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ABSTRACT 
 

Plant-parasitic nematodes pose a major threat to crop yield worldwide. Discontinued use 

of harmful chemicals has prompted the search for alternative management strategies that are 

effective yet environmentally friendly. Harpin proteins, which are derived from bacteria, and 

nematophagous fungi, natural predators of nematodes, are ideal for biological control of plant-

parasitic nematodes. However, research on the efficacy of harpin proteins on nematodes, and 

biology of nematophagous fungi is minimal. Previously, a taxonomically uncharacterized 

nematophagous fungus designated ARF18 effectively suppressed nematode populations in soil. 

The overarching goal of this dissertation is to utilize applied and functional genomic approaches 

to augment management of plant-parasitic nematodes with the following objectives: 1) To test 

the efficacy of harpin protein treatments in different host-nematode interactions, 2) Utilize 

genome of ARF18 to provide taxonomic placement and establish it as a biocontrol agent against 

plant-parasitic nematodes, 3) Identify genes regulated by harpin during reniform pathogenesis, 

and 4) Develop target enrichment sequencing method using Cercospora zeae-maydis as model 

system to accelerate functional genomics research. Evaluation of harpin protein on soybean and 

cotton showed a consistent reduction in reniform populations in soybean without significant 

effects on plant growth. Similarly, ARF18 parasitized cysts in-vitro, and based on the ITS region, 

ARF18 grouped within Brachyphoris. ARF18 genome assembled into 412 scaffolds, indicating a 

size of 45.6 Mb with 14,461 putative protein-encoding genes. Transcriptome of soybean using 

Ion Torrent PGM identified numerous genes from soybean roots albeit lower sequencing depth 

hindered the identification of differentially expressed transcripts between different treatments. 

Subsequently, a target enrichment method was developed in C. zeae-maydis to dissect 

cercosporin regulation. Ease of genetic manipulation, availability of near complete genome, and 



 

presence of easily screen able phenotype facilitated the method development in C. zeae-maydis. 

The method identified more than 80 genes that altered cercosporin production in C. zeae-maydis. 

Additionally, RNAi lines created for six genes confirmed the linkage of the phenotypes to the 

mutation identified. The method could be easily adapted to different organisms, especially in 

nematophagous fungi to accelerate gene discovery and function to advance research towards the 

management of different plant parasitic nematodes.  
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CHAPTER I 

Introduction and Review of Literature 
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PROJECT OVERVIEW 

 Plant-parasitic nematodes are one of many important pathogens of crop plants.  They 

reduce yield and productivity directly and indirectly (Abad et al., 2008). Directly, nematodes 

damage roots, which restricts the absorption of water and nutrients.  Indirectly, they cause 

damage by acting as vectors of viruses, or they interact with certain fungal and bacterial 

pathogens to aggravate disease. Some of the most important nematodes affecting crop 

productivity are Meloidogyne incognita, the root-knot nematode; Heterodera glycines, the 

soybean cyst nematode; Pratylenchus spp., the root lesion nematode; Radopholus similis, the 

burrowing nematode; and Rotylenchulus reniformis, the reniform nematode (Jones et al., 2013). 

Conventional control of nematodes has relied heavily on chemical nematicide treatments 

(Cabrera et al., 2015, Wang et al., 2015) and crop rotation (Djian-Caporalino et al., 2014), and to 

a lesser extent, biological control (Cheng et al., 2015, Noreen et al., 2015) and soil solarization 

(Butler et al., 2014). Many chemical methods of control have been discontinued due to 

environmental and health concerns, or because they have proven to be ineffective (Martin, 2003, 

Westphal, 2011).  

Nematodes are important agricultural pests.    

Yield losses due to plant-parasitic nematodes have been estimated at 12.3% of global 

food production (Sasser & Freckman, 1986). In the United States alone, losses caused by plant-

parasitic nematodes are estimated to be around 10 billion dollars (Hassan et al., 2013). Maize, 

rice, soybean, cotton, potatoes, wheat, sugar cane, sweet potatoes, and pine trees are some of the 

plant species affected by these parasites. More than 4,100 species of plant-parasitic nematodes 
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have been identified to date, and the number is continually increasing (Decraemer & Hunt, 

2006).  

Although nematodes may comprise the most abundant phylum of animal taxa on earth 

(Blaxter et al., 1998), plant-parasitic nematodes of economic importance are a comparatively 

small, specialized group.  Although majority of plant-parasitic nematodes are root feeders, some 

species feed on aerial parts of plants (Jones et al., 2011). Plant parasitic nematodes are obligate 

parasites of plants feeding exclusively on the cytoplasm of plant cells (Williamson & Gleason, 

2003). Ten taxa of nematodes have been classified as highly economically important pathogens:  

Meloidogyne spp., Globodera and Heterodera spp., Pratylenchus spp., Radopholus similis, 

Ditylenchus dipsaci, Bursaphelenchus xylophilus, Rotylenchulus reniformis, Xiphinema index, 

Nacobbus aberrans, and Aphelenchoides besseyi (Jones et al., 2013).  

Nematode damage may go undetected due to lack of clear symptoms in the above-ground 

parts (Lilley et al., 2007). Symptoms are often confused with those caused by other pathogens, or 

by water and nutrient deficiency. Additionally, the strategy of parasitism differs in different 

genera of plant-parasitic nematodes. Sedentary endoparasites penetrate host celsl and establish 

permanent feeding sites, typically a giant cell or a syncytium. In contrast, migratory 

endoparasites do not form specialized feeding compartments, but rather feed inter- or intra-

cellularly throughout the plant during pathogenesis. 

The reniform nematode Rotylenchulus reniformis is a serious pathogen of multiple crop 

species. Reniform nematode is prevalent in tropical and subtropical regions of the world, and is 

particularly common in the southern USA. Reniform nematode has been documented to infect 

over 350 plant species, including many agronomically important vegetables, fruits, ornamentals, 
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fiber crops and weeds (Robinson et al., 1997). In the United States, reniform nematodes cause 

cotton losses estimated at $150 million annually (Robinson, 2007). Symptoms caused by 

reniform nematode are essentially indistinguishable from symptoms caused by water and nutrient 

deficiencies, and include reduced root growth and secondary root development, root necrosis, 

stunted growth, and foliar chlorosis.  

Losses due to reniform nematodes range from 40-60%, depending on temperature, 

humidity, crop conditions and soil populations (Jones et al., 2013). Since the reniform nematode 

is a sedentary semi-endoparasite, it does not penetrate completely into roots. Instead, it inserts 

about a third of its anterior body into roots and forms a feeding site called a syncytium (van 

Megen et al., 2009). Yield losses remain problematic, as the development of commercially 

viable genetic resistance to reniform nematode has met with limited success.  

Current strategies for controlling plant-parasitic nematodes 

 Although the existence of plant-parasitic nematodes has been known since 1743, their 

economic importance was not realized until the 1940s (Zasada et al., 2010).  At that time, the 

advent of soil fumigation practices began, which were widely used to control plant-parasitic 

nematodes for over forty years. Methyl bromide was the foremost chemical fumigant to control 

plant-parasitic nematodes, other soil-borne pathogens, and weeds in many high value crops. 

Various characteristics of methyl bromide made it ideal as a soil fumigant, including its broad-

spectrum nature, volatility (which allowed it to penetrate soil deeply), and its efficacy.  

Unfortunately, methyl bromide posed an extreme hazard to workers, applicators, and the 

environment, which led to its phase-out for agricultural and most other uses (Martin, 2003, 

Santos et al., 2006, Zasada et al., 2010).  



  5 

 Other chemicals developed as an alternative to methyl bromide have been used 

successfully as pre-planting soil fumigation treatments (Zasada et al., 2010). Examples include 

chloropicrin, metam sodium, metam potassium, and dazomet. Although none are as effective as 

methyl bromide, all have at least some degree of efficacy against plant-parasitic nematodes.  

Chloropicrin is almost as volatile as methyl bromide but has a narrower spectrum of activity, and 

is currently used in combination with other control methods (Duniway, 2002). Metam sodium 

and metam potassium exhibit considerably lower volatility, and their limited distribution in soil 

after application makes their efficacy inconsistent (Martin, 2003). In general, due to health and 

environmental risks, or limited consistency and efficacy, soil fumigants have only limited use in 

today’s agricultural systems for controlling the plant-parasitic nematodes. 

 Crop rotation, one of the most important agricultural practices since ancient times 

(Conklin, 1961), is an effective way to manage agricultural pests and diseases, including 

nematodes. This practice involves rotating the host crop with a non-host to keep the population 

density of the pathogen from increasing to damaging levels (Rodriguezkabana & Canullo, 1992). 

Although this technique sounds simple, in practice it is sometimes difficult to implement due to 

various biological and economical constraints. The first concern is that the economic return 

obtained from a low-value rotation crop may not match the return from a high-value crop, even 

with nematodes present at economically damaging levels. Crop rotation is also generally 

applicable only in annual production systems, and the duration of the rotated crop, its interaction 

with other pests, and the availability of other management practices may not be practical. 

 Biofumigation is a term used to describe the use of plants (generally of the Brassicaceae 

family) to control plant pests. This approach utilizes plant-produced secondary metabolites such 

as glucosinolates that have long been known to reduce nematode populations (Morgan, 1925). 
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Although this management practice is environmentally friendly and relatively economical, 

nematode management via biofumigation has not been consistent due to various factors such as 

the source of the metabolite, soil type, method of incorporation of plant material, soil 

temperature, soil moisture, and the plant developmental stage (Matthiessen et al., 2004). 

 Soil solarization, another cultural technique that has been utilized in some geographical 

locations to control plant-parasitic nematodes, was first described in 1976 (Katan et al., 1976), 

and has been widely used  as a pre-planting method to control various soil-borne pathogens. The 

practice of soil solarization involves using the sun to heat soil, which is covered with plastic 

mulch. Soil solarization, in combination with organic amendments, was highly effective in 

controlling nematodes (Oka et al., 2007). Although this management technique may not 

effectively control all plant-parasitic nematode species, it can potentially be integrated with other 

management practices to increase control. 

 Genetic resistance has been one of the most effective means to control plant-parasitic 

nematodes (Williamson & Kumar, 2006). Nematode resistance has been identified in several 

crops (Rossi et al., 1998, van der Voort et al., 1999, Bakker et al., 2003, Liu et al., 2012), with 

varying degrees of commercial application.  Hs1pro-1, the first nematode resistance gene to be 

isolated, conferred resistance against the sugar beet cyst nematode, Heterodera schachtii (Cai et 

al., 1997). Other nematode resistance (R) genes that are effective in agricultural systems include 

Mi-1 and Hero A from tomato (Milligan et al., 1998, Ernst et al., 2002), Gpa2 and Gro1-4 from 

potato (Bakker et al., 2003, Paal et al., 2004), and Rhg1 and Rhg4 from soybean (Weisemann et 

al., 1992, Kandoth et al., 2011). Various other R genes have been successfully mapped in potato, 

tomato, wheat, rice, pepper, and other plant species (Williamson & Kumar, 2006). 
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 It is important to note, however, that not all genes conveying nematode resistance are 

fully effective in production agriculture. For example, the Mi gene does not convey resistance at 

temperatures above 28°C, which limits its efficacy in warmer production regions (Williamson, 

1998). Hero A has a narrow range of efficacy, conferring resistance to G. rostochiensis but only 

partial resistance to G. pallida (Ernst et al., 2002). Hs1pro-1, although successful in conferring 

nematode resistance, has a deleterious effect on yield, (Panella & Lewellen, 2007). Although 

resistance genes are highly effective in controlling pathogens like plant parasitic nematodes, their 

deployment needs to be optimized in agricultural settings.   

Induced systemic resistance (ISR) is a type of non-specific resistance expressed when 

plants are exposed to elicitors such as cell wall fragments, plant extracts, or synthetic chemicals 

(Walters & Fountaine, 2009). Induced resistance is categorized into two categories: systemic 

acquired resistance (SAR) and induced systemic resistance (ISR). SAR is activated by exposure 

to various agents such as pathogens and chemicals. SAR is mediated through the production of 

salicylic acid (Spoel & Dong, 2012) and is activated against biotrophic pathogens. ISR, on the 

other hand, develops in response to plant colonization by beneficial microbes such as plant 

growth promoting rhizobacteria (PGPR) (Xiang et al., 2017), yeast (Lee et al., 2017) and fungi 

(Schouteden et al., 2015, Perez-de-Luque et al., 2017). The key hormones that mediate ISR are 

jasmonic acid (JA) and ethylene (ET) (Pieterse et al., 2014). Induced resistance can effectively 

suppress plant parasitic nematodes. For example, treatment of rice plants with beta-amino butyric 

acid (BABA) not only inhibited nematode penetration of roots, but also suppressed gall 

development (Ji et al., 2015). Similarly, treating tomato plants with Trichoderma harzianum 

isolate T-78 significantly reduced gall formation by priming SA- and JA- dependent pathways 

(Martinez-Medina et al., 2017). Additional approaches deployed to induce resistance in plants 
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against plant parasitic nematodes include biocontrol bacteria (Siddiqui & Shaukat, 2004), methyl 

jasmonate (Fujimoto et al., 2011), and mycorrhiza (Vos et al., 2013). Although induced systemic 

resistance has shown promise in controlling plant parasitic nematode population, their efficacy in 

field conditions have not been thoroughly explored.  

Application of harpin proteins as inducers of plant defense 

Harpin proteins, which are of bacterial origin, belong to type III secretion system and are 

determinants of hypersensitive response (HR) or pathogenicity (Lindgren, 1997). This was 

originally demonstrated through the use of hrp mutants, which failed to elicit hypersensitive 

response or pathogenesis (Lindgren et al., 1986, Yang et al., 2002, Sinn et al., 2008). Similar 

results were obtained by deletion of hpa1 or its orthologs in Xanthomonas spp., where reduced 

bacterial growth and disease symptoms were observed in host plants inoculated with mutants 

(Noel et al., 2002, Kim et al., 2004, Sgro et al., 2012). The mode of action of harpin induced 

defense is through the activation of multiple defense-signaling pathways (Tripathy et al., 2003). 

For example, transgenic tobacco expressing HrpN of Erwinia amylovora showed enhanced 

resistance to Botrytis cinerea (Jang et al., 2006). Additionally, the transgenic plants also showed 

increased growth and development. Additional effects of harpin treatment to plant cells include 

disruption of membrane physiology (Pike et al., 1998), inhibition of ATP synthesis (Xie & Chen, 

2000), activation of MAP kinase signaling pathways (Desikan et al., 2001) Plants treated 

exogenously with harpin generally show increased reactive oxygen species (ROS) and also the 

involvement of enzymes of the respiratory cycles, especially the citric acid cycle in mitochondria 

(Krause & Durner, 2004). Plants treated with harpin show an improvement in the overall growth 

of the plants (Livaja et al., 2008).  Additionally, plant responses to harpin treatment are due, in 

part, to widespread transcriptional reprogramming (Truman et al., 2006). Transcriptional 
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changes due to harpin treatments to Arabidopsis included genes regulating cell wall biogenesis, 

cellular communication and signaling (Livaja et al., 2008).  

The general increase in the immune response due to harpin treatment is through the 

activation of diverse signaling pathways like the MAP kinase pathway (Desikan et al., 2001), the 

salicylic acid pathway (Dong et al., 1999) and the ethylene responsive pathway (Chuang et al., 

2010). Activation of such diverse defense signaling pathways demonstrates the existence of a 

cross-talk between various signaling pathways. 

Utilizing nematophagous fungi as biological control agents against plant-parasitic 
nematodes 

Conceptually, biological control is an effective and ecologically friendly method to 

control plant pathogens (Li et al., 2015). Broadly defined, biological control is the use of living 

organisms or their metabolites to control pests that impact health and agriculture (Eilenberg et 

al., 2001). Nematophagous fungi have intriguing potential as biological control agents against 

plant-parasitic nematodes.  Based on their strategy of predation, nematophagous fungi can be 

broadly classified into three major categories: Nematode-trapping fungi, parasitic fungi, and 

toxic fungi (Siddiqui & Mahmood, 1996). Members of all three categories naturally prey upon 

nematodes and thus help keep populations in check in natural ecosystems (Yang et al., 2007a).  

One bottleneck to utilizing nematophagous fungi as biological control agents is a general 

lack of genomic resources.  With the advent of next-generation DNA sequencing, de novo 

genome sequencing of economically important fungi has expanded rapidly. Interestingly there 

are more than 200 species of nematophagous fungi that attack and parasitize nematode eggs, 

juveniles, and adults (Yang et al., 2007b). However, comparatively fewer genomes of 

nematophagous fungi have been sequenced, namely Arthrobotrys oligospora (Yang et al., 2011), 
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Pochonia chlamydosporia (Larriba et al., 2014), Drechslerella stenobrocha (Liu et al., 2014), 

Purpureocillium lilacinum (Prasad et al., 2015), Monacrosporium haptotylum (Meerupati et al., 

2013), and Hirsutella minnesotensis (Lai et al., 2014).  

Nematophagous fungi have been studied for many years at the University of Arkansas.  

One particularly well-studied nematophagous fungus, designated ARF18 (also known as TN14) 

(Kim & Riggs, 1991), was highly efficacious against adults and juveniles of reniform and cyst 

nematodes (Timper & Riggs, 1998, Wang et al., 2004). ARF18 has considerable potential to be 

developed as an effective biological control agent against nematodes that cause economic 

damage. However, the taxonomic identity of this important fungus has not been resolved, and the 

mechanisms through which the fungus parasitizes nematodes are poorly understood. 

Molecular genetics research in nematophagous fungi 

 Common approaches to determine gene function include studying gene transcription, 

translation, and protein-protein interaction. In filamentous fungi and oomycetes, functional 

genomics has expanded rapidly in recent years, which has been facilitated by advancements in 

several key areas (Weld et al., 2006). For example, transformation systems have been developed 

for taxonomically diverse fungi, which makes a wide range of fungal species amenable to 

genetic manipulation such as targeted gene deletion, creation of random mutants (Ridenour et al., 

2012, Vela-Corcia et al., 2015, Niu et al., 2016), and expression of functionally diverse reporter 

constructs (Gressler et al., 2015).  Advancements in fungal functional genomics have also been 

augmented by increased availability of genomic resources.  

Despite the potential value of nematophagous fungi in controlling plant parasitic 

nematodes, research to identify mechanisms of pathogenicity in these organisms is very limited. 
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Recently, techniques for functional genomics have been developed for Purpreocillium lilacinum, 

including the creation of plasmids, optimization of transformation methods, and identification of 

selectable markers, and targeted gene disruption was achieved where in the cytochrome oxidase 

(COX1) gene was successfully knocked out via Agrobacterium-mediated transformation (Yang 

et al., 2016). Similar knockout protocols have been developed in Arthrobotrys oligospora to 

target genes via PEG-mediated transformation of protoplasts (Liang et al., 2015, Liang et al., 

2017). Additionally, a targeted gene knock-out system has also been developed for Drechmeria 

coniospora (Lebrigand et al., 2016). 

 Although the genomes of a few nematophagous fungi have been sequenced, molecular 

genetic studies to understand mechanisms of pathogenicity have not been performed. Studies to 

understand pathogenicity have mostly been confined to more descriptive approaches, such as 

transcriptomic or proteomic studies during nematode parasitism (Yang et al., 2011, Liu et al., 

2014). These studies have identified enzymes such as subtilisin-like serine proteases, chitinases, 

and several peptidases that are implicated in virulence. However, information validating whether 

these enzymes are involved in pathogenesis is limited.  

 Cercospora zeae-maydis - a model system to develop tools for molecular genetic studies 

To better understand and to potentially manipulate nematophagous fungi, it is critical to 

develop novel tools of molecular genetics in fungal species. An important plant pathogenic 

fungus can potentially serve as a beneficial target for such studies, because of existing 

knowledge and public resources available, and techniques and methods optimized for the 

species. Cercospora zeae-maydis, one of the causal agents of gray leaf spot, is an important 

pathogen of corn worldwide (Shim and Dunkle 2002). C. zeae-maydis is a foliar pathogen that 
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produces the non-host specific phytotoxin cercosporin during pathogenesis. Cercosporin was 

first isolated from Cercospora kikuchii (Kuyama and Tamura 1957), and belongs to a family of 

perylenequinones, that are activated by light (Bluhm et al., 2008). The toxin produces reactive 

oxygen species including singlet oxygen and superoxide radicals, which cause damage to the cell 

membrane through lipid peroxidation, loss of integrity and leakage resulting in cell death 

(Lousberg et al, 1979). Cercosporin is produced via a polyketide synthase pathway and is 

encoded by a cluster of 8 genes named CTB1-8 (Cercosporin Toxin Biosynthesis; Chung et al., 

2003). The genes in this cluster have been characterized in Cercospora nicotianae (Newman and 

Townsend, 2016), and are CTB1- an iterative, nonreducing polyketide synthase-encoding gene, 

CTB2- a methyltransferase, CTB3- a monooxygenase/ methyltransferase, CTB4 – a major 

facilitator superfamily transporter, CTB5- an oxidoreductase, CTB6- ketone reductase, CTB7-an 

oxidoreductase, and CTB8- a zinc finger transcription factor.  

We have identified the complete cluster in C. zeae-maydis (CTB1-8) required for 

synthesis and transport of cercosporin. The cluster resides in scaffold 12 of the genome and 

spans a region of around 18 Kilobases. Although the genes (CTB cluster) directly regulating the 

production of cercosporin in different Cercospora species have been identified,  the factors that 

regulate the biosynthesis of this important secondary metabolite are poorly understood.  C. zeae-

maydis is a model system to dissect cercosporin regulation in filamentous fungi. It is easily 

amenable to different transformation techniques and other genetic tools. Additionally, the 

production of cercosporin can be screened and quantified in-vitro (Winfred Peck-Dorleku 2013).  

Forward genetic screens have substantially advanced the identification of genes 

underlying phenotypes in filamentous fungi (Korn et al., 2015, Pfannenstiel et al., 2017). 

However, a key bottleneck is characterizing genomic lesions associated with the insertion of 
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mutagenesis cassettes. Methods developed previously include plasmid rescue (Tam and Lefebvre 

1993), thermal asymmetric interlaced PCR (TAIL PCR; Dent et al. 2005), restriction enzyme 

site-directed amplification PCR (Gonzalez-Ballester et al, 2005), 3’- rapid amplification of 

cDNA ends (Meslet-Cladiere and Vallon 2012), and site finding PCR (Li et al, 2012). Each of 

these methods has limitations, particularly regarding throughput. Recently several methods have 

been utilized, such as ChlaMme seq (Zhang et al, 2014), using next-generation sequencing to 

correctly identify the site of the genomic lesion. However, the methods currently in use are 

limited by sequencing depth and the number of samples that can be processed simultaneously.  

Target capture (also called target-enrichment) sequencing selectively enriches specific 

regions of genomes or transcriptomes for sequencing (Mamanova et al., 2010). Enrichment of 

specific regions of the genome/transcriptome not only improves coverage to facilitate differential 

expression analyses, but also makes sequencing more economical by pooling numerous samples 

in a single reaction (Craig et al., 2008, Cronn et al., 2008, Harismendy & Frazer, 2009). The 

performance and feasibility of target enrichment are based on various parameters including the 

percentage of target regions captured, specificity to the intended target regions, uniformity of 

target capture, reproducibility of the experiment, cost involved in sequencing, ease of use, and 

the amount of DNA/RNA required as the starting material (Mamanova et al., 2010). Several 

applications utilizing target enrichment technology have been developed for genetic research, 

including extracting and cloning resistance genes (Witek et al., 2016) and detection of mutations 

in particular regions of the genome (Schmitt et al., 2015). Recent approaches to refine target-

enrichment technology have made it practical for use in several applications such as 

determination of T-DNA insertion (Inagaki et al., 2015), and a more recent Southern-by-

sequencing technology (Zastrow-Hayes et al., 2015). However, applications of target-capture 
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sequencing in filamentous fungi research are limited, although its potential so serve as a 

powerful tool for basic and applied research in substantial.  

The overarching goal of this dissertation is to identify alternative methods to control plant-

parasitic nematodes and develop molecular genetics tools to augment the management strategies 

of plant-parasitic nematodes. The work in the chapters below aim to identify harpin and ARF18 

as a potential biological control against plant-parasitic nematodes, identify harpin-induced 

defense response in soybean plants against reniform nematodes, and the nature of the defense 

response- induced constitutive or priming response, and utilize Cercospora zeae-maydis as a 

model system to develop target-enrichment sequencing to accelerate molecular genetics studies. 

The experiments and their results have been organized into the following chapters: 

Chapter 2 describes the efficacy of harpin protein during different crop-nematode interactions. 

This chapter aims to identify a system that shows a response to harpin proteins in greenhouse 

conditions. The results from this chapter demonstrate that harpin protein helps to significantly 

reduce reniform population in soybean plants. 

Chapter 3 aims to identify the signaling pathway induced in soybean during harpin protein 

treatment using RNA sequencing and development of transgenic soybean lines. This chapter 

would help us identify potential biomarkers that are regulated by harpin during defense response 

against reniform nematodes in soybean. 

Chapter 4 aims to sequence and assemble the genome of the unnamed nematophagous fungal 

isolate ARF18 to provide taxonomic placement of the fungus and identify genes that would 

provide clues on its potential as a nematophagous fungus. The chapter discusses the details of the 
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genome sequencing, assembly and annotation and identification of putative nematode parasitism 

genes. 

Chapter 5 aims to develop tools and methods for molecular genetics to identify genes regulating 

cercosporin production in Cercospora zeae-maydis an important pathogen of corn with a 

potential application in functional genomics of nematophagous fungi to augment nematode 

management strategies. 
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Treatment of Soybean and Cotton Seeds with Harpin Protein Demonstrates its Efficacy 
Against Reniform nematodes 

 

 

 

 

 

 

 

 

 

 

 

 

 



  28 

Abstract 

Plant parasitic nematodes are one of the most destructive pathogens of crop plants, 

causing billions of dollars losses annually. Chemicals are widely used method for controlling 

plant parasitic nematodes but cause widespread concern for human health and environmental 

hazard consequently effective alternative methods are needed for nematode. In this research, 

trials were conducted in the green house to study the efficacy of harpin protein treatments to 

soybean and cotton seeds and their effect on plant growth and on reniform and cyst nematode 

populations in soil. When samples were analyzed 45 days after inoculation, harpin protein 

treated soybean and cotton seeds showed significantly less reniform population in soil compared 

to control non-treated plants. However, plant root and shoot weight did not significantly differ 

among treatments. Similar experiments were performed with soybean-cyst pathosystem and 

treating seeds with harpin protein did not affect the population of cyst nematodes in soil. 

Additionally, soybean seeds soaked in harpin solution were analyzed with scanning electron 

microscopy. The harpin proteins formed a coating over the soybean seed, suggesting that harpin 

protein interacts with the surface of soybean seeds. This is the first report on efficacy of harpin 

treatments to seeds on reniform nematode population in soil. The data from the chapter suggest 

the possibility in utilizing harpin proteins as a component of nematode control and guide the 

usage of harpin proteins as an integral component for management of reniform nematodes.  
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1. Introduction 

 Plant-parasitic nematodes (PPNs) are obligate, biotrophic pathogens and one of the major 

pests of economically important crops globally. More than 4,100 species of plant-parasitic 

nematodes have been described (Decraemer and Hunt, 2006), and nematodes cause severe losses 

to agricultural crops worldwide. Economic damage due to plant-parasitic nematodes exceeds 

$150 billion annually (Abad et al., 2008). A typical nematode infestation averages more than 10 

per cent annual yield loss in productivity, and losses can exceed 20 per cent in crops such as 

bananas (Sasser and Freckman, 1986). Plant-parasitic nematodes have evolved various strategies 

to interact with host plants (Gheysen and Mitchum, 2011); but have developed a common mode 

of infecting plants with their hollow spear-like mouthpart called the stylet. Stylets serve several 

purposes including infecting host roots, penetrating host cells, injecting virulence factors, and 

deriving nutrients from their hosts. Plant-parasitic nematodes have also evolved diverse lifestyles 

of infecting plants. Although, nematodes can infect different regions of the plants, root-infecting 

nematodes are most damaging.  

Of the various plant parasitic nematode species, the three most economically important 

nematodes in the US are the root-knot nematode (RKN), the soybean cyst nematode (SCN), and 

the reniform nematode. The reniform nematode (RN), Rotylenchulus reniformis Linford & 

Oleveira, is a sedentary semi-endoparasite and is widespread in the Southern United States, 

including Alabama, Mississippi, and Louisiana, and has a broad host range. RN parasitizes more 

than 300 plant species, including vegetables, fruits, and weeds (Robinson et al., 1997; Lawrence 

et al., 2008). Cotton and soybean are the major crops in the Southern United States affected by 

RN (Stetina et al., 2014), and it is considered a major species affecting soybean yield after root 

knot and cyst nematode (Robinson et al., 1997). In US alone, the loss caused due to RN in cotton 
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is estimated $150 million (Robinson, 2007) while a loss of around 4.8 million bushels of soybean 

in the southern US states alone is reported (SSDW, 2015). The symptoms caused due to RN are 

very similar to nutrient deficiency. Although they cause reduced root growth and secondary root 

development, the symptoms are practically unobservable in the roots. Major symptoms of the 

RN infection include root necrosis, stunted growth, chlorosis in the leaves and incomplete pod 

filling (McGawley et al., 2011). Depending on the humidity, temperature, condition of the crops 

and nematode population in soil, RN can cause 40-60% loss in yields (Jones et al., 2013). The 

cyst nematode is an obligatory biotroph and is common throughout the world. The soybean cyst 

nematode is a major threat to soybean production worldwide and is responsible for an estimated 

loss exceeding $1.2 billion in the United States (Gardner et al., 2017). One of the most important 

features of this nematode is its ability to persist in the soil as cysts. The cyst nematode can 

survive prolonged periods without the presence of host. This makes the control of this nematode 

difficult even by rotation with non-hosts. Crop rotation and planting resistant varieties are widely 

used methods for the control of the cyst nematodes. However, the use of resistant varieties is 

limited and the nematode has developed different races to overcome plant resistance (Shi et al., 

2015; Zhou et al., 2017). The control of this nematode has been problematic especially due to 

discontinuation of chemical pesticides. 

Until recently, management practices of plant-parasitic nematodes relied primarily on 

chemicals like aldicarb and methyl bromide. However, these chemicals pose a serious concern 

for the human health and the environment. Additionally, chemical control strategies do not result 

in long-term suppression of nematodes and are not cost-effective (Molinari, 2011). Currently, 

chemicals like abamectin, thiodicarb, 1,3-dichloropropene, and oxamyl are being deployed to 

control plant parasitic nematodes (Kinloch and Rich, 2001; Lawrence and McLean, 2002; Faske 
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and Starr, 2006). Although strategies like soil solarization, crop rotation, resistance cultivars, 

resistance genes transfer, RNA interference (RNAi), biological control and regulatory 

approaches have been deployed as alternatives to chemical control, however, these control 

strategies have met with limited success. Induced immunity refers to a form of resistance 

developed in response to an external stimuli (van Loon et al., 1998). Induced immunity usually 

results in a global response in plants and acts against wide variety of plant pathogens like 

bacteria, fungi, viruses and nematodes (Hammerschmidt, 1999). Additionally induced systemic 

resistance causes enhanced photosynthesis response, increased nitrogen uptake, and less abiotic 

stress (Shoresh et al., 2010). Thus, use of plants own defense (natural or induced), therefore, 

could be developed as an alternate, effective and environmentally safe strategy to control plant 

parasitic nematodes.   

Harpin proteins are components of type III secretion system (T3SS) of gram negative, 

plant-pathogenic bacteria which are encoded by hypersensitive response and pathogenicity (hrp) 

genes (Tampakaki et al., 2010). These proteins are heat stable, acidic, glycine rich and lack 

cysteine residues (Choi et al., 2013). With the discovery of HrpN in Erwinia amylovora, the 

causal agent of fire blight of cherry apple, it was found that these proteins could elicit a 

pathogen-independent response in plants (Wei et al., 1992). Harpin proteins, when applied on 

non-host plant species, trigger hypersensitive response and systemic response against wide range 

of pathogens, including bacteria, fungi, oomycetes, viruses, and insects (Dong et al., 1999; Dong 

et al., 2004; Reboutier et al., 2007; Che et al., 2011). However, purified forms of harpin proteins 

are known to induce systemic response even when sprayed on plants, which is independent of 

HR pathway. Previous work done in tomato, Arabidopsis, and tobacco have shown that harpin 

proteins elicit diverse immune responses, that are mediated through salicylic acid, ethylene, or 
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jasmonic acid (Dong et al., 1999; Kariola et al., 2003; Sohn et al., 2007; Chuang et al., 2010). 

Additionally harpin proteins are known to induce production of reactive oxygen species (ROS), 

ion-mediated pore formation, and callose deposition (Kvitko et al., 2007; Oh et al., 2007; 

Reboutier and Bouteau, 2008; Engelhardt et al., 2009; Haapalainen et al., 2011). Although the 

induction of resistance in plants by harpin proteins is well documented, the mechanistic action 

underlying this induction of resistance is understudied. 

 Though, roles of harpin proteins inducing plants defense response against diverse 

pathogens has been well studied but not against plant parasitic nematodes. The objective of this 

study was to identify the efficacy of seed treatment of harpin protein on the population of 

reniform and soybean cyst nematode. In this study soybean seeds treated with harpin proteins 

show significant reduction in reniform nematode population in soil. The experiments performed 

on soybean and R. reniformis pathosystem suggest that harpin proteins induce responses in 

soybean plants that is adverse to the reniform nematodes in soil and provide evidence that harpin 

proteins activate defense in soybean plants against the reniform nematodes. This study could 

potentially open new avenues for soybean growers to manage reniform nematodes and offer new 

approaches without using harmful chemicals. 

2. Materials and methods 

2.1 Nematodes culture and collection 

R. reniformis was propagated and maintained on susceptible cotton (Gossypium 

hirsutum) plants in green house conditions. For establishing culture of R. reniformis nematodes, 

cottonseeds were sown in 10 cm clay pots filled with 1:1 sterilized sand and field soil. Upon 

germination of cotton plants, after two weeks, the pots were inoculated with mixed population of 



  33 

3,500 vermiform R. reniformis. Soybean cyst nematodes were grown in susceptible Lee variety 

of soybean. Soybean seeds were sown in a mixture of sterilized sand and field soil in styro-foam 

cups. After germination, the pots were inoculated with eggs extracted from cysts. Plants were 

watered regularly, and Miracle grow (Scotts Company LLC,Marysville, OH) fertilizer (24-8-16) 

was applied as a source of nutrients for plants. The pots were maintained in green house 

conditions at temperature of 28-30 °C and constant humidity with 16:8 light dark hours for 

optimum growth and propagation of the nematodes. 

2.2 Extraction of nematodes for inoculum preparation 

The vermiform stages of R. reniformis were extracted from the soil samples using the 

density centrifugation technique (Jenkins, 1980). To collect mixed vermiform stages of 

nematodes, soil along with roots of cotton plants were carefully removed from pots and placed in 

a bucket and washed gently with running water to separate the soil from roots of plants. The soil 

was stirred in water for 30 seconds and allowed to stand for another 30 seconds to allow larger 

soil particles to settle at bottom of bucket while nematodes and smaller soil particles remain 

suspended in solution (Ganji et al., 2013). The nematode and soil water suspension was gently 

decanted through a series of sieves of pore sizes 150 μm pore and 38 μm. Nematodes and finer 

soil particles were collected from the 38 μm sieve by decanting with water. To further purify the 

vermiform nematodes from finer soil particles, density centrifugation technique was utilized. 

Briefly, nematode and finer soil suspension were placed in 50 ml tubes and centrifuged at 1400 

rpm for 5 minutes at room temperature. Upon centrifugation, nematodes along with finer soil 

particles pellet at the bottom of the tubes. Supernatant was carefully discarded to avoid 

disturbing the pellet, containing soil particles and nematodes. The pellet was then mixed with 

30% sucrose solution and stirred using a spatula ensuring that pellet was stirred from the bottom 
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of tubes. This suspension was spun at 1400 rpm for 3 minutes at room temperature. The finer soil 

particles settle at the bottom while the vermiform nematodes float in the 30% sugar solution, 

which was carefully decanted through 25 μm pore sized sieve to collect the vermiform 

nematodes. The nematodes were carefully washed with running water to remove all sugar 

solution and avoid killing nematodes by osmotic stress. Vermiform nematodes collected on 25 

μm sieves were re- suspended in sterile water and counted under dissecting microscope to 

determine population density. 

 Eggs of soybean cyst nematodes were extracted from freshly harvested cysts previously 

inoculated in Lee variety of soybean. Roots along with soil mass were put in bucket and washed 

with running water to separate the soil from the root mass. Suspension was agitated thoroughly 

to mix the soil and the water and allowed to stand still for 2 minutes to allow heavier soil 

particles to settle down. The suspension was then passed through a series of sieves with pores of 

sizes 420 μm at the top and 250 μm at the bottom. Cysts were collected over the sieve with pore 

size 250 μm. The cysts were then carefully washed with water and collected in a clean beaker 

with water. To collect eggs, cysts are pulverized thoroughly with glass pestle. Egg masses were 

collected by passing the pulverized cyst suspension through a 37 μm sieve. Eggs were re-

suspended on sterile water, and population density was determined by counting the eggs in a 

counting dish.  

2.3 Seed treatments and planting 

 Harpin protein was obtained as Messenger (1% a. i. harpin Ea), an industrial formulation 

from Plant Health Care Inc. NC, US. Seed treatments were applied in two different ways. For dry 

treatment, soybean and cottonseeds were dusted with harpin proteins at the rate of 0.25 oz per 
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100 pounds of seed. In separate treatment method, seeds of soybean and cotton were soaked in 

10 μg/ml harpin protein solution in sterile water for one hour before planting. Tween-20 (0.02%) 

was added as surfactant to facilitate proper binding of harpin onto the seed surface. Seeds soaked 

in Maltrin-M100 + 0.02% Tween 20 served as control. After treating soybean and cotton seeds 

with harpin Ea, seeds were immediately planted into 10 cm Styrofoam pots that were filled with 

1:1 sterilized field soil and sand mixture. Holes were made at base of the pots to allow drainage 

of excess water. The pots were placed on benches in green houses. Initially, two seeds were 

planted in each styrofoam pot. After germination, plants were thinned to contain one plant per 

pot. Plants were maintained in green house conditions of 28-30 °C, constant humidity, 16:8 

hours light: dark cycle and regular watering. In the first experiment conducted with treating 

soybean and cotton seeds with harpin protein at 0.25oz/100 lb seeds the plants were not 

randomized. For all the subsequent experiments, pots were placed in a completely randomized 

design.  

2.4 Inoculation of nematodes into the soil 

Inoculations of all vermiform nematodes and egg masses into soil were done at two-leaf 

stage where two holes, about 2 cm deep, were created around the base of the soybean and cotton 

plants. Water suspension containing the inoculums was stirred at regular interval to prevent 

nematodes and eggs from settling at bottom of container. Nematodes were pipetted out of 

suspension using a 1 ml pipette and about 3,500 vermiform R. reniformis of mixed juvenile and 

adult stages were carefully inoculated into the 2 cm holes around the plants. Similarly, for 

soybean cyst nematodes, around 1,500 eggs per plant were inoculated at base of each plant. 

Holes were covered immediately after inoculation to prevent splashing of nematodes during 

watering of pots. 
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2.5 Analyses of plant phenotypes and nematode population 

The analyses of plant phenotypes and nematode population were performed six weeks 

after inoculation of nematodes. Firstly, shoots were cut off from the base of the plants. Roots 

were extracted from soil by gentle agitation in a bucket containing water. After complete 

removal of soil particles from the roots, both shoots and roots were padded dry in a paper towel. 

Fresh weight of shoot and roots were measured and samples were dried in hot air oven at 90 °C 

overnight.  Dry weights of roots and shoots were measured, separately.  

 To analyze reniform population in soil, roots were removed, and soil suspension in water 

was passed through a series of screens of pore sizes 150 µm and 38 μm. RN that collected over 

the sieve with pore size 38 μm were re-suspended in water. Because this suspension also 

contained very fine soil particles that need to be removed for counting the reniform nematode 

population, soil and nematode suspension was then centrifuged in 30% sugar solution to separate 

the reniform nematodes from finer soil particles. Reniform nematodes were collected over a 

sieve with pore size 25 µm and re-suspended in clean water. The reniform nematodes were 

visualized and counted under a dissecting microscope. 

To collect SCN, soil and roots were removed from pots and washed with running water in 

a bucked. Soil particles were completely washed off, suspension was mixed thoroughly and 

allowed to stand still for 2 minutes to ensure that heavier soil particles settled at the bottom. 

Water was then passed through a series of sieves of sizes 420 µm and 250 µm. SCN are large 

enough to collect over a lower sieve with pore sizes of 250 µm. Cysts were counted on a plate 

using a dissecting microscope.  



  37 

 The statistical analyses were performed in the R studio environment. For two treatments, 

Welch t-test was performed at significance level of P ≤ 0.05. For analyses of multiple treatments, 

ANOVA was performed to identify the presence of significant difference between treatments 

followed by Tukey's HSD test for multiple comparisons at P ≤ 0.05. Difference in variance was 

performed by Bartlett test at significance level of P ≤ 0.05.  

2.6 Scanning Electron Microscopy of soybean seeds soaked in harpin 

Scanning Electron microscopy of soybean seeds soaked in harpin protein solution was 

performed to visualize localization of the harpin protein on the seed surface. Briefly, the soybean 

seeds were soaked in harpin protein solution at 100 µg/ml concentration for one hour. For visual 

purposes, this concentration used was 10x higher than that used for seed treatments during green 

house assays. However, concentration of the inert material was increased to the same ratio. 

Tween-20 (0.02%) was added as a surfactant to facilitate proper binding of harpin protein onto 

the seed surface. Similarly, a control was set up with 100 µg/ml solution of Maltrin-M100 (inert 

material without the harpin protein component), with Tween-20 of 0.02 % concentration. 

Soybean seeds were soaked for one hour at room temperature. After one hour of complete 

soaking, the seeds were removed and air-dried in sterile conditions at 30 °C over night to 

completely remove the moisture. The surface of the seeds were mounted onto stubs and coated 

with 3 nm thin film of gold and then visualized under scanning electron microscope at the 

Institute of Nanosciences and Engineering, University of Arkansas.  
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3. Results 

3.1 Effect of harpin protein treatment on plant height 

In the presence of RN seed coating or dusting with harpin protein did not show consistent 

increase in plant height compared with untreated soybean seed (Figures 2.1- 2.3). Additionally, 

experiments conducted with different methods of seed treatments also did not have significant 

differences in plant height, when compared with the control untreated samples (Figure 2.10).     

 3.2 Effect of harpin protein treatment on plant biomass 

Treating soybean seeds with harpin protein does not have consistent affect on plant 

biomass (2.4-2.6). Additionally, experiments with different methods of harpin protein treatments 

showed no significant increase in plant biomass (Figures 2.11-2.14), compared with untreated 

plants. Under RN infection, soybean plants that were treated with harpin protein had same fresh 

biomass as that of plants that were untreated. Additionally, dry weights were analyzed and it was 

observed that harpin protein treated samples had no improvement in plant growth compared with 

untreated samples.  

3.3 Effect of harpin protein treatments on nematode populations 

Seed coating or seed dusting resulted in reductions in reniform population compared with 

untreated control plants (Figure 2.7). Although, there was also a slight reduction in RN 

population from cotton plants that were treated with harpin protein, the reduction was not 

significant statistically compared to untreated control plants (Figure 2.8). Experiments conducted 

with SCN demonstrated that treating soybean seeds with harpin protein prior to planting showed 

no changes in the soybean cyst nematode population in soil (Figure 2.9).  Additionally, the data 
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from different application methods of harpin protein showed significant reduction in reniform 

population in soil compared with control (Figure 2.15). However, RN densities did not differ 

between two different treatment application methods when compared six weeks after inoculation. 

Coating soybean seeds with harpin protein as recommended by manufacturer (0.25oz/100 lb 

seeds) before planting or soaking soybean seeds in 10 μg/ml harpin protein solution had similar 

efficacy on RN population densities. The experiment with different harpin protein treatments 

was repeated with similar response to RN population densities. While the treatments differed 

significantly from the control untreated plants, there was no significant difference between 

different treatment methods (Figure 2.15). 

3.4 Harpin protein aggregates on the surface of soybean seeds 

To investigate the localization of harpin proteins on soybean seeds after seed treatment, 

we performed scanning electron microscopy of soybean seeds soaked in harpin protein and 

control. Based in the observations of SEM of soybean seed surface, the harpin protein appears to 

form an aggregate on surface seeds soaked for one hour in 100 μg/ml harpin protein solution. 

However, soybean seeds soaked in a control solution of Maltrin-M100 (inert component of the 

formulation) of equal concentration did not show any visual aggregation of the inert material on 

the seed surface (Figure 2.16). The formation of the aggregate in seeds soaked in harpin protein 

solution is more apparent in higher magnification. The harpin protein aggregates are formed 

throughout the seed surface and appear as thin layer covering the seed surface. 

4. Discussion 

 When challenged by pathogens, plants mount numerous defense responses including 

production of toxic compounds, elicitation of hormone signaling pathways, and expression of 
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pathogenesis related proteins. Harpin proteins are elicitors of bacterial origin and are components 

of the Type III secretion system (T3SS), which help in delivery of bacterial effectors directly into 

cytosol (Valls et al., 2006). Harpin proteins were generally thought to elicit just the 

hypersensitive response; however increasing evidence suggests diverse roles for these proteins, 

including induction of systemic resistance and improvement of plant vigor (Wang et al., 2007).  

Previous studies demonstrated that exogenous application of harpin proteins onto plants induced 

multiple defense pathways mediated by salicylic acid, jasmonic acid, and ethylene (Shao et al., 

2008) and resulted in increased resistance against diverse pathogens like bacteria, oomycetes, 

fungi, virus, and insects, as well as abiotic stresses like drought (Dong et al., 1999; Dong et al., 

2004; Jang et al., 2006; Chuang et al., 2010; Zhang et al., 2011a; Zhang et al., 2011b). However, 

the role of harpin proteins in nematode resistance has been understudied. Findings from these 

experiments with harpin and reniform nematodes demonstrate that treating soybean and cotton 

seeds with harpin before planting can effectively reduce R. reniformis population in soil under 

green house conditions. Seeds of soybean and cotton that were either coated with harpin 

suspension or soaked in harpin solution for one hour before planting showed a significant 

reduction in R. reniformis population in the soil at six weeks after inoculation. The research 

presented in this chapter is the first evidence of the efficacy of harpin proteins against R. 

reniformis. This suggests the potential of utilizing harpin for management of reniform 

nematodes. However, molecular mechanisms underlying harpin mediated response of soybean, 

especially during reniform nematode infection are unclear.  

In this study, difference in plant growth parameters between harpin treated and control 

plants were not consistent. Similar results were observed from previous experiments conducted 

in tomato treated with harpin protein (Obradovic et al., 2004) and from field experiments 
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conducted in Arkansas (unpublished). However, other reports have demonstrated the effect of 

harpin treatment on plant growth phenotypes (Dong et al., 2004; Chuang et al., 2010; Li et al., 

2014). One explanation for variability in plant phenotype among experiments could be that 

inducing resistance against pathogens in plants imposes a fitness cost, resulting in reduced plant 

growth and reproduction (Cipollini et al., 2003). For example, an ortholog of apple HrpN 

interacting protein in Arabidopsis, AtHIMP, is a negative regulator of growth (Oh and Beer, 

2007). Similarly, inhibition of growth was observed in Nicotiana tabacum plants after treatment 

with harpin protein (Dimlioglu et al., 2015). 

RN is prevalent in the southern United States, and parasitizes more than 300 plant 

species, including cotton and soybean (Robinson et al., 1997). Although RN is more problematic 

in cotton, a shift in acreage from cotton to soybean could pose a serious threat to soybean 

production due to this pathogen. Although some soybean cultivars contain resistance to reniform 

nematode (Robbins and Rakes, 1996; Robbins et al., 2002), undesirable agronomic traits 

associated with these cultivars make them less suitable. With discontinuation of chemical 

treatments to control plant parasitic nematodes, deployment of elicitors to induce host resistance 

is advantageous due to simplicity in application, environmentally sustainable, and cost effective 

(Stetina et al., 2014). Elicitors are molecules that trigger defense response in plants through 

activation of complex signaling pathways and considered an effective alternate approach to 

control plant pathogens (Vallad and Goodman, 2004; Bruce, 2010). Previous work demonstrated 

the effect of elicitors like methyl jasmonate (JAME) and salicylic acid (SA) in reducing the 

reniform nematode population in soil by reducing fecundity (Soler et al., 2013). These elicitors 

induced plant defenses by activating hormonal signaling like salicylic and jasmonic acid. 

Although harpin induces plant resistance against variety of pathogens, its role in activating plant 
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defenses against plant parasitic nematodes such as the reniform nematode has not been reported. 

The greenhouse experiments conducted with soybean seeds treated with harpin protein showed 

significant reductions in RN population compared with untreated control plants but did not 

consistently influence plant growth. Additionally, treating soybean seeds with harpin proteins 

developed a coat around soybean seeds, as evident from scanning electron microscopy of 

soybean seeds, whereas a coating was absent on seeds soaked in Maltrin-100  (the inert material 

used in Messenger formulation). The formation of a coating on the soybean seed surface by 

harpin proteins has not been reported previously. Scanning electron micrographs of soybean 

seeds soaked in harpin could suggest a mode of action on how an elicitor like harpin attaches 

onto the seed surface and results in activation of defense response.  

Plants possess pattern recognition receptors (PRRs), which can recognize specific 

patterns in microbial molecules called pathogen- or microbe- associated molecular patterns 

(PAMPs/MAMPs), and provide PAMP triggered immunity (PTI) (Boller and Felix, 2009; 

Lacombe et al., 2010). However, the role of such receptors on seed surface has been 

understudied. Studies, however, have shown the involvement of plant lectin receptor-like kinases 

in plant vigor and immunity during germination (Cheng et al., 2013). Previous research on 

Arabidopsis treated with harpin showed increased root and shoot growth and induced resistance 

against green peach aphids (Dong et al., 2004). The mechanism underlying the recognition of 

harpin proteins by seeds and transmission of signals during germination is unknown. Soybean 

contains proteins that bind to specific elicitors like syringolide, which are highly expressed in 

seeds (Ji et al., 1998). A similar mechanism of recognition to harpin proteins could exist in 

soybean seeds responsible for induction of resistance against nematodes in later stages of growth. 
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Plants do possess different receptors in cell walls to recognize harpin proteins (Lee et al., 2001; 

Fontanilla et al., 2005), however, their induction and expression in seeds in unknown. 

 Plants parasitic nematodes are serious threat to crop yield and productivity. With the loss 

of some efficacious chemical nematicides nematodes, the search for alternative controls has met 

with limited success. Since the discovery of harpin protein's role in activating plants defense 

against major plant pathogens, this research analyzes novel function of harpin that seed 

treatments can activate defense in roots against plant parasitic nematodes. Based on these 

findings, harpin proteins could provide an additional tactic for nematode management. 

Additional advantages include ease of application, user and environmental safeties, and cost 

effectiveness. Although the exact mechanism of harpin proteins against reniform nematodes 

remains to be seen, the mechanism could be through activation of salicylic acid mediated 

pathway, a hormone that predominates in systemic acquired resistance (SAR) during pathogens 

infection. Taken together, harpin protein can act as an important component of nematode 

management in conjunction with other methods. 
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Figure legends 

Figure 2.1 Soybean plant height measurement with different harpin protein treatments, and 
reniform infection. Seeds of soybean were coated with harpin protein @ 0.25 oz/ 100 lb seeds. 
Reniform nematodes (RN) were inoculated at two-leaf stage. All measurements were taken 6 
weeks after inoculation of reniform nematodes. 

Figure 2.2 Cotton plant height measurement with different harpin protein treatments, and RN 
infection. Cottonseeds were coated with harpin proteins @ 0.25oz/ 100 lb seeds. RN were 
inoculated at two-leaf stage. All measurements were taken 6 weeks after inoculation of reniform 
nematodes. 

Figure 2.3 Soybean plant height with different treatments and soybean cyst nematode (SCN). 
Seeds of soybean were coated with harpin protein @ 0.25oz/ 100 lb seeds. Eggs of soybean cyst 
nematode were inoculated at two-leaf stage. All measurements were taken 6 weeks after 
inoculation of SCN. 

Figure 2.4 Fresh soybean biomass with different harpin protein treatments and RN inoculation. 
Seeds of soybean were coated with harpin protein @ 0.25oz/ 100 lb seeds. RN were inoculated at 
two-leaf stage. All measurements were taken 6 weeks after inoculation of RN. 

Figure 2.5 Fresh cotton biomass under different harpin protein treatments and RN inoculation. 
Cottonseeds were coated with harpin protein @ 0.25oz/ 100 lb seeds. RN were inoculated at two-
leaf stage. All measurements were taken 6 weeks after inoculation with RN. 

Figure 2.6 Fresh soybean biomass under different harpin protein treatments and SCN 
inoculations. Seeds of soybean were coated with harpin protein @ 0.25oz/ 100 lb seeds. Eggs of 
soybean cyst nematodes were inoculated into the soil at two-leaf stage. All measurements were 
taken 6 weeks after inoculation of SCN. 

Figure 2.7 Effect of harpin protein treatments of soybean seeds on RN population in soil. 
Soybean seeds were coated with harpin protein @ 0.25oz/ 100 lb seeds. RN were inoculated at 
two-leaf stage of soybean plants. Populations were quantified 6 weeks after RN inoculation.  

Figure 2.8 Effect of harpin protein treatments of cotton seeds on RN populations in soil. 
Cottonseeds were coated with harpin protein @ 0.25oz/ 100 lb seeds. RN were inoculated at two-
leaf stage of soybean plants. All measurements were taken 6 weeks after inoculation of RN. 
Welch two sample t-test was performed at P≤0.05 for significance. 

Figure 2.9 Effect of treatment of soybean seeds on SCN population in soil. Soybean seeds were 
coated with harpin protein @ 0.25oz/ 100 lb seeds.  Eggs of cyst nematodes were inoculated at 
two-leaf stage of soybean plants. All measurements were taken 6 weeks after inoculation of 
SCN.  

Figure 2.10 Effect of different seed treatments on soybean plant height. Soybean seeds were 
treated with harpin protein in two different methods. Seeds were coated with harpin protein @ 
0.25oz/ 100 lb seeds (HA) or soaked with harpin protein @ 10 μg/ml (HB) for one hour 
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immediately before planting. RN were inoculated at two-leaf stage of soybean plants. All 
measurements were taken 6 weeks after inoculation of RN. 

Figure 2.11 Effect of different methods treatment on fresh shoot weight of soybean. Soybean 
seeds were treated with harpin protein in two different ways. Seeds were coated with harpin @ 
0.25oz/ 100 lb seeds (HA) or soybean seeds were soaked with harpin protein @ 10 μg/ml (HB) 
immediately before planting. RN were inoculated at two-leaf stage of soybean plants. All 
measurements were taken 6 weeks after inoculation of RN.  

Figure 2.12 Effect of different treatments dry shoot weight of soybean. Soybean seeds were 
treated with harpin protein in two different ways. Seeds were coated with harpin protein @ 
0.25oz/ 100 lb seeds (HA) or soaked with harpin protein @ 10 μg/ml (HB) for one hour 
immediately before planting. RN were inoculated at two-leaf stage of soybean plants. All 
measurements were taken 6 weeks after RN inoculation. 

Figure 2.13 Effect of different treatments on fresh root weight of soybean. Soybean seeds were 
treated with harpin protein in two different ways. Seeds were coated with harpin protein @ 
0.25oz/ 100 lb seeds (HA) or soaked with harpin protein @ 10 μg/ml (HB) for one hour 
immediately before planting. RN were inoculated at two-leaf stage of soybean plants. All 
measurements were taken 6 weeks after RN inoculation. 

Figure 2.14 Effect of different methods of treatment on dry root weight of soybean. Soybean 
seeds were treated with harpin protein in two different ways. Seeds were coated with harpin 
protein @ 0.25oz/100 lb seeds (HA) or soaked with harpin protein @ 10 μg/ml (HB) for one 
hour immediately before planting. RN were inoculated at two-leaf stage of soybean plants. All 
measurements were taken 6 weeks after RN inoculation. 

Figure 2.15 Effect of different methods of treatment of soybean seeds on RN population in soil. 
Soybean seeds were treated with harpin protein in two different ways. Seeds were coated with 
harpin protein @ 0.25oz/100 lb seeds (HA) or soaked with harpin protein @ 10 μg/ml (HB) for 
one hour immediately before planting. RN were inoculated at two-leaf stage of soybean plants. 
All measurements were taken 6 weeks after RN inoculation.  

Figure 2.16 Scanning electron micrographs of seed surface treated with 100 ug/ml Messenger 
(Panel B) and 100 ug/ml Maltrin-100 (Panel A). Seeds soaked in a solution of harpin protein 
showed aggregates on the seed surface suggesting interaction between the harpin protein and the 
seed surface. In brief, seeds were soaked in solution for one hour and were air dried overnight. 
Seeds were coated with a 3-nm thin layer of gold particles and visualized under Scanning 
Electron Microscope. 
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Figure 2.3 

 

 

 

          

Figure 2.4 

 

 

0
2
4
6
8

10
12
14
16

H
ei

gh
t (

cm
s)

a a a a

0

5

10

15

20

25

W
ei

gh
t (

g) a

b

ac
cb



  55 

     

Figure 2.5 

 

 

 

 

                       

Figure 2.6 
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Figure 2.7 

 

 

 

          

                            

Figure 2.8 
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Figure 2.9 

 

 

 

         

Figure 2.10 
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Figure 2.11 

 

 

 

                              

Figure 2.12 
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Figure 2.13 
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Figure 2.15 
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CHAPTER III 

RNA sequencing of Harpin Protein Treated and Control Soybean Roots Identifies Genes 
Expressed During Reniform infection 
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Abstract 
 

Harpin proteins are of bacterial origin. Treatment with harpin proteins improves plant 

overall fitness and also induces defense responses against a myriad of pathogens including 

bacteria, fungi, and insects. The defense response in plants is likely due to activation of a general 

defense response in plants involving hormonal signaling pathways like salicylic acid. Our 

previous studies under greenhouse conditions shows that soybean seeds treated with harpin show 

a significant reduction in reniform nematode population in the soil. To investigate the 

mechanism of this response, we sequenced the transcriptome of soybean roots. Additionally, 

transgenic soybean plants constitutively expressing salicylate hydroxylase (nahG) were created 

to investigate the role of salicylic acid in the harpin-mediated response. RNA sequencing 

performed on the Ion Torrent PGM platform obtained more than 5 million reads, of which 67% 

were mapped to the soybean genome. Mapping of genes revealed expression of several genes in 

soybean roots including defense-related genes like PR2 and NPR1. Identification of differentially 

expressed genes among treatments was hindered due to low sequencing depth. Similarly, the 

Agrobacterium-mediated transformation of Williams 82 soybean with the salicylate hydroxylase 

(nahG) gene successfully produced transgenic soybean plants. The expression of the gene was 

confirmed through semi-quantitative RT-PCR analyses. The growth of the soybean plants in the 

greenhouse predisposed them to Fusarium oxysporum, a common soil inhabiting pathogen. 

Plants infected with the fungus showed typical wilting symptoms about 10 weeks after 

germination and failed to mature to the reproductive stage. This experiment describes the first 

attempt to understand signaling pathway induced by harpin in soybean roots and could provide a 

valuable resource for the future design of RNA sequencing experiments and generation of 

transgenic soybean constitutively expressing nahG. 
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1. Introduction 
 

Plants have the ability to respond to a variety of stimuli, including invading pathogens, by 

activating defense reactions (Killebrew et al., 1993, Zhu et al., 1996). Activation of plant defense 

works via reprogramming of gene expression leading to a robust response against the pathogen 

(Buscaill & Rivas, 2014, Tsuda & Somssich, 2015). To combat infection by pathogens, plants 

have evolved multilayer resistance mechanisms that act in a coordinated fashion to enhance 

resistance to pathogens. This inherent feature in plants is called innate immunity. The innate 

immune system in plants is comprised of two layers: pathogen-triggered immunity (PTI) and 

effector-triggered immunity (ETI) (Jones & Dangl, 2006). PTI is initiated when special 

receptors, pattern recognition receptors (PRRs), in the plasma membrane, recognize special 

pathogen- or microbe-associated molecular patterns (PAMP/MAMP), which activate the MAP 

Kinase signaling cascade (Macho & Zipfel, 2014). ETI, on the other hand, is activated when 

effectors from pathogens are recognized by special intercellular proteins containing nucleotide-

binding site (NBS) and leucine rich repeats (LRRs), which elicit programmed cell death leading 

to the hypersensitive response (HR) (Zebell & Dong, 2015).  

PTI is a general defense response to a wide range of pathogens, while ETI is a response 

against a specific pathogen (Li et al., 2016). A main feature of the induction of plant defense 

responses is that localized responses can be relayed to distal tissues through a hormone signaling 

pathway leading to the development of systemic resistance. This systemic resistance can protect 

plants against a subsequent pathogen attack (Spoel & Dong, 2012). Plant defense responses can 

also be activated using elicitors. Elicitors are compounds derived from a pathogen, or synthetic 

molecules that are known to induce a defense response in many plant species (Chuang et al., 

2014). These compounds can be applied exogenously in plants to trigger defense responses. 
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Harpins are a group of proteins that are secreted by gram-negative plant pathogenic 

bacteria and perform diverse functions (Wei et al., 1992). HrpN was the first harpin, and it was 

isolated and characterized from Erwinia amylovora, the causal organism of fire blight in apple. 

HrpN has been commercialized and is used extensively as a biorational pesticide (Dong et al., 

1999, Peng et al., 2003, Dong et al., 2004, Dong et al., 2005, Ren et al., 2008).  

Harpins determine susceptibility or resistance of the host to the bacterial pathogens. The 

purified form of the protein is known to perform multiple functions in different plant species, 

including activating defense responses against bacteria, viruses, insects, nematodes, and some 

types of abiotic stress (Dong et al., 2004, Dong et al., 2005, Reboutier et al., 2007, Che et al., 

2011). The mechanism that orchestrates the defense response against plant-parasitic nematodes is 

poorly understood.  Soybean seeds treated with harpin proteins show a significant reduction in 

reniform nematode population in the soil. We hypothesize that the reduction in reniform 

population is due to transcriptional changes in soybean resulting in the induction of various 

genes conferring resistance to reniform nematodes in the roots.  

RNA sequencing is a powerful tool to identify and measure gene expression (Cloonan et al., 

2008, Trapnell et al., 2010). Increased availability and affordability of next generation 

sequencing has made the technology available, and RNA sequencing has surpassed the use of the 

microarray method of quantifying gene expression (Marioni et al., 2008). RNA sequencing is a 

high-throughput method for quantifying gene expression.  The method is highly reproducible, 

with less variation, and can provide sufficient depth to identify less abundant transcripts (Fang & 

Cui, 2011). Additionally, RNA sequencing allows pooling of different samples and replicates, 

provided the samples contain specially barcoded adapters. RNA sequencing has been regularly 
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used to identify differentially expressed transcripts in many plant pathogen interactions (Marioni 

et al., 2008, Li et al., 2011, Xu et al., 2011, Kawahara et al., 2012).  

RNA sequencing and differential expression analyses have allowed identification of  

several genes regulating development patterns (Severin et al., 2010). Additionally, comparative 

analyses of different soybean varieties revealed genes that were differentially regulated during 

drought stress (Fan et al., 2013, Prince et al., 2015) and potassium deficiency (Wang et al., 

2012).  They also helped identify genes regulating nodulation (Zhu et al., 2013).   

RNA sequencing studies on soybean roots during interaction with Bradyrhizobium, and 

the soybean cyst nematode has shed new light on the role of micro RNAs during root 

colonization (Subramanian et al., 2008, Li et al., 2011, Li et al., 2012). Knowledge of soybean 

defense responses against reniform nematode infection is limited, however. Most studies of this 

nature have been with limited to the soybean-cyst nematode pathosystem. The reniform 

nematode is a common pathogen of cotton, which has encouraged research to understand the 

cotton-reniform nematode interaction (Li et al., 2015). Previous work has demonstrated the role 

of hormones including gibberellin and auxin during soybean-root knot interaction (Beneventi et 

al., 2013).  Profiling soybean roots during infection with soybean cyst nematodes show a 

possible role of cell wall modifying enzymes mediated by jasmonic acid (Ithal et al., 2007), 

including the role of reactive oxygen species that are generated in response to nematode 

infection. 

Harpin treatment is known to induce defense response through various pathways (Dong 

et al., 1999, Dong et al., 2005, Dong et al., 2004), as well as having a positive influence on plant 

growth and development when it is used as a seed treatment (Dong et al., 2004). However, 

harpin-mediated responses during reniform nematode infection has not been elucidated. To 
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dissect signaling pathways due to harpin protein treatment, and to identify changes in gene 

expression during reniform infection, we sequenced the transcriptome of roots from harpin 

protein-treated and control soybean seeds, with and without reniform infection. Additionally, to 

investigate the role of salicylic acid-mediated response during harpin protein treatment, we 

created transgenic soybean lines expressing the salicylate hydroxylase (nahG) gene.  

2. Materials and methods 

2.1. Seed treatments and growth of soybean plants 

 Soybean plants of the cultivar ‘Williams 82’ were grown in a greenhouse 24-26 °C and a 

diurnal cycle of 16 hours of light and eight hours of darkness.   Four different seed treatments 

were used - 1) control seeds without harpin protein treatment, no reniform nematodes (C), 2) 

soybean seeds treated with harpin protein but without reniform nematodes  (H), 3) soybean seeds 

without harpin protein but inoculated with reniform nematodes (N), and 4) soybean with seeds 

treated with harpin protein and inoculated with reniform inoculation (HN). For harpin protein 

treatments, seeds were soaked in 10 μg/ml harpin protein solution for one hour before planting. 

Seeds were then immediately planted in 12 oz Styrofoam cups filled with 1:1 field soil and sand 

mixture.  

2.2. Extraction and inoculation of reniform nematodes 

Reniform nematodes were propagated on cotton cultivar Phytogen. Nematodes were 

extracted from the soil using decanting-sieving followed by sugar flotation (Jenkins, 1980)  

Inoculations with the reniform nematodes were performed when the cotyledonary leaves were 

fully expanded. About 3,500 reniform nematodes were inoculated on each plant using a 1-ml 

pipette. Two holes about 1 cm deep were made around the base of the plants and the nematodes 

consisting of a mixed population of juvenile and pre-infective adults were inoculated around the 
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base of the plants. The holes were immediately covered to prevent splashing of the nematode 

during watering of soybean plants. 

2.3. Collection of samples 

Root samples were collected three days after inoculation with the reniform nematodes. 

Three biological replicates for each treatment were collected for RNA extraction. Roots of the 

soybean plants from different treatments were gently removed from pots with minimal 

displacement and disturbance. The roots were washed in a bucket of water to remove all the soil 

particles. Care was taken to minimize the damage to the roots. After completely removing soil 

particles from the roots, they were blotted dry with a paper towel. The roots were then flash 

frozen in liquid nitrogen and stored at -80 °C until further use. 

2.4. Extraction of total RNA 

Total RNA was extracted from soybean root samples with the Direct-zol RNA Miniprep 

Kit (Zymo research, Irvine, CA, USA) following manufacturer’s instructions. The RNA was 

quantified with a Nano spectrophotometer (Thermo Fisher Scientific) (Table 4.1), and the quality 

and integrity of the total RNA extracted were determined on a 1% agarose gel electrophoresis 

(Figure 4.1). 

2.5. Removal of rRNA  

Ribosomal RNA was removed with a MagJET mRNA Enrichment Kit (Thermo Fisher 

Scientific) following the manufacturer’s instructions. Twelve μg total RNA from each sample 

was used for enrichment of mRNA. The rRNA-free mRNA was eluted in 17 μl of nuclease-free 

water.  

 

 



  68 

2.6. Fragmentation of mRNA  

Messenger RNA enriched from the samples was fragmented with the NEBNext RNase III 

RNA Fragmentation Module (New England Biolabs, Ipswich, MA, USA) following the 

manufacturer’s instructions. The set-up of the reaction mixture was as follows:  17 μl of purified 

mRNA was mixed with 0.75 μl of RNase III (1u/ μl), RNase III 10× reaction buffer and 0.25 μl 

nuclease free water. The reaction mixture was incubated at 37 °C for 5 minutes. Following 

incubation, 80 μl cold water was immediately added to the reaction mixture which as then 

transferred to ice. The fragmented RNA was cleaned using the Zymo RNA Clean & 

Concentrator kit (Zymo Research). The fragmented mRNA was eluted in 15 μl nuclease free 

water. 

2.7. First and second strand cDNA synthesis 

First strand cDNA synthesis was performed on the fragmented mRNA using random 

hexamers, and M-MLV reverse transcriptase (Promega Corp., Madison, WI, USA) using 500 

nanograms of random hexamers. Second strand synthesis was performed with the NEBNext 

Second Strand Synthesis Module kit (New England Biolabs) following the manufacturer’s 

protocol. The reaction mixture was cleaned up with the GeneJET PCR Purification Kit (Thermo 

Fisher Scientific) to remove the enzymes. The second strand cDNA was eluted in 17 μl nuclease 

free water. 

2.8. End repair and ligation of sequencing adapters 

Following preparation of double strand cDNA from the mRNA, the end repair was 

performed with the NEB End Repair Module kit (New England Biolabs) following 

manufacturer’s instructions. End repair of the fragments was followed by ligation of the 

sequencing adapters. Each sample was ligated with a uniquely barcoded adapter to differentiate 
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the samples during sequencing. The ligation reaction was set up with 20 μl end repaired cDNA, 4 

μl of T4 DNA ligase buffer, 2 μl each of adapters A1 and P, 4 μl of T4 DNA ligase, 1 μl of Bst 

DNA polymerase and 7 μl sterile water to a total volume of 40 μl. The reaction mixture was 

incubated in a thermal cycler for 15 minutes and 25 °C followed by 5 minutes at 65 °C. 

2.9. Size selection and PCR amplification of the libraries 

Sterile water was added to the above reaction mixture to bring the volume to 100 μl. Size 

selection was performed with the Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, 

USA). Size selection was performed to obtain 480 bp libraries, including the adapters. The DNA 

was eluted using 46 μl sterile water. A final PCR reaction to amplify the library was performed 

according to the PCR step mentioned in NEBNext Fast DNA Fragmentation and Library 

Preparation for Ion Torrent kit (New England Biolabs). The PCR products were cleaned with the 

100 μl Agencourt AMPure XP beads (Beckman Coulter). The libraries were eluted in 25 μl 0.1× 

TE buffer and quantified with an Agilent 2200 Tapestation D1K (Agilent Technologies, Santa 

Clara, USA) at the Department of Biological Sciences, University of Arkansas. Size distribution 

and the molar concentrations of the individual cDNA libraries are given in figure 4.2 and table 

4.2. 

2.10. Pooling and sequencing libraries 

The libraries were pooled in equimolar concentration. Six libraries were pooled for 

sequencing in one chip. Template preparation was performed on the Ion OT2 with the Ion OT2 

Template Preparation Kit (Thermo Fisher Scientific). Following template preparation, the 

enrichment of the DNA-bound Ion Sphere Particles was performed with the Ion PGM 

Enrichment Kit (Thermo Fisher Scientific). Sequencing was performed on the Ion Personal 

Genome Machine sequencer with a 318 Chip Kit V2. The sequencing was performed on two 318 
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chips with 6 samples on each chip, and the samples were randomly assigned on each chip to 

minimize variability arising out of sequencing. 

2.11. Mapping reads to the soybean genome 

 Reads obtained from the sequencing were checked for quality with FASTQ with Q20 was 

set as the threshold. Reads that did not meet the criteria were discarded. A reference index for the 

reference genome assembly was built with GMAP v2014-08-04 (Wu and Watanabe, 2005) with 

default settings. The reads were mapped with GSNAP v2014-10-09 (Wu and Nacu, 2010) with 

the options to enable spliced alignments and to exclude failed mapped reads. SAMtools v0.1.19 

(Li et al., 2009) was used to sort, exclude secondary alignments, and to create a binary version of 

the alignment file which served as input to BEDtools v2.26.0 (Quinlan and Hall, 2010) to 

calculate the number of mapped reads to each gene. The reads that mapped consisted of raw 

counts, unlike FPKM values that work well with other sequencing platforms. 

2.12. Differential expression analyses 

 Analyses of differential expression were performed with the R-studio computing 

environment. For differential expression analyses, the reads from different treatments were 

separated into 4 groups for statistical analyses. Expression analyses were performed between 

different groups of treatments - control and harpin protein, nematode and harpin protein + 

nematode, harpin protein and harpin protein + nematode, and control and nematode. Differential 

expression between treatments was determined by DESeq package in R studio. Differential 

expression analyses were performed based on FDR cutoff of 0.05, and the fold change 

expression was quantified on the log2 scale with the LFC threshold of 1, and at 95% confidence 

interval. 
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2.13. Cloning and sequencing of the nahG gene 

 For the generation of constructs for transformation of soybeans, the nahG gene was first 

amplified from the plasmid pCAMBIA1300-NahG (Ying et al., 2010) using the primer pair 

NahG5' /NahG 3'. PCR conditions for amplification of the gene were: initial denaturation cycle 

at 94 °C for 5 minutes, 30 cycles of 94 °C for 30 s, 56 °C for 30 s and 65 °C for 1.5 minutes. A 

final amplification cycle at 65 °C for 10 minutes was performed. The amplification was 

performed with the Long Amp Crismon Taq polymerase (New England Biolabs) to minimize the 

chance of error during PCR. The fragment was then purified with the GeneJET PCR Purification 

Kit (Thermo Fisher Scientific, USA). The fragment obtained from the PCR was sequenced at the 

University of Arkansas DNA Sequencing Facility in the Don Tyson Center for Excellence for 

Poultry Science. The sequence of the fragment was compared with the nahG gene in the 

GenBank to check for accuracy of the PCR. After sequence validation, the 1.5 kb nahG fragment 

was cloned into the vector pXcmI to generate the plasmid pSB005.   

2.14. Construction of the plant transformation cassette 

  CAM35S promoter was amplified from the plasmid pCAMBIA-1300 using the primer 

pair P35SF/ P35SR (table 4.7).  Similarly, the NosA terminator was also amplified from the 

pCAMBIA-1300 using the primer pair NosAF/NosAR. The promoter and the terminator were 

then fused together via fusion PCR with primer pair P35SFN /NosARN. The fusion product of 

the promoter and the terminator was then digested with the enzymes PstI and EcoRI and ligated 

into plasmid pTF101.1, also digested with PstI and EcoRI to generate the plasmid pSB006.12. 

The ligation of the promoter-terminator construct was confirmed using restriction digestion with 

PstI and EcoRI and also via Sanger sequencing at the DNA sequencing facility of the 
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Department of Microbiology and Immunology, University of Arkansas for Medical Science at 

Little Rock. The nahG gene was digested from the plasmid pSB005 with XbaI and SacI and 

ligated into XbaI/SacI site of the plasmid pSB006.12 to generate a new plasmid pSB007.17. 

Prior to sending the plasmid for transformation at the transformation facility, a diagnostic was 

performed by digesting 100 ng of plasmid pSB007.17 with the restriction enzymes EcoRV and 

XcmI. The digested plasmid was run on a 1% agarose gel to confirm the size of the fragments.  

2.15. Soybean transformation 

 Transformation of soybean Williams 82 was performed at Plant Transformation Facility 

at the Iowa State University, Iowa, USA. Five independent transformation events were 

conducted for the generation of nahG expression plants. For transformation of soybean, a 

previously described cotyledonary node method using matured soybean seeds was used (Paz et 

al., 2006). Following transformation, the soybean plants were tested for expression of bar gene 

using Basta herbicide. The T0 plants were grown in a greenhouse to maturity to collect seeds.   

3. Results 

3.1. Extraction of total RNA from soybean roots 

 The agarose gel image of the total RNA indicating the quantity and quality of total RNA 

extracted from the roots of soybean plants from different treatments is shown in figure 4.1.   The 

agarose gel image showed the integrity of the total RNA, which is depicted by the intactness of 

the ribosomal RNA. The bands of ribosomal RNA were intact with minimal degradation. 

Similarly, the yield of the total RNA ranged from 252 ng/μl to 643.5 ng/μl. The amount of total 

RNA used in library preparation was 15 μg for each sample. 
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3.2. rRNA removal and cDNA library preparation 

 The size distribution and the amount of each library are shown in figure 4.2 and table 4.2 

respectively. The libraries showed normal distribution of fragments with the mean peak close to 

400 bp. Some libraries contained adapter dimers, which were evident by sharp bands below the 

smear. The concentration of the libraries ranged from a minimum of 12.9 ng/ul to 61.4 ng/ul with 

peak molarity from 59.3 to 247 mol/l. The peak molarity of the samples is important during 

pooling of the samples where the samples are pooled in equal molar amounts. The formula for 

calculation of the amount of sample needed during pooling is Vi = (Cf × Vf)/(number of samples 

× Ci), where Vi is the volume of indexing of the library, Cf is the final concentration of the 

pooled libraries, Vf is the final volume, and Ci is the initial concentration of the library.  

3.3. Sequencing data 

The RNA libraries were run on the Ion Torrent Personal Genome Machine sequencer on 

318 chip kit V2. Total sequencing reads obtained from sequencing runs for each sample are 

shown in table 4.3. A total of 5.827 million reads was obtained from sequencing of 12 mRNA 

samples, with an average of 485,584 reads per sample. Treatment Harpin protein Nematode3 had 

the lowest number of reads with 358,052, while Harpin proteinNematode1 had the maximum 

read with 621480 reads. Additionally, the number of bases that passed the quality threshold 

(>=Q20) were 923,086, 836 bases averaging 76,923,603 bases per sample. 

3.4. Mapping of sequencing reads to the soybean genome 

The genome of soybean was obtained from the Soybase browser and the version used 

was Glyma 1.01. The size of the soybean genome is estimated to be 1,115 Megabases (Schmutz 

et al., 2010). Surprisingly there are 46430 loci that are predicted to encode proteins and 

additional 20,000 loci that are predicted to encode proteins with low confidence. The reads from 
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the sequencing were mapped onto the annotated soybean genome with GSNAP (Wu & Nacu, 

2010). The mapping and the percentage of the reads obtained from the sequencing run for all the 

samples are shown in Table 4.4. total of 3,920,664 reads mapped onto the soybean genome 

across all samples. The number of reads that mapped for each sample ranged from 276,986, 

which represented 55.8% of the sequenced reads, to about 440,769 reads, or about 77% of the 

sequenced reads per sample.  

3.5. Differential expression analyses 

 The differential sequencing analyses were performed in the R-studio environment. The 

results from the differential sequencing analyses between different treatment groups are shown in 

Table 4.5. All the comparisons were performed at 95% confidence interval. Comparison between 

control and harpin protein show that one gene is significantly up-regulated in the control while it 

is down-regulated in roots from soybean treated with harpin protein. However, the difference is 

insufficient for log2 fold change analyses. Similarly, comparing expression from nematode and 

control plants, the results show that 58 genes are significantly up-regulated while eight genes are 

down-regulated. However, the log2 fold change significance is also lacking between these 

treatments. Interestingly, the differential expression analyses between harpin protein-harpin 

protein nematode and nematode-harpin protein nematode did not yield significant differences in 

gene expression (Table 4.5). 

3.6. Expression of genes involved in defense 

The reads from RNA sequencing data that mapped to PR1, PR2 and NPR1 were analyzed 

to determine their expression in the dataset. The mapping of the reads to the soybean genome is 

shown in Table 4.6. PR1 was represented by transcript 16292368, while PR2 by transcript 

16252661 and NPR1 by transcript 16298647. Our results show that on an average no reads 
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mapped to PR1, while 231 reads mapped to PR2 and 162 reads mapped to NPR1. Analyses of 

the PR2 transcript showed mapping of 64 reads for control (average 21), 95 reads for harpin 

protein (average 32), 33 reads (average 11) for harpin protein nematode and 39 reads (average 

13) for nematode treatment. Similarly, for NPR1 transcript, reads that mapped were 51 for 

control (average 27), 60 for harpin protein (average of 20), 21 for harpin protein nematode 

(average 7), and 30 for harpin protein nematode (average 10). The DE seq analyses using R 

platform, however, did not show any significant difference in the expression levels for either of 

these genes. 

3.7. Transformation of soybean Williams-82 

 The results for transformation events of soybean Williams-82 is shown in Table 4.6. 

Although five transformation events were expected, only two events were obtained from Iowa 

State University Plant Transformation Facility. From one event 229 seeds were obtained while 

from the second event only 3 seeds were obtained. A majority of the seeds appeared shriveled 

and were smaller in size compared to normal Williams-82 seeds. All three seeds in the second 

event were shriveled in appearance. 

4. Discussion 

RNA sequencing is one of the most powerful techniques to identify and quantify gene 

expression. It is a high-throughput analytical method, and simultaneously allows quantification 

and identification of transcripts across different treatments (Cloonan et al., 2008, Mortazavi et 

al., 2008, Trapnell et al., 2010, Li et al., 2014). Previously the most popular method to quantify 

gene expression in different samples was microarray analyses. However, the microarray method 

is limited to quantifying expression of known genes and does not permit identification of novel 

transcripts in different samples. RNA sequencing of soybean roots during cyst nematode 
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infection has identified several genes and micro RNAs that could be potential targets for 

nematode control (Li et al., 2011, Li et al., 2012). Similarly, transcriptome analyses from roots 

of different cotton genotypes showing different responses to reniform nematodes shed light on 

genes that were important for resistance to the reniform nematode (Li et al., 2015). Genome-

wide expression profiling of soybean has helped identify regulation of numerous genes, 

particularly pathogenesis-related proteins, auxin transport proteins, ethylene responsive factors, 

and expansin family proteins at different stages of infection (Ithal et al., 2007).  

Transcriptome analyses of soybean roots during infection with Meloidogyne javanica 

identified several genes related to stress response (de Sa et al., 2012). Additionally, time course 

analyses of soybean roots have been performed to compare compatible and incompatible 

reactions during cyst nematode infection (Klink et al., 2007). Due to popularity of RNA 

sequencing to identify differentially expressed genes in other host-nematode interactions, the 

approach was utilized to dissect soybean-reniform interaction during harpin protein treatment. 

However, the analyses to identify differentially expressed genes in either sample were 

inconclusive. The genome of soybean is estimated to be about 1115 Mb containing around 

46,430 putative transcripts or genes (Schmutz et al., 2010). Although, not all the genes are 

expected to express in the root environment, the depth of sequencing limited our differential 

expression analyses using the DEseq method. Differential expression analyses was also 

performed using alternate program Cuffdiff (Trapnell et al., 2013), but the analyses to identify 

differentially expressed genes was inconclusive.  

Mapping pattern of reads to specific genes like pathogenesis related protein 1 (PR1) PR2, 

and NPR1 were analyzed. These genes are a hallmark of the salicylic acid induction pathway, 

and their expression is also correlated with resistance to nematode infection (Molinari et al., 
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2014). The analyses showed that no reads mapped to the putative PR1 gene. Surprisingly a total 

of only about 0.005% of the total transcripts mapped to the locus. Additionally, the locus for 

NPR1 in the soybean genome was identified and the total reads the mapped to the transcript was 

calculated. The total reads that mapped to this locus represented only 0.004% of the total reads 

mapped. The fraction of the transcripts mapped to the locus of interest seems really low to 

perform any statistical analyses. However, not all transcripts will be expected to express in 

soybean roots at a given condition. Analyses of the RNA sequencing data suggest that we did not 

attain sufficient coverage of soybean genes to derive a conclusion on differential expression 

analyses. Sequencing in an alternative platform such as Illumina Hi-seq could provide improved 

depth of sequencing and results for statistical analyses. Although the RNA sequencing data from 

the roots cannot be utilized to perform differential expression analyses, the data could provide a 

resource to design RNA sequencing experiments for soybean nematode interaction, and identify 

the genes that are expressed in soybean for future experiments. 

Transgenic soybean plants expressing nahG (salicylic hydroxylase) is not available in 

public resources. Previous researches have expressed the gene exclusively in soybean roots 

through hairy root transformation using Agrobacterium rhizogenes (Mitchum, 2016, Youssef et 

al., 2013). Search for soybean plants expressing the gene are not available in seed banks either. 

The transgenic soybean created in this project will provide a valuable resource to study immunity 

in soybean against various soybean pathogens and uncover the defense pathways involved in 

resistance.  
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Figures and tables legends 

Figure 4.1 DNA ladder. 1% agarose gel showing the integrity of RNA from soybean root 
samples. Lanes 2-4: Control, lanes 5-7: harpin only, lanes 8-10: reniform nematodes 
only, and lanes 11-13: harpin + nematodes. Lane 1: 1 kb plus. 

 

Figure 4.2 QC of cDNA libraries from 12 samples Control-A1, B1,C1; Harpin only  D1,E1,F1; 
Reniform only-G1,H1,A2; and Reniform with harpin B2,C2,D2. 

 

Table 4.1 Quantification of total RNA from samples using spectrophotometer. 

 

Table 4.2 Quality of the cDNA libraries from 12 samples measured on the Agilent Tapestation D 
1000. 

 

Table 4.3 Table depicting reads and total bases in libraries from different treatments obtained 
from Ion Torrent PGM sequencing. 

 

Table 4.4 Table depicting the number of reads mapped onto soybean genome in different 
treatments.  

 

Table 4.5 Number of differentially expressed genes compared across different treatments: CH- 
control and harpin, CN- control and nematode, HHN- harpin and harpin nematode, and 
NHN- nematode and harpin nematode. 

 

Table 4.6 Soybean transformation seeds received from Iowa State University. 

 

Table 4.7 List of the primers used in the study. 
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Figures and Tables 

 

                                      

Figure 4.1 

 

 

 

 

                                     

 

Figure 4.2 
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Table 4.1 

Sample Quantity ng/μl 260/230 
Control 1 (C1) 252.0 1.85 
Control 2 (C2) 329.2 1.60 
Control 3 (C3) 345.8 1.55 
Harpin 1 (H1) 563.9 1.83 
Harpin 2 (H2) 516.2 1.76 
Harpin 3 (H3) 380.5 1.69 
Nematode 1 (N1) 428.7 1.75 
Nematode 2 (N2) 377.4 1.64 
Nematode 3 (N3) 439.6 1.25 
Harpin+ nematode 1 (HN1) 603.6 1.84 
Harpin+ nematode 2 (HN2) 643.5 1.88 
Harpin+ nematode 3 (HN3) 524.1 1.52 

  

 

Table 4.2 

Sample Size [bp] Concentration 
[ / l] 

Peak Molarity [nmol/l] 
C1 354 36.1 157 
C2 361 54.2 231 
C3 381 48.6 196 
H1 362 48.9 208 
H2 381 36.2 146 
H2 348 36.0 159 
H3 382 61.4 247 
N1 348 36.0 159 
N2 386 23.2 92.6 
N3 375 41.7 171 
HN1 334 12.9 59.3 
HN2 366 36.1 152 
HN3 372 22.1 91.3 
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Table 4.3 

Sample Total reads from Ion Torrent 
i  

>= Q20 Bases 
Control 1 571,741 103,810,551 
Control 2 475,027 81,567,830 
Control 3 382,647 63,949,922 
Harpin 1 374,214 63,835,831 
Harpin 2 589,999 95,835,050 
Harpin 3 569,421 96,727,946 
Nematode 1 500,182 74,242,886 
Nematode 2 496,132 69,948,034 
Nematode 3 432,821 65,399,163 
Harpin+Nematode 1 621,480 87,519,081 
Harpin+Nematode 2 455,284 68,557,065 
Harpin+Nematode 3 358,052 51,693,477 
Total  5,827,000  

 

 

Table 4.4 

Sample Reads mapped 
t  

 

% Mapping 
Control 1 440769 77.0 
Control 2 344791 72.6 
Control 3 274337 71.7 
Harpin 1 259892 69.5 
Harpin 2 416701 70.6 
Harpin 3 412737 72.5 
Nematode 1 319120 63.8 
Nematode 2 276986 55.8 
Nematode 3 282835 65.3 
Harpin+ nematode 

1 
371291 59.7 

Harpin+ nematode 
2 

297098 65.3 
Harpin+ nematode 

3 
224107 62.6 

Total 3,92,0664 67.28 
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Table 4.5 

 DDS (adjusted p-value 
<0.05) 

LFC (adjusted p-value 
<0.05) 

CH CN HHN NHN CH CN HHN NHN 
LFC > 0 (up) 1  58 0 0 0 1 0 0 
LFC < 0 (Down) 1 8 0 0 0 0 0 0 
Outliers 1 8 0 0 1 8 0 0 
Low counts 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

Table 4.6 

Event ID R1 seeds R1 analysis 
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ST170-45 106 229 9/30/13 4 2 2 0 30.35 229 
ST170-57 4 3      0.55 3 

Total 30.90 232 
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Table 4.7 

Primer 
name 

Sequence 

NahG5’ TCTAGATGAAAAACAATAAACTTGGC 
NahG3’ GAGCTCACCCTTGACGTAGCGCACCC 
P35SF TGCGGGCCTCTTCGCTATTA 
P35SR GGGCCCGAGCTCTACGTAAAGCTTTCTAGACGAGAGAGATAG

ATTTGTAGAGAGAGACTG 
NosAF TCTAGAAAGCTTTACGTAGAGCTCGGGCCCCCGATCGTTCAAA

CATTTGGCAATA 
NosAR AGCCTGTCGCGTAACTTAGGACTT 
P35SFN  CTGCAGGCGTATTGGCTAGAGCAGCTT 
NosARN GAATTCCCCGATCTAGTAACATAGATGACAC 
ITS1 TCCGTAGGTGAACCTGCGG 
ITS4 TCCTCCGCTTATTGATATGC 
nahGF1 TCGATGTCGAGGTATTCGAACAGG 
nahGR1 ATTCGGTAGCGTCGATCAGCTTCT 
GmUBl3F GTGTAATGTTGGATGTGTTCCC 
GmUBL3R ACACAATTGAGTTCAACACAAACCG 
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CHAPTER IV 
Genome Sequencing and Analyses of ARF18 Identifies Genes Related to Nematophagy and 

Provides Clues on its Potential Use as Biological Control Against Plant-Parasitic 
Nematodes 
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Abstract 

Plant-parasitic nematodes are one of the most destructive pathogens of crop plants 

worldwide. Discontinued use of harmful chemicals has prompted the search for feasible and 

effective alternative control strategies. Nematophagous fungi are widely distributed in the 

environment and have evolved different strategies to parasitize and derive nutrition from 

nematodes. In this study, a previously characterized, but unnamed nematophagous fungus isolate 

(designated as ARF18) was taxonomically classified, and its ability to infect cyst nematode was 

examined. Additionally, growth of ARF18 in different nutritional conditions was analyzed to 

uncover its ability to produce spores. To identify nematophagy in ARF18 and to establish it as a 

potential biological control its genome was sequenced using the Pacific Biosciences long read 

technology and assembled. Based on the initial taxonomic analyses using ITS1-5.8S-ITS2, 

ARF18 was predicted to form a distinct monophylogenetic clade with the genus Brachyphoris, a 

genus of nematophagous fungi closely related to Dactylella and Vermispora. The draft genome 

assembly showed a genome size of 46.3 Mb. There were 14461 predicted proteins in the 

genome, which enabled us to identify many genes potentially involved in nematode parasitism. 

Taken together, our study from the infection biology will propel ARF18 as a biological control 

for controlling plant parasitic nematodes and its genome will provide resource to study nematode 

parasitism and will also assist in developing ARF18 as a commercial product for application in 

agricultural settings. 
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1. Introduction 

  Plant-parasitic nematodes are destructive pathogens of crop plants and cause estimated 

losses in excess of $150 million annually (Abad et al., 2008). More than 4100 species of 

nematode parasitize crop plants (Decraemer & Hunt, 2006) out of which only about 100 species 

are economically important . Previously, control of plant-parasitic nematodes relied solely on 

chemical nematicides. However, key chemical nematicides are being discontinued due to human 

health risks and environmental hazards. Additionally, chemical control only provide short term 

solution to control of plant pathogens (Jatala, 1986). Thus, alternative measures to control plant-

parasitic nematodes are urgently needed (Oka et al., 2000, Tian et al., 2007). Alternative 

approaches to control plant-parasitic nematodes include cultural control, crop rotation, non-host 

resistance, deployment of resistance genes, and RNAi. While some methods like RNAi and host 

resistance are still in the development phase, others like crop rotation and non-host resistance are 

limited by economic constraints and cannot be adapted to all cropping systems due to the wide 

host range of some species like reniform nematodes and root-knot nematodes. Additionally, the 

genetic diversity of some of plant-parasitic nematode species undermines the effectiveness of 

resistance in crops (Castagnone-Sereno, 2002). All the above-mentioned factors demonstrate an 

urgent need to devise alternate effective management strategies for these important pests. 

 Biological control is defined as the use of living organisms either as parasites, predators 

or pathogens to prevent the growth of another organism especially pests that have a harmful 

impact on the human health and agriculture (Eilenberg et al., 2001). Biological control has 

shown tremendous promise to control important agricultural pests in a sustainable way (Hashem 

& Abo-Elyousr, 2011, Perez-Garcia et al., 2011). Additionally, control of plant pathogens, 

especially plant-parasitic nematodes through antagonistic microbes is one of the most effective 
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and ecologically friendly methods, and can be easily adapted to replace harmful chemicals (Li et 

al., 2015). Numerous microorganisms, including bacteria and fungi inhabit the soil and have 

developed several specialized strategies to attack and parasitize plant-parasitic nematodes.  

 Nematophagous fungi are a special class of fungi that trap and parasitize nematodes in 

soil. More than 700 species of nematophagous fungi have been described till date, and belong to 

different groups such as Ascomycota, Zygomycota, Basidiomycota, and Chytridomycota (Li et 

al., 2015). Based on the mechanism by which they parasitize nematodes, nematophagous fungi 

have been classified into four broad groups: nematode-trapping fungi, egg-parasitizing fungi, 

endoparasitic fungi, and toxin producing fungi (Hyde et al., 2014). Nematode-trapping fungi 

have developed mechanisms enabling them to capture nematodes using specialized structures. 

The nematophagous fungi within this group belong to the order Orbiliaceae within Ascomycota. 

These fungi generally exist as saprophytes in the soil, however, in the presence of nematodes, 

they switch to parasitic mode and trap nematodes. Some of the well knows structures these 

nematodes form to capture nematodes are constricting rings (Drechslerella stenobrocha), non-

constricting rings (Dactylellina copepodii), sticky knobs (Monachrosporium haptotylum), 

adhesive networks (Arthrobotrys oligospora) (Yang et al., 2007b). These structures capture 

nematodes through the presence of an adhesive layer around the site of trapping device (Su et al., 

2017). Currently, more than 100 species of nematode-trapping fungi, and their unique structures 

have been identified and described (Yang et al., 2007b). Endoparasitic fungi, on the other hand, 

do not form specialized structures but infect nematodes through their zoospores or conidia. In the 

presence of nematodes, their conidia germinate and penetrate into the nematode through 

assimilative hyphae (Lopez-Llorca et al., 2008). Unlike the nematode-trapping fungi, a 

saprophytic phase is absent or limited in this group, and the fungi fail to produce mycelium in 
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soil (Moosavi & Zare, 2012). This feature makes the fungi in this group undesirable for use as a 

biological control. The most studied species in this group is Drechmeria coniosporia. D. 

coniosporia is known to produce a large number of adhesive conidia, which adhere and infect 

nematodes. Infection is followed by growth of hypha and digestion of nematode body, and the 

emergence of new conidia from conidiophores from the nematode body (Moosavi & Zare, 2012). 

Egg-parasitizing nematodes infect nematodes through specialized structures like appressoria, 

special penetration peg, or lateral mycelium branches (Lopez-Llorca et al., 2008). The fungi in 

this group belong to clavicitipaceous fungi in Ascomycota, and infect nematode through 

secretion of chitinases and proteases degrading chitin and proteins that are an integral part of the 

nematode body and nematode eggs (Yang et al., 2007a). Species that belong to this group are 

Pochonia chlamydosporia, Paecilomyces lilacunus, Clonostachys rosea, and Lecanicillium 

psalliotae. Final group of fungi is the toxin producing nematophagous fungi. The fungi produce 

toxins to immobilize nematodes before penetrating the cuticle using hyphae (Lopez-Llorca et al., 

2008). Fungi in this group belong to Ascomycota and Basidiomycota (Li et al., 2007, Li & 

Zhang, 2014), and approximately 280 species have been identified. Numerous compounds with 

nematicidal activities have been identified from this group and belong to a diverse chemical 

group, including alkaloids, peptides, terpenoids, macrolides, quinones, aliphatic compounds, 

aromatic compounds and sterols (Li et al., 2007). Presence of such compounds in this group 

makes them a promising tool as biological control agents. Additionally, two Basidiomycete 

species, Coprinus comatus, and Stropharia rugosoannulata, produce special nematode-attacking 

devices to parasitize nematodes (Luo et al., 2006, Luo et al., 2007). 
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 Additional fungal species, not present in above-mentioned groups, also have the ability to 

parasitize and kill nematodes. For example, a Trichoderma species has been described as a 

biological control agent against numerous plant-parasitic nematode, although the mechanism of 

parasitism has not been elucidated (Affokpon et al., 2011). It was demonstrated that the species 

can kill nematodes through secretion of various extracellular proteolytic enzymes like trypsin-

like protease PRA1 (Suarez et al., 2004), serine proteases (Chen et al., 2009), and chitinolytic 

enzymes  (Szabo et al., 2012). Additional nematicidal compounds have been isolated from other 

Trichoderma species, which include trichodermin (Yang et al., 2010), β-vinylcyclopentane-1α, 

3α-diol, 6-pentyl-2H-pyran-2-one, and 4-(2-hydroxyethyl) phenol (Yang et al., 2012, Degenkolb 

& Vilcinskas, 2016). Some additional endophytic fungi and AVM fungi have also been reported 

to reduce nematode population in soil and enhance plant growth (Veresoglou & Rillig, 2012, Vos 

et al., 2012). 

  ARF18, a taxonomically uncharacterized nematode parasitizing fungal isolate, was first 

isolated from infected cysts of Heterodera glycines nearly 30 years ago (Kim & Riggs, 1991) in 

the Department of Plant Pathology, the University of Arkansas. The fungus parasitizes all stages 

of the cyst nematode, including eggs, sedentary juveniles, and adults in both soil and culture 

media (Timper et al., 1999), and is a promising tool as a biological control of plant-parasitic 

nematodes. Greenhouse experiments have demonstrated that the fungus can suppress the 

population of H. glycines by 86-99% (Kim & Riggs, 1995). The fungus can infect all the 

sedentary stages of cyst nematodes (Timper & Riggs, 1998). Additionally, controlled 

experiments in the greenhouse conditions also demonstrated the potential of ARF18 in 

suppressing the population of the reniform nematode in cotton (Wang et al., 2004). ARF18 has 

the ability to infect the cyst and reniform nematodes and is characterized by sterile white 
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mycelium. In corn meal agar medium, the fungus produces sclerotium-like structures, which are 

masses of highly melanized hyphae clustered together, which have also been associated with 

penetration site during cyst infection (Kim et al., 1992). Several isolates of ARF (Arkansas 

Fungus) were collected, and based on the hyphal morphology and sclerotium-like structures 

produced, they were grouped as either compact (ARF-C), or loose (ARF-L) (Kim et al., 1998). 

Of the two groups, isolates from ARF-L consistently demonstrated the ability to suppress 

nematode population in the soil. One of the isolates not only effectively reduced nematode 

population but also showed excellent growth in the rhizosphere, and was designated as TN14. 

Although the isolate showed promising results in controlling cyst and reniform nematodes, 

currently culture conditions that induce conidiation have not yet been identified, and little is 

known about the phylogeny of the fungal isolate.  

 Next-generation sequencing has made huge advances in recent years and has allowed the 

access to information on genomes of numerous organisms. Furthermore, the reduced cost and 

depth of sequencing have revolutionized sequencing projects (Nowrousian et al., 2010). 

Although the number of fungal genomes sequenced has increased dramatically, genomes of just 

a few nematophagous fungi have been sequenced and deposited in the public database (Yang et 

al., 2011, Meerupati et al., 2013, Liu et al., 2014, Lai et al., 2014, Larriba et al., 2014, Prasad et 

al., 2015, Lebrigand et al., 2016). Although the potential application of nematophagous fungi in 

agriculture is essential, the rate of sequencing of the genomes of other economically important 

filamentous fungi has overtaken those of nematophagous fungi. Not only the biology of infection 

in these fungi is interesting, their potential use as biological control makes them tractable 

organisms for further functional genomic studies. Additionally, no genome resources are 

currently available within the genus Brachyphoris. This chapter deals with growth habit of 



  97 

ARF18 in different nutritional conditions, its phylogeny, infection biology on cyst nematodes, 

and the genome of the fungal isolate.   

2. Materials and methods 

2.1. Phylogenetic analyses of ITS region 

 For phylogenetic analyses, ITS1-5.8s-ITS2 region of the ribosomal DNA was amplified 

using primer pairs ITS1 and ITS4. The amplified PCR product was sequenced using Sanger 

sequencing at the DNA sequencing center, Poultry Science building, University of Arkansas. For 

taxonomic placement, an initial BLAST analysis (blastn) (Altschul et al., 1990) against the 

GenBank nucleotide was performed. Subsequently, DNA sequences of ITS regions from 

Orbiliaceae were obtained from GenBank.  Sequences were initially aligned with ClustalX 

(Larkin et al., 2007). Alignments were manually curated, and ambiguously aligned regions were 

removed using Gblocks (Castresana, 2000).  The assembled data set was subjected to 

phylogenetic analyses using neighbor-joining methods implemented in Phylip 3.66 and 

maximum likelihood methods implemented in RAxML v 7.0.0 (Stamatakis, 2006).  Both 

programs were accessed via the CIPRES web-portal (Miller et al., 2010). Internal branch support 

was evaluated in both Phylip and RAxML using 1,000 replicates. The ITS1-5.8S-ITS2 rDNA 

dataset consisted of 41 taxa, including Neurospora crassa, Sordaria fimicola, and Apodus oryzae 

as outgroups (Figure 3.1). 

2.2. Growth in different nutritional conditions 

 To characterize the growth and identify conditions for spore production in ARF18, 

analyses of growth were performed in different nutritional conditions. A plug containing actively 

growing hypha from 0.2× strength potato dextrose agar (PDA) plates were transferred to 

different nutrient conditions and incubated at room temperature in dark. The nutritional 
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conditions used in the study were complete medium, minimal medium, yeast glucose agar 

(YGA) medium, potato dextrose agar (PDA), corn meal agar (CMA) medium, malt extract agar 

(MEA) at pH 7, and MEA at pH 4. The colony diameter was recorded at 5,7, 14, and 21 days 

after inoculation (3.2) and hyphal growth was visually recorded. Colony growth was quantified 

by measuring the diameter from the center inoculation of the plug. The colony diameter was 

quantified at different directions from the center and an average of the readings were recorded. 

Formation of sclerotia-like structures in corn meal agar medium were visualized and 

photographed under a light microscope (Figure 3.3). 

2.3. Scanning electron microscopy 

 To identify the mechanism of cyst infection in ARF18, we performed a scanning electron 

microscopy on cyst nematodes that were infected with the fungus. For infection of the cysts, a 

plug of the hyphal mass of actively growing fungus in 0.2× PDA was transferred to a plate of 

minimal medium overlaid with cellophane, and allowed to grow for few days. Cysts of freshly 

harvested Heterodera glycines were surface sterilized with 10% bleach, carefully placed on the 

growing hyphae of ARF18, and incubated for 7 days (Figure 3.4). After 7 days, cellophane 

around the infected cysts was cut with razor-sharp blade and the cut portion was fixed overnight 

at 4 °C in 2.5% gluteraldehyde in 0.05 M sodium phosphate buffer. After overnight fixation, the 

samples were washed with 0.05 M sodium phosphate buffer for 30 minutes. The fixed samples 

were treated with 1% osmium tetroxide (in 0.05 M sodium phosphate buffer) for 2 hours. 

Following post-fixation treatment with osmium tetroxide, samples were rinsed with sterile water 

three times for 30 minutes each. A serial dehydration was set up with subsequent washes in 25%, 

50%, 75% and 100% ethanol for 30 minutes each. Dehydration was followed by critical point 

drying using ethanol-hexamethyldisilizane gradient mixtures, 3:1 mixture of ethanol: 
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hexamethyldisilizane, followed by 2:1, 1:1 and 1:3 and finally 100 percent hexamethyldisilizane. 

Following 30 minutes incubation in each solution, the samples were air dried at room 

temperature for 30 minutes. The samples were then coated with thin film of gold particles (2 

nanometers) and visualized with a scanning electron microscope at the Nanotech building in the 

University of Arkansas.  

2.4. Identification of nematode parasitism genes 

 To identify genes involved in nematode parasitism, a BLAST search was performed 

against the genome of ARF18. Genes that have been previously characterized as involved in 

nematode parasitism were identified and their nucleotide or amino acid sequences were retrieved 

from GenBank (NCBI). Using the sequences retrieved from the GenBank as the query, BLASTp 

or BLASTn was performed on the ARF18 genome.  

3. Results 

3.1. Taxonomic placement of ARF18  

 An initial BLAST of the ITS1-5.8s-ITS2 region in NCBI database was performed to 

identify the taxonomic placement of ARF18. BLAST analyses (Altschul et al., 1990) querying 

the ITS region of ARF18 against the GenBank nucleotide collection indicated high sequence 

similarity with species from the Ascomycete family Orbiliaceae (i.e. Dactylella spp.). 

Subsequently, the ITS1-5.8S-ITS2 rDNA dataset consisting of 41 taxa, including Neurospora 

crassa, Sordaria fimicola, and Apodus oryzae as outgroups were obtained from the GenBank 

database. The resulting phylogenies indicated that ARF18 is an Ascomycete in the family 

Orbiliaceae (Orbiliomycetes, Figure 3.1).  Additionally, ARF18 formed a well-supported 

monophylogenetic clade within the genus Brachyphoris (Figure 3.1), a genus of nematophagous 

fungi closely related to the genera Dactylella and Vermispora (Chen et al., 2007).  
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3.2. Growth in different nutritional conditions  

 ARF18 showed morphologically distinct growth characteristics in different nutritional 

conditions. However, the fungal isolate was unable to produce spores in different conditions 

tested. The diameter of the hyphal growth was highest in MEA medium (8 cm after 21 days) 

while the growth was lowest in PDA medium, with 6.6 cm diameter of hyphal growth (Figure 

3.2). The pH of the medium did not significantly affect the colony diameter of the fungal isolate. 

Additionally, hyphal mass observed in PDA, YGA, and complete medium was substantially high 

while sparse hyphal growth was observed in minimal medium. ARF18 also produced sclerotia-

like structures in CMA medium (Figure 3.3). Sclerotia-like structures have been previously 

reported to form during the infection of the cyst nematode, and appear as a compact mass of 

highly melanized hyphae. 

3.3. Infection biology  

 Scanning electron micrographs of ARF18 infecting cysts of H. glycines were obtained 

using scanning electron microscope. ARF18 appears to completely grow over the cysts and 

infect them through direct penetration. The figures provide evidence of ARF18 hyphae 

penetrating the cysts at different positions. Interestingly, at the site of penetration, the hyphae 

appeared swollen to produce an appresorium-like structure (Figure 3.4). A report of the fungal 

isolate producing such structure during cyst infection has not been reported previously.   

3.4. Identification of putative nematode parasitism genes 

 A BLAST analysis was performed to identify genes encoding putative nematode 

parasitism genes. Genes or protein sequences were downloaded from the GenBank database. The 

genes were identified from previously published research and selected based on their 

antagonizing effects on plant-parasitic nematodes. The genome of ARF18 contained a single 
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copy of cuticle degrading serine protease (TN14_07867A), which was similar to A. musiformis 

serine protease, with an e value of 2e-24, and shared 41.6% similarity. Similarly, ARF18 also 

contained orthologs of alkaline serine protease (TN14_07831A, and TN14_08784A) from 

Hirsutella rhossiliensis, with 47 and 34 percent similarity respectively. Search for cysteine rich 

secretory protein family, previously described in Nectria haematococca, identified 4 proteins: 

TN14_04654A, TN14_05792A, TN14_12017A, and TN14_01827A with a similarity of 33, 30, 

36 and 33 percent respectively.     

4. Discussion 

 Plant-parasitic nematodes cause enormous losses to agricultural yield annually (Siddiqui 

& Mahmood, 1996, Degenkolb & Vilcinskas, 2016). With the discontinued use of harmful 

chemical pesticides, an effective and environmentally friendly management strategy is urgently 

needed (Chitwood, 2003). Current management options of plant-parasitic nematodes are limited 

to crop resistance and cultivation of non-host crops. These options, however, are constrained by 

economic feasibility and cultivation practices. Alternative management options such as use of 

plant resistance genes, induced resistance and RNAi are still in the research phase and may take 

few years for their deployment in agricultural setting. Biological control, defined as the use of 

living organisms, and their metabolites to suppress the growth of pests, has shown tremendous 

promise in controlling plant pathogens (Li et al., 2015). Nematophagous fungi are ubiquitous in 

soil, usually inhabit top 20 cm of the soil, and play an important role in maintaining the natural 

population of nematodes (Persmark & NordbringHertz, 1997). Most species of nematophagous 

fungi exist as saprophytes in the soil. However, in the presence of nematodes, they convert to 

parasitic mode and parasitize nematodes, which makes them ideal biocontrol agents (Nordbring‐

Hertz et al., 2006, Yang et al., 2007b). The ability to exist in dual lifestyle gives them a 
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nutritional advantage over other saprophytes in the soil, and potential as a tool for sustainable 

agriculture. Furthermore, their lifestyle supports mode of application either through the addition 

of large amounts of inoculum to the soil, or stimulating fungal species preexisting in the soil 

environment. Increase in knowledge of their different modes of infection biology and 

improvement in formulation development and application have increased the interest in using 

nematophagous fungi as a biological control against plant-parasitic nematodes (Nordbring‐Hertz 

et al., 2006).  

 The cost of genome sequencing has reduced significantly in recent years and is affordable 

to smaller groups. Genomes of a handful of nematophagous fungi have been sequenced recently. 

Analyses of their genomes have provided useful insight into their infection biology and their 

mode of action on plant-parasitic nematodes. Additionally, sequencing and analyzing their 

genomes are accelerating research on their ability to be used as biocontrol agents (Ahren et al., 

2005, Meerupati et al., 2013, Liu et al., 2014, Larriba et al., 2014, Lebrigand et al., 2016).  

 ARF18 is an understudied nematophagous fungal isolate, which was first identified in the 

Department of Plant Pathology at the University of Arkansas (Kim & Riggs, 1991). The fungal 

isolate has the ability to parasitize and kill cyst and reniform nematodes (Kim & Riggs, 1995, 

Wang et al., 2004). Additionally, the taxonomic placement of this important fungal species is 

unresolved. Phylogenetic analyses based on the ITS region suggests, however, that ARF18 

groups within Brachyphoris, a genus similar to Vermispora and Dactylelllina (Chen et al., 2007). 

The genus Brachyphoris (synonym Dactylella) was recently introduced and constitutes a group 

of saprophytic fungi with conidiophores short, simple or branched, hyaline. Conidia are borne 

either single or sometimes double, are spindle-shaped, hyaline smooth walled, and rarely longer 

than conidiophores (Chen et al., 2007). Multiple species of Dactylella have been previously 
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described (Stirling & Mankau, 1978b, Liu et al., 1996). The species have been mainly studied in 

China, and isolated from decaying twigs of broad-leaf tree or rotten bamboo (Chen et al., 2007).  

 The ability of ARF18 to infect multiples species of plant-parasitic nematodes, and exist 

as a saprophyte, makes it ideal to be used in different cropping systems. However, the fungus 

was unable to sporulate in a variety of nutritional conditions tested in current research. Similarly, 

in previous studies, the fungal isolate failed to sporulate even in different carbon and nitrogen 

sources for nutrition (Liu & Chen, 2003). Additionally, the fungus failed to produce spores in 20 

different media conditions previously tested (Kim & Riggs, 1991). A previously described 

species, Dactylella oviparasitica required a “complex” media for sporulation, and only in the 

presence of light the fungus was able to produce spores (Stirling & Mankau, 1978a). 

Additionally, enriched Emerson’s yeast extract soluble starch (YpSs) was also sufficient to 

induce spore production in another isolate. However, attempt to induce spore production in 

ARF18 using YpSs was not successful (Kim & Riggs, 1991). The fungal isolate has been 

characterized as a sterile hyphomycete due to its inability to produce spores in tested conditions. 

 A BLAST analysis was performed to identify putative nematode parasitism genes in 

ARF18 genome. The analyses identified several important genes that have been previously 

identified and characterized in other nematophagous and entomopathogenic fungi. Initial 

analyses showed the genome contained putative cuticle degrading serine protease 

(TN14_07867A). The enzyme has been well characterized in Arthrobotrys musiformis and is 

important for digesting nematode cuticle. Another enzyme alkaline serine protease, similar to 

Hirsutella rhossiliensis serine protease was identified with two different copies (TN14_7831A, 

and TN14_8784A). In H. rhossiliensis the enzyme is secreted in liquid culture and is highly 

effective against juveniles of cyst nematodes (Wang et al., 2009). The enzyme helps to degrade 



  104 

cuticle during pathogenicity. Similarly, another group of enzymes for nematode pathogenicity 

belongs to cysteine-rich secretory protein family. ARF18 genome contained 4 putative genes 

(TN14_4654A, TN14_5792A, TN14_12017A, and TN14_01827A) belonging to cysteine-rich 

secretory protein family. Although the enzymes are also present in fungi that parasitize plants 

(Rep et al., 2004, Dean et al., 2005), evidence shows that it is essential for nematode parasitism 

in Drechmeria coniosporia (Lebrigand et al., 2016).  

 Compared to the genomes of important plant pathogenic fungi, the availability of 

genomes of nematophagous fungi is very limited. We sequenced and assembled the genome of a 

previously unnamed nematophagous fungal isolate ARF18 and is presented in the next section of 

the chapter. The information from genome assembly and analyses will provide the first step 

towards its taxonomic placement and ultimately naming the fungus. Additionally, the genome 

contains several genes related to nematode parasitism, which identifies its potential as a strong 

biological control agent of plant-parasitic nematodes. Although the functional assignment of the 

genes is purely speculative at this point, use of molecular genetics on this fungus can provide 

additional evidence towards gene function. Additionally, the genome also provides resources for 

ARF18 for further studies on nematophagy and also aid in developing the fungal isolate as a 

biocontrol agent, and patent developments. The draft genome will advance functional genomics 

research within the genus Brachyphoris, and nematophagous fungi in general, to dissect 

nematode parasitism. The information gathered could further provide tools to increase the 

virulence of the fungus on several other species of nematodes and steer the development of 

ARF18 as an ideal biological control for controlling plant-parasitic nematodes. 
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Figures and Table legends 

Figure 3.1 Taxonomic placement of ARF18/TN14. Phylogenetic tree was made using the ITS1-
5.8S-ITS2 region. DNA sequences of ITS regions from Orbiliaceae were obtained 
from GenBank. Sequences were initially aligned with ClustalX. Alignments were 
manually curated, and ambiguously aligned regions were removed using Gblocks. The 
assembled data set was subjected to phylogenetic analyses using neighbor-joining 
methods implemented in Phylip 3.66 and maximum likelihood methods implemented 
in RAxML v 7.0.0. Internal branch support was evaluated in both Phylip and RAxML 
using 1,000 replicates. 

 
Figure 3.2 Quantification of growth of ARF18 in different nutritional conditions- malt extract agar 

(MEA) in pH 4.2 and pH 7, complete medium (CM), minimal medium (MM), yeast-
extract glucose agar (YGA), potato dextrose agar (PDA), and cornmeal agar (CMA). 
Plugs of equal diameter from actively growing fungus were inoculated in the center 
of the petri dishes with different media and growth was measured at 5, 7, 14, and 21 
days after inoculation. Growth was quantified as diameter of hyphal mass from the 
center of the petri dish.  

 
Figure 3.3  Light microscope figures of sclerotium-like structure produced by ARF18 in corn meal 

agar (CMA) medium. The fungus was unable to produce such structures in other 
medium.  

 
Figure 3.4  Scanning electron micrograph of ARF18 parasitizing cysts of Heterodera glycines in-

vitro. Panel A shows the growth of fungal hyphae over the cyst, while panel B 
demonstrates the penetration of the cyst by the hypha of ARF18. Panel C is magnified 
14991× at one of the penetration sites to demonstrate appresorium-like structures 
formed at the site of infection.  

 
Table 3.1 Genes identified in ARF18 that are known to be important for nematode parasitism from 

other fungal species. 
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Figures and tables 
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Figure 3.4 

         

 Table 3.1 

 
  
 
 
 

 

Function ARF18 gene Id Organism GenBank Id Similarity 
(%) 

Cuticle 
degrading serine 
protease 

TN14_07867A  
 

Arthrobotrys 
musiformis 
 

EF113088.1  
 

41.6 

Alkaline serine 
protease  
 

TN14_07831A 
TN14_08784A   
 

Hirsutella 
rhossiliensis  
 

GI:799240667  
 

47 
34 

Cysteine rich 
secretory protein 
family  
 

TN14_04654A  
TN14_05792A 
TN14_12017A 
TN14_01827A    
 

Nectria 
haematococca 
 

GI: 302895657 
 

33 
30 
36 
33 

200 μm 

 

 3 μm  
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ABSTRACT 

A taxonomically uncharacterized, nematophagous fungus ARF18 that parasitizes cysts, juveniles, 

and adults of the soybean cyst nematode (Heterodera glycines) was proposed as a nematode 

biological control agent in 1991.  A 46.3 Mb draft genome sequence of this fungus is presented, 

and a tentative taxonomic identification as a novel species of Brachyphoris is proposed. 

 

  Plant-parasitic nematodes are destructive pathogens of crop plants worldwide and cause 

estimated losses in excess of $150 billion annually (1).  Control of plant-parasitic nematodes 

relies on chemical nematicides and cultural practices including crop rotation and resistant 

cultivars.  Manufacture and use of several key chemical nematicides have been discontinued due 

to human health risks and environmental concerns.  Resistant cultivars do not currently exist for 

all crops, and effective crop rotation schemes are lacking for many cropping systems due to 

economic concerns.  Alternative nematode control tactics are urgently needed for many major 

economic crops (2, 3).  The hyphomycete fungus ARF18 was first isolated from infected cysts of 

Heterodera glycines nearly 30 years ago (4).  Because the fungus parasitizes all stages of the 

nematode, including eggs, juveniles, and adults in both soil and culture media (5), it was 

suggested as a potential biological control organism.  Culture conditions have not yet been 

identified that induce conidiation or other morphological features that are required for classical 

taxonomic identification.  Additionally, nothing is yet known about nematophagy in ARF18 at 

the molecular level. 

 The genome of ARF18 was sequenced with Pacific Biosciences (PacBio) technology, 

which generated 142,598 reads.  Lengths varied from 35 bp to 43,743 bp with an average length 

of 7686 bp.  A draft genome assembly of the fungus was obtained with Canu v1.1 (6), following 

the program instructions for low coverage datasets.  The ARF18 draft genome assembly was 
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improved by merging contigs into scaffolds with AHA from the smrtanalysis suite v2.3.0 

(http://www.pacb.com/products-and-services/analytical-software/devnet/devnet-analysis-tools/).  

The resulting genome assembly had 46639970 bp organized into 412 scaffolds with N50 of 177 

kb, L50 of 76, and GC content of 44.6%.  Compared to the genome of Arthrobotrys oligospora 

and many other ascomycetes, ARF18 had a slightly larger genome (7,8).  

 Gene prediction was performed with the Maker pipeline v2.31.6 (9) with homology 

evidence proteins from Arthrobotrys oligospora ATCC 24927, Monacrosporium haptotylum 

CBS 200.50, and Drechslerella stenobrocha 248.  A total of 14,461 protein-encoding genes with 

average length of 1028 bp were predicted in the ARF18 genome assembly.  Through BLAST 

analyses, several genes were identified that could play roles in nematode pathogenesis, including 

cuticle-degrading serine proteases, alkaline serine proteases, and chitinases (10, 11, 12).  Further 

examination of the ITS1-5.8s-ITS2 rDNA region suggested that ARF18 belongs to a distinct 

monophylogenetic clade within Brachyphoris, a genus of nematophagous fungi that belongs to 

the Ascomycete family Orbiliaceae (13, 14, 15).  Based on BLAST analyses, most of the genes 

analyzed showed high identity to A. oligospora, and Dactylellina haptotyla, both nematophagous 

fungi within the Orbiliaceae family, supporting the taxonomic placement of ARF18 within the 

Orbiliaceae family. 

 Currently, only a few nematophagous fungal genomes are publicly available.  Thus, the 

genome sequence of this fungus will provide a useful resource to study the biology of 

nematophagous fungi, especially within the Brachyphoris genus.  Further analyses of the genome 

of ARF18 will also provide important information regarding the molecular basis of fungal 

nematophagy and guide the potential development of this nematode pathogen as a biological 

control agent.  
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Nucleotide sequence accession numbers: This Whole Genome Shotgun project has been 

deposited at DDBJ/ENA/GenBank under the accession AZLU00000000. The version described 

in this paper is version AZLU01000000. 
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CHAPTER V 
A Forward genetic screen coupled with novel target-enrichment sequencing approach 

identifies novel genes regulating cercosporin in Cercospora zeae-maydis, a foliar pathogen 
of corn 
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Abstract 

 Molecular genetics studies have helped identify genes regulating numerous biological 

processes in filamentous fungi. For example, the improvement and deployment of biological 

control organisms could be accelerated rapidly by a more complete understanding of the 

underlying genetic mechanisms.  Polyethylene glycol (PEG)- and Agrobacterium-mediated 

transformation are effective ways to create populations of mutants in many fungal species.  

However, identifying where mutagenesis cassettes integrated into genomes can be laborious and 

challenging.  In this study, a novel target-enrichment sequencing method was developed to 

efficiently characterize cassette insertions in Cercospora zeae-maydis, a model plant pathogenic 

fungus. A collection of 3500 tagged mutants of C. zeae-maydis was created via PEG- and 

Agrobacterium-mediated transformation and screened for production of cercosporin, a 

phytotoxin that can be scored visually in defined growth media. Eighty mutants produced 

substantially higher or lower levels of cercosporin than the wild-type strain. Biotinylated 

oligonucleotides were designed to hybridize with border regions of the insertion cassette and 

enrich cassette-genome break junctions from whole-genome DNA sequencing libraries. For 

target-enrichment sequencing, up to 16 uniquely barcoded libraries were pooled per capture 

reaction, and a maximum of two such pools were sequenced simultaneously on the Ion Torrent 

Personal Genome Machine to identify cassette insertion sites. Target-enrichment sequencing 

identified 49 mutants with single T-DNA insertions, and 26 mutants with multiple insertions. 

Novel genes potentially regulating cercosporin biosynthesis were identified, including genes 

involved in signal transduction, primary and secondary metabolism, growth and development, 

and stress responses. Additionally, RNAi lines created for selected genes of interest confirmed 

associations between cassette insertions and cercosporin-related phenotypes. This approach 

provided expansive, unique insight into the regulation of cercosporin biosynthesis, and could 
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easily be adapted to dissect the genetic basis of parasitism in nematophagous fungi such as 

ARF18 to enhance its efficacy in controlling plant-parasitic nematodes. 
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1. Introduction 
 
  Molecular genetics is broadly defined as the application of tools and strategies to 

understand the function, expression, and regulation of a gene at the molecular level. Forward 

genetic screens can be a valuable tool of molecular genetic studies and have been widely used to 

identify novel genes, such as those encoding enzymess (Reilly et al., 2018) and genes involved 

in virulence (O'Meara et al., 2015). All forward genetic screens follow a similar principle 

wherein an organism undergoes mutagenesis to create a collection of random mutants. The 

population is then screened for a phenotype of interest and the gene(s) underlying the phenotype 

is identified. Validating that the candidate gene is responsible for the phenotype is the next step 

and involves mutating the wild type strain at the same locus and confirming the phenotype. 

Although forward genetic screens are widely applicable in many organisms, they are largely 

limited to model organisms (Patton & Zon, 2001, Forsburg, 2001, Casselton & Zolan, 2002, Kile 

& Hilton, 2005). Forward genetic studies in filamentous fungi and oomycetes have identified 

genes underlying several developmental processes such as pathogenesis and secondary 

metabolism (Kamoun, 2003, Yu & Keller, 2005, Jeon et al., 2008, Pfannenstiel et al., 2017). 

With improvement in techniques for genetic manipulation and availability of genome resources, 

forward genetic screens are being widely used in non-model organisms. Although genetic 

manipulation of tools are available for nematophagous fungi (Ahman et al., 2002, Atkins et al., 

2004, Shen et al., 2015), the use of forward genetic screens to identify genes regulating 

pathogenesis and secondary metabolism production in nematophagous fungi has been 

underutilized (Xu et al., 2005) 

 However, the ability to efficiently identify genomic lesions in random mutants represents 

a bottleneck in forward genetic screens. Several approaches have been developed to define 
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insertion sites of mutagenesis DNA insertion cassettes, including plasmid rescue (Tam & 

Lefebvre, 1993), thermal asymmetric interlaced PCR (Dent et al., 2005), restriction enzyme site-

directed amplification PCR (Gonzalez-Ballester et al., 2005), and site finding PCR (Li et al., 

2012). These methods, however, are limited by throughput, labor intensive, and expensive. 

Recently, whole-genome re-sequencing at shallow coverage has been utilized successfully to 

identify mutations in some species of fungi (Esher et al., 2015). However, current costs 

associated with whole-genome re-sequencing limit the number of mutants that can be analyzed. 

Additional methods based on restriction enzyme associated DNA sequencing (RAD-seq) 

approaches were developed to identify the insertion sites of the mutagenesis cassette (Zhang et 

al., 2014, Zaccaron et al., 2018). These methods have limitations due selection of restriction 

enzymes, truncation of the mutagenesis cassette and aberrant insertion of the mutagenesis 

cassette. 

Target capture sequencing or target-enrichment sequencing enriches selected regions of 

the genome and has been widely utilized in both genome sequencing (Mertes et al., 2011) and 

RNA-sequencing experiments (Mercer et al., 2014). Previous methods used for target-

enrichment included PCR and molecular inversion probes, which are error prone (Schmitt et al., 

2015). In solution hybridization is another method of target capture and uses biotinylated oligos 

to enrich selected regions of the genome (Penalba et al., 2014). Although target enrichment 

sequencing have been applied to identify the site of insertion of the mutagenesis cassettes in 

plant species like corn (Williams-Carrier et al., 2010) and Arabidopsis (Lepage et al., 2013, 

Inagaki et al., 2015), the method has not been applied as a tool in filamentous fungi, especially in 

the context of forward genetic screens.   
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Cercospora zeae-maydis Tehon & Daniels, the causal organism of the gray leaf spot in 

corn, is the most common and one of the most destructive foliar pathogens of corn in the United 

States (Shim & Dunkle, 2002) and causes significant damage to both yield and quality (Ward et 

al., 1999, Dunkle & Levy, 2000, Goodwin et al., 2001, Crous et al., 2004). Cercospora zeae-

maydis and other species of Cercospora produce a phytotoxin, cercosporin (Daub, 1982, Shim & 

Dunkle, 2002). Cercosporin belongs to a pyrelenequinone class of toxin, which is activated by 

light (Bluhm et al., 2008, Kim et al., 2011a) and causes cell death through lipid peroxidation, 

membranes leakage, and cytoplasmic leakage (Lousberg et al., 1971). Cercosporin can be 

induced in an artificial medium like 0.2× strength potato dextrose agar (PDA) (Shim & Dunkle, 

2002). This ability to produce cercosporin makes the phenotype easy to identify and quantify. 

Despite the importance of cercosporin in pathogenesis, its regulation is understudied at the 

molecular level. Therefore, as a proof of concept, we utilized C. zeae-maydis as a model system 

and utilized a forward genetic screen coupled with a novel target-enrichment sequencing 

technology to identify putative genes regulating cercosporin production. C. zeae-maydis was 

used as a system because 1) it is routine to transform and is amenable to both protoplast- and 

Agrobacterium-mediated transformation, 2) it has an easy visual screen for cercosporin 

production, and 3) has a near-complete genome that is completely annotated. The method 

described in this chapter utilizing C. zeae-maydis as a model system can be successfully applied 

to diverse filamentous fungi, including nematophagous fungus like ARF18, to accelerate 

molecular genetic studies of different metabolic pathways including pathogenesis and secondary 

metabolism.   
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2. Materials and Methods 

2.1. Generation of mutants 

 Random insertional mutants of Cercospora zeae-maydis strain SCOH1-5 were created 

using polyethyleneglycol (PEG)-mediated and Agrobacterium-mediated transformation. For 

PEG-mediated transformation of protoplasts, a previously described protocol was followed 

(Ridenour et al., 2012). Briefly, the mutagenesis cassette, GFP-Gen was amplified from the 

plasmid pBR0073 using primer pairs ATKpnI1F and ATKpn1R and purified by precipitating 

with ethanol and dissolved in dH2O. Protoplasts of C. zeae-maydis were made as described by 

Ridenour et al. (2012) with slight modifications. Conidia were harvested from three-day-old 

actively growing cultures on V8 juice agar medium and inoculated into YEPD liquid medium at 

room temperature and constant shaking at 200 rpm. Germinated conidia were separated from the 

liquid YEPD medium after 36-40 hours of incubation using nylon spectra mesh filter. After 

collecting the germinated conidia on the nylon spectra mesh filter, they were transferred to an 

Erlenmeyer flask with 20-25 ml of 1.2 M potassium chloride (KCl) solution containing 20% 

lysing enzymes from Trichoderma harzianum (Glucanex; Sigma Aldrich, St Louis, MO, USA) 

and 0.4% (v/v) β-glucuronidase (Sigma Aldrich) and incubated at room temperature for 8 hours 

with constant shaking at 50 rpm. Protoplasts were harvested by centrifugation of the lysing 

solution in 50 ml centrifuge tubes at 4000 rpm in 4 °C. Protoplasts were suspended in 1.2 M KCl 

solution, diluted to a concentration of 1 × 106 protoplasts per milliliter. Prepared protoplasts were 

either used immediately for transformation or stored in -80 °C until further use. 

 For transformation, 10 μg of the amplified mutagenesis cassette was added to the 

protoplasts suspension, mixed with gentle tapping and incubated in ice for 30 minutes. 200 μl of 

60% PEG-2000 in STC (1.2 M sorbitol, 50mM CaCl2 and 10mM Tris pH 8.0), was added and 



  128 

mixed gently by swirling the tube. After incubating the mixture at room temperature for 30 

minutes, 1 ml of regeneration medium (1.0 M sucrose, 0.02% yeast extract) was added to the 

tube and incubated at room temperature for 48 hours in a rocking shaker. After 48 hours, the 

transformation mixture was diluted to 10 ml with regeneration medium and 1 ml of the diluted 

mixture was plated with regeneration agar medium (1.0 M sucrose, 0.02% yeast extract and 1.0% 

agar) amended with 200 μg/ml G-418 disulphate (geneticin, Research Products Inter. Corp., Mt. 

Prospect, IL) and incubated at room temperature in dark until colonies were visible for transfer to 

a selection medium. 

For Agrobacterium-mediated transformation, the plasmid pBHt2-sGFP (Mullins et al., 

2001) transformed into the vector Agrobacterium tumefaciens, strain AGL1 (Lazo et al., 1991) 

was used. A single colony of the Agrobacterium, containing the pBHt2-sGFP plasmid (Mullins 

et al., 2001), from a 3 day-old culture in LB-agar plate, amended with appropriate antibiotics, 

was inoculated in Luria broth with 100 μgml-1 carbenicillin and 100 μgml-1 kanamycin for 

selection. Following 2-3 days of incubation at 28 ºC, the OD of the culture was quantified using 

a spectrophotometer. The culture was spun down and re-suspended in Agrobacterium inducing 

medium (IMM), with 100 μgml-1 carbenicillin and 100 μgml-1 kanamycin for selection, to an 

OD600 of 0.2. After 24 hours, the OD600 of the bacterial culture in the IMM was quantified and 

diluted with IMM to set the final OD600 value to 0.2. This was the induced Agrobacterium 

culture used for transformation. 

For transformation of C. zeae-maydis, conidia from a three-day-old culture on V8 agar 

were harvested with IMM. Approximately 106 conidia ml-1 were mixed with the induced 

Agrobacterium cultures in equal volumes. Two hundred microliters of the agro-spore suspension 

were plated onto IMM agar plates overlaid with cellophane and incubated for 4 days at room 
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temperature. The cellophane membranes were removed and flipped onto 0.2× strength PDA 

plates amended with 100 µgml-1 hygromycin and 200 µgml-1 cephotaxime, 100 μgml-1 

carbenicillin and 100 μgml-1 kanamycin as selection antibiotics. The cellophane membranes were 

removed four days after the initial transfer. Transformed colonies were visible approximately 10 

days after the removal of the cellophane membranes. GFP expressing colonies were identified 

through visual examination using GFP light. Fluorescing colonies were transferred onto V8 agar 

medium amended with the 100 µgml-1 hygromycin. Colonies were screened for cercosporin 

production once sufficient growth was observed on V8 agar medium. 

2.2. Identifying mutants with altered cercosporin production 

 The mutants were screened for cercosporin production on 0.2× strength PDA (Difco 

Microbiology, Lawrence, KS) in constant light (Shim & Dunkle, 2002). Cercosporin causes dark 

red pigmentation on the PDA medium (Figure 2). To screen mutants for cercosporin, 1mm x 

1mm plugs from actively growing cultures in V8 agar were transferred onto 0.2× PDA medium 

and kept in constant light for 7-10 days. Similarly, a plug from actively growing SCOH1-5 (the 

wild-type parent strain) was inoculated as a control. The mutants were categorized into three 

groups: non-producers - which did not show visible pigmentation in 0.2× PDA medium, very 

less producers- which showed comparatively less pigmentation compared to the wild-type, and 

over producers- which showed increased pigmentation compared to wild-type parent strain 

(Figure 2). The mutants that grouped under these three categories were selected for further 

screening. After two rounds of screening for cercosporin production, the cultures were single 

sporulated by streaking spores onto 0.2× PDA medium and culturing colonies growing from one 

spore. Colonies from single spores were then transferred onto V8 agar medium amended with 

100 µgml-1 hygromycin or 200 µgml-1 geneticin as selection antibiotic. After sufficient growth of 
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the cultures, they were re-screened for cercosporin production with the same method as 

described above. 

2.3. Extraction of genomic DNA and library preparation 

Modified CTAB method was followed for DNA extraction. In brief, the strains were 

grown on liquid yeast extract media at room temperature with constant shaking. Fungal tissue 

was collected by centrifugation of the culture in 50 ml Falcon tubes. The tissue was extracted 

and ground with liquid nitrogen and used for genomic DNA extraction. DNA extracted from the 

tissues was quantified with a spectrophotometer. 400 bp libraries from the mutants were prepared 

using 200 nanograms DNA with the NEBNext Fast DNA Library Preparation kit for Ion Torrent 

(New England Biolabs, Ipswich, MA) with minor modifications. In the ligation step, the adapters 

from the kit were replaced with a different set of barcoded A and P1 adapters (Biooscientific, 

Austin, TX). The libraries were the quantified with an Agilent Tapestation 2200 D1K (Agilent 

Technologies, Santa Clara, CA). Up to 16 different barcoded libraries were pooled in equal 

amounts for a total of 500 nanograms simultaneous target capture reaction. 

2.4. Target-enrichment sequencing to identify T-DNA insertion sites 

For identification of the site/s of insertion, we followed probe capture followed by 

sequencing in Ion Torrent PGM machine. For the capture of the target regions the protocol 

described by Schmitt et al., (2015) was used. Following the final set of amplification for 14 

cycles, libraries were pooled in equal amounts. Biotinylated probes for the cassette were 

designed and ordered from IDT (Integrated DNA Technologies, Coralville, IA). Probes were 

designed to capture about 240-360 bp from left and the right border of the cassette. Briefly, 

libraries from the mutants were combined in equal amounts giving a total of 500 ng DNA a pool. 

500 ng of the pooled libraries were combined with 1 μl each of xGen Universal Blocking Oligo 1 
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(IT-P1) and xGen Universal Blocking Oligo 2 (IT-A) (Integrated DNA Technologies). The 

contents were completely lyophilized with a Savant SpeedVac Concentrator SVC100H (Thermo 

Fisher Scientific, Waltham, MA, USA). The following reagents were added to each of the 

lyophilized samples- 8.5 μl of xGen 2× Hybridization Buffer (Integrated DNA Technologies), 

2.7 μl of xGen Hybridization Buffer Enhancer (Integrated DNA Technologies), 1.8 μl nuclease 

free water. The components were thoroughly mixed and were incubated at 95 °C for 10 minutes. 

Following incubation at 95 °C for 10 minutes, 3 picomoles of the biotinylated probes were 

immediately added to each reaction and mixed by vortexing. The reaction mixtures were 

incubated at 65 °C for 4 hours. After 4 hours of incubation, 75 μl of Dynabeads M-270 

Streptavidin beads (Thermo Fisher Scientific) were added to each sample, and the incubation and 

washes were performed according to the protocol described in Hybridization capture of DNA 

libraries using xGen Lockdown Probes and Reagents (Integrated DNA Technologies). The 

probed libraries were amplified for 14 cycles according to the manufacturer’s protocol described 

in the NEBNext Fast DNA Fragmentation and Library Prep Set for Ion Torrent (New England 

Biolabs) and purified with 1× volume of Agencourt AMPure XP beads (Beckman Coulter, Brea, 

CA). The purified libraries were combined with 0.5 μl of the blocking oligos and another round 

of capture was performed with 1.5 picomoles of the biotinylated probes. Additional round of 

clean up with 1× volume of Agencourt AMPure XP beads was performed followed by a PCR 

reaction for 14 cycles and the final libraries was analyzed with an Agilent Tapestation 2200 D1K 

(Agilent Technologies). The libraries were sequenced on an Ion Torrent Personal Genome 

Machine with an Ion 314 chip kit V2 (Thermo Fisher Scientific). 
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2.5. Mapping reads to the reference genome 

 Sequenced reads were processed with FASTQC to filter poor quality reads. The reads 

above threshold Q20 were selected for further analyses. Additionally, poor quality bases at the 3’ 

end of the reads were trimmed off. The reads were initially mapped to the mutagenesis cassette 

with Burrows Wheeler Aligner (BWA) (Li & Durbin, 2010). The mapped reads were assembled 

de novo with MAKER pipeline version 2.31.6 (Holt & Yandell, 2011). The mapped and 

assembled reads were then aligned to the reference genome (SCOH1-5) with BWA to identify 

the site/s of insertion/s. The site/s of insertion/s were visualized with IGV (Robinson et al., 2011) 

to identify the number, site, and types of insertions in the mutants. The site or sites of the T-DNA 

insertion was determined by the percent of reads that mapped to a locus or a set of loci in the 

genome compared to overall mapping in the genome. 

2.6. Validation of cercosporin production phenotype 

To validate the robustness of our screen and the link between the mutations and the 

phenotype, we created individual knock-down mutants for six of the genes identified in the 

screen. RNA silencing (RNAi) constructs to silence the six genes, including the putative CTB1 

gene, were created. For generating the RNAi vectors, we amplified sense and anti-sense strands 

for each of the six genes with primers mentioned in Table 3. Intron of cutinase from 

Magnaporthe oryzae was amplified from pSILENT vector (Nakayashiki et al., 2005). Six 

individual vectors- pBW4, pBW5, pBW7, pBW8, pBW9 and pBW10 were created by 

incorporating the strands and the intron onto the plasmid pBHT2 following the Gibson Assembly 

protocol (Gibson et al., 2009). The orientation of the sense and antisense strands and the intron 

in each of the plasmids were confirmed via polymerase chain reaction. The plasmids were 

transformed into Agrobacterium cells, AGL1, via electroporation mentioned above. C. zeae-
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maydis, strain SCOH1-5, was transformed with the RNAi constructs following the 

Agrobacterium-mediated transformation protocol described above to create individual RNAi 

lines. The colonies were picked about 10 days after transformation and transferred to V8 media 

amended with 100 μgml-1 hygromycin as the selection antibiotic. The transformed colonies were 

screened for cercosporin production by inoculating a small plug from an actively growing colony 

in 0.2× PDA plates and incubating in constant light for 7-10 days. The colonies with the 

expected cercosporin production phenotype were selected for further analyses.  

 For quantification of cercosporin production in the RNAi lines generated, 105 spores 

from each of the lines were plated on to 0.2× strength PDA plates and incubated at constant light 

at room temperature. After 7 days of incubation, cercosporin was quantified with 5N KOH 

previously described (Kim et al., 2011b). Briefly, the plate was flooded with 10 ml of 5N KOH, 

mixed by swirling and incubated in dark for 30 minutes. The absorbance of KOH was quantified 

at 480 nm. Cercosporin concentration was measured using the formula A= εmCl, where εm is the 

molar extinction coefficient 23,300 mol-1 cm-1, C is the concentration and l is the path length of 

the cuvette, which is 1 cm.  

3. Results 

3.1. Development of target-enrichment sequencing method 

A unique protocol was developed using the target-enrichment method to successfully 

enrich for a selected region of the genome. Using this method, we were able to successfully 

enrich a desired region for sequencing which improved the depth of coverage of the region 

several-fold. The method was optimized for Ion Torrent Personal Genome Machine, which is 

quick to operate, easy to handle. However, the method can be easily adapted to other sequencing 

platforms such as Illumina, Oxford Nanopore, or Pacbio technologies. Our method enabled us to 
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successfully sequence multiple C. zeae-maydis strains in one run on a 314 chip with a maximum 

capacity of just 100 million bases. Using the 314 chip, we were able to pool and sequence the 

desired region for up to 31 mutants in one reaction. Figure 1 depicts a flowchart of the steps that 

were used for target-enrichment and sequencing. In our protocol, we successfully targeted the 

end of the T-DNA (Transfer DNA) to identify the insertions (Table 1), although insignificant 

non-specific enrichment was also obtained. The percentage of mapping reads to a single locus 

would not be possible with conventional sequencing. Although our method is developed for a 

single region, we can apply this method to numerous loci simultaneously to increase mapping.  

3.2. Determining the site/s of insertion using target-enrichment sequencing   

A forward genetic screen was performed to identify genes regulating cercosporin 

biosynthesis in C. zeae-maydis. Mutants were created via PEG-mediated transformation of 

protoplasts and Agrobacterium-mediated transformation. A collection of nearly 3500 mutants 

was created from the above methods with 350 mutants from PEG-mediated protoplast 

transformations, and 3150 mutants were created via Agrobacterium-mediated transformation. 

Previously very few studies have been conducted on C. zeae-maydis utilizing Agrobacterium-

mediated transformation (Lu et al., 2016). However, a large-scale genetic screen on C. zeae-

maydis to identify genes regulating cercosporin biosynthesis has not been reported. 

  In many species of Cercospora, cercosporin has been shown to be required for 

pathogenicity. Although genes regulating cercosporin biosynthesis in C. zeae-maydis had been 

identified through subtractive hybridization (Shim & Dunkle, 2002), a genetic screen to identify 

genes regulating the production of cercosporin biosynthesis has not been reported. For 

phenotyping cercosporin production in the mutant collection, 1 mm x 1 mm plugs from the 

mutants and the wild-type parent strain was inoculated onto 0.2× strength PDA plates in 
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incubated in constant light for 7-10 days (Figure 2). We limited ourselves to the identification of 

only the cercosporin phenotype, although the method is also applicable to phenotypes such as 

pathogenicity, sporulation etc. We identified around 81 mutants with altered levels of 

cercosporin compared to the wild-type parent strain. From the 81 mutants, 29 mutants were 

created from the protoplasts, while 52 mutants were created from Agrobacterium-mediated 

transformation. The forward genetic screen helped us identify three groups of mutants, based on 

visual analyses. Mutants that did not produce cercosporin- no color production was observed on 

0.2× strength PDA plates, mutants that were severely reduced in cercosporin production- the 

pigmentation was reduced compared to the wild-type parent strain, and mutants that were 

increased in cercosporin production- pigmentation on the 0.2× PDA plated were more than the 

wild-type parent strain. Of the total of 81 mutants we identified 59 mutants that did not show any 

production of cercosporin, 18 mutants had very reduced production of cercosporin, while 3 

mutants were over-producers (Table 4).  

Eighty-one mutants with altered levels of cercosporin were identified and we developed a 

target-enrichment sequencing approach to precisely identify the site and the copy number of 

insertion of the mutagenesis cassette. Our method also identified multiple insertions in several 

mutants, which suggests that the method could be optimized to replace Southern hybridization, 

which is employed to determine the copy number of insertions in mutant strains. In our method, 

a double capture method previously described (Schmitt et al., 2015) was utilized and optimized 

for filamentous fungi. The sequencing was performed in the Ion PGM platform, which is cheap 

and fast compared to other next-generation sequencing platforms like Illumina and Pacific 

Biosciences long read technology. Additionally, with our approach, we were able to sequence up 

to 31 mutants in a single run in a 314 chip, which has a sequencing capacity of just 100 Mb. We 
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obtained a very high coverage for the targeted site to confidently predict the location of the T-

DNA/mutagenesis cassette insertion. Such methods to enrich regions for the genome to improve 

the depth of sequencing in filamentous fungi have not been developed to date. 

Using target-enrichment sequencing approach for 81 independent random mutants, we 

identified a total of 109 putative insertional locations. Fifty-five from the 109 insertional sites 

show a typical insertional characteristic with mapping to both sides of the insertional cassette 

(Figure 4). Such insertions are termed as symmetric insertions. From these insertional sites, we 

identified small and large deletions in the genome during the integration of the mutagenesis 

cassette. Agrobacterium-mediated transformation identified 40 symmetric insertions, while from 

PEG-mediated transformation we identified 15 symmetric insertions. We also observed 54 

asymmetric insertions, wherein only one side of the mutagenesis cassette was mapped onto an 

insertional site (Figure 4). Of the total insertions, we identified 49 single insertions and 26 

multiple insertions. Interestingly, 22 of 29 insertions from PEG-mediated transformation were 

single and 4 were multiple, whereas Agrobacterium-mediated transformation produced a higher 

percentage of multiple insertions wherein 27 out of 52 were single insertions and 22 were 

multiple. 

3.3. Identifying genes regulating cercosporin production 

A forward genetic screen approach to identify genes regulating cercosporin biosynthesis 

in C. zeae-maydis identified novel genes, which were previously unknown regulators of 

cercosporin biosynthesis in the genus Cercospora, including C. zeae-maydis. Out of a total of 81 

mutants, 51 mutants had single insertions (Table 4). The insertions were present in genes, in 

between genes, upstream promoter regions, and repetitive elements. Many of the genes identified 

include novel and previously uncharacterized genes in filamentous fungi. Interestingly, one of 
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the mutants identified had the cassette integrated into the open reading frame of CTB1 

(Cercosporin Toxin Biosynthesis-1), the polyketide synthase gene catalyzing the first step of 

cercosporin biosynthesis in Cercospora species. The genes identified through the screen could be 

grouped into three broad categories: 1) Chromatin modifiers such as SNF5, SET3, bromodomain-

containing protein, WD40 repeat-containing protein, SANT domain-containing protein, 2) genes 

involved in growth and development such as putative scytalone dehydratase (SDH), ERG5, 

VPS35, actin depolymerizing factor, and 3) genes involved in signal transduction such as MFS1 

transporter family, cytochrome P450, Calcium ion channel protein, Phenol hydroxylase, 

conserved hypothetical proteins (Figure 6). Interestingly, the sites that were disrupted in 

chromatin modifying genes were all either non-producers of cercosporin or were severely 

reduced in cercosporin production. The gene scytalone dehydratase (SDH1) has been previously 

characterized in Magnaporthe oryzae, and is required for melanin biosynthesis and pathogenicity 

(Motoyama et al., 1998). Interestingly the mutation within this gene produced a white-colored 

fungal colony with red pigmentation on V8 agar medium even in complete darkness (Figure 3). 

Similarly, one of the insertions identified is present 287 bp upstream of putative glucose-

inactivated glycerol proton symporter STL1, a gene previously characterized in Saccharomyces 

cerevisiae, expressed during hyperosmotic stress, thus required for homeostasis (Sauday, 2010). 

One insertion identified is located in an open reading frame highly similar to salicylate 

hydroxylase, present in plant pathogenic bacteria. Salicylate hydroxylase is required for 

degrading salicylic acid- a hormone produced during systemic resistance in plants. The 

disruption caused the mutant to be defective in cercosporin production. In addition, many of the 

insertions identified were present in genes that do not share any homology to previously known 

genes and hence could potentially be novel genes regulating secondary metabolism in fungi. All 
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the insertions were mapped to different locations in the genome. The insertions of the T-DNA or 

mutagenesis cassette appeared randomly distributed throughout the genome (Figure 5). 

3.4. Phenotypic validation of target-enrichment sequencing results 

To further validate the rigidity of our screening procedure and to ensure that the altered 

cercosporin phenotype was linked to the mutation identified through target-enrichment 

sequencing, we generated six independent mutant lines using RNAi approach. Six different 

genes were targeted to silence through RNAi (Table 3). Of the 6 genes, 2 were linked to no 

production of cercosporin, 1 linked to the reduced production of cercosporin and 3 with an 

increased production of cercosporin. RNAi lines created to target six genes showed similar 

results when compared to the forward genetic screen (Figure 8). All the RNAi lines targeting 

CTB1 (CzmATMT2.277) showed a significant reduction in cercosporin production compared to 

the wild-type strain. Similarly, silencing of the SNF5 (CzmRI6.333) gene showed no cercosporin 

production in-vitro confirming our phenotype from the forward genetic screen. Two RNAi 

strains each for overproducers CzmRI6.274 (mutation in aromatic ring hydroxylase) and 

CzmRI6.251 (ERG5) were analyzed for cercosporin production. One strain from each gene 

showed increased cercosporin production compared to the wild-type strain SCOH1-5. Strains 

created to knock down conserved hypothetical protein (CzmRI6.197) and scytalone dehydratase 

(CzmRI6.285) demonstrated inconsistent results compared to those observed in our forward 

genetic screen (Figure 7). 

4. Discussion 

Functional genomics is a powerful approach to identify gene function and regulation in 

filamentous fungi and oomycetes. Functional genomics studies have been made possible due to 

improved techniques available for genetic manipulation of fungi, development of efficient 
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transformation systems, and high-throughput methods for phenotyping (Michielse et al., 2005). 

Additionally, reduced cost of genome sequencing has increased the availability of assembled 

genomes in the last few years, which has enhanced functional genomics studies in different 

fungal species. Although several approaches are available for studying gene function and 

regulation in filamentous fungi, they are only limited to model organisms. Nematophagous fungi 

are an important component of biological control of plant-parasitic nematodes. Their use in 

nematode management could reduce the use of harmful chemicals and provide a sustainable 

solution towards nematode management. Functional genomics research in nematophagous fungi, 

however, is hampered due to scarcity of genomic resources and availability of a tractable system. 

Application of functional genomics studies in nematophagous fungi could potentially augment 

the acceleration of nematode management strategies through identification of nematode 

parasitism genes, secondary metabolites or novel compounds toxic to plant-parasitic nematodes. 

However, development of functional genetics tools needs to be initially validated and verified in 

a well-established system prior to its potential use in nematophagous fungi. Hence, with the goal 

of eventually expanding our approach to ARF18, we used Cercospora zeae-maydis as a model 

system develop a high-throughput method to generate a large number of random mutants, screen 

for a phenotype and precisely identify the underlying mutations associated with the phenotype. 

Our approach can be easily adapted to other filamentous fungi like ARF18 which also has draft 

genome sequenced and assembled (Sharma et al., 2017). High throughput nature of our method 

has widespread applications to discover novel genes regulating nematode parasitism in ARF18, 

enhance nematophagy, and develop ARF18 as an ideal and effective biological control of plant-

parasitic nematodes. In our approach, we successfully identified the location of T-DNA 

insertions a few mutants. However, the method can be easily expanded to larger mutant 
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collections, which will enable the construction of genetic networks underlying the regulation of 

secondary metabolism or other biological processes such as nematode parasitism. 

In our method, we were able to identify not only single insertions but also multiple 

insertions in the mutant strains. Target-enrichment sequencing identified up to four sites of 

insertions in the samples. Although the insertion numbers needs to be validated through PCR, 

our method is advantageous over currently used Southern hybridization in which one can only 

identify the number of copies of insertions but not the location. Additionally, multiple copy 

insertions are very difficult to resolve using the commonly used genome-walker PCR. Using the 

target-enrichment sequencing approach we identified both symmetric and non-symmetric 

insertions. Non-symmetric insertions are cases where only a single end of the cassette is mapped 

to the genome. This situation could arise due to several possibilities, including insertion-induced 

chromosomal rearrangements (Esher et al., 2015). Additionally, edges of the T-DNA cassette 

can be truncated during integration events. Since our biotinylated probes only hybridize and 

capture 240-360 bases from the left and right border of the mutagenesis cassette, a truncation 

beyond 360 bases from either border will not be captured. Our method will also fail to detect any 

aberrant integration events arising out of insertion of a small piece of the mutagenesis cassette or 

insertion of the vector backbone in addition to T-DNA region, which is a rare but possible 

phenomenon.  

Using the target–enrichment sequencing approach to a population of random mutants in 

C. zeae-maydis, we identified numerous genes potentially regulating cercosporin biosynthesis in-

vitro. The results from the present work will provide useful insights into the regulation of 

cercosporin during pathogenicity. Currently, the production and regulation of cercosporin in C. 

zeae-maydis during the pathogenesis of corn is poorly understood. C. zeae-maydis is a 
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hemibiotrophic pathogen and its infection strategy involves a short biotrophic phase of 2-3 days 

followed by a switch to a necrotrophic stage (Kim et al., 2011a). It has been previously 

demonstrated that CTB1 is up-regulated during initial biotrophic phase and declines at the onset 

of lesions in corn (Bluhm et al., 2008). The different genetic factors that control the expression 

of the CTB cluster and regulate cercosporin production at different stages of infection remain 

unknown. The genes identified from our genetic screen can provide valuable clues on the 

regulation of cercosporin especially during pathogenicity. The differential expression during 

different stages of pathogenesis suggests that the regulation is tightly under the control of 

chromatin regulation. Some of the most interesting candidate genes involved in chromatin 

modifications such as SNF5, SET3, genes containing WD40 repeats, bromodomain transcription 

factors, SANT domain-containing gene and Velvet domain-containing gene. Interestingly in our 

forward screen, disruption of the genes involved in chromatin modifications appears to have a 

similar effect on cercosporin production: either severely reduced in production, or completely 

abolished which demonstrates the tight regulation of cercosporin through chromatin 

modification. In Neurospora crassa, SNF5 is recruited by WC1 to regulate FRQ (frequency), 

which is involved in the circadian response. In C. zea-maydis, CRP1, the homolog of WCI, is 

required for cercosporin production and pathogenicity (Kim et al., 2011b) and also regulates 

FRQ (Bluhm lab, data not shown). C. zeae-maydis penetrates the host through the stomata, 

which is the only known method in entry into the host. The infection through the stomata is 

regulated by light and is also linked to a circadian clock (Kim et al., 2011b). SNF5 could provide 

a link between CRP1 and FRQ to regulate pathogenicity in C. zeae-maydis. SANT domain occurs 

in many ATP dependent chromatin-remodeling enzymes, histone acetyltransferase and 

deacetylases, and binds to histone tails (Boyer et al., 2002, Boyer et al., 2004) thereby regulating 
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chromatin accessibility. SET3 is another chromatin modifying protein that is responsible for 

histone deacetylation (Kim & Buratowski, 2009), and performs numerous roles in gene 

regulation through chromatin modification. It is recruited by SET1 to suppress nucleosome 

acetylation and remodeling (Kim & Buratowski, 2009). In Magnaporthe oryzae, SET3, along 

with TIG1, SNT1, HOS2, form a part of a Tig core complex, involved in infectious growth during 

rice pathogenicity (Ding et al., 2010). Other genes of interests include ERG5 and SDH1, which 

are both involved in cell wall development. ERG5 is required for ergosterol synthesis, while 

SDH1 is required for melanin biosynthesis. Interestingly mutations in both the genes lead to an 

overproduction in cercosporin. It would be interesting to see if as a result of overproduction in 

cercosporin also increases the virulence in these mutants. Since cercosporin is required to induce 

cell death in plants, we can hypothesize that these mutants would readily induce necrosis in 

plants bypassing the biotrophic phase. Additional genes that have not been previously 

characterized in filamentous fungi can provide novel insights into cercosporin regulation.  

With slight modifications and optimizations, our approach could be easily adapted to 

other filamentous fungi and different mutagenesis cassette. The approach is an improvement 

over previously used PCR based methods (Gawronski et al., 2009) or whole genome sequencing 

approach (Esher et al., 2015) to identify the site of cassette integration. For the target-enrichment 

sequencing approach, we designed probes to span just the borders of the cassette. However, the 

method can be easily optimized to hybridize and enrich the cassette by synthesizing probes 

spanning the entire T-DNA/REMI cassette or the entire plasmid. The method could be adapted to 

accelerate the discovery of novel genes regulating different biological processes in filamentous 

fungi, including nematode parasitism in nematophagous fungi.  
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Nematophagous fungi are known to produce a plethora of metabolites. Among many 

these, linoleic acid is the most prevalent (Anke et al., 1995). Important secondary metabolites 

produced by nematode-trapping ascomycetes include oligosporon, oligosporol A and oligosporol 

B, and arthrobotrisins in Arthrobotrys oligospora (Yang et al., 2011), flagranones in A. flagrans, 

and paganins from Dactylellina entomopaga. Metabolites secreted by cysts and eggs parasitizing 

nematophagous fungi include pochonins, monocillins, chlamydocin, paecilocin (Degenkolb & 

Vilcinskas, 2016). Many of these have been implicated in pathogenicity and toxicity of plant-

parasitic nematodes (Li et al., 2007). Given the diverse nature of secondary metabolites produced 

by different nematophagous fungi, exploring their regulation could open new avenues for 

efficient management of plant-parasitic nematodes. New compounds could potentially be 

isolated and screened for their efficacy against nematodes or novel strains of fungi created to 

control diverse species of plant-parasitic nematodes. However, functional genomics research in 

nematophagous fungi is very limited currently. Application of a forward genetic screen to 

identify mutants for increased pathogenicity and secondary metabolism combined with target-

enrichment sequencing could augment existing nematode management strategies and accelerate 

their control. High-throughput methods and techniques need to be developed and tested in 

already established systems to replicate the research in nematophagous fungi. If successfully 

applied to fungal species like ARF18, our method could have a positive impact on nematode 

management. 
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 Figures and tables legend 

Figure 1. Flowchart followed for the target capture sequencing. Special biotinylated probes were 
designed to span the edge of the mutagenesis cassette. Pooled libraries were 
hybridized with the biotinylated probes followed by binding with streptavidin bound 
magnetic beads (1). The streptavidin-biotin conjugate were pulled down with magnetic 
beads (2). Final PCR was performed to selectively amplify the reads enriched for 
cassette-genome break junction (3). The libraries were amplified on the Ion Torrent 
PGM platform (4). Reads were mapped onto the cassette and then to the SCOH1-5 
reference genome assembly to identify the site/s of insertion/s of the mutagenesis 
cassette. 

 

Figure 2. Screening of mutants on 0.2✕ strength PDA at constant light at A-seven days after 
inoculation and B- 10 days after inoculation. 1: WT, 2 and 3: mutants over-producing 
cercosporin, and 4: mutant not producing cercosporin, 5: mutant with severe reduction 
in cercosporin and 6: mutant with reduced cercosporin. 

 
 
Figure 3. One mutant identified in the forward genetic screen- named CzmRI.6.251 produced 

cercosporin constitutively, even in the dark. Figure shows the mutant producing 
cercosporin in V8 agar in dark, 6 days after padding (A), while the wild type 
Cercospora zeae-maydis strain (SCOH1-5) does not (B). Sequencing results show that 
the mutant strain had the cassette inserted in putative Scytalone dehydratase (SDH1) 
ortholog, which is involved in the production of melanin in many fungal species, 
including Magnaporthe oryzae. 

 

Figure 4. Figure showing two different kinds of insertion identified in the genetic screens-
asymmetric and symmetric. 

 
 
Figure 5. A total of 109 insertions across the 81 individuals have been plotted on the C. zeae-

maydis scaffolds. Insertions are represented by triangles color coded by the screen. 
Mutants in screen 1,2 were obtained via PEG-mediated transformation and screens 3,4 
were generated using Agrobacterium-mediated transformation. Scaffolds numbers are 
shown inside the empty bars. Blue and black highlights on the scaffolds represent genes 
and repeats, respectively. 

 
 
Figure 6. Different classes of genes identified in the screen that putatively regulate cercosporin 

production. 
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Figure 7. Quantification of cercosporin levels in different RNAi lines. 105 spores from actively 
growing cultures were plated on to 0.2x strength PDA plates and incubated in constant 
white light for 7 days. Cercosporin was with 5N KOH, and was quantified by 
measuring the absorbance at 480 nm. The OD values were converted into 
concentrations using the formula A= εmcl. The molar extinction coefficient for 
cercosporin is 23,300 m-1 cm-1. Means with same letters do not differ significantly at P 
≤ 0.05 according to Tukey’s HSD test. 

 
 
Figure 8. RNAi lines showing different levels of cercosporin production. 
 
 
Table 1. Table depicting the number of mutants identified from the screens and the number of 

insertions found in individual mutants. 
 
 
Table 2. Table depicting the types of insertions identified in different mutants. Asymmetric 

insertion is one where in only one border of the mutation cassette was identified, while 
symmetric mutation is the one where in both the borders of the mutation cassette was 
identified in the mutants. 

 
 
Table 3. Table depicting the genes that were selected for validation of the screen along with the 

putative function of the genes, the phenotype of the mutation, and the construct used to 
transform the RNAi line. 

 
 
Table 4. List of primers used for generating RNA silencing constructs. 
 
 
Table 5. List of Mutants identified via probe-capture technique, with their respective phenotype, 

number/s and site/s of insertion, position- upstream or downstream with distance from 
the start codon, and the putative gene/s associated or disrupted. 
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Table 1 
 

 Single Multiple No Data Total 
Protoplast-mediated 22 4 3 29 

Agrobacterium-mediated 27 22 3 52 
Total 49 26 6 81 

 
 

Table 2 
  

Asymmetric Symmetric Total 
Protoplast-mediated 16 15 31 

Agrobacterium-mediated 38 40 78 
Total 54 55 109 

 
 

Table 3 
 

Mutant Cercosporin 
phenotype Putative function Silencing 

vector 

CZMATMT2.277 No production CTB1 pBW10-9-13 

CZMRI6.333 No production Chromatin modification pBW4-6-12 

CzmRI6.197 Reduced production Conserved hypothetical 
 

pBW5-1-17 

CZMRI6.274 Increased production Aromatic ring hydroxylase pBW7-11-17 

CZMRI6.285 Increased production Melanin biosynthesis pBW8-3-2 

CZMRI6.251 Increased production Ergosterol biosynthesis pBW9-13-4 
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Table 4

 
Primer 
name 

Sequence 

pSilent F1 TACGAATTCGAGCTCGGTACCCGCTGCAGGAATTCATGCCAGTT 
pSilent R1 GGTCGACTCTAGAGGATCCCCGCGTAATACGACTCACTATAGGGC

GAATTG 
pS Intron F1 GTACAAGCTTGCTGGAGGATACA 
pS Intron R1 CCTTAGCATGCGAAGATCTGCC 
Czm_60071 
SF1 

CGATACCGTCGACCTCGAGGTACAGCTCCAGAACTACTACCCGCA 

Czm_60071 
SR1 

TGTATCCTCCAGCAAGCTTGTACACGGTTCAGCTGTCGTTTCT 

Czm_60071 
ASF1 

GGCAGATCTTCGCATGCTAAGGACGGTTCAGCTGTCGTTTCT 

Czm_60071 
ASR1 

ATCCGGGGCCCAGGTACCACAGGAGCTCCAGAACTACTACCCGC
A 

Czm_11389 
SF1 

CGATACCGTCGACCTCGAGGTACTAGCACGCATGACCAGCTAC 

Czm_11389 
SR1 

TGTATCCTCCAGCAAGCTTGTACGCTCTCGTCGCAATTCTACC 

Czm_11389 
ASF1 

GGCAGATCTTCGCATGCTAAGGGCTCTCGTCGCAATTCTACC 

Czm_11389 
ASR1 

ATCCGGGGCCCAGGTACCACAGGTAGCACGCATGACCAGCTAC 

Czm_116247 
SF1 

CGATACCGTCGACCTCGAGGTACTCGTCGACAGACAAGGACTG 

Czm_116247 
SR1 

TGTATCCTCCAGCAAGCTTGTACCGACACCGTAACCTGATGTG 

Czm_116247 
ASF1 

GGCAGATCTTCGCATGCTAAGGCGACACCGTAACCTGATGTG 

Czm_116247 
ASR1 

ATCCGGGGCCCAGGTACCACAGGTCGTCGACAGACAAGGACTG 

Czm_91826 
SF1 

CGATACCGTCGACCTCGAGGTACCAGCAAAGACTGGGAACGTC 

Czm_91826 
SR1 

TGTATCCTCCAGCAAGCTTGTACATCGGATGTCAGGGTTCAAG 

Czm_91826 
ASF1 

GGCAGATCTTCGCATGCTAAGGATCGGATGTCAGGGTTCAAG 

Czm_91826 
ASR1 

ATCCGGGGCCCAGGTACCACAGGCAGCAAAGACTGGGAACGTC 

Czm_96848 
SF1 

CGATACCGTCGACCTCGAGGTACGTGCTGTATCGTGGCTGCTA 

Czm_96848 
SR1 

TGTATCCTCCAGCAAGCTTGTACTGGTGGCAAACACCTTGATA 
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Table 4 (cont.) 

Primer 
name 

Sequence 

Czm_96848 
ASF1 

GGCAGATCTTCGCATGCTAAGGTGGTGGCAAACACCTTGATA 

Czm_96848 
ASR1 

ATCCGGGGCCCAGGTACCACAGGGTGCTGTATCGTGGCTGCTA 

Czm_42949 
SF1 

CGATACCGTCGACCTCGAGGTACCCAGTCAACTGTGCGGACTA 
 

Czm_42949 
SR1 

TGTATCCTCCAGCAAGCTTGTACGCAAGCGACTCGTAATGACA 

Czm_42949 
ASF1 

GGCAGATCTTCGCATGCTAAGGGCAAGCGACTCGTAATGACA 

Czm_42949 
ASR1 

ATCCGGGGCCCAGGTACCACAGGCCAGTCAACTGTGCGGACTA 
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Table 5 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

Mutants created via PEG mediated transformation of protoplasts 
1 CzmRI.6.3 None 1 Scaffold 10: 1192340-

1192783 
Up 152 SANT, DNA Binding, WD40 

repeat 
2 CzmRI.6.16 None 1 Scaffold 31: 491925-492465 Up 819 Conserved hypothetical protein 

(Glucoamylase precurssor) 
3 CzmRI.6.115 None 1 Scaffold 10: 435833-436071 Up  155 Actin depolymerizing factor 
4 CzmRI.6.151 None 1 Scaffold 4: 867952-868617 Down 125 WD40 repeat 
5 CzmRI.6.190 None 1 Scaffold 43: 172081-172792 In 0 Bromodomain transcription 

factor 
6 CzmRI.6.329 None 1 Scaffold 40: 82824-83113 In 0 Repeat 
7 CzmRI.6.333 None 1 Scaffold 16: 597700-598002 In 0 SNF5/SMARCB1/INI1 
8 CzmRI.6.117 Reduced  1 Scaffold 5: 22430-23126 In 0 Pleckstrin-like 
9 CzmRI.6.178 Reduced  1 Scaffold 44: 148146-148498 In 0 UTP-glucose-1-phosphate 

uridylyltransferase 
10 CzmRI.6.197 Reduced  1 Scaffold 38: 112986-113566 In 0 Conserved hypothetical protein 
11 CzmRI.6.274 Increased  1 Scaffold 2: 1183105-

1183636 
Up 228 Phenol 2-monooxygenase 

12 CzmRI.6.285 Increased  1 Scaffold 44: 328208-328787 In 0 Scytalone dehydratase 
13 AT773 Reduced  1 Scaffold 14: 659173-659174 Up 286 HSP (DnaJ domain)  
14 AT515 Reduced  1 Scaffold_19: 699717-700014 In 0 Vacuolar protein sorting-

associated protein 35 
15 AT1164 Reduced  1 Scaffold_66:6821-6822 In 0 Repeat 
16 AT1371 Reduced  1 Scaffold 3: 650164-651218 Down 176 Short chain dehydrogenase 
17 AT1398 Reduced  1 Scaffold 1: 742529-743075 In 0 Histone Binding SET3 domain 
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Table 5 (cont.) 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

18 AT1159 Reduced  1 Scaffold 20: 98847-99153 In 0 Acyl-CoA transferase/carnitine 
dehydratase 

19 AT669 Reduced  1 Scaffold 17: 532061- 532432 In 0 Receptor-activated Ca2+-
permeable cation channel 

20 AT1193 Reduced  1 Scaffold 28: 206763- 207148 Down 784 Only in 
Capnodiales/Dothideomycetes 

21 AT873 Reduced  1 Scaffold 15: 663338-663339 In 0 GA4 desaturase family 
22 CzmRI.6.251 Increased  1 Scaffold 10: 822903-832674 Up 277 ERG5 sterol C-22 desaturase 
23 CzmRI.6.230 Reduced  2 Scaffold 37: 33593-34375 

Scaffold 49: 61969-62603 
Down 
In 

308 
0 

Repeat 
Nucleotidyltransferase 

24 AT1368 
 

Reduced  2 Scaffold_16:666616-666794 
Scaffold_40:279220-279339 

   

25 AT1108 Reduced  2 Scaffold_9:724186-724248 
Scaffold_10:394699-394734 

Up 
Down 

243 
314 

No BLAST hit 
Putative mannosyl transferase 

26 AT1289 Reduced  2 Scaffold_40:310097-310276 
Scaffold_56:145647-145704 

   

27 AT1200 Reduced  2 Scaffold_4:1422157-
1422158 
Scaffold_13:928786-928787 

Down 
Up 

559 
322 

F1F0 ATP synthase subunit g 
Repeat 

28 AT1337 Reduced  2 Scaffold_29:354778-354851 
Scaffold_30:308570-308641 

   

29 CzmRI.6.91 None  3 Scaffold 3: 489920-490201 
Scaffold 15: 331676-332251 
Scaffold 18: 111283-111568 

Up 
Up 
Up 

94 
1215 
708 

CAS/CSE, C-terminal 
Cyclic nucleotide binding 
Protein with VHS domain 
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Table 5 (cont.) 

Mutants created via Agrobacterium tumefaciens mediated transformation 
No Mutant Id Cercosporin 

Production 
Number Site/s of Insertion Positio

n 
Distan
ce 

Putative gene/s associated or 
disrupted 

30 CzmATMT2.17
5 

None 1 Scaffold_299:994-995 In 0 Repeat 

31 CzmATMT2.17
7 

None 1 Scaffold_454:3606-3607 In 0 Repeat 

32 CzmATMT2.25
8 

None 1 Scaffold_4:317795-317799 Up 174 Alcohol dehydrogenase, 
NAD(P)-binding 

33 CzmATMT2.27
7 

None 1 Scaffold_15:638449-638461 In 0 Putative CTB1 

34 CzmATMT5.56 None 1 Scaffold_4:757673-757696 Up 427 Transferase 
35 CzmATMT5.86 None 1 Scaffold_15:720954-721434   BRCT 
36 CzmATMT5.13

4 
None 1 Scaffold_31:200227-200508   Repeat 

37 CzmATMT7.75 None 1 Scaffold_472:2399-2400 In 0 Repeat 
38 CzmATMT8.39 None 1 Scaffold_3:1427485-

1427497 
Down 122 Repeat 

39 CzmATMT8.40 None 1 Scaffold_5:714453-714454 In 0 Salicylate hydroxylase 
40 CzmATMT8.83 None 1 Scaffold_55:138446-138464 Down 638 No BLAST hit 
41 CzmATMT4.10

5 
None 1 Scaffold_1:1104823-

1104841 
Up 243 Major facilitator superfamily 

(MFS1) 
42 CzmATMT4.15

2 
None 1 Scaffold_14:819105-819106 Down 178 No BLAST hit 
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Table 5 (cont.) 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

43 CzmATMT4.
154 

None 1 Scaffold_32:454222-454234 Up 590 Hat2p/WD40 repeat 

44 CzmATMT4.
155 

None 1 Scaffold_32:454222-454234 Up 590 Hat2p/WD40 repeat 

45 CzmATMT4.
170 

None 1 Scaffold_4:379148-379168 Up 365 Protein of unknown 
function/DUF 250 

46 CzmATMT4.
199 

None 1 Scaffold_20:460450-460465 Down 1128 HAD-superfamily hydrolase, 
subfamily IIIA; Polynucleotide 
kinase 3 phosphatase, central 
region; DNA 3-phosphatase 

47 CzmATMT4.
207 

None 1 Scaffold_4:1146925-
1146942 

Up 254 Reticulon 

48 CzmATMT4.
232 

None 1 Scaffold_1:1750322-
1750323 

In 0 No BLAST hit 

49 CzmATMT4.
238 

None 1 Scaffold_1:1750322-
1750323 

In 0 No BLAST hit 

50 CzmATMT5.
79 

None 1 Scaffold_48:125683-125708 In 0 Repeat 

51 CzmATMT5.
87 

None 1 Scaffold_27:480309-482658 In 0 VeA domain containing 
protein 

52 CzmATMT7.
52 

None 1 Scaffold_1:77388-77389 Up 991 SANT DNA-binding, 
Homeodomain-like 

53 CzmATMT7.
59 

None 1 Scaffold_51:90258-90265 Up 287 Glucose-inactivated glycerol 
proton symporter STL1 

54 CzmATMT7.
110 

None 1 Scaffold_1:432188-432189 In 0 Repeat 
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Table 5 (cont.) 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

55 CzmATMT8.
105 

None 1 Scaffold_6:533342-533343 Up 55 H (+)-transporting V1 sector 
ATPase subunit C 

56 CzmATMT8.
135 

None 1 Scaffold_5:279672-279687 In 0 No BLAST hit 

57 CzmATMT8.
143 

None 1 Scaffold_5:211305-211306 Up 43 Repeat 

58 CzmATMT8.
145 

None 1 Scaffold_9:955632-955646 Down 386 No BLAST hit 

59 CzmATMT5.
116 

None 3 Scaffold_850:1858-1873 
Scaffold_18:313231-313232 
Scaffold_896:626-627 

In 
In 
In 

0 
0 
0 

No BLAST hit 
Repeat 
Repeat 

60 CzmATMT8.
25 

None 2 Scaffold_69:46684-46685 
Scaffold_9:1172977-
1172978 

In 
In 

0 
0 

Repeat 
Repeat 

61 CzmATMT8.
62 

None 2 Scaffold_4:888735-888736 
Scaffold_14:566698-566699 

In 
In 

0 
0 

Carboxylestrase Type B 
No BLAST hit 

62 CzmATMT2.
229 

None 2 Scaffold_7:1143368-
1143369 
Scaffold_7:1126877-
1126878 

In 
Up 

0 
1265 

No BLAST hit 
FAD dependent pyridine 
nucleotide-disulfide 
oxidoreductase 

63 CzmATMT2.
235 
 

None 2 Scaffold_11:777209-777253 
Scaffold_79:43666-43667 

In 
In 

0 
0 

Repeat 
Repeat 

64 CzmATMT4.
80 

None 2 Scaffold_5:650829-650830 
Scaffold_4:65331-65332 

In 
In 

0 
0 

Acetyltransferase 3 
Sepiapterin reductase family 
protein IRC24 
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Table 5 (cont.) 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Dist
ance 

Putative gene/s associated or 
disrupted 

65 CzmATMT4.
180 

None 2 Scaffold_2:2095968-
2095969 
Scaffold_6:654411-654421 

Down 
Down 

155 
660 

No BLAST hit 
No BLAST hit 

66 CzmATMT5.
21 

None 2 Scaffold_3:833095-839426 
Scaffold_17:335797-335798 

In 
In 

0 
0 

Ketoreductase 
Karyopherin MSN5 

67 CzmATMT5.
116 

None 2 Scaffold_18:313231-313232 
Scaffold_18:351367-351368 

In 
 
In 

0 
 
0 

Engulfment and cell motility, 
Armadillo-type 
Putative DNA/RNA helicase 
SEN1 

68 CzmATMT7.
70 

None 2 Scaffold_38:225335-225336 
Scaffold_46:134094-134095 

Down 
 
Down 

556 
 
192 

Pex11p/ Peroxisomal 
biogenesis factor 
No BLAST hit 

69 CzmATMT8.
28 

None 2 Scaffold_1:824467-824472 
Scaffold_45:93772-93773 

In 
Up 

0 
468 

Peptidylprolyl isomerase 
CPR3 
No BLAST hit 

70 CzmATMT8.
30 

None 2 Scaffold_898:911-917 
Scaffold_4:1017476-
1017486 

In 
Down 

0 
170 

Repeat 
No BLAST hit 

71 CzmATMT8.
82 

None 2 Scaffold_11:877320-877321 
Scaffold_11:878511-878512 

Down 
Up 

235 
238 

No BLAST hit 
Serine/threonine-protein kinase 
GCN2 

72 CzmATMT8.
123 

None 2 Scaffold_6:484723-484724 
Scaffold_62:89097-89098 

Up 
Up 

333 
79 

Spermine transporter 
No BLAST hit 

73 CzmATMT2.
209 

None 2 Scaffold_20:456957-456962 
Scaffold_39:266354-266729 

Down 
Down 

438 
352 

EGF-like region, conserved 
site. 
Tetratricopeptide repeat 11  
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Table 5 (cont.) 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

74 CzmATMT2.
240 

None 2 Scaffold_59:30472-30473 
Scaffold_59:33186-33187 

In 
In 

0 
0 

GroES-like protein NAD(P)-
binding 
Heterokaryon incompatibility 

75 CzmATMT5.
77 

None 2 Scaffold_2:863680-863681 
Scaffold_ 32:264267-264268 

Up 
Down 

257 
14 

DENN-domain protein 
(regulator of RabGTPase) 
Repeat 

76 CzmATMT5.
93 

None 2 Scaffold_20:501689-501691 
Scaffold_21:580005-580006 

Down 
In 

701 
0 

Repeat 
Repeat 

77 CzmATMT2.
293 

None 3 Scaffold_28:306476-306479 
Scaffold_5:384175-384184 
Scaffold_1:1156496-
1163787 

Up 
Up 
In 

1713 
403 
0 

Regulator of G-protein 
signaling 
Ubiquitin-binding SDF 
ubiquitin ligase complex 
subunit MET30 
MFS general substrate 
transporter 

78 CzmATMT4.
235 

None 3 Scaffold_13:242737-242746 
Scaffold_13:265402-265403 
Scaffold_13:267226-267227 

Down 
Down 
In 

673 
623 
0 

No BLAST hit 
Calmodulin-dependent protein 
kinase CMK2 
Beta-fructofuranosidase SUC2 

79 CzmATMT8.
71 

None 4 Scaffold_ 23:612911-612921 
Scaffold_25:146934-146954 
Scaffold_44:329942-329943 
Scaffold_863:818-819 

In 
Up 
Up 
In 

0 
1647 
124 
0 

Major facilitator superfamily 
MFS1 
No BLAST hit 
No BLAST hit 
R=6 
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Table 5 (cont.) 

 
 
 

 
 

No Mutant Id Cercosporin 
Production 

Number Site/s of Insertion Positio
n 

Distan
ce 

Putative gene/s associated or 
disrupted 

80 CzmATMT7.
51 

None 4 Scaffold_9:606120-606121 
Scaffold_22:203809-203810 
Scaffold_24:596941-597337 
Scaffold_36:340626-340627 

Up 
Up 
Up 
Up 

728 
217 
66 
5 

Major Facilitator Superfamily 
Anp1p 
SANT DNA domain, 
Homeodomain 
Serine/threonine-protein kinase 
GCN2 
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CONCLUSIONS 

Despite the importance of the economic losses caused due to plant parasitic nematodes on 

crop plants (Elling, 2013), an effective yet environmentally friendly strategy to control their 

population is lacking. Alternative methods for effective control are in the development phase and 

but their application in agricultural settings have certain limitations (Banerjee et al., 2017). 

Harpin proteins are of bacterial origin (Wei et al., 1992), and have been widely used to induce 

plant defense against different biotic and biotic factors (Dong et al., 2004, Dong et al., 1999, 

Dong et al., 2005, Reboutier et al., 2007). Although they are effective in inducing resistance 

against variety of biotrophic and necrotrophic pathogens, their role against plant parasitic 

nematodes is understudied. Previous field experiments have established that harpins are capable 

of reducing nematode populations in soil. Additionally, a fungal isolate, designated as ARF18, 

was identified that was capable of suppressing reniform and cyst nematode population in the soil. 

Considering the economic importance of plant parasitic nematodes, harpin proteins and ARF18 

have the potential to be effective alternate strategies to curb nematode populations in soil. The 

overall objective of the dissertation was to establish harpin and ARF18 as control mechanisms of 

plant parasitic nematode. The study aimed to identify the efficacy of harpin proteins in 

suppressing the population of reniform and cyst nematodes in soil. Additionally, we also 

provided a taxonomic placement for the nematophagous fungal isolate ARF18, and sequenced 

and analyzed its genome to identify its potential as a biological control.  

The efficacy of harpin against the reniform and cyst nematodes were studied and 

described in chapter two. Green house experiments showed that harpin protein was successful in 

effectively reducing reniform population in soybean without change in phenotype of the plants. 

However, we did not observe any difference in resistance to cyst nematode. The difference in 



 

 169 

response could be due to the reason that infection strategies of cyst and reniform nematodes are 

different. Soybean seeds treated with harpin also show aggregation of the harpin protein on the 

seed surface. Many elicitors are capable of interacting with seeds (Worrall et al., 2012). The 

ability of harpin protein to form coating onto the seed surface could explain its ability of induce 

resistance. However, it is unclear if harpin is absorbed within the seeds or travels from the seed 

surface towards the roots to induce the response in plants. To dissect signaling pathways in 

soybean in response to harpin treatment, RNA sequencing on soybean roots from seeds treated 

with harpin proteins, both with and without reniform infection was performed. Additionally, 

transgenic soybean plants to silence salicylic acid production were generated. The hypothesis 

was that harpin treatment would cause transcriptional changes in soybean root resulting in 

reduction of reniform population in soil, and the changes would be mediated through salicylic 

acid signaling. Although the expression of several genes was observed from soybean roots, 

significant differences in expression of genes between treatments were not observed and the 

results were inconclusive. The low depth of sequencing on the Ion Torrent Personal Genome 

Machine platform could have resulted in insufficient reads for statistical analyses.  

In chapter four, the nematophagous fungal isolate ARF18 was studied for its growth habit 

in different nutritional conditions, and its pathogenicity on cyst nematodes. Its genome was 

sequenced and assembled. This is an important step towards providing public resource, and 

naming the fungus, which is an important component of biological control of plant parasitic 

nematodes (Kim & Riggs, 1991, Kim & Riggs, 1995, Wang et al., 2004). The ability of the 

fungus to penetrate the cysts of Heterodera glycines through special appresorium-like structures 

was identified. Although appresoria, have been reported in several species in orbiliomycetes, this 

is the first report of the structures in this genus. The genome of ARF18 was sequenced and 
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assembled which identified several nematode parasitism genes. The genus Brachyphoris within 

orbiliomycetes is a poorly studied genus. This study will not only provide resources for the study 

of this genus but will also facilitate with the intellectual property rights, especially during 

commercialization of the fungus as a marketable product.  

Molecular genetics has made advancement due to availability of several techniques. 

Additionally availability of next generation sequencing has supplemented the available 

technologies in gene identification and characterization. However, the application of functional 

genomics to devise strategies to manage plant parasitic nematodes is limited. Thus to incorporate 

molecular genetics as a component of nematode management a high throughput method of 

mutant generation, screening, and identification of mutation underlying the phenotype was 

developed. A recently developed in-solution target-enrichment to identify large number of 

mutants simultaneously was utilized. Although target-enrichment methods have gained 

popularity recently (Carpenter et al., 2013, Ng et al., 2009, Mercer et al., 2014), the method has 

not been applied in filamentous fungi especially in nematophagous fungi. As a proof of concept 

the method was applied on the corn pathogen Cercospora zeae-maydis. C. zeae-maydis as a 

system was selected for method development due to ease of handling and manipulation, easy to 

transform using protoplast and Agrobacterium, and the phenotype of cercosporin production is 

easy to evaluate. From the experiments with random insertional mutants in C. zeae-maydis, the 

method was successful in enriching selected region of the genome, was high throughput and 

enabled pooling of numerous samples simultaneously. The method development on C. zeae-

maydis identified several genes required for cercosporin production. The method has potential 

for widespread applications in molecular genetics of filamentous fungi, including 

nematophagous fungi, especially to dissect pathways related to secondary metabolism, 
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nematophagy and pathogenesis. The method developed is easily applicable to non-model 

organisms, even without a completely assembled genome.  
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