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ABSTRACT 

3D printing was used to fabricate porous artificial knee meniscus material from biocompatible 

polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene 

(UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded 

pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing 

was done to evaluate the impact of process parameters on the results. The samples were subject to 

a variety of rotational oscillating friction and wear tests under simulated body fluid and loading 

conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples 

yielded a 27% wear depth reduction compared to molded PCU samples, which may be attributed 

to their porous structure and flexibility. The cross-sectional area of the 3D printed blend and pure 

PCU samples showed 13.61% and 6.34% porosity, respectively, while no porosity was observed 

on the molded PCU and UHMWPE samples. The porosity of 3D printed PCU samples enabled 

them to absorb 46% more fluid than its molded version. These findings support 3D printing method 

as a good alternative to fabricate highly porous, customizable PCU implants that mimic the 

lubrication mechanisms of the native meniscus. 
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 Chapter 1 – INTRODUCTION 

1.1. Background 

Total joint arthroplasty has been a common and generally effective surgical treatment 

for patients suffering from arthritic disabilities, mostly due to ageing conditions or sports-related 

injuries. A prevalence study conducted by the Mayo Clinic estimated that 4.7 million Americans 

had experienced total knee arthroplasty and were carrying implants by 2014 [1]. That number was 

found to be nearly twice as much as the number of Americans who had been subject to total hip 

arthroplasty by that same year. In fact, the knee is the largest joint of the human body, yet the most 

vulnerable to injuries [2]. Increasing active life styles and longer life expectancy contribute to a 

higher rate of knee problems. A great number of those are associated with the meniscus, a cartilage 

cushion located between the tibia and the femur, and has a main role to absorb shocks and distribute 

the weight bearing across the knee joint [3]. In short, the meniscus contributes to joint stability, 

aids ligaments with force transmission, and provides lubrication. When injured, surgical 

intervention is the alternative to most cases, the patient may have the damaged part removed, but 

that causes changes in the cartilage load distribution, which leads to degenerative arthritis [4–6].  

Results are to be improved to meet current demand of knee meniscus-related surgeries and suffice 

the basic joint’s purpose in the human body: enable patient to walk and perform daily activities 

without impairment. 

Yet total knee joint replacements have been in the market for at least 40 years, no 

artificial meniscus replacement was commercially available until the last decade [7]. The first 

anatomically-shaped synthetic non-anchored medial meniscus implants, NUsurface® by Active 

Implants, is made of a UHMWPE-reinforced PCU matrix and have been under clinical trials in the 

U.S. and already approved in some parts of Europe. PCU provides flexibility while the UHMWPE 
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reinforcement fibers promote load bearing capabilities. The solid nature of the molded implants, 

however, may impair the joint’s ability to permit its natural lubrication mechanism to occur.  

As a natural synovial joint, the lubrication in the knee is enabled by a fluid film regime 

that keeps the two articulating surfaces apart [3,8]. That unique tribological system has been 

explained by several lubrication mechanisms, which are mainly described by full fluid film 

lubrication, elastohydrodynamic lubrication (EHL), and micro-elastohydrodynamic lubrication 

(µEHL), combined depending upon the joint usage [3,8,9]. Furthermore, “weeping” lubrication 

happens when the joint is under dynamic load: the natural meniscus is porous and therefore absorbs 

interstitial synovial fluid with de-pressurization, and releases it upon loading, contributing to 

maintaining  the opposed surfaces separated [10]. All those described mechanisms provide 

extremely low coefficient of friction (COF), ranging from 0.002 to 0.04 and excellent wear 

resistance [11,12]. In contrast to a native meniscus, there is no porosity in an artificial meniscus, 

which consequently makes it unable of supporting the joint lubrication via the “weeping” 

mechanism [9,11]. As a result, once it is implanted, the molded meniscus is only able to maintain 

boundary lubrication on its surface by synovial fluid absorption [3]. 

In this study, PCU and UHMWPE were used to explore the potential of 3D printing a 

blend of these two polymers for artificial meniscus implant. The peculiar layer-by-layer and line-

by-line material deposition patterns of FDM 3D printing technology leave voids throughout the 

print, which allow the “weeping” lubrication of the knee meniscus to happen. This additive 

manufacturing method is versatile in fabricating different designs without needing a mold and thus 

can accelerate the fabrication process and facilitate the achievement of highly-customized implants 

suitable for individual patients. 
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1.2. Motivation and Objectives  

The American Physical Therapy Association estimates that around 700,000 Americans 

undergo knee surgery due to meniscus injury every year [13,14]. Although that number seems to 

be surprisingly high, aside from that, there are also many people suffering from knee joint pain 

and that refrain from having surgery through alternative treatments. In general, knee surgery 

procedures are only performed when the patient has been under pain and their normal life is 

severely impaired due to loss of functionality of the joint. The main cause of impaired functionality 

and source of pain is osteoarthritis, a condition in synovial joints characterized by gradual 

degeneration and loss of articular cartilage. It is irreversible and consequently causes permanent 

damage. Before pursuing the surgery approach, patients usually undergo more conservative 

strategies, like pain relievers, physical therapy, and others, until being more invasive is inevitable.  

The meniscus has an essential role in functioning and protecting the knee joints by 

dispersing contact pressure and lowering coefficient of friction. However, the most common 

causes of knee surgeries are meniscus-related cases [4,15–17]. Unlike replacing other components 

of the knee joint, such as tibia and femur, only a few options exist for meniscus-related injuries. 

Meniscal allograft transplantation and partial meniscus removal (meniscectomy) have been the 

alternative to alleviate the pain of those with meniscus cartilage damage, yet they are not 

permanent solutions since they ultimately lead to more medical intervention because of the uneven 

distribution of the pressure on the joint [18].  

To fill that treatment gap, researchers have been exploring solutions for meniscus 

diseases, alternatives that combine long-term durability and resemble the tissue biomechanical 

performance. The limitations of the current options have driven research towards synthetic 

materials for meniscus implants. A nonanchored, polyethylene-reinforced polycarbonate urethane 
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meniscal implant has been under clinical trials in the USA, and in use in some countries. Those 

materials make this implant not only biocompatible, but also mechanically strong and capable of 

replicating the stress distribution in the knee. However, because the implants are molded, they lack 

the porosity present in natural cartilage that would provide the structure necessary to allow the 

knee joint lubrication mechanisms to occur. While absorption and release of synovial fluid can 

lubricate the porous natural meniscus, for non-porous meniscus implants only adsorption is 

capable of lubricating the joint [10]. This research aims to fabricate porous and mechanically 

robust structures for meniscus implants, combining the flexibility of PCU and load bearing 

capabilities of UHMWPE, by using fused deposition modeling 3D printing. That fabrication 

method overcomes the limitation of molding which makes only solid structures, and facilitates the 

implant manufacturing process by introducing practicality and the capability of easy 

customization. The 3D printing process is expected to provide porosity to enable synovial joint’s 

“weeping” lubrication mechanism to occur. 

1.3. Organization of the Thesis 

This thesis is comprised of 5 chapters. The first and current chapter is an introductory 

section, bringing relevant information about knee joint implants and meniscus-related medical 

procedures, synovial joint lubrication basics, and the valuable significance of additive 

manufacturing in the biomedical industry. In Chapter 2, a collection of backgrounds of the main 

topics explored here are comprehended in a literature review, including a general overview of the 

tribology of human joints, a brief section about the history and current technologies implemented 

in artificial human joints, and a summary and discussion about the principles, advantages and 

disadvantages of 3D printing, particularly those related to fused deposition modeling. Chapter 3 

details the experimental techniques used in this study, consisting of the description of the 
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fabrication and characterization methods. Followed by Chapter 4, which presents the results and 

discusses their importance, and finally, Chapter 5 draws the conclusions and makes 

recommendations of the direction to be targeted for future work. 
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 Chapter 2 – LITERATURE REVIEW 

2.1. Anatomy and tribology of the knee synovial joint 

The knee is the largest and most complicated joint of the human body. It is classified as 

a synovial joint, considered one of the most important features of the human body as it serves as 

the core element for one’s ability to move. Synovial joints are the most common in the human 

body and are capable of sustaining high loads and of varied ranges, yet undergoing minimal wear 

[19]. They also permit limited movement and are responsible for transferring forces from one bone 

to another [20]. All that is enabled by the mechanical properties and lubrication processes 

occurring within the joints. Similar to other biological environments, the surface properties such 

as their softness and stiffness, wettability, chemical composition, porosity and roughness are 

essential for the knee joints performance [21]. To understand those powerful functionalities of the 

knee, we will first look at knee joint’s structure and operation as a synovial joint, and explore the 

types of lubrication mechanisms that make it a high performance bearing from an engineering 

standpoint. 

2.1.1. Structure and surface properties of synovial joints 

Figure 2.1 illustrates the parts of a synovial joint. The articular cartilage is a soft and 

porous material that sits on top of a hard surface, the bone. It functions as the bearing material and 

is essentially a compliable layer that offers excellent mechanical properties and favorable porous 

structure to withstand high loads permitting the lubrication mechanisms to take place. The 

surrounding lubricant is called synovial fluid. 
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Fig. 2.1. Illustration of a synovial joint [22]. 

 

The articular cartilage layer has a thickness that depends on the kind of joint as well as 

the age. In general, it gets thinner as individuals age. Young and healthy individuals can have a 

few millimeters-thick cartilage, while the elderly may even have almost inexistent in some areas. 

Due to its main function of sliding against another surface being naturally and perfectly 

executed, it is expected for the synovial joints cartilage to have a smooth surface. Measurements 

made under different studies suggest that, however, cartilage’s surface roughness varies from 

about 1 to 5 µm [23–25]. On the other hand, healthy synovial joints can produce coefficient of 

frictions that are extremely low, ranging from 0.001 to 0.05, and provide exceptional wear 

resistance during the lifetime of the articulating surfaces [11,12,26]. 

The inherent porosity and elastic nature of the cartilage and meniscus tissue are the keys 

to the excellent tribological properties. They provide the necessary structure for the lubrication 

mechanisms to occur, which in turn are responsible for the superior capability of the joint to not 
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only sustain high loads and impacts, but also to distribute them proportionally on the knee joint 

throughout the gait cycle.  

 

Fig. 2.2. Knee joint forces and surface velocities at different parts of the walking cycle [27]. 

 

When loads are applied on the knee joint under motion, they are not constant. Figure 

2.2 shows how the applied force and the sliding velocity behave in the knee joint during a typical 

walking cycle [27]. The knee gait cycle is broken down into stages on Fig. 2.3. The entire cycle is 

categorized into stance and swing period. Those may be expressed in percentage, where the former 

normally constitutes 60% of the cycle and the latter 40% [9,28]. The gait cycle starts with the heel 

strike, the first phase of the stance period, and finishes with the terminal swing or heel strike of the 

same leg, the last phase of the swing period [29]. The maximum loads are about 1500 - 1750 N 

and is characterized by one heel striking the ground while the other foot’s toes are leaving the 
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ground [27,30]. In Fig. 2.3 that is represented by the first phase. Sliding velocity also varies 

considerably with time in the walking cycle. Notice on Fig. 2.2 that when the load is high, the 

sliding velocity is low, and vice-versa. 

 
Fig. 2.3. Phases of the knee joint walking gait cycle, adapted [29]. 

 

2.1.2. The knee synovial joint structure 

Three bones compose the knee joint: the femur (thigh bone), the tibia (shin bone), and 

the patella (kneecap). In Figure 2.4, an illustration shows that articular cartilage covers the surfaces 

of the tibia, femur and patella that are part of the knee joint. The articular cartilage of the knee 

joint is a fibrous connective tissue that is highly porous and holds a large content of water [19]. 

McCutchen described the articular cartilage as a bearing material that is deformable, porous and 

soaked with liquid [31]. Some of the major functions of articular cartilage are: distributing and 

transferring forces, and reducing joint friction during movement [20]. 
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Fig. 2.4. A: Sagittal section cut of the knee joint; B: anterior view of flexed knee joint; 

C: posterior view of knee joint with ligaments, adapted [9] 

 

The menisci are the two asymmetric, wedge-shaped, fibrocartilaginous discs separating 

the tibia and the femur, as seen on Fig. 2.4 [32]. The lateral meniscus has a circular shape and 

moves freely in the joint because it is only loosely connected to its surroundings. The other part is 

the medial meniscus, which is C-shaped and, differently from the lateral meniscus, firmly attached 
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to its surrounding and has restricted movement [32]. When the joint is under load, the menisci 

increases the contact area due the deformation of the cartilage, thus distributing the forces 

transmitted through the knee. It is estimated that about 40 to 60% of the compressive load applied 

on the knee joint is supported by the menisci [32]. A study on the contact area and pressure 

distribution of the tibiofemoral joint reports that, at a load of 1000 N, the menisci occupy around 

70% of the total contact area of knee, and hold peak pressures of up to 3 MPa [33]. They also 

absorb shock and protect the articular cartilage from excessive concentrated loads, preserving it 

from being damaged, and cover  about 70% of the knee joint contact area [33,34]. . 

2.1.3. Lubrication mechanisms of the knee joint 

The excellent friction and wear properties of a healthy knee joint result primarily from 

the actuation of the lubrication mechanisms [10,35]. A variety of lubrication processes have been 

described and indicated to play a role in the synovial joints, but they are mutually exclusive and 

have their basics on the two fundamental mechanisms of lubrication in engineering: boundary 

lubrication and fluid-film lubrication. Boundary lubrication happens when there is a lubricant film 

between the rubbing surfaces, but it is not sufficiently thick to prevent asperities contact through 

the film [23]. It depends on chemical properties as it is constituted of a boundary lubricant that, by 

molecular forces, attaches itself strongly to the solid surfaces [27]. Natural synovial joints, 

however, operate generally in a fluid film regime, where the two opposing surfaces are essentially 

separated by a fluid film [36–38].  

A full-fluid-film lubrication happens when the surfaces are completely separated by a 

film of fluid and is considered the most effective method [27,30]. One body “floats” on a film of 

fluid over the pairing surface, with a very low coefficient of friction. That happens by achieving a 

high enough pressure in the fluid so the surfaces can be fully apart. The full-fluid-film lubrication 
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may be a result of liquid being pumped from outside to sustain the load (hydrostatic lubrication), 

or a consequence of the internal pressure generated by the rolling and sliding motion of the surfaces 

and the viscosity of the fluid [27]. If that generated pressure is high enough to induce elastic 

deformation on the bearing solids, which in turn provides greater geometrical conformity and 

increases the thickness of the lubricating film, then we call that elastohydrodynamic lubrication 

(EHL) [39]. Synovial joints rely not only on elastohydrodynamic action, but also on 

microelastohydrodynamic lubrication (MEHL), where the micro and nano protuberances on the 

surfaces of the soft bearings are partially flattened elastically by local hydrodynamic action as the 

load is distributed in the articulating joint [40,41]. A special case of hydrodynamic lubrication is 

the squeeze film, where the film remains for a certain amount of time after relative motion of the 

contact surfaces has stopped [9].  

Weeping lubrication is a very important lubrication regime considered in this study. It 

was proposed by McCutchen in the early 1960’s to support the idea that the interstitial fluid of the 

cartilage is responsible for its load bearing properties [31]. He described the articular cartilage as 

a bearing material that is deformable, porous and soaked with water. According to McCutchen’s 

definition of weeping lubrication, when the cartilage is pressed, it releases the fluid from its 

structure through its pores to the interface, which in turn provides a fluid film support to the joint. 

As the essential element in the lubrication mechanisms of the knee joint, synovial fluid 

is a natural lubricant that provides low friction and low wear in cartilage surfaces. It is a non-

Newtonian fluid that has its viscosity effectively reduced as shear rate increases [27]. The key for 

synovial fluid’s remarkable lubrication properties lies on the contributions of its organic 

constituents: proteoglycan 4 (PRG4, also known as lubricin), hyaluronic acid (HA), and surface-

active phospholipids (SAPL) [35,42,43]. The fluid’s viscosity appears to be governed by the 
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presence of HA, with the viscosity increasing almost linearly with acid concentration. It is also 

known that healthy joints present a more viscous synovial fluid [23,44]. Besides the organic 

components, albumin, a globular protein, is the most abundant protein in synovial fluid [45]. 

However, it is not crucial for boundary lubrication, but it has been found to decrease the wear rate 

of UHMWPE used in artificial joints [46,47]. When injured or in the presence of joint diseases, 

such as osteoarthritis and rheumatoid arthritis, the chemical environment in the joint may change, 

which affects cells and the secretion of the lubricant molecules by them (PRG4, HA and SAPL) 

[48]. 

2.2. Meniscus injuries and treatments 

Persistent pain is usually the most important factor that motivate people to receive an 

artificial joint implant. Decreased range of motion is another symptom that limits patients from 

living a normal life. Artificial joints have been used since early nineteenth century, when infections 

were the most common cause of failure, and very frequently fatal [49]. It was not until the mid-

twentieth century that artificial joints surgical procedures started to get more predictable and yield 

long lasting results. Fortunately, science and medicine have evolved to a much more reliable stage, 

bringing numerous different types of artificial implants in the market, covering hips, knees, 

intervertebral discs, etc. 

Although artificial knees were developed concomitantly with hip joints, they were less 

successful. Inadequate surgical procedure technique was the cause for the poor results, only in the 

mid-1980s contemporary principles of mechanical axis balance and the concern with joint stability 

emerged [49]. Early in the 1970s, it was popularized the first metal-on-polyethylene condylar total 

knee replacement implant, completely replacing the femoral and tibial articulating surfaces [50].  
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The replacement the entire joint became common practice among patients with 

persistent pain due to degenerative arthritis. Figure 2.5 shows the great increase of cases treated 

by total knee replacement between 2000 and 2010 [51]. 

 

Fig. 2.5. Total knee replacement among inpatients aged 45 and over, by sex and age group: 

United States, 2000 and 2010 [51]. 

When it comes to meniscus, historically, it was believed for many years that the menisci 

were vestigial remnants of leg muscles, and that their removal (total meniscectomy) was 

considered beneficial in cases of torn meniscus treatment because of the instantaneous 

disappearance of impairment and pain. [2,52]. The importance of the meniscus in load bearing and 

distribution was only elucidated around the 1970s and 1980s, when studies showed that the contact 

stresses on the tibial plateau increased proportionally with the amount of meniscus tissue removed 

[53,54].  
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In general, approximately 85% of the cases of meniscal tears require surgical 

intervention compared to other knee-related injuries [17]. Depending on the case, meniscus tears 

may be more or less difficult to treat. Sutures, staples, and anchors are repairing strategies that tend 

to preserve the tissue, but that only successfully heal the torn meniscus if the damage is located in 

the vascularized region [55]. Otherwise, lesions are irreversible and patients are recommended to 

undergo partial meniscectomy, which consists in removing the affected region of the meniscus. 

However, the partial loss of the meniscus lead to degenerative arthritis because of cartilage 

unbalanced load distribution [4]. That results in post-meniscectomy pain and further medical 

intervention. Patients younger than about 50 years old are usually suggested to remain under more 

conservative approaches, such as medication, injection of HA, knee brace, physical therapy, 

limitation of physical activities, or undergo another partial meniscectomy (sometimes followed by 

other meniscectomies) [18]. In more severe cases, or in a more advanced age, a meniscal substitute 

is indicated. 

Nowadays, meniscus replacement is still considered an unsolved problem in orthopedics 

[18]. The current treatment for symptomatic post-meniscectomy patients is a meniscal allograft 

transplantation. Although it relieves pain and improves knee function, the procedure is not only 

risky, involving probability of disease transmission, but it is also of difficult availability. It is hard 

to find allografts with appropriate sizing of the recipient: oversized allografts can increase the 

forces across the articular joint, and undersized can lead to excessive load and poor congruity with 

the bones [3,18,56]. Furthermore, another drawback is that allograft meniscus undergo remodeling 

after being implanted, which causes shrinkage of the implant and impacts the joint’s mechanical 

strength [3,18]. Biodegradable options exist, polymeric synthetic and natural prostheses are made 

of temporary scaffolds that gradually degrade in the body, giving place to a newly formed tissue. 
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However, that path may be limited due to the absence of durability associated with most of the 

biodegradable materials when in vivo conditions and unpredictable variability of body response to 

the implant [57]. Besides, there is little evidence about its effectiveness, or whether a meniscus 

allograft would reduce the risk of osteoarthritis progress [58,59]. The table below summarizes the 

current alternatives for treatment of meniscus injuries, from conservative approaches to invasive 

choices being practiced around the world. 

Table 2.1. Knee meniscus treatment alternatives. 

 Available meniscus 

injury treatments 

Description 

N
o
n

-i
n

v
a
si

v
e 

/ 
m

in
im

a
ll

y
 i

n
v
a
si

v
e
 

Physical therapy 

An alternative to decrease swelling and relief pain, it is 

commonly combined with compression and pain 

medication. Physical therapy works on strengthening the 

knee and leg muscle to improve patient’s mobility. It 

reliefs the pain but it doesn’t heal the injury. 

Injections 
Cortisone and hyaluronic acid injections help reduce 

inflammation by improving the knee joint lubrication. 

This is also a temporary relief. 

Stem-cell therapy 

Injection of patient’s own stem cells into the knee joint, 

where they differentiate and may help healing the 

meniscus. This treatment is costly and still considered 

experimental, there is no long-term understanding of its 

effects. 

S
u

rg
ic

a
l 

Meniscectomy 

Removal of injured part of the meniscus. This is a very 

common procedure, but that leads to maldistribution of 

the pressure on the knee joint. Consequently, further 

degeneration of cartilage happens, causing osteoarthritis, 

pain and discomfort. That is the cause of future 

meniscectomies and ultimately a total meniscus removal, 

asking for more radical treatment options. 

Meniscus allograft 

Transplantation of part of the meniscus from a donor. 

Associated with risks of infections and rejection of the 

transplant, and is also very difficult to find a matching 

option.  

Partial meniscus implant There are currently two options for partial meniscus 

substitutes. The Menaflex®, or Collagen Meniscus 
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Implant (CMI) is a porous scaffold made of fibers from 

bovine Achilles tendon collagen [60]. The Actifit® is 

also a porous scaffold, but made of synthetic 

polyurethanes with semi-degradable stiff segments and 

biodegradable polyester [61]. Both Menaflex® and 

Actifit® were designed to promote tissue growth and 

regeneration and stimulate healing the meniscus tissue 

[60]. There are not enough evidences of their efficacy and 

the FDA has not cleared either option, although they have 

received CE marking in some parts of Europe. 

Total knee replacement 

This is the most radical approach, since it replaces the 

entire knee joint with an artificial joint. Usually made of 

two articulating surfaces of titanium and Co-Cr, attached 

to the bones, and an UHMWPE spacer between them. 

Although this has been a common procedure for decades, 

it fails mainly due to wear of the polyethylene, inducing 

osteoarthritis [62].  

Artificial total meniscus 

implant 

A molded polycarbonate urethane total meniscus implant 

was developed in the last decade. Its structure is made of 

a PCU matrix and UHMWPE fibers and resembles the 

natural joint, that has a solid matrix and oriented collagen 

fibers [18]. It has been under clinical trials in the U.S. and 

received CE marking in Europe. 

 

Recently, a synthetic non-anchored medial meniscus implant has become an alternative 

to those middle-aged patients to delay more aggressive treatments. The NUsurface® meniscus 

implant (Active Implants Cop., Memphis, TN) is a free-floating PCU meniscal implant, reinforced 

circumferentially with UHMWPE fibers, and currently under clinical trials in the United States. 

Its design was optimized with finite element modeling of the material and the resultant contact 

mechanics on the tibial articular cartilage [7]. Its structure, composed of a PCU matrix with 

surrounding polyethylene fibers, aims to mimic functionality and structural components of the 

natural meniscus, made of a sound matrix with highly oriented collagen fibers [63,64]. 
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Fig. 2.6. NUsurface® Meniscus Implant [18]. 

The NUsurface® has shown potential safe use in animal models, matching cartilage 

condition with control joints for up to six months after implantation [65]. Good load transfer and 

distribution capabilities were observed in vitro using human cadaveric knees [66]. Figure 2.7 

shows the medial (M) and lateral (L) tibial plateau in different conditions: upper left is the natural 

state, partial of meniscectomy of the medial meniscus on the upper right, another meniscectomy 

of the medial (subtotal) in the lower right, and following implantation of NUsurface® in the lower 

left [18]. A follow-up study of 3 patients implanted with the NUsurface® implant reported that the 

knee preserved its static kinematic properties after surgery [67].  
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Fig. 2.7. Pressure distribution maps in the meniscus after meniscectomy and following 

NUsurface® implantation [18]. 

PCU is a polymer that has emerged as a result of the interest, within the biomedical 

industry, in developing biocompatible, biostable, synthetic materials for the replacement of soft 

load-bearing tissues, like meniscus, articular cartilage, and intervertebral disc. As an individual 

ages, those tissues tend to degenerate, significantly impairing their lives [68,69]. Thus, finding a 

synthetic material that resembles cartilage in terms of mechanical properties and wear resistance 

is of high importance. Below are reported the moduli of elasticity of different materials that have 

been studied for human bearing applications, compared to that of natural cartilage of the knee. 
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Table 2.2. Materials used in human bearings applications. Adapted from Miller [70]. 

Material Modulus of elasticity (MPa) 

Co-Cr alloys 200,000-253,000 

Titanium alloys 110,000-115,000 

Stainless steel (316) 190,000-200,000 

UHMWPE 800-1,600 

PCU (75A-95A) 12-42 

PDMS 3 

Articular cartilage 2-45 

 

Molded UHMWPE has been commonly used for joints implants for many years. In the 

case of total knee joint replacement, since the mid twentieth century, with improvements being 

made throughout the years [71]. However, despite the efforts, it ultimately results in releasing wear 

debris, causing premature failure of the implant. Although UHMWPE is biocompatible in its bulk 

form, wear debris from the polymer has been found to trigger osteolysis in surrounding tissues, 

which leads to implant loosening and eventual implant replacement surgery [72]. Furthermore, the 

rigid and solid nature of the mold hinders joint’s native lubrication mechanisms. Therefore, 

research has aimed the direction of more compliant materials that not only have mechanical 

properties like articular cartilage, but that would also stimulate lubrication and have a more 

realistic load distribution in the joint. The biggest concern among clinicians is the wear behavior 

of any new or novel bearing material. Their target is to have wear debris minimized and therefore 

prevent osteolytic lesions of artificial implants [73]. 

A study has found that the elastomeric polyurethane Pellethane® 236380A can achieve 

lower wear rates than UHMWPE in a simulated in vivo wear environment [74]. They reported the 

reason for the higher wear resistance to be due to the compliance of the elastomer and its ability 

to conform to the geometry of the counterface, causing reduction in contact pressure. Other soft 

polymers have been investigated for implant materials. Silicone (PDMS), for instance, was 
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considered potentially suitable for artificial replacement of joints until the late 1990’s, until it was 

found to fail due to different reasons, including fracture, compressive deformation, inflammation, 

and foreign body response. The table below  

2.3. Fused Deposition Modeling  

In the past few decades, additive manufacturing has introduced a nearly complexity –

free and highly customizable era into the manufacturing industry [75]. Since the advent of the first 

method, Selective Laser Sintering, several other technologies have been developed, expanding 

materials usage flexibility and enabling increasingly competitiveness in that market. Among the 

seven types of additive manufacturing methods, fused deposition modeling, or FDM, is probably 

the most diffused kind due to its accessibility and ease of use. Developed and patented by Stratasys 

(Eden Prairie, MN) more than 20 years ago, this technology is relatively simple and affordable 

when compared to other additive manufacturing processes, characteristics that have taken FDM 

beyond conventional industry’s boundaries [76]. FDM’s versatility to fabricate prototypes, tooling 

accessories, and functional parts straight from a virtual model and its capability of realizing those 

parts without geometrical complexity limitations have enabled increasing popularity in a wide 

array of fields [77]. In the biomedical field, FDM have contributed to a variety of applications, 

such as tissue engineering, implant fabrication, dental solutions, drug release, and medical 

equipment fabrication [78–82].  

FDM technology working principles rely especially on thermodynamics and mechanics 

of materials: it works by heating up a thermoplastic filament to make it malleable and extrude it 

through a nozzle, which in turn, deposits the solidifying polymer layer-by-layer on a tray or base 

member (also called print bed) [83]. To promote attachment, the print bed can be heated. The 

bonding between layers is promoted by the diffusion bonding mechanism, driven by the thermal 
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energy of semi-molten material [84]. The movement of the dispensing head relative to the base 

follows a predetermined pattern along the axes (“x”, “y”, and “z”) in rectangular coordinates. 

When the first layer is finished, the print bed is lowered by a fixed distance (i.e., the thickness of 

a single layer), and a second layer can be printed on top of the original one. By repeating these 

steps, an object is created in an additive manner. 

The 3D object is designed digitally using a computer-aided design (CAD) software and 

converted into multiple-layer data, known as G-code, by a commercially available software. Then, 

it is imported through drive signals into a computer-aided machine controller to the drive motors.  

 

Fig. 2.8. FDM original schematic [83] 

 

The material is provided in the form of a spooled filament and is fed into a liquefier 

head through the use of computer-driven counter-rotating rollers [85]. The head is maintained at a 

certain temperature in order to soften and melt the filament just above its melting point. The head 
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is computer-controlled to move in the horizontal plane, while the build platform supplies the 

vertical motion. The deposited material, in the form of a thread, lays down on the bed, and was 

referred to as “road” when related to Stratasys first FDM machines [86]. The extrusion and 

deposition processes utilize as principle a constant volumetric displacement profile. Thus, material 

flow rate, which is controlled by the speed of counter-rotating rollers, determines the dimensions 

of the deposited “roads” [87].  

According to Mukesh K. Agarwala et al., FDM process parameters can be categorized 

into four types: operation specific parameters, machine specific parameters, materials specific 

parameters, and geometry specific parameters [86]. The table below lists the process variables into 

those four categories. Parameters are interdependent and should be considered together when 

planning a print. 

Table 2.3. FDM process variables, adapted from [86]. 

Operation Specific Machine specific Materials specific Geometry specific 

Slice thickness Nozzle diameter Powder characteristic Fill vector length 

Road width Filament feed rate Viscosity Support structure 

Head speed Roller speed Stiffness  

Extrusion temperature Flow rate Flexibility  

Fill pattern Filament diameter Thermal Conductivity  
 

Operation specific parameters are the ones defined in the steps prior to printing; they 

are crucial to the build good quality and depend on what is chosen by the user in the slicing phase. 

Road width and thickness, as well as the print-head speed, define the flow rate of the material to 

be extruded out of the nozzle. On the other hand, resolution of the deposited material is dependent 

on the distance of the nozzle to the bed. In other words, the thickness of the thread (usually between 

0.1 and 0.3 mm) is controlled by two factors: the distance between the nozzle and the print bed 

and the ratio between the flow rate of the filament through the nozzle and the printing speed [88]. 
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Originally limited to proprietary materials when released, FDM technology now 

supports a much broader list of materials. However, they should have low melting temperatures 

and rapidly solidify with minimum residue stress or distortion upon adhering to the previous layer 

[83,89]. Viscosity of the material at the extruding temperature should be high enough to form well-

defined “roads” but, at the same time, low enough to allow proper extruding through the nozzle. 

Thermoplastics have been the material of choice for FDM, with the most common being 

acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polylactide (PLA), polyamide (PA), 

and the combination of any two different thermoplastic materials [90–92]. Functional agents, 

namely metal particles, carbon nanotubes, and graphene, are often blended with thermoplastics for 

tailoring properties that enhance the resulting material’s performance [93]. 

Recently, 3D printing of PCU has been accomplished by Miller et al., who have 

explored mechanical properties of the printed structures, particularly focusing on fatigue and cyclic 

efforts [94]. Besides that, they also studied how the printed architecture affects the mechanical 

properties and fatigue performance of polyurethanes [70]. It was found that PCU, under cyclic 

compression tests, present superior energy dissipation capability compared to other tested soft 

polymers (silicone and acrylate), and that mechanism was found to be enough for PCU to 

outperform and resist fatigue fracture. Furthermore, it was observed that 3D printed samples 

matched or exceeded injection molded samples in terms of monotonic tension, compression, shear, 

and tensile fatigue. By comparing different printing internal structure architectures (or print infill 

geometries) they also concluded that the fatigue performance of PCU is not significantly affected 

by the inclusion of such architectures, as opposed to stiffer materials. That is attributed to the 

versatility and compliance of soft polyurethanes, and reinforces the benefits of using 3D printed 

PCU for artificial meniscus implants.  
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Rocha et al. emphasized the scarcity of studies about printable polymer blends in 

literature, and developed an ABS-based polymeric blend containing ABS, UHMWPE, and a 

compatibilizer, styrene ethylene butadiene styrene (SEBS) [95]. They fabricated different weight 

concentrations of the blend, performed tensile tests and measured roughness of printed surfaces. 

More importantly, they demonstrated the ability of creating printable polymeric blends that can 

tailor physical properties and be customized for a given application. ABS was also used by Torrado 

et al. as matrix for polymeric blends and composites [96]. Recently, efforts in fabricating 

UHMWPE-based 3D printing filament have been made by Ansari et al., who used hydroxyapatite 

as a filler to reduce UHMWPE viscosity [97]. Despite the successful 3D printing of ABS polymeric 

blends as well as PCU and other thermoplastic urethanes, there is no reported literature about using 

FDM to 3D print blends of UHMWPE and PCU. This work presents the fabrication of novel 

PCU/UHMWPE polymeric blends for FDM 3D printing and explores their tribological 

performance for knee joint applications.  
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 Chapter 3 – EXPERIMENTAL METHODS  

3.1. Sample fabrication 

3.1.1. Filament fabrication 

Polycarbonate urethane was acquired in the form of resin pellets from two vendors: 

Bionate II 90A from DSM (Exton, PA), and Chronoflex C 93A from AdvanSource Biomaterials 

(Wilmington, MA, USA). A biocompatible grade of UHMWPE pellets was purchased from Ticona 

Polymers Ltd (Florence, KY), and blended with each type of PCU in 5 and 10, and 15% weight 

concentrations. It has been found that the addition of 10% wt. of UHMWPE into PCU may improve 

the wear resistance of the matrix, as well as that performance can be significantly reduced  by 

increasing the concentration of UHMWPE to 20% wt. [98]. 

Preliminary studies were done with Ninjaflex (Ninjatek, Manheim, PA), Bionate and 

Chronoflex to find the best set of print parameters, and the advantages and difficulties in the 

processing and testing each of them. In that preparatory phase, all the mentioned concentrations of 

UHMWPE were used (5, 10, and 15% wt.) to blend into Bionate and Chronoflex and investigate 

if it was possible to carry out 3D printing with UHMWPE considering it cannot be extruded using 

conventional extrusion methods. Ninjaflex filament, on the other hand, was obtained to investigate 

the best parameters and configurations during 3D printing. Although it is also another kind of 

thermoplastic urethane, that polymer is not appropriate for biomedical application, but only for 

household used.  

Further investigation and characterization were conducted with Chronoflex and 

UHMWPE, in which 3D printed, as well as compression molded samples were analyzed more in 

depth than the preliminary study previously mentioned. For that, pure Chronoflex (CF) samples 

were both molded and 3D printed, while UHMWPE was only compression molded since it cannot 
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be 3D printed. The nearly zero melt-flow index of UHMWPE makes it not suitable for extrusion-

based processes [99,100]. The 10% wt. of UHMWPE in PCU (PCU/UHMWPE blend) was chosen 

based on results found in literature [98], and considering that the extrusion of that concentration 

presented fairly consistent results, different from concentrations above 10%. 

In order to minimize the moisture content, all the resins were subject to a drying process 

in a vacuum oven (Fisher Isotemp Vacuum Oven Model 282) for 10-13 hours at 100 C. When 

moisture is present in the material to be extruded, the filament produced is not continuous, causing, 

bubbles, gaps and air voids throughout the filament, which are defects that can be carried through 

the 3D printing [101]. For the same reason, the pellets, filaments, and the 3D printed samples were 

maintained in a nitrogen desiccator at all moments when not in use. 

The following table shows the types of blends and their respective identification names 

used as reference in this research. 

Table 3.1. PCU (Chronoflex and Bionate) and UHMWPE blends. 

Polymer 

Base 
Sample ID PCU wt. % 

UHMWPE 

wt.% 

Filament 

Extrusion 

Temperature 

C
h

ro
n

o
fl

ex
 

CF0 100 0 
183 C 

CF5 95 5 

CF10 90 10 
187 C 

CF15 85 15 

CFm 100 0 183 C 

B
io

n
a
te

 BN0 100 0 
186 C 

BN5 95 5 

BN10 90 10 
190 C 

BN15 85 15 

UHMWPE UHMWPEm 0 100 N/A 
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Filament fabrication process was carried out using a Filabot EX2 (Filabot, Barre, VT), 

a single-screw desktop filament extruder and following manufacturers’ suggestions of processing 

temperature range. Table 3.1 summarizes the temperatures used to extrude the 2.85 mm filaments. 

To promote cooling, a fan was placed 50 cm from the extruder nozzle. Figure 3.1 shows the Filabot 

EX2 extruding a segment of filament. 

 

Fig. 3.1. (A) Filabot EX2 used to fabricated the filaments for 3D printing. (B) Schematic 

showing the internal part of a single screw filament extruder [102]. 
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3.1.2. 3D printing 

An FDM 3D printer, was used to fabricate the samples: a Lulzbot TAZ 6 with a 

FlexyDually V2 print head (both from Aleph Objects, Inc., Loveland, CO), customized with a 0.25 

mm brass nozzle (E3D, Oxfordshire, United Kingdom). Ninjaflex filament was used to investigate 

the best set of 3D printing parameters that produced the best processing performance and sample 

quality. 

 

Fig. 3.2. (A) Lulzbot TAZ 6 printing a sample and (B) a closeup image of its nozzle. 

 

All samples were printed on a polyetherimide print bed at 50 C and with the nozzle 

temperature set at 225 – 235 C. Print infill had 100% density using a 0.125 mm layer height, and 

following a rectilinear pattern, which was explored in the preliminary study. Speed throughout the 

print job was 20 mm/s, while a reduced speed of 15 mm/s was maintained for the bottom and top 

4 layers to ensure an improved surface finish. The FDM samples were designed using Solidworks 

and measured 32 mm × 32 mm × 3 mm. Cura, a 3D model to toolpath slicer software for Lulzbot, 

was used to slice the models and generate the G-code. The bottom of the 3D printed samples that 

is in contact with the print bed was used for tribology tests because of its smoother surface. 
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Compression molded samples had a diameter of 38 mm and a thickness of 5.3-5.4 mm and were 

not subject to any surface treatment after molding. 

3.2. Sample characterization 

The following set of characterization measurements was performed along with the in-

depth study. Therefore, their description does not apply for the preliminary study. 

A laser scanning confocal microscope (LSCM, VK-X260K, Keyence, USA) was used 

to measure the average surface roughness (Sa) and root mean square roughness (Sq), and to 

visualize the wear tracks after the tribology tests. Analysis and measurement of wear track depth 

and cross-sectional area were performed with Keyence’s Multi-File Analyzer software.  

X-ray diffraction (XRD) measurements were performed on clean samples to examine 

the crystallinity after blending and fabrication. These measurements were carried out using a 

PW3040 X’Pert-MPD (Philips, Holland) diffractometer with Cu Kα-radiation, λ = 0.15418 nm, in 

Bragg–Brentano geometry [103].  

A video-based contact angle measurement system (OCA 15 plus, DataPhysics 

Instruments GmbH, Germany) was used to measure the water contact angles (WCAs) of the 

samples through the sessile drop method. Three measurements were taken across the surface of 

each sample using de-ionized water droplets of 3 µL. An average of left and right contact angle 

was calculated for each of the measurements. 

Absorption tests were conducted by immersing samples in a 30 vol. % solution of 

bovine serum in water, refrigerated at 4-6 ºC. The samples were dried in a vacuum oven at 100 ºC 

for 10-12 hours prior to the procedure. They were then subject to complete submersion for 24 

hours, during which they had their weight checked at 10, 20 and 40 minutes, and every hour for 

the first 6 hours, followed by checkpoints at 12 and 24 hours. At each inspection, samples were 
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removed from media, blotted dry, and immediately weighted on a precision balance (GD-503-

NTEP, Sartorius, Germany). 

To observe the internal structure of the 3D printed samples, microtome technique 

(IsoMet Low Speed Saw, Buehler, Lake Bluff, IL) was used for cutting and scanning electron 

microscopy (SEM; model XL-30, Phillips/FEI, Hillsboro, OR) was used for visualizing the cross-

sectional area. 

3.3. Tribological testing 

A Universal Mechanical Tester (UMT-2, Bruker Corporation, San Jose, CA, USA) was 

used to perform the tribological tests. The machine measures simultaneously frictional forces and 

normal loads, and for this experiment, it was equipped with a temperature controlled chamber, 

where a custom lubricant and sample holder were assembled and maintained. A variety of 

rotational oscillating tests was performed, varying the sample analyzed, duration of the test, 

lubricant, applied load, counterface, and oscillation angle. An oscillation angle between 32.4 and 

39 and a speed of approximately 7.33 mm/sec were maintained, while the temperature chamber 

preserved the environment at 37° C. Three series of friction tests were performed using different 

materials:  

1- Ninjaflex and 6.35 mm S3N4 balls;  

2- 3D printed Bionate and Chronoflex (two PCU types), 3D printed PCU/UHMWPE 

blend, and 6.35 mm S3N4 balls; 

3- Molded Chronoflex, UHMWPE, and 9.5 mm S3N4 balls. 
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Fig.3.3. Schematic of rotational oscillating test. Stage has sample attached and rotates at a 

specific speed. The load is applied by the counterface, which stays constant. 

 

A first set of tests was conducted on samples made of Ninjaflex with the objective of 

evaluating the coefficient of friction of 3D printed samples using two orientations. The rectilinear 

pattern was adopted, but the samples were placed in different positions relative to the pattern 

followed by the printer algorithm. A photo of the samples can be seen in Fig. 3.4. These friction 

tests lasted for 30 minutes and the samples were subject to 2N and 5N loads in each test, applied 

by a 6.35 mm silicon nitride ball. Contact pressures generated were 1.9 MPa and 2.6 MPa, 

calculated with properties supplied by the manufacturer and from a study made by a research group 

in Finland [104,105]. The loads were chosen to create stresses within the range that is transferred 

to the meniscus, reported on literature [33]. Only one sample of each kind was tested. Medium was 

deionized water at 37 °C and oscillation angle was 39°.  
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Fig. 3.4. Schematic and photo illustrating the two different printing orientations adopted in the 

preliminary study. 

 

Upon choosing the print orientation, a second series of preliminary tests was conducted, 

now using Chronoflex and Bionate, as well as their blends with UHMWPE. The goal was to 

compare the performances of both types of PCU throughout the entire fabrication process, until 

evaluation of friction tests. Counterface was a Si3N4 ball with 6.35 mm diameter and loads of 2 

and 5 N were applied for a total duration of 2 hours, resulting in contact pressures of 1.7 and 2.4 

MPa, respectively. 

As a preliminary set of tests, these were run only once per each type of sample under 

the each of tested loads. From this point on, the knee joint environment was replicated by testing 

the sample immersed in a 30 vol. % solution of bovine serum in water, which was prepared by 

stirring the solution on a magnetic plate for 5 min at 500 RPM.  

For the in-depth study, 3D printed and molded samples were subject to 8-hour long 

tests, rubbing against a 9.5 mm Si3N4 ball. A normal load of 11.5 N was applied, which generated 

a maximum contact pressure of 45.2 MPa on the molded UHMWPE. That is about twice the 

recommended initial peak Hertzian contact pressure according to ASTM F732 for standard test 

method for total joint prostheses [106,107]. The same normal load was applied on pure PCU and 
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the 3D printed blended samples, which resulted in a maximum Hertzian contact pressure of 2.4 

MPa for the former. 

Prior to undergoing any characterization and tribological experiments, the samples were 

cleaned according to the cleaning procedure described on Annex 1 of ASTM 2025. Table 3 shows 

the details for the friction tests, and Fig. 3.5 shows the UMT-2 in a detailed image of the 

experimental setup, with a 3D printed sample clamped in the sample holder.  

Table 3.2. Tribological experiment details relative to preliminary tests with Bionate and 

Chronoflex, as well as in-depth investigation. 

Material 

Ball 

Diameter 

(mm) 

Load 

(N) 

Max. 

Hertzian 

Contact 

Pressure 

(MPa)  

Max. 

Hertzian 

Contact 

Pressure 

(MPa) 

ASTM 

F732 

Rotational 

Speed 

(RPM) 

Equivalent 

Linear 

Speed 

(mm/sec) 

Oscillat

ion 

Angle  

Temper

ature 

PCU 
6.35 

2 1.7 

29-36 10 7.33 36 ° 37 °C 

5 2.4 

9.5 11.5 2.4 

UHMWPE 
6.35 

2 33 

5 44.8 

9.5 11.5 45.2 

 

 

 

Fig. 3.5. Tribological experiment setup: Sample immersed in bovine serum solution in UMT-2 

chamber (370 C). 
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3.4. Statistical analysis  

The results were statistically analyzed using un-paired, two-tailed Student’s t-test with 

p ≤ 0.05 as threshold for significant differences between groups. All experiments from the in-depth 

study were performed at least 3 times. Figures in the results were judged the best representative of 

all samples, and all graphs represent averaged results of experiments run on all the samples, when 

applicable. 
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 Chapter 4 – RESULTS AND DISCUSSION  

4.1. Preliminary study 

Figure 4.1 shows the results of the study run on Ninjaflex to understand whether print 

orientation affected tribological properties of the 3D printed samples. Only the curve representing 

Ninjaflex printed at 90° under 5N load appears to approach stabilization within the first 30 minutes 

of testing. Between the 2N tests, the result of the same sample, NF90, also showed a curve that 

had a smaller inclination, and therefore reaching a steady state faster than NF45. Thus, a 90° print 

orientation was used for the following 3D printed samples. 

 

Fig. 4.1. COF curves for 2 and 5N friction tests on Ninjaflex printed with different orientations. 

 

The 2-hour friction tests results are summarized on fig. 4.2, which shows the average 

COF of each sample under 2 and 5 N loads. The biggest take away here is that it is feasible to 3D 

print PCU with small quantities of UHMWPE, despite the nearly zero melt flow index of 

UHMWPE. Extrusion became less consistent as the UHMWPE quantity increased and the flow 

rate fluctuated considerably with the 15% wt. blends. 



37 
 

In general, Bionate samples presented a higher COF compared to Chronoflex with the 

same UHMWPE concentration and under the same testing conditions. Furthermore, it is noticeable 

that friction seems to decrease with the addition of UHMWPE, reinforcing the hypothesis that 

UHMWPE helps supporting the load because of its strength. It was decided to pursue the next 

steps using only Chronoflex and the 10% blend of PCU/UHMWPE due to its better performance 

and results from the sample fabrication process. The extrusion of the blends got more difficult as 

the content of polyethylene was increased. The 10% blend of Chronoflex and UHMWPE produced 

samples with consistent appearance as the extrusion difficulty didn’t seem to affect the print 

performance, which was observed on the 15% blends. In addition, it has been found that the 

addition of 10% wt. of UHMWPE into PCU may improve the wear resistance of the matrix, as 

well as that performance can be significantly reduced  by increasing the concentration of 

UHMWPE to 20% wt. [98]. 

For these tests, the samples and the balls were observed with the laser scanning 

microscope, but little to no wear was detected. The surfaces of the samples showed negligible wear 

deformation considering the natural roughness and waviness of the 3D printed surfaces. Another 

positive result was that the counterface, the silicon nitride balls, showed clear formation of fluid 

film. Figure 4.3 pictures two of the balls, imaged with the LSCM right after testing.  
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Fig. 4.2. Average COF of 3D printed Bionate and Chronoflex in the preliminary study. 

 

It has been stated by literature that fluid film lubrication is part of the natural lubrication 

mechanisms of synovial joints [108,109]. Furthermore, it has been shown that silicon nitride balls 

tend to promote fluid film lubrication on polyethylene surfaces and carry a recurrent transition 

from fluid-film lubrication to boundary lubrication [110]. Although these results are encouraging, 

the lack of wear marks may be attributed to the short duration of the tests. Therefore, for the 

following friction tests, it was decided to run the tests for 8 hours, and well as to apply heavier 

loads to push the materials closer to their limits, accelerating the occurrence of wear mechanisms. 
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Fig. 4.3. Surface of silicon nitride ball imaged immediately after friction test shows formation of 

lubricant film. 

4.2. In-depth study: Chronoflex and UHMWPE 

Here are described the results related to the more comprehensive study of Chronoflex 

and UHMWPE, including molded and 3D printed parts. 

 

Fig. 4.4. Photos of the fabricated samples: (A) CF0, (B) CF10, (C) CFm, and (D) UHMWPEm. 

4.2.1. Surface characterization  

Laser scanning microscopy of the sample surfaces 

Sample surfaces utilized for the friction tests can be seen on Fig. 4.4. Measurements 

taken with the laser scanning microscope, average surface roughness (Sa) and root mean square 

roughness (Sq), are summarized in Table 4. The microscope images of CF0 and CF10 show 

directional lines and voids, features that are inherent to 3D printing. Due to the molded surfaces 
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not have been polished, some marks are also observed on the molded samples, CFm and 

UHMWPEm. Despite the defects, molded samples still presented a lower surface roughness. 

The blended 3D printed sample (CF10) showed the highest roughness (2.5 ± 0.4 µm), 

while the molded UHMWPE had the lowest roughness (1.1 ± 0.1 µm). The blended polymers were 

found to be not trivial to get filament fabricated and samples 3D printed, as compared to using 

only PCU. Occasional speed reductions and slightly inconsistent flow rates were observed during 

extrusion of CF10. Those may have resulted in higher roughness, which is, however, within the 

range of natural cartilage (2-5 µm) [111]. Besides, and most importantly, molded and 3D printed 

PCU showed comparable and lower surface roughness (CF0 1.5 ± 0.1 µm, and CFm 1.4 ± 0.1 µm). 

 

 

Fig. 4.5. Images of surfaces used for friction tests captured with laser scanning microscope. (A) 

CF0, (B) CF10, (C) CFm, and (D) UHMWPEm. 

 

Table 4.1. Sample surface roughness. 

Roughness CF0 CF10 CFm UHMWPEm 

Sa (µm) 1.5 ± 0.1 2.5 ± 0.4 1.4 ± 0.1 1.1 ± 0.1 

Sq (µm) 2.2 ± 0.3 4.1 ± 0.4 1.8 ± 0.1 2.1 ± 0.4 
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Water contact angle 

Figure 4.5 shows that WCA of all four types of samples. No significant difference was 

found between the WCA of the samples. Furthermore, all the samples demonstrate a behavior with 

average WCAs less than 90.  

  

Fig. 4.6. Water contact angles of samples are found to be nearly the same. 

4.2.2. Material characterization 

Morphology of the sample internal structures 

Samples prepared using microtome cut revealed diverse cross-sectional morphologies 

among the samples. SEM images in Fig. 4.6 show porosities on the 3D printed samples (Fig. 4.6 

A and B) and micro/nano-scale roughness was found inside CF10 pores (Fig. 4.6 F). The 

micro/nano-sized structures that were observed inside some of those pores, are believed to be 

UHMWPE lamellae agglomerations that did not mix well to the PCU matrix. 
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It can be seen a higher concentration of pores on the CF10 sample surface (Fig. 4.6 B 

and F). Additionally, the pores on CF10 looked larger than the ones seen on CF0 cross-sectional 

area, vide Fig. 4.6 A and E. In short, 13.61% of CF10 cross-sectional area represented pores, while 

6.34% of CF0 was pores. No pore features are seen on the cross-sectional surfaces of molded PCU. 

On the other hand, molded UHMWPE cross-sectional area present scars from the microtome cut 

(Fig. 4.6 D). Figure 4.6 H represents a higher magnification image of the UHMWPE cross-

sectional surface, showing its microstructure, with non-spherical, entangled lamellae, typical of 

UHMWPE morphology [99,100,112]. 

 

Fig. 4.7. SEM images of the cross-sectional areas of the samples cut through microtome 

technique. A through D represent CF0, CF10, CFm and UHMWPEm, respectively. Images E 

through H follow the same order and show higher magnification images. 

XRD 

The XRD spectra of all types of samples are reproduced on fig. 4.7. Polycarbonate-

based thermoplastic urethanes have been found to have amorphous and partially crystalline 

structures [113]. From Fig. 4.7, we see that regardless the manufacturing method, the crystalline 

structures of PCU (CF0, CF10 and CFm) are consistent. It can also be seen that UHMWPE was 
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effectively added in CF10. The molded UHMWPE presented two peaks, around 2θ = 21.5° and 

24°, which agree with literature reporting UHMWPE crystalline diffraction peaks at the mentioned 

angles [1]. 

  

Fig. 4.8. XRD spectrum of composite sample (CF10) show the influence of adding UHMWPE in 

PCU with characteristic peaks from the crystallinity pattern of UHMWPE. 

 

Absorption test 

For the absorption tests, the samples were immersed in a solution of 30 vol. % bovine 

serum in water for durations ranging from 10 min to 24 hours. Figure 4.8 shows the absorption 

properties of all four types of samples. Different absorption capabilities were found among them, 

with that of the CF10 sample being the highest. The results are better comprehended considering 

the natural porosity of the 3D printed samples, they played an important role here. By depositing 
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the material layer by layer, and line-by-line, the FDM 3D printing fabrication method does not 

produce samples with a solid structure, although the printer was configured to deliver a 100% 

infill. This resulted in inherent micro-sized voids within the samples, which contributed to the 

increase of the capacity of fluid absorption of the already hydrophilic samples. As can be seen 

from Fig. 4.6, CF10 has the largest amount of porosity and the micro/nano-scale structures on the 

walls of the pores are believed to further enhance the sample’s absorption properties. Figure 4.8 A 

shows the weight continues to increase over time for all PCU samples while the weight of 

UHMWPEm stabilized after the first 4 hours of immersion. We can also observe the curve 

representing CFm has a lower increasing trend compared to the 3D printed PCU samples. 

 

Fig. 4.9. (A) Absorption tests results present increasing weight over 24-hours immersion in 

bovine serum. (B) Average weight gain after total immersion time shows increasing trend with 

increasing amount of porosity. 3D printed samples present overall higher absorption rates. 

In terms of the average weight gained after the 24-hour absorption period, Fig. 4.8 B, 

molded PCU (CFm) had an increment of about 0.9% from its original weight, which is in line with 

the value reported by the manufacturer (approximately 1%). Moreover, the 3D printed PCU 

samples resulted in up to 46.3% higher weight gain compared to the molded version of the same 

material (CF0). 
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4.2.3. Tribological testing and post-analysis 

Figure 4.9 A shows the sample COF change over the test duration. The COF of the 3D 

printed samples are similar (Fig. 4.9 A), both presenting a decreasing trend after the first 15,000 

seconds. The COF of molded PCU also tends to decrease but that behavior is observed throughout 

the entire test. UHMWPEm, however, yields a COF that stabilizes around halfway of testing. This 

trend differentiates from those of the PCU samples by having an increasing trend just before 

stabilizing. 

 

Fig. 4.10. COF of all four types of samples. (A) COF as a function of test duration. 3D printed 

samples showed higher COF but more steady curves. COF of CFm shows a decreasing trend. 

(B) Average COF for all samples. 3D printed samples showed higher COF than the molded 

samples. 

 

Figure 4.9 B shows the average COF of the samples. CF10 showed a slightly higher 

COF than CF0, which may be explained by the lower printing quality of the samples with the 

addition of UHMWPE, and consequently higher Sa and Sq, as shown in Table 4. Overall, the 3D 

printed samples generated a higher surface roughness which resulted in a greater average COF 

than the molded samples. Nevertheless, the COF profiles were stable over time and within the 

range cited by other published literature [3]. 
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Fig. 4.11. (A) Average wear track profiles show the disparities between molded UHMWPE and 

PCU samples. The wear depths of CF0 is much smaller than that of UHMWPEm wear track (B), 

even though cross-sectional areas are similar (C). 

The wear track was quantified with Keyence Multi-File Analyzer software, by 

comparing the wear track profiles, their depth, and cross-sectional area, as shown in Fig. 4.10. The 

deepest profile was found to be from the molded UHMWPE, and the shallowest, from the 3D 
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printed PCU (CF0). All samples have similar wear track appearance, as seen on Fig. 4.11. Their 

wear track profiles also have analogous shape, with same width, but different depths, vide Fig. 

4.10. In addition to the deepest wear track profile, UHMWPEm also produced sharp edges on the 

surface at the ridges of the wear tracks, common to plastic deformation, pitting and fatigue wear 

[114–116]. Those sharp ridges (Fig. 4.10 A) may cause local stress concentration, which could 

lead to further plastic deformation and ultimately cause detachment of UHMWPE particles due to 

fatigue wear.  

 

Fig. 4.12. Optical images of the wear tracks from laser scanning microscope. (A) CF0, (B) 

CF10, (C) CFm, and (D) UHMWPEm. 

 

Published works have shown that PCU not only yields a lower wear rate compared to 

UHMWPE, but also, in general, generates wear particles that are larger in size, and that are 

relatively less harmful to the joint [8,117]. Although phagocytosis of wear debris is size dependent, 
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a high concentration of submicron-sized particles induces significant level of secretion of bone 

resorbing factors [118]. Since the printed PCU (CF0) had a lower cross-section area of wear track 

than the molded PCU, the volume of the wear debris would be reduced as well. Hence, possible 

risks of adverse biological responses from the wear debris of CF0 is expected to be less compared 

to that of molded PCU. 

Contrary to what was expected, CF10 did not yield an improved wear performance. A 

study demonstrated lower wear rate by adding 10% wt. of UHMWPE powder in a thermoplastic 

polyurethane matrix [22]. However, the blend was fabricated via compression molding, while our 

method was FDM 3D printing. The crystallinity of the polymers was found to remain unaffected 

by the fabrication processes we adopted. The XRD profiles showed no significant difference 

between molded and 3D printed samples (Fig. 4.7). Yet, the high porosity area ratio may have 

impacted mechanical strength and resulted in a higher wear rate than that of CF0 [119]. 

In summary, the fabrication method has proven to be of considerable importance: 3D 

printed PCU samples resulted in 27% lower wear-track depth compared to molded PCU samples 

(p < 0.05). That is believed to be enabled by the enhanced lubrication behavior through the porosity 

of the 3D printed samples. As in natural menisci, the porous structure absorbs and releases synovial 

fluid with an applied load and maintaining the separation between the opposite rubbing surfaces. 

A recent study, conducted by Miller at al., evidenced that 3D printed PCU matched or 

outperformed the results of molded PCU in terms of monotonic mechanical testing, shear and 

fatigue tests [120]. Therefore, we could say that 3D printed PCU are wear resistant, mechanically 

strong and have the capability of providing menisci-like lubricant mechanism. 
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Chapter 5 

CONCLUSIONS 

This study explored the potential of using FDM 3D printing for fabricating compliant 

biocompatible materials for artificial meniscus implant. Compression molded PCU and UHMWPE 

were fabricated to compare to the 3D printed pure PCU and 10 wt.% PCU/UHMWPE blend. It 

was found that it is feasible to fabricate 3D printed PCU/UHMWPE blend. However, even though 

3D printed blend benefited from its multiscale porous structure, it had similar wear to the molded 

PCU due to a higher surface roughness. On the other hand, 3D printed PCU showed a significant 

wear reduction through maintaining its flexibility and benefiting from its porous structure. 

Therefore, it can be concluded that the FDM additive manufacturing method may be a good 

alternative to the fabrication of PCU meniscus implants as it generated the lowest wear depth and 

was able to increase bovine serum solution absorption compared to the molded version of the same 

material.  

This study explored the potential of FDM 3D printing as a fabrication method of porous, 

compliant artificial meniscus implant, particularly using PCU as a matrix. The main goal was to 

benefit from the freedom of design of this additive manufacturing method in order to introduce 

porosity in the structure of a flexible biocompatible polymer or polymeric blend, to be used in 

artificial meniscus implants. By having a porous architecture, meniscus implants will enable 

synovial fluid to lubricate the joint through “weeping” lubrication, a natural mechanism of the 

synovial joints that only happens because of the inherent porosity of the cartilage. The success of 

joints’ implants depends not only on the mechanical properties of the chosen material for the 

replacement, but also on their interaction with the in vivo environment, which includes the way 

they will promote the joint’s lubrication. There have been great efforts towards finding a suitable 
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soft material that resembles human synovial joint cartilage in terms of mechanical properties, long-

term biocompatibility, and wear resistance. Current alternatives for meniscus injuries treatment 

involve different kinds of non-invasive therapies, as well as surgical approaches, such as acquiring 

a meniscus allograft or inserting a bio-resorbable implant. However, each option carries extra 

complications and none of them is a permanent solution. NUsurface® is the first permanent 

meniscus implant in the market. It is made of an excellent combination of materials, but its molded 

solid structure may compromise the long- term performance of the implant because it hinders 

synovial joints’ natural lubrication mechanisms due to the lack of porosity in its structures. 

The first step of this research was to develop a process with a set of parameters that 

produced samples with consistent quality for the friction tests. Much of this procedure was done 

with Ninjaflex, and that way temperatures, print speeds, distances and flow rates, for example, 

were adjusted initially with that thermoplastic urethane, and later transferred to polycarbonate 

urethane. A first set of friction tests was performed with Ninjaflex, evaluating how the orientation 

of the samples could affect their tribological properties. By rotating the sample 45° relative to the 

print bed, the print pattern was still the same but oriented differently because the sample sides had 

moved. They were then tested on a rotational oscillating friction tester under water for 30 minutes. 

Even though the testing time was short, it was possible to identify that printing with rectilinear 

pattern parallel to the sides (90°) of the sample can result in COF curves that yield to stability 

faster than the other orientation. From that point on, all 3D printed samples were printed using the 

same architecture orientation. 

A second set of preliminary tests was done comparing Bionate and Chronoflex as PCU 

alternatives for this project. UHMWPE was used to blend with each type of PCU at 5, 10 and 15% 

weight concentrations and evaluate how they function during the fabrication process and whether 
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the results of 2-hour friction tests would have any difference between them. It was found that it is 

feasible to fabricate 3D printed PCU/UHMWPE blends despite their very different melt flow 

indexes. For each of the mentioned loads and UHMWPE concentration, Bionate presented a higher 

COF compared to Chronoflex under the same testing conditions, in most of the tests. Samples and 

balls were observed after testing on the LSCM: any of the 3D printed samples exhibited 

considerable wear, and the surfaces of the balls seemed to produce a layer of lubricant fluid film. 

Those results were considered promising, since the formation of fluid film is one of the 

characteristics of the natural knee joint lubrication.  However, we did not observe significant wear 

on PCU samples, which may be explained by the short duration of the tests of the light load applied, 

although the calculated contact pressure was within the stress range carried by the meniscus 

cartilage. Thus, for a more comprehensive testing series, it was decided to increase the load and 

the testing duration. 

The in-depth study was conducted only using Chronoflex as PCU, since the results of 

the preliminary tests showed that polymer had a lower COF. 10% weight concentration of 

UHMWPE was the only one studied because of its good results from the extrusion processes. 

Compression molded PCU and UHMWPE were fabricated to compare to the 3D printed pure PCU 

and 10 wt.% PCU/UHMWPE blend. Results showed that, even though 3D printed blend benefited 

from its multiscale porous structure, it had similar wear to the molded PCU due to a higher surface 

roughness. On the other hand, 3D printed pure PCU showed a significant wear reduction through 

maintaining its flexibility and benefiting from its porous structure. Although the amount of 

porosity increased and fluid absorption capability was enhanced for the CF10 samples, the average 

wear resistance may be an indication that there should be a balance on the extent of porosity. In 

other words, there may be a compromise between inserting more porous structures and keeping a 
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sturdy bulk that withstands tribological and mechanical demands. Therefore, it can be concluded 

that the FDM additive manufacturing method may be a good alternative to the fabrication of PCU 

meniscus implants as it generated the lowest wear depth and was able to increase bovine serum 

solution absorption compared to the molded version of the same material.  
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FUTURE DIRECTIONS 

This research has found that it is possible to 3D print blends of PCU/UHMWPE using 

FDM technology. That was accomplished by using a print head made to print flexible materials, 

which constraints the filament path to the nozzle. Although the Lulzbot TAZ 6 is an excellent 

machine for its kind, desktop FDM 3D printer, it was not designed targeting the production of 

prints for biomedical applications. It is expected that by controlling the environment where the 

sample is fabricated, there could be less contamination and therefore lower risks during the 

application. Furthermore, an investigation with different diameters of extrusion nozzles could 

improve the results by tailoring the printed structure porosity and achieving better control of print 

parameters. It is possible that the surface of the samples could become smoother if that control is 

increased. Achieving a smoother surface throughout the entire 3D printed sample is ideal, while 

herein the surface in contact with the print bed was used to avoid the high roughness of the top 

surface. A polishing step could be added after printing, but that goes against the proposed 

practicality and convenience of using the complexity-free FDM 3D printing fabrication method. 

A future endeavor for this research is to be able to 3D print a meniscus from a magnetic 

resonance imaging (MRI) scan. The unique curved surfaces of the natural meniscus make it 

challenging for it to be 3D printed, but not impossible. There should be a study on how support 

structures could be included in the print design in order to hold the meniscus the best way possible. 

Again, the resulting surface quality will be another concern, since the layer-by-layer pattern leaves 

an evident waviness, especially on curved lateral surfaces. A testing apparatus that is able to 

accommodate the meniscus shape would also be necessary to thoroughly evaluate it under in vitro 

conditions. Some researchers have built their own apparatus to test joint implant material, but 

adopting a simplified shape and neglecting the shape of the actual implant [62,74]. To further 
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assess the performance of the implants, other measurements could be done while running friction 

tests: wear particle measurements (quantify the number of particles released in the lubricant, 

measure their sizes and evaluate their shapes) and real contact area measurement through image 

and/or pressure sensing (to analyze pressure distribution). Tests that last millions of cycles would 

also help evaluate the use of the implant at a long-term perspective. 

Finally, it is important to evaluate the mechanical properties of the 3D printed parts and 

compare to molded parts. Monotonic and tensile fatigue testing have been performed on 3D printed 

Bionate [94], but the compression efforts are dominant on the meniscus. An adaptation of a 

universal mechanical tester is usually the approach, such as the experimental validation done by 

Elsner et al. to validate a finite element analysis of the NUsurface® is a good example of in vitro 

mechanical test [33,121,122].  

 

 

 

 

  



55 
 

REFERENCES 

[1] M. Hilal Maradit-Kremers, MD, MSc, Rochester, M. Cynthia S. Crowson, Rochester, M. 

Dirk Larson, Rochester, V. William A. Jiranek, MD, Richmond, M. Daniel J. Berry, MD, 

Rochester, Prevalence of Total Hip (THA) and Total Knee (TKA) Arthroplasty in the 

United States, 2014. https://www.mayoclinic.org/medical-professionals/clinical-

updates/orthopedic-surgery/study-hip-knee-arthroplasty-shows-7-2-million-americans-

living-with-implants. 

[2] A.C.T. Vrancken, P. Buma, T.G. van Tienen, Synthetic meniscus replacement: a review, 

Int. Orthop. 37 (2013) 291–299. doi:10.1007/s00264-012-1682-7. 

[3] S.E. Majd, A.I. Rizqy, H.J. Kaper, T.A. Schmidt, R. Kuijer, An in vitro study of cartilage-

meniscus tribology to understand the changes caused by a meniscus implant, Colloids 

Surfaces B Biointerfaces. 155 (2016) 51–71. doi:10.1016/j.colsurfb.2017.04.034. 

[4] I.D. McDermott, A.A. Amis, The consequences of meniscectomy, J. Bone Jt. Surg. - Br. 

Vol. 88–B (2006) 1549–1556. doi:10.1302/0301-620X.88B12.18140. 

[5] P.R. Allen, R. a Denham,  a V Swan, Late degenerative changes after meniscectomy. 

Factors affecting the knee after operation., J. Bone Joint Surg. Br. 66 (1984) 666–671. 

[6] E. Balint, C.J. Gatt, M.G. Dunn, Design and mechanical evaluation of a novel fiber-

reinforced scaffold for meniscus replacement, J. Biomed. Mater. Res. - Part A. 100 A 

(2012) 195–202. doi:10.1002/jbm.a.33260. 

[7] J.J. Elsner, S. Portnoy, G. Zur, F. Guilak, A. Shterling, E. Linder-Ganz, Design of a Free-

Floating Polycarbonate-Urethane Meniscal Implant Using Finite Element Modeling and 

Experimental Validation, J. Biomech. Eng. 132 (2010) 95001. doi:10.1115/1.4001892. 

[8] J.J. Elsner, Y. Mezape, K. Hakshur, M. Shemesh, E. Linder-Ganz, A. Shterling, N. Eliaz, 

Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial 

hip joints, Acta Biomater. 6 (2010) 4698–4707. doi:10.1016/j.actbio.2010.07.011. 

[9] A. Burger, Feasibility Assessment of Compliant Polymers in TKR, (2009). 

[10] S.E. Majd, R. Kuijer, T.A. Schmidt, P.K. Sharma, Role of hydrophobicity on the 

adsorption of synovial fluid proteins and biolubrication of polycarbonate urethanes: 

Materials for permanent meniscus implants, Mater. Des. 83 (2015) 514–521. 

doi:10.1016/j.matdes.2015.06.075. 

[11] J. Charnley, The lubrication of animal joints in relation to surgical reconstruction by 

arthroplasty, Ann. Rheum. Dis. 19 (1960) 10–19. doi:10.1136/ard.19.1.10. 

[12] J.B. Morrison, The mechanics of the knee joint in relation to normal walking, J. Biomech. 

3 (1970) 51–61. doi:10.1016/0021-9290(70)90050-3. 

[13] G. Kolata, Why “useless” surgery is still popular?, Upshot, New York Times. (2016). 

https://www.nytimes.com/2016/08/04/upshot/the-right-to-know-that-an-operation-is-next-

to-useless.html (accessed August 30, 2017). 

[14] Arthroscopic Surgery for Meniscal Tears May Be Unnecessary in Many Cases, (n.d.). 

http://www.moveforwardpt.com/didyouknow/detail.aspx?cid=d25686d3-b0e5-4ad3-b886-

da74452dddb2. 



56 
 

[15] Meniscus Tears, (2014). http://orthoinfo.aaos.org/topic.cfm?topic=a00358 (accessed 

August 31, 2017). 

[16] C. Baynat, C. Andro, J.P. Vincent, P. Schiele, P. Buisson, F. Dubrana, F.X. Gunepin, 

Actifit synthetic meniscal substitute: Experience with 18 patients in Brest, France, Orthop. 

Traumatol. Surg. Res. 100 (2014) S385–S389. doi:10.1016/j.otsr.2014.09.007. 

[17] M. Majewski, H. Susanne, S. Klaus, Epidemiology of athletic knee injuries: A 10-year 

study, Knee. 13 (2006) 184–188. doi:10.1016/j.knee.2006.01.005. 

[18] J.J. Elsner, B.P. Mckeon, Orthopedic Application of Polycarbonate Urethanes: A Review, 

in: 2017: pp. 1–9. 

[19] M. KL, A. AM, Essential Clinical Anatomy (copy 2), Fifth, LWW, 2002. 

[20] W.H. Brenno Nigg, Biomechanics of the Musculo-sketelal System, Third Edit, Wiley, 

2007. 

[21] A. Carré, V. Lacarrière, How Substrate Properties Control Cell Adhesion. A Physical–

Chemical Approach, J. Adhes. Sci. Technol. 24 (2010) 815–830. 

doi:10.1163/016942409X12598231567862. 

[22] D.D. Bernard J. Hamrock, Ball bearing lubrication: the elastohydrodynamics of elliptical 

contacts, NASA Technical Reports, Cleveland, Ohio, 1981. 

[23] B.J. Hamrock, Fundamentals of Fluid Film Lubrication, NASA Reference Publication, 

Columbus, Ohio, 1991. 

[24] A. Unsworth, Recent developments in the tribology of artificial joints, Tribol. Int. 28 

(1995) 485–495. doi:10.1016/0301-679X(95)00027-2. 

[25] D. Dowson, J.Q. Yao, Elastohydrodynamic lubrication of soft‐layered solids at elliptical 

contacts: Part 2: film thickness analysis, Arch. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 

1994-1996 (Vols 208-210). 208 (2006) 43–52. 

doi:10.1243/PIME_PROC_1994_208_348_02. 

[26] J. Klein, Molecular mechanisms of synovial joint lubrication, Proc. Inst. Mech. Eng. Part J 

J. Eng. Tribol. 220 (2006) 691–710. doi:10.1243/13506501JET143. 

[27] J.H. Dumbleton, The Lubrication of Natural Joints, in: J.H.B.T.-T.S. Dumbleton (Ed.), 

Tribol. Nat. Artif. Joints, 1st editio, Elsevier, 1981: p. 479. 

doi:https://doi.org/10.1016/S0167-8922(08)71011-3. 

[28] U.P. Hemmerich, A.; Brown, H.; Smith, S.; Marthandam, S.S.K.; Wyss, Hip, knee, and 

ankle kinematics of high range of motion activities of daily living., J. Orthop. Res. (2006) 

770–781. doi:10.1002/jor. 

[29] J. Rose, J.G. Gamble, Human Walking, Lippincott Williams & Wilkins, 2006. 

https://books.google.com/books?id=q6WrPwAACAAJ. 

[30] A.E. Yousif, A.M. Ali, The Role of Lubrication Mechanisms in the Knee Synovial Joints, 

1 St Reg. Conf. Eng. Sci. NUCEJ Spat. ISSUE. 1111 (2008) 522–535. 

http://www.iasj.net/iasj?func=fulltext&aId=29817%0Ahttp://www.iasj.net/iasj?func=sear

ch&template=&uiLanguage=en&query=The+Role+of+Lubrication+Mechanisms+in+the+

Knee+Synovial+Joints&x=0&y=0. 

[31] C.W. McCUTCHEN, Mechanism of animal joints: Sponge-hydrostaic and weeping 



57 
 

bearings, Nature. 184 (1959) 1284–1285. doi:10.1038/183055a0. 

[32] P.K. Levangie, C.C. Norkin, Joint Structure and Function: A Comprehensive Analysis, 

F.A. Davis Company, 2005. https://books.google.com/books?id=DW9vQgAACAAJ. 

[33] T. Fukubayashi, H. Kurosawa, THE CONTACT AREA AND PRESSURE 

DISTRIBUTION PATTERN OF THE KNEE A Study of Normal and Osteoarthrotic 

Knee Joints, Acta Orthop. Wand. 51 (1980) 871–879. 

http://www.tandfonline.com/doi/pdf/10.3109/17453678008990887 (accessed March 21, 

2017). 

[34] D.C. Fithian, M.A. Kelly, V.C. Mow, Material properties and structure-function 

relationships in the menisci., Clin. Orthop. Relat. Res. (1990) 19–31. 

[35] S.R. Oungoulian, Friction and Wear Measurments of Bovine Articular Cartilage Against 

Non - Native Materials, Columbia University, 2015. 

[36] W.R. Taylor, M.O. Heller, G. Bergmann, G.N. Duda, Tibio-femoral loading during human 

gait and stair-climbing, J. Orthop. Res. 22 (2004) 625–632. 

doi:10.1016/j.orthres.2003.09.003. 

[37] S.L. Smith, H.E. Ash, A. Unsworth, A tribological study of UHMWPE acetabular cups 

and polyurethane compliant layer acetabular cups, J. Biomed. Mater. Res. 53 (2000) 710–

716. doi:10.1002/1097-4636(2000)53:6<710::AID-JBM14>3.0.CO;2-R. 

[38] A. Unsworth, Tribology of Human and Artificial Joints, Proc. Inst. Mech. Eng. Part H J. 

Eng. Med. 205 (1991) 163–172. doi:10.1243/PIME_PROC_1991_205_287_02. 

[39] D.B. Chaffin, G. Andersson, Occupational Biomechanics, Wiley, 1991. 

https://books.google.com/books?id=3PFqAAAAMAAJ. 

[40] D. Dowson, Z.M. Jin, Micro-elastohydrodynamic lubrication of synovial joints, Eng Med. 

15 (1986) 63–65. doi:10.1243/EMED. 

[41] D. Dowson, Elastohydrodynamic and micro-elastohydrodynamic lubrication, Wear. 190 

(1995) 125–138. doi:10.1016/0043-1648(95)06660-8. 

[42] V. Mosnegutu, V. Chiroiu, R. Ioan, On the friction coefficient of synovial fluid in knee 

joint, in: SISOM 2009 Sess. Comm. Acoust., 2009: pp. 148–152. 

[43] P.S. Walker, J. Sikorski, D. Dowson, M.D. Longfield, V. Wright, T. Buckley, Behaviour 

of synovial fluid on surfaces of articular cartilage. A scanning electron microscope study., 

Ann. Rheum. Dis. 28 (1969) 1–14. 

http://www.ncbi.nlm.nih.gov/pubmed/5786278%5Cnhttp://www.pubmedcentral.nih.gov/a

rticlerender.fcgi?artid=PMC1010488. 

[44] A.P. Harsha, T.J. Joyce, Challenges associated with using bovine serum in wear testing 

orthopaedic biopolymers, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 225 (2011) 948–958. 

doi:10.1177/0954411911416047. 

[45] T. Peters, All About Albumin: Biochemistry, Genetics, and Medical Applications. . San 

Diego, CA: Academic Press, 1996, 432 pp, $85.00. ISBN 0-12-552110-3, Clinical 

Chemistry, 1995. http://clinchem.aaccjnls.org/content/43/10/2014a. 

[46] T.A. Schmidt, R.L. Sah, Effect of synovial fluid on boundary lubrication of articular 

cartilage, Osteoarthr. Cartil. 15 (2007) 35–47. doi:10.1016/j.joca.2006.06.005. 



58 
 

[47] A. Wang, A. Essner, G. Schmidig, The effects of lubricant composition on in vitro wear 

testing of polymeric acetabular components, J. Biomed. Mater. Res. B. Appl. Biomater. 68 

(2004) 45–52. doi:10.1002/jbm.b.10077. 

[48] M.E. Blewis, G.E. Nugent-Derfus, T.A. Schmidt, B.L. Schumacher, R.L. Sah, A model of 

synovial fluid lubricant composition in normal and injured joints, Eur. Cells Mater. 13 

(2007) 26–38. doi:10.1186/ar3216. 

[49] R. Trebše, A. Miheli, Joint Replacement: Historical Overview, in: Infected Total Jt. 

Arthroplast., 2012: pp. 7–11. doi:10.1007/978-1-4471-2482-5. 

[50] D.H. Williams, D.S. Garbuz, Masri, Total knee arthroplasty; techniques and results, Bc 

Med. J. 52 (2010) 447–454. 

[51] M.L. Wolford, K. Palso, A. Bercovitz, P.D. Monica L. Wolford, M.A.; Kathleen Palso, 

M.A.; and Anita Bercovitz, M.P.H., Hospitalization for Total Hip Replacement Among 

Inpatients Aged 45 and Over: United States, 2000–2010, 2015. doi:ISSN 1941–4935. 

[52] J.M. Lee, F.H. Fu, The meniscus: basic science and clinical applications, Oper. Tech. 

Orthop. 10 (2000) 162–168. doi:10.1053/otor.2000.5289. 

[53] A.M. Ahmed, D.L. Burke, In-Vitro of Measurement of Static Pressure Distribution in 

Synovial Joints—Part I: Tibial Surface of the Knee, J. Biomech. Eng. 105 (1983) 216–

225. http://dx.doi.org/10.1115/1.3138409. 

[54] M.E. Baratz, F.H. Fu, R. Mengato, Meniscal tears: The effect of meniscectomy and of 

repair on intraarticular contact areas and stress in the human knee: A preliminary report, 

Am. J. Sports Med. 14 (1986) 270–275. doi:10.1177/036354658601400405. 

[55] E.A. Makris, P. Hadidi, K.A. Athanasiou, The knee meniscus: Structure–function, 

pathophysiology, current repair techniques, and prospects for regeneration, Biomaterials. 

32 (2011) 7411–7431. doi:10.1016/j.biomaterials.2011.06.037. 

[56] D.D. Lin, N.E. Picardo, A. Adesida, W.S. Khan, Clinical Studies Using Biological and 

Synthetic Materials for Meniscus Replacement., Curr. Stem Cell Res. Ther. (2016) 1–6. 

doi:10.2174/1574888X11666160429123. 

[57] C. Van Der Straeten, P. Byttebier, A. Eeckhoudt, J. Victor, Meniscal Allograft 

Transplantation Does Not Prevent or Delay Progression of Knee Osteoarthritis, PLoS 

One. 11 (2016) e0156183. doi:10.1371/journal.pone.0156183. 

[58] J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, P. Buma, Biomaterials in 

search of a meniscus substitute, Biomaterials. 35 (2014) 3527–3540. 

doi:10.1016/j.biomaterials.2014.01.017. 

[59] N.A. Smith, M.L. Costa, T. Spalding, Instructional review: Knee Meniscal allograft 

transplantation: Rationale for treatment, Bone Jt. J. 97–B (2015) 590–594. 

doi:10.1302/0301-620X.97B5.35152. 

[60] A.C.T. Vrancken, P. Buma, T.G. Van Tienen, Synthetic meniscus replacement: A review, 

Int. Orthop. 37 (2013) 291–299. doi:10.1007/s00264-012-1682-7. 

[61] J. de Groot, Actifit, Polyurethane meniscus implant: basic science, in: The Meniscus, 

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 383–387. doi:10.1007/978-3-

642-02450-4_48. 



59 
 

[62] A. Chyr, A.P. Sanders, B. Raeymaekers, A hybrid apparatus for friction and accelerated 

wear testing of total knee replacement bearing materials, Wear. 308 (2013) 54–60. 

doi:10.1016/j.wear.2013.09.017. 

[63] A.J. Sophia Fox, A. Bedi, S.A. Rodeo, The Basic Science of Articular Cartilage, Sports 

Health. 1 (2009) 461–468. doi:10.1177/1941738109350438. 

[64] A.M. Hukins D., The Extracellular Matrix of the Meniscus, Raven Press, New York, NY, 

1992. 

[65] G. Zur, E. Linder-ganz, J.J. Elsner, J. Shani, O. Brenner, G. Agar, E.B. Hershman, S.P. 

Arnoczky, F. Guilak, A. Shterling, Chondroprotective effects of a polycarbonate-urethane 

meniscal implant: histopathological results in a sheep model, Knee Surgery, Sport. 

Traumatol. Arthrosc. 19 (2011) 255–63. doi:http://0-

dx.doi.org.library.uark.edu/10.1007/s00167-010-1210-5. 

[66] E. Linder-Ganz, J.J. Elsner, A. Danino, F. Guilak, A. Shterling, A Novel Quantitative 

Approach for Evaluating Contact Mechanics of Meniscal Replacements, J. Biomech. Eng. 

132 (2010) 24501. doi:10.1115/1.4000407. 

[67] T. De Coninck, J.J. Elsner, E. Linder-Ganz, M. Cromheecke, M. Shemesh, W. Huysse, R. 

Verdonk, K. Verstraete, P. Verdonk, In-vivo evaluation of the kinematic behavior of an 

artificial medial meniscus implant: A pilot study using open-MRI, Clin. Biomech. 29 

(2014) 898–905. doi:10.1016/j.clinbiomech.2014.07.001. 

[68] T. Hügle, J. Geurts, C. Nüesch, M. Müller-Gerbl, V. Valderrabano, Aging and 

osteoarthritis: An inevitable encounter?, J. Aging Res. 2012 (2012). 

doi:10.1155/2012/950192. 

[69] H.J. Bieleman, M.W. Van Ittersum, J.W. Groothoff, J.C.M. Oostveen, F.G.J. Oosterveld, 

C.P. Van Der Schans, R. Soer, M.F. Reneman, Functional capacity of people with early 

osteoarthritis: A comparison between subjects from the cohort hip and cohort knee 

(CHECK) and healthy ageing workers, Int. Arch. Occup. Environ. Health. 83 (2010) 913–

921. doi:10.1007/s00420-010-0541-3. 

[70] A.T. Miller, Fatigue and cyclic loading of 3D printed soft polymers for orthopedic 

applications, Georgia Institute of Technology, 2017. 

[71] G. Chakrabarty, M. Vashishtha, D. Leeder, Polyethylene in knee arthroplasty: A review, J. 

Clin. Orthop. Trauma. 6 (2015) 108–112. doi:10.1016/j.jcot.2015.01.096. 

[72] H. Oonishi, Y. Kadoya, S. Masuda, Gamma-irradiated cross-linked polyethylene in total 

hip replacements--analysis of retrieved sockets after long-term implantation., J. Biomed. 

Mater. Res. 58 (2001) 167–171. 

[73] B. McEntire, B.S. Bal, A. Lakshminarayanan, R. Bock, Silicon Nitride Bearings for Total 

Joint Arthroplasty, Bone Jt. J. 98–B (2016) 34–34. 

http://www.bjjprocs.boneandjoint.org.uk/content/98-B/SUPP_1/34 (accessed January 26, 

2017). 

[74] C.J. Schwartz, S. Bahadur, Development and testing of a novel joint wear simulator and 

investigation of the viability of an elastomeric polyurethane for total-joint arthroplasty 

devices, Wear. 262 (2007) 331–339. doi:10.1016/j.wear.2006.05.018. 

[75] T. Huang, S. Wang, K. He, Quality control for fused deposition modeling based additive 



60 
 

manufacturing: Current research and future trends, in: 2015: pp. 1–6. 

doi:10.1109/ICRSE.2015.7366500. 

[76] H. Lipson, M. Kurman, Fabricated : The New World of 3D Printing (1), Wiley, Somerset, 

US, 2013. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10657814 (accessed 

April 12, 2016). 

[77] A. Boschetto, L. Bottini, Design for manufacturing of surfaces to improve accuracy in 

Fused Deposition Modeling, Robot. Comput. Integr. Manuf. 37 (2016) 103–14. 

doi:10.1016/j.rcim.2015.07.005. 

[78] O.A.M. Abdelaal, S.M.H. Darwish, Review of Rapid Prototyping Techniques for Tissue 

Engineering Scaffolds Fabrication, in: A. Öchsner, L.F.M. da Silva, H. Altenbach (Eds.), 

Springer Berlin Heidelberg, 2013: pp. 33–54. 

http://link.springer.com/chapter/10.1007/978-3-642-31470-4_3 (accessed April 15, 2016). 

[79] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of 

trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials. 

33 (2012) 6020–6041. doi:10.1016/j.biomaterials.2012.04.050. 

[80] E.L. Melgoza, G. Vallicrosa, L. Serenó, J. Ciurana, C.A. Rodríguez, Rapid tooling using 

3D printing system for manufacturing of customized tracheal stent, Rapid Prototyp. J. 20 

(2014) 2–12. doi:10.1108/RPJ-01-2012-0003. 

[81] D.H. Rosenzweig, E. Carelli, T. Steffen, P. Jarzem, L. Haglund, 3D-Printed ABS and PLA 

Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration, Int. J. Mol. Sci. 16 

(2015) 15118–15135. doi:10.3390/ijms160715118. 

[82] A. Melocchi, F. Parietti, G. Loreti, A. Maroni, A. Gazzaniga, L. Zema, 3D printing by 

fused deposition modeling (FDM) of a swellable/erodible capsular device for oral 

pulsatile release of drugs, J. Drug Deliv. Sci. Technol. 30 (2015) 360–367. 

doi:https://doi.org/10.1016/j.jddst.2015.07.016. 

[83] S.S. Crump, Apparatus and method for creating three-dimensional objects, n.d. 

http://www.google.com/patents/US5121329 (accessed April 11, 2016). 

[84] M. Atif Yardimci, Selçuk Güçeri, Conceptual framework for the thermal process 

modelling of fused deposition, Rapid Prototyp. J. 2 (1996) 26–31. 

doi:10.1108/13552549610128206. 

[85] M.H. Too, K.F. Leong, C.K. Chua, Z.H. Du, S.F. Yang, C.M. Cheah, S.L. Ho, 

Investigation of 3D Non-Random Porous Structures by Fused Deposition Modelling, Int. 

J. Adv. Manuf. Technol. 19 (2002) 217–223. doi:10.1007/s001700200016. 

[86] Mukesh K. Agarwala, Vikram R. Jamalabad, Noshir A. Langrana, Ahmad Safari, Philip J. 

Whalen, Stephen C. Danforth, Structural quality of parts processed by fused deposition, 

Rapid Prototyp. J. 2 (1996) 4–19. doi:10.1108/13552549610732034. 

[87] Comb, J.W., Priedeman, W.R. and Turley, P.W., FDM® Technology Process 

Improvements, in: Texas, 1994: pp. 42–9. 

http://sffsymposium.engr.utexas.edu/Manuscripts/1994/1994-06-Comb.pdf (accessed 

April 12, 2016). 

[88] G.I.J. Salentijn, P.E. Oomen, M. Grajewski, E. Verpoorte, Fused Deposition Modeling 3D 

Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications, 



61 
 

Anal. Chem. 89 (2017) 7053–7061. doi:10.1021/acs.analchem.7b00828. 

[89] O.S. Carneiro, A.F. Silva, R. Gomes, Fused deposition modeling with polypropylene, 

Mater. Des. 83 (2015) 768–776. doi:10.1016/j.matdes.2015.06.053. 

[90] F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber 

reinforced thermoplastic composites using fused deposition modeling, Compos. Part B 

Eng. 80 (2015) 369–378. doi:10.1016/j.compositesb.2015.06.013. 

[91] H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. 

Blue, S. Ozcan, Highly oriented carbon fiber–polymer composites via additive 

manufacturing, Compos. Sci. Technol. 105 (2014) 144–150. 

doi:10.1016/j.compscitech.2014.10.009. 

[92] P. Dudek, FDM 3D Printing Technology in Manufacturing Composite Elements, Arch. 

Metall. Mater. 58 (2013) 1415–1418. doi:10.2478/amm-2013-0186. 

[93] K. Estelle, D. Blair, K. Evans, B.A. Gozen, Manufacturing of smart composites with 

hyperelastic property gradients and shape memory using fused deposition, J. Manuf. 

Process. 28 (2017) 500–507. doi:https://doi.org/10.1016/j.jmapro.2017.04.018. 

[94] A.T. Miller, D.L. Safranski, K.E. Smith, R.E. Guldberg, K. Gall, Compressive cyclic 

ratcheting and fatigue of synthetic, soft biomedical polymers in solution, J. Mech. Behav. 

Biomed. Mater. 54 (2016) 268–282. doi:10.1016/j.jmbbm.2015.09.034. 

[95] C.R. Rocha, A.R.T. Perez, D. a Roberson, Novel ABS-based binary and ternary polymer 

blends for material extrusion 3D printing, J. Mater. Res. 29 (2014) 1859–1866. 

doi:10.1557/jmr.2014.158. 

[96] A.R. Torrado Perez, Defeating anisotropy in material extrusion 3D printing via materials 

development, 2015. 

http://search.proquest.com/docview/1709274119/abstract/F5CEEE3D9A2B47D3PQ/1 

(accessed July 7, 2016). 

[97] M.H. Bin Md Ansari, M.H. Irwan Bin Ibrahim, Thermal Characteristic Of Waste-Derived 

Hydroxyapatite (HA) Reinforced Ultra High Molecular Weight Polyethylene (UHMWPE) 

Composites For Fused Deposition Modeling (FDM) Process, IOP Conf. Ser. Mater. Sci. 

Eng. 165 (2017) 12014. doi:10.1088/1757-899X/165/1/012014. 

[98] C.J. Schwartz, Investigation of the performance of articular cartilage and synthetic 

biomaterials in multi- directional sliding motion as in orthopedic implants by, Iowa State 

University, 2006. http://lib.dr.iastate.edu/rtd/3021. 

[99] M.C. Sobieraj, C.M. Rimnac, Ultra high molecular weight polyethylene: mechanics, 

morphology, and clinical behavior, J. Mech. Behav. Biomed. Mater. 2 (2009) 433–443. 

http://www.sciencedirect.com/science/article/pii/S1751616108001197 (accessed October 

24, 2016). 

[100] P. Bracco, A. Bellare, A. Bistolfi, S. Affatato, Ultra-high molecular weight polyethylene: 

Influence of the chemical, physical and mechanical properties on thewear behavior. A 

review, Materials (Basel). 10 (2017). doi:10.3390/ma10070791. 

[101] A. Mansson, Experiments - Moisture in 3D printing, (2016). 

https://www.antonmansson.com/moisture/ (accessed October 12, 2017). 



62 
 

[102] A. Ball, Polymer Processing, West. Carolina Univ. (n.d.). 

http://paws.wcu.edu/ballaaron/www/met366/modules/module5/mod5.htm (accessed May 

1, 2017). 

[103] A. V. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, 

E. Kaminska, V. Kladko, A. Piotrowska, Ni-Based Ohmic Contacts to n -Type 4H-SiC: 

The Formation Mechanism and Thermal Stability, Adv. Condens. Matter Phys. 2016 

(2016). doi:10.1155/2016/9273702. 

[104] NinjaTek, NinjaFlex ® 3D Printing Filament: Flexible Polyurethane Material for FDM 

Printers, Manheim, PA, 2016. 

[105] M. Hanifpour, C.F. Petersen, M.J. Alava, S. Zapperi, Mechanics of disordered auxetic 

metamaterials, arXiv Prepr. (2017) 1–6. http://arxiv.org/abs/1704.00943. 

[106] D. Baykal, R.S. Siskey, R.J. Underwood, A. Briscoe, S.M. Kurtz, The Biotribology of 

PEEK-on-HXLPE Bearings Is Comparable to Traditional Bearings on a Multidirectional 

Pin-on-disk Tester, Clin. Orthop. Relat. Res. 474 (2016) 2384–2393. doi:10.1007/s11999-

016-4989-7. 

[107] ASTM, Standard Test Method for Wear Testing of Polymeric Materials Used in Total 

Joint, Am. Soc. Test. Mater. (2000) 1–16. doi:10.1520/F0732-00R11.2. 

[108] E. Jones, S.C. Scholes, I.C. Burgess, H.E. Ash, A. Unsworth, Compliant layer bearings in 

artificial joints . Part 2 : simulator and fatigue testing to assess the durability of the 

interface between an elastomeric layer and a rigid substrate, 223 (2009) 1–12. 

doi:10.1243/09544119JEIM446. 

[109] G.R. Higginson, Elastohydrodynamic Lubrication in Human Joints, Proc. Inst. Mech. Eng. 

191 (1977) 217–223. doi:10.1243/PIME_PROC_1977_191_028_02. 

[110] B.J. McEntire, R. Lakshminarayanan, D.A. Ray, I.C. Clarke, L. Puppulin, G. Pezzotti, 

Silicon Nitride Bearings for Total Joint Arthroplasty, Lubricants. 4 (2016) 35. 

doi:10.3390/lubricants4040035. 

[111] K. Gardner, D. L.; O’Connor, P.; Oates, Low temperature electron microscopy of dog and 

guinea-pig hyaline articular cartilage, J. Anat. 132 (1981) 267–282. 

doi:10.1016/j.micron.2012.01.018. 

[112] S.M. Kurtz, UHMWPE Biomaterials Handbook: Ultra High Molecular Weight 

Polyethylene in Total Joint Replacement and Medical Devices, William Andrew, 2015. 

https://books.google.com/books?id=j-sUBQAAQBAJ. 

[113] M. Rogulska, A. Kultys, Aliphatic polycarbonate-based thermoplastic polyurethane 

elastomers containing diphenyl sulfide units, J. Therm. Anal. Calorim. 126 (2016) 225–

243. doi:10.1007/s10973-016-5420-z. 

[114] R.M. Trommer, M.M. Maru, W.L. Oliveira Filho, V.P.S. Nykanen, C.P. Gouvea, B.S. 

Archanjo, E.H. Martins Ferreira, R.F. Silva, C.A. Achete, Multi-Scale Evaluation of Wear 

in UHMWPE-Metal Hip Implants Tested in a hip Joint Simulator, Biotribology. 4 (2015) 

1–11. doi:10.1016/j.biotri.2015.08.001. 

[115] J.A. Williams, Wear and wear particles - Some fundamentals, Tribol. Int. 38 (2005) 863–

870. doi:10.1016/j.triboint.2005.03.007. 



63 
 

[116] G.W.S. A.W.Batchelor, 14 Fatigue Wear, Tribol. Ser. 24 (1993) 657–681. 

doi:10.1016/S0167-8922(08)70588-1. 

[117] T.R. Green, J. Fisher, M. Stone, B.M. Wroblewski, E. Ingham, Polyethylene particles of a 

“critical size” are necessary for the induction of cytokines by macrophages in vitro, 

Biomaterials. 19 (1998) 2297–2302. doi:10.1016/S0142-9612(98)00140-9. 

[118] M.J. Nine, D. Choudhury, A.C. Hee, R. Mootanah, N.A.A. Osman, Wear debris 

characterization and corresponding biological response: Artificial hip and knee joints, 

Materials (Basel). 7 (2014) 980–1016. doi:10.3390/ma7020980. 

[119] A. Bižal, J. Klemenc, M. Fajdiga, Evaluating the statistical significance of a fatigue-life 

reduction due to macro-porosity, Stroj. Vestnik/Journal Mech. Eng. 60 (2014) 407–416. 

doi:10.5545/sv-jme.2013.1453. 

[120] A.T. Miller, D.L. Safranski, K.E. Smith, D.G. Sycks, R.E. Guldberg, K. Gall, Fatigue of 

injection molded and 3D printed polycarbonate urethane in solution, Polymer (Guildf). 

108 (2017) 121–134. doi:10.1016/j.polymer.2016.11.055. 

[121] J.J. Elsner, S. Portnoy, G. Zur, F. Guilak, A. Shterling, E. Linder-Ganz, Design of a Free-

Floating Polycarbonate-Urethane Meniscal Implant Using Finite Element Modeling and 

Experimental Validation, J. Biomech. Eng. 132 (2010) 95001-95001–8. 

doi:10.1115/1.4001892. 

[122] M. Shemesh, R. Asher, E. Zylberberg, F. Guilak, E. Linder-Ganz, J.J. Elsner, Viscoelastic 

properties of a synthetic meniscus implant, J. Mech. Behav. Biomed. Mater. 29 (2014) 

42–55. doi:10.1016/j.jmbbm.2013.08.021. 

 

  



64 
 

 APPENDIX - LIST OF CONFERENCE PRESENTATIONS 

Center for Advanced Surface Engineering (CASE) Annual Meeting (Arkansas NSF EPSCoR). 

Student poster – Little Rock, AR, May 2016; 

76th Annual Physical Electronics Conference (American Vacuum Society, AVS PEC). Student 

poster – Fayetteville, AR, June 2016; 

72nd STLE Annual Meeting & Exhibition. Student poster – Atlanta, GA, May 2017; 

Arkansas Biosciences Institute Fall Research Symposium. Student poster – Fayetteville, AR, 

October 2017; 

Center for Advanced Surface Engineering (CASE) Annual Meeting (Arkansas NSF EPSCoR). 

Student Poster – Little Rock, AR, June 2017. 
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