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Abstract 
 
Human acidic fibroblast growth factor (hFGF1) is a protein well known for its role in cell growth 

and differentiation. To elicit these cell-signaling processes, hFGF1 non-selectively binds to any 

one of the seven cell surface hFGF receptor isoforms. Due to its significant involvement in tissue 

repair activity, hFGF1 is a prime candidate for novel wound healing therapeutics. However, one 

drawback toward its use as a novel wound healing therapeutic is the poor inherent thermal 

stability of hFGF1, as it has been found to unfold near physiological temperature. The cause of 

this instability is strong electrostatic repulsion created by a dense cluster of positively charged 

amino acids near the c-terminus. This instability leads to proteolytic degradation of the unfolded 

protein, which severely limits the bioavailability of hFGF1. To counteract this instability, hFGF1 

binds with high affinity to the heavily sulfated glycosaminoglycan, heparin, which eliminates the 

charge-charge repulsion via electrostatic interactions with the positively charged residues near 

the c-terminus in the region known as the heparin-binding pocket. However, recently several 

disadvantages have been acknowledged with the use of heparin in hFGF1 wound-healing 

therapeutics. Thus, to address these issues, we have genetically engineered several rationally 

designed point mutations within and near by the heparin-binding region of hFGF1 to modulate 

the heparin-binding affinity and to increase the thermal stability and cell proliferation activity of 

the protein. Study of each mutation is performed with biophysical experiments as well as 

molecular dynamics simulations (which are found as supplementary files).  
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Introduction 

FGF Gene evolution 
 

The fibroblast growth factor (FGF) gene family has greatly expanded through the process 

of evolution from primal multicellular organisms such as Caenorhabditis elegans, in which only 

two FGF genes and one FGF receptor (FGFR) gene is identified, to complex vertebrates such as 

mice and humans, in which 22 FGF genes and four FGFR genes are identified [1]. The 

evolutionary FGF gene expansion has occurred in two stages. The first stage involved 

duplication from two or three to six FGF genes during primitive metazoan evolution. The second 

stage involved two large FGF genome duplications, as well as alternative splicing of FGFR 

genes during primitive vertebrate evolution [1]. Gene expansion has greatly enriched the 

signaling diversity of the FGF and FGFR families, which has led to the vast involvement of these 

proteins in developmental, metabolic, tissue regeneration, and physiological processes.  

The chromosomal locations of most human FGF (hFGF) genes have been determined. 

hFGF genes are spread throughout the genome, which advocates evolution not only through gene 

duplication but also gene translocation [1]. However, some hFGF genes are clustered together. 

For example hFGF3, hFGF4, and hFGF19 are separated by 40kb and 10kb respectively, while 

FGF6 and FGF23 are separated by only 55kb [1]. Such gene clustering indicates an order of 

evolutionary expansion in which local gene duplication occurred first and subsequent genome 

duplication occurred second.  

 

Human FGF family 

 hFGFs play critical roles during embryonic morphogenesis by regulating the 

differentiation of cells during lung, liver, heart, brain, pancreas, kidney and ear development [2]. 
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In adults, hFGFs regulate tissue regeneration and injury response, and they also play a role in 

metabolic and mineral homeostasis. Specifically, hFGFs consist of approximately 150-300 

amino acids, and range in molecular weight from 17-34kDa [3]. Of the entire amino acid 

sequence, roughly 120 residues make up the protein core, among which there is 30-60% amino 

acid sequence conservation [1]. The hFGF family is categorized into seven subfamilies, and the 

members within a subfamily share an even higher level of amino acid sequence identity.  

 
Functions of FGFs - by subfamily  
 

FGFs in the same subfamily share common receptor-binding and expression properties. 

All FGFs in subfamilies 1, 4, 7, 8, and 9 are classified as paracrine FGFs, which are exported to 

the extracellular matrix and initiate biological responses upon binding to cell surface FGFRs [4, 

5]. These paracrine FGFs are also characterized by their high affinity for glycosaminoglycans 

such as heparin, and binding with these ligands not only stabilizes FGFs, but also retains the 

proteins in reservoirs around the cell surface. FGFs in subfamily 19 are endocrine signaling 

molecules that exhibit a reduced affinity for glycosaminoglycans, and thereby mediate cell 

signaling through distant target cells via binding to cell surface FGFRs [4].   
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Figure 1. Classification of FGFs by subfamily and type of signaling.  

 

The FGF1 Subfamily 

The FGF1 subfamily consists of FGF1 and FGF2, proteins that are both well known for 

their cell proliferating activity and expression in both developmental and adult stages. The FGF1 

subfamily is unique from all other FGF subfamilies in that it is the only subfamily that binds 

with high affinity to all FGFR isoforms [6]. FGF1 consists of 154 amino acids and is expressed 

in microvascular endothelial cells. FGF1 is highly involved in cell differentiation, specifically 

adipogenesis, cell growth and survival, embryonic development, and tissue repair [7]. FGF1 was 

the first growth factor isolated in the FGF family and is also called acidic FGF as its isoelectric 

point (approximately 6.5) is relatively acidic compared to basic FGF (FGF2) whose isoelectric 

point is 9.6 [6]. Additionally, FGF1 plays a role in brain development as it has been found in 

several types of brain cells including sensory and motor neurons as well as several other types of 

subcortical neuronal cells [6]. FGF1 is also found in endothelial cells, fibroblasts, and 
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keratinocytes (along with FGF2 and FGF7) where it participates in wound healing. Lastly, FGF1 

may be transported to the nucleus via a nuclear localization sequence where it participates in 

DNA synthesis [8]. 

FGF2 contains 155 amino acids and has a molecular weight of 18-24KDa. Four 

additional, heavier versions of FGF2 are also reported, which contain amino terminal sequences 

that signal for their location to the nucleus where their activity is not well understood [3]. FGF2 

is highly expressed in the lateral ventricles of the brain where it is involved in neurogenesis and 

lesion repair, and is involved in development and maintenance of cardiovascular physiology [9, 

10]. FGF2 also has mitogenic activity towards 3T3 fibroblasts [8]. 

 

The FGF4 Subfamily 

The FGF4 subfamily includes FGF4, FGF5, and FGF6. FGF4 is a 206 amino acid protein 

expressed only during embryonic stages that contains both an amino signaling sequence for 

classical secretion as well as an N-glycosylation site [3, 8]. From genomic-based studies, FGF4 

is thought to be a gene duplication of FGF3 [8]. FGF4 is dominantly involved with 

differentiation of presomatic mesoderm during vertebrate embryo development as well as 

trophoblast stem cell proliferation [11, 12]. FGF4 is also known to transform fibroblast cells and 

drive angiogenesis; however, removal of the amino terminal signal sequence severely inhibits the 

former activity. With deletion of the N-glycosylation site, the activity of FGF4 was improved 

compared to the non-deleted form, indicating that this site is not important for protein function 

but rather hinders activity [8]. 

FGF5 is a 267 amino acid protein which contains a secretion signal sequence and is 

mostly expressed at embryonic stages of development, but is also found (much less abundantly) 
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in adult tissues [3, 13]. The FGF5 gene was identified as an oncogene and can transform cells 

when transfected in mammals [13]. Specifically, FGF5 is responsible for determining hair length 

in mammals. Studies from 2007 report that proline to histidine mutations in the FGF5 gene result 

in cats with longhair phenotypes [14].  

FGF6 is a 25kDa protein found in varying lengtheparin (208, 198, or 175 amino acids). 

FGF6 has a 27 amino acid signal sequence at its N-terminus and is secreted into the extracellular 

matrix. FGF6 is expressed at both embryonic and adult stages of development and interacts with 

high affinity to several FGFRs including FGFR1 (IIIc) FGFR2 (IIIc) and FGFR4 [3]. Mouse 

studies involving FGF6 indicate that this protein plays a key role in muscle regeneration. High 

doses of FGF6 in FGF6 knockout mice directly induced stem cell proliferation for regeneration 

of calf muscles while low doses were more active toward muscle cell differentiation [15]. 

 

The FGF7 Subfamily 

The FGF7 subfamily includes FGF3, FGF7, FGF10, and FGF22. Human FGF3 is a 239 

amino acid protein expressed only during embryonic stages and is secreted via the classical 

secretion pathway due to an amino terminal signal sequence [3, 8]. FGF3 also contains a carboxy 

terminal sequence that localizes the protein to the nucleus. The destination of FGF3 is a result of 

competition between these two sequences. Activity of normal FGF3 in the nucleus is not well 

understood; however, mutated FGF3 lacking the amino secretion signal sequence yet containing 

the carboxy nuclear localization sequence, causes a buildup of FGF3 in the nucleus that inhibits 

DNA synthesis as well as cell proliferation [8].  

FGF7 is a 28kDa protein with 194 amino acids and a 31 amino acid N-terminus sequence 

that signals for its secretion. FGF7 dominantly signals through the receptor, FGFR2b, and is well 
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known as the keratinocyte growth factor due to its mitogenic activity on skin keratinocytes [16]. 

FGF7 is also reported to be the most significant gene up regulated with the advancement of 

upper tract and bladder urothelial carcinoma [17]. Furthermore this growth factor is expressed 

with FGFR2b in hepatocytes, and both in vivo and in vitro studies show that FGF7 and its 

corresponding receptor promote proliferation of hepatocytes following liver damage, disease, 

and partial hepatectomy [18]. 

FGF10 is a 209 amino acid protein with a relatively hydrophobic 35 amino acid signal 

sequence at its N-terminus. This protein is expressed in many cell types including fibroblasts, 

adult pre-adipocytes, lung mesenchyme, and posterior limb mesoderm and mesenchyme. FGF10 

is expressed at both embryonic and adult stages and is reported to mediate limb, lung, and brain 

development. FGF10 knockout mice died at birth due to impartial lung development [3, 19]. 

FGF10 also plays a role in liver development by maintaining survival of hepatoblasts [18].   

FGF22 is a 209 amino acid protein with a molecular weight of 23kDa. This FGF member 

has a 22 amino acid signal sequence and is expressed in cerebellar granule cells [20]. In vivo 

studies reveal that FGF22 is a presynaptic organizing molecule and neutralization of FGF22 

inhibits differentiation of mossy fibers involved in signal transmission at sites of contact with 

granule cells. FGF22 has also been found in the inner root sheath of hair follicles, which 

indicates a role in hair development [21]. Furthermore, this FGF member has more recently been 

reported to have a potential pro-oncogenic role in the development skin cancer, as FGF22 

knockout mice were found to develop fewer papillomas than control mice in a carcinogenesis 

challenge study [21].  
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The FGF8 Subfamily 

The FGF8 subfamily is comprised of FGF8, FGF17, and FGF18, which are all paracrine 

signaling molecules. Human FGF8 and FGF17 are unique in that these members are found to 

have multiple human isoforms (with additional isoforms in mice) [22]. The variation is derived 

from alternative splicing within the first exon, which causes the N-terminus sequence to vary in 

length from 62 to 156 amino acids [23]. Such splicing variation has been demonstrated to 

regulate the biological activity of these FGFs in midbrain and hindbrain patterning and 

development [22]. In addition, crystal structure comparison of the FGF8-FGFR2c and FGF17-

FGFR2c complexes reveals that the N-terminus sequence discrepancy modulates receptor 

binding such that FGF17 binds the receptor with stronger affinity than FGF8 [24]. Both FGF8 

and FGF17 are only expressed during embryonic development and they specifically regulate 

neuroepithelial proliferation in the brain at a junction in the mid-hind region [3, 25]. FGF8 is also 

essential for embryonic limb development as well as development of the central nervous system, 

and FGF8 gene knockout mice died within 10 days of embryonic maturation [3].  

FGF18 is a 207 amino acid protein with an N-terminus 26 amino acid secretion signal 

sequence [25]. During embryonic development, FGF18 expression has been reported in lung, 

midbrain, pancreas, muscles, and the intestinal tract where it plays a role in morphogenesis. 

Beyond this, FGF18 is reported to play a dominant role in skeletal development regarding both 

cartilage formation and osteogenesis [25]. FGF18 knockout mice died within 30 days after birth 

due to poor circulation of oxygen in the blood and were also found to have incomplete and 

deformed skeletal systems [25]. 
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The FGF9 Subfamily 

The FGF9 subfamily includes FGF9, FGF16, and FGF20, all of which are secreted 

outside of the cell and are paracrine signaling. FGF9 is a 30kDa protein with 208 amino acids, 

and while it has no distinct N-terminus signal sequence, it does contain an unusual hydrophobic 

sequence that is a compulsory part of its secretion [3]. FGF9 is expressed in kidney, lung, and 

prostatic stromal cells, and in multiple cells types in the central nervous system. FGF9 is largely 

known for its role in male sex determination as FGF9 knockout mice undergo male to female sex 

reversal [26]. This growth factor also plays an important role in the proliferation of lung 

mesenchyme, which in turn produces other FGFs including FGF3, FGF7, FGF10, and FGF22. 

Thus, FGF9 regulates the production of these additional FGFs and the overall development of 

lung tissue [26].  

FGF16 is a 26kDa protein with 207 amino acids and is not classically secreted, as it does 

not contain an amino terminal signal sequence. FGF16 is expressed in cardiac myocytes and in 

brown adipose tissue during embryonic development. Expression of this growth factor is reduced 

in adult stages and FGF16 knockout mice are found to have severe cardiac abnormalities [26, 

27]. 

FGF20 is a 23kDa protein with 211 amino acids and no signal sequence. FGF20 is 

expressed in a region of the midbrain known as the substantia nigra pars compacta where it 

preserves dopaminergic neurons, which helps prevents onset of Parkinson’s disease. FGF20 

interaction with FGFR1c on proximal cells in this region of the midbrain stimulates the MAPK 

pathway, which ultimately sustains the dopaminergic neurons and helps prevent Parkinson’s 

disease [28]. 
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The FGF11 Subfamily 

The FGF11 subfamily consists of FGF11-FGF14. These FGFs are known as homologous 

factors and exhibit high levels of sequence homology. Specifically, these homologous factors 

share between 58-71% sequence identity with each other and only up to 30% sequence identity 

with other members of the FGF family [29]. FGF11-14 are not secreted from cells and thus are 

intracrine signaling proteins that function independently of cell surface FGFRs [4]. Specifically, 

FGFs in this subfamily interact with voltage-gated sodium and calcium channels where they 

facilitate transmission of synaptic signaling as well as heart contractions [4, 5].  

 

The FGF19 Subfamily 

As mentioned, FGFs in subfamily 19 (FGF19, FGF21, and FGF23) are endocrine 

signaling. Studies on FGF15, the mouse ortholog of FGF19, reveal that FGF19 is involved in 

regulation of bile acid homeostasis in the liver via interaction with FGFR4 expressed on 

hepatocytes [30]. FGF19 contains 216 amino acids and has a 22 amino acid N-terminal signal 

sequence. Studies of FGF19 transgenic mice reported an increase in fatty acid oxidation, a 

reduction of liver triglycerides and glucose levels, and increased sensitivity to insulin [26]. 

Application of FGF19 is being further investigated for treatment of diabetes via reduction of 

brown adipose tissue [26]. FGF19 signals dominantly through binding with FGFR4 in the liver, 

but can also interact with other FGFRs when in the presence of the single-pass transmembrane 

protein, β-Klotho [4, 26]. 

FGF21 is a 171 amino acid protein with a molecular weight of approximately 19kDa. 

FGF21 is expressed in liver, pancreas, and white adipose tissue, and although it can activate most 

all FGFR isoforms, it preferentially binds to FGFR1c. FGF21 binding with FGFRs is also 
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accompanied by β-Klotho [4, 26]. FGF21 is well known for its metabolic role in enhancing 

insulin sensitivity and glucose uptake, stimulating fatty acid oxidation, and inducing the adaptive 

starvation response [31].  

FGF23 is composed of 251 amino acids with a 24 amino acid N-terminus signal 

sequence, and has a molecular weight of approximately 28kDa. FGF23 is expressed in bone cells 

but dominantly interacts with FGFR1c (complexed with the transmembrane protein α-Klotho) in 

the kidney to regulate serum phosphate levels as well as vitamin D levels by preventing 

reabsorption in both the proximal tubule as well as in the intestine [32]. FGF23 is also reported 

to interact with the parathyroid gland to inhibit secretion of the parathyroid hormone, which 

regulates uptake of phosphate from bone [26]. 

 
hFGF1 structure 

 The structure of hFGF1 is of the β-trefoil family. The β-trefoil is one of 10 fundamental 

protein superfolds, which is composed of three connected trefoil units [33, 34]. In epidermal 

growth factors this β-trefoil structure has been found as a monomeric unit, while in certain 

protease inhibitors as well as in fibroblast growth factors, the β-trefoil is found in dimeric and 

trimeric units respectively [34]. Thus the evolution of this structure is thought to be derived from 

sequential gene duplication(s)/fusion(s) [33, 34]. The β-trefoil structure is common among 

several types of proteins including fibroblast growth factors, interleukin-1α and -1β, Kunitz 

soybean trypsin inhibitors, plant cytotoxins and bacterial toxins such as the ricin-like toxins, as 

well as some carbohydrate-binding proteins including xylanase [33, 35, 36].                                                                                         
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The β-trefoil is composed of twelve β-strands that are folded into six β-hairpins. The 

overall structure of the β-trefoil within FGFs is divided into two parts, top and bottom, with the 

top half (consisting of three β-hairpins) forming a barrel composed of strands 1, 4, 5, 8, 9, and 

12, and the bottom half forming a β-hairpin triplet composed of the remaining strands. The β-

trefoil structure is unique in that it is the only superfold with an axis of 3-fold symmetry through 

the center of the structural barrel that separates the barrel into three trefoil subdomains [33]. 

These β-hairpins are held together by hydrogen bonds and are characteristically angled 

approximately 56° to the barrel axis [37]. The total barrel cavity has a diameter of 16 A°[37].  

 

Figure 2. Left: diagram of hFGF1’s twelve β-strands folded into β-hairpins. Right: Top is the 
side view of the tertiary fold, and bottom is the view down the axis of symmetry through the 
barrel [33].  
 
  

Different portions of the hFGF1 structure are responsible for heparin binding and receptor 

binding. β-strands 1-5 are involved in receptor binding and are more flexible than β-strands 6-12, 

which are involved in heparin binding and are collectively more rigid [33].  
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Heparin  
 
Chemistry and structure of heparin   

 Heparin is a member of a group of molecules, which are classified as 

glycosaminoglycans (GAGs). These molecules are composed of repeating disaccharide units that 

most commonly include D-glucosamine and L-iduronic acid, but may also less frequently 

include D-glucuronic acid, N-acetylglucosamine, as well as unsubstituted glucosamine units [38, 

39]. These sugar units are linked via α-(1→4) glycosidic linkages and are heavily sulfated. 

Sulfate groups are commonly found on positions 2 and 6 on D-glucosamine as well as on 

position 2 on the L-iduronic acid unit [38, 39]. 

Figure 3. The disaccharide unit of heparin containing L-iduronic acid (left) and D-glucosamine 
(right) linked via α-(1→4) glycosidic linkages [39]. 
 

There is substantial variation within the sugar composition of heparins from different 

species and tissues [39]. Additionally, there is considerable variation among the length of 

heparin-like polysaccharide chains which can range anywhere from 3 to 30kDa.  

 

Heparin vs heparan sulfate 

 Heparan sulfate (HS) is another GAG found in the extracellular matrix having similar 

sequence and backbone structure to heparin. One difference between HS and heparin is the 

contrasting proportions and arrangements of sugar saccharides and sulfation patterns [39, 40]. In 
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addition, HS is expressed more universally by all cells throughout the human body whereas 

heparin is only expressed by mast cells [40]. The primary difference is the degree of sulfation; 

glucosamine residues of HS are only 30-60% sulfated with clusters of the polysaccharide heavily 

sulfated and other portions unsulfated [40]. Heparin is 80-90% sulfated with no clustering of the 

sulfate groups. 

 

Biosynthesis of heparin  

 Heparin is synthesized in the golgi apparatus in a series of steps involving many different 

enzymes; however, the first step begins with a serine residue of the core protein, serglycin, [40-

42]. The biosynthesis continues with the sequential linkage of D-glucuronic acid (GlcA), 

glacatose (Gal), and xylose (Xyl) by various enzymes to form the non-sulfated tetrasaccharide 

substrate (-GlcA-Gal-Gal-Xyl-) (Fig. 3) [40]. Following the formation of this initial substrate is 

the elongation process, which begins with the addition of N-acetyl-D-glucosamine (GlcNAc) and 

continues with the alternating addition of GlcA and GlcNAc (Fig. 3) [40, 41]. Polymerization of 

the substrate is catalyzed by complexed EXT1 and EXT2 polymerases. Modifications involving 

the substitution of acetyl groups with sulfate groups are catalyzed by GlcNAc N-deacetylase / N-

sulfotransferase enzymes [42]. Subsequently the epimerization of D-glycuronic acid units into L-

iduronic acid is catalyzed by uronosyl C5-epimeraser, and O-sulfation on two positions in D-

glucuronic acid and one position in L-iduronic is catalyzed by 2-O, 3-O and 6-O 

sulfotransferases (Fig. 3) [41, 42]. Incompletion of these reactions (particularly of the O-

sulfation) yields a wide variety of unique polysaccharides, a characteristic of heparin-like 

molecules that regulates the biological activity of these GAGs.  
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Figure 4. Biosynthesis of heparin.   
 

Biological significance of heparin  

 Heparin is principally known for its biological activity as an anticoagulant by enhancing 

the inhibitory action of antithrombin. While heparin interacts with various serine protease 

inhibitors, also know as serpins, its most dominant interaction by far occurs with antithrombin. 
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Antithrombin has a high affinity for a specific pentasaccharide sequence within heparin 

(αDGlcNAc(6S)-βDGlcA-αDGlcNS(3S, 6S)-αLIdoA(2S)-αDGlcNS(6S)) [43]. Upon binding, a 

conformational change within antithrombin exposes a reactive loop that mimics the substrate of 

the serine protease thrombin. When thrombin cleaves the sequence of the reactive loop on 

antithrombin, the protease becomes locked in an inactive complex, preventing its succeeding 

action on fibrinogen to initiate the clot forming process [43].  

 Beyond its interaction with serpins such as antithrombin, heparin binds to FGFs with high 

affinity, and functions as a regulator of FGF movement and the duration of their biological half-

life. Thus heparin provides an interesting mechanism for organized growth and development of 

complex systems and organisms [44]. As FGFs are highly involved in tissue repair following 

injury, heparin also serves as a mediator of wound healing processes.  

 

Heparin-hFGF1 interaction 

The basis of the interaction between heparin and hFGF1 is electrostatic interactions, 

which occur between the sulfate groups of heparin and the positively charged residues of the 

heparin-binding pocket of hFGF1. The heparin-binding region of FGFs is composed of three 

exposed loops. These loops form a confined pocket and contain several positively charged 

residues located on beta strands 10 and 11 [3]. Site directed mutagenesis studies from the 1990’s 

report a reduction in the heparin-binding affinity specifically for charge reversal of lysine 

residues toward the C-terminus (K132, K127, K114, and K115) [45]. This study was one of the 

first attempts to characterize the heparin-binding region of hFGF1.  

Full characterization of the heparin-hFGF1 interface has since been determined in detail 

with the help of x-ray crystallography and multidimensional nuclear magnetic resonance. One of 
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the first hFGF1-heparin crystal structures was a hFGF1 dimer bound to a heparin decasaccharide 

(PDB 2AXM) [46]. This structure clearly confirms that C-terminal residues 126-142 of hFGF1 

facilitate heparin binding. Interestingly the crystal structure contains no protein-protein 

interactions and each monomer binds the heparin sulfate groups on opposing sides of the 

polysaccharide [46]. Interestingly, DiGabriele and coworkers report that heparin binding does 

not induce any conformational change in hFGF1 structure.  

An additional crystal structure composed of two 1:1 hFGF1-FGFR2 dimers shows that a 

helical heparin deasaccharide chain makes contacts with both hFGF1 monomers (denoted A and 

B) (PDB 1E0O) [47]. In this crystal structure, the hFGF1 residues facilitating heparin binding are 

K126, K127, N128, K132, R133, R136, and K142 [47]. Pellegrini and coworkers report that 

hFGF1 monomer A interacts with 6 monosaccharides of heparin, while hFGF1 monomer B 

interacts with only 5 heparin monosaccharides, and thus makes distinct contacts with heparin 

including a hydrogen bond which occurs between Trp121 and GlcN-1 [47]. Furthermore 

Pellegrini and coworkers report that the heparin chain exhibits a 34° kink between the second 

and third disaccharides and that, in addition to electrostatic interactions, van der Waals forces 

significantly contribute to hFGF1-heparin binding [47].  

Further study of the positively charged residues in the heparin-binding region of hFGF1 

emphasizes the importance of the conserved lysine at position 132, located in the base of the 

pocket toward the protein core. K132 is responsible for interacting with critical N-sulfate and 2-

O-sulfate groups on the heparin iduronic acid sugar. Interaction with K132 induces a 

conformational change in the positioning of iduronic acid. This conformational change alters the 

backbone torsion angles of heparin and induces a “kink” in the ligand structure [48]. 

Repositioning of heparin induces formation of additional van der Waals forces that help to 
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achieve optimum binding with hFGF1 as previously noted [47, 48]. The spatial arrangement of 

these positively charged, heparin-binding residues are unique for each subfamily, and such 

deviations give each FGF a different affinity for different heparin-like GAGs.  

Overlay of the Cα traces of residues in the heparin-binding region from five different 

FGF crystal structures (including hFGF1) resulted in very low rms values (0.45-0.75 A°), 

indicating that the structural arrangement of these loop regions correspond and are more rigid in 

character as previously mentioned [48]. However, comparison of the side chains positions of 

positively charged amino acids in the heparin binding loops from the same five crystal structures 

did not correspond well. This indicates that the spatial arrangement of these side chains for 

hFGF1 is unlike the arrangement for any other FGF, and provides a unique “signature” for its 

heparin-binding interface [48]. Furthermore, heparin binding with hFGF1 does not induce any 

conformational shift within the protein, which is demonstrated by biophysical characterization of 

the protein in the presence and absence of heparin.  

 

Role of heparin in hFGF1-FGFR signaling  

The role of heparin in hFGF1-FGFR interaction and subsequent activation has been a 

subject of debate. It is believed that heparin not only helps stabilize the protein, but also that the 

biological activity of hFGF1, including receptor binding and activation, is fully dependent on 

heparin [38, 47, 49, 50]. Thus heparin is thought to be essential to the biological function of 

hFGF1. This understanding was developed from the previously mentioned crystal structures. 

These structures demonstrate that both monomers of dimeric hFGF1 as well as the FGFR are 

linked to the same heparin chain, and therefore it was claimed that heparin is essential in the 

hFGF1 dimerization and FGFR activation process [47, 49]. Furthermore, based on the dimer 
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structure of these crystals, the hypothesis developed that hFGF1 dimerization is mandatory for 

subsequent receptor binding and activation.  

 In 2002, Kumar and coworkers used a molecular mimic of heparin, sucrose octasulfate 

(SOS), to study the biological activity of hFGF1 [51]. Their study shows that the binding of SOS 

to hFGF1 retains the protein in a monomeric form. Furthermore they demonstrate that 

monomeric hFGF1 bound to SOS was capable of substantial cell proliferation activity [51]. From 

this study they conclude that hFGF1 oligomerization is not mandatory for its biological activity 

with corresponding FGFRs.  

Additional study from 2005 by Angulo and coworkers also demonstrates that hFGF1 

dimerization is not essential for its biological activity, and furthermore they conclude that the 

sulfation pattern of heparin-like ligands has a substantial impact on the mitogenic activity of 

hFGF1 [52]. This study utilizes two synthetic sulfated hexasaccharides that bind and retain 

hFGF1 in its monomeric form as they cannot facilitate hFGF1 dimerization. These two ligands 

exhibit different sulfation patterns. The sulfate groups of both ligands span the length of the 

ligand molecule; however, one contains sulfate groups on both faces of the molecule and the 

other displays sulfate groups only on one side [52, 53]. It was shown that the ligand with sulfate 

groups oriented toward only one face of the molecule facilitated hFGF1-mediated cell signaling 

at the same level as natural heparin and therefore that dimerization of hFGF1 is not mandatory 

for biological activity [52, 53].  

The claim that heparin is an absolute requirement for hFGF1 cell signaling has been 

revisited through multiple mutagenesis studies. From these studies, another belief has been 

developed that heparin is not essential for the biological activity hFGF1, but instead is useful 

primarily for stabilizing the inherently unstable protein, and for increasing the bioavailability of 
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the protein in reservoirs near the cell surface. hFGF1 is well known for its poor thermal stability 

and short half life in vivo, and is unstable at temperatures close to physiological [34, 54-56]. The 

poor stability of hFGF1 is thought to be a regulatory mechanism that protects against over active 

or unregulated FGF1 signaling, which can lead to tumorgenesis [57]. Those who believe that 

heparin is not essential for hFGF1 biological activity have hypothesized that hFGF1 could 

function independently of heparin if the thermal stability of the protein could be increased [56].  

One interesting mutagenesis study found that the hFGF1 mutant, K132E, exhibits 

reduced heparin-binding, yet demonstrates complete FGF receptor binding and activation, and 

further was found to induce early-intermediate gene transcription [45]. Another study reports that 

substitution of serine for cysteine residues in three positions (30, 97, and 131) increases hFGF1’s 

half-life from 0.26 hours up to 73 hours [55]. However, these mutants were found to be 

thermally destabilizing to the protein. Another study demonstrates its attempt to increase stability 

via mutations that increase the core-packing arrangement of hFGF1 [34]. Although most of the 

designed mutations were not successful towards generating more efficient core-packing 

arrangements, one mutation, L58F, was found to marginally increase the thermal stability of 

hFGF1 [34].   

A more recent study utilized a sequence homology approach to rationally design the three 

mutations: H35Y, H116Y, F122Y [56]. While each individual mutation increased the thermal 

stability of hFGF1 by a couple of degrees, they were all ultimately combined with L58F to form 

the quadruple mutant H35Y/L58F/H116Y/F122Y. This quadruple mutant was found to increase 

thermal stability of hFGF1 by 7.8°C [56]. Furthermore, the biological activity of the quadruple 

mutant was equivalent to the wildtype protein. Following these studies, two additional stabilizing 

mutants Q54P and S61I were discovered, again through the sequence homology approach [58]. 
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These two mutants were then combined with the previously described quadruple mutant as well 

as an additional stabilizing mutation, H107G, to form the septuplet mutant: 

H35Y/Q54P/S61I/L58F/H107G/H116Y/F122Y. These seven mutations collectively increase the 

thermal stability of hFGF1 by an astounding 27°C [58]. In the absence of heparin, the biological 

activity of this septuplet mutant, as well as the triple mutant Q54P/S61I/H107G, are six and ten 

times higher respectively than the wildtype hFGF1.  

In 2009, Zakrzewska and coworkers revisited the K132E mutation (previously designed 

by Wong et al. in the early 90’s) in an attempt to make a direct assessment on the role of heparin 

within hFGF1 activity. The charge reversal K132E mutation is known to reduce hFGF1’s affinity 

for heparin due to its position within the heparin-binding pocket. Zakrzewska and coworkers 

additionally report the hFGF1 K132E mutant to be inactive toward DNA synthesis [59]. 

Interestingly, upon combination of the K132E mutant with the stabilizing triple mutant 

Q54P/S61I/H107G it was found that in the absence of heparin, the mitogenic activity of this 

quadruple mutant was fully recovered to the level of heparin-bound wildtype hFGF1 [59]. From 

these findings, the conclusion was made that heparin is not essential for hFGF1 binding and 

activation of its FGFR. 

Another study from 2007, which notes that the N and C terminal flexible strands were 

only stabilized by hydrogen bonds, hypothesizes that the stability of hFGF1 could be increased if 

disulfide bonds were inserted into the N and C terminal tails. In effort to generate disulfide 

bonds, mutations K26C and P148C were designed, but were only found to increase thermal 

stability and mitogenic activity of hFGF1 under reducing conditions, with no disulfide bond 

formation. Interestingly, this study reports that the double mutant K26C/P148C is 30 times more 

active than the wildtype protein as measured by cell proliferation assays [60]. 
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Overall, there have been numerous studies demonstrating the ability of hFGF1 to 

effectively facilitate cell signaling in a heparin independent manner; however, there still remains 

disagreement on the role of this ligand as current literature still characterizes heparin as 

mandatory for hFGF1 activity with FGFRs [2, 22, 61, 62]. Ultimately it is commonly recognized 

among all fields that heparin confers increased thermodynamic stability to hFGF1, thereby 

increasing the proteins physiological half-life while keeping the protein localized in the 

extracellular matrix. 

 
 
FGF Receptors 
FGFR gene evolution and isoforms  
 

There are four known FGFR genes found in both humans and mice, all having 

approximately 810 amino acids with 56-71% sequence homology and identical exon-intron 

sequencing [1, 4]. These FGFR genes are scattered throughout the genome with no clustering, 

which suggests evolution from a common ancestral gene via two-fold genome duplication. There 

is no connection between the chromosomal gene distribution of FGFs and FGFRs. The variation 

among the four known FGFRs is a result of alternative splicing of the extracellular 

immunoglobin-like (Ig) domains giving rise to FGFRs with either two or three Ig domains [1]. 

The mechanism that regulates FGFR splicing is highly conserved throughout evolutionary 

history.  

Alternative splicing of FGFRs 1, 2, and 3 gives rise to two different forms of Ig domain 

III (IIIb and IIIc). Ig domains II and III as well as the linker region between the two domains are 

dominantly responsible for the ligand-binding specificity of the receptor [63]. Overall, from the 

four known FGFR genes, there are seven different FGFR isoforms (1-IIIb, 1-IIIc, 2-IIIb, 2-IIIc, 

3-IIIb, 3-IIIc, and 4) which all display unique ligand-binding specificity [4].  
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FGFR structure and specificity  

FGFRs consist of an extracellular domain composed of (up to) three Ig-like domains that 

facilitate ligand-binding, a single pass α helical transmembrane domain, and an intracellular 

tyrosine-kinase domain [4]. All receptor isoforms have similar molecular weights of 

approximately 90kDa and contain around 810 amino acids [2, 64]. The discrepancy within the 

splicing of Ig domain III (D3) (resulting in receptor isoforms b and c) is responsible for the 

diverse ligand specificity and tissue expression of the receptor isoforms [5]. FGFRb isoforms are 

expressed in epithelial cells and are activated by ligands expressed only in mesenchymal cell 

lines. Additionally, FGFRc isoforms are expressed in mesenchymal cells and are only activated 

by ligands expressed in epithelial cell lines [3, 65]. The reciprocal expression of FGFRs and their 

corresponding ligands coordinates the directional paracrine signaling of FGFs and also acts as a 

guard against aberrant autocrine FGF signaling [22].  

Crystal structures of FGF ligands bound to FGFRs give molecular detail on how the 

splicing variation of the D3 domain regulates receptor-binding specificity. These structures 

reveal that splicing variation alters the sequence of critical binding residues and pockets that 

generate electrostatic as well as hydrogen bonds with FGF ligands [22]. For example FGF10 

binding with FGFR2b and not FGFR2c is dependent on hydrogen bonding with a specific serine 

residue in FGFR2b. The corresponding position in FGFR2c is an alanine not a serine, thus 

critical hydrogen bonding is not facilitated with this receptor isoform. FGFR1 and FGFR2 

equally express a high affinity for FGF1 and FGF2 with Kd values in the range of 100-500 pM 

[63]. FGFR3 and FGFR4 both demonstrate a higher affinity for FGF1 than for FGF2.  
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FGFR-FGF binding interface 

Study of the protein-receptor binding interface shows that hFGF1 makes contacts with Ig 

domains II (D2) and D3 of the receptor at the junction between the two domains [2]. Ig domain I 

(D1) as well as the acidic sequence of residues between D1 and D2 are reported to inhibit ligand 

binding, and recombinant receptor proteins lacking D1 are found to have a higher binding 

affinity for FGFs [2]. Overall the FGF1 ligand is more extensively bound to D3 making contacts 

with 23 residues, than with D2, as only 13 FGF1-D2 contacts are reported [66]. However, it is 

interestingly reported that the FGF1 residues involved in D2 binding are more highly conserved 

than FGF1 residues involved in D3 binding, [66]. Of FGF1 residues, 39 of 140 residues are 

involved in receptor binding, none of which include heparin-binding residues. One crystal 

structure of a heparin-bound FGF1 dimer complexed with an FGFR2 dimer (PDB E10O) 

specifically reveals that contacts between FGF1 and D2 of the receptor are mostly hydrophobic 

including residues Y29, G34, F36, Y108, L147, and L149 of FGF1 and residues K164, L166, 

A168, V169, and P170 of the receptor D2 [47]. Additional electrostatic interactions occur 

between residues R49 and R51 of FGF1 and E163 and D247 of the receptor D2, respectively. 

One critical interaction is a hydrogen bond between N109 of FGF1 and R251 which is located on 

the linker region between D2 and D3 of the receptor [47]. Critical interactions between FGF1 

and D3 include an electrostatic interaction between E101 of FGF1 and R255 of D3, as well as 

hydrophobic interactions between I257 of D3 and L103 and H107 of FGF1. There is one splice 

form specific interaction between FGF1 and D3 that involves protein residue V65 and D3 

residue F352. The lack of more distinct splice form interactions justifies the lack of specificity 

toward any particular receptor isoform demonstrated by FGF1 [47]. 

Study of the 1:1 FGF1:FGFR2 structure complex (PDB 1DJS) also reveals that the N and 
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C terminal ends which extend from the core of the FGF1 ligand make contacts with the D2-D3 

linker region (Fig. 5). Figure 5 also shows the structure of a 2:2 FGF1:FGFR2 complex in the 

absence of heparin (PDB 1DJS). In this complex, the receptor D2 and D3 make contacts with 

both the ipsilateral and contralateral FGF1 ligands yet no ligand-ligand contacts are reported 

[66]. 

When present, heparin is dominantly bonded to the FGF1:FGFR complex through the 

heparin-binding region of FGF1; however additional contacts between heparin and receptor D2 

are reported to occur between residues V175, H167, K164, T174, K176, R178, and K161 of D2 

and the 9th and 10th saccharides of the heparin chain (Fig. 5) [47]. FGF-receptor dimer complexes 

with heparin can be classified as symmetrical, in which heparin makes contacts with both FGFs 

and both receptor chains, or asymmetrical, in which heparin makes contacts with both FGF 

ligands and only 1 receptor chain. Comparison of the FGF1-FGFR2 crystal structure in the 

presence (PDB 1E0O) and absence (PDB 1DJS) of heparin reveals two conformations for the 

receptor D3. In the structure with heparin present, D3 of the receptor is rotated around the D2-D3 

linker region by an additional 170 Å. The two unique receptor conformations are hypothesized to 

represent a regulatory mechanism for receptor function [47].  
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Figure 5. Top left, 1:1 FGF1:FGFR2 complex in the absence of heparin (PDB 1DJS). Top right, 
2:2 FGF1:FGFR2 complex in the absence of heparin (D2 and D3 domains are colored in blue 
and green, FGF1 is colored in red, and receptor contacts with the FGF1 ligand are colored in 
yellow). Bottom left, 2:2 FGF1:FGFR2 complex in the presence of a heparin decasaccharide 
(FGFR2 is colored in pink, FGF1 ligand is colored in yellow and blue and heparin is in yellow 
stick formation) (PDB 1E0O). Bottom right, diagram of heparin contacts with FGF1 and D2. 
 
 

Signaling cascades 

Upon ligand binding, the extracellular domain of FGFRs facilitates receptor-ligand 

complex dimerization. The FGF-FGFR dimerization brings the intracellular tyrosine kinase 

domains of both receptors in proximity to each other. Juxtaposition of the intracellular domains 

coordinates the phosphorylation of one domain by the kinase of the other and vice versa [5, 22]. 

The phosphorylation of a maximum of six tyrosine residues activates the receptor, and, 
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depending on the specificity of the FGF ligand, various signaling pathways are then activated. 

Specifically for FGFR1, the final phosphorylation of Y677 and Y766 induces substrate binding 

of STAT3, phospholipase Cγ (PCγ), and adaptor proteins such as FGFR substrate 2α. Once the 

receptor is activated, the receptor phosphorylates adaptor proteins for various intracellular 

signaling pathways. One of the known pathways is the PCγ pathway, which induces the cleavage 

of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) and 

inositol 1,4,5-triphosphate (IP3). These agents mediate cell activity by activating protein kinase 

C and increasing intracellular calcium levels respectively.  

Another pathway activated by FGFRs is the mitogen-activated protein kinase (MAPK) 

pathway, which mediates cell proliferation, survival, and mitosis through the activation of 

specific transcription factors that regulate target gene expression [2]. The third known signaling 

pathway is the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 

pathway, which mediates cell growth and differentiation, and is also reported to regulate immune 

response. The last major pathway associated with FGFRs is through activation of 

phosphoinositide 3-kinase and protein kinase B (PI3K-AKT). This pathway encourages cell 

survival through the inhibition of target molecules including pro-apoptotic effectors. The PI3K-

AKT pathway also stimulates cell growth and proliferation by the phosphorylation and 

inactivation of molecules such as the cytosolic tuberous sclerosis complex 2 (TSC2).  

 

FGF and FGFR regulation 

As aberrant FGF/FGFR signaling is known to be involved in tumorgenesis and many 

other diseases, it is crucial for the signaling mechanisms to be under tight regulation [5]. One 

simple mechanism for signaling regulation is conducted by the interaction of ubiquitin ligase Cbl 
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to FGFRs, which results in internalization and degradation of the receptors [2]. Another type of 

regulation, involving phosphatases, controls the receptor kinase activity and downstream 

signaling. Growth factor receptor bound 2 (GRB2) is an adaptor protein that in dimeric form has 

been found to bind the C-terminal of FGFR2, thereby inhibiting complete phosphorylation. 

Binding of GRB2 also sterically hinders the down stream binding of other adaptor proteins 

necessary for MAPK and PI3K-AKT signaling pathways [2]. In addition, direct negative 

feedback loops within signaling pathways such as RAS-MAPK can inhibit the kinase activity of 

the receptor upon phosphorylation of specific C-terminus residues by ERK1 and ERK2 

(downstream kinases activated by the pathway). MicroRNAs are another type of FGF-FGFR 

regulation that directly influences FGF and FGFR expression at the post-translational stage [2]. 

MicroRNAs are small noncoding RNAs and many studies have shown that suppression of 

particular microRNAs cause overexpression of particular FGFs and/or corresponding FGFRs. 

For example, microRNA-152 is known to down regulate FGF2 expression, and microRNA-198 

is reported to down regulate FGFR1. In non-small-cell lung cancer, suppression of microRNAs 

152 and 198 leads to the overexpression of FGF2 and FGFR1, which causes hyper proliferation 

and reduces apoptosis [2].  

 

FGF secretion  
 

As FGFs effectuate their biological properties through binding to cell surface receptors, 

they must be released from the cell into the extracellular matrix. Most all members of the FGF 

family except the prototypical members (FGF1 and FGF2) contain at least some type of signal 

peptide that directs for their secretion out of the cell. FGFs 3-8, 10, 17-19, 21, and 23 contain N-

terminus peptides that signal for their secretion through the classical endoplasmic reticulum-
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Golgi pathway [26]. Other FGFs (9, 16, and 20) have N-terminal hydrophobic sequences that 

regulate their secretion from the cell [1, 26]. Lastly, FGF1 and FGF2 are secreted non-classically 

as they do not contain signal peptides.  

The secretion of FGF1 and FGF2 is induced by the stress response to various stimuli 

including heat shock and hypoxia [67]. Many studies on the non-classical release of FGF1 have 

revealed the order of prerequisites that lead to protein secretion. The first event is the formation 

of an FGF1 homodimer, which is induced by the oxidation of C30 on FGF1 (causing an 

intermolecular disulfide bond to form) by intracellular Cu2+. After this, FGF1 associates with 

S100A13, a calcium binding protein that anchors the complex to the cell membrane. Lastly, 

FGF1 (as a part of the FGF1/S100A13 complex) binds to the C2A portion of the integral 

transmembrane protein, synaptotagmin, known as p40Syt1. Finally the ternary complex 

FGF1/S100A13/p40Syt1 is transported across the membrane.  

 
 
FGF/FGFR diseases 
 

As FGFs/FGFRs play critical roles throughout all stages of mammalian development, 

abnormal signaling caused by ligand and/or receptor mutation(s) have been identified in several 

diseases. One such mutation, D321A, occurring in FGFR2c, causes Pfeiffer syndrome, a disease 

characterized by irregular cranial bone formation. This mutation reduces FGFR2c binding with 

FGF2 and increases the aberrant autocrine signaling with FGF10 [22]. Additional mutations such 

as S252W (located in the linker region connecting D2 and D3) in FGFR2, N546K in FGFR1, 

N540K (located in the ATP-binding domain) in FGFR3, and G380R (located in the 

transmembrane domain) in FGFR3 are found to cause skeletal malformations that lead to 

dwarfism or abnormal cranial development [5, 26, 68]. These malformations are rare and occur 



	 29 

in approximately 1 out of every 5,000 birtheparin. 

Kallmann syndrome, a form of hypogonadotropic hypogonadism, is a disease that has 

been associated with several different frameshift, nonsense, or donor splice mutations within 

various exons in FGFR1 coding genes [5]. The loss of function mutations leading to Kallmann 

syndrome, are marked by a lack of hormones needed for sexual development as well as 

impairment in sense of smell [69]. Without treatment, individuals with Kallmann syndrome will 

remain infertile. Mutation of P63 in the sterile acid motif of FGFR coding genes, reduces FGFR2 

and FGFR3 transcription, and has been associated with Hay-Wells syndrome. This syndrome is a 

rare ectodermal dysplasia disorder resulting in abnormal development in skin, hair, nails, teeth, 

hands, and feet [5].  

Due to their role in cell survival, growth, and migration, FGFs and their corresponding 

FGFRs have been associated with tumorgenesis in many kinds of cancers. Their role in the 

development of cancers occurs through different mechanisms including overexpression and 

amplification, mutations, gene fusions, and isoform switching/autocrine stimulation [5]. Studies 

indicate that FGFR1 and FGFR2 amplification across all cancers is 11% and 4% respectively [5]. 

Specifically, FGF2 is reported to be significantly overexpressed in prostate cancers within 

stromal fibroblasts and endothelial cells [70]. Additionally, FGFR3 amplification is reported 

within 45% of muscle invasive bladder cancers [5]. However, cancers in which FGFR 

amplification is identified are found to be more responsive to FGFR based therapies.  

Mutations in FGFs and their receptors are also identified in many cancers. Gain-of-

function mutations N546K and R576W in the kinase domain of FGFR1 have been found in 

glioblastoma brain tumors, and mutations outside of the kinase domain of FGFR1 including 

A429S and S125L have been associated with colorectal cancer and breast cancer respectively 
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[26, 68]. Single nucleotide polymorphisms within FGFR2c in stromal fibroblasts cause over 

expression of FGF10, which is associated with certain mutant related breast cancers [26]. Gain-

of-function mutations in FGFR3 are found in multiple myeloma (white blood cell bone cancers), 

bladder cancers, as well as benign skin cancers [26]. FGFR4 mutations have been associated 

with a small percent of rhabdomyosarcoma, which occurs in connective muscle tissue [71]. 

Transforming acidic coiled-coil proteins have been identified as fusion partners 

specifically for FGFR1 and FGFR3, and ultimately function to increase cell proliferation by 

upregulating the kinase activity of and diminishing PLCγ binding to the intracellular receptor 

domain [5]. While additional transfusion proteins have also been determined for FGFRs 1, 2, and 

3, cancers that contain these fusion proteins are all found to be suppressed by FGFR inhibitors 

[5]. Lastly, receptor expression of atypical isoforms in epithelial and stromal cells, known as 

isoform switching is reported to broaden the sensitivity of that particular tissue to different FGF 

ligands that ultimately increase cell proliferation and migration. Isoform switching has been 

reported in prostate cancers and many carcinomas [5]. Extensive review of FGF and FGFR 

related diseases is completed by Ornitz and Itoh [2]. 

Many drugs that function as FGFR selective tyrosine kinase inhibitors are in phase II and 

III clinical trials for treatment of cancers that exhibit FGFR mutations. Additional therapeutics 

targeting FGFR related cancers include (1) FGFR antibodies, which are isoform specific and 

avoid unwanted side effects, (2) FGF-ligand traps, which utilize the extracellular portion of an 

FGFR and target mitogenic FGFs, and lastly (3) allosteric molecules capable of limiting FGFR 

signaling have also shown promise toward reducing pancreatic cancer progression in mice [5].  
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Therapeutic applications of FGFs  

There is a wide range of developing clinical applications for many different FGFs; 

however to stay relevant to the aims of this project, only those pertaining to hFGF1 will be 

examined. Due to its ability to induce cell proliferation, migration, differentiation, and 

angiogenesis, FGF1 is a critical proponent of regeneration for many tissues including skin, blood 

vessels, muscle, adipose, bone, and nerve. FGF1 has shown a lot of potential toward tissue 

regeneration particularly pertaining to cardiovascular disorders. Intramyocardial injection of 

FGF1 during bypass surgery has shown increased capillary proliferation as well as artery tissue 

regeneration [26]. FGF1 has been shown to improve peripheral circulation, and injection of 

FGF1 encoding plasmid is reported to help with ischemia in various parts of the body, which has 

reduced limb amputation for patients with critical limb ischemia [26]. FGF1 has also been tested 

with nerve injuries and has been shown to not only repair spinal injuries in rats, but has also 

helped regenerate motor functions in paralyzed limbs of a young boy [72, 73].  

 As FGF1 plays a large role through all phases of the wound healing process including 

inflammation, tissue regeneration, and re-modeling, it is a forerunner in the development of 

novel wound healing therapies. Acute and chronic wounds such as diabetic foot ulcers, pressure 

ulcers, and chronic venous leg ulcers are a serious problem in the United States health care 

system. A reported 71,000 patients with diabetic foot ulcers receive amputations each year, while 

a 68% mortality rate exists for patients with stage II or IV pressure ulcers [74]. Chronic wound 

care often requires extended stays at hospitals, and can cost up to hundreds of thousands of 

dollars per patient all the while diminishing the patient’s quality of life through a very painful 

experience [74]. Studies administrating FGF1 have shown improved and accelerated wound 

healing in diabetic mice as well as in patients with burn wounds [75].  
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 The delivery of FGF1 for effective tissue regeneration in the wound healing process is 

another critical component that has been well studied. Single injections of free FGF1 directly to 

the wound site have proven to be ineffective due to diffusion and inherent limitations of the 

protein, which lead to significant thermal unfolding and protease degradation [76]. Moreover, 

FGF1 is most effective when it is continuously applied to the defective area. In response to these 

issues, the application of FGF1 using delivery methods such as porous scaffolds, hydrogels, and 

nano-particulates has been well studied.  

 Porous scaffolds are most commonly made of natural polymers such as collagen, fibrin, 

and glycosaminoglycans, and FGF1 binds these polymers through electrostatic interactions that 

prolong the delivery of the protein by a slower release of the protein from the scaffold [76]. The 

use of self-hardening bioceramics, which includes materials such as calcium phosphates and 

glass ceramics, is also a developing field for the delivery of FGFs to hard tissues such as bone 

and teeth [76]. Hydrogels are another delivery method that resembles in vivo extracellular 

matrices better than other delivery methods, and are therefore recognized by cells with ease. 

FGFs fabricated into hydrogels are very secure and are released by enzymatic reactions or 

hydrolytic cleavages [76]. The release rate of FGFs from hydrogels can vary greatly depending 

on the charge characteristics and the biodegradability of the hydrogel material. Lastly nano 

particles such as micelles, liposomes, and nanospheres (or even microspheres) have gained 

interest for the specific delivery of FGFs via the blood stream or oral routes. Nano-particles can 

be made from a variety of natural materials such as gelatin or collagen, but synthetic materials 

have also been exploited with some success. The delivery rate of the encapsulated growth factor 

is determined by the composition and size of the nano-particle, which is easily manipulated [76].  
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Focus of this project and rationale for published paper style dissertation 

 Amongst all the members of the FGF family, it is the non-selective binding of hFGF1 to 

all FGFR isoforms that attracts interest towards this particular member for the development of 

tissue regeneration therapeutics [77]. However, one major drawback regarding the usefulness of 

hFGF1 for such therapeutics is the inherent instability of the free protein. hFGF1 is known to 

unfold at physiological temperature, increasing its susceptibility to proteolytic degradation, and 

thereby severely limiting its bioavailability. With respect to the instability of hFGF1 as well as 

the ongoing discourse regarding the exact role of heparin in hFGF1 cell signaling, this project 

contains three distinct aims. These aims are as follows: 1) to genetically engineer novel 

mutations that increase the inherent stability and cell proliferating activity of hFGF1, 2) to 

characterize the molecular basis for the stabilizing mutation, R136E, previously discovered in the 

Kumar group, and 3) to investigate the role of heparin towards hFGF1 facilitated cell signaling. 

To accomplish these aims, this project was divided into three unique studies. While the focal 

point of all three studies is hFGF1, each study takes a different approach toward influencing or 

understanding the stability of the protein and/or its interaction with the ligand heparin. Therefore 

the project is a compilation of multiple studies that each stand as a separate article.  

The first study seeks to increase the inherent stability of hFGF1 via point mutations 

within the heparin-binding pocket at positions 135 and combined positions 135 and 136. These 

mutations involve the substitution of proline 135 with charged and polar residues including 

lysine, glutamate, and glutamine, and the charge reversal of arginine 136 with glutamate. It was 

anticipated that the introduction of negative charges within the heparin-binding pocket of hFGF1 

would stabilize via electrostatic interactions the dense cluster of positive charge that constitutes 

the heparin-binding pocket in the native wildtype protein. Additionally, the intent of placing 
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positively charged as well as negatively charged amino acids within the heparin-binding pocket 

of hFGF1 is to generate variants that will exhibit either an increased or decreased binding 

affinity for the ligand heparin. Cell proliferation assays on hFGF1 mutants with varying binding 

affinities for heparin have shed light on the role of heparin within hFGF1 signaling.   

 The second study aims to further assess the role of heparin with an entirely different 

approach involving point mutations outside the heparin-binding pocket. In this study, we use 

site-directed mutagenesis to increase the magnitude of positive charge near the heparin-binding 

pocket (an area that is rationally believed to interact with long, biologically-relevant chain 

lengtheparin of heparin) with charge reversal mutations at positions D82 and D84. We then 

measure the heparin-binding affinity and cell proliferation activity of the hFGF1 mutants. If 

hFGF1 is dependent on heparin for receptor activation and downstream signaling, then by this 

premise, an increase in heparin-binding affinity should correlate to an increase in the 

bioavailability and consequently mitogenic activity of hFGF1 with its cell surface receptors.  

 The last study focuses on the hFGF1 mutant, R136E, which has been previously 

recognized for its increased thermostability, reduced affinity for heparin, and significantly 

increased cell proliferation activity compared to wildtype hFGF1. This study involves the use of 

two dimensional nuclear magnetic resonance spectroscopy and microsecond length molecular 

dynamics simulations followed by in-depth analysis to characterize the intramoleular interactions 

that generate robust characteristics ideal for novel hFGF1 tissue regeneration therapeutics.   
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Abstract 

Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth 

and tissue repair. In this study, we investigate the effect(s) of understanding the role of a 

conserved proline (P135), located in the heparin binding pocket, on the structure, stability, 

heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 

with a positively charged lysine (P135K) resulted in partial destabilization of the protein; 

however, the overall structural integrity of the protein was maintained upon substitution of 

proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, 

upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was 

observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with 

a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding 

pocket at position 135 (P135E) increased hFGF1’s affinity for heparin by 3-fold, while the 

P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-

binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. 

Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced 

the heparin binding affinity by ~3-fold. Furthermore, the cell proliferation activity was increased 

when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and 

P135K (P135K/R136E). Overall, the results of this study, suggest that while heparin is useful for 

stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF 

receptor. 
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Highlights:  
 

• Mutation of residues P135 and R136 alters heparin-binding affinity of hFGF1. 

• The cell proliferation activity of hFGF1 is not correlated to its heparin-binding affinity.  

• Mutation R136E increases hFGF1 thermostability and activity independent of heparin.   
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American Type Culture Collection (ATCC); Visual Molecular Dynamics (VMD); isothermal 
titration calorimetry (ITC) 
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Introduction 

 
hFGF1 is a member of a family of polypeptides recognized as powerful mitogens which 

are involved in cell proliferation, cell differentiation, and wound healing processes [1-5]. FGFs 

initiate these processes through activation of the tyrosine kinase cell surface receptors (FGFRs). 

[5-7]. Unlike other family members, human acidic fibroblast growth factor (hFGF1) binds to all 

four isoforms of FGFRs, rendering this molecule as an ideal target for therapeutic applications 

[4, 5, 8, 9]. The major caveat in using hFGF1 as a wound-healing agent is its poor inherent 

stability, which significantly shortens its bioavailability. In fact, a significant population of 

hFGF1 is known to exist in denatured state(s) at physiological temperatures [10-12]. 

 Binding of hFGF1 to the heavily sulfated cell surface glycosaminoglycan, heparin, is 

known to confer structural stability leading to its increased physiological half-life [13-15]. 

Heparin binding occurs at the c-terminal domain of hFGF1 to a cluster of positively charged 

residues recognized as the heparin binding pocket [16]. Although there is a general agreement 

that heparin stabilizes hFGF1, the exact physiological role of heparin in hFGF1 mediated 

signaling is still a subject of debate. Heparin is widely believed to be mandatory for hFGF1 

signaling. Crystal structures of the FGF-FGFR- dimeric complexes show that both hFGF1 and its 

FGFR appear to be associated through their interactions with heparin [17-21]. Site-directed 

mutagenesis studies have identified a number of mutations that stabilize hFGF1. Furthermore, 

some of these stabilized hFGF1 mutants have been shown to exhibit increased levels of cellular 

proliferation activity in the absence of heparin [22,23].  In another study, it has been shown that a 

charge reversal mutation, K132E, not only diminished heparin binding affinity, but also 

decreased the mitogenic activity of hFGF1. These studies suggest that heparin binding per se is 

not critical for the activation of the cell surface receptor of hFGF1 [24].  
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hFGF1 has been shown to be susceptible to thrombin action. The proteolytic enzyme has 

been shown to render hFGF1 inactive by specifically cleaving hFGF1 at the secondary cleavage 

site, R136 [25]. This aspect has been a significant bottleneck in FGF-based wound care 

therapeutics because both thrombin and FGF are simultaneously present at a wound site [25, 26]. 

In this context, we recently studied the effect(s) of a charge reversal mutation at position R136 

on the structure, stability, heparin binding affinity and cell proliferation activity of hFGF1. 

Interestingly, the single point charge-reversal mutation, R136E, was found to reduce hFGF1’s 

affinity to heparin while significantly increasing its cell proliferation activity [27]. In this 

context, here we examine if similar effects on the structure, stability, and cell proliferation 

activity can be achieved through substitution of the conserved proline-135 with charged residues.   

Proline-135 (P135), located in the heparin-binding pocket is well conserved among the 

FGF1 family. Previously, using biophysical and molecular dynamics studies we showed that 

P135G mutation caused a subtle change in the solvent-exposed non-polar surfaces in the protein 

but it significantly increased the susceptibility of hFGF1 to trypsin protease [16]. In addition, it 

was found that P135G mutation resulted in the decrease in membrane permeability of hFGF1 and 

consequently the stress-induced release of the growth factor was significantly affected. In this 

background we examined the role of P135 on the stability, heparin-binding affinity, and cell 

proliferation activity of hFGF1. Results of this study for the first time showed that P135 alone 

and in conjunction with R136 contribute significantly to the heparin structure and bioactivity of 

hFGF1. In addition, the findings of this study demonstrate that heparin contributes to the stability 

of hFGF1 but the cell proliferation activity of the growth factor is not strictly dependent on its 

affinity to bind to heparin.  
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Results and Discussion 
 
Conservation and spatial microenvironment Proline135 in the structure of hFGF1  

 The three-dimensional structure of the heparin – hFGF1 binary complex reveals that the 

c-terminal domain (residues, N120-H138) of the protein plays an important role in heparin 

binding [19, 28, 29]. Heparin binds to hFGF1 through electrostatic interactions with several 

positively charged residues (K126, K127, K132, R133, R136) located in this heparin-binding 

pocket [28]. These positively charged residues are primarily located in the flexible loops between 

beta strands X, XI, and XII. K127, K132, G134, and R136 are well conserved among different 

isoforms of FGF. Interestingly, alignment of amino acid sequences of FGF1 isolated from 

different species shows that the residues in the heparin-binding pocket, including residues 132 to 

137, are highly conserved. The well-conserved P135 is located in the loop connecting β-strands 

XI and XII. P135 is positioned in the center of a triangle with the three positively charged 

residues (K119, R133 and R136) constituting the three corners of the triangle (Fig 1). Crystal 

structure of the heparin-hFGF1 binary complex (PDB 2ERM) shows that the Cα atom of P135 is 

positioned within 4 - 7 Å of the Cα atom(s) of K119, R133 and R136 [28, 29]. The structural 

rigidity imparted by P135 is believed to be critical for the orientation of the side-chains of the 

positively charged residues (R133, and R136) to optimally interact with the negatively charged 

heparin.  
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R136 

R133 

K119 
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Figure 1: The spatial orientation of P135 (pink sticks) in the loop between beta strands XI and 
XII in relation to heparin (blue sticks) and charged residues K119, R133, and R136, of which, 
R133 and R136 are critically involved in heparin binding. The Cα atom of P135 is positioned 
3.4Å and 6.2Å from the functional side chains of R133 and R136 respectively. It is 5.4Å from 
the side chain ε-amino group of K119 (PDB 2ERM) [28].  
 

Mutations at position 135 modestly perturb the tertiary structure of hFGF1.  

 Wt-hFGF1 and all the designed mutants were purified to homogeneity using heparin 

Sepharose affinity chromatography (Fig. S1, Appendix 1). Except for the double mutant, 

P135E/R136E, all the other mutants eluted in high salt concentration (1500 mM NaCl) like wt-

hFGF1. P135E/R136E eluted in 500 mM NaCl, suggesting decreased heparin binding affinity. 

The Far-UV circular dichroism (CD) spectra of the designed mutants of hFGF1 overlaid well 

with the wild type, exhibiting the characteristic positive ellipticity band in the wavelength range 

220 - 240 nm, and a negative band in the region of 200 - 210 nm (Fig. 2). These spectral features 

indicate that the native β-trefoil conformation is not significantly perturbed due to the designed 

mutations (Fig. 2).  



	 48 

-40000 

-30000 

-20000 

-10000 

0 

10000 

20000 

30000 

190 210 230 250 

m
ol

ar
 e

lli
pt

ic
ity

 (d
eg

 x
 c

m
 x

 c
m

 / 
dm

ol
) 

wavelength nm 
-40000 

-30000 

-20000 

-10000 

0 

10000 

20000 

30000 

190 210 230 250 

m
ol

ar
 e

lli
pt

ic
ity

 (d
eg

 x
 c

m
 x

 c
m

 / 
dm

ol
) 

wavelength nm 

A B 

 

Figure 2: Far-UV CD spectra of wt-hFGF1 and all hFGF1 mutants in the absence (Panel-A) and 
presence (Panel-B) of heparin reveals that beta-barrel structure is not compromised by any of the 
designed mutations. Wt-hFGF1 (Δ), P135E ( ), P135K (!), P135Q (�), P135E/R136E ( - ), 
P135K/R136E ( X ). 
 

Wt-hFGF1 contains eight tyrosine residues and a lone tryptophan residue (W121). The 

intrinsic fluorescence spectrum of native wt-hFGF1 conspicuously shows an emission maxima 

(at 308 nm) representative of the tyrosine fluorescence. The fluorescence of the single tryptophan 

residue (W121) is mostly quenched by lysine and proline residues that are in the spatial vicinity 

of W121 [30]. However, in the denatured state(s) of hFGF1, the indole ring of W121 is exposed 

to the polar environment, which is manifested by the appearance of the tryptophan fluorescence 

around 350 nm. Similar to wt-hFGF1, the intrinsic fluorescence spectra of all the designed 

mutants of hFGF1 showed the characteristic tyrosine emission maximum at 308 nm (Fig. 3). 

However, unlike wt-hFGF1, all designed hFGF1 P135 single mutants, and the P135/R136 double 

mutants exhibited, to varying degrees of emission intensity, a broad shoulder in the 350 nm 

region. The indole side chain of W121 is positioned ~3.5 Å from the pyrrole side chain of P135, 

thus introduction of a lysine, glutamine, or glutamate at position 135 appears to induce a 

plausible minor change in the local microenvironment causing an increased solvent exposure of 
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the indole ring of W121. Interestingly, the relative fluorescence intensity of W121 was modestly 

different for each hFGF1 mutant, which could be attributed to local structural perturbations. In 

the single mutants, P135E and P135Q, the 350 nm fluorescence intensity was moderately 

increased, but the ratio of tyrosine fluorescence at 308 nm to tryptophan fluorescence at 350 nm 

was still high (Fig. S2, Appendix 1). However, the 350 nm emission intensity of the P135K 

variant was greater than for any other hFGF1 mutant and the 308/350 nm fluorescence ratio was 

diminished. This indicates that introduction of a positively charged lysine at position 135 may be 

generating charge repulsion with spatially close positively charged residues, K119, R133, and 

R136, which might cause significant perturbation of the indole ring of W121. The fluorescence 

spectrum of double mutant, P135E/R136E, revealed that the 350 nm emission intensity is 

modestly increased in a similar manner as observed in the case of the P135E and P135Q mutants. 

Interestingly, the fluorescence spectrum of the double mutant, P135K/R136E, is most similar to 

wt-hFGF1. These results indicate that introduction of a negatively charged residue (via the 

R136E mutation) appears to negate the destabilizing effects(s) of the P135K mutation.       

 

Figure 3: Intrinsic fluorescence spectra for wt-hFGF1 and all hFGF1 mutants in the absence 
(Panel-A) and presence of heparin (Panel-B). wt-hFGF1 (Δ), P135E ( ), P135K (!), P135Q (
�), P135E/R136E ( - ), P135K/R136E ( X ). Inset figure in panel A depicts the fluorescence 
spectra of native (N) and denatured (D) wt-hFGF1.   
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Introduction of positive charge at position 135 increases the structural flexibility of hFGF1 

Anilino naphthalene 8- sulfonate (ANS) binding is commonly used to examine the 

tertiary structural changes in proteins [31]. In this context, we measured the changes in the ANS 

fluorescence to examine the structural perturbation(s) that was caused by mutations introduced at 

position 135. ANS is an extrinsic fluorescent probe that binds to solvent-accessible hydrophobic 

surface(s) in proteins [31]. As hydrophobic residues are typically buried in the protein core, 

increase in ANS fluorescence is suggestive of greater solvent-accessible hydrophobic surface(s). 

The ANS binding curves of mutants P135E, P135E/R136E, P135Q, and P135K/R136E are quite 

similar to wt-hFGF1, indicating the tertiary folding of the hFGF1 does not significantly change 

due to the introduced mutations (Fig. 4). However, the relative emission intensity of ANS (at 500 

nm) upon binding to the P135K mutant is about two-fold higher than when bound to wt-hFGF1, 

indicating that introduction of positive charge at position 135 induces a modest conformational 

change causing an increase in the solvent-exposure of the hydrophobic surfaces(s). These results 

corroborate well with those obtained based on the changes in the intrinsic tryptophan 

fluorescence. 

 
Figure 4: ANS binding curves for wt-hFGF1 and all hFGF1 mutants in the absence (Panel-A) 
and presence of heparin (Panel-B). wt-hFGF1 (Δ), P135E ( ), P135K (!), P135Q (�), 
P135E/R136E ( - ), P135K/R136E ( X ). 
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Trypsin, a serine protease, cleaves proteins at the c-terminal end of lysine and arginine 

residues. Therefore, limited trypsin digestion (LTD) assay is a useful technique to monitor the 

subtle changes in flexibility of the backbone caused by introduction of the mutations in the 

heparin-binding pocket of hFGF1 [32]. We performed LTD assay on hFGF1 and the designed 

mutations of hFGF1, in the presence and absence of heparin, to determine the effect(s) of the 

individual mutations on the conformational flexibility of hFGF1. Examination of the rate of 

digestion of wt-hFGF1 and the designed mutants by trypsin, in the absence of heparin, showed 

that after 40 minutes incubation with the enzyme, wt-hFGF1 and the P135E/R136E mutant are 

digested by 10% and 20% respectively (Fig. 5 and Fig. S3 Appendix 1). Unlike wt-hFGF1, the 

P135E, P135K/R136E, and P135Q mutants showed higher susceptibility to trypsin. Their 

original band intensity, after 40 minutes incubation with trypsin, decreased by ~50%, ~60%, and 

~75% respectively (Fig.5A). Introduction of positive charge at position 135 drastically increases 

the susceptibility of hFGF1 to trypsin degradation, as interestingly, the P135K mutant is 80% 

digested after the first 10 minutes and is completely digested within 40 minutes exposure to 

trypsin (Fig. 5 and Fig. S3 Appendix 1). These results suggest that the introduction of an extra 

positive charge, via the P135K mutation, appears to enhance the flexibility of the backbone due 

to increased charge repulsions between the cluster of positively charged residues located in the 

heparin-binding pocket. Alternatively, it may be argued that the increased trypsin susceptibility 

of the P135K mutant is due to introduction of an additional trypsin cleavage site. However, this 

possibility is unlikely because the double mutant, P135K/R136E is relatively more resistant to 

the action of trypsin than the P135K mutant. The lower trypsin susceptibility of the double 

mutant, P135K/R136E as compared to the single mutant, P135K, appears to suggest that the 

negative charge introduced at position 136 partially nullifies the enhanced repulsions in the 
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heparin binding pocket caused by the addition of an extra positive charge via the P135K 

mutation. In summary, from analysis of the data presented so far, it appears that introduction of 

negative charge at position P135, individually and in tandem with mutation R136E does not 

seem to alter the backbone conformation of the protein but in fact appears to render the tertiary 

structure of hFGF1 more compact.  

 
Figure 5: LTD of wt-hFGF1 and all hFGF1 mutants in the absence (Panel-A) and presence of 
heparin (Panel-B). wt-hFGF1 (Δ), P135E ( ), P135K (!), P135Q (�), P135E/R136E ( - ), 
P135K/R136E ( X ). 
 

Mutations at position 135 only cause local structural changes 

  1H-15N Heteronuclear single quantum coherence (HSQC) spectroscopy is a two-

dimensional NMR technique commonly employed to monitor atomic-level changes in the 

backbone conformation of proteins. Superimposition of the 1H-15N HSQC spectra of P135K on 

wt-hFGF1 and analysis of the 1H-15N chemical shift perturbation plot (Fig. 6A & B) indicated 

that introduction of positive charge at position 135 induces drastic shift in the crosspeak 

corresponding to G134, which is located in the heparin-binding pocket. In addition, residues T83 

and G85, located in the disordered loop that is approximately ~6 Å from P135 were significantly 

perturbed. Similarly, analysis of the 1H-15N chemical shift perturbation data of the P135E mutant 
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also revealed that residues located in the heparin-binding pocket (G134, R133, R136, and Y139) 

expectedly showed significant 1H-15N chemical shift perturbation (Fig. 7A & B). Additionally, 

residues G85 and T83, which are in spatial proximity to position 135, are also significantly 

perturbed. The 1H-15N chemical shift perturbation observed for R133 and R136, upon 

introduction of negative charge at position 135 (P135E), may perhaps be due to the formation of 

favorable electrostatic interactions that plausibly reorient the positioning of these critical 

heparin-binding residues. Superimposition of the 1H-15N HSQC spectra of the double mutant 

P135E/R136E on that of wt-hFGF1 showed that G134 and R136 are the predominantly perturbed 

residues within the heparin-binding region. T83 and G85 are the most significantly perturbed 

residues outside of the ligand-binding pocket (Fig. S4 A & B Appendix 1). Overlay of the 1H-15N 

HSQC spectra of P135K/R136E with wt-hFGF1 indicated that the global structure of the protein 

is quite similar to wt-hFGF1 (Fig. S5 A & B Appendix 1). With the exception of L87 (which is 

located on beta strand XII in spatial proximity to position 135), the 1H-15N crosspeaks of most 

other residues in the protein showed minimal or no perturbation. The multidimensional NMR 

data obtained from the P135K/R136E double mutant suggests that introduction of a negative 

charge at position 136 helps to nullify the destabilizing interactions that come into play due to 

the introduction of an extra positive charge in the heparin binding pocket as a consequence of the 

P135K mutation. These results are quite consistent with the conclusions drawn from the intrinsic 

fluorescence, ANS binding, and LTD assays, which suggest that the structural integrity of the 

protein is maintained as well as the molecular dynamics simulation (MDS) analysis, which 

suggest that the stabilizing electrostatic interaction(s) are plausibly formed within the heparin-

binding pocket as a result of the P135K/R136E mutations.  
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Figure 6: Panel – A, The 1H-15N HSQC of wtFGF (red) is superimposed onto P135K (blue). 
Panel – B, the chemical shift perturbation plot of the P135K mutant. The dashed line signifies an 
arbitrary threshold above which 1H – 15N chemical shift perturbations are considered significant. 
The 1H-15N chemical shift perturbation of individual residues were calculated using the formula, 
(√ [(2ΔδNH)2 + (ΔδN)2]).  

 

Figure 7: Panel – A, The HSQC of wtFGF (red) is superimposed onto P135E (blue). Panel – B, 
the chemical shift perturbation from the P135E mutant. The dashed line signifies an arbitrary 
threshold above which 1H – 15N chemical shift perturbations are considered significant. The 1H-
15N chemical shift perturbation of individual residues were calculated using the formula, (√ 
[(2ΔδNH)2 + (ΔδN)2]).  
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Introduction of negative charge at position 135 and/or 136 introduces additional salt bridges 

and hydrogen bonding in the heparin-binding region of hFGF1.  

          Molecular dynamics simulations were performed on each of the designed mutants of 

hFGF1 to gather support for the conclusions drawn from the biophysical experiments. 

Simulations were performed using the crystal structure of wt-hFGF1 in the absence of heparin 

(Protein Data Bank code 1RG8). Movies of the simulations are provided in the supporting 

information (supplemental movie SM1, SM2, SM3, SM4, SM5, and SM6 respectively). From 

each trajectory, the interdomain distances of the Cα backbone atoms were measured as a function 

of time, showing no major differences between wt-hFGF1 and all the hFGF1 mutants (Fig. S6 A 

Appendix 1). Additionally, a comparison of the root mean square fluctuations (RMSF) of the Cα 

atoms of each mutant to wt-hFGF1 (Fig. S6 B Appendix 1) indicated no significant differences 

in the RMSF of mutant P135K from wt-hFGF1. The RMSF for mutant P135Q is decreased 

compared to wt-hFGF1 for certain residues between positions 30 to 80, corresponding to the 

flexible loop regions of the protein (Fig. S6 B Appendix 1). RMSF of P135E is modestly 

increased for residue L27 located on beta strand I, residue R49 located on the flexible loop 

region between beta strands III and IV, and residue K115 within the heparin-binding region. 

RMSF of double mutant P135E/R136E is modestly lower for residue Q59 as well as residues 

E67-Y69 found within beta strands IV and V, respectively, but is significantly higher for loop 

regions containing residue M81 and K115. The RMSF for double mutant P135K/R136E is 

significantly higher for residues L27, L58, Y69, found on beta strand I, IV and V respectively 

and is modestly increased for residues P93 and E95 located in the flexible loop region between 

beta strands VII and VIII.   

Salt bridge and hydrogen bonding analyses were also performed on wt-hFGF1 and each 
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of the designed mutants. In the molecular dynamics simulation of P135K, it was observed that 

the side chains of R133, K135, and R136 are oriented in relatively opposite directions (Fig. S7 

Appendix 1). The guanidinium head groups of the arginine residues were positioned away from 

each other, plausibly to minimize destabilizing electrostatic repulsion and steric hindrance. 

Overall, P135K had one fewer salt bridge than wt-hFGF1. Additionally, the P135K mutant 

contained no hydrogen bonds or salt bridges involving residues R133, K135, and R136 with any 

other residues located in the spatial vicinity of the heparin-binding region (Table S1 Appendix 

1). The absence of any additional stabilizing interactions in the heparin-binding region is also 

supported by the fluorescence, ANS binding, trypsin digestion, and equilibrium unfolding data. 

Similar to the P135K mutant, the P135Q mutant had only one less salt bridge than wt-

hFGF1 (Table S1 Appendix 1). Hydrogen bonding analysis revealed the presence of stabilizing 

hydrogen bonds between the side chain amide group of Q135 and the carbonyl group on the 

backbone of D84 (Fig. S7 Appendix 1). In addition, hydrogen bonding also occurs between the 

carbonyl group on the side chain of Q135 and the amide group on the backbone of Q135. 

Substitution of glutamine for proline at position 135 did not induce stabilizing interactions with 

residues R136 or R133, which would leave these two critical heparin-binding residues available 

for interaction with the ligand. Therefore, this observation is consistent with the conclusions 

drawn from structure and stability data, which suggest that P135Q does not significantly alter the 

protein stability or interaction(s) with heparin.  

Hydrogen bonding analysis of double mutant P135K/R136E revealed stabilizing bonds 

between the side chain amine group of K135 and the side chain carboxyl group of D84. The salt 

bridge pattern of double mutant P135K/R136E is identical to wt-hFGF1, which lends support to 

the conclusions drawn from equilibrium unfolding, ANS, and fluorescence experiments. 
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Interestingly, no salt bridge was observed to form between K135 and E136; however, E136 was 

found to be neutralized by a salt bridge formed between E136 and R133 (Fig S7 Appendix 1). 

Hydrogen bonding was also observed between the side-chain carboxyl group of E136 and the 

guandinium head group of the side chain of R133 as well as between the amide group on the 

backbone of E136 and the backbone carbonyl group of R133. These interactions between R133 

and E136 may stabilize hFGF1 and diminish hFGF1 affinity for heparin.  

Furthermore, one additional salt bridge in the heparin-binding region was observed for 

mutant P135E between residues E135 and R133. Several additional salt bridges were observed 

for double mutant P135E/R136E between residues E135 and R133, E136 and K132, and E136 

and R133 (Table S1 Appendix 1). For mutant P135E, the interaction between E135 and R133 

may plausibly reduce contact between R133 and heparin, consequently diminishing the overall 

increase in stability of P135E in the presence of heparin. This conclusion is consistent with the 

thermal stability data of heparin-bound P135E which is ~10 °C less stable than heparin-bound 

wt-hFGF1 (Table 1). Additionally, the multiple salt bridges formed within the heparin-binding 

region of P135E/R136E may increase the native protein’s overall stability while diminishing the 

heparin-binding affinity as well as the ability of heparin to influence the thermal stability of this 

double mutant. These conclusions are consistent with the thermal stability data for P135E/R136E 

(Table 1).  

 

Heparin binding increases the thermal stability of P135K but not of other hFGF1 mutations 

The thermal stability of hFGF1 and the designed mutants, was measured by Far UV CD 

spectroscopy by monitoring ellipticity changes (at 228 nm). Analysis of the denaturation 

temperature, Tm (the temperature at which 50% of the protein population exists in the denatured 
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state(s)), revealed that in the absence of heparin, all the hFGF1 mutants except the double 

mutants, P135E/R136E (Tm = 53°C ± 0.87) and P135K/R136E (Tm = 48.5°C ± 0.91), exhibited a 

marginally lower thermal stability than wt-hFGF1 (Tm = 48.5°C ± 0.72) (Fig. 8A) (Table 1). In 

the presence of heparin, all the designed hFGF1 mutants are less stable than wt-hFGF1. 

Interestingly, heparin binding increased the thermal stability of P135K (ΔTm = 20.8°C) to the 

same extent as wt-hFGF1 (ΔTm = 20.5°C). However, introduction of a negative charge (P135E) 

or a polar functional group (P135Q) at position 135 modestly reduced the net increase in Tm 

upon binding to heparin [(P135E ΔTm = 15.3°C) and (P135Q ΔTm = 16.2°C)] (Fig. 8A). The 

total increase in Tm value of P135E/R136E upon binding to heparin was only very modest 

~4.7°C. The Tm of the P135K/R136E mutant was not found to increase upon binding to heparin 

(Table 1). The insignificant or no increase in stability upon binding to heparin for both the 

double mutants (P135E/R136E and P135K/R136E) suggests that the charge reversal at position 

136 has a unique effect of diminishing heparin binding affinity of the protein.  

 The stability of each mutant, in the absence and presence of heparin, was also measured 

by urea-induced denaturation (Fig. 8B). In the absence of heparin, for all the designed hFGF1 

mutations with the exception of the double mutants, (P135E/R136E (Cm = 1.8M ± 0.67) and 

P135K/R136E (Cm = 1.8M ± 0.26), the Cm values (concentration of the denaturant at which 50% 

of the protein population is in the denatured state(s) were lower than that of the wt-hFGF1 (Cm = 

1.80M ± 0.11) (Table 1). Interestingly, in the presence of heparin, P135E (ΔCm = 2.6M) was 

stabilized to the same extent as wt-hFGF1. Heparin did not stabilize any of the other designed 

mutants to the extent it stabilized wt-hFGF1 and P135E. Of the hFGF1 single mutants, P135K 

and P135Q were stabilized by heparin the least (Table 1 and Fig. 8B). Lastly, the ΔCm value(s) 

for the double mutants, P135E/R136E (ΔCm = 0.5M) and P135K/R136E (ΔCm = 0.9M) were 
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significantly reduced compared to wt-hFGF1. The lack of heparin-induced stabilization for both 

double mutants is likely due to the additional stabilizing salt bridges formed within the heparin-

binding region previously discussed in the MDS section. 

Overall, the thermal and urea equilibrium unfolding data indicate that substitution of 

proline at position 135 with lysine or glutamine modestly reduced the ability of heparin to 

stabilize these mutants compared to wt-hFGF1. This may be due to a decrease in structural 

stability, which is observed from the fluorescence and trypsin digestion data. Furthermore, the 

presence of the charge reversal mutation at position 136 (R136E) significantly diminished the 

stabilizing effect(s) of heparin toward hFGF1, as observed with the double mutants 

P135K/R136E and P135E/R136E (Table 1). These conclusions are in good agreement with the 

conclusions drawn based on the thermal denaturation data.  

Table 1. Thermostability of designed hFGF1 mutants and wt-hFGF1. 

 Tm °C Cm (M) 

 - heparin + heparin ΔTm - heparin + heparin ΔCm 

wt-hFGF1 48.5 ± 0.72 69 ± 0.68 20.5 1.8 ± 0.11 4.2 ± 0.09 2.4 

P135E 43.5 ± 1.3 58.8 ± 0.43 15.3 1.5 ± 0.32 4.1 ± 0.17 2.6 

P135K 42 ± 1.0 62.8 ± 0.81 20.8 1.4 ± 0.27 3.1 ± 0.28 1.7 

P135Q 44 ± 0.40 60.2 ± 0.50 16.2 1.4 ± 0.27 2.9 ± 0.15 1.5 

P135/ER136E 53 ± 0.87 57.7 ± 0.46 4.7 1.8 ± 0.67 2.3 ± 0.60 0.5 

P135K/R136E 48.5 ± 0.91 48.5 ± 0.55 0 1.8 ± 0.26 2.7 ± 0.32 0.9 
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Figure 8: Thermal (Panel-A) and urea-induced (Panel-B) equilibrium unfolding of wt-hFGF1 
and hFGF1 mutants in the presence and absence of heparin. Unfolding was monitored by 
intrinsic fluorescence and fraction of unfolded protein was determined from changes in 
fluorescence intensity of the ratio 308/350 nm. Unfolding profile in the absence of heparin: wt-
hFGF1 (Δ), P135E ( ), P135K (!), P135Q (�), P135E/R136E ( - ), P135K/R136E (  ). 
Unfolding profile in the presence of heparin: wt-hFGF1 ( ), P135E ( ), P135K ( ), P135Q 
( ), P135E/R136E ( X ), P135K/R136E ( + ). 
 

Introduction of two negative charges in the heparin-binding pocket reduces heparin-binding 

affinity 

 Isothermal titration calorimetry (ITC) is a useful technique for the determination of the 

thermodynamic binding parameters characterizing the ligand-protein interactions. Comparison of 

the binding affinity (Kd) values, representing the interaction of wild type hFGF1 and the P135K 

mutant with heparin, showed that introduction of positive charge at position 135 does not have 

any significant effect on the heparin-binding affinity, (P135K Kd = 1.58µM) (Fig. 9). On the 

contrary, introduction of negative charge at position 135 (P135E) increased the heparin-binding 

affinity three-fold (P135E Kd = 0.58µM) (Fig. 9). It was originally predicted that introduction of 

a positive charge at position 135 would increase binding affinity of hFGF1 for heparin and that 

introduction of a negative charge would likely reduce the affinity for the negatively charged 
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heparin. However, it appears that the side chain of E and K at position 135 are oriented away 

from the hFGF1-heparin binding interface because mutations at this site (P135) did not have the 

anticipated effect on heparin binding. Introduction of a polar functional group at position 135 

modestly increased the heparin-binding affinity of hFGF1 (P135Q Kd = 1.02µM) (Fig. 9), which 

may be due to the slightly more compact structure of the mutant compared to wt-hFGF1 as 

measured by the ANS fluorescence experiment as well as RMSF values. Introduction of negative 

charge at combined positions 135 and 136 reduced the affinity of hFGF1 for heparin as expected 

(P135E/R136E Kd = 4.65µM). Therefore, it appears that the addition of the second negative 

charge at position 136 drastically reduces the affinity of the protein towards its ligand heparin. 

These results are in good agreement with the thermal and urea denaturation data. Finally, the 

double mutant, P135K/R136E, was also found to exhibit reduced binding affinity for heparin 

(P135K/R136E Kd = 5.56µM) despite introduction of a positive charge at position 135 (Fig. 9). 

As the single mutant, P135K, did not show increased binding affinity to heparin, the observed 

reduction in heparin-binding affinity of the double mutant P135K/R136E seems to be largely due 

to the charge reversal mutation at position 136 (R136E). 
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Figure 9: Isothermograms representing the titration of wt-hFGF1 and the individual designed 
mutants of hFGF1 with heparin. The top panel displays the raw heat changes of heparin-protein 
interaction and the bottom panel displays the best-fit of the binding curve using a one set-of-sites 
binding model [14]. All data have been corrected for heats of dilution. 

 

ITC data provides valuable information on the thermodynamics governing protein-ligand 

interactions as well [14]. The change in enthalpy (ΔH) represents interactions including 

electrostatic, hydrogen bonding, and van der Waals [14]. The change in entropy (ΔS) represents 

changes in solvation as well as conformational changes within the protein upon binding with 

heparin [14]. The enthalpy values characterizing the interaction of heparin with the designed 

mutants [P135E (ΔH = -1.11 ± 0.2 k.cal mol-1), P135Q (ΔH = -1.08 ± 0.6 kcal mol-1), and 

P135K/R136E (ΔH = -1.04 ± 0.73 kcal mol-1)] of hFGF1 were about half of that compared to the 

ΔH values representing the wt-hFGF1-heparin interaction (ΔH = -2.14 ± 0.4 k.cal mol-1). These 
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results suggest that the degree of contact between the designed hFGF1 mutants and heparin is 

reduced (Table S2). Additionally, the change in enthalpy observed for the interaction of heparin 

individually with P135K (ΔH = -0.85 ± 0.2 k.cal mol-1) and P135E/R136E (ΔH = -0.85 ± 0.5 

k.cal mol-1) were approximately three-fold lower than the wt-hFGF1-heparin interaction, which 

indicates that the degree of contact between these mutants and heparin is significantly reduced 

(Table S2). The TΔS values for the interaction of heparin with the individual hFGF1 mutants are 

five- and ten-fold lower as compared to the interaction of the glycosaminoglycan with wt-hFGF1 

(TΔS = -1.1 k.cal mol-1). These results indicate that any conformational change(s) or desolvation 

occurring at the binding interface of the individual hFGF1 mutants, upon interaction with 

heparin, are minimized (Table S2). However, despite an increase in the entropic term, all 

entropic values are still negative and therefore favorable.  

 

Binding affinity does not positively correlate with mitogenic activity 

 It is generally believed that heparin plays a critical role in the interaction of hFGF1 with 

its receptor. By this premise, it is likely that an increase in the binding affinity of hFGF1 to 

heparin would correlate with an increase in the growth factor-mediated mitogenic activity. If so, 

it can be expected that hFGF1 mutants that exhibit higher binding affinity to heparin than wt-

hFGF1 would exhibit enhanced cell proliferation activity. In this context, we measured the 

proliferation of heparinase treated NIH3T3 cells by wt-hFGF1 and the designed mutants in the 

presence and absence of heparin (Fig. 10). Maximum cell proliferation with wt-hFGF1 was 

achieved at a heparin to protein ratio of 10:1, and therefore all cell proliferation assays were 

performed at this ratio. Fig. 10A shows that in the absence of heparin, mutants P135K and 

P135E exhibit modestly higher cell proliferation activity than wt-hFGF1. However, in the 



	 64 

presence of heparin, both P135K and P135E showed slightly lower activity than wt-hFGF1 (Fig. 

10B). Reduced cell proliferation activity of P135K is perhaps due to the decreased structural 

stability ascribed to the protein as measured by fluorescence, LTD, and equilibrium unfolding 

experiments. Interestingly, the structural integrity of the P135E mutant is maintained as 

measured by fluorescence, LTD, and equilibrium unfolding experiments. In addition, the 

heparin-binding affinity of P135E is ~ 3-times higher than that of wt-hFGF1 but yet the cell 

proliferation activity of this mutant is lower than that exhibited by wt-hFGF1. These results 

suggest that the mitogenic activity of hFGF1 is not strongly correlated to its binding affinity to 

heparin. In addition, Figures 10 A & B indicate that both double mutants, P135E/R136E and 

P135K/R136E, in the presence and absence of heparin, exhibit higher cell proliferation activity 

than wt-hFGF1. We previously reported that the R136E mutation reduced hFGF1’s affinity for 

heparin but increased its cell proliferation activity by about 10-fold [27]. As previously 

mentioned, ITC data suggests that both double mutants, P135E/R136E and P135K/R136E, have 

no or insignificant affinity to bind to heparin and the loss of heparin binding affinity is likely to 

be strongly associated with the introduction of a negative charge at position 136. Overall, the 

results of the cell proliferation experiments clearly indicate that the heparin binding is not a 

prerequisite for the mitogenic activity of hFGF1. 
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Figure 10: Proliferation of heparinase treated NIH 3T3 cells by wt-hFGF1 and the designed 
hFGF1 mutants in the absence (Panel-A) and in the presence (Panel-B) of exogenous heparin. 
Standard errors were determined from triplicate experiments.  
 

 The notion that heparin is not mandatory for hFGF1 activation of cell surface receptors 

has been previously reported [10, 12, 23, 33, 34]. Wong et al (1995) showed that charge reversal 

K132E did not alter the cell proliferation activity of hFGF1 despite its reduced affinity to heparin 

[35]. Similarly, Culajay et al (2000) demonstrated that substitution of the three cysteine residues 

with serine decreased heparin-binding affinity of hFGF1. Additionally, the cysteine to serine 

substitution(s) increased the physiological half-life of hFGF1 and also enhanced the cell 

proliferation activity of hFGF1 [12]. Furthermore, combination of mutations L58F, H35Y, 

H116Y, and F122Y revealed an increased thermal stability, even in the absence of heparin, 



	 66 

without any significant loss in the cell proliferation activity of hFGF1 [10]. Inclusion of 

mutations at additional sites on the quadruple mutant (L58F/H35Y/H116Y/F122Y) to generate a 

septuplet mutant (H35Y/Q54P/L58F/S61I/H107G/H116Y/F122Y) increased the stability of 

hFGF1 significantly [33]. Interestingly, the septuplet mutant was also found to exhibit six-fold 

higher cell proliferation activity than the wildtype protein in the absence of heparin [33]. In this 

context, the results of this study clearly show that heparin is not a pre-requisite for the cell 

proliferation activity of hFGF1. Heparin, present on the cell surface, serves plausibly as a 

reservoir to facilitate the accumulation of hFGF1 on the cell surface and also to increase the 

stability of the growth factor through electrostatic interactions.  

 

Conclusion 

 An understanding of the structure-function relationship between hFGF1 and heparin is 

important for the design and development of FGF-based therapeutics for wound healing and 

tissue regeneration applications. The results of the equilibrium unfolding experiments clearly 

suggest that the primary role of heparin is to confer structural stability to hFGF1. ITC data in 

conjunction with cell proliferation assays using the double mutants P135E/R136E and 

P135K/R136E clearly demonstrate the ability of the protein to effectively induce cell 

proliferation in a heparin independent manner. In addition, the results obtained in this study 

conclusively suggest that increased affinity for heparin does not necessarily result in increased 

cell proliferation activity.  
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Materials and Methods 

Materials: DNA plasmid isolation kits were purchased from Qiagen, USA and Quikchange II 

XL mutagenesis kits were obtained from Agilent. Competent cells (DH5α and BL-21(DE3)) 

were sourced from Novagen Inc., USA. Lysogeny broth (LB) was obtained from EMD 

Millipore, USA. Heparin sepharose was obtained from GE Healthcare, USA. VWR Scientific 

Inc, USA was the supplier for all buffer components including Na2HPO4, NaH2PO4, NaCl, and 

(NH4)SO4. Low molecular weight heparin sodium salt (~3kDa) was procured from Sigma and 

MP Biomedicals LLC. NIH 3T3 cells were sourced from American Type Culture Collection 

(ATCC) and additional cell culture reagents such as, DMEM media, fetal bovine serum (FBS), 

and penicillin streptomycin were obtained from Thermo Fisher Scientific USA.  

Molecular Dynamic Simulations: hFGF1 crystal structure (PDB 1RG8) was visualized using the 

Pymol visualizing tool. All mutations were created using Pymol mutagenesis tool [36]. 

Structures were first energy-minimized for 2000 steps and then immediately solvated in a water 

box of 12x12x12 Å3. 0.150 M NaCl was then added to neutralize the solvent box. Following 

solvation, the solvent molecules and ions as well as the protein backbone and side chains were 

relaxed while hydrogen atoms were kept rigid. Relaxation was performed to prepare the system 

for equilibration. Equilibration of the system was implemented in the NPT ensemble utilizing the 

CHARMM36 force field and NAMD 2.9 [37, 38]. Side chains were relaxed for 10 picoseconds 

(ps) with the backbone fixed in the absence of solvent molecules. Next, water molecules were 

relaxed for 1,500 steps around the protein while protein atoms remained fixed. Relaxation of the 

system was followed by 50 ps of dynamics. Finally, the solvent molecules were relaxed around 

the protein with harmonic constraints using a force constant of 1 kcal/(mol Å2). After relaxation 
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of the solvent molecules, the temperature of the system was increased in small increments (10 K 

per 2 ps) until a final temperature of 300 K was reached. Temperature adjustment was followed 

by 250 ps of dynamics. Temperature (300 K) was sustained by Langevin dynamics with a 

damping coefficient of 1 ps-1 and a pressure of 1 atmosphere with a 100 femtosecond (fs) period, 

and 50 fs decay time was sustained by the Langevin piston method [39]. Long-distance 

electrostatic interactions were determined using particle mesh Ewald (PME) method and periodic 

boundary conditions. Additionally, a switching function was applied to terminate electrostatic 

and Van der Waals interactions greater than 12 Å. Production runs of 100 nanoseconds (ns) were 

performed and protein stability was evaluated from the resulting simulations. Visual Molecular 

Dynamics (VMD) 1.9 was used to visualize the simulation(s) and to trace hydrogen bonding of 

the mutated residue [40]. 

Construction and purification of hFGF1 mutants: For site-directed mutagenesis, a form of 

hFGF1 without the first 14 N terminal residues (residues 15-154) was used. pET20b bacterial 

expression vector was the template for the site-directed mutagenesis. Agilent primer design 

software was used to design the desired primers, which were ordered from IDT DNA INC., 

USA. Instructions provided by the manufacturer for the QuikChange II XL kit were followed to 

conduct site directed mutagenesis (SDM). The heat shock technique was used to transform the 

plasmid into DH5α competent cells and the sequence of the plasmid was verified by the 

University of Arkansas Medical Science – DNA core sequencing facility [41]. Once the correct 

sequence was verified, overexpression of the wt-hFGF1 and designed mutants was achieved 

using BL-21(DE3) Escherichia coli host cells. Bacterial cells were incubated overnight at 250 

rpm and 37°C in LB. It is recognized that hFGF1 overexpressed in E. coli lacks post-

translational modification; however, no post-translational modification(s), which would alter its 
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heparin-binding properties in mammalian systems are known to occur to hFGF1,. Following 

overexpression, bacterial cells were lysed via ultrasonication and the released proteins were 

separated from the cell debris by centrifugation for 1 hour at 19,000 rpm. Purification of the 

hFGF1 mutants was accomplished using heparin sepharose resin. Purification of hFGF1 was 

achieved using a stepwise NaCl gradient in 10 mM sodium phosphate buffer (PB) containing 

25mM (NH4)2SO4 at pH 7.2 according to methods described previously [42]. Pure hFGF1 

protein was typically obtained in the 1500 mM NaCl buffer fraction [10, 23, 33]. Protein purity 

was analyzed using SDS-PAGE. Apparent molecular mass of the purified hFGF1 samples was 

compared against a prestained standard protein molecular mass marker ranging 7 kDa -175 kDa.  

Heparin-binding affinity of hFGF1 mutants: Isothermal titration calorimetry (iTC-200, 

Malvern Inc.) was employed to determine the hFGF1–heparin binding affinity. Heat changes 

were measured by titrating heparin (loaded in the syringe) into protein solution in the reaction 

vessel. All protein and heparin samples were made in solution containing in 10 mM phosphate 

buffer with 100 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2) and were degassed prior to titration. 

A protein concentration of 50 µM and a heparin concentration of 500 µM was consistently used 

to maintain a 1:10 ratio of protein to heparin in all ITC experiments. ITC experiment parameters 

include a series of 30 titrations performed at 25°C with a stir speed of 1000 rpm. ITC binding 

curves were best-fit to one set of sites binding model. Appropriate corrections were applied to 

eliminate the contribution from the heats of dilution.  

Fluorescence Spectroscopy and 8-Anilino-1-napthalenesulfonic acid (ANS) Binding: Intrinsic 

fluorescence experiments and ANS binding assays were performed at 25°C on a Hitachi F-2500 

fluorescence spectrophotometer. All fluorescence measurements were made using a slit width set 

to 2.5 nm. A protein concentration of 0.1 mg/mL [in 10 mM phosphate buffer containing 100 
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mM NaCl, and 25 mM (NH4)2SO4 (pH 7.2)] was used in all intrinsic fluorescence experiments. 

For samples containing heparin, the glycosaminoglycan was present in 10-times molar excess of 

the protein concentration to achieve saturated binding of heparin. All intrinsic fluorescence 

measurements were acquired using an excitation wavelength of 280 nm and an emission 

wavelength range of 300 nm – 450 nm. ANS binding assays were carried out with protein 

concentrations of 0.25 mg/mL in 10 mM phosphate buffer containing 100 mM NaCl and 25 mM 

(NH4)2SO4 (pH 7.2). ANS binding measurements were performed by adding 1µL of ANS (from 

a stock solution of 0.01 µM) into the protein solution such the concentration of the fluorescent 

dye increased in 20 µM increments. After each titration, the reaction mixture was excited at 380 

nm and the relative fluorescence intensity at 500 nm was recorded.  

Circular Dichroism Spectroscopy: Far-UV CD measurements were performed using a protein 

concentration of 0.5 µg/µL at 25 °C on a Jasco 1500 spectropolarimeter. Protein samples were 

prepared in 10mM phosphate buffer containing 10 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2). 

Far-UV CD spectra acquired in the presence of heparin, were performed with a protein to 

heparin ratio of 1:10 to ensure complete heparin saturation of hFGF1. All data were normalized 

using necessary background corrections and smoothed using the Savitzky-Golay algorithm. In 

samples containing heparin, the contribution of excess heparin to the observed ellipticity was 

normalized by making appropriate background corrections.  

Limited Trypsin Digestion: For limited trypsin digestion (LTD) experiments, a 1:100 ratio of 

enzyme (5 µg) to substrate (500 µg) was dissolved in 10 mM phosphate buffer containing 100 

mM NaCl and 25 mM (NH4)2SO4 at pH 7.2. LTD experiments completed in the presence of 

heparin contained the glycosaminoglycan in ten times molar excess the protein concentration to 

achieve complete protein saturation. hFGF1 samples, incubated at 37°C, were withdrawn at 5-
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minute intervals and the reaction was stopped with the addition of 100% trichloroacetic acid 

prior to analysis on SDS PAGE. The percentage of hFGF1 sample digested by trypsin, at 

different time points, was calculated by densitometry [using UN-SCAN IT (Silk Scientific Inc., 

USA)] by comparison with the Coomassie blue stained band intensity of ~17 kDa protein 

withdrawn at the zero time point.  

Equilibrium unfolding of hFGF1 mutants: Thermal and chemical denaturation experiments 

were completed using a Jasco-1500 spectropolarimeter equipped with fluorescence detector. For 

thermal unfolding, protein samples were made using a protein concentration of 0.5 mg/mL in 10 

mM phosphate buffer containing 100 mM NaCl and 25mM (NH4)2SO4 at pH 7.2. For spectra 

collected in the presence of heparin, a protein to heparin ratio of 1:10 was used. Spectra were 

collected in 5 degrees increments from 20°C to 80°C. Tm, temperature at which 50% of the 

protein molecules exist in the denatured state(s), was calculated from the plot of fraction of 

unfolded protein population versus temperature.  

Urea-induced equilibrium unfolding of hFGF1 samples was measured using the 

fluorescence mode on the Jasco – 1500 spectropolarimeter.  Urea-induced unfolding experiments 

were performed at a protein concentration of 3 µM protein in 10 mM phosphate buffer 

containing, 100 mM NaCl and 25mM (NH4)2SO4 at pH 7.2. Far-UV CD and intrinsic 

fluorescence spectra were recorded individually on a protein sample at increasing concentrations 

of urea.  At each concentration of urea both the molar ellipticity value at 228 nm and the ratio of 

the 308 nm /350 nm emission intensity was measured. The fraction unfolded of the proteins 

species, at each concentration of urea, was calculated from both sets of data. Spectra were 

collected as an average of 3 scans using a quartz cell of 1 cm pathlength.   
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Nuclear Magnetic Spectroscopy: NMR spectra were obtained on a Bruker 500 MHz NMR, 

equipped with a cryoprobe, using 2K x 256 data points. 1H-15N Heteronuclear single quantum 

coherence (HSQC) experiments were performed at 25°C using a protein concentration of at least 

300 µM in 10 mM phosphate buffer containing 100 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2). 

Protein samples were isotopically labeled with 15NH4Cl and the samples prepared using well-

established methods [43]. 2D NMR data were analyzed using Sparky 3.114 software [44].  

Composite 1H-15N chemical shift perturbation for each residue was calculated using the equation, 

√ [(2ΔδNH)2 + (ΔδN)2]. 1H-15N chemical shift perturbations, in the presence of heparin, were 

carefully tracked by acquiring a series of 1H-15N HSQC spectra at various heparin: protein ratios. 

However, for a few residues, the 1H-15N chemical shift perturbation(s) could not be precisely 

monitored and these residues were not considered in the final presentation of the 1H-15N 

chemical shift perturbation data. 

Cell proliferation activity: NIH 3T3 fibroblast cells (supplied by ATCC (Manassas, VA)) were 

cultured in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. When cells 

reached 80-90% confluency, they were incubated overnight in serum-free media at 37°C with 

5% CO2. Cell surface heparin was removed by treating the NIH 3T3 cells with 6 units of 

heparinase per 10,000 cells for 1 hour at 37°C.  Cells were then washed twice with PBS and 

returned to complete DMEM.. Following heparinase treatment, an optimum heparin: protein 

ratio was determined by conducting the cell proliferation assays at different heparin 

concentrations and a fixed wt-hFGF1 concentration of 10 ng/mL (Fig. S8 Appendix 1). 

Maximum cell proliferation activity was achieved at a protein: heparin ratio of 1:10, and this 

ratio was used in all experiments wherein exogenous heparin was added. In brief, starved 3T3 

fibroblasts were distributed in a 96-well plate at a density of 10,000 cells/well. wt-hFGF1 and 



	 73 

mutants were individually added at concentrations of 0, 0.4, 2, 10 and 50 ng/mL and incubated 

for 24 hours. The CellTiter-Glo (Promega, Madison, WI) cell proliferation assay was used 

following the manufacturer instructions to quantify the proliferation of NIH 3T3 cells. 
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Abstract 

Acidic human fibroblast growth factor (hFGF1) plays a key role in cell growth and proliferation. 

Activation of the cell surface FGF receptor is believed to involve the glycosaminoglycan, 

heparin. However, the exact role of heparin is a subject of considerable debate. In this context, in 

this study, the correlation between heparin binding affinity and cell proliferation activity of 

hFGF1 is examined by extending the heparin binding pocket through selective engineering via 

charge reversal mutations (D82R, D84R and D82R/D84R). Results of biophysical experiments 

such as intrinsic tryptophan fluorescence and far UV circular dichroism spectroscopy suggest 

that the gross native structure of hFGF1 is not significantly perturbed by the engineered 

mutations. However, results of limited trypsin digestion and anilino naphthalene 8-sulfonate 

(ANS) binding experiments show that the backbone structure of the D82R variant is more 

flexible than that of the wild type hFGF1. Results of the temperature and urea-induced 

equilibrium unfolding experiments suggest that the stability of the charge-reversal mutations 

increases in the presence of heparin. Isothermal titration calorimetry (ITC) data reveal that the 

heparin binding affinity is significantly increased when the charge on D82 is reversed but not 

when the negative charge is reversed at both positions D82 and D84 (D82R/D84R). However, 

despite the increased affinity of D82R for heparin, the cell proliferation activity of the D82R 

variant is observed to be reduced compared to the wild type hFGF1. The results of this study 

clearly demonstrate that heparin binding affinity of hFGF1 is not strongly correlated to its cell 

proliferation activity.  
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Highlights 

• Extension of heparin pocket via point mutations increases ligand binding of hFGF1.  

• hFGF1 cell proliferation activity is not well correlated to heparin binding affinity. 

• Heparin confers stability to hFGF1 but is not vital for receptor signaling.   
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Introduction 

FGFs are a family of polypeptides involved in a wide range of core signaling processes 

that govern cell growth, cell proliferation, cell differentiation, stress response and wound healing 

[1-7]. FGFs exert their action(s) by binding to their cell surface receptors (FGFRs) [1, 6-9]. 

FGF1 is the only member of the FGF family that binds with high affinity to all four types of 

FGFRs [10, 11]. Formation of the hFGF1/FGFR complex, initiates the processes of dimerization 

and autophosphorylation of the intracellular tyrosine kinase domain, ultimately triggering 

downstream signaling [12].  

  hFGF1-receptor interaction is believed to be highly dependent on heparin, a 

glycosaminoglycan that is commonly found in the extracellular matrix of mammalian cells at 

concentrations up to 106 units per cell [5, 13-15]. heparin consists of long, unbranched, helical 

chains of repeating disaccharide units, which are heavily sulfonated [13]. heparin is also believed 

to be critical for the biological activity of hFGF1 [16]. Crystal structures of the hFGF1/FGFR 

complex suggest that heparin directly contacts both hFGF1 and the receptor [16]. 

Crystal and solution structures of the heparin -FGF complex show that the 

glycosaminoglycan binds to a cluster of positively charges residues, which are located at the c-

terminal end of the molecule. The residues involved in the putative heparin -binding pocket of 

hFGF1 include K126, K127, K132, R133, R136, and K142 [17]. These heparin -binding amino 

acids form a region of concentrated positive charge that renders hFGF1, in its unbound form, to 

be relatively unstable and prone to thermal and proteolytic degradation [4, 18-20]. Therefore, 

hFGF1 binding to heparin increases the stability of the growth factor [8, 9]. Furthermore, 

heparin’s interaction with FGFRs stabilizes the hFGF1-FGFR binary complex [5, 16, 21, 22]. 

However, there has been a long-standing debate on whether heparin is obligatory for hFGF1 
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activity. The initial “dogma” describes heparin’s role as a mandatory co-receptor that is critical 

for cell signaling events triggered by hFGF1 [14, 16, 23, 24]. However, there are significant 

reports to the contrary, which suggest that heparin is only necessary for stabilizing the growth 

factor [4, 12, 18, 20, 25, 26]. In this context, the debate on the exact role of heparin in the FGF1 

signaling process is still an open question.  

Several studies using a site-directed mutagenesis approach have identified several 

conserved residues, which, when appropriately mutated, increased the thermodynamic stability 

of hFGF1. In addition, several mutant forms of hFGF1 have exhibited mitogenic activity even in 

the absence of heparin [4, 12, 18-20, 25, 26]. One notable mutation is the charge-reversed 

substitution K132E in the heparin -binding pocket, which was found to reduce hFGF1’s affinity 

for heparin [12]. Interestingly, it has been shown that introduction of thermally stabilizing 

mutations into hFGF1 variants with reduced affinity for heparin, such as K132E, have been 

shown to compensate for lack of heparin involvement in FGFR activation [12]. While these 

studies suggest that heparin binding to hFGF1 is not critical for the protein’s mitogenic activity, 

heparin is still opined to have a critical role in hFGF1 receptor binding and signaling	[9, 27-29].	

One approach to assess the role of heparin that has yet to be investigated is the evaluation 

of hFGF1 activity using mutations that are predicted to increase heparin binding. In this context, 

we have studied the correlation between heparin-binding affinity and cell proliferation activity of 

hFGF1 by designing charge-reversal mutations in the vicinity of the heparin binding pocket 

involving the substitution of aspartic acid for arginine at position 82 and 84 (PDB 2ERM) [17]. 

Specifically, D82R and D84R mutations have been designed to extend the heparin-binding 

interface on hFGF1. Crystal structures of hFGF1, both with and without heparin, were used to 

measure the distance between the carboxyl side chain group of D82 and the guanidinium side 
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chain group of R133. Comparison of these measurements reveals that the position of D82 in the 

heparin-bound hFGF1 structure is 6 A° farther away from the heparin-binding region than it is in 

the native hFGF1 structure. D82N is also included as a control mutant to determine if a lack of 

negative charge at this position influences the protein’s structure, stability, activity, and 

interaction differently than the D82R mutant. 

Results of this study show that charge reversal at position 82 destabilizes hFGF1 

structure. Furthermore, although charge reversals D82R and D84R increase heparin-binding 

affinity, they do not concomitantly increase the cell proliferation activity of hFGF1. The results 

obtained in this study strongly suggest that heparin merely increases the bioavailability of hFGF1 

at the cell surface and thereby enhances the probability of a productive hFGF1-receptor 

interaction. For this study, all protein samples were derived from expression in E. coli, an 

expression system that lacks post-translational modification. However, hFGF1 is not known or 

predicted to undergo post-translational modification that would potentially affect the heparin 

binding.  

Results and Discussion 

Human acidic fibroblast growth factor (hFGF1) is a beta-barrel protein with 12 

antiparallel beta-strands. The canonical heparin-binding pocket is located at the c-terminal end 

between beta strands 10 and 12. Positively charged residues densely populate the heparin-

binding pocket in the protein. Site-directed mutagenesis studies have shown that the positively 

charged residues in the heparin-binding pocket are critical for the heparin binding affinity of 

hFGF1 [30, 31]. In this study, we have used low weight molecular heparin as it is well known 

that high molecular weight heparin is polydispersed, containing a heterogeneous mixture of 
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heparin molecules of varying chain lengtheparin. The high polydispersity poses significant 

technical challenge in the interpretation of the NMR results. In addition, in our experience, the 

high polydispersity also presented serious problems in calculating the average molecular weight, 

which in-turn adversely influenced the heparin concentration determination(s). The low 

polydispersity of the low molecular heparin significantly diminished the above-mentioned 

technical difficulties. Furthermore, the low molecular weight (Mr~ 3000 Da) heparin used has 

been estimated to be 8 to 12 units long and multiple studies have shown that heparin with a chain 

length of 8-uints has been shown to be sufficient to facilitate optimal FGF-induced cell signaling 

[13, 32, 33].  

Spatial proximity of D82/D84 to the putative heaprin-binding pocket 

Residues D82 and D84 are located on the protein surface within the linker region 

connecting beta strands 6 and 7 (Fig. 1). In the folded conformation of hFGF1, both D82 and 

D84 residues appear to be fully solvent-exposed [17]. Thus, neither amino acid is involved in the 

inner core network of hydrogen bonding or electrostatic interactions stabilizing the three-

dimensional structure of the protein. The side chain carboxyl groups of D82 and D84 are located 

within a spatial distance of 5 A° from T83, L86, L87, and Y88. Neither D82 nor D84 is a part of 

the canonical heparin-binding pocket. The position of both D82 and D84 in relation to R133, 

which is in the midst of the heparin-binding pocket, was measured using crystal structures of 

native hFGF1 in the presence (PDB 2ERM) and absence of heparin (PDB 1RG8) [17, 32]. In the 

absence of heparin, D82 and D84 are positioned  ~6.9 Å and ~6.1 Å, respectively, away from the 

critical heparin-binding residue R133 (PDB 1RG8) [32]. In the presence of a hexasaccharide 
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heparin chain (PDB 2ERM), D84 is shifted modestly closer to R133 (~5.8 Å) while D82 is 

measured at ~12.8 Å from R133.  

Using the crystal structure of hFGF1-heparin-FGFR ternary complex (PDB 1E0O), as 

well as a structure of the symmetrical hFGF1 dimer bound to a decasaccharide heparin chain 

(PDB 1AXM), it was determined that D82 of each hFGF1 monomer is within 8 - 11 Å from the 

sulfate groups of the third unit (D-glucosamine) in the heparin chain [23]. Replacement of 

aspartic acid with arginine at position 82 (D82R) in both hFGF1 monomers would bring the side 

chain even closer to the sulfate groups of heparin. It is evident from the crystal structure(s) of 

both complexes (PDB 1E0O and 1AXM) that the heparin chain must be approximately ten 

saccharide units long to facilitate the heparin-induced dimerization of hFGF1 [23]. Furthermore, 

taking in to account the dynamic nature of the molecular interaction(s), the side chain of arginine 

at position 82 and 84 would be placed within 3 to 8 Å of the closest sulfate group on heparin. 

Thus, substitution of D82 and D84 with arginine apparently would result in the extension of the 

heparin-binding pocket in hFGF1 and consequently can be potentially expected to provide 

additional points of contacts for the glycosaminoglycan binding.  

Brown et al. showed that heparin fragments smaller than the octasaccharide cannot 

facilitate dimerization and are not physiologically relevant. Furthermore, the binding between 

hFGF1 and heparin is shown to exhibit a positive cooperativity that preferentially forms 

oligomers instead of 1:1 complexes, thus suggesting that chain lengths of heparin longer than the 

octasaccharide are more pertinent to the biological activity of hFGF1 [13].  In addition, it was 

demonstrated that a single heparin chain of molecular mass  ~16 kDa can bind up to fifteen 

hFGF1 molecules [13]. In addition, the alpha helical backbone of heparin is shown to undergo 
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conformational change(s) upon binding to hFGF1 [34]. Although heparin is a relatively rigid 

molecule in solution, it tends to be kinked upon binding to hFGF1 with alterations in the 

backbone torsion angles. The kinked backbone structure of heparin is conducive for favorable 

electrostatic and van der Waals interactions with hFGF1 [13].    

 

Figure 1: Left -Three-dimensional structure of hFGF1 (PDB 2ERM) depicting the side-chain of 
the positively charged residue R133 in the heparin-binding pocket. The heparin-binding pocket 
has been extended through reversal of charge on D82 (D82R) and D84 (D84R). Right - 
Representation of the electrostatic potential in the three-dimensional structure of hFGF1 showing 
that charge reversal(s) at D82 and D84 extends the heparin-binding region of hFGF1 (PDB 
1RG8). 

Individual charge reversals induce stabilizing hydrogen bonding 

Molecular dynamic simulations were run to further assess the conclusions drawn from 

fluorescence, trypsin digestion, and equilibrium unfolding experiments. All simulations were 

completed using the crystal structure of hFGF1 in the absence of heparin (Protein Data Bank 

code 1RG8). Still images of each simulation (Fig. S1, Appendix 2) as well as movies of each 

simulation are provided in the supplementary material (SM 7-11). Interdomain distances of the 

Cα backbone atoms were measured as a function of time for each trajectory and root mean 
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square fluctuation (RMSF) for the Cα atoms of each mutant were also determined (Fig. 2A and 

B). The root mean square deviation (RMSD) of mutant D82N and double mutant D82R/D84R 

are most similar to wt-hFGF1 showing no major jumps or significant fluctuations. RMSD 

calculations for D84R slowly increase over the course of the trajectory and reach a maximum of 

1.4 Å between the 80-90 ns time mark. This maximum for D84R is modestly higher than the 

RMSD of wt-hFGF1 suggesting an increased level of flexibility. Increased flexibility within the 

D84R structure is also observed from RMSF calculations specifically for the loop within the 

heparin-binding region around residue G129 as well as for a solvent exposed loop outside of the 

heparin-binding region around residue E95 (Fig. 2B).  

 Interestingly the RMSD calculation for mutant D82R reveals a jump up to 2 Å around the 

70 ns time mark, indicating increased flexibility compared to wt-hFGF1 (Fig. 2A). Furthermore, 

RMSF values for D82R also show increased flexibility compared to wt-hFGF1 among residues 

in the heparin-binding region (residues V109-G129). This data supports conclusions drawn from 

fluorescence and trypsin digestion experiments. RMSF calculations for mutant D82N and double 

mutant D82R/D84R both show overall reduced flexibility among several loop regions outside of 

the heparin-binding region of the protein. This data along with the RMSD measurements support 

conclusions drawn from fluorescence and trypsin digestion data that these respective mutations 

(D82N and D82R/D84R) result in a more compact protein structure. 

 Salt bridge and hydrogen bonding analysis were also completed for each hFGF1 mutant 

and wt-hFGF1. Analysis of the D82R trajectory reveals two additional salt bridges that are not 

present in wt-hFGF1 (Table 1). One salt bridge is formed between the guanidinium head group 

of R82 and the side chain carboxyl group of D84, which are both on the same loop region 

between beta strand 6 and 7, and therefore this salt bridge is not an interdomain stabilizing 
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interaction (Fig. 2A, Table 1). The other salt bridge occurs between the side chain carboxyl 

group of D84 and the guanidinium head group of heparin-binding residue, R133. However, 

despite the fact that this is an interdomain interaction, it does not increase the stability of the 

protein in the presence of heat or the chemical denaturant, urea (Fig. 7A, B, Table 2). Similarly, 

results of the molecular dynamics simulation of the D84R mutant reveal salt bridge formation 

between the guanidinium head group of R84 and the side chain carboxyl group of D82 (Table 1). 

Interestingly, these interactions are not present in wt-hFGF1 probably due to repulsion between 

the closely placed negative charges of D82 and D84.  

The molecular dynamics simulation of the D82N mutant indicates that hydrogen bonding 

occurs between the backbone amide group of N82 and the backbone carbonyl group of L86 but 

there is also additional hydrogen bonding between the side chain carbonyl group of N82 and the 

backbone amino group of L86 (See supplementary movie). Analysis of salt-bridge formations for 

the D82N mutant reveals an assessment identical to that of wt-hFGF1 (Table 1). Double charge 

reversal at combined positions 82 and 84 does not induce the hydrogen bonding that is observed 

with individual charge reversal mutations (See supplementary movie). In fact, analysis of the 

results of molecular dynamics simulation of the double mutant, D82R/D84R reveal that the 

guanidinium head groups of R82 and R84 are oriented away from each other. The side chain of 

R84 appears moderately flexible while R82 is primarily locked into a rigid position due to 

stabilizing hydrogen bonds formed between the guanindinium head group and the carboxyl side 

chain of E96 located in the neighboring loop region. Analysis of salt bridge formations for 

D82R/D84R reveals no significant difference compared to wt-hFGF1 except for the addition of a 

stable bond between E118 and K119 within the heparin-binding region. Altogether, the results of 

molecular simulations indicate that the introduction of positive charge at position 82 increases 
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the flexibility of the protein structure among loops in the heparin-binding region, and does not 

induce any stabilizing interdomain salt-bridges.  

 

Figure 2: Panel-A Interdomain distances of the Cα backbone atoms as a function of time for 
each simulation. Panel-B overlay of RMSF values for each designed hFGF1 mutant with wt-
hFGF1. 

Table 1. Salt bridge analysis for each designed hFGF1 mutant and wt-hFGF1.  

 Stable Salt Bridges 

wt-hFGF1 D46-
R38 

D53-
R38 

  E67-
K114 

 E95-
K115 

E105-
K142 

 

D82R D46-
R38 

D53-
R38 

D84-
R82 

D84-
R133 

E67-
K114 

 E95-
K115 

E105-
K142 

 

D84R D46-
R38 

D53-
R38 

D82-
R84 

 E67-
K114 

 E95-
K115 

 E118-
K119 

D82N D46-
R38 

D53-
R38 

  E67-
K114 

 E95-
K115 

E105-
K142 

 

D84R/D82R D46-
R38 

D53-
R38 

  E67-
K114 

E95-
K114 

 E105-
K142 

E118-
K119 

B A 
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D82R mutation causes a subtle change in the tertiary structure   

Wt-hFGF1 and the designed mutant proteins were purified to homogeneity (Fig. S2, 

Appendix 2). D82R, D82N, and D84R mutants exhibit strong binding affinity to heparin and all 

of them are found to elute in 1500 mM NaCl from the heparin sepharose affinity column. The 

double mutant, D82RD84R, predominantly eluted in 800 mM NaCl along with some minor 

bacterial protein impurities and this mutant was subsequently passed over heparin sepharose 

again to obtain the pure protein (Fig. S2, Appendix 2). The yields of the purified wt-hFGF1 and 

single mutant proteins were in the range of 10 mg – 20 mg per liter of bacterial culture. 

D82RD84R was obtained at reduced yields of 3-5 mg per liter of bacterial culture.  

Far UV circular dichroism is a useful technique to obtain reliable information on the 

secondary structure of proteins [35]. Comparison of the far-UV CD spectra of the hFGF1 

mutants (D82R, D82N, and D84R) reveals that they superimpose well with wt-hFGF1 

suggesting that the backbone of the protein is folded into the native beta-barrel structure and is 

not significantly perturbed due to substitution of the negative charge on D82 or D84 with 

positive charge (Fig. 3). The far-UV CD spectra of the double mutant D82RD84R, with and 

without heparin, yields the least pronounced positive band from 240-220nm as the wt-hFGF1 

does, however the overall spectra of the mutant spectrum indicates that beta barrel structure is 

not significantly perturbed (Fig. 3).  
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Figure 3: The Far-UV CD spectra of wt-hFGF1 and the engineered charge reversal mutations in 
the absence (Panel-A) and presence of heparin (Panel-B). wt-hFGF1 (Δ), D84R ( ), D82R (!), 
D82N (�), D82R/D84R (x).  

hFGF-1 contains a lone tryptophan residue at position 121. The intrinsic fluorescence of 

the lone tryptophan is significantly quenched by the lysine and proline residues, which are 

located at close spatial proximity to the indole ring [36]. As a consequence, wt-hFGF-1 in its 

native conformation shows an emission maximum at 308 nm corresponding to the eight tyrosine 

residues in the protein. However, the quenching effects on the indole ring of Trp121 are 

completely relieved in the denatured state(s) of the protein and wt-hFGF1 shows the 

characteristic tryptophan emission peak at 350 nm. Intrinsic fluorescence spectra of wt-hFGF1 

and all hFGF1 mutants in the presence and absence of heparin show a maximum emission at 308 

nm, a characteristic feature of the native conformation of the protein (Fig. 4). However, the 

fluorescence spectra of D82R and the double mutant (D82RD84R) show a small hump at 350 nm 

in addition to the emission maximum at 308 nm. These spectral features suggest that a subtle 

perturbation of the tertiary structure occurs due to these mutations. 

A B 
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Figure 4: Intrinsic fluorescence spectra of wt-hFGF1 and the charge-reversal mutants in the 
absence (Panel-A) and in the presence (Panel-B) of HEPARIN. wt-hFGF1 (Δ), D84R ( ), 
D82R (!), D82N (�), D82R/D84R (x). Inset figure in panel A depicts the fluorescence spectra 
of native (N) and denatured (D) wt-hFGF1.   

ANS is a non-polar dye that is commonly used to assess the presence of solvent-exposed 

hydrophobic surface(s) in proteins. ANS, when bound to wt-hFGF1, and the designed mutants, 

shows an emission maximum of 520 nm. Comparison of the ANS saturation curves reveals that 

the relative fluorescence intensity for D84R and D82N mutants is lower than that of wt-hFGF1 

(Fig. 5A,B). These results indicate that the charge-reversal at position 84, and the loss of charge 

mutation at position 82 (D82N) only induce marginal changes in the solvent-exposed 

hydrophobic surface(s) of the protein. The observed decrease in ANS emission intensity suggests 

that the structure of the D84R mutant of hFGF1 appears to become more compact upon binding 

to heparin and consequently the solvent accessibility of the non-polar surface(s) in the protein 

decreases (Fig. 5). Interestingly, the emission intensity of ANS upon binding to the D82R and 

D82RD84R mutants, both in the presence and absence of heparin, is about two-fold higher than 

that observed for the wild type under similar conditions (Figs. 5A,B). These results indicate that 

charge-reversal at position 82 causes a subtle conformational change resulting in the increased 

solvent-exposure of non-polar surfaces in the protein. These observations pertaining to the 

N D 
A B 
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tertiary structure(s) of the D82R and D82RD84R mutants corroborate well with the conclusions 

drawn from the intrinsic tryptophan fluorescence data. 

 

Figure 5: ANS binding curves of the wild type and the charge reversal mutations of hFGF1 in 
the absence (Panel-A) and presence (Panel-B) of HEPARIN. Wt-hFGF1 (Δ), D84R ( ), D82R 
(!), D82N (�), D82R/D84R (x).  

Limited trypsin digestion is a commonly used method for probing the flexibility of 

proteins and provides low-resolution information of structural changes (Fig. 6 and Fig. S3, 

Appendix 2). D82R is quickly degraded by trypsin (85% of the protein is digested in 10 

minutes). After 40 minutes of incubation with trypsin at 37°C, the 16 kDa band corresponding to 

D82R is completely digested. In comparison, at the 40-minute time point, wt-hFGF1, D82N and 

D84R are digested to 15%, 30% and 50%, respectively. Further, D82RD84R mutant of hFGF1 is 

digested to 25% after 40 minutes of exposure to trypsin (Fig. 6A). The results of the limited 

trypsin digestion experiments suggest that the backbone of the D82R mutant, in the absence of 

heparin, is significantly more flexible than wt-hFGF1 and the D84R mutant. The observed 

increase in trypsin susceptibility of the D82R mutant is unlikely due to incorporation of an 

additional trypsin cleavage site in the protein because both D84R and the double mutant 

(D82RD84R) exhibit lower susceptibility to trypsin action despite containing additional trypsin 

A B 
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cleavage site(s). In the presence of heparin, D82R, D84R, and D82RD84R mutants are strongly 

resistant to limited trypsin digestion (Fig. 6B). Even after 40 minutes exposure to trypsin, these 

three mutants remain completely undigested. These results suggest that the charge reversal 

indeed increases the heparin binding of hFGF1. The observations regarding the flexibility of the 

hFGF1 mutants, particularly the increase in structural flexibility of the D82R mutant, are 

consistent with the conclusions drawn from both the intrinsic fluorescence and ANS binding 

data. 

 

Figure 6: Densitometric analysis of the section of the SDS PAGE gel depicting the resistance of 
wild type and charge reversal mutants of hFGF1 to limited trypsin digestion in the absence 
(Panel-A) and presence (Panel-B) of heparin. Wt-hFGF1 (Δ), D84R ( ), D82R (!), D82N (�), 
D82R/D84R (x).  

 

Heparin effectively increases stability of charge-reversal hFGF1 mutants  

Thermal denaturation of hFGF1 was monitored by far-UV CD and the Tm values 

[temperature wherein which 50% of the protein population exists in the denatured state(s)] were 

calculated from the thermal unfolding curves (Fig. 7A, Table 2). The thermal stability data reveal 

A B 
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that, in the absence of heparin, both D82R (Tm = 45°C ± 0.59) and D84R (Tm = 42°C ± 0.96) are 

modestly less stable than wt-hFGF1 (Tm = 48°C ± 0.72) (Table 1). In contrast, the stability of 

D82N (Tm = 49°C ± 0.72) remains similar to that of wt-hFGF1. Interestingly, D82RD84R (Tm = 

53°C ± 0.24) is about 4°C more stable than wt-hFGF1 (Table 2). The thermal stability of wt-

hFGF1 and the designed charge-reversal mutants effectively increases in the presence of heparin.  

The thermal stability of heparin-bound D84R (Tm = 72°C ± 0.51) is approximately 3°C higher 

than that of wt-hFGF1 (Tm = 69°C ± 0.68) (Table 2). The total change in thermal stability for 

D84R due to heparin binding (Δ Tm = 30°C) is 10°C higher than that observed for wt-hFGF1 (Δ 

Tm  = 20°C) in the presence of heparin. The Tm for the D82R-heparin binary complex is about 

5°C lower than the melting temperature for wt-hFGF1. The total increase in thermal stability of 

D82R (Δ Tm  = 19°C) upon binding to heparin is in the similar range as observed for wt-hFGF1 

(Table 2). Furthermore, the large increase in thermal stability observed for D84R agrees well 

with ANS binding and limited trypsin digestion data demonstrating that heparin binding causes a 

conformational change in D84R that renders the protein molecule more compact and resistant to 

trypsin cleavage.  

The Tm values for D82N and D82RD84R bound to heparin are 2°C to 3°C lower than the 

Tm measured for wt-hFGF1 in the presence of heparin. Overall, the Δ Tm for D82N (Δ Tm  = 

18°C ± 0.72) is very similar to the Δ Tm measured for wt-hFGF1 and the Δ Tm for D82RD84R (Δ 

Tm  = 13°C ± 0.72) (Table 2) is approximately 8 degrees lower than wt-hFGF1. The diminished 

Δ Tm for D82RD84R suggests that heparin binding does not increase its thermal stability as 

effectively as it does for both the single mutants (D82R and D84R). The discrepancy in the Δ Tm 

value for the double mutant may be due to possible repulsion generated between the 
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guanindinium head groups at positions 82 and 84. The molecular dynamic simulation data of the 

double mutant suggested that the R82 and R84 side chains are oriented away from each other to 

minimize charge-charge repulsion. The altered orientation of the side chains may induce a 

conformational change that diminishes any contact between heparin and the side chains at 

position 82 and 84. This inference, pertaining to the D82RD84R mutant, is in good agreement 

with the conclusions drawn from the far-UV CD, intrinsic fluorescence, and the ANS saturation 

data, which indicate that introduction of two positive charges at positions 82 and 84 perturb the 

secondary and tertiary structure of the protein and consequently render the hydrophobic 

surface(s) in the protein to be more solvent-exposed.     

The stability of wt-hFGF1 and each hFGF1 mutant was examined using urea-induced 

equilibrium unfolding (Fig 7B, Table 2). In the absence of heparin, the Cm values [the 

concentration of urea at which 50% of the protein population is denatured] for both D82R (Cm = 

1.3M ± 0.14) and D84R (Cm = 1.6M ± 0.2) are similar to wt-hFGF1 (Cm = 1.8M ± 0.11) (Table 

2), which indicates that these charge-reversal mutations do not significantly alter the stability of 

the protein. On the other hand, the Cm of D82N (Cm = 2.2M ± 0.08) (Table 2) was observed to be 

about 0.4 M higher than that of wt-hFGF1. This indicates that loss of charge at position 82 

slightly increases the stability of the protein in the presence of urea. Once again in the presence 

of heparin, D82R (Cm = 4.4M ± 0.02) and D84R (Cm = 4.3M ± 0.08) are as stable as wt-hFGF1 

(Cm = 4.2M ± 0.09) (Table 2). These results confirm that the charge reversals at positions 82 and 

84 do not significantly alter the stability of the protein. Furthermore, the stability (Cm = 4.2M ± 

0.04) conferred by the binding of heparin to the D82N mutant is similar to that observed for wt-

hFGF1 bound to heparin. Overall, the Δ Tm and Δ Cm values determined for D82R, D84R, and 
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D82N suggest that heparin effectively stabilizes these mutants to the same degree as that of wt-

hFGF1. 

 

Figure 7: Thermal (Panel-A) and urea-induced (Panel-B) equilibrium unfolding curves of wild 
type and the designed mutants of hFGF1 in the presence and absence of HEPARIN. The 
unfolding curves were monitored by changes in the ratio of the intrinsic fluorescence intensity at 
308 nm/350 nm. Absence of heparin: wt-hFGF1 (Δ), D84R ( ), D82R (!), D82N (�), 
D82R/D84R (x). Presence of heparin: wt-hFGF1 ( ), D84R ( ), D82R ( ), D82R/D84R ( - ).	

 

Table 2. Thermodynamic stability of wt-hFGF1 and the designed mutants 

 Tm °C  CM (M) 

Protein No heparin With heparin Δ Tm No heparin With heparin Δ CM 

Wt-hFGF1 48.5 (±0.72) 68.7 (±0.68) 20.2 1.8 (±0.11) 4.2 (±0.09) 2.4 

D82R 45.4 (±0.59) 64.3 (±1.40) 18.9 1.3 (±0.14) 4.4 (±0.02) 2.8 

D84R 42 (±0.96) 71.6 (±0.51) 29.6 1.62 (±0.20) 4.3 (±0.08) 2.68 

D82N 49.3 (±0.72) 67.0 (±1.12) 17.7 2.24 (±0.08) 4.2 (±0.04) 1.96 

D82RD84R 52.6 (±0.24) 65.9 (±0.60) 13.3    
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Increase in heparin-binding affinity of hFGF1 mutants  

 ITC is an extremely valuable tool for measuring the binding between two interacting 

molecules. The Kd value measured here for the interaction between heparin and wt-hFGF1 (Kd = 

1.7µM) is comparable to the one reported by Brown and coworkers (Fig. 8) [13]. Identical Kd 

values are observed for the interaction of heparin with hFGF1 mutants D84R and D82N (Kd = 

1.28µM), and this value is not significantly different from that obtained for wt-hFGF1 (Fig. S4, 

Appendix 2). Interestingly, the Kd value for the interaction of heparin with hFGF1 mutant, 

D82R, (Kd = 0.17µM) is approximately one log-fold lower than that exhibited by wt-hFGF1 

(Fig. 8). This is expected because introduction of positive charge on the protein surface in 

proximity to the heparin-binding pocket can be predicted to increase the protein affinity to bind 

to heparin. The higher binding affinity of the D82R mutant for heparin does not appear to result 

in a concomitant increase in the thermodynamic stability of the mutant as evidenced by the 

results of the equilibrium unfolding experiments (Table 2). This may be attributed to the inherent 

lower stability of the D82R mutant. Comparison of the ΔTm values (Table 2) indicate that 

heparin is able to stabilize the D82R mutant and the wild type protein to similar extent(s). The Kd 

values for both D84R and D82N indicate only a modest increase in affinity for heparin compared 

to wt-hFGF1 (Fig. 8). In contrast, the heparin binding affinity for the double mutant D82RD84R 

is reduced (Kd = 3µM) compared to wt-hFGF1 indicating that the behavior of the individual 

charge reversal mutants is not additive.  
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Figure 8: Isothermograms representing the titration of wild type and the designed mutants with 
heparin. The upper panels represent the raw heat changes that accompany the binding of the 
protein to heparin. The lower panels represent the best-fit of the binding curve(s) to a one-site 
binding model. All ITC data have been corrected for heats of dilution.  

 ITC measurements can also provide valuable information on the thermodynamics of 

interactions between molecules. The interactions between heparin and hFGF1 that contribute to 

the enthalpy term include electrostatic interactions, van der Waals forces, and hydrogen bonding. 

Interactions contributing to the entropic value include conformational changes as well as 

solvation changes accompanying hFGF1- heparin interaction [13]. For all hFGF1 mutations, the 

enthalpy value is negative, which indicates favorable binding of hFGF1 to heparin (Table 3). The 

change in enthalpy associated with D82R-heparin binding (ΔH = -1.5 ± 2.4 kcal mol-1) is 

modestly lower than that observed for the wt-hFGF1-heparin binding (ΔH = -2.14 ± 0.4 kcal 

mol-1) (Table 3). The change in enthalpy value characterizing the D84R-heparin interaction (ΔH 

= -1.6 ± 0.32 kcal mol-1) is also modestly lower than that observed for the wt-hFGF1-heparin 

interaction, which suggests the degree of contact between this mutant and heparin is marginally 

reduced.  
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The change in entropy value for the D82R-heparin interaction (ΔS = -0.5 kcal mol-1) is 

lower than that for wt-hFGF1-heparin interaction (ΔS = -1.1 kcal mol-1) (Table 3), but is still 

favorable to promote interaction(s). The lower change in entropy value is likely due to the 

desolvation occurring at the hFGF1-heparin binding interface. The change in enthalpy value for 

the D84R-heparin interaction (ΔH = -1.6 ± 0.32 kcal mol-1) is modestly lower than that of wt-

hFGF1-heparin binding. A lower enthalpy value for this mutant may be due to a conformational 

change, which increases compactness of the tertiary structure.   

The thermodynamic values for D82N-heparin interaction (ΔH = -2.04 ± 0.2 kcal mol-1, 

ΔS = -1 Kcal mol-1) (Table 3) closely correspond to the values determined for wt-hFGF1- 

heparin binding. Lastly, the change in enthalpy value accompanying D82RD84R-heparin 

interaction (ΔH = -4.1 ± 0.2 Kcal mol-1) is larger than that observed for the wt-hFGF1-heparin 

interaction, which appears to suggest greater degree of contact between this mutant and heparin. 

However, the change in entropy value determined for D82RD84R-heparin binding (ΔS = 0.3 

kcal mol-1) (Table 3) is unfavorable.  

The drastic increase in heparin binding affinity observed for the D82R mutant but not for 

the D82N is likely due to the presence of the additional positive charge and not due to the 

neutralization of the negative charge at this position (D82). The lack of drastic increase in 

affinity of D84R for heparin could be due to local repulsion with the closely placed R133 (PDB 

2ERM) [37]. R82 is positioned farther (12.5 Å) away from the canonical heparin-binding residue 

R133. As the side chain of R82 is positioned on the surface of the protein, the D82R mutation 

extends the range of positive charge and therefore might accommodate longer heparin chains that 

span this distance more favorably than the D84R mutant.  
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Table 3. Thermodynamics of the heparin- hFGF1 interaction 

Protein ΔH (kcal/mol) -TΔS (kcal/mol) 

wt-hFGF1 -2.14 ± 0.4 -1.1 

D82R -3.91 ± 0.1 -0.5 

D84R -1.6 ± 0.32 -0.6 

D82N -2.04 ± 0.2 -1 

D82RD84R -4.1 ± 0.2 0.3 

Charge reversal does not significantly perturb the structure of hFGF1 

 1H 15N HSQC is a versatile two-dimensional NMR experiment routinely used to obtain 

structural information at the individual amino acid level. The structure of wt-hFGF1 has been 

solved previously and the complete set of assigned resonances is available [17, 38]. The 1H-15N 

chemical shift perturbations, upon addition of heparin, were monitored based on chemical shifts 

assignments published by our group and others [17, 38]. Our results compare well with published 

assignments and therefore assignments can be considered as accurate. Superimposition of HSQC 

spectra of wt-hFGF1 and D84R mutant and the D82N mutant reveals modest chemical shift 

perturbations (Fig. S5A and Fig. S6A, Appendix 2). The calculated 1H-15N chemical shift 

perturbations indicate that, in both cases (D84R and D82N), most of the significant perturbation 

occurs in the spatial region close to the location of the mutation site (Fig. S5B and Fig. S6B). 

However, calculated chemical shift perturbations of D82R determined from the overlay of 

HSQC spectra of D82R and wt-hFGF1 reveals that the most significant perturbation occurs not 

only in residues in proximity to the site of the mutation (D84, G85, G89) but also among several 

residues in the heparin-binding region (K115, K127, K132, and G134) (Fig. 9A & B).  
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 The effect(s) of heparin on the global structure of D82R is determined from the overlay 

of the HSQC spectra of D82R in the presence and absence of HEPARIN (Fig. 10A). The 1H-15N 

chemical shift perturbation plot of D82R, in the presence and absence of HEPARIN, reveals 

significant perturbations throughout the protein sequence both in proximity to the site of the 

mutation (M81, D84, G85), and in the heparin-binding region (K126, K127, G129, S130, C131, 

R136, Q141, A143, L145) (Fig. 10B). These perturbations indicate involvement of these residues 

in the interaction with heparin.  

 The heparin binding to the D84R mutation increases the compact nature of the tertiary 

protein fold, thereby increasing the protein’s thermal stability as well as its stability in the 

presence of the denaturant, urea. However, charge reversal at position 84 does not alter the 

overall structure of the protein and only marginally increases hFGF1 affinity for heparin. On the 

other hand, charge reversal at position 82 induces a conformational change that reduces the 

compact nature of the tertiary fold and increases the protein’s flexibility without altering the 

protein’s secondary structure. However, interestingly, charge reversal at position 82 significantly 

increases hFGF1’s affinity for heparin. Loss of charge at position 82 (D82N) seems to have little 

to no effect on structure, stability, and heparin-binding affinity of hFGF1. While heparin binding 

to D82N modestly increases the compact character of the protein’s tertiary fold. However, no 

significant changes in stability and heparin-binding affinity were observed due to this mutation. 

We could not obtain a quality HSQC spectrum of the double mutant, D82RD84R due to 

aggregation of the sample during data collection. This aspect precluded us from assessing the 

change(s) caused in the structure due to the double mutation. 
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Figure 9: Panel–A, Overlay of the 1H-15N HSQC of wild type (red) and the D82R (blue) mutant 
of hFGF1. Panel-B, 1H-15N chemical shift perturbation observed due to the D82R mutation. The 
horizontal line represents the arbitrary threshold above which the 1H-15N chemical shift 
perturbation(s) was considered as significant. The 1H-15N chemical shift perturbation of 
individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]) 

                     

Figure 10: Panel –A, Overlay of the 1H-15N HSQC of D82R mutant of hFGF1 in the presence 
(blue) and absence of heparin (red). Panel-B, 1H-15N chemical shift perturbation observed due to 
the D82R mutation. The horizontal line represents the arbitrary threshold above which the 1H-
15N chemical shift perturbation(s) was considered as significant. The 1H-15N chemical shift 
perturbation of individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]). 

A 

B 

A 

B 
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Increased heparin binding affinity does not correlate with cell proliferation activity 

It is believed that heparin is critical for FGF receptor activation. In this context, increased 

heparin binding affinity of the charged reversed hFGF1 mutants D82R and D84R is expected to 

result in increased activation of the receptor. The net consequence being increased cell 

proliferation activity. Cell proliferation study to optimize the heparin: protein ratio was 

performed on heparinase treated NIH 3T3 cells by varying the concentration of heparin with a 

fixed concentration of wt-hFGF1 (Fig. S7, Appendix 2). Optimum cell proliferation was 

achieved with a heparin: protein ratio of 10:1. Further cell proliferation experiments were then 

carried out for wt-hFGF1 and each designed hFGF1 mutant using a 10:1 ratio of heparin: protein.  

Panel A of Fig. 11 indicates that at the highest protein concentration (50 ng/mL), the 

level of wt-hFGF1 is not significantly higher than mutant D84R or double mutant D82RD84R, 

but is does display a statically higher level of activity compared to single mutants D82R and 

D82N. Wt-hFGF1 also displays statistically higher cell proliferation activity than D82R at a 

protein concentration of 10 ng/mL. (No significant statistical differences are observed between 

wt-hFGF1 and other hFGF1 mutants at protein concentrations below 50 ng/mL) (Fig. 11 Panel-

A, Supplemental Table 1, Appendix 2). Overall, the cell proliferation data indicate that both 

mutants (D82R and D84R), despite their increased heparin binding affinity, show similar levels 

of cell proliferation activity as the wt-hFGF1 in the presence of exogenous heparin (Fig. 11A, 

Supplemental Table 1, Appendix 2). In panel B of Fig. 11, in the absence of exogenous heparin, 

D82R and D84R are observed to have similar levels of activity as wt-hFGF1 at most all protein 

concentrations with no statistical differences. D82N and D82RD84R also display similar levels 

of activity, but D82RD84R is statistically less active than wt-hFGF1 at the highest protein 
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concentration (50 ng/mL) and D82N is statically less active than wt-hFGF1 at 2 ng/mL. Data 

produced from bioactivity experiments performed without preliminary heparinase treatment 

using the same 10:1 heparin: protein ratio yielded the same results as experiments in which 

heparinase treatment was applied. Altogether, this data again suggests that increased heparin 

binding does not result in a concomitant increase in the cell proliferation activity of hFGF1.  

The notion that heparin’s interaction with fibroblast growth factors is not essential for its 

biological activity has been well documented in the published literature. Two separate groups, 

Moscatelli and coworkers and Saksela and coworkers, observed that heparin bound human basic 

FGF (hFGF2) and free hFGF2 interact with its receptor in identical fashion [39]. In another study 

of hFGF1 mutants, changing two or all three cysteine residues in hFGF1 to serine were shown to 

have an increased physiological half life and also the biological activity of the mutant proteins 

was enhanced in a heparin independent manner compared to that of wt-hFGF1 [40]. Wong and 

coworkers also reported that substitution of K132 to glutamic acid reduces hFGF1 affinity 

towards heparin, yet they observe full receptor activation as well as early-intermediate gene 

transcription for the hFGF1 mutant [31]. In addition, several mutagenesis studies have shown 

that an increase in the thermal stability of hFGF1 confers increased mitogenic activity to the 

protein in the absence of heparin. Further, L58F and H107S hFGF1 mutations were found to 

marginally increase the thermal stability by approximately by 3°C to 7°C [18, 26].  Similarly, 

Zakrzewska et al generated several heat stable mutants of hFGF1, which exhibit significantly 

enhanced heparin-independent cell proliferation activity compared to wt-hFGF1 [4, 12, 20]. 

These studies clearly support our conclusions that an increase in heparin binding affinity, 

through extension of the heparin-binding pocket, does not translate into an increase in the cell 

proliferation activity of hFGF1. It appears that the primary roles of heparin on the cell surface 
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are: 1.) To enhance the stability of hFGF1 through electrostatic interactions with the densely 

populated positively charged residues in the heparin binding pocket and 2.) To serve as a 

reservoir to attract the growth factor molecules to the cell surface and consequently promote 

FGF-receptor interaction. The results of this study appear to clearly support earlier studies, 

which suggest that binding of heparin to hFGF1 is not mandatory for its cell proliferation 

activity.  

 

Figure 11: Panel-A, Proliferation of heparinase treated NIH 3T3 cells in the presence of wild 
type and the designed mutants of hFGF1 bound to heparin. Panel-B, Proliferation of heparinase 
treated NIH 3T3 cells in the presence of wild type and the designed mutants of hFGF1 without 
exogenous heparin. The standard errors were calculated from triplicate measurements 
(Supplemental Table 1).  
	

Conclusions 

Proteoglycans located on the cell surface help extend the half-life and modulate 

interaction of many ligands to their corresponding receptors [41]. Particularly, the interaction 

between hFGF1 and heparin has been studied extensively and overall there are two contrasting 

views that exist. Initially there has existed a general belief within literature that heparin is critical 

A B 
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for binding of hFGF1 to its receptors [14, 23]. This belief was developed from the study of 

crystal structures of heparin bound hFGF1 dimers in the presence and absence of FGFRs. From 

these structures, it is observed that the central heparin chain makes contacts with both hFGF1 

monomers and one monomer of FGFR. These studies claimed that these ternary complexes are 

the structural basis for the belief that heparin is essential for hFGF1 signaling and further that 

hFGF1 dimerization is essential for signaling [23, 42]. Recent studies using isothermal titration 

calorimetry indicate that the oligomerization of hFGF1 to heparin is characterized by positive 

cooperativity and that an octasaccharide heparin is the shortest length capable of mediating 

hFGF1 dimerization [13]. However, studies from 2002 and 2005 of monomeric hFGF1 bound to 

the heparin mimic, sucrose octasulfate (SOS), as well as to a synthetic heparin-like 

hexasaccharide, have found hFGF1 fully capable of FGFR activation and cell proliferation [43, 

44]. Both studies suggest that oligomerization of the protein is not mandatory for hFGF1 

signaling. In this study we were able to show that enhancing the heparin binding property of 

growth factor hFGF1 through site-directed mutagenesis did not increase the mitogenic activity. 

This supports the assertion that hFGF1-FGFR interaction for activation of downstream signaling 

cascades does not critically depend on the binding of either ligand or receptor to the 

proteoglycan.  

Materials and Methods 

Materials: The Quikchange II XL mutagenesis kit was from Agilent and the DNA plasmid 

isolation kit was from Qiagen Inc., USA. DH5α and BL-21(DE3) competent cells were obtained 

from Novagen Inc., USA. Lysogeny broth is a product of EMD Millipore, USA. HEPARIN 

sepharose resin is from GE Healthcare, USA. Buffer components (Na2HPO4, NaH2PO4, NaCl, and 

(NH4)SO4) were acquired from VWR Scientific., USA. Low molecular weight (~3000 Da) 
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heparin sodium salt was obtained from Sigma and MP Biomedicals LLC. NIH 3T3 cells were 

obtained from ATCC and all the cell culture reagents including, DMEM media, fetal bovine 

serum (FBS) and penicillin streptomycin were purchased from Thermo Fisher Scientific 

(Waltham, MA). All measurements of the spatial distance between residues within hFGF1 were 

made using Pymol viewing software and were measured as the distance between side chain 

functional groups (carboxyl groups for D82 and D84, guanidinium group for R133, R82, and 

R84).  

Molecular Dynamic Simulations: All mutations were created in Pymol viewing system using 

the PDB structure 1RG8 [37]. Protein structures were minimized and then solvated with a 

margin of 10 Å between the protein and the border of the solvent box. The solvent box was 

neutralized with NaCl at a working concentration of 0.150 M. While hydrogen atoms were kept 

rigid, the protein backbone, side chains, and solvent molecules/ions were relaxed to prepare the 

system for equilibration, which was performed in the NPT ensemble utilizing NAMD 2.9 

molecular dynamics code and the CHARMM36 force field. First, side chains were minimized for 

10,000 steps (each step being 1fs) while the backbone was held rigid in the absence of solvent 

molecules. Next, with all protein atoms fixed, water molecules were relaxed around the protein 

over the course of 1,500 minimization steps followed by 50 ps of dynamics. A final relaxation 

step was implemented to relax the solvent molecules around the protein harmonic constraints 

using a force constant of 1 kcal/(mol Å2). The last operation was the incremental increase of 

temperature (10 K per 2 ps) to a final temperature of 300 K. Following the temperature increase, 

the structure was allowed to freely move for 250 ps. Langevin dynamics with a damping 

coefficient of 1 ps-1 was used to sustain a temperature of 300 K, and Langevin piston method 

was used to sustain a pressure of 1 atm with a period of 100 fs and a decay time of 50 fs. Long-

range electrostatic interactions were determined using particle mesh Ewald method as well as 
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periodic boundary conditions and a switching function was applied to cut both electrostatic and 

Van der Waals interactions beyond 12 Å. 100 ns simulations with a time step of 2 fs were 

performed. Simulations were visualized and hydrogen bonding of the mutated residue was traced 

in VMD.  

Construction and purification of hFGF1 mutants: A truncated form of hFGF1 (residues, 15-

154) was cloned into pET-20b bacterial expression vector was used as a template for site-

directed mutagenesis. Primers were designed using an Agilent primer design program and 

ordered from IDT DNA Inc. Site-directed mutagenesis (SDM) was performed using a 

QuikChange II XL kit followed by polymerase chain reaction (PCR) as per the protocol provided 

by the vendor. The plasmid was then transformed into DH5α competent cells. After obtaining 

confirmation of the plasmid sequences, each mutant protein was overexpressed in BL-21(DE3) 

Escherichia coli cells cultured in lysogeny broth (LB) at 37°C with agitation of 250 rpm. 

Overexpressed cells were lysed using ultrasonication (with ~15 watts output power) and the 

desired cell lysate was separated from the cell debris using ultra centrifugation at 19,000 rpm. 

hFGF1 mutants were then purified on a heparin Sepharose column using a stepwise salt gradient 

in 10mM sodium phosphate buffer containing 25mM (NH4)2SO4  pH 7.2 [4, 12, 20]. The purity 

of the wt-hFGF1 and the mutant hFGF1 proteins were checked by 15% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using a prestained protein molecular weight 

ladder of range 7 kDa-175 kDa. Protein bands were visualized by staining the gels with 

coomassie brilliant blue. 

Isothermal Titration Calorimetry: The heparin binding affinity of wt-hFGF1 and each mutant 

were measured using isothermal titration calorimetry (ITC). Protein samples were prepared with 
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10 mM sodium phosphate buffer containing 100 mM NaCl and 25 mM (NH4)2SO4 pH 7.2. All 

samples were degassed prior to loading. A 1:10 ratio of protein to ligand (50 µM protein: 500 

µM heparin) was applied on a MicroCal iTC200 (Malvern Inc.) in which heparin was titrated 

into hFGF1 samples. The average molecular mass of heparin used is approximately ~3000 Da, 

which corresponds to a degree of polymerization anywhere from 8 to 12 saccharides [32]. For 

each experiment, a series of 30 titrations were performed at 25°C with a stir speed of 1000 rpm. 

The data for wt-hFGF1 and the mutants were best-fit to one set of sites and any excess heats of 

dilution given from heparin were appropriately subtracted out. The binding stoichiometry 

defined as the maximal number of heparins bound to a hFGF1 molecule can be determined from 

the inflection point of the titration plot [13]. 

Fluorescence Spectroscopy and 8-Anilino-1-napthalenesulfonic acid (ANS) binding: All 

intrinsic and extrinsic fluorescence measurements were performed on a Hitachi F-2500 

spectrophotometer at 25°C using a slit-width of 2.5 nm and a 10mm quartz cuvette. Intrinsic 

fluorescence experiments were performed with protein concentration of 0.1mg/mL in a 10mM 

sodium phosphate buffer containing 100 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2). hFGF1 

samples were excited at a wavelength of 280 nm and the emission spectra was recorded from 300 

nm to 450 nm. ANS binding assays were performed using a protein concentration of 15µM. 

Experiments in the presence of heparin were performed at a heparin to protein ration of 10:1. 

Stock ANS was made such that 1 µL titrations into protein sample would increase ANS 

concentration by 20 µM increments. Fluorescence measurements were made between each 

titration until saturation was reached. Samples were excited at 380 nm and emission was 

measured at 520 nm.  
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Circular Dichroism Spectroscopy: Far-UV circular dichroism (Far-UV CD) experiments were 

performed using a protein concentration of 0.5µg/µL in 10 mM sodium phosphate buffer 

containing 10 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2) on a Jasco-1500 spectrophotometer at 

25°C. Experiments performed in the presence of heparin were completed at a heparin to protein 

ratio of 10:1. For analysis of samples in the presence of heparin, the ligand was added in 10-

fold’s molar excess of the protein to ensure complete saturation of binding. Necessary 

background corrections were made and the data was subjected to a smoothing function via 

application of the Savitzky-Golay algorithm.  

Equilibrium unfolding: Thermal and chemical unfolding of hFGF1 mutants were performed on 

a Jasco-1500 spectrophotometer through which intrinsic fluorescence and far-UV CD 

measurements can be made simultaneously. Equilibrium unfolding experiments were performed 

using a protein concentration of 0.5 mg/mL in 10mM sodium phosphate buffer containing 10 

mM NaCl and 25 mM (NH4)2SO4 at pH 7.2. Experiments including heparin were performed at a 

heparin to protein ratio of 10:1. Far UV CD data was acquired using a 1 mm quartz cuvette. 

Spectra were collected every 5 degrees from 20-80°C. Molar ellipticity values were recorded at 

228 nm and the fraction unfolded was plotted as a function of temperature. The denaturation 

temperature (Tm) was determined as the temperature at which 50% of the protein population was 

denatured.  

Urea-induced equilibrium unfolding experiments were conducted at a protein 

concentration of ~0.05mg/mL. Urea was titrated in consistent volumes into the sample up to a 

concentration of 6 M. Protein unfolding was monitored by both CD and fluorescence and the 

fraction unfolded was determined using molar ellipticity values at 228nm and the ratio of the 

tyrosine and tryptophan fluorescence (308/350nm) respectively.  
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Limited Trypsin Digestion: Limited trypsin digestion experiments were performed in the 

presence and absence of heparin. The initial reaction mixture included 500 µg of protein and 5 

µg trypsin in 10 mM sodium phosphate buffer containing 100 mM NaCl, and 25 mM (NH4)2SO4 

at pH 7.2. Experiments performed in the presence of heparin were completed with a heparin to 

protein ratio of 10:1. A second identical sample was prepared with the addition of exogenous 

heparin in ten times molar excess the protein concentration to ensure saturation of the protein. 

Trypsin digestion was carried out at 37 °C and a portion of the reaction mixture was removed, at 

specified time intervals, and the reaction was arrested with the addition of 100% trichloroacetic 

acid. The reaction products were analyzed by 15% SDS-PAGE and the gels were stained using 

Coomassie Brilliant Blue (Sigma Aldrich). The percentage of proteolytic digestion was estimated 

from the band intensity, on the SDS PAGE gel, using UN-SCAN it densiometric software. 

Intensity of hFGF1 samples not subjected to proteolytic digestion was used as the control 

representing 100% protection from enzymatic degradation. 

Nuclear Magnetic Spectroscopy: Heteronuclear single quantum coherence (HSQC) 

spectroscopy was performed on a Bruker 500 MHz NMR equipped with cryoprobe. The protein 

samples were isotopically labeled with 15N as a result of expression in M9 minimal media 

containing 15NH4Cl. All NMR experiments were acquired at 25°C using a protein concentration 

of 300 µM using 2K x 256 data points. Protein samples were prepared in 90% H2O 10% D2O 

solution containing 10 mM sodium phosphate buffer containing100 mM NaCl and 25 mM 

(NH4)2SO4 (pH 7.2). The total chemical shift perturbation per residue (Δδtotal) was calculated 

using the following equation : √ [ (2ΔδNH)2 + (ΔδN)2]. All NMR data was analyzed using Sparky 

3.114 software [37]. 1H-15N chemical shift perturbation at the residue level, caused due to 

binding of heparin, were carefully tracked by acquiring a series of 1H-15N HSQC spectra at 
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different heparin to protein ratio’s. Despite our efforts, we could not unambiguously follow the 

1H-15N chemical shift perturbation of few residues and these residues were not considered in the 

final 1H-15N chemical shift perturbation data presented. 

Cell proliferation assay: 3T3 fibroblast cells obtained from ATCC (Manassas, VA) were 

cultured in complete media consisting of DMEM supplemented with 10% FBS and 1% 

penicillin/streptomycin. Cells were grown to 80-90% confluency and were incubated overnight 

at 37 °C with 5% CO2 in serum free media before further use. Pretreatment of cells with 

heparinase was performed at a concentration of 6 units of enzyme per 10,000 cells. Cells were 

incubated with heparinase enzyme for 1 hour at 37 °C. Following incubation with heparinase, 

cells were centrifuged for 2 minutes at 6000rpm and then washed twice with hyclone buffer to 

remove any remaining trace of enzyme and returned to DMEM media with 10% FBS. The cell 

proliferation activity of hFGF1 was determined by quantifying the increase in cell number after 

the cells had been incubated with hFGF1 at varying concentrations. Starved 3T3 fibroblasts were 

collected and seeded in a 96-well plate at a seeding density of 10,000 cells/well. Cells were then 

co-incubated individually with wild type and mutant hFGF1 at concentrations of 0, 0.4, 2, 10, 

and 50 ng/mL. The cell proliferation assays were performed in the absence and presence of an 

optimized 1:10 ratio of hFGF1 : heparin. After 24 hours of incubation, 3T3 cell proliferation was 

assessed by the CellTiter-Glo (Promega, Madison, WI) cell proliferation assay. 
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Abstract 

Human fibroblast growth factor 1 (hFGF1) is a potent signaling molecule, whose role in cell 

growth, differentiation, and migration has made it an excellent candidate for wide ranging 

biomedical applications. hFGF1 is a heparin sulfate binding protein and the proteoglycan has 

been shown to stabilize hFGF1, and furthermore is considered to play a critical role in the 

growth factor–induced cell signaling. Recently, a charge-reversal mutation, R136E, in the 

heparin-binding pocket has been shown to significantly decrease the heparin binding affinity of 

hFGF1, but yet has been demonstrated to exhibit increased stability and remarkably enhanced 

cell proliferation activity. However, the structural basis for the observed changes, due to the 

R136E mutation, is not yet fully understood. In this context, here the microsecond-level 

molecular dynamics (MD) of the R136E mutation as well as the wild type hFGF1 have been 

characterized. Microsecond molecular dynamics (MD) simulations performed here show that 

wild type hFGF1 undergoes a conformational change in which a significant portion of the 

heparin-binding region (HBR) including residues K126 to Q141 entirely unfolds from the native 

protein structure. Interestingly no conformational change is observed within the mutant, R136E, 

hFGF1 MD simulation. Analysis of the all-atom MD simulations suggests that the increased 

structural stability of the mutant hFGF1 is due to several electrostatic interactions in the HBR 

between residues E136 and R133, E136 and K132, as well as E136 and K126. Additionally 

several stabilizing hydrogen bonds involving residues within the HBR (S130-N128 and K127-

N32) as well as residues throughout the protein structure (Q91-Q77, T48-D53, T75-S72) are 

unique to the mutant protein, and are also hypothesized to contribute to the increased inherent 

stability of the R136E mutant. Two-dimensional nuclear magnetic resonance (NMR) 

experiments have also identified 14 residues whose amide proton do not undergo exchange with 
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D2O in the mutant structure only, and are thus hypothesized to contribute to the robust inherent 

stability observed in equilibrium unfolding experiments. Overall the results of this study suggest 

that the increased stability of the R136E mutant structure is due to several unique electrostatic 

interactions as well as hydrogen bonds, which are not present in the wild type hFGF1.  

 

Keywords: fibroblast growth factor, molecular dynamics simulation, cross correlation map, 

stability 

Abbreviations: human fibroblast growth factor-1 (hFGF1); heteronuclear single quantum 

coherence (HSQC); hydrogen-deuterium exchange (HDX), molecular dynamics simulation 

(MDS), American Type Culture Collection (ATCC), Visual Molecular Dynamics (VMD). 
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Introduction 

hFGF1 is a member of a family of 22 growth factors whose signaling facilitate the  

regulation of key cellular responses including cell growth and proliferation, angiogenesis, and 

cell differentiation and migration [1, 2]. FGFs elicit a cellular response upon binding to their 

respective cell surface, tyrosine kinase receptors (FGFRs). hFGF1 is unique from the other 

members of the FGF family in its ability to activate all the different isoforms of FGFRs [3, 4]. 

Owing to its role in a wide range of cell signaling processes, hFGF1 has enormous potential as a 

wound-healing agent [5-8].  

Despite its important role as a signaling molecule, hFGF1 is inherently unstable and is 

known to exist in partially unfolded state(s) at physiological temperatures [9-11]. hFGF1 is a 

heparin binding protein and exhibits high binding affinity to the proteoglycan (Kd ~ 1.5 µM). 

The proteoglycan is believed to increase the in vivo stability of hFGF1 and consequently 

increase the probability of its productive interaction with the corresponding FGFR. 

Heparin/heparin sulfate (HS) binds to a cluster of positively charged residues located at the C-

terminal end (residues K126 to Q141) of hFGF1 [12, 13]. hFGF1 has been shown to be prone to 

thrombin cleavage [14]. Although hFGF1 lacks the typical thrombin recognition and cleavage 

site (-LYPRGS-), the protease has been shown to specifically cleave hFGF1 at R136 and render 

the growth factor molecule biologically inactive. This aspect significantly limits the therapeutic 

use of hFGF1 as a wound-healing agent [15].  

Recently, a charge reversal mutation in the HS-binding pocket (R136E) was reported to 

overcome the susceptibility of hFGF1 to the action of thrombin. The R136E mutation has been 

shown to significantly increase the thermal stability of the growth factor [16]. In addition, the 

susceptibility of the R136E mutant to proteases such as thrombin and trypsin, is also drastically 
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lower than wild type hFGF1 (wt-hFGF1) [16]. More importantly, the cell proliferation activity, 

due to the R136E mutation, enhanced seven-fold more than that exhibited by wt-hFGF1 [16]. 

Interestingly, despite the significant differences in the stability, resistance of proteases, and 

enhanced cell proliferation activity, the gross structure of hFGF1 was not found to be discernably 

perturbed due to the charge reversal mutation, R136E, in the HS-binding pocket. In this context, 

effort has been made in this study to understand the structural basis for the extraordinary 

properties introduced due to the R136E mutation. The results of the study indicate that the 

introduction of a negative charge, via the R136E mutation, introduced new electrostatic 

interactions and hydrogen bonds that are responsible for the increased stability and enhanced cell 

proliferation activity of hFGF1. The results of this study for the first time indicate that the 

stability and the cell proliferation activity of hFGF1 can be modulated through specific 

alterations in the HS-binding pocket.  

 

Results and Discussion 

R136E mutation effectively increases stability of hFGF1 

To assess the thermal stability of both mutant and wt-hFGF1, changes in secondary 

structure were monitored by far UV circular dichroism (CD) by observing the changes in the 

250-190 nm ellipticity. Tm, is the temperature at which 50% of the protein population is in the 

unfolded state. Analysis of the thermal stability data showed that, in the absence of HS, the 

R136E mutant (Tm = 60°C ± 0.9) was ~7 °C more stable than wt-hFGF1 (Tm = 53°C ± 0.5) (Fig. 

1A and Table 1A). In the presence of HS, the thermal stability of wt-hFGF1 (Tm = 61.5°C ± 1.5) 

and the R136E (Tm = 62.5°C ± 1.5) were mostly similar. Interestingly, the increase in thermal 

stability of wt-hFGF1 (ΔTm = 8.5°C) upon HS binding was four times larger than that observed 
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for the mutant, R136E (ΔTm = 2.5°C) (Table 1A). Additionally, as two-dimensional NMR 

experiments were performed in both H2O buffer spiked with 10% D2O as well as 100% D2O 

buffer, the denaturation of the mutant and wt-hFGF1 proteins was also monitored in D2O buffer 

to determine if the buffer alone influenced the structural stability of the protein. The thermal 

stability experiments performed in D2O buffer showed the same trend observed for experiments 

performed in H2O buffer. In the absence of HS, R136E was (Tm = 63°C ± 0.8) ~6 °C more stable 

than wt-hFGF1 (Tm = 57°C ± 0.2) (Table 1A). However, the thermal stability of the R136E (Tm = 

63°C ± 1.7) mutant did not change significantly in the presence of HS compared to wt-hFGF1 

(Tm = 64.2°C ± 1.7) (Fig. 1B and Table 1A). 

Chemical denaturant (urea) – induced equilibrium unfolding of hFGF1, in the presence 

and absence of HS, was monitored by changes in the emission intensity from 300-450 nm. Cm 

(the concentration of denaturant at which 50% of the protein population is in the unfolded state) 

value of the wt-FGF1, denatured by urea, was 1.8 M ± 0.4 (Fig. 1C). However, R136E (Cm = 2.8 

M ± 0.4, Fig. 1C and Table-1B) was significantly more resistant to urea-induced denaturation. 

As expected, the Cm value of the wt-hFGF1 (2.9 M ± 0.33) increased by 1.1 M urea in the 

presence of HS. The marked contrast for the mutant, R136E, was observed as the Cm (2.9 M ± 

0.3) value did not show any discernable change in the presence of heparin. A similar trend was 

again observed when the urea-unfolding experiments were performed in D2O (Fig. 1D & Table -

1 B). The results of the thermal and urea-induced equilibrium unfolding experiments clearly 

suggest that heparin confers significant stability to wt-hFGF1 but not to the R136E mutant.   
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Figure 1. Thermal equilibrium unfolding curves of wt-hFGF1 and the designed mutants of 
hFGF1 in the presence and absence of heparin in H2O buffer (Panel-A) and D2O buffer (Panel-
B). Urea-induced equilibrium unfolding for wt-hFGF1 and mutant, R136E, in the presence and 
absence of heparin obtained in H2O buffer (Panel-C) and D2O buffer (Panel-D). The unfolding 
curves were monitored by changes in the 228 nm ellipticity as well as the 308 nm / 350 nm 
fluorescence ratio. Absence of heparin sulfate: wt-hFGF1 (Δ), R136E ( ). Presence of heparin 
sulfate: wt-hFGF1 ( ), R136E ( ). 
 

Table 1. Thermodynamic stability of wt-hFGF1 and mutant, R136E determined from thermal 
denaturation (Panel-A) and urea denaturation (Panel-B). 
 

A. Tm °C (in H2O) Tm °C (in D2O) 

- Heparin + Heparin ΔTm - Heparin + Heparin ΔTm 

wt-hFGF1 53.5 ± 0.5 61.5 ± 1.5 8.5 57 ± 0.2 64.2 ± 1.7 7.2 

R136E 60 ± 0.9 62.5 ± 1.5 2.5 63 ± 0.8 63 ± 1.7 0 

B. Cm [M Urea] (in H2O) Cm [M Urea] (in D2O) 

- Heparin + Heparin ΔCm - Heparin + Heparin ΔCm 

wt-hFGF1 1.8 ± 0.4 2.9 ± 0.3 1.1 2.1 ± 0.29 3.3 ± 0.5 1.2 

R136E 2.8 ± 0.4 2.9 ± 0.3 0.1 3.0 ± 0.12 3.5 ± 0.4 0.5  
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R136E mutation decreases backbone amide proton exchange  

The contribution(s) of hydrogen bonding (H-bonding) toward the increased stability of 

mutant, R136E was examined by comparing the time-dependent hydrogen-deuterium exchange 

(H/D), monitored by NMR spectroscopy, of the R136E mutant and the wt-hFGF1. 2D 1H-15N 

Heteronuclear Single Quantum Coherence (1H-15N HSQC) spectra were collected, after 21 hours 

of H/D exchange in D2O. Overlay of the 1H-15N HSQC of spectra for wt-hFGF1 and mutant, 

R136E, acquired independently in H2O and D2O under similar buffer conditions (Fig. 2 A and 

B), showed a good overlap of the 1H-15N crosspeaks in both the spectra suggesting that no 

significant conformational changes are caused due to the D2O solvent. Some proteins are known 

to undergo subtle conformational changes or aggregation when they are exchanged into D2O 

solvent [17]. The degree of H/D exchange was determined as a percentage for each residue in the 

wt-hFGF1 and mutant, R136E, 1H-15N HSQC spectra. Percent exchange was calculated from the 

ratio of crosspeak intensity between the deuterium 1H-15N HSQC spectra and H2O 1H-15N HSQC 

spectra. Crosspeaks were then classified as completely exchanged (1-10%), significantly 

exchanged (10-50%), partially exchanged (50-90%), or resistant to exchange (90-100%) (Table 

2).   

Analysis of the data collected after 21 hours exchange in 100% D2O revealed that, 

compared to wt-hFGF1, R136E has 14 additional residues which were not prominently 

exchanged with deuterium (Table 2). These results suggest additional H-bonds are induced in the 

protein due to the R136E mutation. In addition, these results are consistent with those of the 

denaturation experiments. Of the residues that are resistant to exchange in R136E, eight are in 

the HBR (V123, G124, L125, K132, G134, H138 G140, Q141) (Table 2). In the wt-hFGF1 

structure, only five of the nineteen residues, which are resistant to exchange, are HBR residues 
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(V123, G124, K132, R133, Q141) (Table 2). This suggests that the stability of the HBR in the 

mutant, R136E, is increased due to the charge reversal mutation. In wt-hFGF1, ten residues in 

the HBR (K126, K127, G129, C131, G134, R136, T137, H138, Y139, G140) were found to 

completely exchange after 21 hours exposure to deuterium, while only four residues (C131, 

G134, T137, Y139) were completely exchanged in the mutant, R136E (Table 2), within this time 

period. As a larger number of residues in the HBR of the wt-hFGF1 had an increased 

susceptibility to H/D exchange, than in the mutant, R136E, this data collaborates with 

conclusions drawn from the denaturation experiments, which demonstrate an enhanced stability 

of the R136E mutant.  

In wt-hFGF1 a total of 61 residues were identified to completely participate in H/D 

exchange, meaning that no corresponding crosspeak was found after 21 hours exposure to 100% 

D2O (Table 2). Interestingly, in mutant, R136E, only 39 residues were classified as completely 

exchanged. Of these residues, 31 of them were common to the mutant, R136E, and wt-hFGF1, 

while 30 of these residues were unique to wt-hFGF1 and only 8 unique to R136E (Table 2). 

Overall, R136E contains 22 fewer residues whose backbone amide proton was completely 

exchanged with deuterium. These results suggest that R136E has additional stabilizing 

interactions, which prevent the exchange of several backbone amide protons of residues 

throughout the protein structure.   

Interestingly, (in addition to the HBR residues previously mentioned) there are 30 

specific residues, mostly outside the HBR, whose susceptibility toward H/D exchange is 

increased in the wt-hFGF1 compared to the mutant, R136E. Residues K23, K24, K26, H35, L37, 

L40, G43, D50, S52, L60, S61, V65, E67, I70, S72, E74, T83, D84, T92, A117, E118, A143, 

and D154 are all found to completely exchange in wt-hFGF1, having no visible crosspeak after 
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21 hours exposure to deuterium. However, the crosspeaks for these same residues in the mutant, 

R136E can be still observed after 21 hours exposure to deuterium, and therefore classified as 

significantly exchanged (L40, S52, E74, T83, D84, T92, E118), partially exchanged (K23, H35, 

D50, V65, A143, D154), or resistant to exchange (K24, K26, L37, G43, L60, S61, E67, I70, S72, 

A117) based on their crosspeak intensity (Table 2). Additionally, N32, D42, T48, S64, F122, 

F36, and D53 are residues outside of the HBR that were found to significantly or partially 

participate in H/D exchange in wt-hFGF1, while these same residues in the mutant, R136E, are 

not prominently exchanged with deuterium. Overall, these results indicate that the R136E 

mutation reduces the overall susceptibility of a total of 44 residues (4 in the HBR, 40 outside of 

the HBR) in hFGF1 to participate in H/D exchange, consequently stabilizing the R136E 

structure. These results correlate well with the interpretation of the denaturation experiments that 

R136E is more stable than wt-hFGF1.  
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Figure 2.  Panel-A Overlay of the labeled 1H-15N HSQC of wt-hFGF1 in 90:10 H2O:D2O buffer 
(blue) and 100% D2O buffer (red). (Panel-B) Overlay of the labeled 1H-15N HSQC of mutant, 
R136E, in 90:10 H2O:D2O buffer (blue) and 100% D2O buffer (red). 
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Table 2. Degree of H/D exchange for each residue in wt-hFGF1 and mutant, R136E. Residues in 
red are in the HBR, and residues that are underlined are more highly susceptible to H/D 
exchange in the wt-hFGF1 structure than in the mutant, R136E. 
 

Protein Complete exchange 
(0-10%) 

 

Significant 
Exchange 
(10-50%) 

Partial 
Exchange 
(50-90%) 

Resistant to 
Exchange 
(90-100%) 

wt-
hFGF1 

K23, K24, K26, L28, C30, S31, H35, 
L37, L40, G43, V45, D50, S52, Q54, 
L60, S61, A62, V65, E67, I70, S72, 
T73, E74, T75, G76, Q77, M81, T83, 
D84, Y88, T92, N94, E96, C97, E101, 
E104, H107, Y111, S113, K115, 
H116, A117, E118, K119, N120, 
K126, K127, G129, C131, G134, 
R136, T137, H138, Y139, G140, 
A143, F146, L149, S152, D154, I156 

N32, D42, T48, 
L58, S64, D82, 
R102, F122, 
N128, L145 

F36, R38, T44, 
G47, D53,  
H55, G66, G85, 
G89, F99, L100, 
W121,  L125, 
S130, V151, 
S153,  

I39, Q57, Q59, V68, Y69, 
Y78, L79, A80, L87, L98, 
N109, T110, K114, V123, 
G124, K132, R133, Q141, 
L147,  

R136E L28, C30, S31, T44, V45, Q54, A62, 
G66, T73, T75, G76, Q77, Y78, L79, 
M81, Y88, N94, E96, C97, F99, 
E101, E104, H107, Y111, S113, 
K115, H116, K119, N120, W121, 
C131, R133, T137, Y139, L145, 
F146, L149, S152, I156 

L40, G47, S52, 
L58, E74, A80, 
T83, D84, T92, 
L98, R102, E118, 
K126, E136 

K23, H35, R38, 
D50, H55, Q59, 
V65, Y69, D82, 
G85, L87, T110, 
K127, N128, 
G129, S130, 
A143, L147, 
S153, D154 

K24, K26, N32, F36, L37, 
I39, D42, G43, T48, D53, 
Q57, L60, S61, S64, E67, 
V68, I70, S72, G89, L100, 
N109, K114, A117, F122, 
V123, G124, L125, K132, 
G134, H138, G140, Q141, 
V151,   

 
Stabilizing electrostatic interactions in the HBR of mutant hFGF1 

MD simulations were run to shed light on the conclusions drawn from equilibrium 

unfolding and H/D exchange experiments, that mutation of R136 to glutamate increases the 

conformational stability of the protein. 4.8 µs MD simulations for both wt-hFGF1 and mutant 

R136E were completed using a truncated form of the hFGF1. The crystal structure (PDB code 

1RG8) used for the simulations is of hFGF1 in the absence of heparin. A movie of each 

simulation is provided in the supplementary material (supplemental movie S12 and S13, 

Appendix 3). For each trajectory, the Cα root-mean-square deviation (RMSD) was measured as 

a function of time for the entire protein as well as for the HBR (Fig. 3A). The RMSD measured 

for wt-hFGF1 protein as a whole, as well as for the internal HBR increases at the 2.4 µs time 

mark from ~1 Å to ~3 Å and from ~0.5 Å to ~4 Å respectively. On the other hand, the RMSD for 

mutant, R136E measured for the entire protein remained consistent between ~1-2 Å while the 
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RMSD for the internal HBR is maintained at ~0.5 Å. Additionally, the root-mean-square 

fluctuation (RMSF) for the Cα atoms indicates that the flexibility of the HBR in the wt-hFGF1 

(residues 126-141) is significantly increased compared to mutant, R136E (Fig. 3B). These results 

are consistent with the denaturation as well as the H/D exchange experiments as they suggest 

that the R136E mutation induces interactions amongst residues in the HBR that reduce the 

flexibility of this region, thereby increasing structural stability.  
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Figure 3. Panel-A RMSD of the backbone Cα atoms as a function of time for both the entire 
protein (Blue) and internal HBR (red) of wt-hFGF1 (top) and mutant, R136E (bottom). Panel-B 
overlay of RMSF values for mutant, R136E, (red) with wt-hFGF1 (blue). 
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 To identify unique, stabilizing intramolecular interactions within the R136E mutant, 

detailed salt bridge and H-bond analyses were performed. Salt bridges were analyzed by 

measuring the distance between negatively charged side-chain carboxylate groups of 

aspartate/glutamate residues and the positively charged, side-chain ε-amino and guanidino 

groups of lysine and arginine residues, respectively, and then plotting the changes in these 

distances against time. Substitution of R136 with glutamate resulted in the induction of a new 

salt-bridge between residues E136 and R133 in the HBR, and furthermore, consistent salt bridges 

were also observed between E136 and K132 as well as between E136 and K126 (Fig. 4A and 

4B). In addition, consistent salt-bridge interaction within the mutant, R136E simulation was 

observed between the side chain carboxyl group of residue D84 and the side chain guanidine 

group of R133 (Fig. 4C). Interestingly, the same salt bridge in wt-hFGF1 was disrupted at ~2.4 

µs, but the carboxyl group of D84 reoriented to forge a new salt-bridge with the ε-amino group 

of neighboring lysine residue, K132 (Fig. 4D).  

Several salt bridges were present out of the HBR in both the R136E mutant and the wt-

hFGF1 including, E95-K114, E95-K115, E96-K115, E63-K26, E67-K114, D46-R38, and D53-

R38 (Table-3). A unique salt-bridge was formed between D46 and K127 in wt-hFGF1 at the ~ 

2.4 µs time mark, and is therefore considered to contribute to the conformational change 

observed in wt-hFGF1 (Fig. 4E).  



	 131 

 

Figure 4. Time series of donor-acceptor distance for key salt-bridge interactions in mutant, 
R136E (Panel-A, Panel-B, and Panel-C), and wt-hFGF1 (Panel-D and Panel-E) structures. 

 

Table 3. Stable salt bridge interactions in both wt-hFGF1 and mutant, R136E.  

Stable Salt Bridges 

wt-
hFGF1 

D46-
K127 

E95-
K114 

E95-
K115 

E96-
K115 

E63-
K26 

E67-
K114 

D46-
R38 

D53
-R38 

D84-
R133/
K132 

R136E E95-
K114 

E95-
K115 

E96-
K115 

E63-
K26 

E67-
K114 

D46-
R38 

D53
-R38 

D84-
R133 

E136-
R133 

E136-
K126 

E136-
K132 

 

H-bond interactions that contribute to conformational change of wt-hFGF1 

H-bond analysis of wt-hFGF1 revealed several interactions that seem to contribute to the 

conformational change of the protein structure. To define H-bonding based on the donor-H-
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acceptor angle and donor- acceptor distance, a 30° cutoff angle and 3 Å cutoff distance is 

applied. Traces for three H-bond(s) involving residues in the HBR displayed transitions, 

beginning before the 2.4 µs time point, between the native (folded) and unfolded conformations 

of wt-hFGF1 (Fig. 5A). Particularly interesting is the interdomain H-bond between K127 and 

N32, which was disrupted at approximately 2 µs and the donor-acceptor distance was increased 

to 15 Å at 2.2 µs. The donor-acceptor distance of the main chain H-bond between K126 and 

S130, which was consistently stable up to 2 µs, was increased to 7 Å at 2.2 µs (indicating bond 

disruption), and leveled off at approximately 10 Å at 2.4 µs (Fig. 5A). Additionally, the donor-

acceptor distance of the H138-Q141 H-bond was consistent around ~2 Å and then increases to 7 

Å at 2.3 µs and increases again to 10 Å at 2.4 µs, (Fig. 5A). Similarly, the donor-acceptor 

distance of the Q141-R136 H-bond was disrupted once at approximately 2.3 µs when it increased 

to 8 Å and then a second time, at 2.4 µs, this time increasing well beyond 10 Å (Fig. 5B).  

As these H-bond transitions begin before the prominent transition at 2.4 µs, observed in 

the RMSD trace for the overall protein structure and internal HBR, we believe that the 

dissociation of these three H-bonds contribute to the unfolding of the segment of wt-hFGF1, 

which contains residues K126-Q141. Interestingly, five of the seven residues involved in these 

four H-bonds (N32, K127, K126, R136, and H138), which were disrupted throughout the wt-

hFGF1 MD simulation were also more susceptible to H/D exchange than they are in the mutant, 

R136E, as previously mentioned.  

Clear transitions were also observed in the traces of other H-bonds in wt-hFGF1 

including, Y139-N120, Y139-E104, S64-E67, and T44-D42; however, the donor-acceptor 

distances for all these bonds continued to increase beyond 2.4 µs before a final dissociation 

distance was stabilized (Fig. 5B and 5C).  Again, there is correlation between the H/D exchange 
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data and MD simulation analysis for residues S64, E67, and D42, as these three residues, whose 

H-bonds were disrupted in the wt-hFGF1 MD simulation, were all more susceptible to H/D 

exchange in wt-hFGF1 than in mutant, R136E as previously mentioned. Interestingly, one H-

bond in wt-hFGF1 between Y88 and E96 stabilized after the conformational change at 2.4 µs 

(Fig. 6B). Two H-bonds in wt-hFGF1 (S52-D50 and Y111-E101) remained consistently stable 

during the entire time span (4.8 µs) of the MD simulations (Figs. 6A and 6B). These H-bonds 

(S52-D50 and Y111-E101) were also consistently stable in the mutant, R136E, structure (Fig 7B 

and Fig. 8B). Another H-bond between the side chain carbonyl and side chain amine group of 

Q77 and Q91, located in beta-strands 6 and 7, was consistently found in the R136E mutant. 

Interestingly, this hydrogen bond was found missing in wt-hFGF1 (Fig. 7A). Additional inter-

domain and local H-bonds that were consistently stable in the R136E mutant are shown in Fig. 7 

(A and B) and Fig. 8 (A and B). However, one local H-bond between T75 and S72 was disrupted 

after 1.6 µs in the mutant, R136E MD simulation (Fig. 8B).   
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Figure 5. Time series of donor-acceptor distance for h-bonds that contribute to the 
conformational change observed in wt-hFGF1.  
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Figure 6. Time series of donor-acceptor distance for h-bonds that remain stable in wt-hFGF1 
structure. 
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Figure 7. Time series of donor-acceptor distance for h-bonds that remain stable in mutant, 
R136E, structure. 
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Mutation R136E alters inter-domain and local interactions among residue pairs near and remote 

to HBR  

Dynamical network analysis was performed to obtain and compare cross-correlation 

matrices of wild type and mutant proteins to identify pairs of residues that display different 

behavior between mutant, R136E, and wt-hFGF1 structures [18]. The absolute difference 

between the inter-residual cross-correlations between the mutant, R136E, and wt-hFGF1, 

quantifying the absolute cross-correlation change in the cross-correlation of each residue pair due 

to the R136E mutation as obtained from 4.8 µs of MD simulations is depicted in Fig. 9. This data 

highlights multiple inter-domain interactions including several residues within the HS-binding 

region that behaved differently between wt-hFGF1 and mutant, R136E systems (Fig. 9). Most 

notable were the differences in the inter-domain interactions between R133 and D84, and 

between K126 and N32, for wt-hFGF1 and mutant R136E. Each of these interactions was 

formed between a canonical HS-binding residue and a residue located in a neighboring loop 

region outside of the HBR. These differences are direct indicators that the charge reversal 

mutation R136E in the HBR is altering interactions with a neighboring domain. This conclusion 

agrees well, particularly for residue N32, with conclusions derived from H-bond analysis and 

H/D exchange data. Differences between wt-hFGF1 and mutant systems for the D84-R133 

interaction correspond with observations made from the salt bridge analysis previously 

described. A consistent interaction between D84 and R133 was observed in the mutant system, 

while in the wt-hFGF1 system, the D84-R133 interaction is disrupted and reformed as D84-K132 

(Fig. 4C and 4D).  

Additionally, differences were observed between the cross-correlations of residues C30 

and I144/L145 as well as between T110 and I144. Variance in the behavior of these inter-domain 
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interactions indicates that mutation of R136E is affecting interactions entirely outside of the 

HBR. Of further interest were the cross-correlation differences between residue pairs that are 

spatially very distant from the HBR. One such pair of residues is Q59 and E67, which are 

positioned on opposite sides of antiparallel beta strands 4 and 5, respectively (Fig. 9). Also 

highlighted, are residues F36 and T48, positioned on opposite sides of antiparallel beta strands 2 

and 3, respectively. Lastly, differences were observed between the cross-correlation of the inter-

domain interaction involving residues K26 and L58, which are positioned on antiparallel beta 

strands 1 and 4 respectively. The differences in the cross-correlations among pairs Q59-E67, F36 

and T48 as well as K26 and L58 suggest that mutation R136E alters local interactions among 

hFGF1 residues that are spatially very distant from the HBR.  
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Figure 9. Absolute inter-residual cross-correlation difference of wt-hFGF1 and mutant, R136E 
structures (

	
; see Dynamical Network Analysis in Materials and Methods). Key 

residue pairs whose behavior is different between wt-hFGF1 and mutant structures are circled in 
red and labeled. 
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Electrostatic potential maps highlighting the loop detachment within HBR of wt-hFGF1 

 Electrostatic potential maps were constructed using our initial hFGF1 model based on the 

crystal structure (PDB 1RG8). The electrostatic map of wt-hFGF1, without and with the R136E 

mutation included, shows that the negative charge disrupts the continuous region of positive 

charge in the HBR of hFGF1 (Fig. 10 A and B). Evidenced in the electrostatic potential map 

generated after MD simulations, the HBR is maintained as a concentrated region of positive 

charge for the mutant, R136E. Interestingly, the electrostatic potential map of wt-hFGF1 

following MD simulation shows the HBR is no longer visible as a pocket of concentrated 

positive charge. Instead, the flexible loop within the HBR consisting of residues G134, P135, 

R136, and T137 protrude from the region in a way that suggests loop detachment. The 

electrostatic potential maps further support the conclusions drawn from equilibrium unfolding 

and NMR experiments that charge reversal at position 136 (R136E) stabilizes the HBR of 

hFGF1.  
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Figure 10. Panel-A Representation of the electrostatic potential in the three-dimensional 
structure of wt-hFGF1 before MD simulations were performed, showing the HBR as a region of 
concentrated positive charge colored in blue. Panel-B Representation of the electrostatic 
potential of the three-dimensional structure of hFGF1 showing that mutation of R136 to 
glutamate within the region of positive charge in the HBR (PDB 1RG8). Panel-C three-
dimensional electrostatic potential map of the mutant structure after 4.8 µs of simulation, 
showing the recognizable HBR as a pocket of positive charge. Panel-D three-dimensional 
electrostatic potential map of the wt-hFGF1 structure after 4.8 µs of simulation showing no 
recognizable HBR. 
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Conclusion 

A previous study of the designed hFGF1 mutation, R136E, has revealed an increase in 

the thermal and proteolytic stability of hFGF1 accompanied by a simultaneous decrease in the 

protein’s affinity for HS [16]. Additionally, the cell proliferation activity of the R136E mutant 

was found to be about seven times higher than the wt-hFGF1 [16]. Herein, we believe that the 

enhanced activity of the mutant protein is a result of its increased structural stability. In this 

study, we have confirmed that the single charge-reversal substitution of R136 to glutamate in the 

HBR of hFGF1 increases the thermodynamic stability of the protein. We have also investigated 

the structural differences between mutant, R136E, and wt-hFGF1 at a molecular level using both 

2D NMR and microsecond-level all-atom MD simulation.   

To identify differences in the H-bonding pattern between the wt-hFGF1 and the R136E 

mutant, the degree of H/D exchange was monitored by HSQC spectroscopy. After 21 hours of 

exchange in D2O, the amide protons of 62 residues in the wt-hFGF1 are completely exchanged 

while only 48 residues are completely exchanged in the R136E mutant. Interestingly, the amide 

protons of 33 residues in the R136E mutant do not exchange with D2O as against 12 residues in 

wt-hFGF1. The increased number of key residues unique to R136E, which are resistant to H/D 

exchange leads us to believe that these residues significantly contribute to the increased 

structural stability of the R136E mutant.  

Furthermore, analysis of MD simulations for both wt-hFGF1 and the R136E mutant, 

identify critical salt-bridge interactions in the HBR of mutant R136E structure involving residue 

E136 with R133, K126, and K132. Interestingly, these salt-bridges are not present in wt-hFGF1. 

We believe that, due to their location in the HBR, these interactions are largely responsible for 

the reduction in HS-binding affinity of the R136E mutant as compared to wt-hFGF1. Lastly, 
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dynamical network analysis revealed that the single charge reversal mutation, R136E, alters local 

and inter-domain interactions throughout the protein structure. Differences in the cross-

correlation of inter-domain interactions in mutant, R136E, and wt-hFGF1 structures involving 

residues within the HBR are observed for residues R133-D84 as well as K126-N32. Correlation 

differences between mutant and wt-hFGF1 are also observed for inter-domain interactions 

completely outside of the HBR (C30-I144/L145, and T110-I144) and among residues, which are 

spatially distant from the HBR in the FGF1 beta barrel (Q59-E67, F36-T48, K26-L58). We 

conclude that these correlation differences contribute to the increased structural stability of the 

R136E mutant.   

 
Materials and Methods 
 

Materials: Quikchange II XL mutagenesis kits were supplied by Agilent, and Qiagen, USA 

supplied the DNA plasmid isolation kit. Novagen Inc., USA were the suppliers of DH5α and BL-

21(DE3) competent cells. Cell culture medium was obtained from EMD Millipore, USA. 

Heparin Sepharose resin, used for protein purification(s), was obtained from GE Healthcare, 

USA. All buffer elements were obtained from VWR Scientific Inc, USA. Sigma and MP 

Biomedicals LLC were the suppliers of low molecular weight (~3kDa) heparin sodium salt. 

American Type Culture Collection (ATCC) was the supplier of NIH 3T3 cells, and additional 

cell culture reagents such as DMEM media, fetal bovine serum (FBS) and penicillin 

streptomycin were procured from Thermo Fisher Scientific USA.  

Construction and purification of hFGF1 mutants: hFGF1 was cloned in pET-20b bacterial 

expression vector for site directed mutagenesis. Truncated FGF1, in which the first 14 amino 

terminal residues were removed, was used as template for all site-directed mutagenesis. Online 
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Agilent design software was used to create the forward and backward primers. Primers were then 

obtained from IDT DNA INC., USA. Following manufacturer instructions, QuikChange II XL 

kit(s) were used to perform site directed mutagenesis (SDM). Transformation of DH5α 

competent cells was performed following the standard heat shock method Wt-hFGF1 and the 

R136E mutant were both overexpressed in BL-21(DE3) Escherichia coli cells and cultured in 

lysogeny broth (LB) at 37°C and shaking at 250 rpm. Overexpressed cells were lysed using 

ultrasonication and the crude cell lysate was then centrifuged at 19,000 rpm to separate the 

protein(s) from the cell debris. Protein purifications of wt-hFGF1 and mutant hFGF1 were 

accomplished on a heparin Sepharose column by incrementally increasing the salt gradient in 10 

mM sodium phosphate buffer containing 25mM (NH4)2SO4 at pH 7.2 according to methods 

described previously [2, 11, 24]. The purity of FGF1 elute was confirmed by SDS-PAGE.  

 

Equilibrium unfolding of hFGF1 mutants: Equilibrium unfolding of wt-hFGF1 and mutant 

hFGF1 was accomplished on a Jasco-1500 spectropolarimeter equipped with a fluorescence 

detector. Each spectrum was an average of 3 scans using a 1 cm quartz cell. Equilibrium thermal 

unfolding experiments were conducted using a protein concentration of 0.5 mg/mL in 10 mM 

phosphate buffer containing 100 mM NaCl and 25 mM (NH4)2SO4 at pH 7.2. For experiments in 

D2O buffer, protein solution was contained in 100 mM NaCl and 25 mM (NH4)2SO4 at pH 6.5. 

For experiments performed in the presence of heparin, was present in a 1:10 protein to heparin 

ratio. Far-UV CD spectra were collected in 5 degree increments starting at 20°C and ending at 

80°C.  The fraction unfolded was calculated and plotted as a function of temperature. Tm, was 

determined as the temperature at which 50% of the protein population was denatured.  
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Urea induced equilibrium unfolding experiments were conducted at protein concentrations of 

approximately 3 µM in 10 mM phosphate buffer containing 10 mM NaCl and 25 mM (NH4)2SO4 

at pH 7.2. Urea was titrated, in identical volumes, into protein solutions up to concentrations of 6 

M. Protein unfolding was individually monitored by 228 nm ellipticity and by the 308 nm / 350 

nm emission intensity ratio. Fraction of unfolded protein population was determined from both 

sets of data and was plotted against concentration of the chemical denaturant. Cm, was 

determined as the concentration at which 50% of the protein population was denatured. 

 

Nuclear Magnetic Spectroscopy: All NMR experiments were acquired on a Bruker 700 MHz 

NMR using 2K x 256 data points. Each experiment was performed with isotopically labeled 

protein at 25°C with a minimum protein concentrations of 300 µM in 10 mM phosphate buffer 

containing 100 mM NaCl and 25 mM (NH4)2SO4 (pH 7.2). To the protein solution, 10% D2O 

was added. 1H – 15N heteronuclear single quantum coherence (HSQC) spectra were collected 

after 21 hours of run time and data was analyzed using Sparky 3.114 software [33]. For amide 

proton exchange experiments, the protein samples were concentrated to ~0.5 mM by 

ultrafiltration (Millipore). Hydrogen-deuterium exchange was initiated by a series of buffer 

exchanges using ultrafiltration (Millipore) until the sample was completely equilibrated in D2O 

solution containing 10 mM phosphate buffer as well as 100 mM NaCl and 25 mM (NH4)2SO4 

(pH 6.5). 1H – 15N HSQC spectra were collected after 21 hours of run time and data was 

analyzed using Sparky 3.114 software [33]. To calculate percentage exchange for each residue, 

crosspeak intensity was determined by the sum-over-box integration method in Sparky. The 

following equation was used to determine the final percentage exchange:  
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[Crosspeak intensity (D2O 1H – 15N HSQC) / Crosspeak intensity (H2O 1H – 15N HSQC)] x100.  Residues for 

which the crosspeak intensity in the deuterium 1H – 15N HSQC spectrum was 0-10%, 10-50%, 

50-90%, or 90-100% of the crosspeak intensity in the H2O 1H – 15N HSQC spectrum were 

classified as completely exchanged, significantly exchanged, partially exchanged, or resistant to 

exchange respectively.  

 

Electrostatic potential maps: Electrostatic potential maps were created from the hFGF1 crystal 

structure (also used for MD simulations (PDB 1RG8)) within Pymol viewing software. 

Electrostatic potential maps following MD simulations were created from the last frame of the 

MD trajectory for both wt-hFGF1 and mutant, R136E.  

 

Molecular dynamics simulation: The crystal structure of hFGF1 in the absence of heparin 

(Protein Data Bank code 1RG8) was used for the 4.8 µs simulations. To appropriately match the 

truncated form of hFGF1 used for equilibrium unfolding and NMR experiments, the first 11 

amino acids from the N-terminus were removed using Pymol software. The protonation state of 

H138 in the heparin-binding region was verified using Propka 3.0 software [25]. The structures 

were first energy-minimized for 2000 steps using the conjugate gradient algorithm and then 

solvated in a water box of 16x16x16 Å^3 with TIP3P water [26, 27]. The solvent box was 

neutralized with a set concentration of 0.1 M NaCl. The structure was then refined through a 

series of steps to get the system ready for production runs. To prepare the system for 

equilibration, the protein backbone, side chains, and solvent molecules and ions were relaxed 

while keeping the hydrogen atoms fixed. Equilibration was performed in the NPT ensemble 

using NAMD 2.9 and the CHARMM36 force field [25, 28]. First, the side chains were relaxed 
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for 10 ps, while the backbone was fixed in the absence of solvent molecules. Then, holding all 

protein atoms rigid, water molecules were relaxed throughout the system for 1,500 minimization 

steps and followed by 50 ps of dynamics. Next, the final relaxation of solvent molecules around 

the protein was performed with harmonic constraints using a 1 kcal/(mol Å2) force constant. 

Lastly, the temperature was increased in incremental steps (10 K per 2 ps) until a final 

temperature of 300 K was reached. This operation was followed by 5 ns of dynamics. The 300 K 

temperature was sustained by Langevin dynamics with a damping coefficient of 1 ps-1, and 

pressure (1 atm with a period of 100 fs and decay time of 50 fs) was sustained by the Langevin 

piston method [29]. Using particle mesh Ewald (PME) method along with periodic boundary 

conditions, long-distance electrostatic interactions were determined. Van der Waals as well as 

electrostatic interactions beyond 12 Å were cut-off with a switching function [30]. The 

production simulation time was 4.8 µs for both wild type and mutant hFGF1 that were conducted 

using Anton 2 supercomputer [31]. All MD simulation analyses were performed using VMD 1.9 

[32].  

 

 Dynamical network analysis:  

Interresidual cross-correlation matrix for each system was constructed using the Dynamical 

Network Analysis tool implemented in VMD [18]. The cross-correlation of a residue pair  and  

is defined as: 

 

where ,  is the position of Cα atom of residue  at time , and  is 

an average over all .  quantifies the linear correlation of the motion of Cα atoms of residues  
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and . Values 1.0 and -1.0 indicate strongest positive and negative correlations possible and 0.0 

indicates the complete lack of any linear correlations. If  and  are measured under two 

different simulation conditions (e.g., wild type vs mutant protein),  would quantify 

the absolute change due to the change in the condition (e.g., mutation). 
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Conclusion 
 
 The studies conducted within this project have yielded detailed and interesting results that 

provide insight on the role of particular amino acids within the heparin-binding region (proline-

135 and arginine-136) as well as outside of the heparin-binding region (aspartate-82 and 

aspartate-84) of hFGF1. These studies allude to the capacity of rationally designed site-directed 

mutagenesis to influence the inherent stability of hFGF1 and to the role of heparin within hFGF1 

signaling. Additionally these studies highlight the unique molecular interactions that engender 

the heparin-independent stability and increased biological activity of the hFGF1 mutant, R136E.  

The replacement of proline-135, with positive charge (P135K) was found to structurally 

destabilize hFGF1 by increasing the conformational flexibility of the protein backbone and the 

solvent-exposure of the hydrophobic surfaces typically buried within the protein core. This result 

is likely due to increased charge repulsion generated by the addition of a positive charge within a 

cluster of positively charged residues that constitute the heparin-binding region in the native 

conformation of wt-hFGF1. Not surprisingly, the P135K mutant demonstrated similar affinity to 

heparin as the wt-hFGF1, and the increase in thermostability of P135K in the presence of heparin 

was comparable to wt-hFGF1. Lastly, introduction of a positive charge at position 135 did not 

significantly alter the cell proliferation ability of the protein in the presence or absence of heparin 

compared to wt-hFGF1. 

 Substitution of P135 with glutamine (P135Q) did not significantly alter the structural 

stability of hFGF1, nor did it critically impact the cell proliferation activity of hFGF1. This 

mutant was measured to have a slightly higher binding affinity for the ligand, heparin, perhaps 

due to the increased conformational flexibility of the protein backbone as measured by LTD, 

which probably facilitates the most optimum interaction with heparin. However, the thermal 
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stability of the P135Q mutant was modestly less than wt-hFGF1 in both the absence and 

presence of heparin.  

Introduction of a negative charge at position 135 (P135E) was a particularly interesting 

mutation, providing insight on the role of heparin within hFGF1 signaling. Introduction of a 

negative charge at position 135 did not alter the structural integrity of the protein. However, the 

heparin-binding affinity of the P135E mutant was three times higher than that of wt-hFGF1. 

Interestingly, the cell proliferation activity of the P135E mutant in the presence of heparin was 

statistically lower than heparin-bound wt-hFGF1. Altogether, these results suggest that the 

heparin-binding affinity of hFGF1 is not positively correlated to its cell proliferation activity.  

Double mutants, P135K/R136E and P135E/R136E both exhibited reduced binding 

affinity toward heparin. Double mutant, P135K/R136E, was just as thermally stable as wt-

hFGF1 in the absence of heparin, while the inherent stability of double mutant, P135E/R136E, 

was increased compared to wt-hFGF1. In the presence of heparin, the thermal stability of neither 

double mutant was increased, which is conceivably due to the reduced heparin-binding affinity 

as determined from ITC experiments. Interestingly the cell proliferation activity of these double 

mutants was statistically higher that wt-hFGF1 at maximum protein concentrations, which 

indicates that hFGF1 is not dependent on heparin for cell signaling.  

From these mutagenesis studies, we conclude that the role of proline at position 135 is to 

help maintain structural integrity of the heparin-binding region of hFGF1. P135 seems to be a 

key modulator of the meticulous positioning and structural spacing of critical heparin-binding 

residues (R133 and R136) for optimum interaction and binding with the ligand heparin, which, 

due to the inherent instability of the wildtype protein, is essential for prolonging the 

bioavailability of wt-hFGF1.  
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The mutations performed on positions 82 and 84 are near to but outside of the heparin-

binding region of hFGF1. None of the D82 or D84 mutations significantly altered the backbone 

conformational fold of the protein. D82R seems to alter the tertiary structure of the protein such 

that the hydrophobic surfaces are significantly more solvent- exposed and the flexibility of the 

protein backbone is significantly increased. The D82R/D84R double mutant, seems to influence 

the solvent exposure of the protein’s hydrophobic surfaces as well as flexibility of the protein 

backbone in a similar manner, but to a lesser extent than the D82R mutant. Interestingly, the 

D82R mutation has a heparin-binding affinity that is increased ten-fold compared to wt-hFGF1. 

However, the thermal stability as well as the cell proliferation activity of the D82R mutant is 

modestly reduced to wt-hFGF1 in both the absence and presence of heparin. From these it can be 

concluded that the heparin-binding affinity of hFGF1 is not well correlated to its cell 

proliferation activity, and furthermore, that binding to heparin is not a mandatory prerequisite for 

hFGF1 mediated cell signaling.    

The charge reversal mutation at position 84 (D84R) does not alter the structural integrity 

of the protein, and it does not significantly alter the thermal stability of the protein in either the 

absence or presence of heparin. However, the heparin-binding affinity of the D84R mutant is 

modestly increased compared to wt-hFGF1, as expected due to an extension of the heparin-

binding pocket. Furthermore, despite an increase in the heparin-binding affinity, the D84R 

mutant was not any more active towards cell proliferation in the presence of exogenous heparin 

than wt-hFGF1. Again, this suggests that heparin-binding affinity is not well correlated to the 

cell proliferation activity of hFGF1. 

Substitution of aspartate at position 82 with asparagine (D82N) did not significantly 

influence the structural stability or the thermal stability of hFGF1. It did modestly increase the 
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heparin-binding affinity of the protein as compared to wt-hFGF1. However, the cell proliferation 

activity of the D82N mutant in the presence of exogenous heparin was reduced (at the highest 

protein concentration used) compared to wt-hFGF1, and overall, the bioactivity of D82N was no 

different from wt-hFGF1. These results support the conclusion once again that heparin-binding 

affinity is not well correlated to the cell proliferation activity of hFGF1. 

Lastly, as previously mentioned, the double charge reversal mutant, D82R/D84R, does 

modestly alter the structural stability of hFGF1, due to the presence of the D82R mutation. 

Interestingly, the heparin-binding affinity of the D82R/D84R double mutant is reduced by almost 

half compared to wt-hFGF1, and the increase in thermostability of this double mutant upon 

binding to heparin is also modestly reduced. However, in the presence of heparin, this double 

mutant is just as active toward cell proliferation as wt-hFGF1.  

Overall, the equilibrium unfolding experiments performed on mutants P135E, P135K, 

P135Q within the heparin-binding region and mutants D82R, D84R, D82N, and D82R/D84R 

outside of the heparin-binding region consistently confirm the role of heparin as a structure-

stabilizing agent of hFGF1. Analysis of the P135E, P135E/R136E, P135K/R136E, as well as all 

single and double mutants performed on positions 82 and 84 all suggest that heparin-binding 

affinity and cell proliferation activity of hFGF1 are not completely positively correlated. This 

lack of a clear positive correlation across five unique mutations within and outside of the 

heparin-binding pocket strongly suggests that hFGF1 is not dependent on binding to heparin for 

recognition and activation of a cell surface FGFR. This conclusion from our studies corresponds 

well with the conclusion(s) made by previous studies in this field, which have shown that 

inherently stabilized hFGF1 mutants with reduced affinity towards heparin can elicit a mitogenic 

response that is more robust than wt-hFGF1 in a heparin independent manner [1-3].  
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The final study of this project, specifically regarding the single mutant R136E, strongly 

suggests through equilibrium unfolding experiments using both heat and chemical denaturants, 

that the charge reversal mutation at position 136 significantly increased the stability of hFGF1 

compared to wt-hFGF1. The intramolecular interactions that generate this increased stability 

were further probed through two-dimensional NMR and all-atom, microsecond length MDS 

experiments. Interestingly, using HSQC spectroscopy, it was discovered that the R136E mutant 

structure was more resistant to H/D exchange than wt-hFGF1. The backbone amide proton of 61 

residues in wt-hFGF1 were completely exchanged with D2O after 21 hours exposure to 

deuterium buffer while only 39 residues in the mutant, R136E, were completely exchanged. In 

addition, the mutant, R136E, structure had 33 residues that were resistant to exchange with D2O 

(classified as “No exchange”) while wt-hFGF1 had only 19 residues that were resistant to H/D 

exchange. The overall conclusion from these experiments is that the residues that are more 

resistant to H/D exchange in the mutant, R136E, structure are believed to be key residues that 

confer increased stability to hFGF1.   

From analysis of the MD simulations, it was found that introduction of a negative charge 

at position 136 generates electrostatic interactions with critical heparin-binding residues R133, 

K126, and K132. As these salt-bridges are not present in the wt-hFGF1 simulation, we conclude 

that they are critical interactions that stabilize the HBR by minimizing the charge-charge 

repulsion, thereby significantly reducing the heparin-binding affinity of the mutant, R136E, 

protein. Furthermore, from the dynamical network analysis, several local as well as interdomain 

interactions were identified throughout the protein structure whose cross-correlation(s) are 

different between the mutant and wt-hFGF1 structures. Particularly, we conclude that differences 

in the cross-correlation of the interdomain interactions between residues R133-D84, C30-
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I144/L145, K126-N32, Q59-E67, F36-T48, and K26-L58 all contribute to the stability of the 

R136E mutant.  
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Future Perspectives 

The results of this thesis provide clues for the design of hFGF1, which lacks heparin binding. 

There are many caveats for hFGF1 therapeutics that involve heparin. Heparin production is 

expensive, heparin is well known for its anti-coagulant properties, and additionally, heparin 

generates the release of excessive interstitial fluid which dilutes hFGF1 delivery to a wound [1]. 

Thus, advancement of wound healing and tissue regeneration therapeutics involving hFGF1 may 

be largely contingent on the creation of biologically active hFGF1 with diminished or no heparin 

binding. So far, understanding of the molecular mechanisms underlying hFGF1 signaling has 

been primarily based on the available crystal structures of the hFGF1/heparin/receptor complex 

[2-4]. Therefore, it will be interesting to determine the hFGF1 (which lacks heparin binding)– 

receptor complex in the absence of heparin. 

Furthermore, not only does hFGF1 play significant roles in mitogenic activities, but recently, 

multiple studies have revealed unforeseen roles of hFGF1 in metabolic pathways related to 

insulin dependent glucose metabolism as well as adipose tissue remodeling [5, 6]. Analysis of 

the underlying molecular mechanisms has revealed that various threshold levels of hFGF1-

receptor dimerization stability modulate the magnitude and selectivity of downstream signaling, 

which ultimately regulates the elicited response as a metabolic or mitogenic response [7]. For wt-

hFGF1, receptor binding and dimerization is influenced by the protein’s binding affinity for 

heparin. Therefore, understanding these hFGF1 signaling pathways with hFGF1 mutants that 

exhibit decreased heparin binding/lack heparin binding will provide strong clues regarding the 

partition of the hFGF1-induced cell proliferation and cellular metabolic pathways. 

The knowledge gained from the studies performed here on the hFGF1-heparin interaction can 

further be extrapolated to other heparin-binding FGF isoforms. In addition, the influence of 
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hFGF1-heparin interactions on hFGF1-induced cell differentiation of stem cells can also lead to 

new hFGF1 based therapeutics. 
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Appendix 1: Supplementary Figures 
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Figure S1: SDS PAGE of the purified wt-hFGF1 and designed mutants. Lane-1 is a commercial 
broad range NEB #7703 protein marker. Lanes 2, 4, 5, 6, and 7 represent the 1500 mM NaCl 
fractions of wt-hFGF1 and the designed mutants, P135Q, P135E, P135K, and P135K/R136E, 
respectively. Lane-3 represents the 500 mM NaCl fraction of the double mutant, P135E/R136E.  
 
 
 
 
 

 

Figure S2: Ratio of 308nm/350 nm fluorescence emission intensity indicating the largest 
difference in tyrosine – tryptophan fluorescence for wt-hFGF1 and the smallest difference in 
tyrosine – tryptophan for designed mutant, P135K.  
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Figure S3: SDS PAGE representing the products of limited trypsin digestion of the wt-
hFGF1and the designed mutants in the presence and absence of heparin. 
 

 
Figure S4: Panel – A, Superimposition of the 1H-15N HSQC spectra of wt-hFGF1 (red) over that 
of P135E/R136E mutant (blue). Panel – B, 1H-15N chemical shift perturbation due to the 
P135E/R136E mutation. The dashed line signifies an arbitrary threshold above which 1H – 15N 
chemical shift perturbations were considered to be significant. The 1H-15N chemical shift 
perturbation of individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]). 
 



	 159 

 
Figure S5: Panel – A, Superimposition of the 1H-15N HSQC of wt-hFGF1 (green) over that of 
P135K/R136E (red). Panel – B, 1H-15N chemical shift perturbation due to the P135K/R136E 
mutations. The dashed line signifies an arbitrary threshold above which 1H – 15N chemical shift 
perturbations were considered to be significant. The 1H-15N chemical shift perturbation of 
individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]).  
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Figure S6: Panel-A, RMSD of the Cα backbone atoms as a function of time for each simulation. 
Panel-B, Overlay of RMSF values of each designed hFGF1 mutant in comparison to wt-hFGF1. 
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Figure S7: Still images of hFGF1 and the designed mutants [P135E (A), P135K (B), P135Q (C), 
P135K/R136E (D), P135ER136E (E), and wt-hFGF1 (F)] obtained from molecular dynamics 
simulation(s).  The residue(s) of interest are shown as stick representation. Hydrogen bonding is 
shown as dashed orange lines.  Additional amino acids, located within a spatial distance of 5 A° 
from the amino acid of interest are shown as CPK representation. Please see attached videos for 
visual of the full 100ns simulation. 
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Table S1: Salt bridge formations in MD simulations of wt-hFGF1 and designed hFGF1 
mutations. 
 

Protein Salt Bridge Formations 

wt-hFGF1 D46-
R38 

D53-
R38 

E67-
K114 

E95-
K115 

E105-
K132 

E118-
K119 

P135E D46-
R38 

 

D53-
R38 

 

D84-
R133 

E67-
K114 

 

E95-
K115 

 

E105-
K132 

 

E135-
R133 

P135K D46-
R38 

 

D53-
R38 

 

E67-
K114 

 

E95-
K115 

 

E105-
K132 

 

P135Q D46-
R38 

 

D53-
R38 

 

E67-
K114 

 

E95-
K115 

 

E105-
K132 

 

P135ER136E D46-
R38 

 

D53-
R38 

 

D84-
R133 

E67-
K114 

 

E95-
K115 

 

E105-
K132 

 

E118-
K119 

 

E135-
R133 

E136-
K132 

E122-
R133 

P135KR136E D46-
R38 

 

D53-
R38 

 

E67-
K114 

 

E95-
K115 

 

E105-
K132 

 

E118-
K119 

  
 
 

Table 2: Thermodynamic values for the heparin interaction with hFGF1 mutants and wt-hFGF1 

Protein ΔH (k.cal/mol) -TΔS (k.cal/mol) 

wt-hFGF1 -2.14 ± 0.4 -1.1 

P135K -0.85 ± 0.2 -0.06 

P135E -1.11 ± 0.2 -0.2 

P135Q -1.08 ± 0.6 -0.2 

P135E/R136E -0.85 ± 0.5 -0.08 

P135K/R136E -1.04 ± 0.73 -0.27 
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Figure S8: Proliferation of heparinase treated NIH3T3 cells in the presence of wt-hFGF1 
(10ng/mL). 

 
Supplementary Movie (SM) Captions:  
 
SM 1: 100 ns molecular dynamics simulation of wt-hFGF1 showing residues R133, P135, and 
R136 in stick form. Hydrogen bonds are depicted by dashed orange lines.  
	
SM 2: 100 ns molecular dynamics simulation of designed hFGF1 mutant P135E showing residue 
E135 in stick form and residues R133 and R136 in ball-stick form. Hydrogen bonds are depicted 
by dashed orange lines. Hydrogen bonding is visible between the side chains of residues E135 
and R133.  
 
SM 3: 100 ns molecular dynamics simulation of designed hFGF1 mutant P135K showing residue 
K135 in stick form and residues R133 and R136 in ball-stick form. Hydrogen bonds are depicted 
by dashed orange lines. No hydrogen bonds are visible between residues R133, K135, and R136.  
 
SM 4: 100 ns molecular dynamics simulation of designed hFGF1 mutant P135Q showing 
residues Q135 in stick form. Hydrogen bonds are depicted by dashed orange lines. Hydrogen 
bonding is observed between the side chain carbonyl group and backbone amide group of Q135, 
as well as between the side chain amide group of Q135 and the carbonyl group on the backbone 
of residue D84.  
 
SM 5: 100 ns molecular dynamics simulation of designed hFGF1 mutant P135ER136E showing 
residues E135 and E136 in stick form. Hydrogen bonds are depicted by dashed orange lines. 
Hydrogen bonding is visible between the side chain carboxyl group of E136 and the guanidinium 
head group of the R133 side chain.  
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SM 6: 100 ns molecular dynamics simulation of designed hFGF1 mutant P135KR136E showing 
residues K135 and E136 in stick form and residue R133 in ball-stick form. Hydrogen bonds are 
depicted by dashed orange lines. Hydrogen bonding is visible between the side chain amine 
group of K135 and the side chain carboxyl group of D84.  
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Appendix 2: Supplementary Material 

 

Figure S1: Still captions from molecular dynamic simulations of D82R (A), D84R (B), wt-
hFGF1 (C), D82N (D), and D82R/D84R (E) showing the residue(s) of interest in stick 
representation, hydrogen bonding in dashed orange lines, and additional amino acids within 5 A° 
of the residue of interest in CPK representation. Please see attached videos. 
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Figure S2: SDS PAGE analysis of purified WT and mutant forms of FGF1. Lane 1 is a 
commercial broad range protein marker (NEB #7703) and lanes 2, 3, 4, 5, and 6 are the 1500mM 
NaCl fractions of WTFGF, D82R, D84R, D82N, and D82RD84R respectively. All five proteins 
appear to be homogeneous migrated at same size just below the corresponding 17kDa band in 
the protein marker of lane 1. The circled band indicates the presence of a hFGF1 dimer.  
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wt-hFGF1 no heparin 

wt-hFGF1 with heparin 

D84R no heparin 

D84R with heparin 

D82R with heparin 

D82R no heparin 

D82RD84R no heparin 

D82RD84R with heparin 

D82N with heparin 

D82N no heparin 

 
Figure S3: SDS PAGE analysis of the limited trypsin digestion of wild type and charge reversal 
mutants of hFGF1 in the presence and absence of heparin. Each lane indicates the amount of 
undigested protein at the respective 5 minute time intervals from time 0 minutes (far left lane) to 
40 minutes (far right lane).  

 

Figure S4: Isothermogram representing the titration of hFGF1 mutant, D82N, with heparin. The 
upper panel represents the raw heat changes that accompany the binding of the protein to 
heparin. The lower panels represent the best fit of the binding curve(s) to a one-site binding 
model. All ITC data have been corrected for heats of dilution. 

K
d
 = 1.28uM 

D82N vs Heparin 
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Figure S5: Panel –A, Overlay of the 1H-15N HSQC of wild type (red) and the D84R (blue) 
mutant of hFGF1. Panel-B, 1H-15N chemical shift perturbation observed due to the D82R 
mutation. The horizontal line represents the arbitrary threshold above which the 1H-15N chemical 
shift perturbation(s) was considered as significant. The 1H-15N chemical shift perturbation of 
individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2])  

 

A 

 

B 
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Figure S6: Panel –A, Overlay of the 1H-15N HSQC of wild type (yellow) and the D82N (red) 
mutant of hFGF1. Panel-B, 1H-15N chemical shift perturbation observed due to the D82R 
mutation. The horizontal line represents the arbitrary threshold above which the 1H-15N chemical 
shift perturbation(s) was considered as significant. The 1H-15N chemical shift perturbation of 
individual residues were calculated using the formula, (√ [(2ΔδNH)2 + (ΔδN)2]). 
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Figure S7: Effect of heparin on the cell proliferation activity of wild type FGF-1 (10 ng/mL) on 
heparinase-treated NIH 3T3 cells. 

 

Table S1: Standard deviation among triplicate cell proliferation assays for wt-hFGF1 and each 
hFGF1 mutant.   

No heparin With heparin 

[Protein] 
(ng/mL) 

0 0.4 2 10 50 0 0.4 2 10 50 

wt-
hFGF1 

±2527.1 ±3119.7 ±3531.3 ±1006.0 ±4403.8 ±1422.0 ±2379.5 ±571.8 ±796.7 ±3609.6 

D82R ±246.3 ±460.2 ±1581.9 ±2508.0 ±580.2 ±1541.5 ±1330.4 ±1345.7 ±2753.7 ±158.8 

D84R  ±3165.8 ±1844.5 ±3352.9 ±1387.0 ±3920.5 ±3320.7 ±1907.3 
 

±3623.8 
 

±1183.8 ±1044.2 

D82N ±625.5 ±612.5 ±3790.2 ±1862.4 ±1266.9 ±1970.7 ±460.9 ±999.1 ±2002.8 ±1450.1 

D82R/
D84R 

±1665.2 ±1292.7 ±595.4 ±691.7 ±5165.6 ±1258.1 ±1392.8 ±332.6 ±555.3 ±36616.0 
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Supplementary Movie (SM) Captions:  
 
SM 7: 100 ns molecular dynamics simulation of wt-hFGF1 showing residues D82, D84, and 
R133 in stick form. Hydrogen bonds are depicted by dashed orange lines.  
	
SM 8: 100 ns molecular dynamics simulation of designed hFGF1 mutant D82R showing residues 
R82, D84, and R133 in stick form. Hydrogen bonds are depicted by dashed orange lines. 
Hydrogen bonds are visible between the side chains of residues R82 and D84.  
 
SM 9: 100 ns molecular dynamics simulation of designed hFGF1 mutant D84R showing residues 
D82, R84, and R133 in stick form. Hydrogen bonds are depicted by dashed orange lines. 
Hydrogen bonds are visible between the side chains of residues D82 and R84.  
 
SM 10: 100 ns molecular dynamics simulation of designed hFGF1 mutant D82RD84R showing 
residues R82, R84, and R133 in stick form. Hydrogen bonds are depicted by dashed orange lines. 
No hydrogen bonds are observed between residues R82, R84, and R133. 
 
SM 11: 100 ns molecular dynamics simulation of designed hFGF1 mutant D82N showing 
residues N82 and R133 in stick form. Hydrogen bonds are depicted by dashed orange lines. 
Hydrogen bonds are visible between the side chains of residues N82 and L86.  
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Appendix 3: Supplementary Material 

Supplementary Movie (SM) Captions:  
 
SM 12: 4.8 µs molecular dynamics simulation of wt-hFGF1 showing residue R136 in stick form. 
Surrounding residues in the heparin-binding region are shown in ball and stick form. Hydrogen 
bonds are depicted by dashed orange lines.  
	
SM 13: 4.8 µs molecular dynamics simulation of designed hFGF1 mutant R136E showing 
residues E136 in stick form. Hydrogen bonds are depicted by dashed orange lines. Hydrogen 
bonds are visible between the side chains of residues E136 and R133.  
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Appendix 4: Biosafety committee approval 

Kumar lab biosafety protocol number: 13004 
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