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Abstract 

 In this thesis, we concern ourselves with the security of drone systems under jamming-

based attacks.  We explore a relatively new concept we previously devised, known as hardware 

sandboxing, to provide runtime monitoring of boundary signals and isolation through resource 

virtualization for non-trusted system-on-chip (SoC) components.  The focus of this thesis is the 

synthesis of this design and structure with the anti-jamming, security needs of drone systems. We 

utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux 

for our hardware sandbox and drone hardware/software system.   

 We design and implement our working concept on the Digilent Zybo FPGA, which uses 

the Xilinx Zynq System.  Our design is validated via simulation-based tests to mimic jamming 

attacks and standalone, stationary tests with commercial transmitter and receiver equipment.  In 

both cases, we are successful in detecting and isolating unwanted behavior.  This thesis presents 

the current work performed, observations, and the future potential of hardware sandboxing in 

drone systems.  
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Chapter 1   Introduction 

1.1     Overview 

In today’s society, unmanned aerial vehicles (UAVs), commonly known as aerial drones, 

have become prevalent and useful across many domains.  Drones are used in the agriculture 

industry to give farmers an aerial perspective on their crops, which allows for better 

understanding of crop performance and thus, better yields [1].  Drone use has grown in the 

commercial and consumer recreation sector and is pertinent in military space for surveillance and 

precision strikes [2].  In fact, military drone usage is expected to continue to grow by 50% in the 

next four years [3].  This rise in usage demands security.   

Remotely controlled drones are operated indirectly through a user by transmitting radio 

frequency (RF) waves allowing a receiver on the drone to receive and decode the transmission 

into signals for processing in the system.  Because control happens indirectly through this RF 

manner, an attacker can potentially hijack and affect the control of a drone by sending their own 

RF signals.  Naturally, we wish to prevent this attack from manifesting to the best of our ability. 

In this thesis, we explore a method in which we can achieve the detection of such a 

control attack and the prevention of the spread of improper control signals.  Our method utilizes 

the hardware technology of Field Programmable Gate Arrays (FPGAs), which allow for quick, 

efficient development due to their programmable nature through the use of HDL languages such 

as VHDL or Verilog.  The method we use in this thesis is a relatively new concept we created, 

known as hardware sandboxing.  Our goals of this thesis are to study the prior, practical 

synthesis of the hardware sandbox for drone use, design a secure drone system on FPGAs that 

can detect control attacks, and verify our implementation through simulation-based testing. 
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1.2    Motivation 

In the RF world, such aforementioned control attacks are referred to as frequency 

jamming, which is a very real and common threat seen today.  Jamming is defined as the 

disruption of RF signals by an attacker transmitting in the same frequency band as the target.  As 

shown in [4], RF jamming, like in our drone systems, has a strong likelihood of occurring.  This 

has already been seen in use during the Iraq War with the Warlock RF jamming systems to 

effectively block UAV systems. 

With regards to frequency jammers, there are many different types with varying degrees 

of effectiveness.  There are simple designs, such as the constant jammer, which transmits a 

jamming signal continuously, or the random jammer, which only transmits intermittently [5].  

For more useful jammers, there exist others, such as the reactive jammer where a signal is only 

sent when target transmission is sensed, which has proven to be effective [5], [6], [7], or other 

intelligent jammers which know the protocols and modulation used.  Traditional means to limit 

the effects of jamming have turned to spread spectrum techniques, most notably frequency 

hopping (FHSS) and direct sequence (DSSS).  In FHSS, a sender will quickly hop along 

channels across a wide frequency band in a specified order, while in DSSS, a sender will 

distribute their message on a narrow band across a wide frequency range through the use of pre-

determined spreading codes.  The original message is multiplied by the spreading codes to 

achieve this level of spread-spectrum.  A receiver can use the same codes to “de-spread” the 

received transmission back to its original message.  While both of these techniques are useful, a 

powerful or intelligent jammer can still effectively jam at least parts of the transmission, with 

FHSS being more susceptible to simple, narrow-band jamming.  With great power devoted to 

jamming, full jamming of these spread spectrum signals is possible [8].   
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 In order to detect jamming, comparing signal strength or signal-to-noise-ratio (SNR) is a 

common method [6], [9], however this has trouble when dealing with energy efficient, low-

power jamming such as reactive or intelligent jammers.  To combat the reactive jammers, other 

techniques such as in [10] have looked at comparing received packet loss at the preamble of the 

received transmission to the rest of the message.  This however does not take into account other 

intelligent jammers, such as powerful ones where modulation techniques are known and can 

know to jam the start of the sent message.  

Our end-goal is to be able to detect jamming regardless of jammer in RF drone systems.  

In jamming, an attacker transmits their signal on the same frequency band to interfere with the 

correct signal.  The attacker’s goal is to distort the signal to the extent where either the receiver is 

unable to correctly receive the transmission, resulting in total denial-of-service, or parts of the 

transmission are incorrect, resulting in loss of integrity and possible denial-of-service for certain 

aspects of the system.  Thus, the drone has been compromised and can be brought down by the 

attacker due to loss of control.  In a drone system, the controller transmits the signals to be read 

by the receiver to generate the correct control bit signals for flight control.  Because in a valid 

transmission these bit signals follow a predefined protocol, we can monitor these incoming 

signals to continuously check that no deviation occurs.  We assume any deviation from this 

predefined behavior indicates denial-of-service, and thus, indicates jamming is present.  In order 

to do this, we can utilize a hardware component we designed known as the hardware sandbox.     

While more detail regarding the design and structure of the hardware sandbox is given in 

Chapter 2, the concept of the hardware sandbox was first conceived from the need to combat 

hardware Trojans.  Hardware Trojans are malicious alterations or additions in intellectual 

property (IP) hardware cores which lay dormant until activation.  They can be inserted by non-
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trusted entities at any of the various stages of IP integration, such as the design, verification, and 

manufacturing stages [11][12], due to the design and production typically being outsourced.  A 

Trojan is said to contain both a trigger and a payload, such that when a specific input or 

condition is satisfied for the trigger, the Trojan is activated and its damaging effects, or payload, 

are released.  While difficult to detect prior to runtime, if we consider that the Trojan’s payload 

will have a discernible effect on the output signals of the IP, we can monitor the signals at 

runtime at the boundary of the component and check to ensure they satisfy the original design 

description and protocol.  We can isolate any IP we deem non-trusted through the monitor 

process and virtualization of any system-level resources the IP utilizes.   

This same concept can be applied in drone jamming.  In this case, the trigger is the drone 

jammer and the payload is the denial-of-service and deviation of control signal behavior.  Due to 

this, we can treat parts of the drone system as non-trusted and build a hardware sandbox to 

isolate and protect the remaining system from potentially compromised elements.   

1.3    Scope of Thesis 

This thesis presents the first system design utilizing the hardware sandbox to detect and 

isolate jamming attacks on drones.  The goal here is to design, implement, and study a hardware 

sandbox for a drone flight system that has the capability to detect and prevent compromised 

signals from reaching and adversely affecting the rest of the system.  To do this, we must first 

delve into the structure, general design, and functionality of the hardware sandbox to provide the 

necessary means for this task.  Therefore, sufficient prior background and tests are given in 

addition to ones in drone jamming to show both how the hardware sandbox works and prove that 

it does work on testable hardware Trojan benchmarks.   
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While we based our system and hardware sandbox design around a functioning drone and 

its necessary elements, such as the consideration of booting an embedded operating system for 

running flight software, building a fully-working jammer and testing on a flying aircraft is out of 

the scope of this thesis.  Our goal is focused more on the design and study of the hardware 

sandbox, and therefore, we primarily utilized simulation-based testing to simulate jamming 

attacks and verify the results from our hardware sandbox.  We have, though, performed basic 

tests on stationary hardware utilizing solely the transmitter and receiver to verify performance 

under real-world timing constraints and ensure accurate communication between software and 

hardware.   

For the drone system, we utilized commercially available equipment for the controller, 

receiver, and testing platform.  We used the Spektrum DX7SE transmitter and AR7010 receiver 

and built our hardware sandbox around the protocols used in this equipment.  We also used the 

Digilent Zybo FPGA, a Xilinx Zynq-based board, for implementation and testing.  Through the 

board's FPGA fabric for programmable logic and the Zynq's processing system featuring a dual-

core Cortex A9 processor, we were able to accurately create our hardware/software-based 

design.  The hardware portions of the drone system and hardware sandbox were written in 

VHDL, and the drivers and software-based tests were implemented in C. 

1.4       Summary of Chapters 

The remainder of the thesis is outlined as follows: Chapter 2 (Hardware Sandbox) details 

the concept, design, and validation of the hardware sandbox, Chapter 3 (System Design and 

Implementation for Jamming Prevention) goes in depth on the design of the hexacopter system 

and the hardware sandbox tailored for detecting and preventing jamming, Chapter 4 (Tests and 

Results) shows the test results obtained in order to validate the anti-jamming design presented in 
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Chapter 3, and Chapter 5 (Conclusion and Future Work) gives the conclusion and offers a few 

avenues for the future work of hardware sandboxing in drones. 
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Chapter 2   Hardware Sandbox 

2.1     Overview  

 The hardware sandbox was born on the concept of isolation in software sandboxing and 

targets potentially malicious activity in hardware IPs and components.  As discussed in [13], 

there are a number of different techniques used by sandboxes in software to enforce isolation.  

Among these, the inline reference monitor/system call sandbox and the hardware memory 

isolation categories are of particular interest for the nature of sandboxing hardware IPs and 

components.  In the first set of categories, the goal is to place run-time checks on resource 

accesses inside or on the boundary of the application to enforce a given security policy, and in 

the second, segments of resources are provided to the application itself and a manager handles 

the data transfer in the sandbox to the rest of the system.  We can utilize these two ideas in 

hardware to create a sandbox which is capable of monitoring a non-trusted hardware IP for 

malicious behavior while still ensuring isolation from the rest of the system.   

2.2     Design and Components 

In order to provide the necessary isolation and monitor of a potential malicious IP, we 

need to consider and include multiple components in our overarching hardware sandbox 

structure.  Figure 1 displays a representation of what the hardware sandbox must consist of to 

achieve the sandbox goals.  These components include a properties checker for the monitoring of 

the sandboxed IP’s signals, virtual resources for isolating possible attacks on shared, physical 

resources in a system, status and configuration registers for processor control, and a sandbox 

manager for controlling the data flow inside the hardware sandbox.  These components are 

explained in further detail in the following subsections.   
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Figure 1.  Hardware Sandbox Structure 

 

2.2.1    Properties Checker 

This component consists of either one or more checkers used for runtime monitoring and 

enforcement of security rules defined by the system integrator at compile time.  A checker is 

created based off the incoming or outgoing signal properties of an IP component in the sandbox 

and can be limited to only a subset of IP signals and properties for overhead reduction.  Our 

implementation of the properties checkers is currently based around the Open Verification 

Library by Accellera [14].  While this library gives us the ability to create our own expressions to 

define the necessary properties of the signals to actively enforce and monitor, a more formal 

method of defining signal properties exists in verification languages, such as the Property 

Specification Language [15].   

2.2.1.1   Open Verification Library 

The Open Verification Library (OVL) consists of a series of parameterizable assertion 

checkers which take in some form of an input signal and monitors and enforces the property 

needing to be checked.  There are many OVL checkers, some more specific in the property or 

policy being checked; however, there are only a handful of components that can be synthesized 
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directly into hardware.  Of these, the most powerful in terms of assertion checking is the OVL 

Cycle Sequence, which we commonly use for our properties checkers in the hardware Sandbox.  

The OVL Cycle Sequence takes in primarily an input vector signal, known as test_expression, 

and outputs a signal known as fire.  Essentially, when a check is active the Cycle Sequence 

samples the MSB of the test_expression sequence on the rising clock edge.  As long as this bit 

value is high, the check passes, and the sequence is left-shifted by one bit.  This process repeats 

for as many clock cycles as specified by the system integrator.  If at any point in time during the 

check the sampled bit is low, the check ends and fire is asserted, indicating a problem has 

occurred.  In order for a check to begin, the MSB of the original test_expression must be high.  If 

pipelining is specified by the system integrator, multiple checks can take place at the same time; 

otherwise, the previous check must finish before beginning a new one.  Through its 

customization and by generating test_expression from multiple signals based on the temporal and 

spatial properties specified or observed, the Cycle Sequence can be a very powerful runtime 

assertion checker and suitable for our needs.  For example, consider the system consisting of the 

signals req, busy, and done.  If in this system our signals are observed such that when req is 

asserted, busy is asserted on the following clock cycle, and after busy is finished, done is 

asserted, we can utilize the OVL Cycle Sequence in VHDL and build test_expression through 

concatenation in the following way: “req & (busy and not done) & (done and not busy)”.  In 

VHDL, this expression is three bits wide and represents our observed protocol.   

2.2.1.2   Property Specification Language 

 The Property Specification Language (PSL) by Accellera, based off the Sugar Language 

developed by IBM, is an assertion based verification language used for model checking, and 

evolved into an IEEE standard (1850-2005) [15].  At its core, PSL is used to temporally specify 
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and define the properties of a system under verification through a combination of the temporal 

logic Linear Time Logic (LTL) and regular expressions.  PSL consists of 4 layers: the Boolean 

layer, the temporal layer, the verification layer, and the modeling layer.  Basic relationships 

among observable interface signals and state variables are defined at the Boolean layer, which 

take the form of Boolean expressions in the chosen HDL flavor used: VHDL (reset and ena) or 

Verilog (reset && ena).  The temporal layer is used to describe signals’ behavior over finite or 

infinite sequence of states.  A sequence is built from basic Boolean operators from the below 

layer combined with specific sequence operators.  PSL’s temporal layer supports both Sequential 

Extended Regular Expression (SERE)-style operators and LTL-style operators, which allow for 

the evaluation of an expression across multiple clock cycles. Said system properties are built 

utilizing these expressions and Boolean operators to define behavior.  For example, taking into 

consideration two signals in a system which must be asserted at some time, req and ack, for an 

LTL-style expression to indicate that whenever req is asserted at some time point, ack must be 

asserted on the very next time point, we write our expression as “always ack -> next req.”  

Utilizing SEREs, with the inclusion of the signals busy and done, the expression “always {req} 

|=> {ack; busy[+]; done}” indicates that when req is asserted on some time point, the following 

sequence occurs starting at the very next time point: ack is asserted for one time period, busy is 

asserted for at least one time period after ack, and after busy, done is asserted, signaling the end 

of the sequence.  Because PSL is primarily a verification language, the verification layer exists to 

provide all necessary directives for a verification tool to check for the validity of a property 

defined from the two above layers. A common directive, assert, for example, will instruct a 

verification tool to report a failure if a certain defined property does not hold.  Lastly, the 

modeling layer utilizes the underlying HDL language to model combinational signals or other 
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aspects of the system that are not directly part of the design, but are needed for accurate 

verification purposes.   

2.2.2   Virtual Resources 

Regarding this component, the concept of a sandbox requires that resources needed by 

IPs are provided in virtual form within the sandbox where they can be used by an IP without 

negatively affecting the rest of the system.  Typically, the virtual resources considered for 

inclusion are those that are shared between the trusted system and the potentially malicious 

component because we want to limit the effects of a compromised IP.  The main advantage here 

is that the interface between virtual resources within the sandbox and physical resources follows 

a secure protocol and can never cause a denial-of-service.  Any attempt from a malicious entity 

to alter a system’s resource or peripheral will be nullified by the virtual resource.  Examples of 

virtual resources include a virtual UART, virtual VGA, or virtual memory.   

2.2.3   Status and Configuration Registers 

Next, the hardware sandbox features a set of status and configuration registers to be used 

for the communication between the sandbox manager and the rest of the system. Statistics on the 

behavior of IPs in the sandbox can be recorded for further analysis.  If misbehavior occurs and is 

caught via a checker, this event can be indicated in a status register for the processor to read and 

react accordingly.   

2.2.4   Sandbox Manager 

The final aspect to consider in the hardware sandbox is a manager.  The manager is 

simply in charge of all data exchange and handling inside the sandbox.  This includes the 

exchange between virtual resources and their physical counterparts, as well as the handling of the 

results from the checkers and the potential configuration of the sandbox. 
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2.3     Validation Tests and Implementation 

 To validate our design and demonstrate how the hardware sandbox works in practice, we 

previously implemented a series of UART module-based hardware Trojans from trust-HUB [16].   

Trust-HUB, founded by experts from the University of Connecticut, is seen as the benchmark 

resource in hardware Trojans today.  All of the UART modules are based off the RS232 protocol 

with parity.  Therefore, it is first necessary to understand how this protocol works. 

 
Figure 2.  RS232 Protocol with Parity Used by the UART Modules 

 

Figure 2 outlines the RS232 transmission protocol.  When a transaction begins taking 

place, RS232 synchronizes using the start bit, which is logic low, to signal the start of the frame 

before sending the data.  Once the synchronization period is over, RS232 sends the data, bit-by-

bit, beginning with the LSB.  After, the parity bit is sent, followed by the end-of-frame stop bit, 

both of which are logic high.  Any future transaction must repeat this process by de-asserting the 

line for the start-of-frame.      

The hardware sandbox was customized and tailor-made for the RS232-UART module.  

Using the protocol above, a checker was built from the OVL Cycle Sequence module to monitor 

the transmission signals.  A virtual UART component was included to receive the expected 

transmission and only transmit to the rest of the system if the protocol was followed correctly.    

For brevity, this thesis will only focus on one of the many implemented RS232-UART 

Trojans, named the T-900.  This Trojan solely impacts the UART transmission through denial-

of-service after activation by transmitting a specific sequence of data.  The following subsections 

give the simulation results of the RS232-UART without the Trojan, with the Trojan, and with the 

hardware sandbox in use. 
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2.3.1   Trojan-Free RS232-UART Transmitter 

 
Figure 3.  Trojan-Free RS232-UART Transmission Waveform 

 

From Figure 3, we can adequately see the valid, uninterrupted RS232 transmission 

protocol the UART module uses.  This protocol is based on the following signals: xmitH, used to 

signal the start of a transmission, xmit_dataH, used to denote the 8-bit data to transmit, 

uart_xmit_dataH, representing the serialized, UART data line, and xmit_doneH, used to signal 

when the transmission is complete.  For an RS232 transmission, after xmitH is asserted, the 

xmit_dataH signal is sampled and the transmission begins.  The uart_xmit_dataH line begins low 

for 16 clock cycles representing the start bit.  After, the serialized line follows the data in the 

sampled xmit_dataH, bit-by-bit, for 16 clock cycles each, starting from the LSB.  Once finished 

with sending all 8 bits, the uart_xmit_dataH line will be asserted for 31 clock cycles representing 

both the parity bit (16 cycles) and the stop bit (15 cycles).  Once complete, xmit_doneH is 

asserted to indicate the full transmission is finished on the 16th cycle for the stop bit.   

2.3.2   RS232-UART Transmitter with the T-900 Hardware Trojan 

 
Figure 4.  T-900 Trojan-Injected RS232-UART Transmission Waveform  

Figure 4 shows how the T-900 Trojan affects the RS232 transmission sequence.  In the T-

900 Trojan, when the user transmits the data 0xAA, 0x55, 0x22, and 0xFF, in that order, the 
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Trojan’s payload is triggered and blocks all future transmission.  This is clearly seen in Figure 4. 

 After the start of the transmission of 0xFF by asserting xmitH, nothing is ever serialized on 

uart_xmit_dataH, and xmit_doneH is never asserted.  Thus, this UART module has effectively 

been placed under a denial-of-service.  Also, because uart_xmit_dataH and xmit_doneH are both 

low, indicating in normal operation data is currently being transmitted, any IP in the full system 

this Trojan-injected module is connected to, such as other UART modules, would experience 

problems and loss of integrity and availability from this malicious behavior.  Therefore, the 

invalid behavior needs to be contained. 

2.3.3   Hardware Sandboxed RS232-UART Transmitter with the T-900 Hardware Trojan 

 
Figure 5.  T-900 Trojan Injected RS232-UART Transmission with the Hardware Sandbox 

Waveform 

 

The hardware sandbox is demonstrated in Figure 5.  The signals v_uart_xmit_dataH and 

v_xmit_doneH represent the virtual UART signals coming from the hardware sandbox that 

interface to the rest of the system.  As we can see, when the T-900 Trojan becomes active in the 

same manner as seen in Figure 4 with the transmission sequence, the fire signal from the OVL 

Cycle Sequence is asserted for a single clock cycle in the two locations shortly after xmitH is 

asserted, indicating the aforementioned problem in the transmission.  Because in addition to 

checking the properties of the signals we include the virtual UART module in our hardware 

sandbox, the rest of the system is not negatively affected by the Trojan’s misbehavior.  This is 
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seen in the virtual UART signals.  The real, valid transmission is still received virtually and 

transmitted out when the protocol is correct.  Once a problem is found in the sandboxed module, 

the transmission ends.  However, instead of incorrectly outputting that the serial line is busy and 

transmitting to the rest of the system as the Trojan would, v_uart_xmit_dataH and v_xmit_doneH 

output correct values for no transmission.  Thus, through the hardware sandbox, we have 

effectively isolated the reach of the hardware Trojan from affecting the availability and integrity 

of the entire system, and we have detected the first moment when an error in protocol has 

occurred.   
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Chapter 3   System Design and Implementation for Jamming Prevention  

3.1     Overview 

In the previous chapter, we demonstrated how the design of the hardware sandbox is 

capable of preventing malicious hardware Trojan behavior from affecting a system’s integrity 

and availability through the monitoring and checking of defined signal properties and inclusion 

of virtual resources.  Utilizing the same structure, we can define a hardware sandbox to detect 

and prevent RF jamming from compromising a drone system.  The following sections outline our 

current drone system and how we can leverage and design the hardware sandbox for our anti-

jamming needs.   

3.2     Materials and Platforms 

3.2.1     Hexacopter Drone 

 
Figure 6.  Skeleton Hexacopter Drone  

 

Our base drone design is given in Figure 6.  For this project, we use the commercially 

available multicopter drone, the XAircraft DIY Hexa.  This drone features six arms, and thus six 

motors for flight control, providing added stability and fault tolerance compared to a typical 

quadcopter drone with only four motors.  In multicopter systems, the steering control of the 
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drone is based around three axes: yaw, pitch, and roll [17].  The copter is able to rotate at will 

around these three axes in order to ascend, descend, turn, or fly accordingly.  A flight controller 

must be capable of sending a transmission that can be interpreted to adjust these parameters for 

the drone.   

3.2.2     Control Transmitter and Receiver 

 
Figure 7.  Spektrum DX7SE Transmitter and AR7010 Receiver 

 

Our current drone uses the Spektrum DX7SE transmitter and the Spektrum AR7010 

receiver, as pictured in Figure 7.  This transmitter/receiver combo operates in the 2.4 GHz RF 

band using Spektrum’s proprietary DSM2 DSSS-based technology.  Once paired and 

transmitted, the receiver gathers the transmitted signals and decodes them into seven channels to 

control the drone: throttle, ailerons, elevators, rudder, gear, auxiliary-1, and auxiliary-2.  For 

direct control of the drone, the key signals here are the throttle and the ailerons, elevators, and 
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rudder, which control the roll, pitch, and yaw of the drone, respectively.  Under normal 

conditions, when the controller is paired and transmitting to the receiver, these seven channels 

exhibit the same properties: each signal follows a pulse width modulation (PWM) with pulse 

length between around 5% and 9%, depending on user input, at a frequency around 45.45 Hz.  

While the pulse length can be programmed on the controller to be modified by the user, we keep 

the parameters at these values.  These seven signals are cascaded, one after the other, with the 

following pattern:  ailerons, auxiliary-1, gear, elevators, auxiliary-2, throttle, and rudder.  Once 

one signal finishes its PWM pulse, the next in the pattern begins immediately after.  Once all are 

complete, all signals are low for the remaining period time.  When the transmitter and receiver 

are disconnected, however, such as when the controller is turned off after transmitting, the 

receiver still generates the PWM-based signals, albeit at an initial, slower frequency that 

decreases with time spent disconnected.   

3.2.3     Digilent Zybo 

 
Figure 8.  Digilent Zybo FPGA 
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The Zybo (Zynq Board) FPGA by Digilent, pictured in Figure 8, provides us the 

necessary features and functionality for a hardware/software system, such as our drone system. 

 The Zybo includes the Xilinx Zynq-7010 System-on-chip, featuring a dual core ARM Cortex-

A9 processor, along with Xilinx 7-Series FPGA logic [18].  The board features a number of 

multimedia and connectivity peripherals, of which the UART and SD are instrumental to this 

thesis.  The UART peripheral was used for terminal communication and obtaining various design 

information, such as the sequence of cascaded signals from the receiver, while the SD was used 

for running embedded Linux and storing the necessary kernel drivers.  This board also features 

six PMOD connectors, which are also vital for this drone system to interface to various, external 

devices, including the Spektrum receiver and the drone’s motors.  While it is a fairly small Zynq-

based FPGA board compared to others such as the Digilent Zedboard or the Xilinx ZC702, the 

Zybo is perfectly suitable for our design requirements.   

3.2.4     ArduCopter Software 

For flight control, this drone system uses the open source ArduCopter software by 

ArduPilot.  This software was originally designed for Arduino-based boards, but through a 

hardware abstraction layer, it can be ported for many different boards, including those featuring 

the Zynq system-on-chip, such as the Zybo.  Prior to this thesis project, the ArduCopter code had 

already been ported and compiled for use on the ARM processor found on the Zybo.  However, 

because of the dependencies in the code, such as threading, an operating system had to be built 

for the Zybo to run ArduCopter. 

3.2.5      Embedded Linux 

In order to run the ArduCopter software, we turned to using embedded Linux.  We built 

the Linux kernel for the Zybo, provided by Digilent, and used Buildroot for creating a root file 
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system to include the required libraries and C++ support for running the software.  The main 

takeaway for this thesis, however, is that because we run the flight software on top of the Linux 

kernel, a device driver had to be written and loaded into the kernel for the hardware sandbox and 

other IPs in the system to access their respective hardware registers. 

3.3   Drone Design 

Combining the previous information about our thesis-relevant materials and platforms, 

our simplified, high-level system design for the unsecured drone is given in Figure 9 below. 

 
Figure 9.  High-Level Drone System Design 

 

Of the modules and components to this system, only the two control IPs were not 

previously mentioned: the Receiver Control IP and the Motors Control IP.  These two hardware 

IPs simply provide an interface for the ArduCopter software to read and write to and from the 

receiver’s signals and the directly-connected drone motors.  Please note, however, that do to the 

nature of this thesis, only the pertinent hardware and system-level components for flight control 

and its security are considered here.   
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For control of the copter, the user transmits the controller’s input from the Spektrum 

DX7SE to the AR7010 receiver.  After decoding the RF transmission into the seven control 

channels, these signals are fed to the Receiver Control IP for register storage.  These control 

register values are fetched regularly by the CPU in the ArduCopter software running on Linux 

and must be processed to determine the state of the six motors of the hexacopter drone.  These 

motor values are then written from software to the hardware registers of the Motor Control IP 

and sent out via PMOD connectors to the physical motors of the drone.   

This design, however, is unsecure and susceptible to jamming attacks on the transmission 

and reception process to negatively impact or take down the flight.  Note that if an attacker 

wishes to disrupt this flight control flow, the only means to do so would be through an RF 

receiver like the Spektrum AR7010 used.  While preventing the attacker from jamming our real 

transmission signal is impossible, if we can protect the system from a potentially compromised 

receiver, we can secure the flight of the drone.  This follows the nature of hardware sandboxing. 

3.4   Hardware Sandbox Integration 

Because we treat the receiver as a non-trusted component with the possibility of being 

compromised by a jammer, we can utilize the hardware sandbox in a similar fashion as seen in 

Chapter 2 with respect to isolating hardware Trojans.  We place the hardware sandbox on the 

boundary of the external RF receiver to monitor its signals, as seen in our new, secure system 

design in Figure 10 below.   
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Figure 10.  High-Level Drone System Design with Hardware Sandboxing 

 

The signals from the receiver are monitored for the possibility of malicious behavior and, 

through a virtual receiver, only valid, protocol-following signals are output to the rest of the 

system for flight control.  In this way, we can know when a jamming attack is taking place and 

that the rest of the system will be as least negatively affected as possible.  A more detailed, high-

level diagram is given in Figure 11 and more detail regarding the principal components is given 

in the subsections below. 

 
Figure 11.  Receiver Hardware Sandbox Diagram 
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3.4.1    Signal Checker  

Because the protocol of the correct, paired receiver is known, as described in 3.2.2, we 

can build a checker using the OVL Cycle Sequence to sample the seven PWM-based signals for 

valid behavior at a constant rate, multiple times during a single PWM period.  To do this, we 

must divide the system clock (100 MHz) such that the frequency matches the original frequency 

of the PWM signals, around 45.45 Hz, multiplied by the sample rate.  For this thesis, we use a 

200x sample rate for a good balance between checker resolution and design area.  A 100x, 500x, 

1000x, and 2000x sample rate were also considered and their results are shown in Chapter 4.  

Because our checker works on the temporal nature of the signals, it is imperative to get as close 

to the correct frequency as possible.  Therefore, we employ the Xilinx Mixed-Mode Clock 

Manager (MMCM) Clocking primitive in the Xilinx Clocking Wizard IP core [19] to first 

generate a clock as close to 45.45 MHz and divide this down to 9.09 kHz (200x 45.45 Hz), 

which is now possible due to the two clocks being an even multiple of one another.  The closest, 

initial clock possible with the MMCM primitive is 45.445 MHz.  While not the exact frequency, 

this is okay due to our necessary window-based checker design described in more detail shortly 

below.   

With the right clock frequency and number of times to sample in a period, we now turn 

our attention to generating the proper checking sequence for the OVL Cycle Sequence’s 

test_expression.  This sequence is based on the seven channels from the receiver: throttle 

(throttle), ailerons (aile), elevators (elev), rudder (rudd), gear (gear), auxiliary-1 (aux1), 

auxiliary-2 (aux2).  Unlike the static RS232-UART examples that follow the same sequence 

every transmission, every clock cycle, the receiver has the dynamic property described in 3.2.2 

where the start of the pulse of the current control signal is dependent upon the previous pulse 
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length, not a specific time value.  Therefore, a sequence generation algorithm had to be devised. 

 This is given below in Figure 12.   

 
Figure 12.  Sequence Generation Algorithm 

 

Utilizing this sequence generation algorithm and our sample rate of 200x, our sequence 

vector for test_expression would be 200 bits long, thus taking the full 200 clock cycles for the 

receiver PWM period to complete.  Before starting the algorithm, however, we must first 

synchronize with the receiver, waiting for the first rising edge of aile, as this signal is the first in 

the cascaded sequence described in 3.2.2.  Once synchronized, we start by first initializing the 

sequence bit with an always ’1’ to indicate that, because we should always be receiving a signal 

from the transmitter in a non-jammed environment, a check should always be running.  From 

there, we start checking the first pulse, aile, to ensure that only it is high for the first 5%.  After, 
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because the user’s control dictates the length of the PWM, the next 4% of the period is 

independent, and we can only check to ensure that both the signal goes low during this time and 

the other signals remain low.  Once the active signal goes low, we move onto the next signal’s 

pulse and repeat this process.  Finally, after ensuring all seven signals followed their correct 

pulse pattern, the remainder of the sample period is devoted to ensure all signals stay low. 

While this sequence bit generation represents the correct check to be used in our sandbox, 

in practice it needs to be made more complex.  Due to potential for jitter and inconsistent clock 

periods, this algorithm will not hold as it assumes a rigid PWM structure and period.  In fact, 

jitter is present on the AR7010 receiver’s clock, typically deviating by a margin of up to 0.3 Hz 

from the 45.45 Hz baseline.  Therefore, we need to allow for this margin by adding a short 

window to the time before and after the assumed end points of each signal pulse and total period.  

For the signal pulses, this window is added onto the 4% PWM length that is user-dependent.  As 

long as each signal pulse goes low during this period, we assume the signals are still behaving 

correctly.  Once the pulse does go low, we look to check the next signal pulse for correct 

behavior.  The same concept is applied for the full PWM period ending and starting anew with 

the rise of the signal, aile.  While this does not provide us with quite as fine-grain resolution as 

the validation UART tests in 2.3, any major deviance from the base protocol will still be 

detected, especially if the window size is small.  For this thesis, we use a window size of two 

clock cycles.  At a 200x frequency rate, this gives an approximate 0.45 Hz jitter tolerance to the 

base 45.45 Hz signal, which covers the observed 0.3 Hz maximum jitter.   

 With respect to the length of the window tolerance, we add the number of clock cycles 

onto the length of our sequence vector, test_expression – in our case, this is two cycles, and thus, 

two extra bits.  Because the signal is allowed to finish its full period during the window, we add 
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one more extra bit at the end to indicate whether or not the period actually finished during the 

window and a new one started or not.  Therefore, in total, our test_expression input is 203 bits 

long, and the Cycle Sequence takes 203 clock cycles to finish.  This is too long for a normal 

PWM signal period at our sample rate, and thus, we use the pipelined setting of the OVL Cycle 

Sequence to allow multiple checks to happen at the same time.  Whenever a new aile pulse 

begins during the end window, we start the next check while still allowing the current check to 

finish the remaining clock cycles.  This is not a problem as the generated sequence bits at the end 

during the window are independent from the rest of the sequence generation at the beginning, 

and therefore, there will never be overlapping, conflicting values between checks.   

3.4.2    Virtual Receiver/Manager 

 Next, we turn to including virtual resources in our drone receiver hardware sandbox to 

ensure our system cannot be compromised.  For our drone, this resource must be the receiver as 

both the attacker and the user share this hardware.  However, because all communication with 

the receiver happens via airwaves off the board, we cannot utilize our virtual resource in the 

same manner as other virtual resources: isolating the attack to prevent the physical resource from 

being compromised and affecting the rest of the system.  Instead, we can do just the opposite: 

allow the best, correct communication possible in spite of a compromised physical resource.  

Thus, we can include a virtual receiver to generate the PWM signals following the correct 

protocol as described in 3.2.2.  So long as the fire from our OVL cycle sequence-based checker 

is low representing correct behavior, we can simply pass the received signals to the rest of the 

system; otherwise, each channel defaults to a base PWM value from the point of error to the end 

of a full period.  We use the basic 5% PWM value as our default.  From there, we wait until we 

experience a full valid period without fire being asserted, indicating the jamming problem is 
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gone.  If this happens, we switch back to the received signals for the next period until fire is 

reasserted.  

 Extra care is needed to make the transition from received signals to our correctly-

generated signals seamless.  Therefore, we monitor the position of our sample during a full 

period and determine which signal is currently active and for how many clock cycles.  Based on 

this knowledge, if fire is asserted, we know exactly how to proceed for the remaining period.  

For example, if fire is asserted due to a signal pulse not lasting long enough, we can seamlessly 

take over and generate the correct pulse length without the rest of the system seeing the problem.  

The reverse is also true if the pulse remains high for too long.  The virtual receiver can begin the 

next signal’s pulse, outputting the correct protocol-behaving signals to the rest of the system.  

Due to this necessary ability, we must buffer the incoming received signals to align with the 

results from the OVL Cycle Sequence and our virtual receiver logic.   

 Our virtual receiver’s manager assumes the same flexible design that the sequence 

generation uses with regards to window size.  Because our virtual receiver’s output is based 

solely on the Cycle Sequence’s fire signal during a period, it is imperative that the incoming 

signals, the current check, and the virtual receiver’s position are all in sync.  For example, if the 

period of the signals were to deviate too far and invoke fire, our virtual receiver generation 

would start.  However, because of clock jitter, if the jamming were to be stopped, it is possible 

for the signals to make up the margin lost or gained by the frequency change when jammed and 

re-match our sequence generation logic.  Doing so, would cause fire to stop being asserted.  If 

the virtual receiver was rigid, the changeover from virtual to real signals would be incorrect. 
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3.4.3   Status Register 

  Lastly, we connect fire to a status register to be read via software to indicate if a problem 

has occurred.  We interface with this register through the AXI bus and protocol.  Since fire is 

only at most asserted for one clock cycle during a single check period, in order to guarantee that 

we can read the register to know a problem has occurred, we connect this signal to a D Flip-Flop 

with Enable, setting the enable to be a signal indicating whether the value has been read or not.  

When fire is asserted, this read signal goes low, meaning this value has not been read.  When a 

valid read has occurred in the AXI protocol, the read signal is asserted, and new values, such as 

fire being low, will now be stored.  Because embedded Linux was used, a character device driver 

was written to be able to read this register in the software running on Linux for potential logging.    
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Chapter 4   Tests and Results 

4.1    Overview 

 With our full design in place, we look to verifying our method through our tests, 

observations, and results.  We use the Vivado Design Suite and Flow provided by Xilinx for 

synthesis and implementation for the Zybo FPGA. We synthesize and implement using the 

Vivado Synthesis and Implementation Defaults.  We give our implementation results in Section 

2, provide assumptions related to the jamming impact on signals in Section 3, display simulation 

waveforms based on these assumption in Section 4, and finally, describe two short, real-world 

experiments to validate the signal checker’s ability to detect invalid behavior and the hardware 

sandbox’s ability to perform in a Linux environment in Section 5.   

4.2    Implementation Results  

 After implementation, we compare various performance metrics to show the resource 

overhead when utilizing the hardware sandbox.  Table 1 shows the utilization results of the 

individual, principle hardware sandbox components. 

 Slice LUTs (Util%) Slice Registers (Util%) 

Signal Checker 438 (2.49%) 379 (1.08%) 

Virtual Receiver/Manager 88 (0.5%) 55 (0.16%) 

Status Register 134 (0.76%)  171 (0.49%)  

Table 1.  Resource Overhead for Each Component in the Hardware Sandbox 

 While we use the full hardware sandbox in our design, depending on the design goals of 

the system, it is possible to strip elements, such as the status register, from the sandbox and save 

on resource usage.  As we can see, our signal checker makes up the majority of the required area 

of the hardware sandbox.  This makes sense as this component takes both the sequence 
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generation logic and the OVL Cycle Sequence.  As described in 3.4.1, the length needed for our 

checker at 200x sample rate is 203 bits.  The OVL Cycle Sequence pipes these 203 bits one 

register at a time for its logical tests, and therefore, as the sample rate increases, so does the area.  

Table 2 gives a few results of considered sample rates versus resource usage.   

Sample Rate Window Size Bit Length Slice LUTs (Util%) Slice Registers (Util%) 

100x 1 102 bits 290 (1.65%) 273 (0.78%) 

200x 2 203 bits 438 (2.49%) 379 (1.08%) 

500x 5 506 bits 867 (4.93%) 688 (1.95%) 

1000x 10 1011 bits 1597 (9.07%) 1198 (3.40%) 

2000x 20 2021 bits 3033 (17.23%) 2213 (6.29%) 

Table 2.  Utilization Results of Various Signal Checkers  

This table only displays the resource usage of the checker.  Because the sample rate 

increases, and thus the clock frequency in the sandbox, the window size must also increase to 

allow for the same total window time.  Bit length gives the total number of bits required for our 

sequence-based test_expression for the OVL Cycle Sequence.  As the sample rate increases, the 

resource utilization increases roughly linearly.  For additional security, an integrator may opt for 

a higher sample rate.  However, 200x offers ample coverage of our PWM signal while using 

fewer resources, and therefore, in this thesis, we utilize this rate.   

In order to show total resource overhead of our drone system design with and without 

hardware sandboxing, we present Table 3 below. 
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 Slice LUTs (Util%) Slice Registers (Util%) 

Drone System 851 (4.84%) 938 (2.66%) 

Secure Drone System 1511 (8.59%) 1543 (4.38%) 

Table 3.  Utilization Results for the Drone Design with and without Hardware Sandboxing 

 

 As we can see in Table 3, the drone design with hardware sandboxing uses only 660 

more lookup tables and 605 more registers, representing an additional 3.75% and 1.72% of the 

Zybo's total available resources, respectively.  While the resource utilization in this context 

compared to the base drone system appears costly, with a 77.6% increase in LUTs and 64.5% 

increase in register slices, we argue this is reasonable.  First, the original design was not large to 

start so any resource increase through additional logic will make the design of magnitudes higher 

quickly.  Second, while the drone system can increase in size though additional functionality and 

feature set, the hardware sandbox will remain a fixed size.  This is due to the hardware sandbox 

being tailored for a specific protocol, which remains unchanged.  Therefore, in larger designs the 

hardware sandbox will not appear as obtrusive.  For the additional security, this small tradeoff is 

reasonable.    

 Worst Negative Slack (ns) Power (W) 

Drone Design 3.201 ns 1.657 W 

Secure Drone Design 2.663 ns 1.658 W 

Table 4.  Performance Metrics for the Drone Design with and without Hardware Sandboxing 

 Table 4 lists the timing and power result comparison between designs.  The worst 

negative slack displays the lowest setup slack in the system from a 10 ns period (considering the 

100 MHz system clock frequency) with the larger value meaning a greater cushion to meet 

timing.  First, while our drone design with hardware sandboxing meets the same timing 
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requirements as that of the base design, it has a longer critical path by 0.538 ns in the path to the 

memory mapped registers found in the IPs and status register.  This increase is not from the logic 

of the signal checker or the virtual receiver, but rather found in a path in the AXI memory 

mapped registers logic, and largely due to a longer routing delay from the larger design.      

The second aspect in Table 4 is the power consumption.  This was performed at the 

default settings in Vivado's power estimator at 25 degrees Celsius ambient temperature.  As 

evident, the power consumption is largely the same, with both having the Zynq processing 

system consume roughly 92% of the reported power.  Even though there is added logic with the 

hardware sandbox, because it operates at many magnitudes slower frequency than the rest of the 

system (on the order of kHz versus MHz), the power consumption impact is negligible. 

4.3    Jamming Assumptions 

 Because building and testing a full jammer for our transmitter/receiver combination is out 

of the scope of this thesis, we make a couple of assumptions and hypotheses regarding the 

impact of jamming on the seven cascaded control signals output from the receiver before testing 

our design.  First, because jamming aims to disrupt and even fully block communication to the 

receiver, a behavior of the signals under full jamming would be the equivalent of turning off the 

transmitter to prevent the receiver from receiving any form of valid transmission.  In our case, as 

mentioned in 3.2.2, when the controller is turned off and disconnected from the receiver, the 

frequency of the PWM signals decreases.  Therefore, full jamming has the ability to alter the 

frequency of the signals output from the controller and must be prevented. 

 Second, because it is possible to only jam parts of a transmission such that while the 

receiver still receives communication, parts of it could be incorrect, as demonstrated in jamming 

bits in WLAN communication [20], a possibility of signal behavior under partial jamming would 
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be wrong PWM pulse lengths stemming from the disrupted transmission.  We do not believe this 

to be a strong assumption due to the controller's ability to initially program the sensitivity range 

of control aspects, which in turn would affect the PWM pulse of the signals.  While we keep the 

pulses between 5% and 9%, we assume a jammed transmission has the potential to alter these 

lengths.  However, unlike the first assumption regarding full jamming, which has solid support 

from manual observation, we note that this assumption would require future testing and research 

to accurately verify.  For the sake of this thesis project, however, we include it.   

4.4    Simulation Testing 

 Based on our assumptions, we simulate various test cases in Xilinx ISim to show the 

hardware sandbox is capable of detecting and preventing the malicious behavior from affecting 

the rest of the system.  All of the following waveforms depict the same signals.  Jam represents 

the period in which the transmission is being jammed, and thus, the impact on the signals is felt, 

and fire is the output from the signal checker’s OVL Cycle Sequence to indicate bad behavior.  

The seven control signals under the header “From RX” represent the potentially compromised 

signals being output from the receiver before the hardware sandbox, and the seven signals under 

the header “To System” represent the protocol-conforming signals coming from our hardware 

sandbox and virtual receiver to the rest of the system. 
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4.4.1   Jamming Impact – Short Pulses 

 
Figure 13.  Jamming with the Hardware Sandbox (Short Pulse) Waveform 

 

 In Figure 13, we look at the hardware sandbox’s ability to fight off jamming which 

impacts the PWM signals from reaching minimum pulse length.  In this example, when jam is 

high, the remaining signals to be sent are changed from an 8% pulse to that of a 2.5% pulse.  

When this happens, we detect the incorrect protocol from our signal checker, fire is asserted, and 

our virtual receiver seamlessly takes over from this spot generating the remaining signals at a 5% 

pulse length.  We wait one additional period to ensure the jamming is finished and the incoming 

signals are behaving correctly before switching back to the signals coming from the receiver.   
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4.4.2   Jamming Impact – Long Pulses 

 
Figure 14.  Jamming with the Hardware Sandbox (Long Pulse) Waveform 

 

 The reverse is true for pulses which exceed the maximum pulse length as in Figure 14.  

Again, we are capable of detecting this behavior, as seen in the fire signal. The remaining period 

is spent generating the valid signals.  Note that prior to the jamming occurring, the signal to the 

reset of the system, aux1_o, reaches the maximum pulse length, 9%, compared to aile_o being 

sent for 8% and gear_o being sent for the default 5%.  This shows the seamless transition from 

still correctly behaved signals, prior to the OVL Cycle Sequence detection, to the generated 

signals from the virtual receiver.  We allow only the minimum to maximum pulse length to be 

output to the rest of the system.   
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4.4.3   Jamming Impact – Short Period 

 
Figure 15.  Jamming with the Hardware Sandbox (Short Period) Waveform 

 

 For Figure 15, when jam is enabled, we decreased the period of the receiver signals by 

10% to indicate a faster PWM frequency and observed the results.  As you can see, again, we are 

capable of detecting this change in protocol.  Notice, in this case, fire is asserted twice in a very 

short interval.  This is due to the signal checker detecting aile being asserted (due to the short 

period, a new period beginning with aile starts again) during the interval where all signals should 

remain low in the correctly-conforming protocol.  Thus, fire is asserted.  Fire is reasserted when 

the next check automatically begins and discovers that aile is not high for the required 5% pulse 

length due to aile already being asserted prior due to the shorter period.  In either case, the faster 

signals are never output to the rest of the system, as we can see in the “To System” signals.  The 

virtual receiver takes over to generate signals at the correct frequency.   
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 In this waveform, we simulate possible jitter in our receiver by decreasing the PWM 

signal frequency by 1% under normal conditions.  Due to the short window allowed in both the 

checker and the virtual receiver, this gives us the ability to dynamically adapt to correct signals.  

As the waveform shows, after jam goes low, the signals are still off, and therefore, trigger fire a 

couple more times.  However, after enough time has passed for the signals to become back in 

sync, the system is corrected for a full period, and the virtual receiver manager switches back to 

the real signals to be output to the system.   

4.4.4   Jamming Impact – Long Period 

 
Figure 16.  Jamming with the Hardware Sandbox (Long Period) Waveform 

 

 In our next simulation test, in Figure 16, we look at the behavior opposite to that in 

Figure 15.  Here we increased the period of our base signals by 7.5% to demonstrate a slower-

received PWM frequency.  Again, our signal checker detects this behavior when aile is never 

reasserted during the end window to signal the correct start of a new period.  Thus, our virtual 
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receiver takes over and begins the signal generation at the correct time.  We simulate possible 

clock jitter in this example with a 1% faster PWM frequency than normal to show how the signal 

can resynchronize back with our sequence generation logic over time after the jamming signal is 

no longer present.  Again, after the first correct check, we switch from our virtual receiver 

generation to the real signals seamlessly.  

 Thus, in all simulation tests, we were successful in detecting the jamming behavior from 

our assumptions and in the generation of correctly-followed PWM protocol signals to the rest of 

the system.  We demonstrated the seamless takeover from the virtual receiver and back to the 

real signals when jamming is no longer present.    

4.5    Real-World Testing 

 Outside of simulating, we performed two real-world tests utilizing the Spektrum DX7SE 

transmitter and AR7010 receiver with the hardware sandbox elements implemented on the Zybo 

FPGA.  In both tests, our objective was to be able to send all valid inputs on the controller and 

observe the hardware sandbox performing correctly.  Our first test, however, focused solely on 

the signal checker’s accuracy, while the second ensured the full hardware sandbox worked 

correctly in a Linux environment.  We simulated a jammed environment by turning off the 

controller during the test with the expected behavior that fire of the OVL Cycle Sequence should 

be asserted due to the transmission not being received by the receiver.  We also tested the ability 

to resynchronize the system after jamming by turning the controller back on and observing the 

output. 

4.5.1   Signal Checker LED Test 

To perform this test, we modified our drone design with only the signal checker included 

to allow fire from the OVL Cycle Sequence to be output to the LEDs of the Zybo FPGA, such 
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that when fire is asserted, the LEDs will turn on.  We plugged the receiver’s seven channels into 

one of the PMOD connectors on the FPGA and turned on the transmission controller to find the 

paired receiver.  Our new modified, design bitstream was then downloaded onto the board for 

observation. 

Initially, the LEDs were turned off, indicating that fire is not asserted and that a problem 

has not occurred.  This matches our expectation as we have not modified anything at this point.  

Next, we adjusted the various control inputs on the controllers, moving the flight sticks and 

toggling the gear, elevators, and auxiliary switches.  When doing so, again, the LEDs on the 

Zybo did not blink, meaning our OVL Cycle Sequence is accepting the changed PWM values 

correctly.  Next, we turned off the controller and observed the LEDs.  Here, the LED turned on, 

indicating that fire is continually being asserted.  This again matches our expectation because as 

described in 3.2.2, when the controller and receiver are not linked, the receiver outputs the PWM 

signals at a slower frequency.  Finally, we turned the controller back on.  When this occurred, the 

LED on the board stayed lit for a brief period of time before turning off.  This behaves exactly 

like our simulation results where after jamming has finished, there exists an interval where fire is 

still being asserted while it resynchronizes from the deviating clock period.  Thus, our real world 

test with the controller and receiver matched our initial hypothesis and expected behavior of the 

signal checker under various conditions.   

4.5.2   Full Hardware Sandbox Test 

 For the last real-world test, we added all elements of the hardware sandbox back to the 

drone design and removed the LED-fire output connection.  Now, fire is being output only to the 

status register to be read.  Because the working drone would utilize the embedded Linux OS to 

run its software, we created a test C application to read a byte from the contents of the device file 



40 

 

associated with the status register IP and its physical address space on a loop every one second.  

We cross-compiled and placed this application, the character device driver for the status register 

IP, and all necessary files for booting Linux on the Zybo onto an SD card.  When booted, we 

loaded our device driver kernel module, ran our test application, and observed the results from 

the still-connected AR7010 receiver and paired DX7SE transmitter.   

 The results of this test validate our design.  As expected, because the controller is paired 

and sending, the values being read and outputted to the terminal were 0, because fire is low.  

When changing the inputs on the controller, like the previous test, the outputted value was still 0.  

However, when the controller disconnected, and fire was asserted, we were able to read 255 

(0xFF), which represents the value from fire being connected to every bit in the status register.  

When we reconnected the controller by turning it back on, the value eventually changed back to 

0, meaning fire is low again.  As a result, our hardware sandbox is capable of reading the 

deviated protocol assertion in software in Linux for logging.   

   



41 

 

Chapter 5   Conclusion and Future Work 

5.1    Conclusion 

 Protecting against jamming attacks to hijack unmanned aerial vehicles, or drones, is of 

utmost priority due to their recent, widespread surge in both civilian and military space.  In this 

thesis, we designed and implemented a system that has the capability of detecting and reacting to 

jamming attacks to better secure drones.  We leveraged our current work of the hardware 

sandbox on hardware Trojans for the monitor and rule enforcement of the Spektrum AR7010 

receiver's control PWM signal protocol from the DX7SE transmitter in our system.  We tailored 

our hardware sandbox specifically for this receiver/transmitter pair.  This was accomplished by 

studying and analyzing the behavior of the Spektrum AR7010 receiver and the protocol it 

followed.  From the established protocol, we designed an algorithm in VHDL to generate the 

valid sequence bits based on the seven control signals to be used in conjunction with the OVL 

Cycle Sequence module.  In addition, we created a virtual receiver signal generator in VHDL to 

isolate the potentially jammed receiver from the rest of the system.  Our virtual receiver is 

capable of seamlessly switching from real, transmitted signals to and from the virtually, 

generated signals without notice from the rest of the system.  While our virtual receiver gives us 

an ability to react via hardware, we also employed memory-mapped status registers to give us an 

ability to react to attacks via software in a Linux environment.     

 Our hardware sandbox-based drone design was targeted for use on the Xilinx Zynq 

processing system and FPGA fabric.  We implemented the design for the Digilent Zybo FPGA 

and analyzed the performance and resource metrics.  We proved that despite the addition of 

hardware in the middle of the receiver and the control IP, we consume virtually identical power 
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and do not significantly affect the timing of the system, while only using a comparatively small 

amount of board resources.   

 We have shown functional verification of our system through a number of possible 

jamming simulation tests of both full and partial jamming and a checker/status register 

verification using real-world delay and timing with the two real-world tests.  Our hardware 

sandbox performs successfully in the detection of an improper protocol, an achievement also 

demonstrated via our previous hardware Trojan tests.  Our simulation results also demonstrate 

the isolation requirement of sandboxing by disallowing the incorrect signals from spreading to 

the system.  While future research would need to be performed in order to fully and accurately 

understand the behavior of our specific transmitter and receiver under partial jamming, our 

methods and results are still valid for full jamming and can be applied and analyzed for partial 

jamming in our receiver and future others.  Regardless, as jamming aims to disrupt the 

communication and flight path of a drone, it is anticipated that the control signals to the system 

would be disrupted too in the case of partial jamming.   

 While this thesis project was performed utilizing the Spektrum model AR7010 receiver 

and DX7SE transmitter, our same design approach and philosophy for the hardware sandbox is 

applicable to other RF drone receiver and transmitters.  The only condition required for use is for 

the receiver to follow a well-defined, consistent protocol when interfacing to the system, which 

is expected in any control system.  With this, a hardware sandbox signal checker and virtual 

receiver can be defined and designed specifically for the equipment used to detect and prevent 

malicious denial-of-service and other incorrect functional-based attacks.  Therefore, our work in 

this thesis project on hardware sandboxing has universality.   
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5.2   Future Work 

 Our work on hardware sandboxing and its use in drone systems to prevent jamming is 

still young and offers many avenues for future development.  In this thesis, we discuss a few 

possible ways to improve and advance the current system, design, and implementation of the 

hardware sandbox.   

5.2.1    Automatic Generation of a Hardware Sandbox 

 While our hardware sandbox is designed specifically for the Spektrum AR7010 receiver, 

there are many other possible commercial or custom receivers to use, each possibly using a 

different control protocol for interfacing to the system.  Designing a hardware sandbox, in 

particular, the properties checker for the IP under sandbox, can require an extensive amount of 

time and testing to ensure correctness.  We would like to eliminate this cost by automatically 

generating the sandbox.  As mentioned earlier, the design of a hardware sandbox first requires 

knowledge of the specific protocol and properties of the signals under monitor.  Therefore, if we 

can define the signal properties in a universal manner through a language, we can use tools to 

parse and generate the required principle components of the sandbox.  This future work has 

implications beyond drone attacks, as the hardware sandbox can be applied in many situations, 

such as the aforementioned hardware Trojan isolation.   

 There are some pre-existing, open-source tools which can accomplish the compilation of 

a universal property language into HDL sources.  One such tool in particular, Lily [21], while 

based on Linear Temporal Logic synthesis [22], allows for the compilation of LTL-style PSL-

defined properties to output, if possible, a synthesizable Verilog module.  We can extend and use 

this work as a base for hardware sandbox generation.   
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5.2.2   Further Exploration of Partial Jamming 

 As discussed earlier, the effects of only partially jamming a transmission are assumed and 

not fully known for our receiver model.  Therefore, a further analysis and study would need to be 

performed to fully understand the behavior in order to validate our assumptions.  Doing so 

requires building a jammer that is capable of jamming a small subset of the controller’s 

transmission and observing the effect.  

5.2.3    Adaptive Flight Measures in Conjunction with Hardware Sandboxing 

 Our hardware sandbox offers the ability to respond to jamming behavior in both 

hardware and software after detection from the signal checker.  At the current moment, we 

utilize in hardware a virtual receiver to generate correct, yet basic PWM signals to the system in 

case of jamming, while in software, use the status register to make a log if jamming occurred.  

However, more advanced adaptive flight measures are possible after detection.  For example, 

routines in the ArduCopter software could be devised to return the drone to its original source 

away from the attacker when jamming occurs.   

 In hardware, we can use adaptive techniques such as partial reconfiguration to thwart 

attackers when jammed.  This measure would require the integration of the receiver and its 

ability to decode a transmission into the seven PWM channels into our hardware from the current 

external module.  For example, if jammed, we could load a new receiver’s transmission decoding 

module IP in a reconfigurable partition that utilizes a different set of spreading codes.  While this 

would mitigate jamming for attackers who know at least a subset of the spreading codes and how 

to jam a certain frequency channel, this would also affect the legitimate controller and 

transmitter.  Thus, additional exploration would be needed on how to securely notify the flight 

controller that the spreading codes for the transmission have been changed.      
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