process and reveal that cpSRP43 and cpSRP54’s C-terminal extension act 

functionally to replace the ribosomal scaffolding. Further, these results lead to the speculation of 

a transit complex structure. 

 

Methods 

Expression and Purification 

Expression and purification of cpSRP43, cpSRP43ΔCD3, cpSRP54 M-domain, and cpSRP54 

were performed as described.9 

 

Ensemble FRET 

Ensemble FRET titration experiments were performed titrating cpSRP43 into cpSRP54. 

cpSRP54 was labeled with the donor Alexa488 and cpSRP43 with the acceptor Alexa594, with a 

dye to protein ratio of 10 to minimize the nonspecific fluorescence labeling. Excess free dye was 

removed from labeled proteins via size exclusion chromatography. Fluorescence Correlation 
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Spectroscopy (FCS) experiments for free Alexa594 and cpSRP43 protein labeled with Alexa594 

were performed in order to confirm that size exclusion chromatography effectively separated the 

free dye from the labeled protein. Calculations determined less than 4% free dye was present in 

the cpSRP43-Alexa594 solution using a 2-component diffusion model. The Alexa488 labeled 

cpSRP54 protein concentration for the FRET experiments was fixed at 50 nM. with titration of 

Alexa594 labeled cpSRP43 or unlabeled cpSRP43 from 0 nM to 1000 nM. Titration data for 

unlabeled cpSRP43 was used to correct for quenching by the unlabeled protein. The fluorescence 

spectra were measured using Photon Technology International (PTI) Quantamaster 4 

fluorometer. 

The FRET efficiency is determined using 

E = 1 – (ID / ID0) 

where ID is the intensity of the donor in the presence of the acceptor labeled proteins or unlabeled 

proteins, and ID0 is the initial intensity of the donor. To remove any quenching caused by the 

unlabeled protein, the unlabeled cpSRP43 FRET values were subtracted from the labeled 

cpSRP43 FRET values. Each point was then divided by the labeling efficiency of cpSRP43-

Alexa594. The data was fit using the Hill equation, which is (Vmax * x) / (k + x), where x is the 

concentration of Alexa594 labeled cpSRP43 protein. The fitted graphs provide a maximum 

FRET value (the FRET value of the fully-bound complex) and a kD value. The maximum FRET 

is used to calculate the corresponding average interdomain distances of the cpSRP43 and 

cpSRP54 heterodimer. The FRET distance equation is E = R0
6 / R0

6 + r6, where E is the 

maximum FRET value, and r is the FRET distance between the dyes. R0 is corrected based on 

the Alexa488 quantum yields of Alexa488 labeled cpSRP54 proteins involving FRET, with the 

given Förster distance for the particular dye pair based on the quantum yield of the free dye (60 
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Angstroms or 6nm). The obtained kD values are similar to those obtained by ITC experiments on 

unlabeled proteins, supporting that the fluorescent dye does not affect the binding of cpSRP43 

and cpSRP54. 

 

Single Molecule FRET 

Data collection and processing for the smFRET experiments were as described.(Ch. III.) 

 

SAXS Data Collection & Fitting 

SAXS data for cpSRP were collected at the Cornell High Energy Synchrotron Source 

(CHESS) as described at the G1 station.10 A concentration series from 0.25 mg/ml to 7 mg/ml 

was collected using ten one-second exposures each to a q range of 0.8 Å-1. Data was processed in 

the RAW software and visualized in the ATSAS package’s Primus which was used for 

extrapolation to zero.11 SAXS data for cpSRP43, cpSRP43ΔCD3 bound to cpSRP54 M-domain, 

and cpSRP43 bound to cpSRP54 M-domain were collected at the SIBYLS beam line as 

described.12,13 A concentration series from 1 mg/ml to 3 mg/ml was collected for each with a 6 

second exposure. SIBYLS data was processed in Primus. The Pored volume, distance 

distributions and plots were obtained using Primus. The volume of correlation (Vc) was 

determined using Scatter.14 

Flexible fitting of the data was accomplished using BILBOMD for conformational 

ensemble generation while FoXs and MES were used for SAXS profile calculation and fitting.15-

17 Briefly, BILBOMD uses accelerated all-atom molecular dynamics simulation to sample 

configurational space according to a user selected radii of gyration (Rg) distribution. The full 

cpSRP43 structure was built from the folded segments comprised of a CD1-CD2 crystal 
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structure (PDB ID 3UI2) and an NMR CD3 structure (PDB ID 1X3P).18,19 Residues 1 to 29 and 

258-267 were assigned as disordered chains as 1 to 29 were predicted to be disordered according 

to MobiDB and previous FRET experiments indicate CD3 remains flexible when cpSRP54 is 

bound.5,20 For fitting of cpSRP43 the segment between the first and second helices of Ank4, 

residues 190 to 197, were permitted to be flexible, leaving the possibility of displacement of the 

second Ank4 helix. CD3 was not included in the cpSRP43ΔCD3 construct. The previously 

developed homology model for cpSRP54 was used in this analysis.(Ch. III.) The M-domain 

construct used in fitting of the cpSRP43 and cpSRP43ΔCD3 bound data was as described.(Ch. 

III.)  The NG-domain and M-domain core were kept folded while the G-domain to M-domain 

linker (residues 296 to 330), M-domain finger-loop (residues 345 to 365), and the C-terminal 

extension of the M-domain (residues 458 to 471) were regarded as intrinsically disordered as was 

determined using SAXS. The cpSRP structure was built from these using the previously 

determined crystal structure in which a short peptide of the C-terminal extension was bound to 

the linking segment between cpSRP43’s Ank4 and CD2. This allowed the cpSRP54 C-terminal 

extension to remain bound to cpsRP43 in the simulations. 

 For cpSRP43, cpSRP43ΔCD3 bound to cpSRP54 M-domain, and cpSRP43 bound to 

cpSRP54 M-domain, a Rg range of 20 Å to 65 Å was used initially to find the optimum Rg space 

for sampling. This was determined for each construct to be 35 Å to 55 Å. Final runs for the 

analysis of the SAXS for cpSRP43 M-domain bound and unbound used this range. For cpSRP, 

an Rg range of 10 Å to 100 Å was used initially to find the optimum Rg for sampling. This was 

determined to be 35 Å to 65 Å. Final runs for the analysis of SAXS for cpSRP used this range. A 

total of 10 runs were used to gather statistics on the region sampled by both the M-domain and 

NG-domains. A total of 800 configurations were sampled in each iteration for all constructs. 
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After each run the theoretical scattering patterns of each conformation were calculated using 

FoXs and a minimum ensemble of structure capable of fitting the SAXS data were calculated 

using a genetic algorithm, MES. The distances were then calculated and related to the ensemble 

FRET experiments.  

 

FRET PDA 

smFRET histograms were fit using the probability distribution analysis (PDA) method as 

described.21  Briefly, this method determines theoretical rates of interconversion between two or 

more states when this rate is on the timescale of the molecules diffusion through the confocal 

volume. FRET efficiencies for the states and an initial guess for the rate constants are provided 

to the algorithm which then minimizes the sum of squared error (SSE) between the theoretical 

and experimental histogram by changing the rate constants. The algorithm was implemented in 

C++ with the calculated FRET efficiencies of the modeled structures used as inputs (source code 

will be made available via the corresponding author’s webpage). Specifically, FRET efficiencies 

of 0.91 (+/- 0.06), 0.70 (+/- 0.06) and 0.25 (+/- 0.12) were used. A larger standard deviation was 

used for the 0.25 FRET state as it corresponds to a decoupled, flexible state. One-hundred 

iterations using random initial rate constants between 10s-1 and 1000s-1 were used to examine the 

minimization landscape and calculate the uncertainty in the rate constants and equilibrium 

distributions. The lowest five SSE for each were used for the final calculations. 
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Results & Discussion 

cpSRP54 cycles rapidly between three states 

We first examined the ability of the three hypothesized structural states to describe the 

data. (Ch. III.) Distances of 45Å, 54Å, 72Å determined from those structures, equivalent to 

FRET efficiencies of 0.91, 0.54, and 0.25, respectively, were used in the fitting process. These 

states were termed S1, S2, and S3, respectively. State S1 corresponds to a state similar to that 

observed in a crystal structure for T. aquaticus (PDB ID 2FFH) in which the M-domain sits atop 

the NG-domain.22 State S2 corresponds to a state similar to that occupied in an S. solfataricus 

crystal structure (1QZX) whose M-domain is stabilized by the G-domain to M-domain linker 

near the N-domain.23 The final state, S3, corresponds to a state in which the M-domain is fully 

decoupled from the NG domain and is therefore able to sample configurational space limited 

only by the length of the G-domain to M-domain linker. Interconversion between states S1 and 

S2 were not allowed as these would require a relatively complex mechanism of transition and 

would likely be quite slow compared to the diffusion timescale (~1.4ms) (Figure 1). 

Additionally, a greater FRET efficiency distribution used for state S3 as it corresponds to a 

highly flexible, decoupled state.  

The results for free cpSRP54 indicate rapid exchange between states S1 and S3 with a 

rate of 830 s-1(+/-94 s-1) for k1 and 985s-1(+/-160 s-1) for k-1. The rate of transition between states 

S3 and S2 is markedly slower with a rate of 101 s-1(+/-38 s-1) for k2 and 396 s-1(+/-120 s-1) for k-2. 

The rates result in a relatively low equilibrium population of state S2, at 10 percent, with higher 

populations for states S1 and S3, at 51 percent and 39 percent. Distinct changes in the rates of 

interconversion between states occur upon addition of cpSRP43. The forward rate for transitions 

from S1 to S3, k1, increases from 830 s-1(+/-94 s-1) to 926 s-1(+/-145 s-1) while the reverse rate, k-
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1, decreases from 985 s-1(+/-160 s-1) to 552 s-1(+/-203 s-1). The rate of conversion from state S3 to 

S2, k2, does not change significantly, 101 s-1(+/-38 s-1) to 192 s-1(+/-91 s-1), while the reverse rate 

increases from 396 s-1(+/-120 s-1) to 743 s-1(+/-163 s-1). The result of the change in 

interconversion rates upon addition of cpSRP43 is that the equilibrium occupancy of state S1 is 

reduced from 51 percent to 39 percent with an increase in the occupancy of state S3 from 39 

percent to 48 percent. State S2 is little changed with an increase from 10 percent to 13 percent 

(Figure 2). It is important to note that the minimization algorithm may find rather shallow 

minima with multiple solutions of similar fit to the data. Indeed, the results here produced a 

relatively wide distribution in the minima. Nevertheless, while the actual values vary somewhat 

about the average, the trends in each individual fitting yield similar results providing greater 

confidence in the overall picture of the kinetic scheme employed in the sampling. 

 The results indicate the decoupled state is favored in the presence of cpSRP43. The most 

significant changes in the rates show the transition out of S3 to S1 is slowed with an increase in 

the rate of transition from S2 to S3. The increased population of the S3 state without a reduction 

in the S3 to S2 rate allows for a steady S2 population albeit with an apparent weakening of the 

interaction since transitions out of S2 occur more readily. As these changes in cpSRP represent 

the particle just prior to loading of LHCP, it is apparent a highly mobile structure is need for 

proper cargo loading.  

 

The cpSRP54 M-domain remains flexible when bound to cpSRP43 

 From the distances, transition rates, and equilibrium occupancies alone it is difficult to 

discern the significance of the structural states being sampled. Therefore, we next used small 

angle x-ray scattering to investigate the positioning of the domains of each protein relative to one 
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another further. In order to dissect changes in the domains of cpSRP43 and cpSRP54, we 

investigated free cpSRP43, cpSRP43ΔCD3 and each bound to the M-domain prior to 

investigating the full cpSRP structure.  

Previous SAXS fitting of cpSRP43 suggested the protein was a largely rigid, extended 

structure.24 However, recent smFRET data demonstrated cpSRP43 to be quite flexible.5 In light 

of the smFRET data we decided to reinvestigate the cpSRP43 structure via SAXS. The Kratky 

plot for the data comprises a large peak followed by a rise at higher q values indicative of a 

protein with both folded and flexible segments (Figure 3). Further, calculation of the protein 

density from the Porod volume and Vc base molecular weight calculation reveal a density of 

1.01g/ml, far lower than the average folded protein density of 1.37g/ml.25,26 The Kratky plot and 

lower protein density are both strong indicators of flexibility and signify modeling via ensemble 

fitting is necessary. We therefore fit the data using BILBOMD/MES which combines accelerated 

molecular dynamics simulations with a genetic algorithm to sample configurational space and 

determine a set of structures capable of fitting the SAXS data. The best fit to the data was 

obtained using flexibility in the N-terminal tail before CD1, as is predicted by MobiDB, as well 

as in the second helix of Ank4, between Ank4 and CD2, and between CD2 and CD3 (Figure 3). 

These are all consistent with the previously obtained smFRET data. The best fit was obtained 

using 4 structures with RMSDs of 24.7 Å, 21.0 Å and 18.8 Å relative to the first arbitrarily 

selected structure and Rgs of 30.4 Å, 38.0 Å, 38.2 Å, and 37.3 Å for the first and remaining three, 

respectively. The distribution in the contribution of each structure to the scattering was relatively 

flat with 26.2 percent, 19.8 percent, 29.6 percent, and 24.5 percent for each, respectively. The 

overall composition of the structures reveals significant variability in the positioning of the 

domains and disorder in the N-terminal tail. Although the fitting method selected four structures 
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to represent the ensemble and since the states selected produce no significant contact between the 

domains, the cpSRP43 structure likely samples a continuum of states.  

 As a next step, we examined the affect of the M-domain on cpSRP43’s flexibility and 

whether the M-domain adopts a particular conformation relative to cpSRP43 or samples multiple 

conformations. Further, we examined what affect CD3 might have on the positioning of the M-

domain. Previous M-domain SAXS data revealed the M-domain C-terminal extension, which 

binds cpSP43 between Ank4 and CD2, is quite flexible.(Ch. III.) In both cases, the Kratky plots 

were indicative of flexibility in the protein complexes (Figure 4). The results of fitting for both 

cpSRP43 and cpSRP43ΔCD3 bound M-domain indicate that the flexibility in Ank4 and between 

Ank4 and CD2 is dramatically decreased, requiring no flexibility in the fitting. Further, the M-

domain remains quite flexible when bound to cpSRP43 and cpSRP43ΔCD3, sampling 

conformational space to one side of cpSRP43. The best fit for cpSRP43 bound M-domain was 

obtained using 4 structures with RMSDs of 24.4 Å, 12.6 Å, and 29.5 Å relative to the first 

arbitrarily selected structure and Rgs of 41.0 Å, 47.8 Å, 41.5 Å, and 43.2 Å for the first and 

remaining three, respectively (Figure 4). The largest occupied state was the 41.5 Å Rg structure 

at 38.9 percent with the first second and fourth structures at 24.3 percent, 23.2 percent, and 13.7 

percent, respectively. The ensemble of structures reveals the M-domain C-terminal extension is 

disordered except in the cpSRP43 binding region. This allows the M-domain to sample 

configurational space to one side of cpSRP43 near ankyrin repeat 4 helix-2.  

The best fit for the cpSRP43ΔCD3 was obtained using 4 structures with RMSDs of 19.9 

Å, 28.9 Å, 40.5 Å relative to the first arbitrarily selected structure and Rgs of 44.2 Å, 44.4 Å, 

32.6 Å, and 31.9 Å for the first and remaining three, respectively (Figure 5). A fairly even 

distribution in the occupancy for the first three states was obtained, yielding 25.5 percent, 26.0 
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percent, and 32.9 percent for each, respectively. The final state was slightly lower in population 

at 15.7 percent. Interestingly, the M-domain samples regions of configurational space around 

cpSRP43ΔCD3 not sampled in the cpSRP43 bound M-domain suggesting CD3 may modulate 

the positioning of the M-domain. This region is specifically around the L18 binding site 

suggesting CD3 might prevent L18 competition with the M-domain. Together, these data 

confirm the flexibility observed in the smFRET experiments for cpSRP43 and indicates that the 

cpSRP43 binding M-domain peptide represents the majority of M-domain contact with 

cpSRP43, leaving the M-domain core quite flexible.  

 

The cpSRP54 scans the TM3 exit site of cpSRP43 

 We next examined what influence the NG-domain might have on the cpSRP structure. 

The cpSRP54 smFRET experiments showed significant flexibility exists between the M-domain 

and NG-domain even when bound to cpSRP43. As the M-domain is quite flexible in the absence 

of the NG-domain, it is possible that the NG-domain remains flexible with the M-domain or that 

it adopts a specific position on cpSRP43. Indeed, small SAXS data reveals cpSRP to be flexible 

as determined using the Kratky plot and the SAXS calculated density of 0.74g/ml. This is 

consistent with the previously obtained smFRET data for both cpSRP43 and cpSRP54.5 (Ch. III.) 

As in the previous results, the best fit was obtained using 4 structures (Figures 6 and 7). The 

RMSDs for the structures were 15.5 Å, 31.7 Å, and 37.1 Å relative to the first arbitrarily selected 

structure. The Rgs for these structures were 44.9 Å, 44.4 Å, 40.9 Å, and 58.8 Å for the first and 

remaining three, respectively. A relatively even distribution in the occupancy of each state was 

obtained, yielding 34.6 percent, 27.3 percent, 17.0 percent, and 21.1 percent for each, 

respectively. The results reveal the M-domain and NG-domain of cpSRP54 samples the region 
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near the theoretical “exit” site of LHCP TM3 (Figure 6). Rather than a single NG-domain 

orientation, the NG-domain position simply changes relative to the M-domain. Furthermore, the 

NG-domain possesses no apparent contact with cpSRP43 in the complex. Importantly, in none of 

the ensembles did the cpSRP54 domains sample the theoretical LHCP TM1 and TM2 interaction 

site near the L18 binding site. 

In order to support the SAXS results, ensemble FRET was used with dyes on cpSRP54 

and cpSRP43 in several pairs of domains. The FRET donor dye was placed in either the 

cpSRP54 N-domain or the cpSRP54 G-domain. Each labeled cpSRP54 construct was then 

titrated with acceptor labeled cpSRP43 with labels at Ank2 or CD3. The distances obtained were 

6.66 nm, 8.84nm, 7.39nm, and 6.86 nm for N-domain to Ank2, G-domain to Ank2, N-domain to 

CD3, and G-domain to CD3, respectively. The population weighted distances for the cpSRP 

SAXS structures were 6.4 nm, 8.5 nm, 5.7 nm, and 7.7 nm for N-domain to Ank2, G-domain to 

Ank2, N-domain to CD3, and G-domain to CD3, respectively. The FRET distances are quite 

consistent with the cpSRP SAXS distances. There is some disagreement with regard to the 

positioning of the N-domain relative to CD3. This could be attributed to the uncertainty in the 

weights for each conformer in solution as compared to the FRET averaging in solution.  

Together, the smFRET PDA data for cpSRP54 combined with the ensemble FRET and 

SAXS data as well as the previous cpSRP54 data reveal a remarkably complex series of 

interactions preparing cpSRP for interaction with LHCP. Previously, the cpSRP54 C-terminal 

extension responsible for binding cpSRP43 was demonstrated to be intrinsically disordered. (Ch. 

III.) However, it was unclear what advantage this disorder provided. The results here 

demonstrate the extension is used by cpSRP54 to allow the M-domain to scan the region where 

TM3 is expected to exit cpSRP43 based upon a CD1-Ank4 crystal structure bound to L18 and 



 

 127 

cross-linking studies.3,4 This is noteworthy in that it is known that the SRP54 and Ffh scan the 

ribosomal exit tunnel apparently searching for signal sequences.8 The missing link in 

understanding cpSRP43’s remarkable ability to replace SRP RNA and apparently the ribosome 

was this segment of cpSRP54 which effectively allows for the transitioning of the M-domain 

between scanning states while bound to cpSRP43. It was recently shown that LHCP can be fully 

integrated prior to GTPase activity and recycling of cpSRP for another round of LHCP 

targeting.27 Structurally, it was uncertain how this could be accomplished with the crowding that 

would be present with all the targeting machinery still in place. The flexibility of the C-terminal 

extension allows the M-domain to not only scan for TM3, but also for cpSRP54 and cpFtsY to 

provide cpSRP43 with the conformational freedom to carry out this final integration step. 

Furthermore, the M-domain is effectively able to regulate the positioning of the NG-domains, as 

no contact between the NG-domain and cpSRP43 is observed.  

It is interesting to note that the N-terminal tail of cpSRP43 is predicted to be disordered 

and was necessarily disordered for fitting of the SAXS data. It is known that deletion of the N-

terminal tail through CD1 is capable of forming cpSRP and transit complex but is unable to 

facilitate integration.9 The current model allows us to propose that, upon loading of LHCP, the 

cpSRP54 M-domain would force the NG-domains into close proximity to CD1 and the cpSRP43 

N-terminal tail. A combined crystal structure, electron density map of SRP at the ribosome 

shows that the N-domain of SRP54 forms a close interaction with ribosomal proteins L35 and 

L23 which bear structural and sequence similarity to CD1-Ank1. Electrostatic potential maps of 

cpSRP54 and cpSRP43 strongly suggest an interaction between the N-domain loops opposite the 

N-domain and G-domain interface. A positively charged patch on cpSRP54 would complement 

the electrostatic potential of CD1-Ank1 and the negatively charged cpSRP43 tail.  
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The cpSRP54 M-domain was observed to increase the GTPase activity of cpSRP54 and 

cpFtsY in the absence of SRP RNA and cpSRP43.28 In another study it was observed that CD1 

deletion increased GTPase activity.9 In this locked configuration the M-domain may be 

prevented from occupying the GTPase activating configuration. This would allow the cpSRP43 

CD1 domain to effectively regulate M-domain activation of twinned GTPase activity. Further, as 

release of TM3 would destabilize this configuration, M-domain activation of GTPase activation 

would become possible once again since the M-domain would be permitted to sample 

configurational space. This would act as a signal to the GTPase domains that cargo has been 

delivered.  

This is a provocative model for the transit complex as it could act as a signal to cpFtsY 

that cargo has been loaded and force the cpSRP54 GTPase domain in to a particular orientation 

relative to the remainder of the cpSRP structure. The proposed orientation would place the 

LHCP TM3 tail toward the membrane upon interaction with cpFtsY. Following release of TM3, 

the M-domain would once again be available for activation of GTPase hydrolysis, signaling the 

successful delivery of cargo and the need for recycling of the complex. Ultimately, this would 

provide a solid framework for understanding the mechanism by which LHCP is integrated at the 

membrane. 

 

Conclusions 

 The present work demonstrates the remarkable versatility of an SRP54 homologue, 

cpSRP54. At some point during its evolution cpSRP54 was adapted to provide signaling and 

regulatory activity in the delivery of LHCPs with cpSRP43. Previous studies have restricted the 

discussion of cpSRP43 to being predominantly a replacement for specific binding partners in the 
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co-translational path. However, this study clearly demonstrates a combined adaptation of both 

cpSRP54 and cpSRP43 to one another. While cpSRP43 functions in a capacity similar to SRP 

RNA, it also provides a ribosome like scaffold for cpSRP54 interactions. The most striking 

adaptation of cpSRP54 is its C-terminal extension which binds cpSRP43. Through its marked 

disorder it allows the cpSRP54 M-domain to sample the region near where TM3 exits cpSRP43, 

thereby scanning for the TM in a manner similar to SRP54 scanning for signal sequences exiting 

the ribosome. In addition to cpSRP54 and cpSRP43 cooperative adaptation, cpFtsY itself is 

adapted to the absence of SRP RNA, prefolding into a state ready for interaction with 

cpSRP54.29 We speculate here that cpSRP54’s equilibrium of states acts as a regulatory element, 

disfavoring receptor interactions in the absence of cargo. We anticipate an additional transition 

once cargo is bound that would allow cpSRP54’s NG-domain to be no longer occluded by the 

M-domain, thereby exposing the cpFtsY interaction site. As this final state would define a 

receptor orientation relative to the transit complex, we expect that this final state is critical for 

orienting the system at the membrane such that LHCP integration is as efficient as possible. 

Upon release of TM3, this configuration would be lost allowing the M-domain of cpSRP54 to 

activate GTP hydrolysis. The structure of this complex and its mechanistic significance remain to 

be demonstrated experimentally. This work nevertheless provides a solid framework for 

dissecting this intricate process, finally exposing the structural framework for LHCP targeting.  
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D. E. F.Figure 1: (A) The transition mechanism used in the cpSRP54 FRET PDA fitting. The T. aq. like 
state (left) transitions between a S. sol. like structure (right) through a decoupled intermediate 
(center).
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Figure 2: Results of the FRET PDA fitting for free cpSRP54 and cpSRP43 bound cpSRP54. (A) 
The equilibrium occupancy of each state used in the FRET PDA fitting for the cpSRP54 v. 
cpSRP54-43 data. The results indicate that the occupancy of state S1 is reduced upon interaction 
with cpSRP43 with a concomitant increase in the occupancy of state S3. State S2 remains 
unchanged. (C) Transition rates determined using the FRET PDA algorithm for free cpSRP54 and 
cpSRP54 bound to cpSRP43. Transition rates between states S1 and S3 are similar and quite 
rapid while the rates between S3 and S2 are relatively slow. Upon interaction with cpSRP43, the 
rate of transition from S3 to S1 is decreased with an increase in the transition rates between S2 
and S3. 
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Figure 3: Kratky Plots and data fitting for cpSRP43. (A) Ensemble fit (red) to the data 
(black) yielding a Χ2 of 1.97. (B) Kratky plot for the cpSRP43 data. The rise in the data at 
higher q is indicative of flexibility in the particle. 
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Figure 4: Kratky Plots and data fitting for cpSRP43 bound to the M-domain. (C) 
Ensemble fit (red) to the data (black) yielding a Χ2 of 2.23. (D) Kratky plot for the 
cpSRP43 bound to the M-domain data. As the curve does not approach zero at higher q 
the particle contains some flexibility. However, comparison of this curve to that of 
cpSRP43 indicates a stronger peak suggestive of increased order in the system. 
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Figure 6: Structural states selected using BILBOMD-MES. The results show a strong preference 
for the M-domain (blue) to remain near Ank4 (pink) of cpSRP43 where TM3 (black) 
theoretically exits cpSRP43 (TM3 is shown for illustrative purposes only). Further, the results are 
consistent with the smFRET experiments, showing the NG-domain (red and green) of cpSRP54 
and CD3 (light pink) of cpSRP43 are quite mobile in the complex. 
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indicates an excellent fit to the data. 
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Abstract  

 Fitting of small angle x-ray scattering (SAXS) data for flexible proteins is accomplished 

via selection from large pools of possible conformations. However, data in the SAXS regime 

generally limits analysis to a low resolution, quantitative description of the ensembles. Recent 

interest in the wide angle scattering regime (WAXS) has lead to improvements in scattering 

profile determinations that may allow for studies to increase resolution of flexible systems. This 

requires the ability to generate all-atom ensembles of protein structures. Here we introduce an 

algorithm for the simple and rapid generation of all-atom protein ensembles of any degree of 

complexity. The results of test runs demonstrate that the structures produced by the algorithm 

reliably fit SAXS data as accurately as the most popular structure generating algorithm currently 

available. Furthermore, our implementation provides a simple to use method for the generation 

of all-atom structures of arbitrary complexity.  

 

Introduction 

Small angle x-ray scattering (SAXS) has become increasingly popular over the last 

decade as a method to probe the structure of biological macromolecules.(1, 2) SAXS is a 

solution technique in which the protein sample is illuminated by a highly collimated x-ray beam. 

The light is scattered due to differences in the electron densities of the solvent and protein. 

Subtraction of the solvent scattering from the protein solution scattering results in a scattering 

pattern related to the protein shape.(3) While the use of early experiments was limited to 

measures of broad physical properties of the protein(s), such and the radius of gyration, many 

computational tools have been developed to produce low resolution models of proteins 

shapes.(4) Additionally, rapid computation of accurate theoretical scattering patterns from 
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atomic models has allowed for testing of structures against the scattering data.(5, 6) SAXS is 

particularly well suited for highly flexible systems which often present significant challenges for 

study by traditional methods such as x-ray crystallography (7, 8). Fitting methods for flexible 

systems take advantage of the ability to calculate scattering patterns from models and algorithms 

for selecting from a large set of possible structures.(9, 10) A recent surge in interest in wide 

angle x-ray scattering (WAXS), scattering beyond 0.5Å-1, has brought solution x-ray scattering 

to significantly higher resolution.(2, 11) Although the information content of such solution 

scattering techniques is insufficient for high resolution structure determination, the full range of 

scattering data allows for the determination of whether a particular structure is consistent with 

the data.(1) When combined with additional biophysical techniques, structures of predictive 

value can be reliably produced.(12)  

Several methods have been developed for fitting of SAXS data for flexible systems.(9, 

10, 13-20) As WAXS data can probe down to the 3-4 Å level, it is necessary to produce all-atom 

structures. Methods for reliable prediction of WAXS curves from high resolution models have 

recently be implemented.(2, 5, 21-25). However, atomic level structures are required for these 

calculations. Currently available methods typically use a coarse grained approach for at least part 

of the system.(10, 15, 16, 18) Nevertheless, there exist atomic level methods for ensemble 

generation.(9, 14, 17, 20) These methods, however, are limited in the size and complexity of the 

system and can require significant computational resources to run efficiently. Here, we report the 

development of an efficient algorithm for rapid generation of all-atom protein structural 

ensembles. Specifically, our approach makes use of rigid body movement for folded domains, 

which can include RNA and DNA, followed by the addition of disordered connecting chains and 

termini via sampling of torsion angle space. Additionally, proteins and domains can be fixed in 
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place and user constraints can be used to ensure movable domains sample a specific region 

relative to either movable or fixed segments. Runtime is fast, producing ensembles usable 

(typically 10,000 structures) in hours on a single processor, while open source availability and 

compact design using a popular programming language allows users to easily modify the code to 

suit their needs without advanced molecular simulation knowledge.  

 

Results and Discussion 

 The methionine rich M-domain of the 54 kDa subunit of the chloroplast signal 

recognition particle is predicted to contain three disordered segments. Further, the Kratky plot of 

the SAXS data shows a clear increase in q2*I(q) as q increases indicative of large scale 

flexibility. Therefore, as a test of the Conformational Ensemble Generator (CEG) algorithm, data 

for the M-domain out to a q of 0.5 Å-1 was fitted using GAJOE (Genetic Algorithm Judging 

Optimization of Ensembles) with ensembles built using the ATSAS (All That Small Angle 

Scattering) RANdom Chain generator (RANCH; a part of the Ensemble Optimization Method 

[EOM]) or CEG. Both fit the data quite well with Χ2 values of 1.091 and 1.046 respectively. 

(Figure 1:left) Notably, the fit using the RANCH C-α trace begins to diverge from the 

experimental curve above a q of 0.45 Å-1 suggesting the C-α trace is problematic for fitting at 

wider angles. The overall size-distributions are quite similar despite the differences in the pools 

from which the structures were selected. (Figure 1: middle and right) This is to be expected 

because the overall size distribution is reflected in the SAXS region while folding details are 

contained in the WAXS region. Therefore, a good fit in the SAXS region, regardless of the level 

of detail in the structures, should produce reliable size distributions.  
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As a further test of the algorithm, glutathione-S transferase (GST) fusion proteins with 

GST-linked to chromodomain 2 of cpSRP43 (GST-CD2) or linked to chromodomains 2 and 3 

(GST-CD2CD3) were tested using both the RANCH and CEG. Nuclear magnetic resonance 

experiments have demonstrated the chromodomains are flexibly linked to GST via the thrombin 

cleavage site. Further, single molecule Forster resonance energy transfer (smFRET) experiments 

have demonstrated CD2 and CD3 are flexibly linked.(26) The SAXS (to 0.28 Å-1) fitting results 

indicate both algorithms produce a similar fit to the data (GST-CD2 Χ2 = 1.105 and 1.164 for the 

EOM and CEG respectively; GST-CD2CD3 Χ2 = 1.560 and 1.612 for EOM and CEG 

respectively). (Figures 2 and 3:left) The size distributions are again quite similar with a bimodal 

distribution produced using both ensemble generators for GST-CD2CD3. (Figures 2 and 3: 

middle and right) The fit at the lowest angles for GST-CD2CD3 is slightly lower than the 

experimental data, giving rise to higher Χ2 values. This is likely due to differences between the 

crystal structure and solution structures of GST. While the distributions are similar for all 

constructs the frequency of the selected sizes differ slightly between the conformer generating 

algorithms. This may be due to the differences in the frequency with which the required 

conformers are generated in each algorithm or may be a fact of the degeneracy of solutions 

SAXS models produce. Nevertheless, both algorithms provide data of similar value in terms of 

size and distribution width. 

 

Conclusion 

 Here, we have developed an efficient, user-friendly algorithm for the production of 

protein conformational ensembles of arbitrary complexity. We show that fitting of experimental 

data at small angles is as effective as the EOM method. Nevertheless, challenges remain to bring 
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the algorithm to full functionality. The current implementation does not provide the necessary 

restrictions to ensure backbone bond and torsional angles are physically realistic. Furthermore, 

the distribution in the distances sampled must be adjusted such that smaller distances are more 

heavily sampled. Future work will bring additional acceptable conditions for possible backbone 

conformations and bond angles. Further, current algorithms for conformer selection are restricted 

to the SAXS up to 0.5Å-1 limiting the application of the conformational ensembles to the SAXS 

regime. Nevertheless, this algorithm provides the basis for structure prediction of flexible 

systems down to the atomic level using WAXS. 

 

Experimental Methods 

Expression and Purification 

 The cpSRP54 M-domain was produced as previously described.(27)  The GST fusion 

proteins were produced as described previously.(28) The final buffer for the M-domain was 

100mM KCl, 10mM HEPES and 10mM Mg2+ at a pH of 8.8. The final buffer for GST-CD2 and 

GST-CD2CD3 was 137mM NaCl and 10mM phosphate at a pH of 7.2.  

 

SAXS Data Collection and Processing 

Small angle X-ray scattering data was obtained at the Cornell High Energy Synchrotron 

Source (CHESS) as described at the G1 station.(29) For the M-domain, a concentration series 

from 1 mg/ml to 5 mg/ml was obtained out to a q of 0.5 Å-1. The GST fusion proteins were 

collected at 1 mg/ml, 3 mg/ml and 5 mg/ml concentrations. Ten one second exposures were 

averaged for each protein and the buffer. Buffer data were collected before and after the 

concentration series. The RAW software was used to process the data which was visualized in 
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the ATSAS package’s Primus.(30, 31) A slight concentration dependence was observed for the 

M-domain in addition to a shift at wider angles with data for concentrations above 3 mg/ml. 

Therefore, only the data for 1-3 mg/ml were used in Primus for extrapolation to zero 

concentration. No concentration dependence was observed for the GST fusion proteins. Fitting of 

the SAXS data was carried out using the the ATSAS package’s GAJOE. The ATSAS package’s 

ensemble generator RANCH was used for the generation of C-α flexible segment ensembles.(10) 

The M-domain was built using I-TASSER using Thermus aquaticus (PDB ID 2FFH) as a 

template.(32, 33) The flexible segments were defined as 296 - 327, 342 - 368, and 428 to 489 

with numbering beginning at the first N-terminal residue of mature cpSRP54. The Schistosoma 

haematobium GST crystal structure (PDB ID 2c80) with Arabidopsis thaliana CD2 (PDB ID 

1X3Q) or CD2CD3 (PDB ID 1X3Q and 1X3P) were used for the fusion proteins with the 

sequence ATPFLELVPRGS between GST and CD2 and the sequence GLEYAV between 

CD2CD3 assigned flexibility allowing the backbones to sample torsion angle space.(34, 35)  

 

Conformational Ensemble Generation Method   

 The conformations are generated in a fashion similar to that employed in the first part of 

the ATSAS EOM method (RANCH) employing rigid body movement of the folded domains 

with addition of connecting chains. In the conformational ensemble generator (CEG) algorithm 

the user provides a configuration file that specifies the protein PDB file names, connectivity, 

whether the protein should remain fixed in position or move, and any atom-atom distance 

constraints for the ensemble generation. An additional file contains the flexible linking 

sequences and/or flexible N or C-terminal segments. After reading in the data from these files the 

coordinates from the PDB files are transferred to the origin to allow for rotation of the 
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molecules. For each iteration the program cycles through several steps to prepare each 

conformation. The steps are iterated until the user specified number of PDB files have been 

generated. The steps used are as follows: 

 

1. Generation of translation and rotation matrices that do not violate distance constraints. 

2. Movement of the specified protein domains. 

3. Overlap check (defined as any two C-α’s within 3Å). 

4. If no overlap has occurred, flexible chain addition begins. The steps are as follows: 

a. Determination of a set of distance pairs, one along the vector connecting the first 

and last chain C-α’s and one orthogonal to this vector. 

b. Consecutive placement of C-α atoms at these distances 

c. Addition of backbone atoms 

d. Checking of torsion angles 

e. Overlap check 

f. Side-chain addition after building of the entire segment backbone 

5. Printing of the PDB file. 

 

Protein backbone atoms are added in a fashion similar to that used in the Flexible Mecanno 

approach making use of the peptide planar geometry.(16) Torsion angles are used from the 

Top500 database.(36) Residue side-chains were obtained from SwissSideChain.(37) The 

equations used in the generation of the conformers are as follows: 

A random translation matrix for the movable folded domains is selected according to: 

 
EQ 1-3: 
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𝑥 = 𝑑 ∙ cos 𝜃 ∙ sin 𝜙  
𝑦 = 𝑑 ∙ sin 𝜃 ∙ cos 𝜙  

𝑧 = 𝑑 ∙ cos(𝜙) 
 

where d is a distance randomly selected from a uniform distribution between 0 and the 

maximum distance possible, θ and φ are randomly selected according to: 

 
EQ 4-5: 

𝜃 = 2𝜋 ∙ 𝑢 
𝜙 = 𝑐𝑜𝑠67(2𝑣	 − 1) 

 

where u and v are values randomly selected from a uniform distribution (a distribution in 

which all values in the range are selected with equal probability) between 0 and 1. The selection 

of φ ensures there is no bias in the rotation selection. Such bias is illustrated by the problem of 

point picking on a sphere where, since the area of a particular region of the sphere is defined by 

dΩ = sin(𝜙)d𝜃d𝜙 is a function of , the points are more concentrated at the poles.  

 

A random rotation matrix is selected using Euler angels according to: 

 
EQ 6: 

𝑎77 	𝑎7= 𝑎>7
𝑎=7 	𝑎== 	𝑎=>
𝑎>7 	𝑎>= 	𝑎>>

 

 where: 

 
EQ 7-15: 

𝑎77 = cos 𝜓 ∙ cos 𝜙 − cos 𝜃 sin 𝜙 sin 𝜓  
𝑎7= = cos 𝜓 ∙ sin 𝜙 + cos 𝜃 cos 𝜙 sin 𝜓  

𝑎7> = sin 𝜓 ∙ sin 𝜃  
𝑎=7 = −sin 𝜓 ∙ cos 𝜙 − cos 𝜃 sin 𝜙 cos 𝜓  
𝑎== = −sin 𝜓 ∙ sin 𝜙 + cos 𝜃 cos 𝜙 cos 𝜓  

𝑎=> = cos 𝜓 ∙ sin 𝜃  
𝑎>7 = sin θ ∙ sin 𝜙  
𝑎>= = sin	(θ) ∙ sin 𝜙  

𝑎>> = cos 𝜃  
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where θ and φ is a randomly selected according to: 

 
EQ 16-17: 

𝜃 = 2𝜋 ∙ 𝑘 
𝜙 = 𝑐𝑜𝑠67(2𝑙	 − 1)	

𝜓 = 2𝜋 ∙ 𝑚 
 

 where k, l and m are values randomly selected from a uniform distribution between 0 and 

1. The selection of φ ensures there is no bias in the rotation selection. 

A set of nt distances to travel along the vector connecting the chain C-α’s, where nt equals 

the number of residues, is selected prior to chain building. It is designed such that: 

 
EQ 18: 

𝜇F ≈ 𝑑H

IJ

KL7

 

 
 where µa are the mean acceptance values used in the Gaussian distribution for distance 

selection, nt is the number of residues, and dt is the total distance to be covered. Distances are 

selected along the vector according to: 

 
EQ 19: 
 

𝜇F = 𝑑M ∙ 𝑛M − 𝑑O 
 

 where dr is defined as the distance to cover divided by nt, and dc is the distance covered. 

The distance is then sampled from the Gaussian distribution with acceptance probability: 

 
EQ 20: 

𝑎 = 𝑒6
(QR6	SR)T

UR  
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 where da is the distance under consideration where da is randomly selected from a 

uniform distribution between -3.8 and 3.8 whose absolute values are the maximum distance a C-

α can travel.(38) The variance, σa, is defined as: 

 
EQ 21: 

𝜎F = 𝑒6
QJ	∙	W
IJ  

 

 where C is a constant. For each dc an orthogonal distance to travel from the vector 

connecting the start and end points of the chain is determined such that: 

 

EQ 22: 

𝜇X ≈ 𝑏H	
IJ

KL7

 

 

 where µb are the mean acceptance values used in distance selection and bt is the maximum 

distance to be covered in the orthogonal direction defined as average protein C-α to C-α 

distance, 3.8Å. Distances are selected according to: 

 
EQ 23: 
 

𝜇X = 𝑏M ∙ 𝑛M − 𝑏O 
 

 where br is the distance per residue, which is defined as half the distance to cover divided 

by nr which equals 1.9Å, and dc is the distance covered. The distance is then sampled from the 

Gaussian distribution with acceptance probability: 

 
EQ 24: 

𝑏 = 𝑒6
(XR6	SZ)T

UZ  
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 where ba is the distance under consideration and σa is defined as: 

 
EQ 25: 

𝜎X = 	 𝑐M=  

 
 where cr is the defined as: 

EQ 26: 

𝑐M = (𝑏H
= − 𝑏F

=)
7
=  

  
The distance pairs are then reordered such that the chain is more likely to continue in its 

current direction, toward or away, from the vector connecting the C-α’s with probability 0.75. 

The chain is first built along the z-axis beginning from the origin. The z-coordinate for each C-α 

is defined as the distance to travel along the  C-α vector. The x and y-coordinates are calculated 

from orthogonal distance according to: 

 
EQ 27: 

𝑥 = 𝑐M ∙ cos	(𝜃K) 
𝑦 = 𝑐M ∙ sin(𝜃K) 

 

 where θi is defined using the law of cosines as: 

 
EQ 28: 

±𝜃K = 𝑐𝑜𝑠67
𝑏O

= + 𝑏F
= − 𝑐M=

2 ∙ 𝑏O ∙ 𝑏F  

 

 This is the angle from the x-axis for the first C-α. Subsequent C-α use the prior angle as 

a reference, adding or subtracting to it to obtain the new angle.  

After checking that the new point does not overlap (<3 Å) with any of the previous, the 

backbone atoms are added excluding hydrogen. These are added using the peptide planar 
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geometry.(16) The previous C-α1 and current C-α2 are used in the calculation, adding the CO of 

C-α1 and N of C-α2 in each iteration. The coordinates for each calculation are as follows: 

 
EQ 29: 

𝐴] = 𝐴M ∙ cos 𝜃O ∙ 𝑢] + 𝐴M ∙ sin 𝜃O ∙ 𝑣]	 
𝐴^ = 𝐴M ∙ cos(𝜃O) ∙ 𝑢^ + 𝐴M ∙ sin(𝜃O) ∙ 𝑣^	 
𝐴_ = 𝐴M ∙ cos(𝜃O) ∙ 𝑢_ + 𝐴M ∙ sin(𝜃O) ∙ 𝑣_ 

	 

 where Ax, Ay, and Az are the x, y, and z coordinates for the atom respectively, Ar is the 

radius of the atom, 0.53Å for C, 1.75Å for O, 0.39Å for N,  θc is a randomly angle selected from 

a uniform distribution between 0 to 2π, and 𝑢 is the unit vector orthogonal to the vector 

connecting the beginning and end points and 𝑣 is a vector orthogonal to the vector connecting C-

α1 and C-α2  . The angle θc for N is θc - π. The phi, φ, and psi, ψ, angles are calculated as: 

 
EQ 30-32: 

𝑠7 = 𝑝7	×	𝑝= 
𝑠= = 𝑝=	×	𝑝> 
𝑡 = 𝑠7	×	𝑝= 

 
 where 𝑝7 is the unit vector pointing from the first and second atom, C1 to N1 for φ and N1 

to C-α for ψ, 𝑝= is the unit vector pointing from the second and third atom, N1 to C-α for φ and 

C-α to C2 for ψ, and 𝑝> is the unit vector pointing from the third and fourth atom, C-α to C2 for φ 

and C2 to N2 for ψ. The dot products 𝑆 = 𝑠7 ∙ 𝑠=, and 𝑇 = 𝑡 ∙ 𝑠= are then used to calculate the 

dihedral angle according to: 

 
EQ 33: 

𝐷 = 𝑐𝑜𝑠67 𝑇, 𝑆  
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 where D is the dihedral angle φ or ψ. If T is negative the angles sign is negative. The 

angle is then converted from radians to degrees since the angles in the Top500 database are in 

degrees. 

 

Once the chain is complete it is transferred from the z-axis to its final location in space 

using the vector pointing from the origin to final position along the z-axis, 𝚥, and the vector 

pointing from the first position to the last position determined earlier in the chain building, 𝑘. 

This is accompished using a rotation matrix determined by the following: 

 
EQ 34: 

𝑅 = 𝐼 +	𝑣] + 𝑣]= ∙
1 − 𝑐
𝑠=  

 

 where R is the rotation matrix, I is the identity matrix,  c is the dot product of 𝚥 and 𝑘, and 

s is the magnitude of 𝑣 which equals the cross product between 𝚥 and 𝑘, and 𝑣] is the skew-

symmetric cross-product matrix of 𝑣 which is: 

  

EQ 35: 

𝑣] = 	
0 −𝑣> 𝑣=
𝑣>		 0 −𝑣7
−𝑣= 	𝑣7 0

 

 
 the chain is then translated to its correct location in space adding to each coordinate the 

first position vector. 

 The residue atoms are added using coordinates for the backbone and side-chains atoms 

obtained from SwissProt and with the C-α centered at the origin. In order to obtain the correct 

side-chain geometry the C-α to N vector, 𝑎, of the generated coordinates are aligned with the C-
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α to N vector, 𝑏, of the side-chain. This is accomplished using a rotation matrix determined 

using EQs 35 and 36 with c as the dot product of 𝑎 and 𝑏, and s is the magnitude of 𝑣 which 

equals the cross product between 𝑎 and 𝑏. The residue coordinate for the side-chain are 

transferred to the correct position using the C-α coordinates. 
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Figures 

 

 
 
Figure 1: Fitting results for the cpSRP54 M-domain. Left: Fit for RANCH (blue) and CEG 
(green) generated ensembles to the experimental data (black). The results indicated both sets of 
ensembles fit the data quite well with chi squared values of 1.091 and 1.046 for RANCH and 
CEG respectively although the RANCH produced ensembles begin to deviate above q = 0.45 Å-1. 
Middle: Size distribution for the fit using RANCH generated ensembles. A peak maximum at 
~110 Å is observed. Right: Size distribution for the fit using CEG generated ensembles. A peak 
at ~110 Å is observed consistent with that observed for the RANCH generated ensembles. The 
frequency with which this size occurs is slightly higher for the CEG produced ensembles. 
However, both produce a relatively similar profile. 
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Figure 2: Fitting results for GST-CD2. Left: Fit for RANCH (blue) and CEG (green) generated 
ensembles to the experimental data (black). The results indicated both sets of ensembles fit the 
data quite well with chi squared values of 1.105 and 1.164 for RANCH and CEG respectively. 
Middle: Size distribution for the fit using RANCH generated ensembles. A peak maximum at 
~112 Å is observed. Right: Size distribution for the fit using CEG generated ensembles. A peak 
at ~112 Å is observed consistent with that observed for the RANCH generated ensembles. The 
frequency with which this size occurs is slightly higher for the CEG produced ensembles. 
However, both produce a relatively similar profile. 
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Figure 3: Fitting results for GST-CD2CD3 Left: Fitting results for GST-CD2 Left: Fit for 
RANCH (blue) and CEG (green) generated ensembles to the experimental data (black). The 
results indicated both sets of ensembles fit the data quite well with chi squared values of 1.560 
and 1.612 for RANCH and CEG respectively. Middle: Size distribution for the fit using RANCH 
generated ensembles. A bimodal distribution is observed with peak maximum at ~110 Å and 
~170 Å. This suggest two conformations, one relatively closely coupled with another very 
extended. Right: Size distribution for the fit using CEG generated ensembles. A bimodal 
distribution is observed as in the RANCH fitting with peak maximum at ~110 Å and ~170 Å. 
ensembles. The frequency with which the sizes occur differs for the CEG produced ensembles 
with the higher peak presenting a flatter distribution. Nevertheless, both produce a relatively 
similar profile.  
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IV. Conclusion 
 
 Several decades of study have revealed the chloroplast signal recognition particle 

pathway to be quite unique. Not only does it contain a novel chaperone with ATP independent 

disaggregase activity for its substrate, but it has also adapted a cytosolic-like 54 kDa signal 

recognition particle protein to a seemingly orthogonal system.1 The results of this study reveal 

the cpSRP heterodimer and its components to be quite unusual (Figure 1). While early studies 

focused on cpSRP43 as an RNA replacement and scaffold for LHCP with cpSRP54 acting in a 

relatively passive role, simply aiding the delivery of LHCP via interaction with cpFtsY, this 

investigation has revealed the proteins as fully adapting themselves to one another.2 Specifically, 

cpSRP43’s ability to sample configurational space is tuned such that interaction with cpSRP54 

increases its ability to function as a chaperone. In a follow up study to our investigation, another 

group found that cpSRP43’s affinity for substrate is again modified by an interaction with the 

Alb3 translocase.3 In contrast to the view of cpSRP54 as an interaction partner with a small, 

albeit important role in LHCP targeting, these results have demonstrated not only that cpSRP54 

is directly involved in LHCP binding, but that cpSRP54 itself has been adapted to cpSRP43. This 

is accomplished via intrinsic disorder in an extension at its C-terminus. This allows cpSRP54 to 

sample configurational space relative to cpSRP43, apparently scanning for the third 

transmembrane segment of LHCP. This is surprisingly similar to the scanning observed to occur 

at the ribosome in the co-translational cytosolic SRP.4 This is remarkable due to the major 

differences between the cytosolic system and the cpSRP system. The ribosome and SRP RNA 

provide a large scaffold responsible for dictating the positioning the SRP54/Ffh domains, 

especially in the scanning mode searching for signal sequences. The cpSRP54 results show that 
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the protein, in conjunction with changes in cpSRP43, manages to undergo similar fluctuations 

despite the absence of those scaffolds.  

 The predictive ability of the protein model developed in this work continues beyond 

identifying LHCP loading preparatory steps (Figure 1). While the cpSRP system is quite 

dissimilar in its mechanism, the cytosolic SRP system has nevertheless proved essential in 

guiding our understanding of what general structural states should be anticipated. A combined 

crystal structure and electron microscope image of the signal sequence bound ribosome/SRP 

provides an attractive option for predicting the structural outcome of LHCP loading for cpSRP.5 

In the SRP/ribosome structure the N-domain of SRP54 forms a close contact with ribosomal 

proteins L23 and L35 (Figure 1). What is interesting about this structure is that it defines an 

orientation for the NG-domain receptor binding site of SRP54. Supposing a specific orientation 

for cpSRP54 relative to cpSRP43 and LHCP is defined upon LHCP binding, what might be the 

coarse shape of this complex? Further, what specific sequence and structural features could be 

critical in this positioning? Published data for deletion constructs of cpSRP43 provide the 

strongest evidence for a specific interaction that may be of structural and functional relevance. It 

was found that deletion of the first chromodomain, which includes what is now known as the N-

terminal tail of cpSRP43, supports LHCP loading but is deficient in integration. Considering the 

structural and sequence similarity between L23/L35 and CD1, it seems reasonable to predict a 

similar interaction between cpSRP54’s N-domain and CD1. Indeed, as in the SRP54 structure, 

the M-domain and CD1 together could stabilize the NG-domain in a particular orientation. What 

is interesting about this model is that, since the cpFtsY binding site is conserved, it would define 

an orientation at the membrane that would place the TM3 C-terminal tail pointing toward the 

membrane (Figure 2). This could explain why, while LHCP loading is unaffected by CD1 
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deletion, integration is hindered. Indeed, nothing in the model proposed here would suggest 

LHCP binding would be hindered.  

 It remains uncertain from this information alone, however, why a specific orientation 

would be so critical. A recent YidC, an Alb3 homologe, structure may help to explain this.6 

YidC’s transmembrane domains contain a surprisingly large number of polar residues. Among 

these is a critical arginine residue. The proposed mechanism for insertion of some 

transmembrane helices involves the arginine attracting the negatively charged tail of the TM 

segment and pulling it across the membrane using those polar residues and perhaps the proton 

gradient across the membrane (Figure 3). While Arabidopsis LHCP’s C-terminus contains two 

charged residues, only one is conserved among confirmed LHCP sequences (Figure 4). 

However, there are several glutamine residues. Of the TM helices found to integrate via the 

mechanism put forth using the YidC structure, a significant stretch of negatively charged 

residues was present. As an Alb3 homology model shows that the polar residues in the TM 

segments are retained, with a lysine replacing the arginine, it seems reasonable that a similar 

mechanism of insertion might take place for TM3. Since there is less electrostatic attraction from 

a negatively charged LHCP C-terminus to the Alb3 buried lysine, cpSRP54 may ensure the tail is 

oriented toward these polar residues and is therefore more likely to form and maintain an initial 

interaction. The subsequent step would be the partitioning of LHCP TM3 from the M-domain 

into the membrane. The following steps would likely involve collection of chlorophylls and 

carotenoids along with integration of TMs 1 and 2.  

 Once TM3 has been released from the M-domain, since the M-domain is responsible for 

stabilizing the N-domain contact, the cpSRP54 NG-domain interaction with cpSRP43 would be 

disrupted. Interestingly, the M-domain has been observed to stimulate GTP hydrolysis in the 
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cpSRP54-cpFtsY complex. Since CD1 is known to inhibit GTP hydrolysis by cpSRP54-cpFtsY, 

this release could act as a signal to indicate that the cargo has been delivered and consequently 

allow the M-domain to activate GTP hydrolysis for recycling of the complex. If this is correct, 

the transit complex model with the N-domain at CD1 must orient the M-domain and NG-

domains such that M-domain stimulated GTP hydrolysis is blocked. 

 Ultimately these predictions must be tested. The first, and most critical, is to determine 

whether CD1 and the cpSRP54 N-domain actually form an interaction and whether this 

interaction is responsible for the observed loss in integration in the absence of CD1. Since the 

ΔCD1 mutant also removed the N-terminal tail it is uncertain whether CD1 itself of CD1 in 

combination with this tail caused the reduction in integration. Since the N-terminal tail contains a 

significant string of negatively charged residues that would complement positive charge on the 

N-domain, we have chosen first to delete the tail from cpSRP43. Further, a twinned positive and 

negative charge on CD1 and Ank1 that has a reverse complement on the N-domain is being 

tested for another possible linkage between the domains. Specifically, the loops between the first 

and second and third and forth helices of the N-domain contain positive and negative charge 

(Figure 6). As the overall charge at CD1-Ank1 is negative, we have chosen to convert the N-

domain loops to be completely negatively charged as this would create significant repulsion. The 

results, if this hypothetical interaction and its functional significance is indeed valid, should be 

identical to those of the CD1 deletion. That is, LHCP loading would be unaffected while 

integration would be significantly hindered. If the experiments yield promising results, the 

negative charges on CD1-Ank1 will be transformed to positive charges. If these results are 

similar to the cpSRP54 N-domain mutations, they will together provide strong support for the 

proposed model. Indeed, if these results are positive, another set of mutations with a charge 
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reversal on CD1-Ank1 and The N-domain together could further suggest a specific interaction 

and a specific orientation in that interaction. The significance of the LHCP C-terminal tail is 

being investigated as well. It will be deleted to determine whether integration is possible in its 

absence. If not, it would be supportive of the above mechanism for integration and indicate 

further study is warranted. It is interesting to hypothesize that addition of a stretch of negative 

charges to the tail might recover the ability of cpSRP43 to support integration in the absence of 

cpSRP54.  

 The result of this body of work provides a significant increase in our understanding of the 

molecular details of LHCP targeting. Furthermore, the final model offers ample opportunity for 

further investigation and may lead to work in understanding not only the targeting of LHCP, but 

also to understanding the mechanism by which integration takes place. Together with folding 

investigations of LHCP this work provides a markedly clearer picture of the workings of this 

system. 
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Figure 6: The predicted structural states of the chloroplast signal recognition particle 
(cpSRP) during the targeting of light harvesting chlorophyll binding protein (LHCP) to 
the thylakoid membrane. (A) Free cpSRP43. Based upon the connectivity of the domains 
in cpSRP43 a large degree of flexibility in the protein is expected. (B) Free cpSRP54. The 
conformational states in the cytosolic SRP system are quite variable and dependent upon 
SRP RNA. Due to the absence of SRP RNA in the cpSRP system, cpSRP54 might exist in 
multiple states in its free form. (C) The cpSRP heterodimer. Although crystal structures 
have indicated CD2 of cpSRP43 loses its flexibility in the presence of the cpSRP54-
cpSRP43 binding peptide, no apparent interaction site that would stabilize the remainder 
of cpSRP43 or cpSRP54 has been identified. For this reason it is likely that flexibility 
would be retained. (D) Transit Complex. Binding of LHCP to cpSRP forms the transit 
complex. The M-domain likely interacts with TM3 of LHCP and, based upon crystal 
structures of SRP54 at the ribosome, (E) lock the NG-domain of cpSRP54 in a 
conformation ready for receptor binding. (F) cpSRP54 receptor, cpFtsY. The A-domain of 
cpFtsY helps to anchor it in the thylakoid membrane with the cpSRP54 binding GTPase
region facing away from the membrane. (G) The locked configuration for cpSRP54’s NG 
domain would provide a specific orientation for all domains and proteins in the transit 
complex relative to the thylakoid membrane. The orientation would place the TM3 C-
terminal tail toward the membrane. (H) If Alb3 LHCP integration functions in a manner 
similar to YidC’s insertion mechanism for single pass membrane proteins, the C-terminus 
of LHCP is pull across the membrane by a special hydrophilic groove. (I) After the C-
terminal tail is been pulled across the membrane, TM3 could then partition from the M-
domain hydrophobic groove into the membrane.


	Interactions in the cpSRP Dependent Targeting of Light Harvesting Chlorophyll Binding Protein to the Thylakoid Membrane
	Citation

	Microsoft Word - Dissertation_Complete_July_2016.docx

