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Abstract

This dissertation makes two important contributions to the development of Bayesian

hierarchical models. The first contribution is focused on spatial modeling. Spatial data

observed on a group of areal units is common in scientific applications. The usual hierar-

chical approach for modeling this kind of dataset is to introduce a spatial random effect

with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for

this hierarchical framework requires the spatial effects to be sampled from their full condi-

tional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model

computationally inefficient for datasets with large number of units. In this dissertation, we

propose a Bayesian approach that uses the spectral structure of the adjacency to construct

a low-rank expansion for modeling spatial dependence. We develop a computationally effi-

cient estimation scheme that adaptively selects the functions most important to capture the

variation in response. Through simulation studies, we validate the computational efficiency

as well as predictive accuracy of our method. Finally, we present an important real-world

application of the proposed methodology on a massive plant abundance dataset from Cape

Floristic Region in South Africa. The second contribution of this dissertation is a heavy

tailed hierarchical regression to detect outliers. We aim to build a linear model that can

allow for small as well as large magnitudes of residuals through observation-specific error

distribution. t-distribution is specifically suited for that purpose as we can parametrically

control its degrees of freedom (df) to tune the heaviness of its tail - large df values represent

observations in normal range and small ones represents potential outliers with high error

magnitudes. In a hierarchical structure, we can write t-distribution as a scale mixture of a

Gaussian distribution so that the standard MCMC algorithm for Gaussian setting can still

be used. Post-MCMC, the posterior mean of degrees of freedom for any observation acts

as a measure of outlyingness of that observation. We implemented this method on a real

dataset consisting of biometric records.
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Chapter 1

Introduction to Bayesian Inference

1.1 Motivation and Key Concepts

In probability theory, we can use prior knowledge of conditions to describe the probability

of an event. This is called Bayes’ rule (or Bayes’ theorem which is named after Reverend

Thomas Bayes, 1701–1761. Mathematically, we can state the theorem as follows,

π(θ|D) =
L(D|θ)π(θ)

π(D)

where D is the data, θ is the parameter, L(D|θ) is the likelihood of D given θ, π(θ) is the

probability distribution of the parameter before observing the data, and π(D) is the marginal

distribution of the data. The goal from the Bayesian inference is to learn about parameters

given the dataset.

The probability distribution of any parameter before observing the data is called the

prior distribution, and the probability distribution of our data given parameters is called

Likelihood. Before we collect the data, prior distribution of any parameter gives us an idea

about its possible values. We need to use both the prior and the likelihood to learn about

parameters θ.

Suppose, we have a data D = {y1, y2, . . . , yn} such that yi
iid∼ f(·|θ), then the likelihood

function becomes,

L(D|θ) =
n∏
i=1

f(yi|θ)

A probability distribution needs to be specified for θ, θ ∼ π(θ). Our goal is to estimate the
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posterior distribution of θ given the data.

In general, the posterior distribution of θ|D can be written as a product of the Likelihood

of the data given parameters and prior distribution of these parameters, i.e.,

π(θ|D) ∝ L(D|θ)× π(θ) =
n∏
i=1

f(yi|θ)× π(θ)

Sometimes, we can have parameters inside these priors, and they are called hyper-parameters,

and their distribution are called hyper-priors.

By analyzing the posterior density function, π(θ|D), we obtain various information about

θ. For example, we can compute different properties of θ such as, Mean =
∫
θπ(θ|D)dθ,

and Median = M , where
∫
θ≤M π(θ|D)dθ = 0.5. Also, for any region R, one can compute

π(θ ∈ R|D). The (1− α) credible intervals for a parameter {θ : θ ∈ R} can be evaluated by

using the following,
∫
R
π(θ|D)dθ = 1 − α. However, whenever θ is a vector, many integrals

become analytically difficult to solve, and hence an alternative numerical method can be

used, such as the Monte Carlo method.

1.2 Monte Carlo Methods

Monte Carlo (MC) is commonly used in Mathematical and Physical problems (Del Moral,

2013; Robert, 2004). It can be utilized to obtain numerical results for problems involving

numerical integration, function optimization, and characteristics of a probability distribu-

tion. For example, by using the Strong Law of Large Number (SLLN) theorem one can

approximate the mean by computing the average from large samples.

SLLN: If Y1, Y2, . . . , Yn are iid random variables with E(Yj) = µ, then 1
n

∑n
i=1 Yi → µ,

almost surely as n→∞.

For example, if θ is a vector, e.g. θ = (θ1, θ2, . . . , θn), then for given data points, our goal

is to sample from π(θ|D). If π(θ|D) is a standard distribution, then we can draw directly from

2



it. However, most of the time, it is not possible to draw from the joint distribution π(θ|D)

directly, specifically when the hierarchical model is complex and involves many parameters;

in those cases we can still use the MC method through a Markov chain.

1.3 Markov Chain Monte Carlo Methods

The Markov Chain Monte Carlo (MCMC) methods are the most popular techniques in

Bayesian estimation (Gilks, 2005). Estimation using MCMC methods are often applied to

solve numerical approximations of multi-dimensional integrals and optimization problems

in spaces with large dimension. For example, it has been used in computational Physics

(Brubaker et al., 2012), computational Biology(Bouckaert et al., 2014), machine learning

(Andrieu et al., 2003) and Economics(Lin and Huang, 2002).

In Statistics, MCMC techniques are used to sample from a probability distribution when

the direct sampling is difficult. In MCMC, we can simulate an observation from a Markov

distribution conditional from previous draws. If the Markov distribution is properly con-

structed and the chain is run a large number of times, then the draws approximately follow

the target distribution.The draws can be used to approximate the target joint or marginal

distribution, or to compute an integral with respect to that distribution.

The large hierarchical models that involve several parameters can be estimated by the

MCMC algorithms. However, we need to (i) throw away the initial few draws to eliminate the

effect of the initial values, and (ii) thin the remaining draws at a certain interval to remove

correlations between successive draws. By increasing the thinning width, correlations can be

reduced further. To get a reasonable estimate of any desired distribution, we need a large

number of draws.

In the last few decades, several kinds of MCMC algorithms have been developed. For

example: Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970), Gibbs

sampler (Geman and Geman, 1984), Monte Carlo EM (Baum et al., 1970), Slice sampler

3



(Neal, 2003), and Reversible jump MCMC (Andrieu et al., 2003).

There are several ways to check whether the Markov chain converges. For more infor-

mation about convergence, see (Zhu et al., 2003; Banerjee et al., 2014).

In the rest of this chapter, we are going to discuss the most important MCMC algorithms

that we are going to use in this work.

1.3.1 Metropolis Hasting Algorithm

In general, the Metropolis Hasting (MH) algorithm can be used to sample from any target

distribution. At iteration i, with a target density p(θ|D), we generate a candidate θproposed for

the next sample by drawing from a proposal distribution q(θproposed|θ(i)). Then we calculate

the acceptance ratio, R, where

R = R(θ(i) → θproposed) = min(1,
p(θproposed)q(θ(i)|θproposed))
p(θ(i))q(θproposed|θ(i)))

)

Then we set θ(i+1) = θproposed if u ≤ R; Otherwise, θ(i+1) = θi, where u is an uniform random

number on (0, 1).

In Algorithm 1, we summarize the MH algorithm:

Algorithm 1 MH

INPUT: An initial value θ(i) = (θ
(i)
1 , θ

(i)
2 . . . , θ

(i)
n ) and proposal density q(x)

OUTPUT: A new sample θ(i+1) = (θ
(i+1)
1 , θ

(i+1)
2 . . . , θ

(i+1)
n )

1: assume θproposed ∼ q(θproposed|θ)
2: compute the acceptance ratio (R) where

R = R(θ(i) → θproposed) = min(1, p(θ
(proposed)q(θ(i)|θproposed)

p(θ(i))q(θproposed|θ(i)) )

3: generate u from unif(0,1)
4: if u ≤ R, then
5: θ(i+1) = θproposed

6: else
7: θ(i+1) = θ(i)

8: end if

4



In the MH algorithm, it is not easy to find the right proposal distribution, so that we

have a reasonable acceptance rate. If we take the proposal distribution to have a very small

variance, then we are accepting a lot of samples, but we are not exploring the parameter

space adequately. On the other hand, if we choose a large value of variance, we move very

quickly, but we are accepting very few samples. Hence, it is important to have an acceptance

rate which is neither too large nor too small, maybe in the range 20–40%. This problem gets

bigger when we have a high dimensional parameter. In those cases, a different approach, the

Gibbs sampler, can be used.

1.3.2 Gibbs Sampler

In multivariate posterior distribution, the Gibbs sampler is useful method because, rather

than choosing a sample for the entire parameter vector at once, a new sample for each

dimension (or for a block of parameters) will be drawn conditionally on the current state

of other parameters. For us to be able to draw exactly, the Gibbs sampler requires such

conditional distributions to be in standard form. For θ = (θ1, θ2, . . . , θn), our target is the

full conditional distribution p(θj|θ−j) where θ−j = θ1:n\{j}. We can view this as a special case

of the MH algorithm, where for j = 1, 2, . . . , n, we use the following proposed distribution,

q(θproposedj |θ(i)
j ) = p(θproposedj |θ(i)

−j)

Therefore, the corresponding acceptance probability is 1 for each proposal, as we can see

below,

q(θproposedj |θ(i)
j ) = min

(
1,
p(θproposedj )q(θ

(i)
j |θproposed)

p(θ
(i)
j )q(θproposedj |θ(i))

)
= min

(
1,

p(θproposed)p(θ
(i)
j |θ

(i)
−j)

p(θ(i))p(θproposedj |θproposed−j )

)
= min

(
1,
p(θproposedj )

p(θ
(i)
j )

)
= 1
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The following algorithm, Algorithm 2, summarizes the Gibbs sampler method.

Algorithm 2 Gibbs Sampler

INPUT: An initial value θ(i) = (θ
(i)
2 , θ

(i)
3 , . . . , θ

(i)
n )

OUTPUT: A new sample θ(i+1) = (θ
(i+1)
1 , θ

(i+1)
2 . . . , θ

(i+1)
n )

1: for k = 1, 2, . . . , N do
2: draw θ

(i+1)
1 from p(θ1|θ(i)

2 , θ
(i)
3 , . . . , θ

(i)
n )

3: draw θ
(i+1)
2 from p(θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
n )

4:
...

5: draw θ
(i+1)
n from p(θn|θ(i+1)

1 , θ
(i+1)
2 , . . . , θ

(i+1)
n−1 )

6: end for

1.4 Preview of Following Work

We are going to use the Bayesian methods in context of two different problems: one in spatial

modeling and the other in outlier detection. Our key contribution for this dissertation is

detailed in the work that is presented in Chapter 4 and Chapter 5. Here, we give summary

of the work in the next four chapters.

In chapter 2, we discuss the basics of spatial data with several examples. Then, we

elaborate on the modeling details of the Areal-level spatial datasets as our key contribution

is focused on that kind of data.

In chapter 3, we describe the Krylov subspace methods and some general subspace

iteration algorithms. We include a brief discussion of basic Arnoldi and Lanczos algorithms,

and some developed Arnoldi algorithms.

In chapter 4, we derived a hierarchical model for species using effecient dimension re-

duction for lattice data. We propose an alternative approach using the spectral properties

of the adjacency matrix. We applied our work on the species abundance datasets from Cape

Floristic Region in South Africa.

In chapter 5, we developed two outlier detection methods by using the hierarchical regres-

sion model based on heavy tailed error distributions. We test our methods, and compared
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them to two existent methods by using some simulation datasets. The real data implemen-

tations of our methods consists of outliers detection in the records of heights of Arkansas

school students.

We want to introduce some of the notations used throughout this work. For an event

A, 1[A] denotes a random variable which takes the value 1 if A occurs and 0 if A does

not occur. For a real number a, δa denotes a probability distribution that puts entire mass

at a. MVN and IG are the notations for multivariate normal distribution and inverse-

gamma distributions, respectively. Φ(A;µ, σ2) denotes the probability enclosed in set A

under univariate normal distribution with mean µ and variance σ2. The notations 0l, 1l and

Il refer to the l×1 vector of all zeros, all ones and the identity matrix of order l×l, respectively.

All computations conducted for this chapter are run in R (https://cran.r-project.org/) on a

single processor without using any explicit distributed computing.
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Chapter 2

Spatial Data

2.1 Introduction

Spatial data includes information that identifies the geographic location of features and

boundaries on Earth, such as natural or constructed features, oceans, public health, school

districts, etc (Banerjee et al., 2014). It usually can be mapped and stored as coordinates

and topology. Also, when the information about a physical object can be represented by

numerical values in a geographic coordinate system, it is called spatial or geospatial data.

The use of spatial data analysis has risen in many different scientific fields such as: Public

Health (Nucci et al., 2016), Biological Sciences (Weston et al., 2012), and Geological Science

(Rampaso et al., 2016).

The spatial data can be classified into three types:

• Point-referenced data: If the dataset consists of a vector of measurements y(s1), y(s2),

. . . , y(s2) at locations s1, s2, . . . , sn ∈ D ⊆ Rn, then we call it point reference data. For

example, Figure 2.1 shows the 2001 PM2.5 level at 114 locations in Illinois, Indiana,

and Ohio (Banerjee et al., 2014). The reader can consult Stein et al. (2004) for more

information about Point-level models which are related to this kind of data.
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Figure 2.1: PM2.5 moutoring sites in 3 states showing average levels in 2001 (Figure 1.1
in Banerjee et al. (2014))

• Areal data: This type of dataset arises when a fixed region D is partitioned into

multiple regular/irregular units and each unit corresponds to one measurement in the

dataset. Figure 2.2 shows the 2008 age-adjusted obesity rates by U.S. county. The

percentage of people have been indicated by different colors in each area according to

the percentage of the population with a Body Mass Index (BMI) greater than or equal

to 30.
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Figure 2.2: Age-adjusted obesity rates by U.S. county (Figure 1 in Thomas (2013))

• Point pattern data: Unlike the previous two type of spatial data here the locations

are random, so the dataset consists of location of a particular event of interest with

in a fixed region D. Residences of persons suffering from a particular disease or the

locations of a certain species of tree in a forest are examples of point pattern data. As

an example, Figure 2.3 taken from de Melo et al. (2015) shows the southeast region of

Brazil, where the Campinas is located. Part(A) shows commerce robbery, and part(B)

shows passerby robbery. The similarity appears in the spatial patterns in both parts

even though commerce robbery has a lower amount of offenses than passerby robbery.

More information about Point pattern data and related model is found in Lawson and

Denison (2002) and Moller and Waagepetersen (2003).
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Figure 2.3: Point pattern data showing commerce robbery(A) and passerby robbery(B) at
various scales. (Figure 2 in de Melo et al. (2015))

2.2 Modeling Areal-level Spatial Data

In this dissertation, we specifically focus on Areal-level spatial data. In a spatial setting, we

deal with response and covariate variables that are connected to regions. Let us denote the

region as D, so whenever we have n units, we call them A1, A2, . . . , An. Therefore, we can

write the Areal-level spatial model as

y(Ai) = β0 + β1x1(Ai) + β2x2(Ai) + · · ·+ βpxp(Ai) + ε(Ai) (2.1)

where y(Ai) is the response, x1(Ai), x2(Ai), . . . , xp(Ai) are the covariates, and ε(Ai) is zero

mean Gaussian noise from the ith unit with variance σ2. Eq. 2.1 is called a multiple linear

regression. Now, consider the situation where x1, x2, . . . , xp are poor predictors in explaining

y, (i.e., in the above multivariate regression model, R2 is too low). Some possible reasons

for this are

• Response and covariates do not a have strong linear relation.

• There may be additional covariates on which we have no data.
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• There may be similarity between measurements from adjacent units that can not be

explained by covariates.

The model above is not sufficient to explain how the response, y, changes from one region

to another. Hence, we need a stronger model that can explain y better. We can define a

new model as follows,

y(Ai) = β0 + β1x1(Ai) + β2x2(Ai) + · · ·+ βpxp(Ai) + θ(Ai) + ε(Ai) (2.2)

where θ(Ai) is called a spatial effect. When we have n areal units (A1, A2, . . . , An), we will

have n spatial effects (θ(A1), θ(A2), . . . , θ(An)). Eq. 2.2 is called Areal-level spatial model.

2.3 Creating of Neighborhood Structure

For any two regions which are adjacent, e.g. Ai and Aj, we have the following two models:

y(Ai) = β0 + β1x1(Ai) + β2x2(Ai) + · · ·+ βpxp(Ai) + θ(Ai) + ε(Ai)

y(Aj) = β0 + β1x1(Aj) + β2x2(Aj) + · · ·+ βpxp(Aj) + θ(Aj) + ε(Aj)

If the data has a strong spatial pattern, we expect y(Ai) and y(Aj) have close or similar

values if Ai and Aj are adjacent. If this is the case, we say that θ has a strong spatial pattern.

But if y does not have a strong spatial pattern, we expect θ to behave like random error,

ε. Hence θ makes sense only when there is a spatial pattern. We want to build a model

for θ(Ai). First, we have to define the relation among units by a matrix which is called an

adjacency matrix, we denote it with W , where for n units, W = [wij], i, j = 1, . . . , n, where

wij = 1 if Ai and Aj are neighboring and 0 otherwise. We can explain the relation between

two units, by specifying that there is an edge between them if wij = 1. Some of the common
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approaches to identify the edges are

• Sharing a boundary: we say two units, e.g. Ai and Aj, are neighbors, if they share a

boundary. This is called first order neighbor. It is called second order neighbor if Ai

and Aj share boundaries or they have a common unit, e.g. Ak, that shares a boundary

with both of them. In the second order neighboring case, the adjacency matrix will be

less sparse.

• Distance between unit centers: in some situations, geographical adjacency may not be

appropriate, so the distance between unit centers is a better measurement. Two units

Ai and Aj have an edge between them if the distance between centers of Ai and Aj is

less than a certain distance, e.g. d, which is the user choice.

• Minimum distance between two units: neighbors can be defined by working with the

minimum distance between two units, dij = min{d(x, y) : x ∈ Ai and y ∈ Aj}. We say

two units are neighbors if the distance between them is less than d.

We can view the neighborhood relationship as edges in a graph. If we consider the case

where W has all zero entries, the graph has no edge and no connection adjacent θ(Ai). In

this case, there is no point of using the spatial effect, θ. However, what extended spatial

pattern is present in data can vary from one example to another, and looking at the map is an

exploratory approach to get an idea. ε(Ai) in a spatial model represents variation in y that is

not connected across an adjacent region, so we refer to it as “pure error” or “random error.”

Before building a model for θ(Ai), we want to discuss some adjacency matrix examples.

In general, if a graph has n nodes, the adjacency matrix W is n × n. For example, if a

graph has only 7 nodes, as we can see in Figure 2.4, we have a 7× 7 symmetric non-negative

matrix.
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Figure 2.4: A Graph with 7 nodes

All the adjacency matrix entries are 0 or 1 depending on whether there is an edge between

any two nodes, and it can be written as follows,

W =



0 1 0 1 1 0 0
1 0 1 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0


In some cases, instead of putting just 1 and 0 on the edges for present and absent,

respectively, one can use edges with weights. An example, of using weights for the edge

instead of 0 or 1 can be found in Bhark (2011).

Figure 2.5: A 3× 3 Grid Cell & Adjacency (Figure 5.1 page 144 in Bhark (2011))
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As we can see in Figure 2.5, the weight among the 9 nodes are values between 0 and 1.

Its adjacency matrix can be represented as follows,

W =



0 1 0 0.8 0 0 0 0 0

1 0 0.6 0 0.1 0.4 0 0 0

0 0.6 0 0 0.4 0.9 0 0 0

0.8 0 0 0 0 0 1 0.8 0

0 0.1 0.4 0 0 0.8 0 0 0.7

0 0.4 0.9 0 0.8 0 0 0.3 0.9

0 0 0 1 0 0 0 0.9 0

0 0 0 0.8 0 0.3 0.9 0 0.6

0 0 0 0 0.7 0.9 0 0.6 0


To constrict an adjacency matrix from a map, first, we identify the nodes. The nodes are

the original units (states, counties, cities, etc) in a map. Next, we identify the edges among

the nodes by using one of the three approaches that we discussed above. By following the

constructed edges, the adjacency matrix can be formulated as discussed above.

2.4 Empirical Measures of Spatial Association

Before working with spatial models, the association among the units should be checked by

using one of the empirical measures of spatial association. The two standard statistical

measurements are Moran’s I and Geary’s C (Banerjee et al., 2014):

• Moran’s I is given by the following form

I =
n
∑

i

∑
j wij(θi − θ̄)(θj − θ̄)

(
∑

i 6=j wij)
∑

i(θi − θ̄)2

where I ∈ [-1,1]. If I is significantly different from zero, there is a spatial dependence. But,
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if I is approximately equal to 0, there is no spatial dependence. I is asymptotically normal

with mean equal to −1
n−1

under the hypothesis of independence.

• Geary’s C is given by the following form

C =
(n− 1)

∑
i

∑
j wij(θi − θj)2

2(
∑

i 6=j wij)
∑

i(θi − θ̄)2

where C ∈ [0, 1]. If C is significantly different from 1, there is a spatial dependence. But, if C

is approximately equal to 1, there is no spatial dependence. C is asymptotically normal under

the null hypothesis with mean equal to 1. Both Moran’s I and Geary’s C are techniques for

areal data analogues to what empirical correlation function would represent for point-level

data.

2.5 Prior Distribution for Spatial Effect

Since each θi is defined on an areal unit, it is not reasonable to use a distent based correlation

model for them. Instead, to obtain the joint distribution of θi, we use a technical result which

is called Brook’s Lemma.

Lemma 2.5.1 (Brook’s Lemma). If {π(θi|θ−i), i = 1, 2, . . . n} is a set of compatible full

conditional distributions and θ0 = (θ10, θ20, . . . , yn0) is any fixed point in the support of

π(θ1, . . . , θn), then

π(θ1, θ2, . . . , θn) =
π(θ1|θ2, . . . , θn)

π(θ10|θ2, . . . , θn)
× π(θ2|θ10, . . . , θn)

π(θ20|θ10, . . . , θn)

× · · · × π(θn|θ10, . . . , θn−1,0)

π(θn0|θ10, . . . , θn−1,0)
× π(θ10, . . . , θn0).

It implies the joint distribution can be expressed in term of full conditional distribu-

tions. Brook’s Lemma gives us the joint distribution up to a normalizing constant, and if

π(θ1, θ2, . . . , θn) is proper, then the normalizing constant is determined by the fact that it
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integrates to 1. The full conditional distributions need to be specified in away so that they

are compatible and simple enough and yet yield useful spatial structure.

To develop these full conditional distributions we need to define the Markov property.

By Markov property of θ, we mean the conditional distribution of θ(Ai) given all other nodes

depend only on θ values at all nodes with an edge to Ai. In other words, θ
(
Ai|θ(A−i)

)
is

equivalent to θ
(
Ai|θ(AN(i))

)
, where A−i =

n⋃
j=1

Aj \ Ai, and AN(i) =
⋃

wij=1

Aj.

These conditional distributions may or may not lead to a valid joint distribution. So,

we define a Markov Random Field (MRF) as the collection {π(θi|θ−i) : i = 1, 2, . . . , n} that

lead to a valid joint distribution π(θ1, θ2, . . . , θn).

Next, we mention some important definitions and theorems which are going to be used

later. In an MRF, we can have a clique, a subset of nodes where there is an edge from every

node to every node, for many different orders. In general, if a clique includes k nodes, it is

called a clique of order k (potential of order k).

Definition 2.5.1 (Banerjee et al. (2014)). A function of k arguments that is exchangeable

in these arguments is called a potential function of order k ( or simply a potential).

Definition 2.5.2 (Banerjee et al. (2014)). The function π(θ1, θ2, . . . , θn) only through po-

tentials is called a Gibbs distribution.

π(θ1, θ2, . . . , θn) ∝ exp
(
γ
∑
k

∑
α∈Mk

φk(θα1 , θα2 , . . . , θαk)
)

(2.3)

φk is a potential of order k, and Mk is the collection of all subsets of size k. α indexes this

set, and γ > 0 is a scale parameter.

Theorem 2.5.2 (Hammersley-Clifford (Besag, 1974)). If we have an MRF, (i.e., if the

conditional defines a unique joint distribution), then this joint distribution is a Gibbs distri-

bution.

Theorem 2.5.3. (Geman and Geman, 1984) Every Gibbs distribution is an MRF.
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2.6 Conditionally Auto-Regressive Prior

A common choice for a joint distribution for continuous data on R is the Conditionally Auto-

Regressive (CAR) prior which was introduced by Besag (1974). In fact, CAR is a Gibbs

distribution on potential of order 1 and 2. We derive the Gaussian (or auto-normal) CAR

prior following Banerjee et al. (2014). First, let us set the full conditionals,

θ|θi, j 6= i ∼ N
(∑

j

bijθi, τ
2
)
, i = 1, 2, . . . , n. (2.4)

By using Brook’s Lemma, we get,

π(θ1, . . . , θn) ∝ exp

{
−1

2
θ′D−1(I −B)θ

}
,

where B = {bij} and D is diagonal with Dij = τ 2
i . Eq. 2.4 is a joint multivariate normal

distribution for θ with mean and variance equal to 0 and Σθ = (I −B)−1D, respectively. To

ensure Σ−1
θ is symmetric, we need

bij
τ2i

=
bji
τ2j

for all i and j; So, we are going to set bij =
bij
wi+

and τ 2
i = τ2

wi+
where wi+ = #{j : wij = 1}.

Hence, Eq. 2.4 becomes,

π(θi|θi, i 6= j) = N
(∑

j

wijθi
wi+

,
τ 2

wi+

)
, i = 1, 2, . . . , n.

The resulting multivariate prior distribution for θ is:

π(θ) ∝ exp

{
− 1

2τ 2

∑
i<j

wij
(
θi − θj

)2

}

This density, being invariant to translation, is improper.
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We denote,

θ ∼ CAR
(
τ 2,W

)
.

We discuss some of disadvantages of CAR approach in Chapter 4.2 to motivate an alternative

model development.
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Chapter 3

Krylov Subspace Methods

3.1 Introduction

The computation of a matrix’s eigenpairs was improved by using various techniques in the

last century. The design of the algorithm depends on the matrix size. There are three

different size categories from the eigenvalue algorithms, and they can be classified as follows,

• The small matrices algorithms: these algorithms can compute all of the eigenvalues and

eigenvectors for a given matrix. The most notable algorithms are the QR-algorithm

(Francis, 1962) for the general and Hermition matrices, and the divide-and-conquer

(Cuppen, 1980), and Jacobi algorithms (Parlett and Scott, 1979) methods for Hermi-

tion matrices.

• The medium matrices algorithms: in this category, we can follow the algorithms in-

cluding Jacobi-Davidson (Sleijpen and Van der Vorst, 2000) or various other methods

based on the shift-and-invert principle. Also, in this category we can use the same

algorithms as in the following category.

• The very large matrices algorithms: the solution to very large system is expensive, so

we can reduce the dimension by projecting the very large matrices to small matrices

by the following algorithm that applies an application of matrix × vector operation

Ax. The most common algorithms are Arnoldi algorithm for general and Hermition

matrices and Lanczos algorithm for Hermitian matrices.

In this chapter, we are going to discuss the Arnoldi and Lanczos algorithms which can be

used to evaluate the eigenpairs for the very large matrices. In Section 3.2, we introduce the
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Krylov subspace and the general subspace iteration algorithm. Section 3.3 gives a description

of Arnoldi algorithm and the basic Arnoldi algorithm. In Section 3.4, we discuss the Lanczos

algorithm. Arnoldi algorithms with explicit and implicit restarting are explained in Section

3.5. Convergence of the restarted Arnoldi algorithm is introduced in Section 3.6. Finally, in

Section 3.7, we discuss the Implicit Lanczos algorithm with exact and Leja shifts.

3.2 Krylov Subspace

In the power iterative method, one of the oldest methods used to compute eigenpairs for large

matrices, we can generate a sequence of vectors x(0), Ax(0), A2x(0), . . . . The additional infor-

mation can be ignored by the single vector power iteration, but it can be extracted through

various linear combinations of the power sequence (Saad, 2003). The Krylov subspace can

be considered to attempt to formulate the best possible approximation of the eigenpairs.

The k-dimensional subspace, spanned by a given vector v and with increasing powers of

A applied to v until the (k−1)-th power, is called the k-dimensional Krylov subspace and can

be defined as, Kk(A, v) = span{v, Av,A2v, . . . , Ak−1v}. Notice that there is an interesting

connection between Krylov subspaces, so for a fixed matrix A, depending on the starting

vector v, there exist some k ≤ n so that:

K1(v) ⊂ K2(v) ⊂ K3(v) ⊂ · · · ⊂ Kk(v) = Kk+1(v) = · · · (3.1)

The iterative methods, Arnoldi and Lanczos methods, are based on Krylov subspace

projection to extract a small number of eigenpairs from large sparse matrices.

A Galerkin condition, a Ritz vector x ∈ Kk(A, v1) corresponding Ritz value θ if the

Galerkin condition 〈w,Ax − θx〉 = 0 for all w ∈ Kk(A, v1) is satisfied, can be used to

construct an approximate eigenpair from the Krylov subspace, where for any two vector u

and v, 〈u, v〉 is the inner or dot product.

21



In other words, the eigenpairs (θ, x) can be obtained by imposing the Galerkin condition:

〈w,AV y − θV y〉 = 0, for all vj ∈ V = (v1, . . . , vk), where V HV = I, A is n × n matrix,

x = V y and K an m-dimension subspace.

Therefore, y and θ must satisfy Bky = θy where Bk = V HAV . Each eigenvalue θi of Bk

is called Ritz value and V yi is called Ritz vector. When yi is the eigenvector of Bk associated

with θi, this is called Rayleigh-Ritz procedure (Saad, 2003).

The following algorithm, Algorithm 3, shows us the general sketch that all algorithms

follow for finding approximate eigenpairs from the large matrices.

Algorithm 3 General Subspace Iteration

INPUT: An subspace X(1), integers g and N
OUTPUT: g eigenpair

1: for k = 1, 2, . . . , N do
2: seclect g eigenpair from X(k);
3: if all g eigenpair are converged then
4: output the approximations and exit;
5: else
6: using information from X(k), build a new subspace X(k+1);
7: end if
8: end for
9: write misconvergence and exit;

Theorem 3.2.1 (Saad (2003)). For k defined by Eq. 3.1, The subspace Kk(v) is the smallest

A-invariant subspace of Cn that contains the vector v.

• Let µ be the nonzero polynomial of smallest possible degree such that µ(A)v = 0, then

deg(µ) = k.

• If A is diagonalizable, then Kk(v) = span{Pλv : Pλv 6= 0, λ ∈ Λ(A)}, where Pλ is the

spectral projector associated with the eigenvalue λ.

The methods that are used to evaluate an approximate eigenpairs using the Krylov space

are called the Krylov subspace methods. We can classify the Krylov subspace methods into
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four different families. This is dependent upon the manner of identifying x ∈ Kk(A; v) (Saad,

2003).

1. Ritz-Galerkin: in this family, uk is constructed in a way so that the residual must be

orthogonal to the Krylov subspace, i.e., r(k) ⊥ Kk(A; r(0)), where r(k) = Au(k)−λ(k)u(k).

2. Petrov-Galerkin: in this family, uk is constructed so that the residual is orthogonal to

other subspaces, i.e., r(k) ⊥ Lk.

3. Residual norm minimization: in this family, uk is constructed so that ||r(k)||2 is mini-

mized over Kk(A; r(0)).

4. Error norm minimization: in this family, uk is constructed so that ||r(k)||2 is minimized

over Kk(A
T ; r(0)).

3.2.1 Ritz Approximation

Now, we have to construct an orthonormal basis for Krylov subspace to compute a Ritz ap-

proximation. The important properties of the basis are obtained from the following theorem:

Theorem 3.2.2 (Bujanović (2011)). Let the dim(Km(A; v)) = m, and let v1, v2, . . . , vm

denote the sequence of vectors generated by the Gram-Schmidt procedure when run on vectors

v, Av,A2v, . . . , Am−1v, respectively. Then,

1. For j < m, Avj ∈ Kj+1(A; v), and AVj /∈ Kj(A; v).

2. Hm is an unreduced m×m upper Hessenberg matrix, i.e., none of the elements β1, β2,

. . . , βm−1 on its first subdiagonal is equal to zero.

3. The following equality holds for all j < m:

AVj = VjHj + βjvj+1e
∗
j (3.2)
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In particular, the last column reveals a recursive relation:

βjvj+1 = Avj − Vjhj = Avj − Vj(V ∗j Avj) = (I − VjV ∗j )Avj (3.3)

where hj is the last column of Hj.

4. Suppose Ṽj is a n× j orthonormal matrix, H̃j is an unreduced j × j upper Hessenberg

matrix with positive subdiagonal elements and r̃j is a vector in Cn such that AṼj =

ṼjH̃j + r̃je
∗
j . If the first column of Ṽj is equal to v1, then Ṽj = Vj, H̃j = Hj and r̃j =

βjvj+1. This is called the “Implicite-Q theore”.

5. Let (θ, x) denote a Ritz Pair from Kj(A; v); let x = Vjy. Then

||Ax− θx|| = |βj| |e∗jy|. (3.4)

Eq. 3.2 is called an Arnoldi decomposition, where Vj and Hj are defined in (4). Eq. 3.3

describes how to build the Arnoldi algorithm, which is going to be described in the following

section, by computing the matrices Vj and Hj. To check that a single Ritz pair is converged,

we determine the size of the residual norm in Eq. 3.4. Extensive research has been done

to study the convergence of actual values and Ritz approximations from Krylov subspace

(Saad, 2003).

3.3 Arnoldi Methods

In 1951, Aroldi introduced a method to transform a general matrix into the Hessenberg form

of dimension k ≤ n. This method constructs an orthogonal basis of the Krylov subspace.

When a matrix is large and sparse, this method will be suitable.

For a fixed k and a unit vector ||v||2 = 1, the classical Gram-Schmidt procedure can be
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used to perform the mentioned orthogonalization process.

So, for k = 1, 2, 3, . . . ,m.

hik = (vi, Avk), i = 1, 2, . . . , k (3.5)

v̂k+1 = Avk −
k∑
i=1

hikvi, (3.6)

hk+1,k = ||v̂k+1||2 (3.7)

vk+1 = v̂k+1/||v̂k+1||2 (3.8)

In Eq. 3.7, if hk+1,k = 0 , the algorithm stops because Eq. 3.8 is undefined. The pro-

cedure is called the classical Gram-Schmidt orthogonalization procedure, and the vectors

v1, v2, . . . , vk+1 are called Arnoldi vectors.

Due to the presence of rounding errors, the loss of orthogonality appears when we use the

classical Gram-Schmidt procedure. So, the modified Gram-Schmidt procedure is a simple

remedy for this situation and can be explained by the following: Given a vector v1 with

||v1||2 = 1,

For k = 1, 2, . . . ,m , do:

w = Avk

For i = 1, 2, . . . , k:

hik = (w, vi)

w = w − hikvi

End for

hk+1,k = ||w||2 vk+1 = w/hk+1,k

End for.

25



Both procedures, classical and modified Gram-Schmidt, perform the same arithmetic

operations, so they have the same computational costs. It is easy to verify that they are

equivalent in exact arithmetic (without rounding errors). Householder reflectors are an-

other implementation used to achieve the required orthogonality (Walker, 1988). It is more

accurate, but more expensive because the operation count is increased.

In the Arnoldi algorithm, we get v1, v2, . . . , vk+1 is an orthogonal basis for Kk(A; v) when

k steps are run. So, if we define a n× k matrix satisfying V T
k Vk = Ik, such that

Vk = [v1, v2, . . . , vk] ∈ Rn×k (3.9)

Then, we have

V T
k AVk = Hkk (3.10)

and

V T
k+1AVk = Hk+1,k (3.11)

where Hk+1,k ∈ R(k+1)×k is the upper Hessenberg matrix with hij computed by Arnoldi al-

gorithm.
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Algorithm 4 Basic Arnoldi

INPUT: Initial unit vector v1, integers m and k
OUTPUT: k dominant eigenpairs from Km(v1;A)

1: set V1 = [v1];
2: for j = 1, 2, . . . ,m do
3: compute the last column hj of Hj and define t = Avj;
4: compute hj = V ∗j (Avj) = V ∗j t;
5: if j > 1 then
6:

Hj =

[
Hj−1 hj(1 : j − 1)
βj−1e

∗
j hj(j)

]
;

7: else
8: H1 = h1 = v∗1Av1;
9: end if

10: compute the orthogonal projection onto ImV ⊥j :
11: define rj = (I − VjV ∗j )(Avj) = t− Vjhj, βj = ||rj||;
12: if βj = 0 then
13: Vj is A-invariant; report convergence and exit.
14: end if
15: vj+1 = rj/βj, Vj+1 = [Vjvj+1];
16: compute Ritz pairs from Kj(v1;A)
17: calculate the dominant eigenvectors (λ1, y1), (λ2, y2), . . . , (λk, yk) of Hj;
18: if j ≥ k and error of Ritz pairs (λi, Vjyi) are small then
19: write convergence and exit
20: end if
21: end for

3.4 Lanczos Methods

For a Hermition matrix, A, we can use the Lanczos algorithm, which is a reduced form of

the Arnoldi algorithm. In this algorithm, the matrix Hj becomes a tridiagonal matrix since

it is a Hermition upper Hessenberg matrix.
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Suppose,

Hj =



α1 β1

β1 α2 β2

β2 α3 β3

. . . . . . . . .

βj−2 αj−1 βj−1

βj−1 αj



where βi ∈ R+, for i = 1, . . . , j − 1.

From the Arnoldi decomposition, we have:

AVj = VjHj + βjvj+1e
∗
j

In the Lanczos algorithm, we are going to have the three term recursive relation,

βjvj+1 = Avj − βj−1vj−1 − αjvj (3.12)

In exact arithmetic we need to orthogonalize Avj only against vj−1 and vj to get vj+1.

When we use Eq. 3.12 in finite precision to find vj+1, the orthogonality may be lost

against v1, v2, . . . , vj−2 . Hence, extensive research has been conducted in this area to resolve

this problem. The most common solutions are:

• Complete reorthogonalization: [See Parlett (1980)]

• Partial and selective reorthogonalization: [See Parlett and Scott (1979)]

• No additional reorthogonalization: [See Cullum and Willoughby (1981)]
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Algorithm 5 Basic Lanczos

INPUT: Initial unit vector v1, integers m and k.
OUTPUT: k dominant eigenpairs from Km(v1;A)

1: β0 = 0;
2: for j = 1, 2, . . . ,m do
3: compute the element in the last column in Hj and t = Avj;
4: αj = v∗j (Avj) = v∗j t;
5: if j > 1 then
6:

Hj =

[
Hj−1 βj−1ej
βj−1e

∗
j αj

]
;

7: else
8: H1 = α1;
9: end if

10: compute the orthogonal projection onto ImV ⊥j :
11: compute rj = (I − VjV ∗j )(Avj) = t− βj−1vj−1 − αjvj and βj = ||rj||;
12: if βj = 0 then
13: Vj = [v1v2 · · · vj] is A−invariant; report convergence and exit.
14: end if
15: set vj+1 = rj/βj and evaluate Ritz pairs from Kj(v1;A)
16: compute the dominant eigenvector (λ1, y1), (λ2, y2), . . . , (λk, yk) of Hj;
17: if j ≥ k and residuals of Ritz pairs (λi, Vjyi) are small enough then
18: report convergence and exit
19: end if
20: end for

3.5 Arnoldi Algorithm with Restarting

The goal of the large scale algorithm is to determine a few eigenvalues and their corresponding

eigenvectors. It is not easy to determine the number of steps that the Arnoldi algorithm

will require to compute the desired, g, eigenpairs. Also, the computer’s capacity may not

be enough to store the basis for Kk when the matrix is very large. The time, moreover, will

be increased because the dimension of the projection matrix increases. Hence, with certain

properties, the number of unwanted Ritz approximation becomes larger and larger when we

want to compute the g eigenpairs exactly. Therefore, we restart the Arnoldi algorithm to

avoid these unwanted effects.
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3.5.1 Explicit Restart

After approximating some eigenpairs by completing m steps of the basic Arnoldi algorithm,

we choose a new initial vector, v(1) and run additional m steps. We continue repeating this

procedure until we get the desired eigenpairs. It is clear that when we follow this approach,

the algorithm will require a fixed amount of memory.

If the subspace Km(v;A) is invariant (the initial vector v belongs to a subspace spanned

by m eigenvectors of the matrix A), the Ritz values will exactly coincide with the eigenvalues

of matrix A.

Let us denote the eigenpairs that we want to compute by: (λ∗1, u
∗
1), (λ∗2, u

∗
2), . . . , (λ∗g, u

∗
g),

and the other eigenpairs by: (λ′1, u
′
1), (λ′2, u

′
2), . . . , (λ′n−g, u

′
n−g) where g ≤ m. Let

v∗ =

g∑
j=1

ξju
∗
j , 0 6= ξj ∈ C

be the ideal starting vector that requires at most m basic Arnoldi steps for computing the

wanted eigenpairs (Sorensen, 1992).

If the Arnoldi algorithm starts with v =
g∑
j=1

ξ∗ju
∗
j +

n−g∑
j=1

ξ′ju
′
j, then a logical choice for the

initial vector is

v(1) = π(A)v =

g∑
j=1

ξ∗jπ(λ∗j)u
∗
j +

n−g∑
j=1

ξ′jπ(λ′j)u
′
j, where |π(λ′j)| � |π(λ′k)|

Here, π is called a polynomial filter.

Algorithm 6 includes all the development steps for the explicit Arnoldi algorithm.

30



Algorithm 6 Arnoldi with Explicit Restart

INPUT: Initial vector v(0), integers g, m, p and An×n.
OUTPUT: Approximations of g wanted eigenpairs.

1: i = 0;
2: while TRUE do
3: run m steps of the Arnoldi algorithm with initial vector v(i):
4: AV

(i)
m −H(i)

m V
(i)
m = β

(i)
m v

(i)
m+1e

∗
m;

5: compute Ritz pairs (λ∗i,j, v
∗
i,j) and (λ′i,j, v

′
i,j);

6: if all g Ritz pairs (λ∗i,j, v
∗
i,j) are accurate approximations of the eigenpairs then

7: report Ritz pairs as eigenpair approximations and exit the loop;
8: else
9: using the computed Ritz pairs, choose a polynomial π ∈ Pp; v(i+1) = π(A)v(i); i =

i+ 1;
10: end if
11: end while

3.5.2 Implicit Restart

In each step of the Arnoldi algorithm with an explicit restart, we require m+ p− 1 matrix-

vector multiplication. The m Arnoldi steps to build up the Krylov subspace require m − 1

multiplication, and the p additional multiplications come from restarting with a polynomial

of degree p. In 1992, Sorensen showed a way of restarting so that in each step, only p matrix-

vector multiplications are required. In the Implicitly Restarted Arnoldi (IRA) algorithm with

exact shift, the eigenvalues of the matrix Hm are the unwanted Ritz eigenvalues. Assume σi

is an eigenvalue of the matrix Hm, then Hm−σiI is a singular matrix, and the bottom right

element of the tridiagonal vector Ri in QR-factorization, Hm − σiI = QiRi is equal to zero.

In Algorithm 7, we see the important steps of the IRA algorithm.
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Algorithm 7 Arnoldi with implicit Restart

INPUT: Initial vector v(0), integers g, m and p.
OUTPUT: g eigenpairs.

1: i = 0;
2: compute m steps of the Arnoldi algorithm with initial vector v(0):
AV

(0)
m = H

(0)
m V

(0)
m + r

(0)
m e∗m;

3: compute Ritz pairs (λ∗i,j, v
∗
i,j) and (λ′i,j, v

′
i,j);

4: while not all g Ritz pairs (θ∗i,j, v
∗
i,j) are accurate approximations of eigenpairs of A do

5: choose shifts σ1, σ2, . . . , σp ∈ C using the computed Ritz pairs;
6: Q = Im;
7: for j = 1, 2, · · · , p do
8: modify H

(i)
m and Q by calling (H

(i)
m , σj, Q)

9: end for
10: β̂ = Qm,m−p; β̃ = Hm−p+1,m−p, and r̃m−p = β̂r

(i)
m + β̂V

(i)
m Qem−p+1;

11: Ṽm−p = (V
(i)
m .Q)(:, 1 : m− p), and H̃m−p = H

(i)
m (1 : m− p, 1 : m− p);

12: i = i+ 1;
13: compute p more steps of the Arnoldi algorithm started with

AṼm−p = Ṽm−pH̃m−p + r̃m−pe
∗
m−p;

denote AV
(i)
m = H

(i)
m V

(i)
m + r

(i)
m e∗m;

14: compute Ritz pairs (λ∗i,j, v
∗
i,j) and (λ′i,j, v

′
i,j)

15: end while

3.6 Convergence of The Restarted Arnoldi Algorithm

Extensive research has been conducted on the convergence theory of the restarted Arnoldi

algorithm. Let

AV (i)
m = V (i)

m H(i)
m + β(i)

m v
(i)
m+1e

∗
m (3.13)

be a sequence of the Arnoldi output where the columns of V
(i)
m consist of an orthogonal basis

for a Krylov subspace, Km(A; v(i)). Let v(i) be a starting vector such that

v(i+1) = πi(A)v(i) (3.14)

where πi is a polynomial filter at ith restarted step. For all i and some polynomial π of degree

p, if the filter stays the same at π and πi, then the convergence is obvious.
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Now, suppose λ1, λ2, . . . , λn are ordered eigenvalues for the diagonalizable matrix A such

that:

|π(λ1)| ≥ |π(λ2)| ≥ · · · ≥ |π(λm−p)| > |π(λm−p+1)| ≥ |π(λm−p+2)| ≥ · · · ≥ |π(λn)|.

Let u1, u2, . . . , un be the associated eigenvectors, and for the initial vector v(1), we have:

v(1) =
n∑
j=1

ξjuj, where ξ1, ξ2, . . . , ξm−p 6= 0

With some normalizing vector, the restarted initial vector v(i) satisfies the following:

v(i) = αi

n∑
j=1

ξj(
|π(λi)|

|π(λm − p)|
)iuj,

The restarted Arnoldi method will converge because the components of the vectors

u1, u2, . . . , um−p begin to dominate, forcing v(i) ultimately into an invariant subspace. In

other words, the angle between the Krylov subspace and the eigenspace associated with

λ1, λ2, . . . , λm−p converges to zero.

In 1992, Sorensen showed that when A is a Hermitian Matrix, the restarted Arnoldi

algorithm converges with such filters.

Theorem 3.6.1 (Sorensen (1992)). Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the

Hermitian matrix A and u1, u2, . . . , un the associated eigenvectors. Consider a sequence of

Arnoldi decomposition Eq. 3.13 and Eq. 3.14 such that the polynomial filter πi has degree p

and roots θ
(i)
m−p+1, θ

(i)
m−p+2, . . . , θ

(i)
n . Here, θ

(i)
1 ≥, θ

(i)
2 ≥, . . . , θ

(i)
m are the Ritz values computed

from the Arnoldi decomposition Eq. 3.13 . Suppose that the starting vector v(1) has a non-

zero component in the direction of each of u1, u2, . . . , um−p.

Furthermore, suppose that H
(i)
m−p(j + 1, j) > ε > 0 for all i and j. Then ∀i, θ(i)

j −→ λj

for all j = 1, 2, . . . ,m− p.
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However, in 2009, Embree showed that Theorem 3.4 is not valid for the Non-Hermiatian

matrices (Embree, 2009).

3.7 Implicit Restarted Lanczos

The Basic Lanczos Algorithm (BLA), Algorithm 6, is a suitable algorithm for finding the

few largest or smallest eigenpairs related to very large symmetric matrices. But the accuracy

of computing approximated eigenpairs can be reduced because of the loss of orthogonality

of computing the Krylov subspace. Also, the BLA suffers from large storage requirements.

However, the Implicit Restarted Lanczos (IRL) algorithm has been studied to address these

difficulties. The IRL algorithm is a special case of the IRA algorithm, and it can be obtained

by specializing the IRA to symmetric case. After k steps of the factorization, we have

AV = V H + feTk (3.15)

where V ∈ Rn×k, V TV = Ik, H ∈ Rk×k is symmetric and tridiagonal and f ∈ Rn with

V Tf = 0. Eq. 3.15 also can be written as

AV = (V, v)(HβeTk )T , β = ||f ||, v =
1

β
f (3.16)

Eq. 3.15 is a truncation of the complete reduction of matrix A ∈ Rn×n to the tridiagonal

form.

Let (θ, y) be an eigenpair of matrix H. Then the vector x = V y is referred to as a Ritz

vector and θ as a Ritz value of A when Eq. 3.17 is satisfied.

||Ax− xθ|| = ||(AV − V H)y|| = |βeTk y| (3.17)

It is clear that the residual error, Eq. 3.17, associated with the Ritz pair (θ, x) can be
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determined by evaluating |βeTk y| without computing the Ritz vector x explicitly.

Using iterative refinement to orthogonalized f against V as it is computed is the best

way to solve the loss of orthogonality in the BLA because the computations required can

be expressed in terms of the BLA and because the columns of V can be updated with the

orthogonal transformations required to perform the implicitly shifted QR-steps.

If g is the number of the desired eigenpairs, then the Lanczos algorithm replaces the

general matrix, An×n, with an orthonormal matrix, V(k+p)×(k+p), and a tridiagonal matrix,

H(k+p)×(k+p), where p is not much larger, and may be smaller, than k, such that:

AVk+p = Vk+pHk+p + rk+pe
T
k+p (3.18)

This can be done after k + p iterations. For more information, see Calvetti et al. (1994).

3.7.1 Shift Selection

The convergence of the IRL algorithm can be determined by the selection of the shifts;

the values ν1, ν2, . . . , νn are called shifts, where p(z) = (z − ν1)(z − ν1) · · · (z − ν1). The

two common kinds of shifts that can be used with the IRL algorithm are exact shifts and

Leja shifts. Exact shifts can be obtained by selecting p eigenvalues from all the computed

eigenvalues of the tridiagonal matrix (Saad, 2003). The Leja shifts are Leja points for an

interval on the real axis that contains unwanted eigenvalues.

Before we introduce the algorithm that can be used to compute the p Leja shifts (Leja

points) we need to give some basic definitions. Let C denote the complex plane, R real

numbers and let Ω ⊂ C be a compact set. G(s, t) is called a Green’s function, and it is

uniquely determined by the requirements (i) ∆G(s, t) = 0 in Ω, (ii) G(s,t) = 0 on dΩ and

(iii)
∫
dΩ

∂
∂n
G(s, t)dσ = 1, where ∂

∂n
denotes the normal derivative direction into Ω and dσ
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stands for the element of arc length. The nonnegative number denoted by

c = lim
|z|→∞

|z| exp(−G(s, t)), z = s+ it

is called the capacity of K, and it depends on the size of K.

Let w(z) be the continuous weight function on K, such that

α ≤ w(z) ≤ β, z ∈ K (3.19)

for some constants 0 < α ≤ β <∞, and introduce a sequence of points, {zj}∞j=1 of points in

K as follows. Let z0 be a point such that

w(z0)|z0| = max
z∈K

w(z)|z|, z0 ∈ K (3.20)

and let zj satisfy

w(zj)

j−1∏
l=0

|zj − zl| = max
z∈K

w(z)

j−1∏
l=1

|z − zl|, zj ∈ K, j = 1, 2, . . . (3.21)

The sequence of points {zj}j=∞j=1 that satisfy Eq. 3.19 and Eq. 3.20 is called weighted

Leja points or Leja shifts for K. The following algorithm, Algorithm 6, shows the main steps

for computing the Leja shifts.
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Algorithm 8 Compute p Leja shifts for Kj given points {zk}r−1
k=0

INPUT: Initial values aj, bj, λk+1, r, {zk}r−1
k=0.

OUTPUT: Leja shifts {zk}p+r−1
k=r

1: k = r;
2: if k = 0 then
3: set z0 = bj
4: else
5: determine zk ∈ K, so that

w(zj)
j−1∏
l=0

|zj − zl| = max
z∈K

w(z)
j−1∏
l=1

|z − zl|, where w(z) = |z − λk+1|

6: end if
7: set k = k + 1
8: if k < p+ r then
9: GO TO STEP 2

10: else
11: STOP;
12: end if

3.7.2 Implicit Restarted Lanczos with Exact Shifts

The IRL method is a polynomial acceleration scheme, and on the choice of acceleration poly-

nomials, the rate at which eigenvalues and invariant subspaces are determined depends on

the IRL algorithm with exact shifts, implicitly shifted QR-algorithm, and yield convergence.

However, this convergence can be very slow (Calvetti et al., 1994). The best choices for exact

shifts are the remaining eigenvalues of the (k + p) × (k + p) symmetric tridiagonal matrix

that we got after Lanczos factorization. Let us assume the eigenvalues are ordered according

to

θ1 < θ2 < · · · < θ(k+p) (3.22)

Let (θj, xj) be a Ritz eigenpair for matrix A. Then from Eq. 3.17 we get,

||Axj − xjθj|| = |βk+pe
T
k+pyj|, 1 ≤ j ≤ k + p (3.23)
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where βk+p is defined by Eq. 3.18. In the following algorithm, Algorithm 9, we explain the

main steps of the IRL with exact shifts.

Algorithm 9 IRL-ES

INPUT: Initial values A, k, p, v1, ε;
OUTPUT: Set of eigenpairs {λ̂j, v̂j}kj=1;

1: determine the Lanczos factorization Eq. 3.18
2: compute the eigenvalues Eq. 3.22 of the Hk+p

3: if max
1≤j≤k+p

||Axj − xjλj|| = |βk+pe
T
k+pyj| ≤ ε|λj|, where ε > 0, then STOP;

4: apply the exact shifts: µ = λj, j = k + 1, . . . k + p
5: advance Lanczos factorization p steps in order to obtain Eq. 3.18

3.7.3 Implicit Restarted Lanczos with Leja Shifts

There are two kinds of IRL algorithms with Leja shifts. Specifying how to choose the

endpoints a and b of the interval K is the key point to obtain an IRL algorithm based on

the Leja shifts. Let K = [a, c] ∪ [d, b] be the union of two real intervals with end points

a, b, c, d. The first algorithm uses Leja shifts for a sequence of nested intervals Kj = [aj, bj].

First, when we determine the eigenvalues of the symmetric tridiagonal matrix H(k+p) in the

algorithm, we define the initial interval K0 = [a0, b0] with

a0 = θk+1, b0 = θk+p (3.24)

For each new eigenvalue, we update Kj = [aj, bj] by Kj+1 = [aj+1, bj+1], where

aj+1 = min{aj, θk+1}, bj+1 = max{bj, θk+p}, j = 0, 1, 2, . . . (3.25)

The eigenvalues of the symmetric tridiagonal matrix, Hk+p, satisfy

λk ≤ θk, θk+p ≤ λn
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The sequence of intervals Kj = [aj, bj], j ≥ 0, defined by Eq. 3.24 and Eq. 3.25 satisfies:

Kj = [aj, bj] ⊂ Kj+1 = [λk+1, λn]

The following algorithm, Algorithm 9, shows the main steps of the IRL for Leja Shifts with

Nested Intervals (IRL-LSNI)(Calvetti et al., 1994).

Algorithm 10 IRL-LSNI

INPUT: Initial values A, k, p, v1, ε;
OUTPUT: Set of eigenpairs {λ̂j, ûj}kj=1;

1: determine the Lanczos factorization Eq. 3.18
2: compute the eigenvalues Eq. 3.22 of the Hk+p

3: If max
1≤j≤k+p

||Axj − xjλj|| = |βk+pe
T
k+pyj| ≤ ε|λj|, where ε > 0, then STOP;

4: if j = 0 then define the interval Kj = [aj, bj] by Eq. 3.24 else by Eq. 3.25

5: compute p Leja shifts {zk}(j+1)p−1
k=jp for Kj by Algorithm 8

6: apply shifts µ = zk, k = jp, jp+ 1, . . . , (j + 1)p− 1
7: apply the exact shifts: µ = λj, j = k + 1, . . . k + p
8: advance Lanczos factorization p steps in order to obtain Eq. 3.18; j = j+1; Go to 2;

An updated version of the IRL-LSNI algorithm is the IRL for Leja Shifts with Free Left

Endpoints (IRL-LSFLE) algorithm, where the endpoints of the intervals Kj = [aj, bj] are

updated according to

aj+1 = θk+1, bj+1 = max{bj, θk+p}, j = 0, 1, 2, . . . (3.26)

In this case, the sets of Kj will be smaller than the set that we get in the IRL-LSNI algorithm.

In the following algorithm, Algorithm 11, we see the main steps for the IRL-LSFLE algorithm

(Lehoucq et al., 1998).
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Algorithm 11 IRL-LSFLE

INPUT: Initial values A, k, p, v1, ε;
OUTPUT: Set of eigenpairs {λ̂j, ûj}kj=1;

1: determine the Lanczos factorization Eq. 3.18
2: compute the eigenvalues Eq. 3.22 of the Hk+p

3: if max
1≤j≤k+p

||Axj − xjλj|| = |βk+pe
T
k+pyj| ≤ ε|λj|, where ε > 0, then STOP;

4: if j = 0 then define the interval Kj = [aj, bj] by Eq. 3.24 else by Eq. 3.26

5: compute p Leja shifts {zk}(j+1)p−1
k=jp for Kj by Algorithm 8

6: apply shifts µ = zk, k = jp, jp+ 1, . . . , (j + 1)p− 1
7: apply the exact shifts: µ = λj, j = k + 1, . . . k + p
8: advance Lanczos factorization p steps in order to obtain Eq. 3.18; j = j+1; GO TO 2.

3.8 Conclusion

The complexity of computing all eigenpairs of any n × n matrix using the QR method is

O(n3). If we are interested in finding only k smallest or largest eigenvalues of a symmetric

matrix, we can use Lanczos algorithm. The idea of the Lanczos algorithm is to replace the

real symmetric n× n matrix by a real symmetric tridiagonal (k+ p)× (k+ p) matrix where

k is the number of desired eigenvalues and p is close to k. This substantially improves the

computational efficiency as computing all eigenvalues for an n × n tri-diagonal matrix is

of O(nk2) complexity. However, the basic Lanczos algorithm can suffer from large storage

requirement and memory issues. The IRL algorithm has been studied to address some of

these problems. The IRL can compute k largest or smallest eigenvalues and the associated

eigenvectors. In our work, the IRL-LSFLE is going to be used, and it was implemented using

RSpectra package (Qiu and Mei, 2016).
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Chapter 4

A Computationally Efficient Hierarchical Model for Large Areal Data

4.1 Introduction

As we have described in Chapter 2, datasets indexed by geographical features are common

in different fields of scientific applications. For many of these datasets, the measurements

from adjacent spatial units may exhibit significant association. This association arises due to

the similarity of many underlying factors between adjacent units that influence the response.

However, in practice, it is likely that many of these factors are actually unobserved or difficult

to quantify or to measure. Hence, the available pool of covariates may not be adequate to

capture the association. The role of a spatial stochastic model in this setting is to account

for this additional correlation by using a vector of random effects, one for each unit. In

a hierarchical setting, this can be achieved by imposing a prior joint distribution on these

random effects that allows for correlation based on geographical proximity. Use of a spatial

random effect significantly improves the predictive accuracy of the model as it allows for

borrowing of information from observed locations to unsampled regions.

There is well-established literature on the hierarchical framework for spatial data col-

lected from adjacent areal units. The most common approach is to introduce an MRF - type

joint prior where the conditional distribution of each random effect is dependent only on

random effects from areal units pre-classified as neighbors - this allows for spatial smooth-

ing. A frequently used class of MRF distribution is a CAR prior that specifies each of these

conditional distributions as univariate normal with the mean being average of spatial effects

at neighboring units. The CAR prior is a common choice for many Bayesian approaches

because (i) it yields a standard, easy-to-sample posterior distribution for simulation of spa-
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tial effects using MCMC in linear and generalized linear models and (ii) since the joint

distribution is specified through univariate full conditionals, one does not have to deal with

high-dimensional matrix computation (as in Gaussian process-based methods). However,

with a large number of areal units, estimating these effects one-by-one from conditional

distributions becomes computationally intensive; suffers from strong correlation and poor

mixing performance.

The key contribution of this chapter is to propose an alternative adjacency-based Bayesian

hierarchical model for areal-level datasets using a low-rank approximation of the spatial ef-

fects. Such approximations are common in analyzing large point-referenced (Higdon, 1998;

Banerjee et al., 2008) or point pattern (Chakraborty et al., 2011) datasets due to their com-

putational efficiency. However, there has been limited development of this kind of approach

in the areal framework. Treating the areal units as vertices of a graph, we studied the

spectral properties of its Laplacian matrix and established the link between ordering of its

eigenvectors and frequency of spatial variation. Subsequently, we proposed to replace the

original set of spatial effects with a truncated linear combination of these eigenvectors so

that high-frequency spatial patterns are approximated with a white noise. To enhance the

flexibility of our approach and to encourage sparsity, we treated the included set of eigen-

vectors as well as their number as parameters and updated them using a reversible jump

Markov chain Monte Carlo (RJMCMC; Richardson and Green, 1997) scheme.

We illustrate the use of our method to address an important topic of ecological research-

modeling of species abundance. Our focus is the presence-absence setting where abundance

information is aggregated at an areal resolution in terms of raw counts or ordinal categories.

The goal of a stochastic model in this setting is to explain how the variation in environ-

mental features influences degree of abundance and to predict the abundance distribution

at unsampled part of the region. The presence of spatial random effect in the abundance

distribution can account for ecological phenomena such as localized dispersal, as well as in-
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fluence of omitted/unobserved geographical features with spatial pattern that, at sufficiently

high resolution, correlate the abundance of a species at one location with its abundance at

neighboring locations (Ver Hoef et al., 2001). As a result, a spatial model improves the

predictive quality of the model by borrowing information across locations (Gelfand et al.,

2006). Abundance datasets that come from a large study region usually have two common

characteristics: (i) a significant part of the region remains unsampled due to difficulty of

accessibility but (ii) on the other hand, the accessible part of the region is sampled at a

dense resolution. Whereas the latter allows for fine-scale analysis of species-environment re-

lationship, the former implies we need a very large number of spatial random effects to cover

the entire study region at that scale. The usual spatial model for such datasets becomes

computationally challenging and that is where our method can be established as an efficient

alternative.

The organization of this chapter is as follows. In Section 4.2, we developed the main

hierarchical model in detail. Parameter estimation from this model using an adaptive MCMC

algorithm is mentioned in Section 4.3. Multiple simulation and comparison studies are

presented in Section 4.4 followed by the real data application in Section 4.5. We conclude

this chapter in Section 4.6 with discussion of possible extensions.

4.2 Method Based on Spectral Structure

The CAR specification, described in Chapter 2.6, is convenient in terms of simple and in-

tuitive posterior full conditional distribution for each spatial effect and is frequently used in

areal data modeling. However, it suffers from some important limitations. First, when the

number of such areal units is very large, we have to sequentially sample each component of θ

at each iteration of the MCMC, which increases the computation time significantly. Second,

use of posterior full conditionals introduces strong correlation across successive draws of the

MCMC which results in lower effective sample size and/or larger thinning interval to obtain
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approximately independent samples from posterior distribution, again increasing the com-

putation time. Third, similar to its prior, the posterior joint distribution of θ is improper

as well - Banerjee et al. (2014) discusses two possible solutions for this. One could use a

ρ-CAR with ρ < 1 implying propriety. However, they have shown that a reasonably strong

spatial correlation would need ρ to be very close to 1 which would again lead to numerical

impropriety. Another commonly used solution is to do an adhoc mean-centering for the θ

vector at each iteration, referred to as ‘centering on the fly’.

Based on the above discussion, our objective in this chapter is to propose an alternative

specification for multivariate prior distribution for θ that is based on neighborhood structure

W like CAR but is computationally efficient for large regions. For this purpose, we use the

graph Laplacian as described below.

Consider the data structure described in Chapter 2.2. If we think of the areal units as n

vertices of a graph G, then W acts as the adjacency matrix of G. (wij = 1 is equivalent to

having an undirected edge between Ai and Aj.) Then, the graph laplacian for G is defined

to be an n× n matrix L = Dw −W where Dw is a diagonal matrix containing the number

of neighbors for each areal unit: Dw[i, i] = wi+.

Characteristics of L matrix are well-explored in literature (Chung, 1997). It is a singu-

lar, non-negative definite with number of zero eigenvalues equal to the number of connected

components in G. In the following development, we assume a connected graph so L has only

one zero eigenvalue with eigenvector 1n. Our goal is to utilize its properties in the prior

distribution for θ. For that, we present the following result. Suppose, f is a function defined

on the vertices of G, so we can denote fG =
(
f(A1), f(A2), . . . , f(An)

)T
. Define the total

variability of f on G as σ2
G(f) = 1

2

∑
wij=1

(
f(Ai) − f(Aj)

)2
, the total squared difference

between the values of f at any pair of neighboring units (the factor of 1/2 adjusts for count-

ing any (i, j) pair twice). Then, we show that σ2
G can be written as a quadratic form in fG

involving the Laplacian L as we proved in the following result.
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Result: For a function f defined on a graph G with Laplacian L, σ2
G(f) = fTGLfG.

Proof:

σ2
G(f) =

1

2

∑
i

∑
j

wij(f(vi)− f(vj))
2

=
1

2

(∑
i

∑
j

f(vi)
2wij +

∑
i

∑
j

f(vj)
2wij − 2

∑
i

∑
j

f(vi)f(vj)wij

)
=

1

2

(∑
i

f(vi)
2
∑
j

wij +
∑
j

f(vj)
2
∑
ij

wij − 2
∑
i

∑
j

f(vi)f(vj)wij

)
=

1

2

(∑
i

f(vi)
2wi+ +

∑
j

f(vj)
2wj+ − 2

∑
i

∑
j

f(vi)f(vj)wij

)
=

1

2

(
2
∑
i

f(vi)
2wi+ − 2

∑
i

∑
j

f(vi)f(vj)wij

)
=

∑
i

f(vi)
2wi+ −

∑
i

∑
j

f(vi)f(vj)wij

= fTGLfG

Let us define the spectral decomposition of L as L =
∑n

i=1 λ(i)viv
T
i with λ(i) being the ith

smallest eigenvalue of L with corresponding eigenvector vi (there may be eigenvalues with

multiplicity > 1). Using Courant-Fischer Minimax Theorem (Courant and Hilbert, 1965),

the above result implies that for σ2
G to be smallest: without any constraint, fG needs to a

multiple of v1; constraining fG to be orthogonal to v1, it needs to be a multiple of v2; . . . ,

constraining fG to be orthogonal to v1, v2, . . . , vi−1, it needs to be a multiple of vi.

It implies that linear combination of the eigenvectors corresponding to smaller eigenval-

ues of L generate functions with small σ2
G - they are mostly similar across different units

indicative of strong spatial association. In fact, for a connected graph, the (unnormalized)

eigenvector corresponding to the smallest eigenvalue is the vector 1n, which is a spatially

constant function with σ2
G = 0. On the other hand, eigenvectors associated to larger eigen-

values of L can represent functions that rapidly change from one unit to its neighboring unit
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- functions that behave more like random noise with weak association.

To link these characteristics to the specification of θ, first observe that it can be written

as an exact linear combination θ =
∑n

m=1 ηmvm for a set of coefficients η1, η2, . . . , ηn. When

θ shows strong spatial association, it follows from the above discussion that, we expect ηm

to be significant for small values of m. For identifiability constraint, we set η1 = 0. Then,

we propose a low-rank representation of θ as follows:

θ =
k+1∑
m=2

ηmvm (4.1)

The above representation of θ adds new interpretation to the role of the nugget term

ε. We are expressing a n dimensional random vector using a random linear combination

of k fixed eigenvectors with k � n. In addition to capturing measurement error, ε serves

two purposes here. First, since we are excluding vk+2, vk+3, ..., vn from the expansion of θ,

we are basically eliminating high-frequency spatial variation from the model. The nugget

term is expected to represent the average variability due to those excluded high-frequency

components. Second, although the distribution of θ is now rank-deficient, addition of ε

implies that the response vector z still has a full-rank marginal dispersion as a noisy version of

the low-rank spatial structure. The adequacy of above expansion as well as its computational

advantage depend heavily on choice of the truncation level k, that we discuss in detail in the

following section.

4.3 Adaptive Selection of Eigenvectors

Instead of using a pre-fixed value of number of eigenvectors k in Eq. 4.1, we treat it as a

parameter. We allow variability in two directions to encourage a sparse representation of θ

if supported by the data. First, instead of using a fixed value of k, we fix an upper bound

kmax. So, at any stage during MCMC, the number of nonzero η coefficients = k ≤ kmax.
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Hence, even if we conservatively set a large value of kmax, we allow the data to choose a small

number of terms if adequate. Second, at any iteration, the k indices of η coefficients do not

need to be consecutive, instead they could be any k numbers from a set {2, 3, . . . , k0 + 1}

where k0 is another pre-fixed threshold. It implies, the MCMC algorithm can add or delete

eigenvectors from the expansion of θ flexibly, depending on the evidence from data. Using

smaller values of k0 or kmax allow us to focus on simpler models and prevents overfitting.

Letting k to vary will imply that the MCMC will move between parameters sets of vary-

ing dimensions. To achieve this, we employ the RJMCMC scheme of Richardson and Green

(1997). Below, we develop the algorithm when z is Gaussian. For any non-Gaussian z fol-

lowing a generalized linear model, one can replicate the same technique on some appropriate

parameter from the distribution of z. Further note that, for the Gaussian case, one should

not use a noise term directly in the distribution of z as the expansion of θ in Eq. 4.1 already

contains a nugget.

Suppose, at a particular iteration of MCMC, the nonzero coefficients in the expansion of

θ are ηs1 , ηs2 . . . ηsk where k ≤ kmax and 2 ≤ si ≤ k0+1. If we define an n×(p+k) dimensional

matrix Xk = [X vs1 vs1 · · · vsk ] and another (p + k) dimensional vector β̃k = (β1, β2, . . . ,

βp, ηs1 . . . , ηsk)
T , then it follows from above that z = (z1, z2, . . . , zn)T ∼ MVN(Xkβ̃k, σ

2In).

To make the dimension-changing move, we first marginalize out β̃ and σ2 from the model.

Thus, to compute the new likelihood for a proposed move, it suffices to know how the Xk

matrix is going to change under the proposal without the need to propose coherent updates

to β̃k and σ2. This is expected to improve the performance of RJMCMC as the moves are

accepted or rejected based on increase in marginal likelihood of z. The marginal likelihood

computation, performed under a multivariate normal prior for β̃k and an IG prior for σ2, is

shown below. We start with the hierarchical structure

z ∼MVN(Xkβ̃k, σ
2In), β̃k ∼MVNp+q(β̃k0 , σ

2τ 2Ip+k), σ
2 ∼ IG(a1, b1)
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Then, the marginal density of z is calculated as

f(z) =

∫∫
f(z|β̃, σ2)π(β̃, σ2)dβ̃dσ2

=

∫∫
f(z|β̃k, σ2)π(β̃k|σ2)π(σ2)dσ2dβ̃k

∝
∫∫

(σ2)
−n
2 exp

{
−(z −Xkβ̃k)

T (z −Xkβ̃k)

2σ2

}
(σ2τ 2)

−(k+p)
2

× exp

{
−(β̃k − β̃k0)T (β̃k − β̃k0)

2σ2τ 2

}
(σ2)−(a1+1) exp

{
−n
σ2

}
dσ2dβ̃k

=

∫∫
(σ2)−(a1+n

2
+ k+p

2
+1)(τ 2)

−(k+p)
2 exp

{
−(z −Xkβ̃k)

T (z −Xkβ̃k)

2σ2

}

× exp

{
−(β̃k − β̃k0)T (β̃k − β̃k0)

2σ2τ 2

}
exp

{
−b1

σ2

}
dσ2dβ̃k

We can identify the part involving σ2 as another IG density:

IG

(
a1 +

n

2
+
k + p

2
, b1 +

(z −Xkβ̃k)
T (z −Xkβ̃k)

2
+

(β̃k − β̃k0)T (β̃k − β̃k0)
2τ 2

)

Its normalizing constant will be:

[
b1 +

(z −Xkβ̃k)
T (z −Xkβ̃k)

2
+

(β̃k − β̃k0)T (β̃k − β̃k0)
2τ 2

]−(a1+n+k+p
2

)

Hence the above integral is:

= (τ 2)
−(k+p)

2

∫ [
b1 +

(z −Xkβ̃k)
T (z −Xkβ̃k)

2
+

(β̃k − β̃k0)T (β̃k − β̃k0)
2τ 2

]−(a1+n+k+p
2

)

dβ̃k

= (τ 2)
−(k+p)

2

∫ [
β̃Tk Aβ̃k − 2β̃Tk B + C

]−(a1+n+k+p
2

)

dβ̃k
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where: A = 1
2
(XT

k Xk +
Ik+p
τ2

), B = 1
2
(XT

k z +
β̃k0
τ2

)), C = b1 + zT z
2

+
β̃Tk0

β̃k

2τ2

= (τ 2)
−(k+p)

2

∫ [
(β̃k − A−1B)TA(β̃k − A−1B) + (C −BTA−1B)

]−(a1+n+k+p
2

)

dβ̃k

Denote: µ̃ = A−1B, Σ̃ = A−1, c̃ = C −BTA−1B. Then, the integral becomes

= (τ 2)
−(k+p)

2

∫ [
c̃+ (β̃k − µ̃)T Σ̃−1(β̃k − µ̃)

]−(a1+n+k+p
2

)

dβ̃k

= (τ 2)
−(k+p)

2 c̃−(a1+n+k+p
2

)

∫ [
1 + (β̃k − µ̃)T

Σ̃−1

c̃
(β̃k − µ̃)

]−(a1+n+k+p
2

)

dβ̃k

Let us define d = 2a1 + n. Then the integral becomes:

= (τ 2)
−(k+p)

2 c̃−( d+k+p
2

)

∫ [
1 +

1

d
(β̃k − µ̃)T (

c̃Σ̃

d
)−1(β̃k − µ̃)

]−( d+k+p
2

)

dβ̃k

The quantity inside the integral is proportional to the density function of a (k + p)-variate

t random variable with df = d. So the integral will be its normalizing constant

(τ 2)
−(k+p)

2 c̃
−(d+k+p)

2 |c̃Σ̃|
1
2 = (τ 2)

−(k+p)
2 c̃

−d
2 |Σ̃|

1
2

It is evident from the above derivation that the marginal likelihood calculation involves

working with only (p + k)-dimensional matrices which provides a significant computational

advantage when n� (p+ k). Post-reversible jump, conditional on the selected indices, one

can update components of β̃k and σ2 using standard distributions.

The key parameters in the dimension-changing move are {k, s1, s2, . . . , sk}. We propose

to move them between two successive iterations in three possible ways:

• Birth: propose to increase k to k+ 1 and choose one of the currently excluded indices.

• Death: propose to reduce k to k− 1 and delete one of the k currently included indices.
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• Swap: keep k unchanged, but replace one of the currently included indices with a

currently excluded index.

The prior for k is chosen to be a Poisson distribution truncated at kmax. When k

reaches kmax, we allow only moves of the type (ii) or (iii). Given k, the prior on the indices

(s1, s2, . . . , sk) is taken to be uniform over all k-length subsets of {2, . . . , k0+1}. Alternatively,

one may opt for non-uniform probability mass functions to treat larger and smaller indices

differently. Below we present the details of RJMCMC for variable-dimension coefficient

estimation.

Denote by νk = {s1, s2, . . . , sk} the collection of included indices in the model. Using

a suitable proposal distribution, q, propose a dimension changing move (k, νk) → (k′, νk′).

The birth, death and swap imply addition, deletion and replacement of eigenvectors ot at a

time. Thus k′ ∈ {k − 1, k, k + 1}.

The acceptance ratio for such a move is given by

pk→k′ = min

{
1,

f (z|k′, νk′ , . . . )
f(z|k, νk, . . . )

p (νk′ , k
′)

p (νk, k)

q ((k′, νk′)→ (k, νk))

q ((k, νk)→ (k′, νk′))

}

We specify a prior for (k, νk) in the form of p(νk|k)p(k). As mentioned above, k has a

Poisson(λ) prior truncated to the right at kmax. Conditional on k, prior for νk assigns equal

probability to any k-length subset of {1, 2, . . . , k0}. Hence we have,

π(νk|k) =
1(
k0

k

) =
k!(k0 − k)!

k0!
∝ k!(k0 − k)!

Next, we specify the proposal distribution q for each of the three moves. For a birth

move, we need to draw a new index from (k0−k) excluded indices. We are going to propose a

birth with probability pb,k and, if a birth is proposed, randomly include a specific eigenvector
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with probability 1
k0−k . Hence, for a birth step, k′ = k + 1, and

q[(k, νk)→ (k + 1, νk+1)] = pb,k ×
1

k0 − k

Second, for a death move, we want to remove one of the k indices currently in the model.

We are going to propose a death with probability pd,k and, if we propose the death, then the

chance that we remove a particular eigenvector is 1
k
. Hence, for a death step, k′ = k−1, and

q[(k, νk)→ (k − 1, νk−1)] = pd,k ×
1

k

Finally, we may want to keep k eigenvectors, but replace one of the existing eigenvectors

with a new one. We are going to propose it with probability ps,k = 1− pb,k − pd,k, and if we

propose the swap, then the chance that we delete and include a specific pair of eigenvectors

is 1
k(k0−k)

. Hence, for a swap step, k′ = k, ν ′k denotes the updated set of k indices and

q[(k, νk)→ (k, ν ′k)] = ps,k ×
1

k(k0 − k)

The acceptance ratios for different types of move can be worked out from the above prior

and proposal distributions. Set k = k′, νk = νk′ if the move is accepted, leave unchanged

otherwise. Subsequently, β̃k can be updated using the (k + p)-variate t distribution with

degrees of freedom d, mean µ̃, dispersion c̃Σ̃
d

whose expressions are derived above.

We note that, to have v2, ..., vk0 available, one needs to compute the k0 smallest eigenvalues

of L and their associated eigenvectors. However, this computation needs to be done only

once before the MCMC (Section 4.6 mentions a setting where this is not true). When n very

large, it takes significant time to compute the entire spectral decomposition to determine

the k0 smallest eigenvalues. In that case, one may use a more efficient algorithm as outlined

in Chapter 3. We present a simulation study in the following section.
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4.4 Simulation Studies

We conduct multiple simulation studies to for assessing computational and predictive prop-

erties of proposed method. In the following, we first explore variation in computational time

in obtaining the eigenvectors for different choices of n, k and sparsity of W . Next, we present

predictive and computational comparison of the proposed approach against CAR.

4.4.1 Simulation Study I

To find out the k smallest eigenvalues of the graph-Laplacian L in this work, we used the

IRL-LSEFE with shift-and-invert mode (Chapter 3). Here, instead of finding eigenvectors

corresponding to k smallest eigenvalues of L, we (equivalently) find eigenvectors that corre-

spond to k largest eigenvalues of (L − aI)−1 where a is a fixed real number of our choice.

We chose a = −0.01 since all eigenvalues of L are non-negative. The reason for adopting

this approach is the fact that the Lanczos algorithm converges faster to the eigenvalues with

largest magnitude. Note that, we cannot choose a = 0 as L is singular.

Now, we present simulation studies that numerically illustrate the benefit of above-

mentioned approach with respect to much-improved computation time. In each case, we

define a regular grid with large number of cells, define a neighborhood structure with pre-

defined distance threshold, compute the Laplacian and find its k smallest eigenvectors. In

Table 4.1, we compare the IRL-LSEFE algorithm against the general method of doing a

complete eigen decomposition as the graph size increases.

Table 4.1: Computational time (mm:ss) for IRL-LSFLE and QR method for 100 smallest
eigenpairs

n 5000 15000 25000

# of neighbors 8 20 8 20 8 20

IRL-LSFLE 0:01 0:01 0:01 0:01 0:02 0:03

QR method 2:42 2:42 9:43 69:44 23:16 323:36
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In Table 4.2, we explore the computational sensitivity of IRL-LSEFE approach to the

grid size as well as sparsity. If we increases the distance threshold for defining neighbors,

that reduces the sparsity of the graph structure. Here, we analyzed four different grid sizes

(substantially larger than those in Table 4.1), each with two different sparsity levels.

Table 4.2: IRL-LSFLE computation times (mm:ss) for variation in n, k and sparsity of L

n 25000 50000 100000 200000

# of neighbors 8 20 8 20 8 20 8 20

50 0:02 0:03 0:04 0:05 0:06 0:14 0:16 0:29

100 0:02 0:03 0:05 0:07 0:09 0:14 0:28 0:46

k 500 1:46 1:54 3:30 3:51 6:37 7:16 12:33 13:59

1000 7:20 7:34 14:01 14:40 25:45 27:01 44:11 50:52

2000 33:24 33:53 59:35 60:35 104:59 107:15 190:06 196:40

As we have expected, computation time increases if we make one or more of the following

changes: (i) increasing the grid size, (ii) collecting a larger number of eigenvectors, (iii)

reducing the sparsity of the graph by using a larger threshold for defining neighbors.

4.4.2 Simulation Study II

We focus on comparing the proposed adaptive approach against the CAR-based spatial

regression with respect to predictive accuracy as well as computational efficiency. Sensitivity

of this comparison to variation in size of spatial network as well as density of neighborhood

structure will also be investigated. We begin by dividing the unit-square into identical

gridcells of dimension 100×100 and 150×150. Next, we consider a spatially-varying function

f such that,

f(s) = 2s2
1 log(1 + s2)− 3

s1

1 + s2
2

+ 3 cos 2πs1, s = (s1, s2) ∈ [0, 1]× [0, 1].
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For any cell, the response value is constructed by evaluating f at its center point and

adding a Gaussian noise with standard deviation = 0.5. Hence, we obtain two spatial

datasets with a total of 10, 000 and 22, 500 areal units corresponding to the first and second

grid, respectively. To construct the adjacency matrix W , we first define neighbors based

on distance between two cell centers being less than a threshold. We propose two different

values of threshold - resulting in about 8 and 25 neighbors, respectively, for majority of

the cells. Hence, sparsity of both L and W matrices differ significantly between these two

settings.

For validation of predictive performance, we randomly selected 10% of the observations

as a test set and fit both models on the remaining observations. The CAR model was esti-

mated using the CARBayes (Lee, 2013) R package. Post-MCMC, we simulate from posterior

predictive distribution for each of the test observations and validate the accuracy using three

measures: (i) absolute bias computed as the difference between the true response and its

posterior median, (ii) uncertainty measured as the width of two-sided 90% credible interval

(C.I.) and (iii) empirical coverage calculated as proportion of responses in the test set that

lie inside their respective 90% C.I. For evaluating computational performance, we chose two

measures. The first one is the time required for MCMC estimation. We ran the algorithm

for 20,000 iterations discarding initial 10,000 draws and thinning the rest at every 5th iter-

ation. The second one is effective sample size that is calculated by taking into account the

autocorrelation within MCMC sample. Low value of effective sample size relative to number

of posterior draws indicates high autocorrelation and poor mixing. We calculated the effec-

tive sample size (ESS) from posterior samples of log likelihood of both models using coda

(Plummer et al., 2006) R package and report it as proportion of number of MCMC draws

retained after burn-in and thinning. We replicate this procedure for 10 different choices of

the test set and, in Table 4.3, summarize these measures across replications for both models.
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Table 4.3: Comparison of predictive and computational performance

Criterion Absolute 90% C.I. Empirical Duration ESS Effective Time
Bias Width Coverage (in minutes) Proportion (in minutes)

Grid size: 100 × 100 , Avg. no of neighbors: ∼ 8

CAR prior 0.412 1.693 0.893 4 0.163 25

Adaptive Bayes 0.392 1.785 0.929 6 0.425 14

Grid size: 100 × 100, Avg. no of neighbors: ∼ 25

CAR prior 0.406 1.719 0.904 14 0.005 2800

Adaptive Bayes 0.397 1.803 0.926 9 0.296 30

Grid size: 150 × 150 , Avg. no of neighbors: ∼ 8

CAR prior 0.406 1.670 0.899 20 0.197 102

Adaptive Bayes 0.398 1.795 0.926 20 0.734 27

Grid size: 150 × 150 , Avg. no of neighbors: ∼ 25

CAR prior 0.410 1.684 0.897 105 0.003 35000

Adaptive Bayes 0.399 1.800 0.929 24 0.622 39

Note: Duration refers to time for the full MCMC with 20,000 iterations. However, ESS proportion is calculated only

using 2,000 draws retained after burn-in and thinning described above.

In terms of predictive accuracy, the two models performed comparably. The proposed

approach produces marginally smaller bias than CAR model. Whereas both models have

the coverage rate near or above the desired level of 90%, the adaptive method consistently

covered about 2% more test observations due to slightly wider credible intervals resulting

in larger uncertainty. Comparison of MCMC characteristics reflects a more contrasting

behavior. When the grid was sparse with about 8 neighbors on an average, the CAR model
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took either less or as much as time compared to the proposed approach for same number of

iterations. However, if we look at corresponding ESS proportions for log-likelihood under two

models, it reveals that the latter has about 2.5–5 times more effective samples than CAR.

It implies that to get similar effective sample size, the MCMC for CAR model needs to be

run with approximately 2.5–5 times more iterations than our method which significantly

skews the computational advantage. For the dense grid, the skew is stronger and clearly

visible. The duration of CAR estimation was more than 1.5 and 4 times the duration for

proposed approach fr the smaller and larger grids, respectively. However, the correlation

and lack-of-mixing problem was acute for CAR resulting in very low effective sample size

whereas the proposed approach could register between 30 to 60 percent ESS. We tried four

different choices for kmax = 20, 40, 60, 80 and all of them exhibited very comparable predictive

performance and similar computation time. To avoid repetition, we include only the results

corresponding to kmax = 60 as that had (very marginally) smaller estimates of absolute bias

and uncertainty compared to the rest. The only notable quantity was ESS that showed minor

variation between choices for kmax due to difference in size of allowed model parameters. For

a practical application, the strategy of choosing the value of kmax is discussed in detail in

Section 4.5.

One interesting and practically useful feature of the proposed approach is that when grid

size gets large, its computational efficiency increases sharply unlike CAR. For the smaller

grid, it has an ESS of 42% and 30% which increases to 73% and 62%, respectively for the

larger grid. This arises from the fact that the total number of parameters in the model is

only (k + p) and is not connected to n. As a result, with increase in n, correlation between

parameters estimates successive iterations reduces significantly. For the same reason, the

computation time increases marginally when the grid size doubles in a major contrast to

CAR. These features, coupled with satisfactory predictive performance across grid sizes,

makes it an appropriate choice for modeling spatial datasets on very large grids as in the
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following application.

4.5 Model for Plant Abundance

To illustrate the real-world application of our methodology, we chose a plant abundance

dataset from Cape Floristic Region (CFR) of South Africa. This region, globally known as

a biodiversity hotspot, encompasses an area of 90, 000 km2 and includes about 9, 000 plant

species. For our analysis, we use the Protea Atlas Dataset of Rebelo (2002), collected be-

ginning in 1991 as part of a 10-year project to document the distribution of Proteaceae, the

flagship family in Southern Africa. Data were collected at “record localities”: relatively uni-

form, geo-referenced areas typically 50 to 100 m in diameter. Across the region, abundance

(including absence) has been recorded at around 60, 000 such sites. We use the abundance

information in categorized form: category 0: none observed, category 1: 1–10 observed,

category 2: 11–100 observed, category 3: > 100 observed. Regarding covariate information,

Gelfand et al. (2006) has studied data on 16 environmental and soil-type variables, available

at a resolution of 1.55 × 1.85 km2 grid cells and finally selected six most significant vari-

ables: (APAN.MEAN), July (winter) minimum temperature (MIN07), January (summer)

maximum temperature (MAX01), mean annual precipitation (MEAN.AN.PR), summer soil

moisture days (SUMSMD), and soil fertility (FERT1). We choose to work with these six

covariates as well. At this resolution, it takes 36, 907 grid cells to cover the entire CFR. It

was observed that, the sampled sites fall inside only 10, 158 or 28% of these cells as shown

in Figure 4.1. Since a large number of cells have no abundance information from the data,

the importance of spatial model will be to create species-wise abundance maps for the entire

CFR.

In the following, we develop a hierarchical two-stage spatial model that can be applied

to any ordinal abundance dataset. Two-stage spatial models for CFR datasets previously

appeared in Gelfand et al. (2006) and Chakraborty et al. (2010). However, the motivation
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and specification for the two-stage model development in our work is completely different.

More specifically, the former dealt with a binary presence-absence model and their motivation

for two-stage was to distinguish suitability and availability of a species. The latter worked in

an ordinal abundance setting like ours, but their two-stage model was based on a ‘potential’

and an ’observed’ abundance. In our approach, we decompose abundance in two parts - first

a model for presence-absence (PA) and then, another model for exact abundance category,

conditional on presence (CA). Hence, the first stage model has binary response whereas

the stage 2 model has ordinal response taking values 1, 2 and 3. Since many species in

CFR has an excess proportion of absences in the sampled sites, the motivation behind this

decomposition is to keep the parameters describing occurrence of zeros (absences) separate

from the parameters that distinguish between low and high categories of abundance. A

similar idea, in a count data setting, has been used in the hurdle model, described in Ridout

et al. (1998). Another important characteristic of CFR data is transformation of available

land for species growth due to human intervention and/or alien plant infestation. A map of

proportion of available, untransformed land across CFR is shown in Figure 4.1. Modeling-

wise this implies, even if a location is environmentally suitable for a species, it may be absent

there due to land transformation. In our setting, this is a contributing factor in stage 1 but

does not appear in CA model of stage 2.
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Figure 4.1: (Left) Cells within the CFR that have at least one observation from the Protea
Atlas dataset are shown in light grey, while cells with no observations are shown in dark
grey. (Right) Proportion of untransformed land inside the CFR. Most of the transformation
is due to agriculture, but includes dense stands of alien invasive species.

We develop the hierarchical model below. The dataset includes: (i) the response zij ∈

{0, 1, 2, 3} denoting the observed category of abundance observed at site j within cell i and (ii)

the covariate xi = (xi1, xi2, . . . , xip)
T representing the environmental and soil-related features

(and intercept) from cell i. As mentioned above, the first-stage model is intended to explain

whether zij = 0 or > 0. Given zij > 0, the second-stage model will determine the conditional

probability distribution of each non-zero abundance category: P (zij = h|zij > 0), h = 1, 2, 3.

Following Albert and Chib (1993), we augment two latent continuous variables yPA and

yCA as follows: (i) yPA is the latent presence-absence surface that explains whether the

environmental factors at a specific site are suitable for the species to be present there (in any

category), (ii) yCA is the latent conditional abundance surface that indicates, given there is

a presence, what the specific category of abundance is. A larger value of yCA makes a higher

category of abundance more likely. If we assume Gaussian distributions for yPA and yCA, we

obtain a binary probit model for stage 1 and an ordinal probit model for stage 2.

We note that zij can be zero in two ways: (i) if site j is transformed and not available

anymore as a plant habitat; or (ii) if site j is not-transformed but yPA is low. If (i) is the

case, value of yPA becomes irrelevant. Since ui the proportion of land transformed within
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cell i, we can write the PA model as:

1 [zij > 0]
ind∼ uiδ0 + (1− ui)1

[
yPA
ij > 0

]
, j = 1, 2, . . . , ni, i = 1, 2, . . . , n.

The above specification is a two-component mixture with the first component accounting

for absence due to land transformation and the second component accounting for presence

(absence) at an untransformed site due to high (low) values of latent continuous PA surface.

Subsequently, we write the CA model as:

zij|zij > 0 =
3∑

h=1

h 1
[
αh−1 < yCA

ij < αh
]
, h = 1, 2, 3,

where−∞ = α0 < α1 < α2 < α3 =∞ are the cut points on the yCA scale that determines the

exact abundance category of zij. We model the distributions of yPA and yCA independently

as:

yPA
ij = xTi β

PA + θPA
i + ε

(1)
ij , ε

(1) iid∼ N(0, 1)

yCA
ij = xTi β

CA + θCA
i + ε

(2)
ij , ε

(2) iid∼ N(0, 1)

As usual for Bayesian probit regression, we need to set α1 = 0 and variance of all ε(1)

and ε(2) terms to be 1 for identifiability reasons. θPA and θCA are spatial random effects for

presence-absence and conditional abundance respectively. We model them using truncated

eigenvector expansions as:

θPA =

k1∑
m=1

ηPAm vsm,1 , θ
CA =

k2∑
m=1

ηCAm vsm,2

Note the flexibility in this specification as it allows the spatial effects for presence-absence

and conditional abundance to use two different sets (of potentially different sizes k1 and k2)
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of eigenvectors based on index sets {sm,1 : m = 1, 2, ...k1} and {sm,2 : m = 1, 2, ...k2}, respec-

tively. Hence, they can exhibit different behavior in terms of strength of spatial association

as well as sparsity of eigen-expansion. It is also possible to use separate kmax values for these

two models, as shown in the following analysis.

We turn to prior specifications. There are four sets of regression coefficients βPA, βCA,

ηPA and ηCA. The first two have p components each. The dimension of the latter two

vectors are fixed conditional on values of k1 and k2. To maintain conjugacy, we assign

multivariate normal prior distributions with zero mean and a diagonal dispersion matrix

with very large variances to all of them. α2, the only free cutoff parameter for zCA, is

assigned an improper uniform prior on all positive real numbers. To control the number of

eigenvectors in the expansion for spatial effects, we assign truncated Poisson priors to each

of k1 and k2. ki
ind∼ Poi(λi)1[ki ≤ kmax] for i = 1, 2. We summarize the prior specification

below:

βPA, βCA ∼ MVNp

(
0p, τ

2Ip
)
, ηPA|k1 ∼ MVNk1

(
0k1 , τ

2Ik1
)
, ηCA|k2 ∼ MVNk2

(
0k2 , τ

2Ik2
)
,

π(α2) = 1 [α2 > 0] , π(ki) = Poi (λi) 1[ki < kmax], i = 1, 2.

Given posterior draws of all model parameters, we can construct the empirical posterior

distribution for category-specific marginal abundance probabilities (integrating out yPA and

yCA) at all cells using following formula:

P
[
zij = 0

]
= P

[
Transformation

]
+ P

[
Absence

∣∣Non-transformation
]
P
[
Non-transformation

]
= ui + P

[
Absence

∣∣Non-transformation
]

(1− ui)

= ui + Φ
(
− xTi βPA − θPA

i

)
(1− ui) (4.2)
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For category, h = 1, 2, 3,

P
[
zij = h

]
= P

[
h
∣∣Presence

]
P
[
Presence

∣∣Non-transformation
]
P
[
Non-transformation

]
= P

[
h
∣∣Presence

]
P
[
Presence

∣∣Non-transformation
]

(1− ui)

= Φ
([
αh−1, αh

]∣∣(xTi βCA + θCA
i ), 1

)
Φ
(
xTi β

PA + θPA
i

)
(1− ui) (4.3)

We perform the parameter estimation from the above model using the MCMC scheme

described in Section 4.3. Note that, since the model for z is non-Gaussian, the RJMCMC

will use the latent continuous pseudo-response y instead of z. The marginal likelihood will

be simpler as the variance parameter is fixed at 1. The posterior update of y can be done

independently across (i, j) from its prior distribution truncated within the region controlled

by corresponding z-category. Posterior simulation of yPA is more non-trivial than simulation

of yCA due to presence of land transformation. Whereas the latter is a truncated normal,

the former is a mixture of normal and truncated normal distributions. Also note that, since

the PA and CA surfaces do not share any common parameters, the MCMC for them can

be run in parallel and outputs can be pooled together to construct the marginal probability

surface for abundance category as shown in Eq. 4.2 and Eq. 4.3.

For analysis, we chose datasets corresponding to three different species: Protea cy-

naroides (PRCYNA), Protea repens (PRREPE) and Protea punctata (PRPUNC). The

neighborhood matrix W was created using a distance threshold such that most of the cells

(except the ones on or near the boundary) have 8 neighbors. Presence of PRCYNA, PRREPE

and PRPUNC were observed in 1584, 3831 and 632 cells, respectively. Among the sites where

they were present, category 2 was most frequently observed for all three species. Category 3

was least frequent for PRCYNA whereas category 1 was the rarest for the other two species.

Working with k0 = 100 eigenvectors, we explored four choices of kmax = 30, 60, 90 and 100.

For each run, we look at the posterior histogram of k in PA and CA models, as shown in
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Figures 4.2 – 4.4. Our goal is to choose the smallest kmax for which the histogram contains

both tails of the posterior distribution because that is indicative of the fact that increasing

kmax further would not change the behavior significantly. Based on this criterion, we found

that, for PA model, we should choose kmax to be 90 for PRPUNC and PRCYNA and 100

for PRREPE. The CA models usually require much smaller number of eigenvectors. Setting

kmax at 60 suffices for PRPUNC and PRCYNA. For PRREPE, the histogram stabilizes at

kmax = 30. We use these values to conduct further spatial analysis for these species.

Figure 4.2: PRCYNA: Posterior histogram of number of Laplacian eigenvectors chosen by
(top) PA model and (bottom) CA model for different choices of kmax parameter

In Table 4.4, we show the significance of covariate effects for each species at 90% level

in the PA model. For the CA model, the covariate effects were found to be insignificant

except SMDSUM which has a positive effect on increasing abundance of PRPUNC. The

most important output of this analysis are the posterior probability maps for four abundance

categories for each species based on Eq. 4.2 and Eq. 4.3. They represent the spatial

variation in abundance distribution under land transformation. We also show maps without
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Figure 4.3: PRREPE: Posterior histogram of number of Laplacian eigenvectors chosen by
(top) PA model and (bottom) CA model for different choices of kmax parameter

Figure 4.4: PRPUNC: Posterior histogram of number of Laplacian eigenvectors chosen by
(top) PA model and (bottom) CA model for different choices of kmax parameter
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considering any land transformation by setting ui = 0 for all cells in CFR. These represent

the abundance distribution under the hypothetical scenario where the entire region would

be available for growth of species. Thus, comparing the two abundance maps category-by-

category will help us understand how land transformation is influencing the prevalence of a

species across the region. The maps are presented in Figures 4.5 – 4.7.

Table 4.4: Significance of covariate effects on presence-absence of a species

Species APAN.MEAN. MAX01 MIN07 MEAN.AN.PR SMDSUM FERT1

PRCYNA − + − − + +

PRREPE + − o + − +

PRPUNC + − − + + o

Note: +: Positive Significant, −: Negative Significant, o: Insignificant, Level of Significance: 90%

As PRCYNA was observed to present at smaller number of cells than PRREPE, its

probability distribution puts very high weight on category 0 (absence) for most of the cells

than the latter. This is more evident for PRPUNC which was seen in even fewer cells.

However, the regions of positive abundance are mostly separate for PRCYNA and PRPUNC.

PRREPE, the most prevalent species, is abundance through out entire CFR except for the

Northwestern stretch. Where they were present, the category 2 abundance was observed to

be most likely for all three species. Category 3 abundance has the lowest probabilities for

PRCYNA whereas Category 1 was least likely for other two species. These findings coincide

with the empirical features of the abundance data as discussed above. With respect to

overlapping of habitat, PRCYNA and PRPUNC were observed to be prevalent in separate

regions- the former is more visible in the Southern part and along the coast whereas the

latter is mostly present in the Northeastern part of the region, away from the Ocean.
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Figure 4.5: Protea cynaroides: Spatial maps of marginal posterior abundance probabilities
for category 0 (top) to 3 (bottom) with and without accounting for land transformation
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Figure 4.6: Protea repens: Spatial maps of marginal posterior abundance probabilities for
category 0 (top) to 3 (bottom) with and without accounting for land transformation
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Figure 4.7: Protea punctata: Spatial maps of marginal posterior abundance probabilities
for category 0 (top) to 3 (bottom) with and without accounting for land transformation
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The influence of land transformation shows notable variation across species. For PRREPE,

there is significant difference between the left and right halves of bottom three maps. Some

of the regions with high abundance probability in the right part has disappeared in the

left part. This is indicative of the fact that significant land transformation has occurred in

some of areas environmentally most suitable for PRREPE diminishing its overall presence

across the region. For the other two species, the spatial maps with and without transfor-

mation do not show any significant visible difference indicating that the their habitat has

not witnessed any major land transformation. These findings can be justified from Rebelo

(2001). PRPUNC is mostly limited to dry, rocky, or shale slopes which are less suitable

for agriculture or development and thus mostly untransformed. PRREPE is much more

prevalent across the region and can frequently occur in lowland areas that have been largely

transformed by human activities. Hence, the spatial maps help us identify to what extent

prevalence of a particular species is influenced by land transformation.

4.6 Discussion

We have developed a Bayesian approach to analyze adjacency-based spatial datasets. Our

approach is centered on building a low-rank expansion of the spatial random effect utilizing

the spectral properties of graph Laplacian. This approach avoids the sequential sampling

usually required for MRF-based spatial models. We enhanced the flexibility of our approach

by allowing the dimension of this expansion to be controlled by the data during MCMC.

Although our development assumes the entire graph is connected, it can easily be generalized

to the case of graphs with multiple connected components. In that case, to avoid singularity

in Xk, it suffices to consider all but one of the Laplacian eigenvectors associated with the

zero eigenvalue as candidates for inclusion in the model.

We anticipate potential extension of our work in two directions. In Section 4.3, we have

motivated this approach based on properties of Laplacian matrix L. It is of theoretical
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interest to see, if under suitably chosen prior distributions for ηm, the induced prior on θ

approaches the CAR prior as k → n. Since Laplacian matrix L is also the precision matrix

for the CAR prior (without the scale parameter), it is possible to connect these two prior

distributions through same (or related) set of eigenvalues and eigenvectors. Exploring prox-

imity of these distributions under some suitable distance metric would provide theoretical

background for our method. Additionally, it can also provide new insight on choice of k by

relating it with accuracy of approximation.

From a modeling perspective, our approach can be further enhanced to handle an adap-

tive neighborhood structure. In this chapter as well as in most of the literature on areal-level

spatial analysis, W is set pre-fixed before estimation and often the choice of W is not based

on any sound justification. If we think of treating W as a parameter, that would amount

to altering the positions of 1 and 0 inside W . In our approach, W influences the estimation

through its eigenvalues and eigenvectors. It is not practical to recalculate the k0 smallest

eigenvalues of L and associated eigenvectors, every time we make changes to W . Results from

matrix perturbation theory could be useful to check if simple formulas for such recalculations

exists for adding or deleting neighbors in W , one at a time.
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Chapter 5

Hierarchical Regression model for Outlier Detection

5.1 Introduction

“An outlier is an observation which deviates so much from the other observations as to arouse

suspicions that it was generated by a different mechanism” (Hawkins, 1980). It is almost

never true in practice to have datasets without outliers (Pandey et al., 2008). Existence

of outliers in the datasets give us inaccurate analysis and wrong predictions. For example,

Hatch and Prihoda (1992) show that parameter estimation in regression analysis can be

effected by influential outliers. Also, existence outliers in datasets can change the study’s

results which lead to wrong predictions or are less reliable (Babbar and Chawla, 2010; In-

durkhya et al., 2001; Aggarwal, 2013). As a result, these outliers should be discarded. Outlier

detection has been studied extensively for the last few decades in many different fields such

as Biological Sciences (Yang et al., 2006), Health Sciences (Barghash et al., 2016), Business

Management (Kwak and Kim, 2017), Industrial Engineering (Xu et al., 2017), Computer

Sciences (Li et al., 2016), etc. Working with large data, detecting outliers become more

challenging and complicated. In regression, we can not assume an observation to be an

outlier just because it is far from the rest of the data points, but it could be an outlier if the

relationship between the response and the covariate is significantly different from most of the

data points. Our goal for this chapter is to develop two Bayesian methods to detect outliers

in large health datasets. Many methods have used Gaussian error to detect the outliers, in

our method we are going to use a novel approach by using t-distributed residuals.

This chapter is organized as follows: In Section 5.2, we describe our two developed

outlier detection methods. In Section 5.3, we test our developed methods on 6 simulation
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datasets that were generated from 3 simulation models. In Section 5.4, we review two existing

detection outlier methods in statistical literature and compare their performance against our

methods. In Section 5.5, we apply our methods on a real dataset on height of school students.

5.2 Regression with Heavy-tailed Error Distribution

We start with a standard regression setting, where we have n observations where the ith ob-

servation has response yi, the covariate is xi = (1, xi1, xi2, . . . , xip)
T , and the linear regression

equation is given by

yi = xTi β + εi, where εi ∼ N(0, σ2)

We can not require every observation to have the same variance since outliers can have large

positive or large negative uncertainty. We need a different variance for each one, and we

can use εi ∼ N(0, σ2
i ). t-distribution has a heavier tail than a Normal distribution, and the

heaviness of the tail can be tuned using its degree of freedom (df) as a parameter. Hence,

using t-distribution for ε can allow for large positive or negative error compared to a normal

distribution and the df parameter will control the likelihood of any large error. Therefore,

the most flexible way to model this would be to write this as εi ∼ tνi(σ
2). Our new regression

model becomes,

yi = xTi β + εi, where εi ∼ tνi(0, σ
2) (5.1)

However, if we want to do MCMC, the t-distribution is not in standard form. Hence, we

are going to use the following result which helps us to express ε in t-distribution rather than

Normal distribution.

72



Result: If x ∼ N(0, σ
2

λ
) and λ ∼ Γ(ν
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, ν

2
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2)

proof:
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∫
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∫
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∝
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νσ2 )
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) ν+1
2

We can rewrite our regression model (Eq. 5.1) in matrix notation as follows,

Y = Xβ + ε, where ε ∼MVNn(0n, σ
2Λ−1) (5.2)

where y is a n× 1 vector, β is (p + 1)× 1 vector, X is a n× (p + 1) matrix, σ2 is a scalar,

and Λ = Diag(λi), i = 1, . . . , n. The prior distributions for our hierarchical model can be

defined as follows,

β ∼ MVNn(0, c0In), σ2 ∼ IG(a0, b0), λi ∼ Γ(
νi
2
,
νi
2

), and

νi ∼ f, where f is a discrete distribution with probabilities (q1, . . . , qD)

at values ν01 < · · · < ν0D.

Very small values for ν0j, where j = 1, . . . , D and D > 1 , will indicate a very small df

which implies large error is more likely. A large value of df means the error is unlikely to be
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unusually large. The parameters in the above model are β, σ2, {λ1, . . . , λn} and {ν1, . . . , νn}.

5.2.1 MCMC Algorithms for Outlier Detection Using t-residual

The parameters, β, σ2, {λ1, . . . , λn} and {ν1, . . . , νn}, can be estimated by using an MCMC.

To find the conditional posterior distribution for our parameters, we first need to define

the Likelihood function. Notice that since Σ = σ2Λ−1, |Σ| = |σ2Λ−1| = (σ2)n( 1
λ1
· · · 1

λn
)

= (σ2)n
n∏
i=1

1
λi

, we can define the likelihood function as,

L(y|β, σ2,Λ, ν) ∝ (σ2)−
n
2

n∏
i=1

(
1

λi
)−

1
2 exp

(
− 1

2

(y −Xβ)T Λ (y −Xβ)

σ2

)
∝ (σ2)−

n
2

n∏
i=1

λ
1
2
i exp

(
− 1

2σ2

[ n∑
i=1

λi(yi − xTi β)2
])

= (σ2)−
n
2

n∏
i=1

λ
1
2
i

n∏
i=1

exp
(
− 1

2σ2
λi(yi − xTi β)2

)
= (σ2)−

n
2
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i=1

λ
1
2
i exp

(
− 1

2σ2
λi(yi − xTi β)2

)

Now, the posterior distribution for β, can be found as follows:

π(β|y, σ2,Λ, ν) ∝ L(y|β, σ2,Λ, ν) π(β)

∝
n∏
i=1

exp
(
− 1

2σ2
λi(yi − xTi β)2

)
exp

(
− 1

2

βTβ

c0

)
∝ exp

(
−1

2

[
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Λ
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∝ exp

(
−1

2

[−2βTXTΛy + βTXTΛXβ

σ2
+
βTβ

c0

])
∝ exp

(
−1

2

[
− 2βT

XTΛy

σ2
+ βT (

XTΛX

σ2
)β +

βTβ

c0

])
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∝ exp
(
−1

2

[
− 2βT

XTΛy

σ2
+ βT

(XTΛX

σ2
+
I

c0

)
β
])

∝ exp
(
− 1

2

[
βTAβ − 2βT b

])
, where A =

XTΛX

σ2
+
In
c0

and b =
XTΛy

σ2

Hence,

β|− ∼MVNn(A−1b, A−1) (5.3)

The posterior distribution for σ2 can be written as follows,

π(σ2|y, β,Λ, ν) ∝ L(y|−)× π(σ2)

∝ (σ2)−
n
2

n∏
i=1

exp
(
− 1

2σ2
λi(yi − xTi β)2

)
exp

(
− b0

σ2

)
∝ (σ2)−

n
2 exp

(
− 1

2

(y −Xβ)TΛ(y −Xβ)

σ2

)
(σ2)−(a0+1) exp

(
− b0

σ2

)
∝ (σ2)−(n

2
+a0+1) exp

(
− 1

σ2
(
G

2
+ b0)

)
, where G = (y −Xβ)TΛ(y −Xβ)

Hence,

σ2|− ∼ IG(
n

2
+ a0,

G

2
+ b0) (5.4)

Before we show the posterior distribution for Λ, we can prove that λ1, . . . , λn have indepen-

dent posterior distribution given β, σ2, ν and D as follows,

π(Λ|β, σ2, ν, y) ∝ L(y|−)× π(Λ)

∝
n∏
i=1

λ
1
2
i exp

(
− λi

(yi − xTi β)2

2σ2

)
×

n∏
i=1

π(λi)

=
n∏
i=1

λ
1
2
i exp

(
−λi

(yi − xTi β)2

2σ2

)
×

n∏
i=1

λ
νi
2
−1

i exp
(
−λi

νi
2

)
=

n∏
i=1

λ
1
2
i exp

(
−λi

(yi − xTi β)2

2σ2

)
λ
νi
2
−1

i exp
(
− λi

νi
2

)
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Hence,

π(Λ|β, σ2, y) ∝
n∏
i=1

π(λi|β, σ2, y)

In other words, λ1, . . . , λn have an independent posterior distribution given β, σ2, ν and y.

Now, the posterior distribution for Λ, can be found as follows,

π(λi|β, σ2, ν, y) ∝ L(y|−)× π(Λ)

∝ λ
1
2
i exp

(
−λi

(yi − xTi β)2

2σ2

)
λ
νi
2
−1

i exp
(
− λi

νi
2

)
∝ λ

νi+1

2
−1

i exp

(
−λi

[
(yi − xTi β)2

2σ2
+
νi
2

])

Hence,

λi|− ∼ Γ

(
νi + 1

2
,
(yi − xTi β)2

2σ2
+
νi
2

)
, i = 1, 2, . . . , n. (5.5)

Next, we can write the posterior distribution of νi as follows,

π(νi|λi) ∝ f(λi|νi)π(νi)

∝
(νi

2
)
νi
2

Γ(νi
2

)
(λi)

νi
2
−1 exp

(
− λiνi

2

)
π(νi)

Notice that since π(νi) = 0 if νi /∈ {ν01, . . . , ν0D} and π(νi|λi) ∝ f(λi|νi) × π(νi), then

π(νi|λi) = 0 if νi /∈ {ν01, . . . , ν0D}. First, define c0i for i = 1, 2, . . . , D,

c0i =
(νi

2
)
νi
2

Γ(νi
2

)
(λi)

νi
2
−1e−

λiνi
2 , and pij ∝ c0iqj

Hence, π(νi = ν0j|λi) = pij and since
∑D

j=1 pij = 1, we obtain

pij =
c0iqj∑D
i=1 c0iqj

(5.6)

The posterior distribution of νi|λi is a multinomial distribution with D possible values and
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probabilities pi1, pi2, . . . , piD.

Table 5.1: Prior and posterior probabilities distribution for νi

values ν01 ν02 . . . ν0D

prior probabilities q1 q2 . . . qD

posterior probabilities pi1 pi2 . . . piD

From the above discussion, we can summarize Method-I by the following algorithm,

Algorithm 12 Method-I

INPUT: Initial values a0, b0 and prior parameters c0, σ0.

OUTPUT: Samples for β, σ2, νi, ui.

1: for k = 1, 2, . . . , N do

2: draw β|− from MVN(A−1b, A−1)

3: draw σ2|− from IG(n
2

+ a0,
G
2

+ b0)

4: draw λi|− from Ga(νi+1
2
,

(yi−xTi β)2

2σ2 + νi
2

)

5: draw νi|− from f , where f is a discrete distribution such that p[νi = ν0j] = pij

6: end for

In the above method, Method-I, we assumed that the variance of the error, σ2
i , and the

covariance are independent. We improve the method by allowing the variance to change

depending on the X values for each observation. We assume that σ2
i depends on X in the

form function f , and we define X∗ = f(X) = [f(x1) · · · f(xp)]. We chose two different forms

of the function f , which are f(X) = |X| and f(X) = X2. In reality, we do not know the

correct function form, so we used both functions, f(X) = |X| and f(X) = X2, and we

denote them by Method-IIa and Method-IIb, respectively.

In general, our model is:

Y = Xβ + ε, where ε ∼ NVNn(0n, σ
2Λ−1G∗) (5.7)
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where G∗ = Diag(gi), gi = exp(x∗
T

i α), and x∗i = (x∗i1, x
∗
i2, . . . x

∗
ip)

T . The prior distributions

for the hierarchical model are:

β ∼ MVNn(0n, c0In), α ∼MVNn(0n, d0In), σ2 ∼ IG(a0, b0), λi ∼ Γ(
νi
2
,
νi
2

), and

νi ∼ f, where f is a discrete distribution with probabilities (q1, . . . , qD)

at values ν01 < · · · < ν0D.

Method-I is a special case from Method-II when α = 0. The parameters that we need to

estimate in Method-II are β, α, σ2, {λi, . . . , λn} and {νi, . . . , νn}.

Before we derive the conditional posterior distribution for our parameters, we need to

define the likelihood function. From Eq. 5.7, yi ∼ N(xTi β, gi
σ2

λi
), and hence the likelihood

function can be defined as follows

L(y|−) ∝ σ−
n
2

n∏
i=1

exp
(
− 1

2

(yi − xTi β)Tλi exp(x∗
T

i α)(yi − xTi β)

σ2

)
∝ σ−

n
2

n∏
i=1

exp
(
− 1

2
hi exp(x∗

T

i α)
)
, where hi =

(yi − xTi β)2λi
σ2

In Method-II, the posterior distribution for νi is exactly the same in Method-I. As we show

in Method-I, we can easily show that the posterior distribution for β is:

β|− ∼MVN(A−1b, A−1), where A = 1
σ2X

TΛG∗X+ In
c0

+ In
d0

, b = 1
σ2X

TΛG∗y, G∗ = Diag(gi),

i = 1, . . . , n, and gi = exp(x∗Ti α)

Similarly, we can show that the posterior distribution for λi is:

λi|− ∼ Γ(νi+1
2
,

(yi−xTi α)2

2giσ2 + νi
2

)

And the posterior distribution for σ2 is:

σ2|− ∼ IG(n
2

+ a0,
Gnew

2
+ b0), where Gnew = (y −Xβ)TΛG∗(y −Xβ)
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The new parameter in Method-II is α, and the posterior distribution for α is:

π(α|−) ∝ L(y|−)× π(α)

∝
n∏
i=1

exp
(
− 1

2
hi exp(x∗

T

i α)
)

exp(x∗
T

i α)−
1
2 , where hi =

(yi − xTi β)2λi
2σ2

∝ exp
(
− 1

2

n∑
i=1

x∗
T

i α
)

exp
(
−

n∑
i=1

hi exp(x∗
T

i α)
)

The above posterior is not a standard distribution, so we use MH algorithm to sample from

α. We can generate the proposed value for α as:

αproposedj ∼ N(αoldj , σ2proposed)

In MH, we accept the αproposed as a new value if:

u <
π(αproposed|−)

π(αold|−)
, where u ∼ unif(0, 1)

We can rewrite the above expression as:

log(u) < log(π(αproposed|−))− log(π(αold|−))

We can summarize Method-II by the following algorithm.
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Algorithm 13 Method-II

INPUT: Initial values a0, b0 and prior parameters c0, σ0.

OUTPUT: Samples for β, α, σ2, νi.

1: for k = 1, 2, . . . , N do

2: draw β|− from MVN(A−1b, A−1)

3: draw σ2|− from IG(n
2

+ a0,
G∗

2
+ b0)

4: draw λi|− from Γ(νi+1
2
,

(y−x∗Ti α)2

2giσ2 + νi
2

)

5: draw νi|− from f , where f is a discrete distribution such that p[νi = ν0j] = pij

6: draw α from MH algorithm as follows:

7: draw αproposedj ∼ N(αoldj , σ2proposed)

8: draw ui from unif(0, 1)

9: if log(ui) < log(π(αproposed))− log(π(αold)) then

10: α = αproposed

11: else

12: α = αold

13: end if

14: end for

Rule for Detecting Outliers: If we want to assign a rule for detecting outliers, we need to

set a threshold for value of νi, e.g. v0. Since smaller values of νi indicate higher likelihood of

unusually large error, for all observations with posterior mean E(νi|Data) < ν0, we identify

them as outliers. If we increase (decrease) ν0, we will detect more (fewer) outliers.

5.3 Simulation Studies

In this section, we applied our methods on simulation datasets. First, we described the

simulation models that we used to generate the datasets. Then, we checked the accuracy

of β estimation in the presence of the outliers. In the end of the section, we applied the
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methods in different datasets and compared among them.

5.3.1 Model for Simulation

Three simulation models have been used to simulate 6 different datasets with 2000 observa-

tions for each. In the first simulation model, denoted by SI, we assumed that the variance

does not depend on X, so SI can be defined as follows,

Y = Xβ + ε, where ε ∼MVNn(0n, Diag((σ2))ni=1)

We want to work with more challenging datasets. So in the following two simulation models,

we assumed the variance depends on the observations through a function f(X). We are

going to use two different function forms.

The second simulation model was denoted by SIIa, and defined as follows,

Y = Xβ + ε, where ε ∼MVNn(0n, σ
2Diag((ex

∗T
i α))ni=1), where x∗i = (x∗2i1 , x

∗2
i2 , . . . , x

∗2
ip )T

The third simulation model was denoted by SIIb, and defined as follows,

Y = Xβ + ε, where ε ∼MVNn(0n, σ
2Diag((ex

T
i α))ni=1), where x∗i = (|x∗i1|, |x∗i2|, . . . , |x∗ip|)T

In SI, we used β = (0.1,−1.5, 2.7) and σ = 2. In SIIa and SIIb, we used the same β and σ

values that we used in Model-SI. In addition, we used α = (3.5,−0.5). We randomly chose

20 and 100 positions from our data points, and for each position we chose a magnitude of

error randomly between 6 and 9, and randomly added and subtracted from the error the

observed value.
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Figure 5.1: Datasets with 20 outliers: the true outliers are marked with red stars, and the
blue line represents the trend of the data points.

In Figures 5.1 and 5.2, we plotted the datasets with 20 and 100 outliers, respectively.

The plots show us the observations and the observations versus X1 and X2. It is easy to

tell from the plot that β1 and β2 have negative and positive trend, respectively. It is easy

to identify some of the outliers just by visual inspection in SI datasets. In contrast, in SIIa

and SIIb, it is difficult to identify the outliers because in many cases the outliers are nested

among the observations, and they lie in the same region with the other observations. Also,

some data points look more extreme even though they are not outliers.
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Figure 5.2: Datasets with 100 outliers: the true outliers are marked with red stars, and
the blue line represents the trend of the data points.

5.3.2 Accuracy of coefficient estimation in presence of outliers

We run the methods that we have developed in the previous sections with the same setting

for all datasets. For the prior parameters, we chose a0 = 2.1, b0 = 1, c0 = 10000 and

d0 = 10000. The least-square estimators were chosen to be our initial values. We chose ν0 =

(2, 4, 5, 10, 30, 40, 50, 80, 90, 100), and σ2proposed = 0.15 to get an acceptance ratio between

35% and 45%. We run the codes for 10000 iterations, we burned-in the first 25%, and we

thinned the rest by five.

Before analyzing the performance on detection of outliers, we first want to check if

our method produces a more reliable coefficient estimator than the ones produced by usual
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Gaussian regression in the presence of outliers. In the following tables, we showed the true

parameters, their point estimate, distance from the point estimate, 95% credible intervals,

and the width of these intervals.

In the Gaussian case, we assume the correct simulation model but the error is Gaussian.

However, in our methods, we want to account for outliers, so we assumed every observation

has a t-error as mentioned in Section 5.2. We marked the 95% credible intervals that contain

the true parameters with green, and the 95% CI that do not contain the true parameters

with red.

In Table 5.2, we compared the coefficient estimation between the two methods for Sim-

ulation models SI, SIIa and SIIb, respectively, for both 20 and 100 outliers datasets.

We see that all the credible intervals for the estimation of regression coefficient cover the

true simulation parameters, but with wider intervals in the Gaussian case compared to our

methods with much smaller intervals. In fact, when there are outliers in datasets, and we

do not account for these outliers, we can still correctly cover the regression coefficients, but

we can not cover the variance.

Also, in the effect of parameters in the variance term, there are no cases where the

credible intervals can cover the true parameters, and we see that the estimated values are

very far from the true values. This is because there are outliers in the data, and we are

not adjusting for outliers. That means the model has to have high variance to reach those

far observations, and hence the estimated variance will be more effected. That is why we

perform much worse with estimation of α than the estimation of β. Moreover, in the above

three tables, we see the estimated parameters in the t-distribution case is not sensitive to

the number of outliers. Also, the t-distribution case produced close estimated values and

less uncertainty compared to the Gaussian case when we have 1% and 5% of outliers.
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5.3.3 Model Application on the Simulated Datasets

In the following figures, we plotted the posterior mean for the ν for all observations. Clearly,

we can see the posterior mean for most of the true outliers is far below the posterior mean

for the majority of non-outlier values, as expected. In Figure 5.3, in both 20 and 100 outliers

datasets, it was easy to identify most of the outliers from the other data points using all

the three methods. In Figures 5.4 and 5.5, Method-I did not work well for both models

because it did not assume covariate-dependence variance for each observation. We saw that

for Method-IIa and Method-IIb the performance on SIIa and SIIb are comparable, which

essentially means for the current simulation the detection of outliers is not very sensitive

with respect to choice of function of covariate-dependence. It was easy to identify up to 70%

of the outliers, but since there were a few outliers which were hard to detect, we have to

drop most of the data points to exclude them.
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Table 5.2: Parameter comparison among all methods across the three simulation models

Simulation

Parameters

Method-I on SI

20 outliers datasets 100 outliers datasets

with Gaussian error with t-dist error with Gaussian error with t-dist error

β0 = 0.10
-0.027(+0.127)

(-0.228, 0.169)

0.003(+0.103)

(-0.192, 0.179)

-0.023(+0.123)

(-0.270, 0.218)

0.010(+0.090)

(-0.191, 0.209)

β1 = −1.50
-1.351(-0.185)

(-1.589, -1.038)

-1.411(-0.089)

(-1.659, -1.149)

-1.498(-0.097)

(-1.741, -1.063)

-1.511(+0.011)

(-1.788, -1.216)

β2 = 2.70
2.682(+0.018)

(2.581, 2.790)

2.690(+0.010)

(2.593, 2.788)

2.693(+0.007)

(2.569, 2.826)

2.699(+0.001)

(2.592, 2.805)

Simulation

Parameters

Method-IIa on SIIa

20 outliers datasets 100 outliers datasets

with Gaussian error with t-dist error with Gaussian error with t-dist error

β0 = 0.10
0.107(-0.007)

(-0.025, 0.235)

0.148(+0.048)

(0.052, 0.241)

0.124(-0.024)

(-0.085, 0.323)

0.163(-0.063)

(0.062, 0.266)

β1 = −1.50
-1.503(+0.003)

(-1.814, -1.189)

-1.606(+0.106)

(-1.840, -1.367)

-1.617(+0.117)

(-2.044, -1.179)

-1.655(+0.155)

(-1.914, -1.398)

β2 = 2.70
2.682(+0.018)

(2.645, 2.722)

2.700(0.000)

(2.695, 2.705)

2.694(+0.006)

(2.610, 2.783)

2.7(0.00)

(2.694, 2.705)

α1 = 3.50
2.819(+0.681)

(2.690, 2.940)

3.535(-0.035)

(3.367, 3.688)

2.051(+1.449)

(1.926, 2.171)

3.415(+0.085)

(3.259, 3.563)

α2 = −0.50
0.339(-0.161)

(-.418, -0.256)

-0.514(-0.014)

(-0.609, -0.423)

-0.197(-0.303)

(-0.274, -0.119)

-0.524(+0.024)

(-0.617, -0.437)

Simulation

Parameters

Method-IIb on SIIb

20 outliers datasets 100 outliers datasets

with Gaussian error with t-dist error with Gaussian error with t-dist error

β0 = 0.10
-0.045(+0.145)

(-0.195, 0.100)

0.119(-0.019)

(0.025, 0.215)

-0.017(+0.117)

(0.232, 0.190)

0.140(-0.040)

(0.025, 0.266)

β1 = −1.50
-1.211(-0.289)

(-1.557, -0.865)

-1.28(-0.22)

(-1.565, -0.995)

-1.356(-0.144)

(-1.778, -0.933)

-1.316(+0.184)

(-1.614, -1.012)

β2 = 2.70
2.669(+0.031)

(2.572, 2.763)

2.64(+0.06)

(2.570, 2.710)

2.692(+0.008)

(2.559, 2.821)

2.646(+0.054)

(2.572, 2.722)

α1 = 3.50
2.681(+0.819)

(2.510, 2.845)

3.472(+0.028)

(3.278, 3.686)

1.948(+1.552)

(1.778, 2.106)

3.372(+0.128)

(3.178, 3.582)

α2 = −0.50
-0.350(-0.150)

(-.482, -0.222)

-0.562(-0.062)

(-0.708, -0.422)

-0.302(-0.198)

(-0.430, -0.178)

-0.556(+0.056)

(-0.714, -0.408)
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Figure 5.3: Outlier detection using posterior sample mean for ν for Method-I, IIa and IIb
on SI (Top) with 20 outliers and (Bottom) with 100 outliers: The actual outliers are marked
as red stars.
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Figure 5.4: Outlier detection using posterior sample mean for ν for Method-I, IIa and
IIb on SIIa (Top) with 20 outliers and (Bottom) with 100 outliers: The actual outliers are
marked as red stars.
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Figure 5.5: Outlier detection using posterior sample mean for ν for Method-I, IIa and
IIb on SIIb (Top) with 20 outliers and (Bottom) with 100 outliers: The actual outliers are
marked as red stars.
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5.3.4 Comparison Among Methods for Detection of Outliers

We compared all the methods across three simulation models. One statistic for comparison

could be to check how many observations we need to discard if we want to throw away a

certain percentage of true outliers. The perfect case will delete only those data points that

are true outliers. A method will be more efficient if it needs to discard a smaller number of

observations compared to another method for deleting the same proportion of outliers. We

compared the performance to detect outliers ranging from 10% to 90% (essentially detection

of outliers that are either “too easy” or “ too hard” to detect).

Figure 5.6: The number of observations that should be considered to detect different
proportions of the actual outliers on datasets with 20 outliers
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In Figures 5.6 and 5.7, we can see that all methods perform almost perfectly in SI. In

SIIa and SIIb, Method-I could not detect the outliers easily. In contrast, Method-IIa and

Method-IIb could detect up to 70% of the outliers with the same efficiency as the perfect

case, and their performance becomes worse than the perfect case as we move to detecting

the last 30% of outliers. As we can see in the plots, after 80% of the outliers, methods have

much reduced efficiency, but this is not important (and it is something we expected) because

in practical cases there are a few outliers which are very hard to detect.

Figure 5.7: The number of observations that should be considered to detect different
proportions of the actual outliers on datasets with 100 outliers

We used another measure of comparison, in Table 5.3, where we arrange the posterior

mean of ν values for different observations from smallest to largest, and we select only the
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top 20 and 100 most extreme observations from the selected set as true outliers. As we can

see all methods work well with SI. However, in SIIa and SIIb, Method-I did not work well.

The performances of Method-IIa and Method-IIb are very comparable, and they could detect

between 70–75% of the true outliers. This indicates that the actual choice of the method is

not sensitive to the (type of) dataset.

Table 5.3: Number of outliers in first 20 and 100 ranked ν values

Simulation

Models
Method-I Method-IIa Method-IIb

20
ou

tl
ie

rs SI 18 17 17

SIIa 1 15 14

SIIb 1 14 15

10
0

ou
tl

ie
rs SI 88 87 87

SIIa 27 72 70

SIIb 38 71 73

5.3.5 Criterion for Outlier Determination

Now, we talk about ways to identify outliers. There are two ways to do this. First, we can

choose to throw away a certain percentage, e.g. p, of observations as potential outliers. In

that case, we will rank E(ν|Data) for all the observations from smallest to largest and throw

away the top p fraction of the observations based on the ranking. Second, we can set a

threshold ν0 on the posterior mean of νi, as discussed before. For a specific choice of ν0, we

can compute its sensitivity and specificity for the simulated datasets. The sensitivity will be

computed as a fraction of true outliers that were detected by the thresholding. Specificity will

be determined as a fraction of non-outliers that remain in the data after thresholding. If we

increase ν0, we expect sensitivity to increase and specificity to decrease. In our simulation
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models, we investigate three different ν0 values which are 5, 10 and 20. In Table 5.4, a

comparison has been made for all methods across all the simulation datasets. We see that

if we increase the value of ν0 the sensitivity increases, but the specificity decreases. In SI,

all methods are comparably perfect across the three methods. In SIIa and SIIb, Method-I

performs very poorly, but Method-IIa and Method-IIb perform well. Also from the table,

we see that the performance is reduced when we have a larger number of outliers.

Table 5.4: Sensitivity and specificity comparison for different choices of ν0

Simulation

Models
ν0

Number of

Outliers
Method-I Method-IIa Method-IIb

20
ou

tl
ie

rs
d

at
as

et
s

SI

5 14 ( 0.70 , 0.999) ( 0.70 , 0.999) ( 0.70 , 0.999)

10 17 ( 0.85 , 0.999 ) ( 0.85 , 0.999 ) ( 0.85 , 0.999 )

20 18 ( 0.90 , 0.996 ) ( 0.90 , 0.995 ) ( 0.90 , 0.996 )

SIIa

5 15 ( 0.20 , 0.958 ) ( 0.75 , 1) ( 0.60 , 1)

10 15 ( 0.50 , 0.941 ) ( 0.75 , 0.001 ) ( 0.65 , 0.996 )

20 15 ( 0.75 , 0.933 ) ( 0.75 , 0.999 ) ( 0.75 , 0.992 )

SIIb

5 9 ( 0.05 , 0.984 ) ( 0.45 , 0.999) ( 0.45 , 0.999)

10 14 ( 0.30 , 0.976 ) ( 0.70 , 0.998 ) ( 0.50 , 0.998 )

20 15 ( 0.75 , 0.923 ) ( 0.75 , 0.990 ) ( 0.70 , 0.992 )

10
0

ou
tl

ie
rs

d
a
ta

se
ts

SI

5 33 ( 0.30 , 1 ) ( 0.31 , 1 ) ( 0.34 , 1 )

10 62 ( 0.56 , 0.999 ) ( 0.60 , 0.999 ) ( 0.59 , 0.999 )

20 84 ( 0.82 , 0.998 ) ( 0.84 , 0.998 ) ( 0.83 , 0.998 )

SIIa

5 63 ( 0.07 , 0.971 ) ( 0.63 , 1) ( 0.54 , 1)

10 65 ( 0.20 , 0.958 ) ( 0.65 , 1) ( 0.59 , 0.998 )

20 67 ( 0.53 , 0.939 ) ( 0.67 , 0.998 ) ( 0.65 , 0.995 )

SIIb

5 55 ( 0.09 , 0.988 ) ( 0.50 , 0.999) ( 0.48 , 1)

10 61 ( 0.19 , 0.982 ) ( 0.61 , 0.999 ) ( 0.53 , 0.999 )

20 65 ( 0.36 , 0.970 ) ( 0.64 , 0.994 ) ( 0.64 , 0.996 )
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5.4 Comparison Against Existing Methods

In previous literature in the field, differing methods for detection of outliers in linear re-

gression are available. We first review the two most commonly used methods, and then we

compare them with the methods that we have developed in Section 5.2.

5.4.1 Bonferroni Outlier Test

We are going to refer to the Bonferroni Outlier Test as the BO-Test. The idea of this method

is to use Studentized residuals for each observation, which are defined as ti = ei
MSE(i)(1−hii)

,

where MSE(i) is the mean-square error from the regression model fitted with the ith observa-

tion deleted. In this case, ei and MSE(i) are independent, and can be shown as ti ∼ tn−p−2.

The loss of the extra one df is due to the deletion of observation i.

BO-Test reports the Bonferroni p-values for Studentized residuals in linear models based

on the t-test (Fox and Weisberg, 2011). A very small p-value means the observation is highly

likely to be an outlier, and a large p-value indicates the observation is more fitting with the

rest of the data. Hence, to rank how extreme the observation is, we should arrange the

p-values from smallest to largest, or equivalently, we can arrange the Studentized residuals

in the order of their absolute values from large to small.

If we want to give a rule for detecting outliers, we set a threshold value, e.g. p0, and for

all observations with p-values less than p0, we call them outliers. The usual choices of the

thresholds are 0.01 and 0.05. This method was implemented using outlierTest in R-package

CAR (https://www.rdocumentation.org/packages/car).

5.4.2 Bayesian Test for Outliers Detection

Another method for detecting outliers in linear regression is based on the Bayesian approach

(Chaloner and Brant, 1988). We are going to refer to this method as Ch-Br. In Ch-Br, the

outlyingness of an observation is based on values of
∣∣∣ εi√

var(εi)

∣∣∣, where εi = yi − xTi β. Ch-Br
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has additional flexibility because we do not need to use the same variance for all data points.

This means each observation var(εi) can be different. We actually use different quantities

for variances based on which simulation model we think is correct. For example, if we think

Method-I is reasonable to be compared with Ch-Br, we use the var(εi) to be σ2, and we use

var(εi) to be σ2f(xi)
Tα if we think Method-II is a reasonable comparison. Since X and y

are known, at each iteration, we are going to look at samples of β and α, and use them to

compute the value
∣∣∣ yi−xTi β√

σ2f(xi)Tα

∣∣∣. We compute the posterior mean of this quantity for each

observation, and by arranging them from largest to smallest, we get a ranking of outliers.

The largest value is the most extreme, and the second largest is the second most extreme,

and so on.

To specify a rule for detecting outliers, we follow the recommendation of Chaloner and

Brant (1988). They suggested setting a threshold k0 and computing the posterior probability

qi = P
(∣∣∣ εi√

var(εi)

∣∣∣ > k0

∣∣∣Data) for each i. The corresponding prior probability would be

2Φ(−k0); hence any observations with qi < 2Φ(−k0) is going to be considered an outlier.

5.4.3 Comparison of Simulation Datasets

In all the plots and tables, as mentioned before, when we compare Ch-Br against one of our

methods, we use the corresponding specification of var(εi) . In Table 5.5, we compare our

methods with BO-Test and Ch-Br, and we reported the number of detected outliers on the

simulation datasets that we discussed in Section 5.3 in the first 20 and 100 observations. All

methods perform well for SI datasets, because for that particular model the error variance

does not depend on X variables. But, for SIIa and SIIb models, BO-Test performs signif-

icantly poorer compared with the others. For our methods and Ch-Br, the performance is

comparable in both, and our methods perform slightly better than Ch-Br in some cases.

Similar results can be seen in Figures 5.8 and 5.9. As we can see, the curve of our methods

are slightly below the curve of Ch-Br. Now, if we want to detect the most extreme outlier,
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0.9 of outliers, the performance of the methods becomes comparable, and that is expected,

because these are outliers which are most heavily mixed with other regular data points, so

they are more difficult to detect. However, for most outliers, our method performs as well

as, and in some cases better, than Ch-Br method.

Figure 5.8: The number of observations that should be considered to detect different
proportions of the actual outliers on datasets with 20 outliers
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Figure 5.9: The number of observations that should be considered to detect different
proportion of the actual outliers on datasets with 100 outliers

Table 5.5: Number of outliers in first 20 and 100 observations

Number of

outliers
Models

Method-I,

IIa & IIb
BO-Test Ch-Br

20
ou

tl
ie

rs SI 18 18 18

SIIa 15 1 15

SIIb 15 2 13

10
0

o
u

tl
ie

rs

SI 88 91 87

SIIa 72 21 68

SIIb 73 38 69
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5.5 Application to a Real Dataset

5.5.1 Data Description

The goal of this section is to identify potential outliers in the longitudinal datasets of student

heights. The dataset includes recorded height of 53, 206 Arkansas students each measured

at four different grades – KG, GR2, GR4 and GR6. These students were admitted in the

KG between 2005–2008. We considered data for only those students for whom we have all

four measurements up to GR6. Here, the height represents the response, and it has only one

covariate which is gender. Due to inappropriate measurements, incorrect data entry, and bias

from data recorded by different individuals, the dataset could have outliers. Before doing

any analysis these outliers should be removed from the dataset to avoid misleading inference.

We are going to apply the methods that we have developed in the previous sections on the

real dataset, but first we need to formulate the response appropriately as in Section 5.5.2.

5.5.2 Formulation of the Problem

We denoted the height of the student i at grade t by Hi(t). The outliers exist whenever

we have a large change between two data points, and hence our goal is to detect the large

change between two consecutive measurements for an individual. For a particular student,

we denoted the difference of heights in two consecutive grades by ∆i(t), i.e., ∆i(t) = Hi(t)−

Hi(t−1). Any negative or large positive value of ∆i(t) is considered to be an outlier. We see

that ∆i(t) does not follow a symmetric distribution. We want to use an error distribution

property that is symmetric around 0. Instead of working with actual heights, we want to

work with some kind of relative height that can increase or decrease over time. So, we used

Z-scores that are computed using LMS method. The LMS parameters are the power in the

Box-Cox transformation (L), the median (M), and the generalized coefficient of variation
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(S). The LMS method involves the following formula:

Zi(t) =


(

(Hi(t)/M)L
)
−1

LS
, where L 6= 0

ln
(
Hi(t)/M

)
S

, where L = 0

(L, M and S are the values from the appropiate table corresponding to the age in months of

the child.) The values of the LMS parameters change based on age and gender as specified

in Centers of Disease Control and Prevention (CDC) 2000 growth chart (Kuczmarski RJ,

2002). Zi(t) can take any real value between −∞ and∞. So, we do not have any constraint

in the model for Zi(t). With this new setting, we work with yi(t) = Zi(t) − Zi(t − 1), and

now our goal is to see if yi(t) has a large positive or negative change.

yi(t) = β0 + β1x
(1)
it + · · ·+ βpx

(p)
it + εit, where εit ∼ tνi(0, σ

2
it)

where x
(1)
it , . . . , x

(p)
it are a set of covariates related to the ith student at tth grade. For our

dataset we have only one covariate gender which is 1 for male and 0 for female.

5.5.3 Applying the Methods on the Dataset

We applied Method-I and Method-II on the real dataset. In the two methods, we used the

same number of iterations, initial values and prior parameters that we used in our simulation

studies, Section 5.3. In Method-II, in the MH part, we used different σproposed values to get

an acceptance ratio that lies between 35–45%. We burned-in the first 25% of the posterior

samples, and the rest was thinned by 5.

In terms of the number of matches between the two methods, we saw that if we consider

100 and 1000 of the most extreme observations, we found close to 90% matches in both of

them. In real data, gender is the only covariate. If Method-I and Method-II are showing

strong matches, it implies that gender may not have strong effect on the variability of y.
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Furthermore, we applied BO-Test and Ch-Br that we discussed in Section 5.4 on the real

dataset and compared them with our methods. As we can see in Table 5.6, our methods

match between 85–90% with the other methods. This match indicates there is a significant

amount of agreement between our methods and existing methods.

Table 5.6: Number of matches in 100 and 1000 most outlying observations

BO-Test Ch-Br

Method-I ( 87 , 923 ) ( 92 , 983 )

Method-II ( 85 , 916 ) ( 86 , 945 )

5.5.4 Comparison of Thresholds for Determining Outliers

In each method, we have a different way of specifying the threshold. As we discussed in

Sections 5.2 and 5.4, we used ν0, p0 and k0 as threshold parameters for our methods, BO-

Test and Ch-Br, respectively. In the following table, we show the values of the threshold

parameter that we need to use in different methods for obtaining comparable numbers of

outliers.

Table 5.7: Values of threshold parameter for obtaining comparable numbers of outliers

Method
Threshold

parameter
Criterion

Number of outliers

∼ 500 ∼ 750 ∼ 1000 ∼ 1500 ∼ 2000

Method-I & II ν0 E(ν|Y ) < ν0 2.4 2.6 2.8 3 10

BO-Test p0 p-value < p0 10−8 10−6 10−5 10−4 10−3

Ch-Br k0

P
(∣∣∣ εi√

var(εi)

∣∣∣ > k0

)
< 2Φ(−k0)

6 5 4 3.5 2.5

Since the real dataset is significantly larger than our simulation datasets, we are able to

detect a massive amount of outliers compared with what we could detect in our simulation.
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5.5.5 Exploring Temporal Pattern

Since our real dataset represents the height of students in 4 consecutive grades, which are

KG, GR2, GR4 and GR6, another approach can be to introduce temporal dependence in y.

This is equivalent to adding one more covariate to the model:

Y (1) = β∗0 + β∗1X + ε

Y (t+1) = β0 + β1X + β2Y
(t) + ε, for t = 1, . . . , T − 1.

In our real dataset, T = 3. In Table 5.8, we present posterior means and 95% credible

intervals for β values with and without temporal dependence effect. As we can see, β for

temporal effect is insignificant, which is why we expect a strong match between the temporal

and non-temporal methods for identifying outliers.

Table 5.8: Posterior mean and 95% credible intervals for β

Temporal

dependence
Covariate effect Method-I Method-II

with

β∗1
−0.052

(−0.058 , −0.046)

−0.052

(−0.058 , −0.046)

β1

0.061

(0.057 , 0.066)

0.006

(0.058 , 0.067)

β2

0

(−0.001 , 0.001)

0

(−0.001 , 0.001)

without β1

0.020

(0.016 , 0.024)

0.021

(0.017 , 0.025)

We applied the time series approach for both Method-I and Method-II, and we denoted

them by Method-I-T and Method-II-T, respectively. We made a comparison among our
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times series and regular method for the first 100 and 1000 observations. As we can see in

Table 5.9, the number of matches is around 90%.

Table 5.9: Number of matches outliers in 100 and 1000 most outlying observations

Method-I-T Method-II-T

Method-I ( 89 , 956 ) ( 94 , 950 )

Method-II ( 87 , 924 ) ( 88 , 941 )

Method-I-T – ( 87 , 960 )

When we ran time series techniques on BO-Test and Ch-Br methods, we did not get signifi-

cantly different results, as we can see in Tables 5.10 and 5.6.

Table 5.10: Number of matches in 100 and 1000 most outlying observations

BO-Test-T Ch-Br-T

Method-I-T ( 88 , 961 ) ( 93 , 987 )

Method-II-T ( 86 , 953 ) ( 89 , 964 )

5.5.6 Analysis of Outlying Observations

Since our methods gave similar results, we chose one of the methods (Method-I) to explore

properties of outliers. It has been observed that for some students two data points were

identified as outliers. This can happen if the erroneous measurement is at one of the inter-

mediate grades like GR2 or GR4. In that case, the change of Z-score between the grades

immediately before and after the erroneous measurements will have unusually large values

indicating both of them as outliers. On the other hand, if the erroneous measurements were

recorded in the KG or GR6, then only one change in Z-score will be large, so one outlier will

be detected. When we considered the top 1000 most extreme observations, we found around

80% of them come from unique students which implies about 20% of the students have more
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than one unusually large change, which is potentially caused by erroneous measurement at

an intermediate grade.

Below, we plot Z-score for three students depending on the time of erroneous measure-

ment. For the student with the most extreme outlier (denoted by Student-A), the erroneous

measurement occurred at grade KG. For the student with the 3rd and 5th most extreme

outliers (denoted by Student-B), the error occurred at GR2. For the student with the 6th

most extreme outlier (denoted by Student-C) the error occurred at GR6. The line plots of

the students’ Z-scores are shown in Figure 5.10. We can also see the change in Z-score for

the student with most extreme outlier is significantly large compared to the change for the

other two students’ outlying observations.

Figure 5.10: The time series of Z-scores for 3 students (The numbers indicate the rank of
changes w.r.t. all outliers)
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Figure 5.11 shows an interesting case where all three changes are unusually large, and

are ranked within the top 600. We found the rank of 1st change is 44, the rank of 2nd change

is 540, the rank of 3rd change is 317.

Figure 5.11: Z-scores from one student with unusually large values between all grades
(The numbers indicate the rank of changes w.r.t. all outliers)

Moreover, we checked the distribution of most outlying 1000 and 10000 for gender and

grades. The values were reported in Table 5.11. We saw that for both 1000 and 10000 most

outlying observations the number of such outliers is relatively low in Female between GR2

and GR4 and relatively high between GR4 and GR6, and in the other groups the error is

relatively uniform.
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Table 5.11: The 1000 and 10000 most outlying observations across different gender and
grades

Detection of unusual change between

Gender KG → GR2 GR2 → GR4 GR4 → GR6

Female (166, 1500) (109, 856) (209, 2060)

Male (181, 1686) (152, 1932) (183, 1965)

5.6 Conclusion

In this chapter, we have developed hierarchical models for outlier detection using heavy tailed

residuals. Instead of a hard determination of outliers, our methods provide an ordering of

outlyingness of all observations. If one wants to specifically identify outliers to eliminate, we

discussed ways of doing that in Section 5.3.5.

For real data on student heights, currently the CDC uses threshold on values of Z-score

to identify outliers based on Biologically Implausible Values (BIV) as explained in “Mod-

ified Z-Scores in the CDC Growth Charts” available at (https://www.cdc.gov/nccdphp/

dnpao/growthcharts/resources/biv-cutoffs.pdf). However, there maybe observations that

have Z-scores with the usual range at all time points, but between two successive time

points are unusual. Our approach can identify those measurements which may not be de-

tected using BIV criterion. As we have seen, the position of outlying changes between two

measurements may give a different picture about the grade of outlying measurement. Hence,

it is always advisable to biologically correlate the model output for a complete understanding

of the outliers present in the data.
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