
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2018

Optimal Allocation of Resources in Reliability Growth Optimal Allocation of Resources in Reliability Growth

Mohammadhossein Heydari
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Industrial Engineering Commons, and the Operational Research Commons

Citation Citation
Heydari, M. (2018). Optimal Allocation of Resources in Reliability Growth. Graduate Theses and
Dissertations Retrieved from https://scholarworks.uark.edu/etd/2688

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2688?utm_source=scholarworks.uark.edu%2Fetd%2F2688&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Optimal Allocation of Resources in Reliability Growth

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering with a concentration in Industrial Engineering

by

Mohammadhossein Heydari
Isfahan University of Technology

Bachelor of Science in Industrial & Systems Engineering, 2012
Sharif University of Technology

Master of Science in Industrial Engineering, 2009

May 2018
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Kelly M. Sullivan, Ph.D.
Dissertation Director

Edward A. Pohl, Ph.D.
Committee Member

 C. Richard Cassady, Ph.D.
Committee Member

Raymond R. Hill, Ph.D.
Committee Member

Abstract

Reliability growth testing seeks to identify and remove failure modes in order to improve system

reliability. This dissertation centers around the resource allocation across the components of a

multi-component system to maximize system reliability. We summarize this dissertation’s contri-

butions to optimal resource allocation in reliability growth.

Chapter 2 seeks to deploy limited testing resources across the components of a series-parallel

system in effort to maximize system reliability under the assumption that each component’s reli-

ability exhibits growth according to an AMSAA model with known parameters. An optimization

model for this problem is developed and then extended to consider the allocation of testing re-

sources in a series-parallel system with consideration for the possibility of testing at different levels

(system, subsystem, and component). We contribute a class of exact algorithms that decomposes

the problem based upon the series-parallel structure. We prove the algorithm is finite, compare

it with heuristic approaches on a set of test instances, and provide detailed analyses of numerical

examples.

In Chapter 3, we extend model in Chapter 2 to solve a robust optimization version of this

problem in which AMSAA parameters are uncertain but assumed to lie within a budget-restricted

uncertainty set. We model the problem of robust allocation of testing resources to maximize system

reliability for both series and series-parallel systems, and we develop and analyze exact solution

approaches for this problem based on a cutting plane algorithm. Computational results demonstrate

the value of the robust optimization approach as compared to deterministic alternatives.

In the last chapter, we develop a new model that merges testing components and installing re-

dundancies within an integrated optimization model that maximizes system reliability. Specifically,

our model considers a series-parallel system in which the system reliability can be improved by

both testing components and installing redundant components. We contribute an exact algorithm

that decomposes the problem into smaller integer linear programs. We prove that this algorithm is

finite and apply it to a set of instances. Experiments demonstrate that the integrated approach gen-

erates greater reliabilities than applying test planning and redundancy allocation models iteratively,

and moreover, it yields significant savings in computational time.

Acknowledgments

First and foremost I would like to express my special appreciation and thanks to my advisor Dr.

Kelly Sullivan for his continuous support of my PhD study, motivation, and valuable guidance.

This dissertation would not have been achievable without his guidance and support. I gratefully

acknowledge the members of my Ph.D. committee Dr. Edward Pohl, Dr. Richard Cassady, and

Dr. Raymond Hill for serving as my committee members and for their feedback and valuable

contributions. Many thanks to Dr. Haitao Liao and Dr. Shengfan Zhang for their continuous help

during my research. I would also like to thank to all my friends in Fayetteville. In particular, I am

grateful to Ben and Nicole Shaddox, Vera Hembitskaya, John Miller, Mohsen Dadashi, Jingming

Liu, Russ Reynerson, and Abdoul Maiga.

Last but not least, I would like to thank my family: my parents, Hosseinali and Manijeh, and

my siblings, Marjan and Keyvan, for all their love and support.

Dedication

To my family

Contents

1 Introduction 1

2 Algorithms for Resource Allocation Problems in Reliability Growth 5
2.1 Introduction . 5
2.2 Optimization Model for Component-Level Testing 6
2.3 Optimal Algorithm for Component-Level Testing 8

2.3.1 Discretize-and-Refine Method . 10
2.3.2 Discretize-and-Refine Decomposition Method 18

2.4 Extension to the Multi-Level Testing Problem . 25
2.4.1 Optimization Model for Multi-Level Testing 26
2.4.2 Discretize-and-Refine Decomposition Method for Multi-Level Testing . . . 28

2.5 Computational Results . 36
2.5.1 Numerical Example . 36
2.5.2 Algorithm Performance . 37
2.5.3 Testing Components versus Installing Redundancies 40
2.5.4 Multi-Level Testing versus Component-Level Testing 41

2.6 Conclusion and Future Research . 43

3 Robust Allocation of Testing Resources in Reliability Growth 45
3.1 Introduction . 45
3.2 Background and Problem Definition . 46
3.3 Solution Method for Series Systems . 50
3.4 Solution Method for Series-Parallel Systems . 62
3.5 Computational Results . 70

3.5.1 Comparing Robust and Deterministic Solutions via Sensitivity Analysis . . 70
3.5.1.1 Series System with N = 2, Uncertainty Only in λ 71
3.5.1.2 Series System with N = 2, Uncertainty Only in β 73
3.5.1.3 Series System with N = 2, Uncertainty in Both λ and β 74
3.5.1.4 Series System with N = 6, Uncertainty in Both λ and β 75
3.5.1.5 Series-Parallel System with N = 6, Uncertainty in Both λ and β 76

3.5.2 Generating Uncertainty Intervals Based on Preliminary Test Data 77
3.5.3 Effect of System Structure on Resource Allocation 81
3.5.4 Computational Performance of the Cutting-Plane Algorithm 82

3.6 Conclusion and Future Research . 84

4 An Integrated Approach to Redundancy Allocation and Test Planning for Reliability
Growth 86
4.1 Introduction . 86
4.2 Problem Formulation . 87
4.3 Decomposition Algorithm . 90
4.4 Numerical Results . 104
4.5 Conclusion and Future Research . 110

5 Conclusion 113

References 115

List of Figures

Figure 1 Upper bound and lower bound model for a particular component 11
Figure 2 A series-parallel system considering subsystem- and system-level connec-

tion’s failures . 27
Figure 3 Testing time allocation for numerical example 37
Figure 4 Results for instances comparing multi-level model with solving the component-

level testing allocation and connection testing allocation models iteratively 43
Figure 5 (a) Uncertainty box partitioned according to the value of Φ yielding the

maximum reliability; and (b) percentile plot of reliability difference between the
robust and deterministic solutions for the first instance. 72

Figure 6 (a) Uncertainty box partitioned according to the value of Φ yielding the
maximum reliability; and (b) percentile plot of reliability difference between ro-
bust and deterministic solutions for the second instance. 74

Figure 7 Percentile plot of reliability difference between robust and deterministic
solutions for the third instance. 75

Figure 8 Percentile plot of reliability difference between robust and deterministic
solutions (a) for the series instance with 6 subsystems and (b) for the series-parallel
instance. 76

Figure 9 Percentile plot of reliability under different test planning models. 81
Figure 10 (a) Testing time allocation and (b) reliability for the first set of instances . . 83
Figure 11 (a) Testing time allocation and (b) reliability for the second set of instances . 83
Figure 12 Results for instances that compares the integrated model with iteratively

solving reliability growth and redundancy allocation models 108
Figure 13 Comparison of computational times between the integrated model and iter-

atively solving reliability growth and redundancy allocation models 109
Figure 14 Results of instances that study the effect of mission length T on solutions . . 109

List of Tables

Table 1 Parameters for numerical example . 37
Table 2 Parameters for instances studying algorithm performance 39
Table 3 Computational comparison . 40
Table 4 Parameters for experiments on varying redundancy levels 41
Table 5 Results for different redundancy levels . 41
Table 6 Parameters for the multi-level testing instances 42
Table 7 Parameters for the series instance with 6 subsystems 75
Table 8 Testing times for the series instance with 6 subsystems 76
Table 9 Testing times for the series-parallel instance 77
Table 10 Parameters for three-subsystem series instance 77
Table 11 Summary of results for the series instance 80
Table 12 Average testing time allocation for the series instance 82
Table 13 Parameters for 11 instances that study the effect of system structure in re-

source allocation . 82
Table 14 Computational comparison for series instances 84
Table 15 Computational comparison for series-parallel instances 84
Table 16 Parameters for the example with 3 subsystems and 2 or 3 designs in each

subsystem . 105
Table 17 Results for the example with 3 subsystems and 2 or 3 designs in each subsystem106
Table 18 Parameters for the example with 3 subsystems and 3 designs in each subsystem106
Table 19 Results for the example with 3 subsystems and 3 designs in each subsystem . 107
Table 20 Computational performance for instances 1–16 110
Table 21 Computational performance for instances 17–32 111

List of Papers

Chapter 2: M. Heydari, K. M. Sullivan, and E. A. Pohl. Algorithms for Resource Allocation
Problems in Reliability Growth Testing. European Journal of Operational Research, submitted,
2018.

Chapter 3: M. Heydari, and K. M. Sullivan. Robust Allocation of Testing Resources in Relia-
bility Growth. Reliability Engineering & System Safety, In Press, 2017.

Chapter 4: M. Heydari, and K. M. Sullivan. An Integrated Approach to Redundancy Allocation
and Test Planning for Reliability Growth. Computers & Operations Research, 92: 182–193,
2018.

1 Introduction

Reliability growth is the improvement in system reliability through identifying and correcting fail-

ure modes of the design. This typically occurs during developmental testing, wherein the objective

is to improve system reliability in a systematic way by identifying and mitigating the failure modes

of the design before the system is introduced to market for usage. After the completion of develop-

mental testing, design changes are much more costly; thus, an effective reliability growth program

is highly valuable.

Duane [19] proposed one of the earliest reliability growth models based on the empirical ob-

servation that the cumulative failure rate (i.e., total number of failures divided by total testing time)

has a linear relationship with total testing time when it is plotted on a log-log scale. Crow [16] later

demonstrated that if cumulative failure rate versus total testing time truly has a linear relationship

on log-log scale, then failures occur according to a nonhomogenous Poisson process with Weibull

intensity. The resulting model became known as the Army Materiel Systems Analysis Activity

(AMSAA) model, a reliability growth method used often when there is a continuous scale usage.

In the AMSAA model, during testing, reliability failures are modeled according to a nonhomo-

geneous Poisson process with decreasing rate; therefore, system reliability increases with testing.

Because the AMSAA model does not need explicit assumptions about the number and design of

failure modes, it can be used in many different systems.

The reliability growth concept has been studied over the last 50 years. Although reviewing

the entire history of reliability growth modeling is tangential to the goals of this dissertation, we

provide a brief overview here. Reliability growth models have been developed for both hardware

(see, e.g., [12, 16, 17, 19, 38, 40, 54, 59]) and software [25, 29, 45, 56] systems and specialized

for the case of discrete [26, 39] or continuous data [16, 17, 19, 24, 25]. Discrete reliability growth

models refer to growth models that use countable data such as the number of failure or pass/fail

tests, while continuous reliability growth models refer to growth models that use continuous data,

mainly time. One of the challenges associated with reliability growth modeling is that obtaining a

1

substantial amount of failure data may require significant testing, which is costly. To address this,

models have been adapted to incorporate accelerated testing [31, 57] (i.e., applying stress to a sys-

tem to induce quicker failures for reliability analysis) and Bayesian methods [37, 58], which allow

for the incorporation of expert opinion. All of the models summarized thus far assume an underly-

ing (parametric) process that may be difficult to verify statistically given the cost associated with

obtaining data. Nonparametric models [47, 49] have been developed to address this shortcoming.

Reliability growth has been used extensively by the United States Department of Defense to

assess and enhance the reliability of large-scale complex systems, and its use has also moved into

the commercial sector for complex technical systems. As today’s systems become more and more

technically complex and the demands for increased reliability continue to increase, the need for

and use of reliability growth techniques will continue to grow. The idea behind reliability growth

planning and reliability growth testing is to fully test the operationally representative test article for

a set of operationally representative missions. The goal is to determine if the designed system will

meet operational and reliability requirements. The test durations and test profiles are based upon

the design and mission characteristics for the system. Reliability is improved during reliability

growth testing when system failures are identified during the test and design fixes are identified

and implemented to reduce the likelihood of the associated failure mode of recurring again during

system operation. Once fixes are identified, they are applied to systems that continue to undergo

reliability growth testing. It is the identification of failures and the resulting design changes made

to the system that mitigate or reduce the identified failure modes in the system that results in

improved reliability of the systems that are fielded after the reliability growth testing program.

Reliability growth models have also been used within optimization to allocate testing resources

efficiently. Coit [15] considers a testing time allocation problem for a system of serially connected

components. Coit assumes that reliability growth of each component occurs according to the

AMSAA model. Dai et al. [18] and Levitin [36] consider series-parallel problems that are nearly

identical to a problem studied in Chapter 2, but all utilize only heuristic methods in solving the

models.

2

In this dissertation, we consider the allocation of some limited testing resources across the

components of a multi-component (i.e. series and series-parallel) system to maximize the system’s

reliability. We begin by relating test times (the model’s decision variables) to reliability via the

AMSAA model. Let λ > 0 and β > 0 respectively denote scale and shape parameters for a given

component. After τ > 0 units of cumulative test time across components of this design, failures

occur in components at instantaneous rate

u(τ;λ ,β) = λβτ
β−1. (1)

We assume 0 < β < 1; thus, the failure rate decreases during the test (i.e., as a result of design

changes), and the components becomes more reliable. After testing, no further design alterations

are applied; therefore, failures occur in components according to a homogeneous Poisson process.

Such a component’s after-testing reliability for a mission of length T > 0 is given as

R(τ;T,λ ,β) = e−u(τ;λ ,β)T = e−λβτβ−1T . (2)

Equation (2) will be used to model the reliability of each component as a function of τ , its compo-

nent’s time on test.

The remainder of this dissertation is organized as follows. In Chapter 2, we consider the

allocation of testing times in a series-parallel system when components follows AMSAA relia-

bility growth model with known parameters. We also consider the allocation of test times in a

series-parallel system with consideration for the possibility of testing at different levels (system,

subsystem, and component). We propose a class of exact algorithms based on the series-parallel

structure, whereas all of the previous papers utilize heuristics to solve this problem.

In Chapter 3, we extend the model in Chapter 2 to solve a robust version of the problem in

which AMSAA parameters are uncertain but assumed to lie within a budget-restricted uncertainty

set. We model the problem of robust allocation of testing resources to maximize system reliability

for both series and series-parallel systems, and we develop and analyze exact solution approaches

3

for this problem based on cutting plane algorithm. A Monte Carlo simulation is used to compare

our model with the situation where AMSAA parameters are known. We also study the performance

of the exact solution methods for both series and series-parallel systems.

In Chapter 4, a new model is developed that merges two concepts of testing components (to

identify and remove failure modes, resulting in reliability growth) and installing redundancies

within an integrated optimization model that maximizes system reliability. Specifically, our model

considers a series-parallel system in which the system reliability can be improved by both testing

components and installing redundant components. We contribute a branch-and-bound algorithm

that solves the problem optimally.

4

2 Algorithms for Resource Allocation Problems in Reliability Growth

2.1 Introduction

In this chapter, we consider the allocation of test times in a series-parallel system, and we assume

the components exhibit reliability growth according to the AMSAA model. Moreover, we extend

the resource allocation problem to consider subsystem- and system-level testing. We propose an

exact algorithm for this problem that employs bounds derived from discrete subproblems. We

demonstrate the efficacy of our algorithm on instances containing as many as five subsystems.

Because it may be desirable in practice to solve instances involving tens of subsystems, we have

also examined the application of heuristics to this problem.

Our work extends several related works in the literature. Coit [15] considers a testing time

allocation problem for a system of serially connected components. As in this chapter, Coit assumes

that reliability growth of each component occurs according to the AMSAA model. Coit’s method

is exact, but it draws from properties resulting from special structures not assumed here. Dai et

al. [18] and Levitin [36] consider series-parallel problems that are similar to our component-level

testing model but all of the aforementioned papers utilize only heuristic methods in solving the

models. Awad [2] and Coit [15] extend the series system model of Coit [15] to the case where each

component’s failure rate is uncertain but assumed to follow a Normal distribution.

Given the literature summarized above, we now state the contributions of this paper. We (i) for-

mally state the discretize-and-refine algorithm and prove its finite convergence for a basic version

of the series-parallel test time allocation model and (ii) demonstrate how the algorithm’s ideas

can be exploited within the context of a resource-based decomposition scheme to solve the series-

parallel allocation problem more efficiently. We then (iii) show that the algorithm can be extended

to solve a resource allocation problem in which we incorporate the possibility of testing at the

system-, subsystem-, or component-level. We (iv) demonstrate insights upon solving numerical

examples from each of the models, and (v) provide a computational study to demonstrate the algo-

rithm’s empirical performance.

5

The remainder of this chapter is organized as follows. In Section 2.2, an optimization model

of resource allocation problem in reliability growth is presented. Section 2.3 develops an exact

solution method, and we present the multi-level resource allocation problem in Section 2.4. Sec-

tion 2.5 summarizes computational results obtained from implementing our algorithm and several

heuristics on a set of test instances, and Section 2.6 concludes.

2.2 Optimization Model for Component-Level Testing

We now propose a mathematical model which maximizes the system reliability. A summary of the

model’s notation follows

Parameters

N Number of subsystems (indexed by `)

M` Number of designs in subsystem `= 1, . . . ,N (indexed by i)

V`,i Number of components in design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

T Mission length

λ`,i,β`,i AMSAA model parameters for design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

b Available budget

c`,i Cost per unit time of testing design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

τ0
`,i Initial testing time of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N (assumed to

be positive)

Decision Variables

τ`,i Testing time of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

R`,i(τ`,i,T) Reliability of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

We consider a system consisting of serially connected subsystems ` = 1, . . . ,N. Subsystem ` has

a parallel structure and contains components associated with designs (`, i), i = 1, . . . ,M`. Let V`,i

6

denote the number of components in subsystem `= 1, . . . ,N that are associated with design (`, i).

Our model assumes the following:

Assumption 1. All components of all designs are independent.

Assumption 2. Components in each subsystem are connected in an active redundancy.

Assumption 3. The redundancy level for each design is fixed.

Assumption 4. The components of each design exhibit reliability growth according to the AM-

SAA reliability growth model with known parameters λ`,i and β`,i, `= 1, . . . ,N, i = 1, . . . ,M`, and

these parameters never change.

Assumption 5. A fixed mission length T is considered for the purposes of evaluating reliability.

Defining τ`,i as the testing time allocated to design (`, i), the mission reliability for every com-

ponent of design (`, i) is R(τ`,i;T,λ`,i,β`,i). For simplicity of exposition, we use the shorthand

R`,i(τ`,i,T) ≡ R(τ`,i;T,λ`,i,β`,i) throughout the remainder of this document to represent the relia-

bility of design (`, i). We consider the problem of selecting each design’s time on test, subject to

a limitation on the total (system-wide) testing time, in order to maximize the system’s reliability.

Assuming all components are independent, the testing time allocation problem defined by

R∗ = max
N

∏
`=1

[
1−

M`

∏
i=1

(
1−R`,i(τ`,i,T)

)V`,i

]
, (3a)

s.t.
N

∑
`=1

M`

∑
i=1

c`,iτ`,i ≤ b, (3b)

τ`,i ≥ τ
0
`,i, ∀`= 1, . . . ,N, i = 1, . . . ,M`. (3c)

Objective (3a) maximizes system reliability. Constraint (3b) limits the budget and Constraints (3c)

ensure the testing time for design (`, i) is at least the initial testing time τ0
`,i.

The case of our model corresponding to only one design in each subsystem (i.e., M` = 1, `=

1, . . . ,N) is an interesting special case, which is perhaps the most relevant to practice. We have

dedicated attention to this important special case in the following analysis; however, we have not

7

prohibited the possibility that M` > 1 in our models. This case is important, for instance, as it

allows for incorporating redundancy and component-selection decisions (see Chapter 4).

We describe algorithms for Model (3) in the following section. In doing so, it will be helpful

to define R(τ,T) ≡ ∏
N
`=1

[
1−∏

M`
i=1
(
1−R`,i(τ`,i,T)

)]
as the system reliability given test times

τ`,i, `= 1, . . . ,N, i = 1, . . . ,M`.

2.3 Optimal Algorithm for Component-Level Testing

In this section, we develop methodology for solving Model (3) within an arbitrarily small opti-

mality gap. If M` = V`,1 = 1, ` = 1, . . . ,N, Model (3) becomes a convex program via applying a

logarithm to its objective (resulting in the Coit [15] model) and can therefore be solved to optimal-

ity using derivative-based methods. Unfortunately, when M`> 1 for some `, no convex formulation

of Model (3) is apparent.

Given the discussion above, we proceeded by developing (in this section) a new algorithm

for which we could prove global optimality. This algorithm exploits the monotonicity of Objec-

tive (3a) in deriving upper and lower bounds for the optimal objective value. As we will demon-

strate in Section 2.5, this algorithm is consistently able to prove ε-optimality for 25-variable in-

stances (at ε ≈ 10−4) within one hour. However, the algorithm requires solving a number of integer

programs, which can require a significant amount of computational effort for large instances. As

a result, we have also implemented a simulated annealing heuristic (described in the following

section), which provides no guarantee of optimality but seems to be effective at identifying near-

optimal solutions quickly. (Of course, we can only comment that the solutions are near-optimal

because we have developed the global optimal algorithm for comparison.)

We now develop the ε-optimal algorithm, which utilizes sequences of discrete approxima-

tions to Model (3) to develop arbitrarily tight upper and lower bounds on the optimal objective to

Model (3) in a finite number of iterations.

We begin by stating a discrete version of Model (3). The notation used in this model is as

follows

8

Parameters

P Number of discrete points in each design’s discretized reliability function

(indexed by p, assumed without loss of generality to be equal for all designs)

τ
p
`,i p-th possible testing time associated with design i of subsystem ` (p = 1, . . . ,P;

`= 1, . . . ,N; i = 1, . . . ,M`)

rp
`,i Reliability of point p in design i of subsystem ` (p = 1, . . . ,P; `= 1, . . . ,N;

i = 1, . . . ,M`)

Decision Variables

xp
`,i

 1 if the testing time for design i in subsystem ` is τ
p
`,i

0 otherwise

(p = 1, . . . ,P; `= 1, . . . ,N; i = 1, . . . ,M`)

Using the above notation, the discretized model is given as

RD(r) = max
N

∏
`=1

[
1−

M`

∏
i=1

P

∏
p=1

(
1− rp

`,i

)V`,ix
p
`,i

]
, (4a)

s.t.
N

∑
`=1

M`

∑
i=1

P

∑
p=1

c`,iτ
p
`,ix

p
`,i ≤ b, (4b)

P

∑
p=1

xp
`,i = 1, ∀`= 1, . . . ,N, i = 1, . . . ,M`, (4c)

where r refers to the vector of rp
`,i-values and rp

`,i is the reliability associated with testing time τ
p
`,i.

Initially, we consider Model (4) with rp
`,i = R(τ p

`,i,T), which yields a lower bound on R∗; however,

we later show that another definition of rp
`,i yields an upper bound on R∗. We assume

τ
1
`,i < τ

2
`,i < · · ·< τ

P
`,i, ∀`= 1, . . . ,N, i = 1, . . . ,M`. (5)

Sections 2.3.1–2.3.2 provide a formal definition of our solution method, which draw upon solving

9

instances of Model (4). Because the method for solving Model (4) may be customized depending

on properties of the algorithm, we defer discussion of solution methodologies for Model (4) until

after the algorithm has been defined.

2.3.1 Discretize-and-Refine Method

In this section, we formally define the discretize-and-refine (D&R) methodology. This methodol-

ogy hinges upon the following observation: By solving Model (4), in which test times are restricted

to a finite set of possible values, it is possible to obtain both upper and lower bounds on R∗, the opti-

mal system reliability under continuous test times. By successive refinement of this discretization,

the bounds converge within ε in finite iterations.

We now establish bounds on R∗ that can be obtained by solving Model (4). Setting rp
`,i =

R`,i(τ
p
`,i,T) in Model (4) yields a lower bound while rp

`,i = R`,i(τ
p+1
`,i ,T) yields an upper bound.

(Let τ
P+1
`,i ≡ τmax

`,i , where τmax
`,i is the maximum possible testing time for design (`, i), which is either

given or set equal to (b+ c`,iτ0
`,i−∑

N
`′=1 ∑

M`
i′=1 c`′,i′τ0

`′,i′)/c`,i). The upper bound model is referred

to as UB-MILP, and the lower bound as LB-MILP. Figure 1 diagrams the bounds for a particular

design (`, i). Figure 1(a) depicts an upper bound obtained associating reliability R`,i(τ
p+1
`,i ,T)

with test time τ
p
`,i, and Figure 1(b) demonstrates a lower bound defined by associating reliability

R`,i(τ
p
`,i,T) with test time τ

p
`,i. We now establish that LB-MILP and UB-MILP respectively provide

lower and upper bounds on R∗.

Theorem 1. Define r̄ by

r̄p
`,i = R`,i(τ

p
`,i,T), ∀p = 1, . . . ,P. (6)

Then RD(r̄)≤ R∗. (That is, LB-MILP provides a lower bound for R∗.)

Proof. By setting r̄p
`,i = R`,i(τ

p
`,i,T), any feasible solution x̂ in Model (4) corresponds to a solution

τ`,i = ∑
P
p=1 τ

p
`,ix̂

p
`,i in Model (3) with the same objective value.

Theorem 2. Define ¯̄r by

¯̄rp
`,i = R`,i(τ

p+1
`,i ,T), ∀p = 1, . . . ,P. (7)

10

(a) (b)
Figure 1: Upper bound and lower bound model for a particular component

Then RD(¯̄r)≥ R∗. (That is, UB-MILP provides an upper bound for R∗.)

Proof. Define τ∗`,i, `= 1, . . . ,N, i = 1, . . . ,M`, as an optimal solution for Model (3) with objective

value R∗. For each design (`, i), find the index point P̂̀ ,i ∈ {1, . . . ,P} such that τ
P̂̀ ,i
`,i ≤ τ∗`,i < τ

P̂̀ ,i+1
`,i

and let τ̂`,i = τ
P̂̀ ,i+1
`,i . The solution with x

P̂̀ ,i
`,i = 1, ` = 1, . . . ,N, i = 1, . . . ,M`, is feasible to UB-

MILP, and the objective value of this solution in UB-MILP is R(τ̂,T). However, this value is no

less than R∗ because R(τ,T) is nondecreasing in τ . Hence, R∗ ≤ R(τ̂,T)≤ RD(¯̄r).

A formal statement of the D&R algorithm, which utilizes the bounds established in the preced-

ing theorems, follows. The number of discrete test times maintained for each design now varies

throughout the algorithm; however, we still utilize notation P to refer to the (now variable) number

of discrete points associated with each design. Likewise, τ
P+1
`,i again refers to τmax

`,i .

Step 0: For each design, define Pint as the initial number of discrete points, and τmin
`,i and

τmax
`,i as the minimum and maximum possible testing times for design (`, i), respectively. Set

τmin
`,i = τ0

`,i and τmax
`,i = (b+ c`,iτ0

`,i−∑
N
`′=1 ∑

M`
i′=1 c`′,i′τ0

`′,i′)/c`,i. Compute

τ
p
`,i = τ

min
`,i +

p−1
Pint

(τmax
`,i − τ

min
`,i), ∀`= 1, . . . ,N, i = 1, . . . ,M`, p = 1, . . . ,Pint. (8)

11

Let UB and LB denote the best known upper and lower bounds on the optimal system reli-

ability, and let τ∗ denote the incumbent solution. Let ε > 0 denote the optimality tolerance.

Set P← Pint, UB← 1, and LB← 0.

Step 1: If UB−LB≤ ε , stop (τ∗ is ε-optimal); otherwise, go to Step 2.

Step 2: Solve LB-MILP with objective RD(r̄) and solution τ̂ . If RD(r̄)> LB, set LB←RD(r̄)

and τ∗← τ̂ .

Step 3: Solve UB-MILP and let P∗`,i, `= 1, . . . ,N, i = 1, . . . ,M`, denote an optimal solution

with objective RD(¯̄r). Define a new candidate test time τ̄`,i = 0.5
(

τ
P∗`,i
`,i + τ

P∗`,i+1
`,i

)
for each

design (`, i). Set P← P+ 1 and define τP
`,i = τ̄`,i. Renumber each design’s candidate test

times in accordance with (5).

Step 4: If RD(¯̄r)<UB, set UB← RD(¯̄r).

Step 5: Return to Step 1.

We now establish convergence of D&R via Lemmas 1–6 and Theorem 3. As will become apparent

through the convergence proofs, the algorithm is quite general. If we impose additional constraints

on τ in Model (3), the same discretization approach can be used to generate upper- and lower-

bounds on R∗, and D&R therefore remains valid. Similarly, the approach can be adapted to other

(i.e., non-series-parallel) system structures provided the reliability function is nondecreasing in the

component design test times.

Lemma 1. Let design reliabilities ρ̄`,i and ¯̄ρ`,i be given such that

0≤ ρ̄`,i ≤ ¯̄ρ`,i ≤ 1, ∀`= 1, . . . ,N, i = 1, . . . ,M`. (9)

Define ε`,i = ¯̄ρ`,i − ρ̄`,i, εmax ≡ max`=1,...,N, i=1,...,M`
{ε`,i}, Mmax ≡ max`=1,...,N{M`}, and ε ≡

12

NMmaxεmax/ [1− (N +1)Mmaxεmax]. If Mmaxεmax ≤ 1 and NMmaxεmax/(1−Mmaxεmax)≤ 1, then

N

∏
`=1

[
1−

M`

∏
i=1

(
1− ¯̄ρ`,i

)]
−

N

∏
`=1

[
1−

M`

∏
i=1

(
1− ρ̄`,i

)]
≤ ε. (10)

(That is, when V`,i = 1, ` = 1, . . . ,N, i = 1, . . . ,M`, the system reliabilities resulting from design

reliabilities ρ̄`,i and ¯̄ρ`,i differ by at most ε .)

Proof. Let ε` =
[
1−∏

M`
i=1
(
1− ¯̄ρ`,i

)]
−
[
1−∏

M`
i=1
(
1− ρ̄`,i

)]
, `= 1, . . . ,N. Then

1−
M`

∏
i=1

(1− ρ̄`,i)+ ε` = 1−
M`

∏
i=1

(1− ¯̄ρ`,i), (11a)

= 1−
M`

∏
i=1

(1− ρ̄`,i− ε`,i), (11b)

= 1+ ∑
I⊆P(M`)

(−1)|I|+1

(
∏
i∈I

ε`,i

)[
∏

i∈{1,...,M`}\I

(
1− ρ̄`,i

)]
, (11c)

where P(M`) denotes the powerset of {1, . . . ,M`} and Equation (11c) follows from the expansion

of the product in Equation (11b). However, because 0≤ 1− ρ̄`,i≤ 1 and ε`,i≥ 0 for all i= 1, . . . ,M`,

it follows that

1−
M`

∏
i=1

(1− ρ̄`,i)+ ε` ≤ 1−
M`

∏
i=1

(
1− ρ̄`,i

)
+ ∑

I⊆P(M`):I 6= /0

(
∏
i∈I

ε`,i

)
, (12)

which establishes

ε` ≤ ∑
I⊆P(M`):I 6= /0

(
∏
i∈I

ε`,i

)
≤

M`

∑
k=1

(
M`

k

)
(εmax)

k , (13)

where the second inequality in (13) follows due to replacing ε`,i with the upper bound εmax and

combining terms in the summation for which εmax has the same exponent. Therefore,

ε` ≤
M`

∑
k=1

Mk
` ε

k
max ≤

M`

∑
k=1

Mk
maxε

k
max, (14a)

≤
∞

∑
k=1

(Mmaxεmax)
k =

Mmaxεmax

1−Mmaxεmax
≡ δmax. (14b)

13

In the first inequality of Equation (14a),
(M`

k

)
is replaced by the upper bound Mk

` . Because M` ≤

Mmax, Mmax is used instead of M` in the second inequality in (14a). Letting

εs ≡
N

∏
`=1

[
1−

M`

∏
i=1

(1− ¯̄ρ`,i)

]
−

N

∏
`=1

[
1−

M`

∏
i=1

(1− ρ̄`,i)

]
, (15)

we have

N

∏
`=1

[
1−

M`

∏
i=1

(1− ρ̄`,i)

]
+ εs =

N

∏
`=1

[
1−

M`

∏
i=1

(1− ¯̄ρ`,i)

]
, (16a)

=
N

∏
`=1

[(
1−

M`

∏
i=1

(1− ρ̄`,i)

)
+ ε`

]
, (16b)

= ∑
L⊆P(N)

(
∏
`∈L

ε`

)[
∏

`∈{1,...,N}\L

(
1−

M`

∏
i=1

(
1− ρ̄`,i

))]
, (16c)

≤
N

∏
`=1

[
1−

M`

∏
i=1

(1− ρ̄`,i)

]
+ ∑

L⊆P(N):L 6= /0

(
∏
`∈L

ε`

)
, (16d)

where P(N) is the powerset of {1, . . . ,N}. Since 0≤ 1− ρ̄`,i ≤ 1, 1− ρ̄`,i is substituted with 1 in

Equation (16d). Because ε` ≤ δmax, it follows that

εs ≤ ∑
L⊆P(N):L 6= /0

(
∏
`∈L

δmax

)
=

N

∑
`=1

(
N
`

)
δ
`
max, (17a)

≤
N

∑
`=1

N`
δ
`
max ≤

∞

∑
`=1

(Nδmax)
` , (17b)

=
Nδmax

1−Nδmax
=

NMmaxεmax

1− (N +1)Mmaxεmax
, (17c)

where the first inequality of (17b) follows because
(N
`

)
≤ N`. This completes the proof.

Lemma 2. Let ρ̄`,i, ¯̄ρ`,i, ε`,i, εmax, Mmax, and ε be defined as in Lemma 1 with the exception that

Mmax ≡max`=1,...,N

{
∑

M`
i=1V`,i

}
. Then

N

∏
`=1

[
1−

M`

∏
i=1

(
1− ¯̄ρ`,i

)V`,i

]
−

N

∏
`=1

[
1−

M`

∏
i=1

(
1− ρ̄`,i

)V`,i

]
≤ ε. (18)

14

(This extends Lemma 1 to give conditions under which the system reliabilities under ρ̄`,i and ¯̄ρ`,i

differ by no more than ε when V`,i > 1 for some (`, i).)

Proof. The result follows upon creating replicates (`, i,v), v = 1, . . . ,V`,i, of each design (`, i)

where ρ̄`,i,v ≡ ρ̄`,i and ¯̄ρ`,i,v ≡ ¯̄ρ`,i. Under these definitions, Inequality (18) can be restated as

N

∏
`=1

[
1−

M`

∏
i=1

V`,i

∏
v=1

(
1− ¯̄ρ`,i,v

)]
−

N

∏
`=1

[
1−

M`

∏
i=1

V`,i

∏
v=1

(
1− ρ̄`,i,v

)]
≤ ε; (19)

however, this follows directly from Lemma 1 as applied to the replicated designs (`, i,v). Note that

the statement of Lemma 1 now requires Mmax to equal the maximum number of replicated designs

(given by ∑
M`
i=1V`,i) in any subsystem `.

Lemma 3. Let x̄ represent a binary optimal solution to UB-MILP (i.e., using ¯̄r as defined in the

statement of Theorem 2) with respect to candidate test times τ
p
`,i, p = 1, . . . ,P, and let P∗`,i, ` =

1, . . . ,N, i = 1, . . . ,M`, denote the index p ∈ {1, . . . ,P} such that x̄p
`,i = 1. Define τ̄`,i ≡ τ

P∗`,i
`,i and

¯̄τ`,i ≡ τ
P∗`,i+1
`,i , and let ε`,i ≡ R`,i(¯̄τ`,i)−R`,i(τ̄`,i). With respect to ε`,i, define εmax as in Lemma 1

(also Lemma 2) and define Mmax as in Lemma 2. Let ε ≡ NMmaxεmax/ [1− (N +1)Mmaxεmax]. If

Mmaxεmax ≤ 1 and NMmaxεmax/(1−Mmaxεmax)≤ 1, then RD(¯̄r)−R∗ ≤ ε .

Proof. Defining ρ̄`,i = R`,i(τ̄`,i) and ¯̄ρ`,i = R`,i(¯̄τ`,i), we have that

RD(¯̄r) =
N

∏
`=1

[
1−

M`

∏
i=1

(
1− ¯̄ρ`,i

)V`,i

]
, (20)

and, because τ̄`,i is feasible to Model (3),

R∗ ≥
N

∏
`=1

[
1−

M`

∏
i=1

(
1− ρ̄`,i

)V`,i

]
. (21)

Hence, from Lemma 2, we have that RD(¯̄r)−R∗ ≤ ε .

Lemma 4. For each ε > 0, there exists δ`,i > 0 such that R`,i(τ`,i + δ`,i,T)−R`,i(τ`,i,T) ≤ ε for

τ0
`,i ≤ τ`,i ≤ b/c`,i, ` = 1, . . . ,N, i = 1, . . . ,M`. (That is, R`,i(τ`,i,T) is Lipschitz continuous on

15

τ0
`,i ≤ τ`,i ≤ b/c`,i.)

Proof. Differentiating the reliability function in Equation (2) with respect to τ , we see that

dR`,i(τ`,i,T)
dτ`,i

= R`,i(τ`,i,T)
[
−λβ (β −1)τβ−2

`,i T
]
, (22a)

≤ R`,i(b/c`,i,T)
[
−λβ (β −1)τ0

`,i
β−2

T
]
, (22b)

where (22b) holds because, R`,i(τ`,i,T) ≤ R`,i(b/c`,i,T), λ > 0, and 0 < β < 1. The right-hand

side of (22b) provides the Lipschitz constant c such that δ`,i = ε/c.

Lemma 5. Given δ > 0, define S = b2b/(δc`,i)c. Let Pk
`,i, `= 1, . . . ,N, i = 1, . . . ,M`, denote the

index p ∈ {1, . . . ,P} such that x̄p
`,i = 1 in UB-MILP’s optimal solution in the k-th iteration D&R.

Define τ̄k
`,i ≡ τ

Pk
`,i

`,i and ¯̄τk
`,i ≡ τ

Pk
`,i+1

`,i . Then ∆k
`,i ≡ ¯̄τk

`,i− τ̄k
`,i > δ for at most S iterations k.

Proof. We prove the result initially for Pint = 1, and then extend this proof for Pint > 1. We establish

the Pint = 1 case via induction on the following claim: ∆k
`,i ≡ ¯̄τk

`,i− τ̄k
`,i > δ for no more than 2n−1

iterations k provided that 2n−1δ ≤ τmax
`,i − τmin

`,i < 2nδ . For ease of exposition we define N`,i as the

maximum number of iterations k for which ∆k
`,i > δ .

In the base case, n = 0, in each iteration ∆k
`,i ≤ τmax

`,i − τmin
`,i ≤ δ so N`,i = 0 ≤ 20− 1. Now,

assume the claim holds for n = n′; therefore, if 2n′−1δ ≤ τmax
`,i − τmin

`,i < 2n′δ , then N`,i ≤ 2n′ − 1.

When n = n′+1, because Pint = 1, the first iteration divides the interval [τmin
`,i ,τmax

`,i] into two equal

intervals with lengths less than or equal to 2n′δ . As a result, when n = n′+1, the value N`,i is less

than or equal to 1+2(2n′−1) = 2n′+1−1, which completes the proof of the claim. We can easily

conclude that when n−1 = blog2 (τ
max
`,i − τmin

`,i)/δc, then N`,i ≤ 2n−1, hence

N`,i ≤ 2n−1 = 2

⌊
log2

τmax
`,i −τmin

`,i
δ

⌋
+1
−1≤ 2b

c`,iδ
−1≤

⌊
2b

c`,iδ

⌋
, (23)

where in the second inequality of Equation (23), the upper bound b/c`,i is used instead of τmax
`,i −

τmin
`,i .

16

Now, if Pint > 1, there are initially Pint disjoint intervals with lengths less than or equal to

(τmax
`,i − τmin

`,i)/Pint. Therefore,

N`,i ≤ Pint

⌊
2b

c`,iδPint

⌋
≤
⌊

2b
c`,iδ

⌋
. (24)

This completes the proof.

Lemma 6. Let τ̄k
`,i and ¯̄τk

`,i be defined as in Lemma 5. For each ε > 0, the number of iterations for

which some design (`, i) satisfies R`,i(¯̄τk
`,i,T)−R`,i(τ̄

k
`,i,T)> ε is bounded.

Proof. By Lemma 4, there exists δ`,i > 0 such that R`,i(τ`,i + δ`,i,T)−R`,i(τ`,i,T) ≤ ε, for τ0
`,i ≤

τ`,i≤ b/c`,i. Define δ =min`=1,...,N,i=1,...,M`
{δ`,i}, S`,i = b2b/(c`,iδ)c, and S≡max`=1,...,N,i=1,...,M`

{S`,i}. By Lemma 5, the number of iterations k for which design (`, i) satisfies ¯̄τk
`,i− τ̄k

`,i > δ

is at most S`,i; hence, the number of iterations k for which design (`, i) satisfies R`,i(¯̄τk
`,i,T)−

R`,i(τ̄
k
`,i,T)> ε is at most S`,i. Therefore, the number of iterations for which some design satisfies

R`,i(¯̄τk
`,i,T)−R`,i(τ̄

k
`,i,T)> ε is at most ∑

N
`=1 ∑

M`
i=1 S`,i ≤ S∑

N
`=1 M`.

Theorem 3. For arbitrary ε > 0, D&R terminates in finite steps with an ε-optimal solution.

Proof. Define ε ′ = min{N/(N +1),ε} and εmax = ε ′/(NMmax +(N +1)Mmaxε ′), where Mmax is

defined as in Lemma 2. As a result,

ε
′ =

NMmaxεmax

1− (N +1)Mmaxεmax
, (25)

and

εmax =
ε ′

NMmax +(N +1)Mmaxε ′
≤ ε ′

NMmax
≤ 1

(N +1)Mmax
, (26)

where the second inequality of (26) results because ε ′≤N/(N+1). Using Equation (26), Mmaxεmax

≤ 1/(N + 1) ≤ 1 and NMmaxεmax/(1−Mmaxεmax) ≤ 1. By Lemma 6 (using τ̄k
`,i and ¯̄τk

`,i defined

in Lemma 5), the number of iterations for which some design satisfies R`,i(¯̄τk
`,i,T)−R`,i(τ̄

k
`,i,T)>

εmax is bounded. Since Mmaxεmax≤ 1 and NMmaxεmax/(1−Mmaxεmax)≤ 1, Lemma 3 implies for r̄

and ¯̄r (defined in Theorems 1–2) that RD(¯̄r)−RD(r̄)≤ ε ′ ≤ ε after finite iterations.

17

Having established convergence of D&R, we now discuss a general method for linearizing

Model (4). Based upon Theorem 3, any finite approach to solving Model (4) yields a finite D&R

algorithm for Model (3). One plausible approach to solving Model (4) is to linearize the model

(and solve using a commericial mixed integer linear programming solver, such as CPLEX) in

the vein of Sullivan [51] and O’Hanley et al. [41], who use a variable-expansion technique that

represents probabilities of compound events as flows through a binary decision diagram. (As noted

by Sullivan [51], this actually yields a valid linearized model even in the case of systems that are not

series-parallel in structure; thus, D&R yields a finite algorithm for even more general systems than

the one considered herein.) We have implemented such an approach but found that computational

results favored an implementation of D&R that decomposes the original problem by resource. The

resulting master and subproblems can each be solved via the D&R algorithm presented in this

section, and the discrete versions of these problems are naturally formulated (without requiring a

complex linearization approach) as mixed integer linear programs.

2.3.2 Discretize-and-Refine Decomposition Method

In this algorithm, we decompose Model (3) based on the observation that fixing the testing time

allocated to each subsystem results in separable subproblems. In our problem, although the result-

ing subproblems are easier to solve, they are still nonlinear, nonconvex programs. We develop an

approach (hereafter referred to as D&R decomposition, or D&RD) in which the master and sub-

problems iteratively are solved via D&R to yield a finite algorithm for Model (3). We now describe

the optimization models used in D&RD.

The subproblem for subsystem `= 1, . . . ,N is given as

RS (b`,T) = max 1−
M`

∏
i=1

(
1−R`,i(τ`,i,T)

)V`,i , (27a)

s.t.
M`

∑
i=1

c`,iτ`,i ≤ b`, (27b)

τ`,i ≥ τ
0
`,i, ∀i = 1, . . . ,M`, (27c)

18

where b` ≥ b0
` ≡∑

M`
i=1 c`,iτ0

`,i is the budget available for testing in subsystem `. (Because a different

Model (27) is associated with each subsystem `, the notation RS(·,T) could be subscripted by `;

however, we drop the cumbersome subscript because it is implied by the subscript on b.)

As before, D&R can be applied to generate arbitrarily tight bounds on RS(b`,T); however,

this time the discretized model can be solved with increased efficiency, as we now explain. The

discretized version of Model (27) is given as

RSD(b`,r`) = max 1−
M`

∏
i=1

P

∏
p=1

(
1− rp

`,i

)V`,ix
p
`,i
, (28a)

s.t.
P

∑
p=1

xp
`,i = 1, ∀i = 1, . . . ,M`, (28b)

M`

∑
i=1

P

∑
p=1

c`,iτ
p
`,ix

p
`,i ≤ b`, (28c)

xp
`,i ∈ {0,1}, ∀i = 1, . . . ,M`, p = 1, . . . ,P, (28d)

where r` denotes the vector of rp
`,i-values corresponding to a single subsystem `. Applying a natural

logarithm to the product in Objective (28a) yields the equivalent (integer linear) model

w∗`(b`,r`) = min
M`

∑
i=1

P

∑
p=1

ln(1− rp
`,i)V`,ix

p
`,i, (29)

s.t. Constraints (28b)–(28d),

where RSD(b`,r`) = 1− ew∗` (b`,r`) provides the optimal objective value to Model (28).

The master problem allocates testing time to each subsystem. Letting b`, ` = 1, . . . ,N denote

the budget allocated to subsystem `, the master problem is given as

R∗ = max
N

∏
`=1

RS(b`,T), (30a)

s.t.
N

∑
`=1

b` ≤ b, (30b)

b` ≥ b0
` , ∀`= 1, . . . ,N. (30c)

19

To discretize Model (30), let

b1
` < b2

` < · · ·< bP
` , (31)

for each subsystem ` = 1, . . . ,N denote P candidate testing times. Let xp
` = 1 if the p-th testing

time is selected in subsystem `, and 0 otherwise. Similarly, let rp
` denote the subsystem ` reliability

(i.e., rp
` = RS(bp

` ,T)) if its p-th testing time is selected. The discretized master problem is given as

RMD(r) = max
N

∏
`=1

P

∏
p=1

rp
`

xp
` , (32a)

s.t.
P

∑
p=1

xp
` = 1, ∀`= 1, . . . ,N, (32b)

N

∑
`=1

P

∑
p=1

bp
` xp

` ≤ b, (32c)

xp
` ∈ {0,1}, ∀`= 1, . . . ,N, p = 1, . . . ,P, (32d)

where r denotes the vector of rp
` -values. Applying a logarithm to the Objective (32a) again yields

an equivalent linear model, given as w∗(r) =max
{

∑
N
`=1 ∑

P
p=1 ln(rp

`)x
p
`

∣∣∣Constraints (32b)–(32d)
}

,

where ew∗(r) provides the optimal objective value to Model (32).

One of the difficulties in using the discretized Model (32) in solving Model (3) is that the con-

stants rp
` = RS(bp

` ,T) are difficult to compute, each requiring solution of an instance of Model (29).

In fact, applying D&R to Model (29) yields only bounds on RS(bp
` ,T), which further complicates

the development of D&RD. We now extend the key results of Section 2.3.1 to establish conver-

gence of D&RD. Regarding vectors r and r̄ of rp
` -values, we say that r ≤ r̄ if rp

` ≤ r̄p
` for all

` = 1, . . . ,N, and p = 1, . . . ,P. As before, we let bP+1
` refer to bmax

` ≡ b+ b0
` −∑

N
`′=1 b0

`′ . The

lower- and upper-bound results for Model (32) follow.

Theorem 4. Define r by

rp
` = RS(bp

` ,T), ∀p = 1, . . . ,P. (33)

If r̄≤ r, then RMD(r̄)≤ R∗.

20

Proof. The result follows directly from Theorem 1 (under M` = 1, `= 1, . . . ,N) if r̄ = r. If r̄≤ r,

the result holds because RMD(·) is nondecreasing.

Theorem 5. Define r by

rp
` = RS(bp+1

` ,T), ∀p = 1, . . . ,P. (34)

If ¯̄r≥ r, then RMD(¯̄r)≥ R∗.

Proof. If ¯̄r = r, Theorem 2 implies the result under the special case M` = 1, `= 1, . . . ,N. If ¯̄r≥ r,

the result holds because RMD(·) is nondecreasing.

In what follows, we refer to Model (32) as UB-MD when providing an upper bound on R∗ and

as LB-MD when providing a lower bound. A formal statement of D&RD follows.

Step 0: Let εsub and Psub denote the subsystem tolerance and initial number of points for

each design, respectively. Also, define ε as the system tolerance. Set bmin
` = b0

` and bmax
` =

b+b0
` −∑

N
`′=1 b0

`′ . For each subsystem `= 1, . . . ,N, define Pint initial budget according to

bp
` = bmin

` +
(p−1)

Pint

(
bmax
` −bmin

`

)
, ∀`= 1, . . . ,N, p = 1, . . . ,Pint. (35)

Denote b∗ as the incumbent solution. Set P← Pint, UB← 1 and LB← 0.

Step 1: Solve subproblems (28) via D&R with tolerance εsub and initial number of points Psub

for each p = 1, . . . ,P, and `= 1, . . . ,N to obtain U p
` and Lp

` such that

Lp
` ≤ RS(bp

` ,T)≤U p
` , (36)

and U p
` −Lp

` ≤ εsub. Define r̄ according to

r̄p
` = Lp

` , ∀`= 1, . . . ,N, p = 1, . . . ,P, (37)

and ¯̄r according to

¯̄rp
` =U p+1

` , ∀`= 1, . . . ,N, p = 1, . . . ,P. (38)

21

Step 2: If UB−LB≤ ε , stop (b∗ is ε-optimal); otherwise, go to Step 3.

Step 3: Solve LB-MD Model (32) using r̄ as defined in Equation (37) to obtain an optimal

solution b̂ with objective value RMD(r̄). (Because r̄ ≤ r for r defined in Equation (33),

Theorem 4 guarantees RMD(r̄)≤ R∗.) If RMD(r̄)> LB, set LB← RMD(r̄) and b∗← b̂.

Step 4: Solve UB-MD Model (32) using ¯̄r as defined in Equation (38) to obtain an optimal

solution P∗` with objective value RMD(¯̄r). (Because ¯̄r ≥ r for r defined in Equation (34),

Theorem 5 guarantees RMD(¯̄r) ≥ R∗.) Set P← P+ 1. For each subsystem ` = 1, . . . ,N, do

the following:

4a: Define a new candidate test time bP
` = 0.5

(
bP∗`
` +bP∗` +1

`

)
.

4b: Solve subproblems (27) via D&R with tolerance εsub and initial number of points

Psub to obtain UP
` and LP

` such that

LP
` ≤ RS(bP

` ,T)≤UP
` . (39)

4c: Renumber each of the candidate test times to ensure b1
` < b2

` < · · ·< bP
` .

Step 5: If RMD(¯̄r)<UB, set UB← RMD(¯̄r).

Step 6: Go to Step 2.

We now prove finite convergence of D&RD to an ε-optimal solution. As in the convergence

proof for D&R, we first establish that the master problem discretization occurs over a Lipschitz

function (i.e., such that a given resolution in the objective function can be produced by a fine

enough discretization).

Lemma 7. For each ε > 0, there exists δ` > 0 such that RS(b`+ δ`,T)−RS(b`,T) ≤ ε for b0
` ≤

b` ≤ b, `= 1, . . . ,N.

Proof. As in the proof of Theorem 3, define ε ′ = min{N/(N +1),ε} and εmax = ε ′/[NM`+(N +

1)M`ε
′] where N ≡ 1. By Lemma 4, there exists δ`,i > 0 such that R`,i(τ`,i+δ`,i,T)−R`,i(τ`,i,T)≤

22

εmax for τ0
`,i ≤ τ`,i ≤ τmax

`,i . Let δ` = min{δ`,i}M`
i=1. For an optimal solution ¯̄τ`,i, i = 1, . . . ,M`, to

Model (27) with objective value RS(b`+δ`,T), define τ̄`,i = max{ ¯̄τ`,i−δ`/M`,τ
0
`,i}. We have that

R`,i(¯̄τ`,i,T)−R`,i(τ̄`,i,T)≤ εmax, ∀`= 1, . . . ,N, i = 1, . . . ,M`. (40)

Now, applying Lemma 2 with N = 1 yields

[
1−

M`

∏
i=1

(
1−R`,i

(
¯̄τ`,i,T

))V`,i

]
−

[
1−

M`

∏
i=1

(
1−R`,i(τ̄`,i,T)

)V`,i

]
≤ ε. (41)

(Note that, as in Theorem 3, we have that M`εmax ≤ 1 and NM`εmax/(1−M`εmax) ≤ 1.) Because

τ̄`,i is feasible to Model (27) corresponding to b`, we have that

RS(b`,T)≥ 1−
M`

∏
i=1

(
1−R`,i

(
τ̄`,i,T

))V`,i . (42)

From the definition of ¯̄τ`,i,

RS(b`+δ`,T) = 1−
M`

∏
i=1

(
1−R`,i

(
¯̄τ`,i,T

))V`,i , (43)

and Equation (41) thus yields the result.

Lemma 8. Given δ` > 0, define S = b2b/δ`c. Allow Pk
` , ` = 1, . . . ,N, to denote the index

p ∈ {1, . . . ,P} such that x̄p
` = 1 in the obtained optimal solution to UB-MD in iteration k of the

algorithm, and define b̄k
` = b

Pk
`
` and ¯̄bk

` = b
Pk
`+1
` . Then ∆k

` ≡
¯̄bk
`− b̄k

` > δ` for at most S iterations k.

Proof. This follows analogously to Lemma 5 upon replacing ∆k
`,i with ∆k

`, N`,i with N`, and τ̄k
`,i,

¯̄τk
`,i, τmin

`,i , and τmax
`,i , respectively, with b̄k

`,
¯̄bk
`, bmin

` , and bmax
` , and the fact that the cost coefficients

are equal to 1 in Model (30).

Lemma 9. Let b̄k
` and ¯̄bk

` be defined as in Lemma 8. For each ε > 0, the number of iterations for

which some subsystem ` satisfies RS(¯̄bk
`,T)−RS(b̄k

`,T)> ε is bounded.

23

Proof. By Lemma 7, there exists δ` > 0 such that RS(b`+δ`,T)−RS(b`,T)≤ ε , for b0
` ≤ b` ≤ b.

Define δ = min`=1,...,N{δ`} and S = b2b/δc. By Lemma 8, the number of iterations k for which

subsystem ` satisfies ¯̄bk
`− b̄k

` > δ is at most S; thus, the number of iterations k for which subsystem `

satisfies RS(¯̄bk
`,T)−RS(b̄k

`,T)> ε is at most S. Therefore, the number of iterations for which some

subsystem satisfies RS(¯̄bk
`,T)−RS(b̄k

`,T)> ε is at most NS.

Theorem 6. For arbitrary ε > 0, D&RD terminates in finite steps with an ε-optimal solution.

Proof. Define ε ′=min{N/(N+1),ε} and ε ′′= ε ′/(NM+(N +1)Mε ′) where M = 1. Let εmax =

εsub = ε ′′/3. Following as Equation (26), we have that

ε
′′ =

ε ′

NM+(N +1)Mε ′
≤ ε ′

NM
≤ 1

(N +1)M
, (44)

implying both Mε ′′ ≤ 1 and NMε ′′/(1−Mε ′′)≤ 1.

Lemma 7 guarantees existence of δ` > 0, `= 1, . . . ,N, such that RS(b`+δ`,T)−RS(b`,T)≤

εmax for b0
` ≤ b` ≤ b. Let δ = min`=1...,N{δ`}. By Lemma 9, after at most Nb2b/δc+ 1 itera-

tions, we reach an iteration of D&RD where—using Pk
` as defined in Lemma 8—RS(b

Pk
`+1
` ,T)−

RS(b
Pk
`
` ,T)≤ εmax, for all `= 1, . . . ,N. In this iteration, Step 1 of D&RD indicates that

L
Pk
`
` ≤ RS

(
b

Pk
`
` ,T

)
≤ RS

(
b

Pk
`+1
` ,T

)
≤U

Pk
`+1

` , ∀`= 1, . . . ,N, (45)

where

U
Pk
`+1

` −L
Pk
`
` =

[
U

Pk
`+1

` −RS
(

b
Pk
`+1
` ,T

)]
+

[
RS
(

b
Pk
`+1
` ,T

)
−RS

(
b

Pk
`
` ,T

)]
+

[
RS
(

b
Pk
`
` ,T

)
−L

Pk
`
`

]
, (46a)

≤
[
U

Pk
`+1

` −L
Pk
`+1
`

]
+

[
RS
(

b
Pk
`+1
` ,T

)
−RS

(
b

Pk
`
` ,T

)]
+

[
U

Pk
`

` −L
Pk
`
`

]
, (46b)

≤ εsub + εmax + εsub, (46c)

= ε
′′. (46d)

24

Now, because Mε ′′ ≤ 1 and NMε ′′/(1−Mε ′′)≤ 1, it follows from Lemma 1 (under M` = 1, `=

1, . . . ,N, ¯̄ρ` =U
Pk
`+1

` , and ρ̄` = L
Pk
`
`) that RMD(¯̄r)−RMD(r̄)≤ ε ′ ≤ ε (where r̄ and ¯̄r are defined as

in Step 1 of D&RD).

Having established that D&RD terminates finitely, we now overview simplifications that result

for subsystems ` in which M` = 1.

Remark 1. When M` = 1, Model (27) has a single variable (τ`,1) over which the objective is

nondecreasing. Thus, τ`,1 = b`/c`,1 is optimal for this problem. In Step 1 of the D&RD algorithm,

this allows us to obtain RS(bp
` ,T) directly (i.e., without applying the D&R algorithm). We would

then set Lp
` =U p

` = RS(bp
` ,T) and proceed with the algorithm. 2

We note that there are other ways of exploiting the decomposition structure used in D&RD to

arrive at an exact algorithm for our problem. For instance, the feasible region of the master and/or

subproblem could be explored via a branch and bound scheme wherein each branch restricts each

testing time variable to fall within an interval and branching is used to refine these intervals over

time. Preliminary computational results demonstrated that such an approach consistently results in

larger optimality gaps than D&RD for instances with more than two subsystems, and so we have

foregone its formal development.

2.4 Extension to the Multi-Level Testing Problem

In this section, we extend the results of Sections 2.2 and 2.3 to the problem of allocating test times

in a series-parallel system with consideration for the possibility of testing at different levels (sys-

tem, subsystem, and component). Motivated by Pohl and Dietrich [43], we model the concept of

the connection-induced failure through the addition of pseudo-components to consider the con-

nections in the system and subsystems. The idea is this: connecting components (subsystems)

into a subsystem (system) may induce additional failure modes. In order to remove these failure

modes, testing must be performed at a high enough assembly level. System-level testing is more

expensive, but also more comprehensive rather than subsystem- and component-level testing in

25

that it may identify failure modes present in any component or connection. In Section 2.4.1, we

state an optimization model that incorporates these tradeoffs among component-, subsystem-, and

system-level testing activities.

2.4.1 Optimization Model for Multi-Level Testing

In what follows, a reliability growth model that accounts for component-, subsystem-, and system-

level testing is given. The following notation will be used throughout this section.

Parameters

λ`,β` AMSAA model parameters for subsystem-level connections in subsystem `= 1, . . . ,N

λ ,β AMSAA model parameters for system-level connection

c` Cost per unit time of testing subsystem `= 1, . . . ,N

c Cost per unit time of system-level testing

L` Scaling factor of subsystem-level connection `= 1, . . . ,N in system-level testing

L`,i Scaling factor of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N in system-level testing

J`,i Scaling factor of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N in subsystem-level

testing

τ0
` Initial subsystem-level testing time of subsystem `= 1, . . . ,N (assumed to be positive)

τ0 Initial system-level testing time (assumed to be positive)

Decision Variables

τ`, τ̄` Subsystem-level testing time of subsystem `= 1, . . . ,N

τ, τ̄ System-level testing time

We now present a formal definition of the problem. The system comprises N subsystems connected

in a series. Each subsystem ` = 1, . . . ,N has designs (`, i), i = 1, . . . ,M` in parallel, with V`,i re-

dundant components for design i = 1, . . . ,M`. Connection-induced failure is modeled through the

26

addition of a pseudo-component associated with the system and each subsystem. After adding

pseudo-components, the system’s structure is depicted in Figure 2. Therefore, a system failure

takes place if a subsystem- or system-level connection has a failure or if all components in a

subsystem fail. We assume that all components and pseudo-components exhibit reliability growth

according to an AMSAA model, and that testing at a higher-level assembly (i.e., the outlined boxes

in Figure 2) improves the reliability of all connections and component designs included in that as-

sembly. We use scaling factors 0 ≤ J`,i ≤ 1 and 0 ≤ L`,i ≤ 1 for design (`, i) in subsystem- and

system-level testing respectively to take into account subsystem- and system-level testing effect

on components’ reliabilities. For instance, L`,i = 0.1 would indicate an hour of dedicated testing

on component design (`, i) would yield the same improvement to that design as would 0.1 hours

of testing on an assembled system that contains design (`, i). Also, we incorporate the scaling

factor 0≤ L` ≤ 1 to capture the effect of system-level testing in subsystem-level connection `. We

use scaling factors because the subsystem- and system-level testing are less effective in revealing

failure modes of a component than dedicated component-level testing. We define the shorthand no-

tation R`(τ`,T)≡ R(τ`;T,λ`,β`) and R(τ,T)≡ R(τ;T,λ ,β), respectively, to refer to the reliability

of subsystem `’s connection and the system’s connection.

Figure 2: A series-parallel system considering subsystem- and system-level connection’s failures

This problem may be formulated as

R∗ = max R(τ,T)
N

∏
`=1

(
R`(τ`+L`τ,T)

[
1−

M`

∏
i=1

(
1−R`,i(τ`,i + J`,iτ`+L`,iτ,T)

)V`,i

])
, (47a)

s.t.
N

∑
`=1

M`

∑
i=1

c`,iτ`,i +
N

∑
`=1

c`τ`+ cτ ≤ b, (47b)

τ`,i ≥ τ
0
`,i, ∀`= 1, . . . ,N, i = 1, . . . ,M`, (47c)

27

τ` ≥ τ
0
` , ∀`= 1, . . . ,N, (47d)

τ ≥ τ
0. (47e)

Objective (47a) maximizes the reliability of the system (computed as the product of all subsys-

tems and connections’ reliabilities) through a mission of length T . Equation (47b) limits the total

cost of testing, where b is the available budget and c`,i, c`, and c represent the cost per unit time

of the testing design (`, i), the assembled subsystem `, and the assembled system. Constraint

sets (47c)–(47e) ensure the testing times for the design (`, i), the subsystem-level connection `,

and the system-level connection should be respectively greater than the initial testing times τ0
`,i,

τ0
` , and τ0. Noting the monotonicity of R`,i(τ`,i + J`,iτ`+L`,iτ,T), Model (47) can equivalently be

formulated, after adding (continuous) variables τ̄ and τ̄`, `= 1, . . . ,N, as

R∗ = max R(τ,T)
N

∏
`=1

(
R`(τ`+L`τ,T)

[
1−

M`

∏
i=1

(
1−R`,i(τ`,i + J`,iτ̄`+L`,iτ̄,T)

)V`,i

])
, (48a)

s.t. Constraints (47b)–(47c), (48b)

τ
0
` ≤ τ̄` ≤ τ`, ∀`= 1, . . . ,N, (48c)

τ
0 ≤ τ̄ ≤ τ. (48d)

The following section explains how the algorithm of Section 2.3.2 can be extended to solve

Model (48).

2.4.2 Discretize-and-Refine Decomposition Method for Multi-Level Testing

In this algorithm, we decompose Model (48) into a master problem and N subproblems. In

subproblem ` = 1, . . . ,N, resources are allocated, given fixed system-level test time τ̄ ≥ τ0 and

susbsystem-level test times τ̄` ≥ τ0
` , `= 1, . . . ,N, to the designs of subsystem `. The subproblem `

28

for fixed value of τ̄` and τ̄ , and available budget b` ≥ b0
` ≡ ∑

M`
i=1 c`,i can be stated as

RS (b`, τ̄`, τ̄,T) = max

[
1−

M`

∏
i=1

(
1−R`,i(τ`,i + J`,iτ̄`+L`,iτ̄,T)

)V`,i

]
, (49a)

s.t.
N

∑
`=1

M`

∑
i=1

c`,iτ`,i ≤ b`, (49b)

τ`,i ≥ τ
0
`,i, ∀i = 1, . . . ,M`, (49c)

in which RS (b`, τ̄`, τ̄,T) defines the reliability of subproblem ` for budget b`, subsystem testing τ̄`,

and system-level testing τ̄ . The subproblem (49) is similar to Model (27), so we use the discretize-

and-refine method to solve subproblem (49).

In the master problem, we determine the system-level testing time τ , the testing time τ` for each

subsystem ` = 1, . . . ,N, and the budget b` allocated to dedicated testing on designs of subsystem

`= 1, . . . ,N. The master problem is defined as follows:

R∗ = max R(τ,T)
N

∏
`=1

(
R`(τ`+L`τ,T)RS (b`, τ̄`, τ̄,T)

)
, (50a)

s.t.
N

∑
`=1

b`+
N

∑
`=1

c`τ`+ cτ ≤ b, (50b)

b` ≥ b0
` , ∀`= 1, . . . ,N, (50c)

τ
0
` ≤ τ̄` ≤ τ`, ∀`= 1, . . . ,N, (50d)

τ
0 ≤ τ̄ ≤ τ. (50e)

We let τ p, p = 1, . . . ,P denote candidate values of τ such that (τ0 ≡)τ1 < τ2 < · · · < τ p and

define rp = R(τ p,T) as the system connection reliability associated with τ p. For each p = 1, . . . ,P,

we define τ
p,q
` , q = 1, . . . ,Qp

` as candidate values of τ` that are available when τ = τ p, such that

(τ0
` ≡)τ

p,1
` < τ

p,2
` < · · · < τ

p,Qp
`

` . Let rp,q
` = R`(τ

p,q
` + L`τ

p) denote the subsystem ` connection

reliability associated with τ
p,q
` . Similar to the discretization of τ and τ`, we discretize τ̄ and τ̄`;

however, because solving subproblems can be time consuming, we limit the candidate values of τ̄

29

and τ̄` to a subset of those considered for τ and τ`. Let p(j) ∈ {1, . . . ,P}, j = 1, . . . ,J denote a

subset of indices such that

p(1)< p(2)< · · ·< p(J). (51)

We define τ p(j), j = 1, . . . ,J as the candidate values of τ̄ . Similarly, let q(k) ∈ 1, . . . ,Qp(j)
` , k =

1, . . . ,K j
` , denote a subsequence of indices such that

q(1)< q(2)< · · ·< q(K j
`). (52)

We define τ
p(j),q(k)
` , j = 1, . . . ,J, k = 1, . . . ,K j

` as the candidate values of τ̄`. Associated with

each j = 1, . . . ,J, and k = 1, . . . ,Kk
` , we define b j,k,s

` , s = 1, . . . ,S j,k
` , as the candidate values of

b`, ` = 1, . . . ,N, to consider when τ̄ = τ p(j) and τ̄` = τ
p(j),q(k)
` . Moreover, we define r j,k,s

` =

RS(b j,k,s
` ,τ

p(j),q(k)
` ,τ p(j),T) as the subsystem reliability associated with system testing time τ p(j),

subsystem testing time τ
p(j),q(k)
` , and budget b j,k,s

` . The notation to discretize the master prob-

lem (50) is defined as follows

Parameters

P Number of candidate values of τ (index by p = 1, . . . ,P)

Qp
` For each `= 1, . . . ,N, number of candidate values for τ` when τ = τ p (index by

q = 1, . . . ,Qp
`)

J Number of candidate values of τ̄ (index by j = 1, . . . ,J)

K j
` Number of candidate values for τ̄` when τ̄ = τ p(j) (index by k = 1, . . . ,K p

`)

S j,k
` Number of candidate values for budget b` when τ̄` = τ

p(j),q(k)
` and τ̄ = τ p(j) (index

by s = 1, . . . ,S j,k
`)

τ p p-th candidate value of τ (p = 1, . . . ,P)

rp System connection reliability associated with τ p (p = 1, . . . ,P)

τ
p,q
` q-th candidate value of τ` when τ = τ p (p = 1, . . . ,P; q = 1, . . . ,Qp

`)

rp,q
` Subsystem ` connection reliability associated with τ

p,q
` (p = 1, . . . ,P; q = 1, . . . ,Qp

`)

30

τ p(j) j-th candidate value of τ̄ (j = 1, . . . ,J)

τ
p(j),q(k)
` k-th candidate value of τ̄` when τ = τ p(j) (j = 1, . . . ,J; k = 1, . . . ,K p

`)

b j,k,s
` s-th candidate value of budget when τ̄` = τ

p(j),q(k)
` and τ̄ = τ p(j) (`= 1, . . . ,N;

j = 1, . . . ,J; k = 1, . . . ,K p
` ; s = 1, . . . ,S j,k

`)

r j,k,s
` Subsystem reliability when b` = b j,k,s

` , τ̄` = τ
p(j),q(k)
` , and τ̄ = τ p(j) (`= 1, . . . ,N;

j = 1, . . . ,J; k = 1, . . . ,K p
` ; s = 1, . . . ,S j,k

`)

Decision Variables

xp,q,s
`

 1 if b` = b j,k,s
` , τ̄` = τ

p(j),q(k)
` , and τ̄ = τ p(j)

0 otherwise

(`= 1, . . . ,N; j = 1, . . . ,J; k = 1, . . . ,K p
` ; s = 1, . . . ,S j,k

`)

yp

 1 if τ = τ p

0 otherwise

(p = 1, . . . ,P)

zp,q
`

 1 if τ` = τ
p,q
` and τ = τ p

0 otherwise

(p = 1, . . . ,P; `= 1, . . . ,N; q = 1, . . . ,Qp
`)

ȳ j

 1 if τ̄ = τ p(j)

0 otherwise

(j = 1, . . . ,J)

z̄ j,k
`

 1 if τ̄` = τ
p(j),q(k)
` and τ̄ = τ p(j)

0 otherwise

(j = 1, . . . ,J; `= 1, . . . ,N; k = 1, . . . ,K j
`)

To discretize the master problem, we replace variables τ , τ`, b`, τ̄ , τ̄` respectively with ∑
P
p=1 τ pyp,

∑
P
p=1 ∑

Qp
`

q=1 τ
p,q
` zp,q

` , ∑
P
p=1 ∑

Qp
`

q=1 ∑
Sp,q
`

s=1 bp,q,s
` xp,q,s

` , ∑
J
j=1 τ p(j)ȳ j, and ∑

J
j=1 ∑

K j
`

k=1 τ
p(j),q(k)
` z̄ j,k

` . The dis-

31

cretized version of Model (50) is given as

RMD (r) = max
P

∏
p=1

(rp)yp
N

∏
`=1

P

∏
p=1

Qp
`

∏
q=1

(rp,q
`)zp,q

`

N

∏
`=1

J

∏
j=1

K j
`

∏
k=1

S j,k
`

∏
s=1

(r j,k,s
`)x j,k,s

` , (53a)

s.t.
N

∑
`=1

J

∑
j=1

K j
`

∑
k=1

S j,k
`

∑
s=1

b j,k,s
` x j,k,s

` +
N

∑
`=1

c`
P

∑
p=1

Qp
`

∑
q=1

τ
p,q
` zp,q

` + c
P

∑
p=1

τ
pyp ≤ b, (53b)

J

∑
j=1

K j
`

∑
k=1

S j,k
`

∑
s=1

b j,k,s
` x j,k,s

` ≥ b0
` , ∀`= 1, . . . ,N, (53c)

τ
0
` ≤

J

∑
j=1

K j
`

∑
k=1

τ
p(j),q(k)
` z̄ j,k

` ≤
P

∑
p=1

Qp
`

∑
q=1

τ
p,q
` zp,q

` , ∀`= 1, . . . ,N, (53d)

τ
0 ≤

J

∑
j=1

τ
p(j)ȳ j ≤

P

∑
p=1

τ
pyp, (53e)

P

∑
p=1

yp = 1, (53f)

Qp
`

∑
q=1

zp,q
` = yp, ∀`= 1, . . . ,N, p = 1 . . . ,P, (53g)

J

∑
j=1

ȳ j = 1, (53h)

K j
`

∑
k=1

z̄ j,k
` = ȳ j, ∀`= 1, . . . ,N, j = 1 . . . ,J, (53i)

S j,k
`

∑
s=1

x j,k,s
` = z̄ j,k

` , ∀`= 1, . . . ,N, j = 1 . . . ,J,

k = 1, . . . ,K j
` , (53j)

yp ∈ {0,1}, ∀p = 1, . . . ,P, (53k)

zp,q
` ∈ {0,1}, ∀`= 1, . . . ,N, p = 1, . . . ,P, q = 1, . . . ,Qp

` , (53l)

x j,k,s
` ∈ {0,1},∀`= 1, . . . ,N, j = 1, . . . ,J, k = 1, . . . ,K j

` , s = 1, . . . ,S j,k
` , (53m)

ȳ j ∈ {0,1}, ∀ j = 1, . . . ,J, (53n)

z̄ j,k
` ∈ {0,1}, ∀`= 1, . . . ,N, j = 1, . . . ,J, k = 1, . . . ,K j

` . (53o)

32

Constraint (53f) ensures exactly one system test time τ is selected, and Constraint (53g) states that

all subsystems have the same system testing time τ . Constraint (53h) ensures exactly one system

test time τ̄ is chosen, Constraint (53i) implies that the same system testing time τ̄ is chosen for

all subsystems, and Constraint (53j) suggests variables x j,k,s
` and z̄ j,k

` choose the same subsystem

testing time τ̄`. By applying a natural logarithm to Objective (53a), the equivalent integer linear

model is equal to

w∗(r) = min
P

∑
p=1

rpyp +
N

∑
`=1

P

∑
p=1

Qp
`

∑
q=1

rp,q
` zp,q

` +
N

∑
`=1

J

∑
j=1

K j
`

∑
k=1

S j,k
`

∑
s=1

r j,k,s
` x j,k,s

` , (54)

s.t. Constraints (53b)–(53o),

in which RMD (r) = ew∗(r). Model (54) is a linear model, so we can use a mixed integer linear

programming solver to solve it. We show that Model (53) provides a lower and upper bound on

system reliability in Theorems 7 and 8, respectively. We refer to the lower bound and upper bound

models as LB-MD and UB-MD, respectively. We define τP+1 and τ p(J+1) as τmax≡ (b−∑
N
`=1 b0

`−

∑
N
`=1 c`τ0

`)/c, τ
p,Qp

`+1
` and τ

p(j),q(K j
`+1)

` as τmax
` ≡ (b−cτ0−∑

N
`′=1 b0

`′−∑
N
`′=1 c`′τ0

`′+c`τ0
`)/c`, and

b
j,k,S j,k

` +1
` as bmax

` ≡ b− cτ0−∑
N
`′=1 b0

`′+b0
` −∑

N
`′=1 c`′τ0

`′ .

Theorem 7. Define r by

rp =R(τ p,T), ∀p = 1, . . . ,P, (55a)

rp,q
` =R`(τ

p,q
` +L`τ

p,T), ∀`= 1, . . . ,N, p = 1, . . . ,P, q = 1, . . . ,Qp
` , (55b)

r j,k,s
` =RS(b j,k,s

` ,τ
p(j),q(k)
` ,τ p(j),T), ∀`= 1, . . . ,N, j = 1, . . . ,J,

k = 1, . . . ,K j
` , s = 1, . . . ,S j,k

` . (55c)

If r̄≤ r, then RMD(r̄)≤ R∗.

Proof. By considering r, any feasible solution (y,z,x, ȳ, z̄) in Model (53) corresponds to a solution

as τ = ∑
P
p=1 τ pyp, τ` = ∑

P
p=1 ∑

Qp
`

q=1 τ
p,q
` zp,q

` , b` = ∑
J
j=1 ∑

K j
`

k=1 ∑
S j,k
`

s=1 b j,k,s
` x j,k,s

` , τ̄ = ∑
J
j=1 τ p(j)ȳ j, and

33

τ` = ∑
J
j=1 ∑

K j
`

k=1 τ
p(j),q(k)
` z̄ j,k

` in Model (50) with the objective equal to

R(τ,T)
N

∏
`=1

(R`(τ`,T)RS(b`, τ̄`, τ̄,T)). (56)

If r̄≤ r, the results hold since RMD(.) is nondecreasing in r.

Theorem 8. Define r by

rp =R(τ p+1,T), ∀p = 1, . . . ,P, (57a)

rp,q
` =R`(τ

p,q+1
` +L`τ

p+1,T), ∀`= 1, . . . ,N, p = 1, . . . ,P, q = 1, . . . ,Qp
` , (57b)

r j,k,s
` =RS(b j,k,s+1

` ,τ
p(j),q(k+1)
` ,τ p(j+1),T), ∀`= 1, . . . ,N, j = 1, . . . ,J,

k = 1, . . . ,K j
` , s = 1, . . . ,S j,k

` . (57c)

If ¯̄r≥ r, then RMD(¯̄r)≥ R∗.

Proof. Define (τ∗,τ∗` , τ̄
∗, τ̄∗` ,b

∗
`) for `= 1, . . . ,N as an optimal solution for Model (50) with objec-

tive R∗. Find the indices (P̂, Q̂`, Ĵ, K̂`, Ŝ`) for all ` = 1, . . . ,N such that τ P̂ ≤ τ∗ < τ P̂+1, τ
P̂,Q̂`
` ≤

τ∗` < τ
P̂,Q̂`+1
` , τ p(Ĵ) ≤ τ̄∗ < τ p(Ĵ+1), τ

p(Ĵ),q(K̂`)
` ≤ τ̄∗` < τ

p(Ĵ),q(K̂`+1)
` , and bĴ,K̂`,Ŝ`

` ≤ b∗` < bĴ,K̂`,Ŝ`+1
` ,

and set

R̂≡ R
(

τ
P̂+1,T

) N

∏
`=1

(
R`

(
τ

P̂,Q̂`+1
` ,T)RS(bĴ,K̂`,Ŝ`+1

` ,τ
p(Ĵ),q(K̂`+1)
` ,τ p(Ĵ+1),T

))
. (58)

The solution (P̂, Q̂`, Ĵ, K̂`, Ŝ`) is feasible to UB-MD with objective R̂. However, R̂ is not less

than R∗ since R(τ,T) and R`(τ`,T) are respectively nondecreasing in τ and τ`, and RS(b`, τ̄`, τ̄,T)

is nondecreasing in b`, τ̄` and τ̄ .

A statement of the master problem is described as follows. Let Jint, Kint, Sint, Pint ≡ H× Jint, and

Qint ≡H×Kint define the initial number of points for J, K j
` , S j,k

` , P, and Qp
` , respectively. Initially,

set p(j)≡{1,1+H,1+2H, . . . ,1+(Jint−1)H} and q(k)≡{1,1+H, . . . ,1+(Kint−1)H}. Define

an initial discretization of τ as τ p, p= 1, . . . ,P; τ` as τ
p,q
` , `= 1, . . . ,N, p= 1, . . . ,P, q= 1, . . . ,Qp

` ;

34

τ̄ as τ p(j), j = 1, . . . ,J; τ̄` as τ
p(j),q(k)
` , `= 1, . . . ,N, j = 1, . . . ,J, k = 1, . . . ,K j

` ; and b` as b j,k,s
` , `=

1, . . . ,N, j = 1, . . . ,J, k = 1, . . . ,K j
` , s = 1, . . . ,S j,k

` . Solve the master problem twice, once using

the coefficients rp, rp,q
` and r j,k,s

` as defined in Theorem 7 and once as defined in Theorem 8.

(Note: Both of these problems require utilizing constants r j,k,s
` that are calculated via solving

the subproblem, Model(49). Similar to Section 2.3.2, this may done at initialization for each

` = 1, . . . ,N, j = 1, . . . ,Jint, k = 1, . . . ,Kint, s = 1, . . . ,Sint and then stored in memory for usage

in future iterations.) By Theorems 7 and 8, this yields lower and upper bounds on R∗. As in

Section 2.3.2, these bounds can be improved by refining the discretization locally near the upper-

bound model’s optimal solution. We accomplish this by applying one of the following three cases.

In the following, define (J∗,K∗` ,S
∗
`), `= 1, . . . ,N as the optimal solution of UB-MD.

Case 1: For each `= 1, . . . ,N, define a new budget as

bJ∗,K∗` ,Snew
` = 0.5

(
bJ∗,K∗` ,S

∗
`

` +bJ∗,K∗` ,S
∗
`+1

`

)
. (59)

Then solve subproblems (49) via the D&R algorithm to obtain constants rJ∗,K∗` ,Snew
` for the

new point (J∗,K∗` ,Snew) in the lower and upper bound models.

Case 2: For each `= 1, . . . ,N, define a new subsystem testing time as

τ
p(J∗),q(Knew)
` = 0.5

(
τ

p(J∗),q(K∗`)
` + τ

p(J∗),q(K∗`+1)
`

)
. (60)

For the new subsystem testing time, define bJ∗,Knew,s
` , s= 1, . . . ,Sint evenly spaced between b0

`

and bmax
` . Then, solve subproblems (49) via the D&R algorithm to obtain constants rJ∗,Knew,s

`

for the new points (J∗,Knew,s), s = 1, . . . ,Sint in the lower and upper bound models. Sort the

subsystem testing times, and set QJ∗
` ← H×KJ∗

` and q(k) ∈ {1,1+H, . . . ,1+(KJ∗
` −1)H}.

Case 3: Define a new system testing time as τ p(Jnew) = 0.5
(

τ p(J∗)+ τ p(J∗+1)
)

. For the new

system testing time, define τ
p(Jnew),q(k)
` , k = 1, . . . ,Kint for each subsystem `= 1, . . . ,N evenly

spaced between τ0
` and τmax

` . Then, for each new subsystem testing time τ
p(Jnew),q(k)
` , define

35

bJnew,k,s
` , s = 1, . . . ,Sint evenly spaced between b0

` and bmax
` , and solve subproblems (49) via

the D&R algorithm to obtain constants rJnew,k,s
` for the new points (Jnew,k,s), `= 1, . . . ,N, k=

1, . . . ,Kint, s = 1, . . . ,Sint in the lower and upper bound models. Sort the subsystem testing

times, and set P←H×J and Q j
`←H×K j

` , j = 1, . . . ,J. Then, set p(j)∈ {1,1+H, . . . ,1+

(J−1)H} and q(k) ∈ {1,1+H, . . . ,1+(K j
` −1)H}, j = 1, . . . ,J.

In our implementation, we randomly select one of the above cases to apply in each iteration

and define parameters H1,H2,H3 to represent the probability that each case is selected.

For the sake of brevity, we do not present the formal proof for the convergence of master

problem algorithm; however, the arguments similar to Lemmas 7–9 can be used to prove the con-

vergence.

2.5 Computational Results

In this section, we present and analyze computational results. We provide an in-depth analysis of a

numerical example and then compare performance of D&RD with available heuristics. In addition,

we apply our solution approaches to a set of instances to examine the effect of redundancy on the

effectiveness of an optimal test strategy. Finally, we consider an example to study the multi-level

testing. We use a server with an Intel core i12 with 2.9 GHz and 96 GB RAM for all of our

solution approaches. The algorithms are coded in C++, and CPLEX 12.4 is used to solve all

integer programming models.

2.5.1 Numerical Example

We consider a numerical example for component-level testing Model (3). The numerical example

is a system with two subsystems. The first subsystem includes two designs, and the second sub-

system has one design. We solve the model for scenarios s = 1, . . . ,30, where the available budget

in scenario s is equal to 36s. Table 1 contains the parameters for the numerical example, in which

we set c`,i = 1 for all `= 1, . . . ,N, i = 1, . . . ,M`.

36

Table 1: Parameters for numerical example
λ1,1 β1,1 V1,1 λ1,2 β1,2 V1,2 λ2,1 β2,1 V2,1

0.00005 0.8 1 0.0008 0.7 1 0.00003 0.7 2

For all scenarios, we choose εsub = 2×10−5, Psub = 20,000, Pint = 3 and ε = 10−7, and con-

sider solving time limit equal to 3,600 seconds. Figure 3 summarizes the testing time allocated

to each of the three designs in each scenario. In the first subsystem, the first design has a smaller

λ -value and larger β -value in comparison to the second subsystem; therefore, when the available

budget b is small, it needs more testing than the second design to reach a particular reliability,

so its τ-value is larger. On the other hand, when the available budget b is large, the first design

needs less testing than the second design to reach a particular reliability, so its τ-value is smaller,

e.g., τ1,1 = 23.49 and τ1,2 = 7.82 for b = 36 while τ1,1 = 489.84 and τ1,2 = 518.66 for b = 1080.

The design of the second subsystem has smaller λ -value and lesser-or-equal β -value as compared

to the designs of first subsystem, so its τ-value is smaller in every scenario.

Figure 3: Testing time allocation for numerical example

2.5.2 Algorithm Performance

In order to compare algorithm performance, we consider 16 instances. A time limit of 3,600

seconds is used for all methods, both exact and heuristic, and we implement heuristic methods

using parameter values taken from the reference papers. We provide some specifics about these

heuristics below.

37

We develop a simulated annealing (SA) heuristic to solve the problem. In this heuristic, if a

candidate solution improves the reliability, then the candidate solution will be accepted. Otherwise,

the inferior candidate solution is accepted using a probability of acceptance that is modeled by an

annealing schedule, defined by parameters T1 > 0 and 0 < α ≤ 1. In iteration k = 1,2, . . . , the

temperature is defined by Tk = αTk−1, and a non-improving solution is accepted with probability

e(Rk−R)/Tk . The simulated annealing (SA) heuristic uses an initial temperature of 3,000, and α =

0.95. We define our candidate neighborhood of solutions as follows. The initial values of τ`,i

are selected randomly between 0 and 20. In each iteration, a set of 20 candidate solutions, called

a neighborhood, is created. Candidate solutions are created by modifying some τ`,i. For each

candidate solution, each τ`,i is modified with the probability of 50%. For each τ-value that is to be

modified, the new τ-value is obtained from the old τ-value by adding a random number between

−1 and 1.

The genetic algorithm (GA) tested is intended to replicate the GA used in [18], using a set

of randomly created initial chromosomes—each of which includes a testing time for each design.

An elitist crossover schema—in which parents are selected according to their objective function

value—is used, and mutation is carried out via perturbing the designs’ test times. Crossover/mutation

probabilities of 0.9/0.1 are used in this approach.

We also implement the genetic algorithm (referred to as GENITOR) utilized by Levitin [36].

As in [36], we create NP = 50 initial chromosomes randomly and perform crossover via a two-point

approach and perform mutation by swapping two designs’ test times. In the selection procedure,

the new chromosome, acquired by crossover or mutation, is compared with the chromosome hav-

ing the worst objective function in the population, and if its objective function is better than the

worst chromosome in the population, it joins the population; otherwise, it is disregarded. More-

over, if crossover and mutation create redundancies in the population, all redundant solutions are

deleted. In each iteration, Nrep = 2,000 new chromosomes are produced—adding randomly gener-

ated chromosomes as necessary to replenish the population—and feasibility of these chromosomes

is ensured by normalizing testing times (so that the sum of costs is equal to b).

38

The 16 instances tested include each combination of 2, 3, 4 or 5 subsystems with 2, 3, 4,

or 5 designs in each subsystem. We now describe the instance generation procedure. For all

instances, we consider V`,i = 1. Each design’s β -value is chosen with equal probability from

values 0.65, 0.7, 0.75, 0.8, and 0.85. We define initial testing times τ0
`,i = 1, ` = 1, . . . ,N, i =

1, . . . ,M`, and set the cost c`,i = 1, ` = 1, . . . ,N, i = 1, . . . ,M`. We select b = 720 and T = 8,760

for all instances, and each design’s λ -value is generated uniformly within the intervals described

in Table 2. We implement the D&RD algorithm on each instance (using ε = 10−7, Pint = 3 and

a time limit of 3,600 seconds) and compare to each of the above heuristics described above. The

values for Psub and εsub for D&RD are given in Table 2.

Table 2: Parameters for instances studying algorithm performance

Inst.
Number of
subsystems

Number of designs in
each subsystem λ range Psub εsub

1 2 2 [0.00001, 0.0001] 20,000 2×10−6

2 2 3 [0.00005, 0.00025] 20,000 2×10−6

3 2 4 [0.0001, 0.00025] 20,000 2×10−6

4 2 5 [0.0001, 0.0005] 15,000 5×10−6

5 3 2 [0.00001, 0.0001] 20,000 2×10−6

6 3 3 [0.00005, 0.00025] 20,000 3×10−6

7 3 4 [0.0001, 0.00025] 15,000 6×10−6

8 3 5 [0.0001, 0.0005] 15,000 2×10−5

9 4 2 [0.00001, 0.0001] 20,000 3×10−6

10 4 3 [0.00005, 0.00015] 20,000 3×10−6

11 4 4 [0.0001, 0.00025] 20,000 6×10−6

12 4 5 [0.0001, 0.00025] 15,000 3×10−5

13 5 2 [0.00001, 0.0001] 20,000 2×10−6

14 5 3 [0.00005, 0.00025] 20,000 6×10−6

15 5 4 [0.00005, 0.00025] 15,000 2×10−5

16 5 5 [0.0001, 0.00025] 20,000 4×10−5

The results are summarized in Table 3. In Table 3, LB and UB denote the lower and upper

bounds of reliability acquired by the D&RD algorithm. According to Table 3, D&RD provides

tight bounds even for the largest instances and produces greater lower bounds than both GA and

GENITOR; however, SA produces greater lower bounds than our exact algorithm. A follow-on set

of experiments revealed that, in all 16 instances, SA generates a solution within 10−4 of optimality

in less than a second, thus suggesting that SA is likely to identify high-quality solutions quickly.

39

Of course, SA provides no upper bound on the optimal objective value and hence comes with no

guarantee of optimality.

Table 3: Computational comparison
Inst. LB UB Gap SA GA GENITOR

1 0.96877657 0.96877793 1.362×10−6 0.96877676 0.96866712 0.96877604
2 0.97667526 0.97667781 2.553×10−6 0.97667554 0.97554303 0.97667523
3 0.98319327 0.98319840 5.128×10−6 0.98319333 0.98226540 0.98319137
4 0.96506727 0.96508031 1.304×10−5 0.96506740 0.96227264 0.96502206
5 0.97794473 0.97794519 4.619×10−7 0.97794482 0.97754561 0.97792183
6 0.96164354 0.96164859 5.047×10−6 0.96164376 0.95898590 0.96156142
7 0.96578494 0.96579538 1.044×10−5 0.96578534 0.95996997 0.96573422
8 0.91354268 0.91357048 2.780×10−5 0.91354334 0.90068946 0.91352284
9 0.91305039 0.91305297 2.579×10−6 0.91305073 0.90827255 0.91299274

10 0.96202986 0.96203675 6.885×10−6 0.96203076 0.95906679 0.96200378
11 0.96815461 0.96817421 1.960×10−5 0.96815492 0.96221063 0.96814310
12 0.94774059 0.94776901 2.842×10−5 0.94774131 0.93516419 0.94769670
13 0.94448573 0.94448865 2.924×10−6 0.94448602 0.94209628 0.94445546
14 0.94597493 0.94599256 1.763×10−5 0.94597599 0.94089367 0.94596832
15 0.93575476 0.93578183 2.707×10−5 0.93575523 0.92757697 0.93574860
16 0.96990016 0.96992689 2.673×10−5 0.96990070 0.96015332 0.96989514

2.5.3 Testing Components versus Installing Redundancies

We now consider 5 instances—solving each over 5 potential values of b—in order to demonstrate

the effects of the component redundancy versus allocating more testing time. As depicted in Ta-

ble 4, each instance consists of a system with 5 subsystems, and all of components in a given

subsystem are identical (i.e., there is one design in each subsystem). For instance i = 1, . . . ,5, we

define M` = 1 and V`,1 = i+2 for all `= 1, . . . ,5. We choose T = 8,760, c`,i = 1, `= 1, . . . ,N, i =

1, . . . ,M`, and the parameters of the instances are depicted in Table 4. The time limit is equal

to 3,600 seconds and we consider ε = 10−7. In these instances, we use Pint = 3, Psub = 50,000

and εsub = 5×10−7.

The results from these instances are summarized in Table 5. All instances are solved by the

D&RD method. Table 5 summarizes the lower bound reliabilities for all instances. Although we

do not display the upper bounds, the optimality gap for each instance is no more than 1.8×10−6.

40

Table 4: Parameters for experiments on varying redundancy levels
Inst. λ1,i β1,i λ2,i β2,i λ3,i β3,i λ4,i β4,i λ5,i β5,i

1 0.00025 0.75 0.00011 0.65 0.00013 0.6 0.0001 0.85 0.00012 0.75
2 0.00025 0.75 0.00011 0.65 0.00013 0.6 0.0001 0.85 0.00012 0.75
3 0.00025 0.75 0.00011 0.65 0.00013 0.6 0.0001 0.85 0.00012 0.75
4 0.00025 0.75 0.00011 0.65 0.00013 0.6 0.0001 0.85 0.00012 0.75
5 0.00025 0.75 0.00011 0.65 0.00013 0.6 0.0001 0.85 0.00012 0.75

In each instance, because the components in a subsystem are identical, only one of the identical

components is tested. When fewer parallel components exist in each subsystem, the system re-

liability is lesser even for a large amount of available testing time, i.e, the system reliability is a

small number for instance 1 where there only exist 3 components in each subsystem. However,

when there are enough redundant components in each subsystem, the effect of increasing available

testing time on system reliability is much greater than increasing redundancy in subsystems. In

instance 4, for example, if the available b is increased from 120 to 360, it has a greater effect on

reliability than adding one component to each subsystem.

Table 5: Results for different redundancy levels
Inst. b = 120 b = 240 b = 360 b = 480 b = 600

1 0.81359498 0.87068118 0.89620755 0.91137826 0.92167343
2 0.92587899 0.95498267 0.96654302 0.97293813 0.97705911
3 0.97085468 0.98440488 0.98923439 0.99173492 0.99327060
4 0.98852868 0.99457886 0.99652040 0.99746298 0.99801527
5 0.99546800 0.99810700 0.99887004 0.99921747 0.99941166

2.5.4 Multi-Level Testing versus Component-Level Testing

We consider 10 instances to study the effectiveness of our multi-level model in comparison with an

approach that partitions the budget for testing component designs and connections. The instances

consider a system with N = 3, M` = 3 and V`,i = 1 for all ` = 1, . . . ,3, i = 1, . . . ,3. Using a

budget of b = 6,480, we solve Model (47) and compare solutions to the multi-level model against

single-level (i.e., component design testing only) models that were available prior to this research.

Specifically, we partition the budget into two parts, with one portion dedicated to testing assembled

subsystems and systems and the other portion dedicated to testing component designs. We then

41

solve the single-level twice in sequence, once to allocate testing times to subsystem- and system-

level assemblies in order to maximize the reliability due only to connections. (Note: the subsystem-

and system-connections collectively form a series system, so this can be accomplished by using

the convex optimization model of Coit [15]. We solve this convex optimization problem using

the CVX solver in Matlab.) We repeat this for a sequence of instances in which we vary the

budget partition in each instance: For instances j = 1, . . . ,9, we assume there is a budget of 648 j

dedicated to testing at the subsystem- and system-levels, with the remaining budget dedicated

to testing component designs. The AMSAA parameters, cost data, and mission length for these

instances are given in Table 6, and we consider τ0
`,i = τ0

` = τ0 = 1, J`,i = L`,i = L` = 0.1 for all

` = 1, . . . ,N, i = 1, . . . ,M`, H1 = 0.65, H2 = 0.3, and H3 = 0.05. We employ a time limit of

3600 seconds and ε = 1×10−7 in the discretize-and-refine method for both component-level and

multi-level testing models. We set Jint = 4, Kint = 4, Sint = 100, and H = 200. By defining εsub

and Psub as the subsystem tolerance and initial number of points, consider εsub = 1×10−4 and set

Psub = 50,000 for instances j = 1, . . . ,9 and Psub = 100 for the multi-level testing instance. For

the multi-level testing instance, the lower bound, upper bound and optimal gap equal 0.966111,

0.966628 and 5.17×10−4, respectively. The lower bound comparison of reliabilities are shown in

Figure 4(a), and we show the computational times in Figure 4(b). Although we do not show the

upper bound reliabilities for instances j = 1, . . . ,9, the optimal gap is less than 2×10−4 for these

instances. The results suggest that if we allocate small or large budget for testing connections,

the system reliability is a small number, e.g., the system reliability, when the budget for testing

connections equals 648, is 0.951322. One could employ a search over the budget partition to

improve the solution available from the single-level models, and indeed, this solution might do

fairly well; however, finding such budget needs higher solving time as depicted in Figure 4(b).

Table 6: Parameters for the multi-level testing instances
` λ`,1 λ`,2 λ`,3 λ` β`,1 β`,2 β`,3 β` c`,1 c`,2 c`,3
1 0.00008 0.000095 0.000085 0.000004 0.7 0.85 0.75 0.8 0.5 0.8 0.4
2 0.000085 0.00009 0.000095 0.0000025 0.75 0.7 0.8 0.65 0.3 0.7 0.5
3 0.00009 0.000075 0.00008 0.000003 0.65 0.75 0.7 0.85 0.3 0.6 0.2
c1 = 5 c2 = 7 c3 = 4 λ = 0.0000055 β = 0.7 c = 20 T = 8,760

42

(a) (b)
Figure 4: Results for instances comparing multi-level model with solving the component-level
testing allocation and connection testing allocation models iteratively

2.6 Conclusion and Future Research

This study considers the allocation of test times across the components of a series-parallel system.

We also propose a model that takes account the possibility of testing at subsystem and system

levels. An exact algorithm is developed to solve the problem, and we prove that the algorithm

is finite. We perform a detailed study of a numerical example and compare our algorithm com-

putationally with three heuristics from literature. Computational results indicate that the D&RD

algorithm provides a tight optimality gap on solutions for instances up to size 5 subsystems with

5 component designs in each subsystem. This method is also effective in finding lower bounds on

system reliability, and it quantifies (for the first time in the literature) the quality—with respect to

an optimality gap criterion—of existing heuristic solution approaches.

Future work may seek to model and optimally solve the problem when component are con-

nected in a cold standby redundancy structures. Additionally, a follow-on investigation may study

the problem when the failures of components are dependent. A subsequent possible investigation

may consider the relationship of the reliability growth testing strategies with product warranty

strategies and/or maintenance strategies. Future research may also consider this problem for ob-

jective function of maximizing a lower percentile of system time to failure. We also assume that

the system has a fixed mission length; therefore, future research may seek to model the problem

43

when the system has an indeterminate mission length.

44

3 Robust Allocation of Testing Resources in Reliability Growth

3.1 Introduction

In the previous chapter, we address the case where the relationship between component testing

and component reliability is known (deterministically), but there is a lack of work addressing

what happens when this relationship is subject to uncertainty. This may be problematic because

reliability growth models are built upon preliminary failure data that is subject to randomness.

In this chapter, we consider a robust allocation of testing resources across the components of the

series/series-parallel system to increase system reliability in this environment. We assume that

components exhibit reliability growth according to the AMSAA model.

With a few exceptions that we now summarize, all of the resource allocation papers in reliabil-

ity growth assume known AMSAA parameters, thus yielding deterministic optimization models.

However, reliability growth testing is typically applied to new systems with unproven designs [15],

and for these systems, there is insufficient data to estimate the AMSAA model parameters with

high accuracy, thus introducing uncertainty into the resource allocation problem. Awad [2] and

Coit [15] address this limitation to allocate testing times in a series system when each component’s

failure rate is normally distributed having a mean given by an AMSAA model with known param-

eters. By contrast, our robust optimization approach needs not assume any underlying probability

distribution. Moreover, our method can be extended to consider the allocation of testing times, for

the first time in the literature, in a series-parallel system when component reliability growth has

AMSAA model structure with unknown parameters.

Robust optimization seeks to generate a solution in which its objective value or its feasibility

must be guaranteed for any realization of its parameters within a bounded uncertainty set. Robust

linear optimization was first examined by Soyster [50] and later extended (by Ben-Tal and Ne-

mirovski [4] and El-Ghaoui et al. [20]) to derive efficient algorithms for robust convex optimization

problem. Bertsimas and Sim [9] characterize a class of robust discrete optimization problems that

remain efficiently solvable. Robust optimization has variety of application in decision making en-

45

vironments such as linear programming, assignment problem, shortest paths, minimum spanning

tree, knapsack problem, resource allocation, scheduling, production planning, inventory, layout

planning and network design [30]. We refer the interested reader to Ben-Tal and Nemirovski [5]

and Bertsimas et al. [8] for comprehensive surveys of robust optimization theory and applications.

This chapter is organized as follows: the background and problem definition is defined in

Section 3.2. We present a robust reliability growth model for a series system in Section 3.3 and for

a series-parallel system in Section 3.4. Computational results are summarized in Section 3.5, and

we conclude in Section 3.6.

3.2 Background and Problem Definition

Following models in [15, 18], we consider the problem of allocating limited testing times to in-

dependent components within a system. Let N denote the number of subsystems in the system,

and let the N-vector of decision variables τ represent the total testing time (in hours) allocated to

each subsystem. One hour of testing on subsystem ` = 1, . . . ,N is assumed to require ck
` units of

resource k = 1, . . . ,K. The N-vector τ0 denotes the preliminary testing time, where the preliminary

testing time τ0
` can be interpreted as the amount of testing already completed on subsystem ` at

the time our optimization model is solved to generate a test plan for the system. This preliminary

testing may be used to estimate AMSAA model parameters (and their associated uncertainty) that

are used to build the optimization model.

The objective in allocating limited testing time is to maximize system reliability over a mission

of length T > 0 hours that begins after testing. The deterministic allocation problem is generally

stated as

max R(τ,T), (61a)

s.t. τ ∈ X ≡

{
τ

∣∣∣∣∣ N

∑
`=1

ck
`τ` ≤ bk, k = 1, . . . ,K; τ ≥ τ

0

}
, (61b)

where R(τ,T), which is defined mathematically in the following paragraph, denotes the system’s

46

mission reliability resulting when subsystems are tested according to τ . Constraints (61b) ensure

that (i) testing time for each subsystem ` is at least its initial testing time τ0
` and (ii) the total

resource consumption across all subsystems is no more than bk for all resources k = 1, . . . ,K. We

initially assume (for mathematical convenience) that τ0
` ≥ 1, ∀`= 1, . . . ,N but will address (at the

end of Section 3.3) recourse in the event this assumption does not hold. In what follows, we extend

Model (61) to consider uncertainty in R(τ,T) via robust optimization. Before doing so, we first

summarize assumptions and existing results for Model (61) that are pertinent to our research.

The objective function R(τ,T) from Model (61) is then related to the growth functions R(τ`;T,

λ`,β`) according to the system’s structure, and we hereafter denote this objective as R(τ;λ ,β)

to note its dependence on parameter vectors λ and β . (Boldface λ and β are used to represent

the associated N-vectors of λ`- and β`-values.) Thus, if the N one-component subsystems are

connected in series, then

R(τ;λ ,β) =
N

∏
`=1

R(τ`;T,λ`,β`), (62)

but if each subsystem `= 1, . . . ,N, has M` identical components that are simultaneously improved

by increasing τ`, then

R(τ;λ ,β) =
N

∏
`=1

[
1− (1−R(τ`;T,λ`,β`))

M`

]
. (63)

Given the definitions above, it is now appropriate to describe the robust optimization problem

considered in this chapter. Our problem differs from Model (61) because we do not assume λ

and β are known with certainty. Rather, we assume (λ ,β) lies within an uncertainty set, U , and

consider the (robust) optimization problem

max
τ∈X

min
(λ ,β)∈U

R(τ;λ ,β). (64)

Throughout the reminder of this chapter, we refer to a pair (λ ,β) ∈U as a scenario, and we

refer to min(λ ,β)∈U R(τ;λ ,β), the reliability at τ ∈ X that corresponds to the worst-case scenario,

as the robust objective value. Note that Model (64) maximizes the robust objective value over all

47

feasible test strategies.

The models throughout the remainder of this chapter utilize a so-called budgeted uncertainty

set. (The interested reader may refer to [9, 10, 11] for other examples of budgeted uncertainty and

[22, 23] for reliability-related robust optimization models.) We assume each parameter is restricted

to fall within an interval, i.e.,

λ` ∈ [λ̄`, λ̄`+σ
L
`], `= 1, . . . ,N, (65a)

β` ∈ [β̄`, β̄`+σ
B
`], `= 1, . . . ,N. (65b)

We scale each interval by introducing new parameters γB
` and γL

` ∈ [0,1] such that β` = β̄`+σB
` γB

`

and λ` = λ̄`+σL
` γL

` , in which λ̄`, σL
` ≥ 0 and β̄`, β̄`+σB

` are in [0,1]. Using the scaled parameters,

we define the uncertainty set UΦ for a given budget 0≤Φ≤ 2N as

UΦ =

{(
γ

L,γB) ∈ RN :
N

∑
`=1

(
γ

L
` + γ

B
`

)
≤Φ,0≤ γ

L
` ,γ

B
` ≤ 1

}
. (66)

As we will show in Theorem 9, the reliability function is decreasing in γL
` and γB

` ; therefore, Φ = 0

represents an optimistic view of uncertainty (i.e., all parameters will take their best-case values,

which happen to be their smallest values) and Φ = 2N is pessimistic in that all parameters will take

their worst-case/largest values. We restate Model (64) as

max
τ∈X

min
(γL,γB)∈UΦ

R
(
τ; λ̄ +σ

L ∗ γ
L, β̄ +σ

B ∗ γ
B) , (67)

where ∗ denotes element-wise multiplication of the associated N-vectors. Our reasoning for em-

ploying a single uncertainty parameter Φ (e.g., instead of having two parameters to enable separate

uncertainty budgets for λ and β) is two-fold: (i) each uncertainty parameter adds an additional

dimension to the set of policies that can be generated from our model, thereby increasing the

complexity associated with determining how to best implement the model; and (ii) our integrality

property (Theorem 10, proven in the following section), which enables efficient solution of the

48

robust optimization problem for series systems, fails in the case of a multi-parameter uncertainty

set.

To summarize, our major assumptions are that the system structure is fixed, subsystems are

independent, redundant components are in active standby, and the mission length T is fixed. More-

over, it is assumed that the failures of subsystems occur according to the AMSAA reliability growth

model, in which parameters λ` and β` lie within a budget-restricted uncertainty set. Although we

believe extensions of our models may lead to weakening some of these, all of these assumptions

are limiting for the results given in this chapter. In addition to the assumptions listed above, we

have also assumed that τ` ≥ 1, ` = 1, . . . ,N. This assumption is purely for mathematical conve-

nience in the case of series system, and we have discussed (in the last paragraph of Section 3.3) a

means of solving the problem in the event this assumption does not hold.

Before developing the mechanics to solve Model (64), we first summarize its relation to impor-

tant results from the literature. Coit [15] considered a version of Model (61) in which components

are connected in a series, which leads to a convex optimization problem. As we see in Section 3.3,

the robust version of this problem turns out to be easily solvable as well. On the other hand, when

the system is series-parallel, we propose exact algorithms for the deterministic model in Chapter 2.

We extend the deterministic series-parallel model into a robust model (see Section 3.4) and demon-

strate that the resulting problem can be solved via extension of the algorithm given in Chapter 2.

The notation used in the remainder of the document is summarized below:

Parameters

K Number of resources

bk Amount of resource k = 1, . . . ,K available

ck
` Amount of resource k = 1, . . . ,K required per unit time of testing subsystem

`= 1, . . . ,N

β`, λ` AMSAA model parameters for subsystem `= 1, . . . ,N

[β̄`, β̄`+σB
`] Interval for parameter β of subsystem `= 1, . . . ,N

49

[λ̄`, λ̄`+σL
`] Interval for parameter λ of subsystem `= 1, . . . ,N

γL
` , γB

` Realized coefficient for the AMSAA model parameters for subsystem `= 1, . . . ,N

Φ Uncertainty budget (Φ ∈ [0, 2N])

UΦ Uncertainty set

τ0
` Initial testing time of subsystem `= 1, . . . ,N (assumed to be greater or equal to 1)

P̀ Number of discrete points for subsystem `= 1, . . . ,N

P Number of discrete points for each subsystem (assumed to be equal for all

subsystems)

rp
` Reliability of point p in subsystem ` (`= 1, . . . ,N; p = 1, . . . , P̀)

zp
` The value of γL

` + γB
` for point p in subsystem ` (`= 1, . . . ,N; p = 1, . . . , P̀)

τ
p
` Testing time for point p in subsystem ` (p = 1, . . . ,P; `= 1, . . . ,N)

rp
`, j Reliability of point p in subsystem ` for scenario j (p = 1, . . . ,P; `= 1, . . . ,N;

j = 1, . . . , |D̄|)

Decision Variables

τ` Testing time of subsystem `= 1, . . . ,N

xp
`

 1 if the value of γL
` + γB

` in subsystem ` is zp
` (`= 1, . . . ,N; p = 1, . . . , P̀)

0 otherwise

yp
`

 1 if the testing time for subsystem ` is τ
p
` (p = 1, . . . ,P; `= 1, . . . ,N)

0 otherwise

In the following section, we specialize Model (64) for the case of series system and develop a

cutting-plane algorithm to solve it.

3.3 Solution Method for Series Systems

We now specialize the problem to the case of series structure. Let N define the number of subsys-

tems (each with a single component) in the series system. Based on Equation (62), R(τ;λ ,β) is

50

given by

R(τ;λ ,β) =
N

∏
`=1

R
(
τ`;T, λ̄`+σ

L
` γ

L
` , β̄`+σ

B
` γ

B
`

)
, (68)

in which the uncertainty set UΦ is defined in Equation (66). For series systems, the robust opti-

mization Model (67) can be stated as

R? = max R, (69a)

s.t.
N

∏
`=1

e−(λ̄`+σL
` γL

`)(β̄`+σB
` γB

`)τ
(β̄`+σB

` γB
` −1)

` T ≥ R, ∀
(
γ

L,γB) ∈UΦ, (69b)

τ ∈ X . (69c)

Towards solving Model (69), we now propose a cutting-plane algorithm to solve Model (69) op-

timally. (The interested reader may refer to [6] for seminal work on cutting-plane algorithms

for min-max and max-min problems.) Model (69) is a nonlinear/nonconvex model, and Con-

straints (69b) are uncountably infinite, so Model (69) is difficult to solve directly. By applying a

logarithm to Constraint (69b), Model (69) is equivalent to

R? = max R, (70a)

s.t.
N

∑
`=1
−(λ̄`+σ

L
` γ

L
`)(β̄`+σ

B
` γ

B
`)τ

(β̄`+σB
` γB

` −1)
` T ≥ lnR, ∀

(
γ

L,γB) ∈UΦ, (70b)

τ ∈ X . (70c)

Model (70) turns out to be convex, but we are still left with the issue that (70b) is indexed over

an infinite set of constraints. We hence apply a cutting-plane algorithm to solve Model (70). The

separation model, used to compute the robust objective value for given τ ∈ X , can be stated as

G(τ) = min
{

F
(
γ

L,γB) | (γL,γB) ∈UΦ

}
, (71)

51

where f`(γL
` ,γ

B
`)≡−(λ̄`+σL

` γL
`)(β̄`+σB

` γB
`)τ

(β̄`+σB
` γB

` −1)
` T and F(γL,γB)≡∑

N
`=1 f`(γL

` ,γ
B
`). The

solution for Model (71) generates a feasible solution for Model (69) with R = eG(τ); therefore,

Model (71) provides a lower bound for the logarithm of the objective value of Model (69) (i.e.,

eG(τ) ≤ R?). Model (71) is nonconvex in general, but we now demonstrate that it can be solved

efficiently via a dynamic programming algorithm. We begin by establishing that F(γL,γB) is

monotone and componentwise concave, i.e., concave in either γL
` or γB

` whenever all other γL- and

γB-variables are fixed.

Theorem 9. The function f`(γL
` ,γ

B
`) is decreasing and componentwise concave.

Proof. The partial derivatives of f`(γL
` ,γ

B
`) are given by

∂ f`(γL
` ,γ

B
`)

∂γL
`

=−σ
L
`

(
β̄`+σ

B
` γ

B
`

)
τ

β̄`+σB
` γB

` −1
` T, (72a)

∂ f`(γL
` ,γ

B
`)

∂γB
`

=−σ
B
` τ

β̄`+σB
` γB

` −1
` (λ̄`+σ

L
` γ

L
`)
[
1+(β̄`+σ

B
` γ

B
`) ln(τ`)

]
T. (72b)

Therefore, ∂ f`(γL
` ,γ

B
`)

∂γL
`

< 0 and the assumption τ0
` ≥ 1 implies ∂ f`(γL

` ,γ
B
`)

∂γB
`

< 0 in Equation (72b) as

well. As a result, f`(γL
` ,γ

B
`) is decreasing regarding γL

` and γB
` when the other is fixed. The second

derivatives of f`(γL
` ,γ

B
`) with respect to variables γL

` and γB
` are equal to

∂ 2 f`(γL
` ,γ

B
`)

∂ 2γL
`

= 0, (73a)

∂ 2 f`(γL
` ,γ

B
`)

∂ 2γB
`

=−(σB
`)

2
τ

β̄`+σB
` γB

` −1
`

(
λ̄`+σ

L
` γ

L
`

)
ln(τ`)

[
2+
(
β̄`+σ

B
` γ

B
`) ln(τ`)

)]
T. (73b)

Note that ∂ 2 f`(γL
` ,γ

B
`)/

∂ 2γB
`
≤ 0, since lnτ`≥ 0. Therefore, f`(γL

` ,γ
B
`) is also componentwise concave.

Remark 2. Because F(γL,γB) is a summation of terms that all utilize a different `-index, Theo-

rem 9 also proves that the function F(γL,γB) is decreasing and componentwise concave.

As we demonstrate in Theorems 12–13, the previous result allows us to guarantee existence

52

of an optimal solution to Model (71) among a finite set of candidate solutions. In the following

counterexample, we demonstrate that f`(γL
` ,γ

B
`) is not concave in general.

Counterexample 1. Define λ̄` = 0.00001, σL
` = 0.00006 β̄` = 0.6, σB

` = 0.15, τ` = 100, K = 1,

c1
` = 1 and b1 = 8,760. Letting (γ̄L

` , γ̄
B
`) = (1,0), (¯̄γL

` ,
¯̄γB
`) = (0,1), and α = 0.5, we have

f`(αγ̄
L
` +(1−α) ¯̄γL

` ,αγ̄
B
` +(1−α) ¯̄γB

`) =−0.05295, (74a)

α f`(γ̄L
` , γ̄

B
`)+(1−α) f`(¯̄γL

` , ¯̄γB
`) =−0.03954. (74b)

Because f`(αγ̄L
` + (1−α) ¯̄γL

` ,αγ̄B
` +(1−α) ¯̄γB

`) < α f`(γ̄L
` , γ̄

B
`)+ (1−α) f`(¯̄γL

` ,
¯̄γB
`), the function

f`(γL
` ,γ

B
`) is not concave in general.

Theorem 10. There exists an optimal solution to Model (71) such that the number of subsystems `

with γL
` and/or γB

` taking on noninteger values is at most 1.

Proof. Let (γ̂L, γ̂B) denote an optimal solution to Model (71). Among all such solutions, let

(γ̂L, γ̂B) be an optimal solution with the minimum number of subsystems ` such that γL
` and/or

γB
` is fractional. (In the remainder of this proof, we refer to such a subsystem as a fractional sub-

system.) Let k? denote the number of fractional subsystems in (γ̂L, γ̂B). If k? = 0 or 1, there is

nothing to prove, so suppose k? ≥ 2. We establish a contradiction by constructing an optimal solu-

tion to Model (71) with only k?−1 fractional subsystems. First, let {`′, `′′} denote a pair of distinct

fractional subsystems with respect to (γ̂L, γ̂B) in which at least one of {γ̂L
` , γ̂

B
` } is noninteger for

` ∈ {`′, `′′}. At least one of the following three cases will hold.

Case 1: Suppose γ̂L
`′ and γ̂L

`′′ are fractional. Define z = γ̂L
`′+ γ̂L

`′′ . When γL
` = γ̂L

` , ` ∈ {1, . . . ,N}\

{`′, `′′} and γB = γ̂
B are fixed in Model (71), it reduces to the linear program

min f`′(γ
L
`′, γ̂

B
`′)+ f`′′(γ

L
`′′, γ̂

B
`′′), (75a)

s.t. γ
L
`′+ γ

L
`′′ ≤ z, (75b)

0≤ γ
L
`′, γ

L
`′′ ≤ 1. (75c)

53

Because Model (75) is a linear program, it has an extreme point optimal solution. Plotting the

feasible region (75b)–(75c) reveals that the extreme points are (γL
`′,γ

L
`′′) ∈ {(0,0),(0,z),(z,0)} if

z ≤ 1 and (γL
`′,γ

L
`′′) ∈ {(0,0),(0,1),(1,0),(z− 1,1),(1,z− 1)} if z > 1. Noting that all extreme

points have either γL
`′ or γL

`′′ as an integer. Solving (75) yields a new solution (γ̃L, γ̃B) ∈ UΦ by

replacing γ̂L
`′ and γ̂L

`′′ in (γ̂L, γ̂B) with the obtained solution to the LP (75). For this solution, we

have

f`(γ̃L
`′, γ̂

B
`′)+ f`(γ̃L

`′′ , γ̂
B
`′′)≤ f`(γ̂L

`′, γ̂
B
`′)+ f`(γ̂L

`′′ , γ̂
B
`′′), (76a)

f`(γ̃L
`′ , γ̂

B
`′)+ f`(γ̃L

`′′, γ̂
B
`′′)+ ∑

`∈{1,...,N}\{`′,`′′}
f`(γ̂L

` , γ̂
B
`)≤ ∑

`∈{1,...,N}
f`(γ̂L

` , γ̂
B
`), (76b)

F(γ̃L, γ̃B)≤ F(γ̂L, γ̂B), (76c)

in which Equation (76a) is valid because (γ̃L
`′, γ̃

L
`′′) and (γ̂L

`′, γ̂
L
`′′) are respectively optimal and fea-

sible for Model (75), Equation (76b) comes from adding ∑`∈{1,...,N}\{`′,`′′} f`(γ̂L
` , γ̂

B
`) to both sides

of (76a), and Equation (76c) applies the definition of F(·, ·) to both sides after utilizing the fact

that γ̃
B = γ̂

B and γ̃L
` = γ̂L

` , ∀` ∈ {1, . . . ,N}\{`′, `′′}. Therefore, (γ̃L, γ̃B) has at most one noninte-

ger {γ̃L
`′, γ̃

L
`′′}, and F(γ̃L, γ̃B) ≤ F(γ̂L, γ̂B). Because this solution is feasible to Model (71) and its

objective value no worse than that of (γ̂L, γ̂B), this solution must be optimal to Model (71).

Case 2: Suppose γ̂L
`′ and γ̂B

`′′ are fractional. Define z = γ̂L
`′ + γ̂B

`′′ . In Model (71), when γL
` =

γ̂L
` , ` ∈ {1, . . . ,N}\{`′} and γB

` = γ̂B
` , ` ∈ {1, . . . ,N}\{`′′} are fixed, the model reduces to

min f`′(γ
L
`′, γ̂

B
`′)+ f`′′(γ̂

L
`′′ ,γ

B
`′′), (77a)

s.t. γ
L
`′+ γ

B
`′′ ≤ z, (77b)

0≤ γ
L
`′, γ

L
`′′ ≤ 1, (77c)

but this also has an extreme point optimal solution (see, e.g., classical nonlinear programming

references [3, 46]) because f`′(γL
`′, γ̂

B
`′′) is linear in γL

`′ and f`′′(γ̂L
`′,γ

B
`′′) is concave in γB

`′′ (due to

Theorem 9), thus implying objective (77a) is concave. By the same argument as in Case 1, we can

54

obtain (γ̃L, γ̃B) that is optimal for Model (71) such that at most one of {γ̃L
`′, γ̃

B
`′′} is noninteger.

Case 3: Suppose γ̂B
`′ and γ̂B

`′′ are fractional and let z = γ̂B
`′ + γ̂B

`′′ . When γL = γ̂
L and γB

` = γ̂B
` , ` ∈

{1, . . . ,N}\{`′, `′′} are fixed in Model (71), the model becomes

min f`′(γ̂
L
`′,γ

B
`′)+ f`′′(γ̂

L
`′′ ,γ

B
`′′), (78a)

s.t. γ
B
`′ + γ

B
`′′ ≤ z, (78b)

0≤ γ
L
`′, γ

L
`′′ ≤ 1. (78c)

According to Theorem 9, f`′(γ̂L
`′,γ

B
`′) and f`′′(γ̂L

`′′ ,γ
B
`′′) are concave in γB

`′ and γB
`′′ , respectively. There-

fore, Model (78) has an extreme point optimal solution. Analogous to the argument given in case

1, this implies existence of (γ̃L, γ̃B) that is optimal for Model (71) with at most one of {γ̃L
`′, γ̃

B
`′′}

noninteger.

Note that in the case where both {γL
` ,γ

B
` } are noninteger for `= `′ and/or `= `′′, we may apply

Cases 1–3 at most three times to construct an optimal solution to Model (71) with only k?− 1

fractional subsystems. This establishes a contradiction (as (γ̂L, γ̂B) was selected with minimum

number of fractional subsystems) and proves k? ≤ 1.

Corollary 1. There exists an optimal solution of Model (71) such that γL
` +γB

` ∈ {0,Φ−bΦc,1,1+

Φ−bΦc,2}, ∀`= 1, . . . ,N.

Proof. In Remark 2, it is proven that F(γL,γB) is decreasing in γL
` and γB

` , `= 1, . . . ,N whenever

all other γL- and γB-variables are fixed; hence in an optimal solution, ∑
N
`=1(γ

L
` + γB

`) = Φ. Due to

Theorem 10, there exists an optimal solution in which there are N− 1 subsystems ` such that γL
`

and γB
` are integer. Without loss of generality, suppose this is the case for subsystems 1, . . . ,N−1.

Because Φ = ∑
N
`=1(γ

L
` + γB

`) and γL
` + γB

` is integer for `= 1, . . . ,N−1, subsystem N satisfies

(γL
N + γ

B
N)−bγL

N + γ
B
Nc= Φ−bΦc, (79)

which yields the result.

55

Remark 3. If Φ is integer, Corollary 1 implies existence of an optimal solution of Model (71) in

which γL
` + γB

` ∈ {0,1,2}, ∀`= 1, . . . ,N.

In the following, we use the previous result and local optimality conditions to further restrict

the candidate set of optimal solutions to the separation problem such that the final candidate set is

finite for given τ , giving rise to the dynamic programming approach for solving the problem.

Theorem 11. For 0 < z < 2 and τ` > 1, define quadratic equation coefficients b`(z) and c`(z) as

b`(z) =−
[
2σ

L
` +(β̄`σ

L
` +σ

B
` (−λ̄`+ zσ

L
`)) ln(τ`)

]
σ

B
` , (80a)

c`(z) =−
[
σ

B
`

(
λ̄`− zσ

L
`

)
− β̄`σ

L
` +σ

B
` ln(τ`)λ̄`

(
zσ

B
` + β̄`

)]
, (80b)

and define a` =
(
σB
`

)2
σL
` ln(τ`). In this case

min
{

f`
(
γ

L
` ,γ

B
`

)
| γL

` + γ
B
` = z, 0≤ γ

L
` ,γ

B
` ≤ 1

}
, (81)

has an optimal solution in the set

C(z,τ`) =

{
(bzc,z−bzc),

(
−b`(z)+

√
b`(z)2−4a`c`(z)
2a`

,z− −b`(z)+
√

b`(z)2−4a`c`(z)
2a`

)
,(

−b`(z)−
√

b`(z)2−4a`c`(z)
2a`

,z− −b`(z)−
√

b`(z)2−4a`c`(z)
2a`

)
,(z−bzc,bzc)

}
. (82)

Proof. When γL
` + γB

` = z, Model (81) simplifies (because f` is decreasing) for subsystem ` by

making the substitution γB
` = z− γL

` to obtain the one-variable model

min g`
(
z,γL

`

)
= f`(γL

` ,z− γ
L
`), (83a)

s.t. max{0,z−1} ≤ γ
L
` ≤max{1,z}. (83b)

The minimum value of g`
(
z,γL

`

)
over max{0,z−1} ≤ γL

` ≤max{1,z} occurs either at its extreme

points γL
` ∈ {bzc,z−bzc} or when ∂g`(z,γL

`)/
∂γL

`
= 0. Letting K =−τ

zσB
` +β̄`−σB

` γL
` −1

` T , the derivative

56

is given as

∂g`
(
z,γL

`

)
∂γL

`

= K
(
β̄`σ

L
` −σ

B
` (λ̄`+σ

L
` (2γ

L
` − z))−σ

B
` (σ

B
` (z− γ

L
`)+ β̄`)(λ̄`+ γ

L
` σ

L
`) ln(τ`)

)
, (84)

which yields the roots γL
` =

−b`(z)±
√

b`(z)2−4a`c`(z)
2a`

under ∂h(z,γL
`)/

∂γL
`
= 0.

Remark 4. For τ` = 1, the root of ∂g`(z,γL
`)/

∂γL
`
= 0 is γL

` = β̄`σ
L
` +σB

` (zσL
` −λ̄`)/2σL

`
. Therefore, in this

case, Model (81) has an optimal solution in

C(z,1) =

{
(bzc,z−bzc),(z−bzc,bzc),(

β̄`σ
L
` +σB

` (σ
L
` − λ̄`)

2σL
`

,z−
β̄`σ

L
` +σB

` (σ
L
` − λ̄`)

2σL
`

)}
. (85)

Remark 5. Some of the points in C(z,τ`) may be infeasible because they may be negative or

greater that one, so the set can be further restricted.

Throughout the remainder of the document, let
(
γ̄L
` (z), γ̄

B
` (z)

)
denote any element of the set

argmin{ f`(γ̂L
` , γ̂

B
`) | (γ̂L

` , γ̂
B
`) ∈ C(z,τ`); 0 ≤ γ̂L

` , γ̂
B
` ≤ 1}. By using Theorem 11 and Remark 5,(

γ̄L
` (z), γ̄

B
` (z)

)
provides an optimal solution to Model (81). In Theorems 12 and 13, we extend

these results to summarize candidate solutions for Model (71).

Theorem 12. For integer value Φ, define

S`,Φ ≡
{(

γ
L,γB) ∈UΦ |

(
γ

L
` ,γ

B
`

)
∈
{
(0,0),

(
γ̄

L
` (1), γ̄

B
` (1)

)
,(1,1)

}}
, (86)

and let SΦ≡
⋂N
`=1 S`,Φ. For integer-valued Φ, the set SΦ contains an optimal solution to Model (71).

Proof. Due to Remark 3, there is an optimal solution of Model (71) that satisfies γL
` +γB

` ∈ {0,1,2}

for all subsystems ` = 1, . . . ,N. When γL
` + γB

` = 0, we have γL
` = γB

` = 0, and when γL
` + γB

` = 1,

we have γL
` = γB

` = 1. Also, (γ̄L
` (1), γ̄

B
` (1)) is optimal for Model (71) when γL

` + γB
` = 1.

57

For noninteger Φ, we also show that there exists an optimal solution to Model (71) among a

finite set of candidate solutions in Theorem 13.

Theorem 13. For noninteger Φ, define α = Φ−bΦc and α ′ = 1+Φ−bΦc. Define

S`,Φ ≡
{(

γ
L,γB) ∈UΦ

∣∣∣∣(γL
` ,γ

B
`) ∈

{
(0,0),

(
γ̄

L
` (α), γ̄B

` (α)
)
,

(
γ̄

L
` (1), γ̄

B
` (1)

)
,
(
γ̄

L
` (α

′), γ̄B
` (α

′)
)
,(1,1)

}}
, (87)

and let SΦ ≡
⋂N
`=1 S`,Φ. When Φ is noninteger, SΦ contains an optimal solution to Model (71).

Proof. According to Corollary 1, there is an optimal solution of Model (71) satisfying γL
` + γB

` ∈

{0,Φ−bΦc,1,1+Φ−bΦc,2} for all subsystems `= 1, . . . ,N. Hence, based on Theorem 11, there

exists an optimal solution to Model (71) in which

(
γ

L
` ,γ

B
`

)
∈
{
(0,0),(γ̄L

` (α), γ̄B
` (α)),(γ̄L

` (1), γ̄
B
` (1)),(γ̄

L
` (α

′), γ̄B
` (α

′)),(1,1)
}
. (88)

Theorems 12 and 13 establish a finite candidate set of optimal solutions for Model (71). This

enables an efficient dynamic programming approach for solving Model (71), in which the number

of stages is equal to the number of subsystems, and each stage ` contains a number of possible

states corresponding to the amount of the original uncertainty budget that remains at the beginning

of that stage. We now describe the dynamic programming algorithm.

For integer Φ, define QΦ = {1, . . . ,Φ} and for noninteger Φ define QΦ = {1, . . . ,bΦc}∪{(Φ−

bΦc),1+(Φ−bΦc), . . . ,bΦc+(Φ−bΦc) = Φ}. Initialize the value function as q0(φ) = 0 for all

φ ∈ QΦ. For `= 1, . . . ,N and integer φ ∈ {QΦ | φ ∈ Z}, calculate q`(φ) as

q`(φ) = min{q`−1(φ)+ f`(0,0),q`−1(φ −1)+ f`
(
γ̄

L
` (1), γ̄

B
` (1)

)
,q`−1(φ −2)+ f`(1,1)}. (89)

58

For `= 1, . . . ,N and noninteger φ ∈ {QΦ | φ /∈ Z}, calculate q`(φ) as

q`(φ) = min{q`−1(φ)+ f`(0,0),q`−1(φ −α)+ f`
(
γ̄

L
` (α), γ̄B

` (α)
)
,q`−1(φ −1)

+ f`
(
γ̄

L
` (1), γ̄

B
` (1)

)
,q`−1(φ −α

′)+ f`
(
γ̄

L
` (α

′), γ̄B
` (α

′)
)
,q`−1(φ −2)+ f`(1,1)}, (90)

in which α and α ′ are defined in Theorem 13. The optimal objective value of Model (71) is equal

to G(τ) = qN(Φ).

We now describe an exact solution approach for Model (69). By applying the variable substi-

tution L≡ lnR to the equivalent Model (70), Model (69) is equivalent (due to monotonicity of the

natural log function) to

max L, (91a)

s.t.
N

∑
`=1
−(λ̄`+σ

L
` γ

L
`)(β̄`+σ

B
` γ

B
`)τ

(β̄`+σB
` γB

` −1)
` T ≥ L, ∀(γL,γB) ∈UΦ, (91b)

τ ∈ X . (91c)

Replacing UΦ in (91b) with a subset D̄⊂Uφ yields the outer approximation

E(D̄) = max L, (92a)

s.t.
N

∑
`=1
−(λ̄`+σ

L
` γ

L
`)(β̄`+σ

B
` γ

B
`)τ

(β̄`+σB
` γB

` −1)
` T ≥ L, ∀(γL,γB) ∈ D̄, (92b)

τ ∈ X . (92c)

Because the feasible region of Model (92) contains the feasible region of Model (91), Model (92)

provides an upper bound for the logarithm of the objective value of Model (69) (i.e., eE(D̄) ≥ R?).

Algorithm 1 formally states the cutting-plane algorithm.

59

Algorithm 1 Cutting plane (calculate R? within ε tolerance).
1: function CUTTINGPLANE (Φ, ε)
2: Initialize D̄⊂UΦ. Set LB← 0 and UB← 1.
3: Solve the outer approximation problem with optimal objective eE(D̄) and solution τ̂ .
4: Set UB← eE(D̄).
5: Solve the dynamic programming with optimal objective eG(τ̂) and solution

(
γ̂

L, γ̂B).
6: If eG(τ̂) > LB then set LB← eG(τ̂) and τ?← τ̂ .
7: If UB−LB < ε then return τ? . τ? is ε-optimal
8: Set D̄ = D̄∪

(
γ̂

L, γ̂B). Go to Line 3.
9: end function

In Theorem 14, we prove that Model (92) is a convex optimization problem, so the cutting-

plane algorithm can be solved efficiently using general purpose convex optimization software.

Theorem 14. Model (92) is a convex optimization problem.

Proof. For fixed value
(
γL
` ,γ

B
`

)
, define h`(τ`) such that

h`(τ`) =−(λ̄`+σ
L
` γ

L
`)(β̄`+σ

B
` γ

B
`)τ

(β̄`+σB
` γB

` −1)
` T. (93)

The first and second derivatives of h`(τ`) with respect to the parameter τ` are equal to

∂h`(τ`)
∂τ`

=−(λ̄`+σ
L
` γ

L
`)(β̄`+σ

B
` γ

B
`)(β̄`+σ

B
` γ

B
` −1)τ(β̄`+σB

` γB
` −2)

` T, (94a)

∂ 2h`(τ`)
∂ 2τ`

=−(λ̄`+σ
L
` γ

L
`)(β̄`+σ

B
` γ

B
`)(β̄`+σ

B
` γ

B
` −1)

× (β̄`+σ
B
` γ

B
` −2)τ(β̄`+σB

` γB
` −3)

` T < 0. (94b)

Therefore, h`(τ`) is concave in τ`. Constraint (92b) is equivalent to ∑
N
`=1 h`(τ`) ≥ L. Because

each h`(τ`)-term is concave, ∑
N
`=1 h`(τ`) is concave and (92b) thus define a convex region. The

remaining constraints are linear; hence (92) has a convex feasible region and a linear objective and

is therefore a convex optimization problem.

We now prove the convergence of the algorithm.

60

Lemma 10. Define τmin
` ≡ τ0

` and τmax
` ≡ minK

k=1

{
(bk−∑

N
`′=1 ck

`′τ
0
`′+ck

`τ0
`)/ck

`

}
as the minimum and

maximum possible testing time for subsystem ` = 1, . . . ,N, respectively. For δ > 0, let J` =⌈
(τmax

` −τmin
`)/δ

⌉
and J = maxN

`=1{J`}. Define τ
j
` , ` = 1, . . . ,N as the obtained optimal solution

of the outer approximation in iteration j. Among JN +1 iterations, there are two iterations j′ and

j′′ such that |τ j′′
` − τ

j′
` | ≤ δ for all `= 1, . . . ,N.

Proof. For each subsystem `= 1, . . . ,N, divide interval [τmin
` ,τmax

`] to J equal and disjoint intervals

with lengths equal to (τmax
` −τmin

`)/J ≤ (τmax
` −τmin

`)/J` ≤ δ . Each subsystem’s testing time is in one of

J intervals, hence there are no more than JN combinations of possible intervals for system testing

time solution τ j. Therefore, after JN + 1 iterations, there are two solutions with testing times in

same intervals.

Lemma 11. For solutions τ j′′ and τ j′ , define ε` = |R(τ j′′
` ;T,λ`,β`)− R(τ j′

` ;T,λ`,β`)|, εmax =

max`=1,...,N{ε`}, and ε ≡ Nεmax/[1−(N+1)εmax]. If εmax≤ 1/N+1, then |R(τ j′′ ,λ ,β)−R(τ j′,λ ,β)| ≤ ε .

Proof. We invoke a special case of Lemma 1. We consider a series system, so M̄` = 1. Define

ε` as the absolute value of the difference of |R(τ j′
` ;T,λ`,β`)−R(τ j′′

` ;T,λ`,β`)|. By setting N =

N̄, Mmax = 1, εmax = ε̄max and ε = ε̄ in Lemma 1, M̄maxε̄max ≤ 1 and N̄M̄maxε̄max/(1−M̄maxε̄max) ≤ 1

result in εmax ≤ 1/N+1, ε̄ ≡ N̄M̄maxε̄max/[1−(N̄+1)M̄maxε̄max] suggests ε ≡ Nεmax/[1−(N+1)εmax]. Under

¯̄ρ`,1 = max
{

R(τ j′
` ;T,λ`,β`),R(τ

j′′
` ;T,λ`,β`)

}
and ρ̄`,1 = min

{
R(τ j′

` ;T,λ`,β`),R(τ
j′′
` ;T,λ`,β`)

}
,

Lemma 1 implies

∣∣∣∣∣ N

∏
`=1

R(τ j′′
` ;T,λ`,β`)−

N

∏
`=1

R(τ j′
` ;T,λ`,β`)

∣∣∣∣∣≤
∣∣∣∣∣ N

∏
`=1

¯̄ρ`,1−
N

∏
`=1

ρ̄`,i

∣∣∣∣∣= N

∏
`=1

¯̄ρ`,1−
N

∏
`=1

ρ̄`,i ≤ ε. (95)

Theorem 15. For a series system, the cutting-plane algorithm identifies an ε-optimal solution in a

finite number of iterations.

Proof. In Lemma 7, it is proven that for a given εmax > 0, there exists δ` > 0 such that R(τ`+

δ`;T,λ`,β`)−R(τ`;T,λ`,β`) ≤ εmax for τ0
` ≤ τ` ≤ τmax

` . Define δ = min`=1,...,N{δ`}. Accord-

ing to Lemma 10, there exist two iterations j′ and j′′ such that |τ j′′
` − τ

j′
` | ≤ δ , which suggests

61

R(τ j′′
` ;T,λ`,β`)−R(τ j′

` ;T,λ`,β`)≤ εmax. Set εmax =
ε/[N+ε(N+1)]; therefore, ε = Nεmax/[1−(N+1)εmax].

However,

εmax =
ε

[N + ε(N +1)]
≤ ε

[ε(N +1)]
=

1
[N +1]

. (96)

By applying Lemma 11, |R(τ j′′ ,λ ,β)−R(τ j′,λ ,β)| ≤ ε . Without loss of generality, assume j′ <

j′′, and consider (λ̂ , β̂) = (λ̄ + σL ∗ γ̂
L, β̄ + σB ∗ γ̂

B) as the optimal solution of the separation

problem in iteration j′, so R(τ j′, λ̂ , β̂) is a lower bound for R? (the optimal objective value of

Model (69)) in iteration j′. Because j′ < j′′, (γ̂L, γ̂B) ∈ D̄ in iteration j′′, so

R(τ j′′ , λ̂ , β̂)≥ eE(D̄) ≥ R?, (97)

which suggests R(τ j′′ , λ̂ , β̂) is an upper bound for R?.

In the following section, we develop the robust optimization models and solution methodol-

ogy for a series-parallel system. However, before doing so, we first provide some commentary

regarding the assumption that τ0
` ≥ 1, ` = 1, . . . ,N, that was used in this section. This assump-

tion only enables solving the separation model, Model (71), via dynamic programming. Given

some other algorithm for solving Model (71), the outer approximation Model (92) remains a con-

vex optimization problem. The convergence result, Theorem 15, extends in this case as well,

although the required computational effort per iteration may be increased as a result of having

to solve Model (71) by another means. The series-parallel algorithm developed in the following

section is somewhat more computationally complex than its series-system counterpart; however, it

does not require the assumption that τ0
` ≥ 1, ` = 1, . . . ,N. As a result, one alternative for solving

Model (71) is the special case of Algorithm 2—the series-parallel separation algorithm provided

in the following section—specialized to the case of one component per subsystem.

3.4 Solution Method for Series-Parallel Systems

In this section, we develop a model for the robust allocation of testing resources across the subsys-

tems of a series-parallel system, in which the components inside each subsystem are identical. In

62

this system, there are N subsystems connected in a series, and each subsystem `= 1, . . . ,N includes

M` identical components connected in parallel. Based on Equation (63), the robust optimization

problem for a series-parallel system is defined as

R? = max R, (98a)

s.t.
N

∏
`=1

[
1−
(

1− e−(λ̄`+σL
` γL

`)(β̄`+σB
` γB

`)τ
(β̄`+σB

` γB
` −1)

` T
)M`

]
≥ R, ∀(γL,γB) ∈UΦ, (98b)

τ ∈ X , (98c)

in which UΦ is defined in Equation (66).

Model (98) is nonlinear and nonconvex, so there is no apparent exact solution method. We now

describe such a method based on a cutting-plane algorithm. The separation model associated with

calculating the robust objective value for τ ∈ X is given by

G(τ) = min
N

∏
`=1

[
1−
(

1− e−(λ̄`+σL
` γL

`)(β̄`+σB
` γB

`)τ
(β̄`+σB

` γB
` −1)

` T
)M`

]
, (99a)

s.t. (γL,γB) ∈UΦ. (99b)

A solution of Model (99) is feasible for Model (98); therefore, Model (99) yields a lower bound for

Model (98) (i.e. G(τ) ≤ R?). Unfortunately, the series-parallel extensions of Theorems 12–13 no

longer hold for Model (99). We address this issue by using a discretize-and-refine method devel-

oped for the deterministic version of our problem in Chapter 2. We will adapt this method to solve

the separation and outer approximation problems for series-parallel systems. This method is based

on the idea that lower and upper bounds on the robust reliability solution can be found by solving

the discretized model. Then, by successive refinement of the discretized models, the lower and

upper bounds converge to an arbitrarily small gap. We begin by discretizing the separation model.

For this purpose, for each subsystem ` = 1, . . . ,N, consider P̀ discrete points zp
` , p = 1, . . . , P̀ ,

each of which represents a potential value of γL
` + γB

` , and define rp
` as the reliability associated

63

with point p = 1, . . . , P̀ . The discretized version of the separation model (99) is represented as

RSD(r,T) = min
N

∏
`=1

P̀

∏
p=1

rp
`

xp
` , (100a)

s.t.
N

∑
`=1

P̀

∑
p=1

zp
` xp

` ≤Φ, (100b)

P̀

∑
p=1

xp
` = 1, ∀`= 1, . . . ,N, (100c)

in which r is a vector of reliabilities rp
` and

0≡ z1
` < z2

` < · · ·< zP̀
` ≡ 2(< zP̀ +1

`), (101)

where zP̀ +1
` is defined (for notational convenience) to be a constant greater than 2. We now

show how Model (100) can provide lower and upper bounds on subsystem reliability. Due to

Theorem 11, when γL
` + γB

` is fixed to equal z, Model (99) has an optimal solution in the set

argmin{ f`(γ̂L
` , γ̂

B
`)|(γ̂L

` , γ̂
B
`) ∈C(z,τ`)}. Let (γ̄L

` (z), γ̄
B
` (z)) denote any such solution. Setting

rp
` = 1−

(
1− f`(γ̄L

` (z
p+1
`), γ̄B

` (z
p+1
`))

)M`
, ∀p = 1, . . . ,P, `= 1, . . . ,N, (102)

in Model (100) provides a lower bound on Model (99), but setting

rp
` = 1−

(
1− f`(γ̄L

` (z
p
`), γ̄

B
` (z

p
`))
)M` , ∀p = 1, . . . ,P, `= 1, . . . ,N, (103)

yields an upper bound. Towards proving this formally, define LB-MILP and UB-MILP as the

lower- and upper-bound models, respectively, and define R̂(z,T) as the optimal objective value of

Model (99) when the value of γL
` +γB

` is equal to z` for `= 1, . . . ,N. (Here, z denotes the collection

of possibly noninteger z`-values across all subsystems.)

Theorem 16. Define r̄p
` = 1−

(
1− f`(γ̄L

` (z
p+1
`), γ̄B

` (z
p+1
`))

)M`
for all ` = 1, . . . ,N, p = 1, . . . , P̀ ,

then RSD(r̄,T)≤ G(τ) (LB-MILP yields a lower bound on the separation problem).

64

Proof. Let γ̇L
` and γ̇B

` , ` = 1, . . . ,N denote an optimal solution for Model (99). Then, for each

subsystem `, find the index P̂̀ ∈ {1, . . . , P̀ } satisfying zP̂̀
` ≤ γ̇L

` + γ̇B
` < zP̂̀ +1

` , and set ẑ` = zP̂̀ +1
` .

The solution xP̂̀
` = 1, ` = 1, . . . ,N is a feasible solution to UB-MILP, with objective value equal

to R̂(ẑ,T). According to Theorem 9, e f`(γL
` ,γ

B
`) is nonincreasing over either γL

` or γB
` when the other

is fixed. Thus, the value of 1−
(

1− e f`(γL
` ,γ

B
`)
)M`

is nonincreasing over γL
` or γB

` when the other is

fixed, which yields that R̂(z,T) is nonincreasing over the value of γL
` + γB

` . Therefore,

RSD(r̄,T)≤ R̂(ẑ,T)≤ R̂(ż,T) = G(τ), (104)

which completes the proof.

Theorem 17. Define ¯̄rp
` = 1−

(
1− f`(γ̄L

` (z
p
`), γ̄

B
` (z

p
`))
)M` for all ` = 1, . . . ,N, p = 1, . . . , P̀ , then

RSD(¯̄r,T)≥ G(τ) (UB-MILP yields an upper bound on the separation problem).

Proof. By setting ¯̄rp
` = 1−

(
1− f`(γ̄L

` (z
p
`), γ̄

B
` (z

p
`))
)M` , for each solution x̂ in Model (100), there is

a solution γL
` = ∑

P̀
p=1 γ̄L

` (z
p
`)x̂

p
` and γB

` = ∑
P̀
p=1 γ̄B

` (z
p
`)x̂

p
` with the same objective in Model (99).

The separation problem is solved by Algorithm 2, where Psub denotes the initial number of

evenly spaced discrete points (see Line 5) used to populate Model (100) and εsub denotes the

desired optimality tolerance. Define the N-vectors of (γL?
,γB?

) as the incumbent (upper bound)

solution and define P̄̀ , `= 1, . . . ,N, as the index p such that xp
` = 1 in the obtained optimal solution

to LB-SP. The LB-SP and UB-SP models are refined to generate tighter bounds in the following

iteration by defining new points zP̀ +1
` given by

zP̀ +1
` =

(
0.5zP̄̀

` +0.5zP̄̀ +1
`

)
, (105)

incrementing P̀ ← P̀ + 1 (unless P̄̀ = P̀ , in which case the issue is addressed by Line 20 via

redefining zP̀ +1
` as 0.5zP̀

` +0.5zP̀ +1
`).

65

Algorithm 2 Series-parallel separation algorithm (calculate a lower bound for R? within εsub tol-
erance).

1: function SEPARATIONALGORITHM (εsub, Psub, τ)
2: for `= 1, . . . ,N do
3: Set zmin

` ← 0 and zmax
` ← 2+2/(Psub−1)

4: for p = 1, . . . ,Psub +1 do
5: Set zp

` ← zmin
` +(p−1)(zmax

` − zmin
`)/Psub

6: end for
7: end for
8: Set LB← 0 and UB← 1
9: for `= 1, . . . ,N do

10: Set P̀ ← Psub
11: end for
12: If UB−LB < εsub then return (γL?

,γB?
) . (γL?

,γB?
) is ε-optimal

13: Solve the LB-MILP model with optimal solution γ? and objective value RSD(r̄,T)
14: Calculate

(
γ̄L
` , γ̄

B
`

)
∈ argmin{ f`(γ̂L

` , γ̂
B
`) | (γ̂L

` , γ̂
B
`) ∈ C(γ?` ,τ`)},∀` = 1, . . . ,N, using

Theorem 13
15: If RSD(r̄,T)> LB then set LB← RSD(r̄,T), γL? ← γ̄L and γB? ← γ̄B

16: Solve the UB-MILP model with optimal solution P̄̀ ∈ {1, . . . , P̀ }, ` = 1, . . . ,N, and
objective value RSD(¯̄r,T)

17: If RSD(¯̄r,T)<UB then set UB← RSD(¯̄r,T)
18: for `= 1, . . . ,N do
19: If 0.5

(
zP̄̀
` + zP̄̀ +1

`

)
≤ 2 then add a new point zP̀ +1

` ≡ 0.5
(

zP̄̀
` + zP̄̀ +1

`

)
and set

P̀ ← P̀ +1
20: If 0.5

(
zP̄̀
` + zP̄̀ +1

`

)
> 2 then set zP̀ +1

` = 0.5
(

zP̄̀
` + zP̄̀ +1

`

)
21: end for
22: for `= 1, . . . ,N do
23: Renumber the points such that 0≡ z1

` < z2
` < · · ·< zP̀

` ≡ 2(< zP̀ +1
`)

24: end for
25: Go to Line 12
26: end function

In the following, we describe an approach for solving the series-parallel robust allocation

Model (98). Considering D̄⊆UΦ, the outer approximation problem is given as

E(D̄) = max R, (106a)

s.t.
N

∏
`=1

[
1−
(

1− e−(λ̄`+σL
` γL

`)(β̄`+σB
` γB

`)τ
(β̄`+σB

` γB
` −1)

` T
)M`

]
≥ R,

∀
(
γ

L,γB) ∈ D̄, (106b)

66

τ ∈ X . (106c)

Model (106) is nonlinear/nonconvex, so we use a discretize-and-refine method similar to the

method used for the separation problem to solve the outer approximation problem. The discretized

version of Model (106) is given as

ROA(r,T) = max R, (107a)

s.t.
N

∏
`=1

P

∏
p=1

rp
`, j

yp
` ≥ R, ∀ j = 1, . . . , |D̄|, (107b)

P

∑
p=1

τ
p
` yp

` ∈ X , (107c)

P

∑
p=1

yp
` = 1, (107d)

y ∈ {0,1}, ∀p = 1, . . . ,P. (107e)

in which r is a vector of reliabilities rp
`, j. Applying a logarithm to Objective (107a) and Equa-

tion (107b) yields the equivalent linear model

W OA(r,T) = max L, (108a)

s.t.
N

∑
`=1

P

∑
p=1

ln(rp
`, j)y

p
` ≥ L, ∀ j = 1, . . . , |D̄|, (108b)

Constraints (107c)–(107e),

in which eW OA(r,T) is equal to ROA(r,T), the optimal objective value of Model (107). Define

(λ`, j,β`, j) ` = 1, . . . ,N as the AMSAA model parameters associated with scenario j = 1, . . . , |D̄|.

We now prove that setting

rp
`, j = 1−

(
1− e−λ`, jβ`, jτ

p
`
(β`, j−1)T

)M`

, ∀`= 1, . . . ,N, j = 1, . . . , |D̄|, p = 1, . . . ,P, (109)

67

provides a lower bound on the optimal objective value E(D̄); while, setting

rp
`, j = 1−

(
1− e−λ`, jβ`, jτ

p+1
`

(β`, j−1)
T
)M`

, ∀`= 1, . . . ,N, j = 1, . . . , |D̄|, p = 1, . . . ,P, (110)

yields an upper bound (Define rP+1
`, j ≡ τmax

` , ` = 1, . . . ,N, j = 1, . . . , |D̄|, where τmax
` ≡ minK

k=1{
(bk−∑

N
`′=1 ck

`′τ
0
`′+ck

`τ0
`)/ck

`

}
). Define LB-MD when Model (107) provides a lower bound on Model

(106), and UB-MD when it provides an upper bound on Model (106).

Theorem 18. Define r̄p
`, j = 1−

(
1− e−λ`, jβ`, jτ

p
`
(β`, j−1)T

)M`

for all `= 1, . . . ,N, j = 1, . . . , |D̄|, p =

1, . . . ,P, then ROA(r̄,T) ≤ E(D̄). (That is, LB-MD provides a lower bound for the outer approxi-

mation problem).

Proof. By setting r̄`, j = 1−
(

1− e−λ`, jβ`, jτ
p
`
(β`, j−1)T

)M`

, for each feasible solution ŷ of Model (107),

there is a solution τ` = ∑
P
p=1 τ

p
` ŷp

` in Model (106) with the same objective value.

Theorem 19. Define ¯̄rp
`, j = 1−

(
1− e−λ`, jβ`, jτ

p+1
`

(β`, j−1)
T
)M`

for all `= 1, . . . ,N, j = 1, . . . , |D̄|, p=

1, . . . ,P, then ROA(¯̄r,T)≥ E(D̄). (That is, UB-MD provides an upper bound for the outer approx-

imation problem).

Proof. Let A(τ̂) denote the optimal objective value of Model (106) when τ = τ̂ is fixed. Define

τ∗` , ` = 1, . . . ,N, as an optimal solution for Model (106). Find the index P̂̀ ∈ {1, . . . ,P} for each

subsystem ` such that τ
P̂̀
` ≤ τ∗` < τ

P̂̀ +1
` , and set τ̂` = τ

P̂̀ +1
` . The solution yP̂̀

` = 1, ` = 1, . . . ,N is

a feasible solution to UB-MD, with objective value equal to A(τ̂). The value A(τ̂) is no less than

R? = A(τ?) since A(τ) is nondecreasing in τ . Hence, R? ≤ A(τ̂)≤ ROA(¯̄r,T).

Algorithm 3 is used to solve the outer approximation Model (106), where Psub is the initial

number of discrete points used to populate Model (107) and εsub is the desired optimality toler-

ance. In this algorithm, τ? defines the incumbent solution. Given a desired optimality tolerance ε ,

Algorithm 4 provides the resulting cutting-plane algorithm for robust allocation of testing time in

a series-parallel system. For the sake of brevity, we have not provided a convergence proof of

Algorithm 4, but we now provide a sketch: Arguments similar to those used in Theorem 15 can

68

be used to bound the number of iterations of the cutting-plane algorithm, and the number of steps

per iteration can be bounded using arguments similar to those in Chapter 2, which establish finite

convergence of discretize-and-refine algorithms for a related class of problems.

Algorithm 3 The outer approximation algorithm (calculate an upper bound for R? within εsub
tolerance).

1: function OUTERAPPROXIMATION (εsub, Psub)
2: for `= 1, . . . ,N do
3: Set τmin

` ← τ0
` and τmax

` ←minK
k=1

{
(bk−∑

N
`′=1 ck

`′τ
0
`′+ck

`τ0
`)/ck

`

}
4: for p = 1, . . . ,Psub do
5: Set τ

p
` ← τmin

` +(p−1)(τmax
` − τmin

`)/Psub
6: end for
7: end for
8: Set LB← 0, UB← 1, and P← Psub
9: If UB−LB < εsub then return τ? . τ? is ε-optimal

10: Solve the LB-MD model with optimal solution τ̂ and objective value ROA(r̄,T)
11: If ROA(r̄,T)> LB then set LB← ROA(r̄,T), τ?← τ̂

12: Solve the UB-MD model with optimal solution P̄̀ ∈ {1, . . . ,P}, `= 1, . . . ,N and objective
value ROA(¯̄r,T)

13: If ROA(¯̄r)<UB then set UB← ROA(¯̄r,T)
14: for `= 1, . . . ,N do
15: Add a new point τ

P+1
` ≡ 0.5

(
τ

P̄̀
` + τ

P̄̀ +1
`

)
16: end for
17: Renumber the points such that τ1

` < τ2
` < · · ·< τ

P+1
`

18: set P← P+1
19: Go to Line 9
20: end function

Algorithm 4 Cutting plane (calculate R? within ε tolerance).
1: function CUTTINGPLANE (V , bv, Φ, ε , εsub, Psub)
2: Initialize D̄⊂UΦ. Set LB← 0 and UB← 1.
3: Solve OUTERAPPROXIMATION(εsub, Psub) with objective (LO,UO) and solution τ̂ .
4: Set UB←UO.
5: Solve SEPARATIONALGORITHM(εsub, Psub, τ̂) with objective (LS,US) and solution(

γ̂
L, γ̂B).

6: If LS > LB then set LB← eLS and τ?← τ̂ .
7: If UB−LB < ε then return τ? . τ? is ε-optimal
8: Set D̄ = D̄∪

(
γ̂

L, γ̂B). Go to Line 3.
9: end function

69

3.5 Computational Results

This section provides a study of computational results. For series systems, the cutting-plane algo-

rithm is coded in MATLAB and CVX solver is used to solve each convex optimization problem.

For series-parallel systems, C++ is used to code the cutting-plane algorithm and CPLEX 12.4 is

invoked to solve each individual integer program. For all instances, a server with an Intel core i12

with 2.9 GHz and 12 GB RAM is used. We compare the robust and deterministic approaches via

sensitivity analysis for a set of numerical examples in Section 3.5.1, demonstrate the use of confi-

dence intervals to construct uncertainty sets in Section 3.5.2, study the effect of the system structure

on testing time allocation in Section 3.5.3, and analyze the computational efficiency of the cutting-

plane algorithm in Section 3.5.4. Although we have neither claimed nor demonstrated that that

the robust optimization approach always performs better than available deterministic approaches,

Sections 3.5.1–3.5.2 demonstrate that the robust approach is favorable for what we believe to be a

realistic set of instances.

Based upon preliminary experiments, we identified that smaller values of Φ (e.g., Φ∈{0.3,0.5}

when N ≤ 6) tend to provide more competitive results from the robust optimization model. We be-

lieve this is because the scenarios that result when one or more parameters are allowed to take on

their worst-case values are, in some cases, too significant of a deterrent. For instance, a subsystem

` with β̄`+σB
` close to 1 has, in the worst scenario, almost no growth at all. This discourages

solutions in which subsystem ` is tested in any significant amount. Because of this observation, we

have utilized small values of Φ in Sections 3.5.1–3.5.2, where we are demonstrating value of the

robust approach against available deterministic approaches.

3.5.1 Comparing Robust and Deterministic Solutions via Sensitivity Analysis

To demonstrate the value of incorporating uncertainty into the resource allocation model, we begin

by describing a procedure that can be used to compare the results of alternative testing strategies

under different combinations of realized parameter values. We first illustrate the approach graph-

ically for two-subsystem examples in which only two of the four parameters {λ1,λ2,β1,β2} are

70

subject to uncertainty. Using this approach, we then summarize results for larger systems with

more decision variables and parameters subject to uncertainty.

The approach utilized in this system considers a fixed set of uncertainty intervals [λ̄`, λ̄`+σL
`]

and [β̄`, β̄` + σB
`] associated with each subsystem ` = 1, . . . ,N. Hereafter, we will refer to the

Cartesian product of these 2N intervals as the uncertainty box. We generate testing plans τΦ=0,

τΦ=0.5, and τΦ=2N by solving the robust optimization model corresponding to Φ ∈ {0,0.5,2N}

over the uncertainty box. (Note: The solutions τΦ=0 and τΦ=2N are respectively the optimistic

and pessimistic solutions obtained by solving the corresponding deterministic model.) We then

compare the robust solution τΦ=0.5 to the corresponding deterministic solutions over potentially

realized parameters in the uncertainty box.

3.5.1.1 Series System with N = 2, Uncertainty Only in λ

Consider a series system that contains two subsystems. Suppose the true β -values are known with

certainty such that β1 = β̄1 = 0.65 and β2 = β̄2 = 0.6 and σB
1 = σB

2 = 0. Suppose uncertainty in

λ is described by λ̄1 = 0.00015, σL
1 = 0.0002, λ̄2 = 0.0003 and σL

2 = 0.0001, and the remaining

parameters are given by T = 18,250, K = 1, b1 = 8,760, c1
` = 1 and τ0

` = 1, ` ∈ {1,2}. For

this region, we generated τΦ=0, τΦ=0.5 and τΦ=4. (Note, however, that the robust solutions for

2 ≤ Φ ≤ 4 are equal because there is no uncertainty in β .) The testing times are (τΦ=0
1 ,τΦ=0

2) =

(3860.4,4899.6) for the optimistic solution, (τΦ=0.5
1 ,τΦ=0.5

2) = (4671.5,4088.5) for the robust

solution, and (τΦ=4
1 ,τΦ=4

2) = (4748.7,4011.3) for the pessimistic solution. Using these solutions,

Figure 5(a) shows the λ -values in the uncertainty box under which each of the three solutions

yields the maximum reliability.

The point (λ1,λ2) = (0.00015,0.0003) in Figure 5(a), falls in region A, thus indicating that the

optimistic model’s solution would yield a better reliability for these realized values of λ1 and λ2.

This is to be expected as the optimization model corresponding to Φ= 0 is deterministic under λ1 =

λ̄1 = 0.00015 and λ2 = λ̄2 = 0.0003. Similarly, it is not surprising that (λ1,λ2)= (0.00035,0.0004)

falls in region C, (indicating that the pessimistic model yields superior performance) because the

71

(a) (b)
Figure 5: (a) Uncertainty box partitioned according to the value of Φ yielding the maximum
reliability; and (b) percentile plot of reliability difference between the robust and deterministic
solutions for the first instance.

optimization model corresponding to Φ = 4 is deterministic under the assumption that λ1 = λ̄1 +

σL
1 = 0.00035 and λ2 = λ̄2 +σL

2 = 0.0004.

We now summarize the analysis for this example in such a way that can be repeated to deter-

mine if the robust optimization model’s solutions are a favorable alternative towards using either

the optimistic or pessimistic deterministic optimization models. One measure of interest in com-

paring solutions is the pairwise hypervolume proportion, the proportion of the uncertainty box in

which the robust solution yields higher reliability than either the optimistic or pessimistic determin-

istic solution. The pairwise hypervolume proportions for the optimistic and pessimistic solutions

are respectively 61.87% (corresponding to Regions B and C in Figure 5(a)) and 74.54% (corre-

sponding to regions A and B). In other words, if the λ -values are selected uniformly from the

uncertainty box, the robust solution generates higher reliability than the optimistic (pessimistic)

solution 61.87% (74.54%) of the time.

Figure 5(b) depicts a percentile plot of the reliability differences between the robust solution

and the optimistic and pessimistic solutions. We sample 1,000 realizations of λ uniformly within

the uncertainty box and calculate the reliability associated with optimistic, robust and pessimistic

solutions. We then calculate the differences between the robust solution and each of the optimistic

and pessimistic solutions, sort the reliability differences, and plot the differences in Figure 5(b)—

72

with the smallest difference on the far left, and the largest difference on the far right. The horizontal

intercepts occur for the optimistic and pessimistic comparison (approximately) at (1− 0.6187)

and (1−0.7454), respectively corresponding to the pairwise hypervolume proportions detailed in

the previous paragraph. In this instance, the robust solution’s reliability may exceed that of the

optimistic (pessimistic) solution by as much as 0.00472 (0.00053), but the optimistic (pessimistic)

solution stands to exceed the reliability of the robust solution by no more than 0.00358 (0.00023).

3.5.1.2 Series System with N = 2, Uncertainty Only in β

We now repeat the analysis of the previous section, but this time in the case where λ is known and

β is subject to uncertainty. Specifically, let λ1 = λ̄1 = 0.00015 and λ2 = λ̄2 = 0.0003 such that their

associated uncertainty intervals have a length of zero. The uncertainty underlying parameters are

β̄1 = 0.65, σB
1 = 0.15, β̄2 = 0.6 and σB

2 = 0.05. Similar to the previous instance, we set T = 18,250,

K = 1, b1 = 8,760, c1
` = 1 and τ0

` = 1, ` ∈ {1,2}. The testing times are now (τΦ=0
1 ,τΦ=0

2) =

(3860.4,4899.6) for the optimistic solution, (τΦ=0.5
1 ,τΦ=0.5

2) = (4656.5,4103.3) for the robust

solution, and (τΦ=4
1 ,τΦ=4

2)= (4743.5,4016.5) for the pessimistic solution. Because the underlying

parameters of the optimistic solution for this instance and the previous instance are equal, the

testing times of both instances for the optimistic solution are also equal. Figure 6(a) specifies the

policy that provides the highest reliability when β -values are in the uncertainty box. The pairwise

hypervolume proportions for the optimistic and pessimistic solutions are 56.23% (corresponding

to regions B and C) and 75.13% (corresponding to regions A and B). Similar to the previous

instance, the robust solution never yields the smallest reliability when it is compared with both

optimistic and pessimistic solutions in the uncertainty box. From Figure 6(b), for realizations

of β in the uncertainty box, the robust solution’s reliability exceeds the optimistic (pessimistic)

solution’s reliability by as much as 0.00439 (0.00065) while the optimistic (pessimistic) solution

may exceed the robust solution in reliability by as much as 0.00398 (0.00029).

73

(a) (b)
Figure 6: (a) Uncertainty box partitioned according to the value of Φ yielding the maximum reli-
ability; and (b) percentile plot of reliability difference between robust and deterministic solutions
for the second instance.

3.5.1.3 Series System with N = 2, Uncertainty in Both λ and β

We now analyze the performance of the robust solution in comparison with the optimistic and

pessimistic deterministic solutions when the number of uncertain parameters increases. Figure 7

depicts the approximated percentile plot (now generated based on 10,000 sampled realizations of

the uncertain parameters since the uncertainty box has a higher dimension) for a series system with

two subsystems with T = 18,250, K = 1, b1 = 8,760, c1
` = 1 and τ0

` = 1, `∈{1,2}. None of the pa-

rameter values are known in this instance, and the parameter uncertainty is given by λ̄1 = 0.00015,

σL
1 = 0.0002, λ̄2 = 0.0003, σL

2 = 0.0001, β̄1 = 0.65, σB
1 = 0.15, β̄2 = 0.6 and σB

2 = 0.05. (That

is, we now have a hybrid of the instances from Sections 3.5.1.1–3.5.1.2 in which the uncertainty

intervals for λ match the uncertainty interval from Section 3.5.1.1, the uncertainty intervals for β

match the uncertainty intervals from Section 3.5.1.2, and all other parameters are common across

all three instances.) The allocation of testing times across the subsystems for the optimistic solution

is (τΦ=0
1 ,τΦ=0

2) = (3860.4,4899.6), for the robust solution is (τΦ=0.5
1 ,τΦ=0.5

2) = (4656.7,4103.3),

and for the pessimistic solution is (τΦ=4
1 ,τΦ=4

2) = (5656.9,3103.1).

The pairwise hypervolume proportions for the optimistic and pessimistic solutions are respec-

tively 82.48% and 65.78%, respectively. The robust solution’s reliability may now exceed the

74

optimistic (pessimistic) solution’s by as much as 0.00981 (0.01317) and the potential magnitude

by which the optimistic (pessimistic) solution’s reliability could exceed the robust solution’s relia-

bility remains relatively small at 0.00581 (0.00735).

Figure 7: Percentile plot of reliability difference between robust and deterministic solutions for
the third instance.

3.5.1.4 Series System with N = 6, Uncertainty in Both λ and β

We now consider a series system with 6 subsystems. The parameters of this instance are repre-

sented in Table 7 with the exception that M` = 1, `= 1, . . . ,N. We set T = 4,380 and b1 = 8,760.

The approximate percentile plot is given in Figure 8(a). For this instance, the pairwise hypervol-

ume proportion for the optimistic and pessimistic solutions are 86.29% and 71.61%. The robust

solution’s reliability may, in this case, exceed that of the optimistic (pessimistic) solution by as

much as 0.01163 (0.00656) and may be exceeded by as much as 0.00217 (0.00609). The testing

times for each method are presented in Table 8. In this case, the testing times of the robust solution

for subsystems 2, 4 and 6 fall between the pessimistic and optimistic solutions.

Table 7: Parameters for the series instance with 6 subsystems
` λ̄` σL

` β̄` σB
` M` ` λ̄` σL

` β̄` σB
` M`

1 0.00008 0.00003 0.65 0.07 3 3 0.0004 0.00007 0.75 0.02 2
3 0.0002 0.0001 0.68 0.05 1 4 0.00025 0.00004 0.7 0.04 3
5 0.00004 0.00003 0.65 0.1 2 6 0.00006 0.0002 0.6 0.15 1

K = 1 c1
` = 1 τ0

` = 1, ` ∈ {1, . . . ,6}

75

Table 8: Testing times for the series instance with 6 subsystems
τ1 τ2 τ3 τ4 τ5 τ6

Optimistic (Φ = 0) 692.1 3625.4 1554.3 2010.5 414.2 463.5
Robust (Φ = 0.5) 658.3 3434.8 1476.8 1908.7 394.0 887.4

Pessimistic (Φ = 12) 707.5 2707.5 1612.6 1633.0 544.3 1555.1

(a) (b)
Figure 8: Percentile plot of reliability difference between robust and deterministic solutions (a)
for the series instance with 6 subsystems and (b) for the series-parallel instance.

3.5.1.5 Series-Parallel System with N = 6, Uncertainty in Both λ and β

We now perform the same set of analyses for a series-parallel system with 6 subsystems. The

parameters are presented in Table 7, and we consider b1 = 8,760 and T = 18,250 for this instance.

The pairwise hypervolume proportions for the optimistic and pessimistic deterministic approaches

are 83.59% and 68.28%, respectively. We also present the percentile plot of the reliability differ-

ence between the robust solution and the optimistic and pessimistic solutions in Figure 8(b). In this

case, the robust solution’s reliability may now exceed that of the optimistic (pessimistic) solution

by as much as 0.02095 (0.01475) and may not be exceed by more than 0.00563 (0.01101). Thus, in

moving from the series to the series-parallel instance, the robust optimization approach seems even

more favorable as compared to deterministic methods. The solutions generated by each method

are presented in Table 9. The testing times for subsystems 2, 3 and 6 lie between the deterministic

solutions.

76

Table 9: Testing times for the series-parallel instance
τ1 τ2 τ3 τ4 τ5 τ6

Optimistic (Φ = 0) 135.9 4250.9 2476.3 1025.8 153.4 717.5
Robust (Φ = 0.5) 128.9 3925.0 2276.6 961.0 144.6 1321.9

Pessimistic (Φ = 12) 225.2 2982.6 2136.4 1041.6 304.1 2069.9

3.5.2 Generating Uncertainty Intervals Based on Preliminary Test Data

We now demonstrate, using the three-subsystem instance defined in Table 10, how one may con-

struct uncertainty intervals based on preliminary test data. In this set of results, we simulate the

Table 10: Parameters for three-subsystem series instance
λ1 β1 λ2 β2 λ3 β3 T K c1

` b1
0.01 0.65 0.02 0.6 0.025 0.7 120 1 1 30,660

underlying failure/growth process (i.e., the nonhomogenous Poisson process described by Equa-

tion (1)) in order to generate initial failure data that may be used in planning future tests. Given this

data, we compare the robust approach against deterministic approaches for generating test plans.

Initially, we simulate the AMSAA failure process (using the underlying λ`- and β`-values)

for τ0
` = τ int hours for each ` = 1, . . . ,N. (We consider the values τ int ∈ {6570,7300} in our

experiments.) Based upon the results of the simulation, for each `= 1, . . . ,N, we derive maximum

likelihood estimates (denoted β̂` and λ̂`) of λ` and β` as

β̂` =
n`

n` ln(τ0
`)−∑

n`
i=1 ln(t`,i)

, (111a)

λ̂` =
n`(

τ0
`

)β̂`

, (111b)

for each `= 1, . . . ,N and in which n` is number of failures for subsystem `= 1, . . . ,N in the sim-

ulation, and t`,i, i = 1, . . . ,n` is the ith failure time for subsystem ` = 1, . . . ,N. We then solve the

deterministic allocation model (i.e., Model (61)) assuming λ = λ̂ and β = β̂ to allocate test times

to the three subsystems. We refer to this deterministic approach as the max-likelihood approach.

Using the test times τ?` , ` = 1, . . . ,N, that result from the max-likelihood allocation model, we

then evaluate R(τ?;λ ,β)—the true reliability after implementing the optimization model’s rec-

77

ommended test times—and report this value for comparison. Each subsystem’s failure times are

generated based on the homogenous Poisson process by the failure rate given in Equaton (1), and

then used to estimate λ̂ and β̂ . Because the estimates λ̂ and β̂ are random, we replicate this

procedure 100 times (using the same underlying parameters given in Table 10).

To demonstrate the effect of our robust model, we repeat the above process using the robust

model instead of the deterministic model to generate τ?. Specifically, given the results of the

initial τ int hours of testing completed on each subsystem, we first construct 100(1−α)% two-

sided confidence intervals (using the Fisher Matrix bound [42]) on each λ` and β`, `= 1, . . . ,N, as

λ` ∈

[
λ̂`e

zα/2

√
Var(λ̂`)/

λ̂` , λ̂`e
−zα/2

√
Var(λ̂`)/

λ̂`

]
, (112a)

β` ∈

[
β̂`e

zα/2

√
Var(β̂`)/

β̂` , β̂`e
−zα/2

√
Var(β̂`)/

β̂`

]
, (112b)

in which zα is the value of Normal distribution with lower tail probability α , and

Var(λ̂`) =
λ̂ 2
`

(
n`− λ̂`n

β̂`
` ln(n`)2β̂ 2

`

)
n2
` − λ̂`β̂

2
` nβ̂`+1

` ln(n`)2− (λ̂`β̂`n
β̂`
` ln(n`))2

, (113a)

Var(β̂`) =
n`β̂ 2

`

n2
` − λ̂`β̂

2
` nβ̂`+1

` ln(n`)2− (λ̂`β̂`n
β̂`
` ln(n`))2

. (113b)

We then define an instance of the robust optimization model (i.e., Model (69)) by letting the con-

fidence intervals (112) play the role of Equation (65) in the construction of the uncertainty set UΦ.

We repeat this for all combinations of the values α ∈ {0.6,0.8} and Φ ∈ {0.3,0.5}. For each of

these combinations, we run 100 replications (reusing the same values of n` and t`,i generated in

replicating the max-likelihood approach) because the uncertainty intervals are also random due to

depending on the simulated failure data. Because 0 < β` < 1 in the AMSAA model, we use 0.99

in place of β̄`+σB
` in the robust optimization model if β̄`+σB

` ≥ 1. Likewise, we truncate the

values of the lower limit β̄` and maximum likelihood estimate β̂` at 0.99 when they would other-

78

wise appear in an optimization model with value at least 1. Additionally, we note that (112)–(113)

are ill-defined when zero failures are observed in a given subsystem and similarly, the maximum

likelihood estimates (111) are not meaningful for the purposes of allocating resources. In our ex-

periments, we handle this by removing replications in which some subsystem experiences zero

failures (this happens only once out of a total of 200 runs). In order to enhance the resource allo-

cation approach for the case of limited failure data, it may be possible to extend the results herein

to account for censored data or to incorporate accelerated testing. We have left this for future

research.

The values of α defined in the previous paragraph were chosen based upon a set of preliminary

experiments, which revealed that selecting a smaller value of α results in an extremely conservative

uncertainty set that incorporates a high frequency of parameter combinations that are unlikely to

occur in practice. Furthermore, such an uncertainty set may tend to include values of β` that

are close to 1, and our experience has suggested that this case—see the discussion in the second

paragraph of Section 3.5—reduces the overall solution quality as compared to using available

deterministic estimates. Utilizing a more conservative uncertainty set (i.e., with a larger α) seems

to mitigate this issue and yield higher quality solutions overall.

In order to compare against what would be possible prior to the robust model, we compare

against several deterministic optimization approaches. The robust optimization model correspond-

ing to Φ = 2N = 6 allows all parameters to take on their worst-case values (i.e., λ` = λ̄`+σL
` and

β` = β̄`+σB
` , ∀`= 1, . . . ,N) and thus corresponds to the pessimistic deterministic approach, which

we refer to as the pessimistic approach. The robust optimization model also becomes deterministic

when Φ = 0 as all parameters take their optimistic values (i.e., λ` = λ̄` and β` = β̄`, ∀`= 1, . . . ,N).

We refer to this as the optimistic approach. We also compare against the deterministic model where

all γL
` and γB

` are fixed equal to 0.5, and refer to the resulting approach as midpoint approach. For

each robust approach (i.e., for Φ = 0.3 and Φ = 0.5) and each deterministic approach (i.e., max-

likelihood, pessimistic, optimistic and midpoint), we record the true reliability that results from

each of the 100 replications.

79

The results of our experiments are summarized in Table 11. In Table 11, R>L, R>P, R>O,

and R>M represent the number of times from 100 replications in which the robust approach re-

spectively yielded higher reliability than the max-likelihood, pessimistic, optimistic, and midpoint

approaches. Regardless of the value of α and τ int, both of the robust treatments are preferable to

all of the deterministic treatments in more than half of the replications.

Table 11: Summary of results for the series instance
Robust (Φ = 0.3) Robust (Φ = 0.5)

τ int α R>L R>O R>M R>P R>L R>O R>M R>P

6,570
0.6 54 58 77 75 55 62 71 74
0.8 62 57 65 75 58 56 62 74

7,300
0.6 67 76 81 87 68 76 79 87
0.8 65 78 64 76 71 79 65 80

Figure 9 compares the reliability percentiles of the robust and deterministic approaches for

τ int ∈ {6570,7300} and α ∈ {0.6,0.8}. Across 100 replications, we obtain 100 different system

reliabilities for each method. We sort those reliabilities, and plot them in Figure 9, in which the

smallest is in the far left and the largest is in the far right. Figure 9 suggests that the robust

approaches are particularly effective in comparison to the deterministic approaches in the lower

percentiles although the optimistic and max-likelihood approaches yield similar reliabilities as

robust approaches for percentiles above 0.5.

Table 12 compares the average testing times (across the 100 replications) of the robust and

the deterministic approaches for τ int ∈ {6570,7300} and α ∈ {0.6,0.8}. The testing times shown

in Table 12 are the averages of 100 replications. One observation from Table 12 is that τ3 is

larger for the robust approaches than the deterministic approaches. We conjecture this is related

to the fact that λ3 is larger than either λ1 or λ2, and β3 is larger than either β1 or β2, so the third

subsystem needs more testing time to reach a particular reliability. The robust solution hedges

against potentially larger values of λ3 and β3 by allocating more testing time.

80

(a) (b)

(c) (d)
Figure 9: Percentile plot of reliability under different test planning models.

3.5.3 Effect of System Structure on Resource Allocation

In order to compare the effect of the system structure on testing time allocation, we consider

two sets of instances. Each instance considers a system with two subsystems. The first set of

instances consists of one component in the first subsystem and s ∈ {1, . . . ,6} components in the

second subsystem, and the second set of instances consists of s ∈ {1, . . . ,6} components in the

first subsystem and one component in the second subsystem. The parameters for the instances

are provided in Table 13, and we use Psub = 20,000 and εsub = 1× 10−4 in the series-parallel

algorithm.

81

Table 12: Average testing time allocation for the series instance
τ int α Max-likelihood Optimistic Midpoint Pessimistic Φ = 0.3 Φ = 0.5

6,570

0.6
τ1 7783.6 7296.0 8762.9 8643.2 7425.5 7476.3
τ2 8656.6 8207.4 9200.9 9903.6 7646.1 7545.7
τ3 14219.7 15156.6 12696.2 12113.2 15588.4 15638.0

0.8
τ1 7783.6 7372.6 8050.6 8364.5 7362.2 7375.7
τ2 8656.6 8347.5 8710.1 9171.0 8009.3 7921.2
τ3 14219.7 14939.9 13899.4 13124.4 15288.5 15363.1

7,300

0.6
τ1 8354.8 8064.5 8824.5 9314.0 7737.1 7824.1
τ2 8827.2 8505.5 9539.9 10093.8 8136.9 8147.1
τ3 13478.0 14089.9 12295.5 11252.3 14786.0 14688.8

0.8
τ1 8354.8 8258.2 8402.2 8811.8 8045.7 8035.3
τ2 8827.2 8571.1 8886.9 9432.3 8197.7 8128.5
τ3 13478.0 13830.7 13370.9 12416.0 14416.5 14496.2

Table 13: Parameters for 11 instances that study the effect of system structure in resource alloca-
tion

λ̄1 σL
1 β̄1 σB

1 λ̄2 σL
2 β̄2 σB

2 Φ T K c1
` b1

0.00005 0.00001 0.7 0.1 0.00006 0.00002 0.8 0.05 2 8,760 1 1 720

The results are summarized in Figures 10–11. The testing time allocation for the first set of

instances is presented in Figure 10(a), and for the second set of instances in Figure 11(a). The

second subsystem has larger λ - and β -values, so when both subsystems have only one component,

the second subsystem needs more testing time to reach a given reliability and its testing time is

greater. By increasing redundancies for subsystem ` ∈ {1,2}, the testing time allocated to sub-

system ` decreases. The system reliabilities for the first and second set of instances are presented

in Figure 10(b) and 11(b). Because the second subsystem has larger λ - and β -values, installing

a redundant component in the second subsystem lessens the effect of the less favorable parame-

ter values and thereby improves the system reliability more than it would in the first subsystem;

therefore, the reliability in the first set of instances is larger than in the second set of instances.

3.5.4 Computational Performance of the Cutting-Plane Algorithm

We now solve five instances to demonstrate the performance of the cutting-plane algorithm for

a series system. For each instance, we choose T = 2190, Φ = 0.5, K = 1, c1
` = 1, b1 = 8,760

and τ0
` = 1, ` ∈ {1,2}. Moreover, β̄ -values are selected from values 0.6, 0.65, 0.7, 0.75, and 0.8,

82

(a) (b)
Figure 10: (a) Testing time allocation and (b) reliability for the first set of instances

(a) (b)
Figure 11: (a) Testing time allocation and (b) reliability for the second set of instances

each of which has an equal probability of being selected, and we select λ̄ -values uniformly from

intervals presented in Table 14. We select σB
` from the values 0.05 and 0.1, again with an equal

chance of selection, and the values of σL
` are presented in Table 14. According to Table 14, the

cutting-plane algorithm is able to find the optimal solution in no more than a few seconds even for

large-size problems.

We also solve five instances to compare the efficiency of the cutting-plane algorithm for series-

parallel systems. In the following, we discuss the instance generation procedure for series-parallel

instances. Each instance includes 4, 10, 40, 100 or 400 subsystems. We choose β̄ -values from

values 0.6, 0.65, 0.7, 0.75, and 0.8, and M`-values from values 2, 3, and 4, all with equal probability

of selection. Each of the N λ -values is selected uniformly from the range described in Table 15.

83

Table 14: Computational comparison for series instances
Inst. N Reliability Solving time (sec) λ̄ range σL

`
1 4 0.958445 2 [0.00001,0.00005] 0.00001
2 10 0.973587 2 [0.000005,0.000008] 0.000002
3 40 0.939991 4 [0.000001,0.000004] 0.000001
4 100 0.967938 8 [0.0000004,0.0000007] 0.0000003
5 400 0.904244 65 [0.0000001,0.0000005] 0.0000001

The value of σL
` , `= 1, . . . ,N, is presented in Table 15, and the value of σB

` , `= 1, . . . ,N, is chosen

from values 0.05 and 0.1, each with equal probability of selection. For each instance, we consider

initial testing time τ0
` = 1, T = 8,760, K = 1, c1

` = 1, b1 = 720, and Φ = 0.5. The time limit is

equal to 1,200 seconds, and we select ε = 1× 10−7 and εsub = 1× 10−4. The value of Psub is

equal to 20,000 for Instances s ∈ {1, . . . ,3} and 5,000 for Instances s ∈ {4,5}. As demonstrated

in Table 15, the cutting-plane algorithm is consistently able to identify near-optimal solutions for

these instances within 20 minutes.

Table 15: Computational comparison for series-parallel instances
Inst. N Lower bound Upper bound Optimality gap λ̄ range σL

`

1 4 0.984892 0.984898 5.43×10−6 [0.00002,0.00006] 0.00001
2 10 0.947247 0.947261 1.43×10−5 [0.00002,0.00005] 0.00001
3 40 0.982389 0.982433 4.42×10−5 [0.000007,0.000009] 0.000003
4 100 0.956155 0.956415 2.61×10−4 [0.000005,0.000009] 0.000002
5 400 0.925610 0.926971 1.36×10−3 [0.000001,0.000005] 0.000001

3.6 Conclusion and Future Research

In this chapter, we consider the robust allocation of testing resources across the subsystems of se-

ries and series-parallel systems. We assume that the failures of each component occur according

to the AMSAA model with uncertain parameters within a bounded uncertainty set. We propose

exact algorithms for both series and series-parallel systems based on a cutting-plane approach,

and prove that the algorithm for series systems is convergent. We show how the robust optimiza-

tion model can be constructed by building confidence intervals from preliminary test data and

demonstrate, using a numerical example, that the robust optimization approach is less likely than

available deterministic approaches to generate solutions that result in a low reliability. Moreover,

84

the cutting-plane algorithm for series systems can find the optimal solution in couple of seconds,

and the proposed algorithm for series-parallel systems can provides a tight optimality gap for a set

of test instances.

Future research may seek to extend our research to consider cold standby redundancy and/or

dependent components. The difficulty associated with estimating reliability in a reliability growth

environment may also warrant considering resource allocation within a multi-stage reliability

growth model, in which the failure information is incorporated at end of each testing stage to

have a better estimation of the AMSAA model parameters. Future research may seek to merge

the multi-stage concept with the robust resource allocation models utilized herein, yielding a dy-

namic/sequential test-planning problem in which the budget-restricted uncertainty set becomes

narrower during the testing. Furthermore, future research may develop heuristic methods for ob-

taining high-quality solutions quickly, which would be especially helpful given the computational

effort required to solve the series-parallel problem to provable optimality.

85

4 An Integrated Approach to Redundancy Allocation and Test Planning for Reliability

Growth

4.1 Introduction

Two ways to increase a system’s reliability are testing its components and installing redundancies.

Previous research has considered these two approaches disjointly, but never in combination. In this

chapter, we contribute a resource allocation model that merges these two approaches to maximize

the reliability of a series-parallel system. For systems in development, it is common to both test

components to identify and remove the failure modes of the design, and install redundant com-

ponents to increase system reliability. This chapter especially has applications for low production

volume, high value, and complex systems such as satellites and spacecraft. These types of systems

are designed from a mixture of a number of different types of components, some of which are

mature in design (i.e., such that no additional testing will be completed) and some of which must

be matured by completing testing. For such systems, both development and production costs are

significant motivating the use of a resource allocation model to allocate limited resources between

these two phases. The model enables weighing the benefits of performing additional testing, which

increases development costs but (by increasing component reliability) may allow for reduced re-

dundancy levels (and therefore, reduced production costs).

The redundancy allocation problem (RAP) is the problem of determining component redun-

dancy levels in order to maximize system reliability subject to limited resources. In RAP, there

exists a discrete set of component designs, each with a predefined component reliability that is

assumed to be known. RAPs have received a significant amount of attention over the years, with

specific focus given to series-parallel systems [14, 53, 62, 63], k-out-of-n systems (see, e.g., [48]),

or more general network systems [28]. Closely related to RAP is the reliability redundancy allo-

cation problem (RRAP), in which component reliabilities are no longer predefined but can instead

modeled as continuous decision variables. RRAPs have also been studied for active standby re-

dundancy (see, e.g., [21, 61]), a combination of cold- and active-standby redundancy strategies [1],

86

and multi-state systems [55]. Kuo and Prasad [33] and Kuo and Wan [35] provide comprehensive

surveys of the redundancy allocation literature.

In this chapter, we consider the problem of maximizing system reliability, subject to limited

resources, in a series-parallel system by determining the number and design of components in

each subsystem and the amount of testing performed on each component design. We assume that

components behave according to the AMSAA reliability growth model with known parameters.

All components of the same design in each subsystem are assumed to be identical; hence, testing

one design of component equally improves all components of that design. In reliability growth,

testing is applied to one or more components of a given design to identify and correct the design’s

failure modes. Through this process, the reliability is improved for all redundant components of

that design. We model this problem as a nonlinear integer program and contribute a decomposition-

based exact algorithm to solve the problem.

Our work, which develops exact algorithms, is the first to merge the concepts of redundancy

allocation and reliability growth. In comparison to previous research on RRAP, ours is the first to

study the relationship between redundancy allocation and reliability growth strategies. In addition,

all existing RRAP studies consider only one component design choice in each subsystem; however,

we extend RRAP to consider multiple design choices in each subsystem. Moreover, whereas the

existing RRAP literature specifies exact algorithms only for the case of convex constraints, we

propose an exact algorithm which converges for any set of monotone (and possibly nonconvex)

resource constraints.

The remainder of this chapter is organized as follows. Section 4.2 presents the integrated

testing/redundancy allocation model. We develop an exact algorithm for the model in Section 4.3.

The results are summarized in Section 4.4, and the chapter concludes in Section 4.5.

4.2 Problem Formulation

In this section, we develop a model to solve our problem. We use the reliability function (2) to

develop the integrated growth testing and redundancy allocation model. In developing this model,

87

it will be helpful to define some additional terminology that will be used throughout the remainder

of this document. We consider a system containing parallel subsystems connected in a series. We

determine the composition of each subsystem. For each subsystem, we have a menu of available

component designs, and we determine the number (possibly zero) of components for each design.

The following notation will be used in developing the model.

Parameters

E` Number of component designs in subsystem `= 1, . . . ,N

M` Number of new designs in subsystem `= 1, . . . ,N in which the reliability of the design

can be improved through testing

R`,i Reliability of mature design i = M`+1, . . . ,E` components in subsystem `= 1, . . . ,N

λ`,i,β`,i AMSAA model parameters for design i = 1, . . . ,M` components in subsystem

`= 1, . . . ,N

u`,i Maximum number of components of design i = 1, . . . ,E` in subsystem `= 1, . . . ,N

ck
`,i Amount of resource k = 1, . . . ,K required per unit time of testing for design

i = 1, . . . ,M` of subsystem `= 1, . . . ,N

dk
`,i Amount of resource k = 1, . . . ,K required per unit component of design i = 1, . . . ,E`

of subsystem `= 1, . . . ,N

τ0
`,i Initial testing time of design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

Decision Variables

τ`,i Testing time for design i = 1, . . . ,M` of subsystem `= 1, . . . ,N

n`,i Number of components of design i = 1, . . . ,E` in subsystem `= 1, . . . ,N

We now present a formal definition of the problem. To this end, we define N as the number of se-

rially connected subsystems. Each subsystem `= 1, . . . ,N includes all components of each design

(`, i), i = 1, . . . ,E` in parallel. We divide the designs into two subsets: new and mature. Designs

i = 1, . . . ,M` are considered new, and their reliabilities can be improved through testing. However,

88

designs i = M`+ 1, . . . ,E` are mature, their reliabilities cannot be improved by testing, and the

reliabilities are constant. We define variable n`,i ∈ {0, . . . ,u`,i} as the number of components of

design (`, i). Therefore, a system failure takes place if all components in any subsystem fail. In

the remainder of this document, we define shorthand R`,i(τ`,i,T) ≡ R(τ`,i;T,λ`,i,β`,i) to refer to

component reliability. This problem may be formulated as

R? = max
N

∏
`=1

[
1−

M`

∏
i=1

(1−R`,i(τ`,i,T))n`,i
E`

∏
i=M`+1

(1−R`,i)
n`,i

]
, (114a)

s.t.
N

∑
`=1

M`

∑
i=1

ck
`,iτ`,i +

N

∑
`=1

E`

∑
i=1

dk
`,in`,i ≤ bk, ∀k = 1, . . . ,K, (114b)

τ`,i ≥ τ
0
`,i, ∀`= 1, . . . ,N, i = 1, . . . ,M`, (114c)

n`,i ∈ {0, . . . ,u`,i}, ∀`= 1, . . . ,N, i = 1, . . . ,E`. (114d)

Objective (114a) maximizes the system reliability. Constraint (114b) limits resources (e.g., cost,

testing time and weight) expended on testing and redundancy. Constraint (114c) ensures that the

testing time for design (`, i) should not be less than initial testing time τ0
`,i, and Constraint (114d)

establishes that number of components should be a nonnegative integer number less than or equal

to u`,i.

Model (114) generalizes a number of existing models from the literature. Setting M` = 1, `=

1, . . . ,N and u`,i = 1, ` = 1, . . . ,N, i = 1, . . . ,M` yields the Coit [15] model. The testing alloca-

tion models studied by Dai et al. [18] and Levitin [36] result upon setting E` = M`, u`,i = 1 and

dk
`,i = 0, ` = 1, . . . ,N, i = 1, ...,M`, k = 1, . . . ,K. The special case corresponding to M` = 0, ` =

1, . . . ,N yields a multi-resource version of the redundancy allocation problem for a series-parallel

system. Chern [13] proved that this version of the redundancy allocation problem for a series-

parallel system is NP-hard; therefore, our problem which is a generalization of Chern’s problem

is also NP-hard. We also extend RRAP in several aspects. Previous RRAP models do not formal-

ize the relationship between component reliability and investment in testing using the reliability

growth concept. Moreover, only one design choice in each subsystem is considered in the RRAP

89

problem; however, Model (114) considers multiple design choices for each subsystem. In addition,

exact algorithms in the RRAP problem [21, 27, 32, 34, 60] assume that resource consumption is

convex in the reliability of each design. Our algorithm, which is discussed in Section 4.3, con-

verges even in the less restrictive case where resource consumption is monotone in the reliability

of each design, provided that reliability and resource expenditures are monotone in the amount of

testing. In the following section, an optimal algorithm is developed to solve the problem.

In what follows, we use lower-case letters to refer to scalar parameters. Lower-case, bolded

variants correspond to vectors (typically in which all of the corresponding scalars from a single

subsystem have been aggregated), and upper-case bolded symbols correspond to an aggregation of

N subsystem-level vectors.

4.3 Decomposition Algorithm

In this section, we develop an exact algorithm to solve Model (114) within a given optimality

gap. Reliability function (2) is nonlinear and nonconcave in general. We address this by adapting

a decomposition method used in Chapter 2 that exploits separable subproblems that result upon

fixing the resources allocated to each subsystem. Subproblem ` = 1, . . . ,N entails determining

the subsystem ` reliability associated with particular available resources. The subproblem for

subsystem `= 1, . . . ,N and available resources h` (we use the boldface h` to represent a K-vector

of available resources h`,k ≥ h0
`,k ≡ ∑

M`
i=1 ck

`,iτ
0
`,i +minE`

i=1{dk
`,i}) is equal to

RS
` (h`,T) = max 1−

M`

∏
i=1

(
1−R`,i(τ`,i,T)

)n`,i
E`

∏
i=M`+1

(
1−R`,i

)n`,i , (115a)

s.t.
M`

∑
i=1

ck
`,iτ`,i +

E`

∑
i=1

dk
`,in`,i ≤ h`,k, ∀k = 1, . . . ,K, (115b)

τ`,i ≥ τ
0
`,i, ∀i = 1, . . . ,M`, (115c)

n`,i ∈ {0, . . . ,u`,i}, ∀i = 1, . . . ,E`. (115d)

90

Although Model (115) is simpler in structure than Model (114), it is still nonlinear and nonconcave.

Our solution method is based on the idea that solving the discretized version of Model (115) can

provide upper and lower bounds on RS
` (h`,T), the optimal objective value of Model (115). In the

discretize-and-refine method, the bounds converge to an arbitrarily small gap through successive

refinement of these discrete problems. In the remainder of this section, it will be helpful to define

R` (τ`,η`) ≡ 1−∏
M`
i=1(1− R`,i(τ`,i,T))n`,i ∏

E`
i=M`+1(1− R`,i)

n`,i as the reliability of subsystem `

given M`-vectors of test times τ` and E`-vectors of number of components η`. We use the following

notation to discretize Model (115).

Parameters

u`,i Maximum number of components of design (`, i) when the available resources for

subproblem are equal to h` (i = 1, . . . ,E`,i)

P Number of discrete candidate test times for each component (assumed to be equal for all

components)

τ
p
`,i p-th possible testing time for components of design (`, i) (p = 1, . . . ,P; i = 1, . . . ,M`)

rp
`,i Reliability of candidate test time p in components of design (`, i) (p = 1, . . . ,P;

i = 1, . . . ,M`)

Decision Variables

xp
`,i

 1 if the testing time for design (`, i) is τ
p
`,i

0 otherwise

(p = 1, . . . ,P; i = 1, . . . ,M`)

np
`,i Number of components for the candidate test time p of design (`, i) (p = 1, . . . ,P;

i = 1, . . . ,M`)

For each design (`, i), i = 1, . . . ,E`,i, set u`,i = min{u`,i,minK
k=1{b

(h`,k−∑
M`
i=1 ck

`,iτ
0
`,i)/dk

`,i
c}}. To dis-

cretize Model (115), consider P testing times τ
p
`,i, p = 1, . . . ,P for each design (`, i), i = 1, . . . ,M`,i

91

such that τ1
`,i = τ0

`,i, and define rp
`,i as the reliability associated with candidate test time p = 1, . . . ,P.

We use Model (116) to calculate the optimal subsystem reliability associated with the discrete can-

didate test times. We define r` as a vector of reliabilities rp
`,i, i = 1, . . . ,M`, p = 1, . . . ,P and

R`,i, i = M`+1, . . . ,E` for subsystem `. Model (116) is given by

RSD
` (h`,r`) = max 1−

M`

∏
i=1

P

∏
p=1

(
1− rp

`,i

)np
`,i

E`

∏
i=M`+1

(
1−R`,i

)n`,i , (116a)

s.t.
M`

∑
i=1

P

∑
p=1

(ck
`,iτ

p
`,ix

p
`,i +dk

`,in
p
`,i)+

E`

∑
i=M`+1

dk
`,in`,i ≤ h`,k, ∀k = 1, . . . ,K, (116b)

P

∑
p=1

xp
`,i = 1, ∀i = 1, . . . ,M`, (116c)

np
`,i ≤ u`,ix

p
`,i, ∀i = 1, . . . ,M`, p = 1, . . . ,P, (116d)

np
`,i ∈ {0, . . . ,u`,i}, ∀i = 1, . . . ,M`, p = 1, . . . ,P, (116e)

n`,i ∈ {0, . . . ,u`,i}, ∀i = M`+1, . . . ,E`, (116f)

xp
`,i ∈ {0,1}, ∀i = 1, . . . ,M`, p = 1, . . . ,P, (116g)

where RSD
` (h`,r`) denotes the optimal objective value of Model (116). By applying a logarithm to

1−RSD
` (h`,r`), Model (116) is equivalent to a linear model as follows

W SD
` (h`,r`) = min

M`

∑
i=1

P

∑
p=1

np
`,i ln(1− rp

`,i)+
E`

∑
i=M`+1

n`,i ln(1−R`,i), (117)

s.t. Constraints (116b)–(116g),

where 1− eW SD
` (h`,r`) is equal to RSD

` (h`,r`), the optimal objective value of Model (116). In the

following remark, we provide an alternative formulation for the discretized version of Model (115).

Remark 6. We also consider an alternative formulation for (116). Define binary variable yp, j
`,i , i =

1, . . . ,M`, j = 0, . . . ,u`,i, p = 1, . . . ,P which is equal to 1 if the design (`, i) has testing time τ
p
`,i

and redundancy j, and define variable y j
`,i, i = M`+1, . . . ,E`, j = 0, . . . ,u`,i which is equal to 1 if

92

the design (`, i) has redundancy j. Model (118) is stated as

RSD
` (h`,r`) = max 1−

M`

∏
i=1

u`,i

∏
j=0

P

∏
p=1

(
1− rp

`,i

) jyp, j
`,i

E`

∏
i=M`+1

u`,i

∏
j=0

(
1−R`,i

) jy j
`,i , (118a)

s.t.
M`

∑
i=1

u`,i

∑
j=0

P

∑
p=1

(ck
`,iτ

p
`,i +dk

`,i j)yp, j
`,i +

E`

∑
i=M`+1

u`,i

∑
j=0

dk
`,i jy j

`,i ≤ h`,k,

∀k = 1, . . . ,K, (118b)

u`,i

∑
j=0

P

∑
p=1

yp, j
`,i = 1, ∀i = 1, . . . ,M`, (118c)

u`,i

∑
j=0

y j
`,i = 1, ∀i = M`+1, . . . ,E`, (118d)

yp, j
`,i ∈ {0,1}, ∀i = 1, . . . ,M`, j = 0, . . . ,u`,i, p = 1, . . . ,P, (118e)

y j
`,i ∈ {0,1}, ∀i = M`+1, . . . ,E`, j = 0, . . . ,u`,i, (118f)

where RSD
` (h`,r`) denotes the optimal objective value of Model (118), which is also equal to the

optimal objective value of Model (116). As demonstrated for Model (116), Model (118) can also

be linearized by applying a logarithm. Because preliminary experiments suggest that Model (118)

almost always solves faster than Model (116), we employ the linearized version of Model (118)

when solving subproblems as subroutines of the main algorithm described in this document; how-

ever, the notation of Model (116) is somewhat less complicated than that of Model (118), and we

hence use it in describing the main algorithm. For instance, instead of referring to a solution of

Model (118) in which yp, j
`,i = 1, i = 1, . . . ,M`, p = 1, . . . ,P, we simply write xp

`,i = 1 and np
`,i = j,

and for y j
`,i = 1, i = M`+1, . . . ,E`, we write n`,i = j.2

In Theorems 20 and 21 respectively, we provide a lower and upper bound for subproblem (115),

which extend the results in Chapter 2 for multiple resource constraints and when the number of re-

dundancies is a variable. As we mentioned, solving Model (116) can yield upper and lower bounds

on RS
` (h`,T), the optimal value of Model (115). Considering rp

`,i = R`,i(τ
p
`,i,T), i = 1, . . . ,M`, p =

1, . . . ,P provides a lower bound, and considering rp
`,i = R`,i(τ

p+1
`,i ,T), i = 1, . . . ,M`, p = 1, . . . ,P

93

provides an upper bound. Define τ
P+1
`,i ≡ τmax

`,i , where

τ
max
`,i ≡max{τ`,i | Constraints (114b)–(114d)}. (119)

Let LB-SD and UB-SD denote the lower and upper bound models, respectively. In the following,

we use the notation r̄` and ¯̄r` in Model (116), respectively, when r` provides a lower bound and

an upper bound in Model (116). For ease of exposition in the algorithm, we use the notation x`

to refer to the PM`-vectors of testing times and η` to refer to the PE`-vectors of the number of

components in Model (116).

Theorem 20. Define r̄p
`,i = R`,i(τ

p
`,i,T), i = 1, . . . ,M`, p = 1, . . . ,P and r̄`,i = R`,i, i = M` +

1, . . . ,E`, then RSD
` (h`, r̄`)≤ RS

` (h`,T). (That is, LB-SD yields a lower bound for RS
` (h`,T).)

Proof. For each feasible solution x̂` and η̂` in Model (116) corresponding to rp
`,i = r̄p

`,i, i= 1, . . . ,M`,

p = 1, . . . ,P and rp
`,i = r̄`,i, i = M`+ 1, . . . ,E`, there exists a solution with τ`,i = ∑

P
p=1 τ

p
`,ix̂

p
`,i and

n`,i = ∑
P
p=1 n̂p

`,i for i = 1, . . . ,M` and n`,i = n̂`,i for i = M`+1, . . . ,E` in Model (115) with the same

objective value.

Theorem 21. Define ¯̄rp
`,i = R`,i(τ

p+1
`,i ,T), i = 1, . . . ,M`, p = 1, . . . ,P and ¯̄r`,i = R`,i, i = M` +

1, . . . ,E`, then RSD
` (h`, ¯̄r`)≥ RS

` (h`,T). (That is, UB-SD yields an upper bound for RS
` (h`,T).)

Proof. Consider τ?`,i, i = 1, . . . ,M` and n?`,i, i = 1, . . . ,E` as an optimal solution for Model (115).

For each design (`, i), i = 1, . . . ,M`, find the index P̂̀ ,i ∈ {1, . . . ,P} such that τ
P̂̀ ,i
`,i ≤ τ?`,i < τ

P̂̀ ,i+1
`,i ,

and define τ̂`,i = τ
P̂̀ ,i+1
`,i . The solution x

P̂̀ ,i
`,i = 1 and n

P̂̀ ,i
`,i = n?`,i, i = 1, . . . ,M` and n`,i = n?`,i, i =

M`+1, . . . ,E` is a feasible solution to UB-SD, with objective value equal to R`(τ̂`,η
?
`). The subsys-

tem reliability function R`(τ`,η`) is nondecreasing over component test times τ`, so R`(τ̂`,η
?
`) is

greater than or equal to RS
` (h`,T) = R`(τ

?
` ,η

?
`). As a result, RSD

` (h`, ¯̄r`)≥ R`(τ̂`,η
?
`)≥ RS

` (h`,T).

Algorithm 5 describes the subproblem algorithm, which extends an algorithm, originally in-

spired by the algorithm in Chapter 2, to the case of the model posed in this chapter (i.e., with

94

multiple resources and variable redundancy levels). In Chapter 2, the algorithm is given for only a

single resource constraint when redundancy levels are fixed.

In Algorithm 5, Psub denotes the initial number of candidate test times and εsub the optimality

gap, and LB and UB denote the lower and upper bound on subsystem reliability. The M`-vectors

of test times τ?` and E`-vectors of number of components η?
` denote the incumbent solution, which

are initially null, and x̂` and η̂` denote the optimal solution of the LB-SD model. The notation

P̄̀ ,i ∈ {1, . . . ,P} denotes the optimal candidate test time for design (`, i), i = 1, . . . ,M` obtained

from the UB-SD model. As we show in Theorem 22, this algorithm computes RS
` (h`,T) within

a given εsub > 0 in finite iterations. (Note: The number of discrete candidate test times for each

design (`, i) is varied during the development of the subproblem algorithm, but still is denoted as

P). Again τ
P+1
`,i refers to τmax

`,i . In Line 5, we discretize the test times. We solve the LB-SD and

UB-SD models in Lines 10 and 12, respectively. Note that in Lines 10 and 12, r̄` and ¯̄r` are updated

for a new set of candidate test times to solve LB-SD and UB-SD. We also add a new candidate test

time for each design in Line 15.

In the following, the convergence properties of the subproblem algorithm are discussed. By

using Lemma 1, Lemma 12 places conditions on the testing times allocated to the components of a

system such that the difference of the upper bound system reliability and optimal system reliability

is smaller than or equal to ε .

Lemma 12. Define x̄` as a binary solution for UB-SD, and P̄̀ ,i ∈ {1, . . . ,P}, i= 1, . . . ,M` and n̄`,i ∈

{0, . . . ,u`,i}, i = 1, . . . ,E` as the optimal candidate test time and optimal number of components

for design (`, i) such that x̄
P̄̀ ,i
`,i = 1, i = 1, . . . ,M`. Moreover, consider τ̄`,i = τ

P̄̀ ,i
`,i , ¯̄τ`,i = τ

P̄̀ ,i+1
`,i and

ε`,i = R`,i(¯̄τ`,i,T)−R`,i(τ̄`,i,T) for i = 1, . . . ,M`. Also, consider ε`,i = 0 for i = M`+ 1, . . . ,E`.

Define Mmax = ∑
E`
i=1 u`,i as an upper bound for the number of components in subsystem `, εmax =

maxM`
i=1{ε`,i} and εsub ≡ Mmaxεmax/[1−2Mmaxεmax]. If Mmaxεmax ≤ 0.5, then RSD

` (h`, ¯̄r`)−RS
` (h`,T)≤

εsub, where ¯̄r` is defined in Theorem 21.

Proof. We are invoking a special case of Lemma 1. Here there exists one subsystem `; therefore,

consider N̄ = 1 in Lemma 1. Set ¯̄ρ`,i = R`,i(¯̄τ`,i,T) and ρ̄`,i = R`,i(τ̄`,i,T) for i = 1, . . . ,M`, and set

95

Algorithm 5 Discretize and Refine (calculate RS
`(h`,T) within εsub tolerance)

1: function DISCRETIZEANDREFINE (h`, Psub, εsub)
2: for i = 1, . . . ,M` do
3: Set τmin

`,i ← τ0
`,i and τmax

`,i ←minK
k=1{(h`,k−∑

`
i′=1 ck

`,i′τ
0
`,i′+ ck

`,iτ
0
`,i)/ck

`,i}
4: for p = 1, . . . ,Psub do
5: Set τ

p
`,i← τmin

`,i +(p−1)(τmax
`,i − τmin

`,i)/Psub
6: end for
7: end for
8: Set LB← 0, UB← 1, and P← Psub
9: If UB−LB < εsub then return (τ?` ,η

?
`) . (τ?` ,η

?
`) is εsub-optimal

10: Solve the LB-SD model with optimal solution (x̂`, η̂`) and objective value RSD
` (h`, r̄`)

11: If RSD
` (h`, r̄`)> LB then LB← RSD

` (h`, r̄`), τ?` ← ∑
P
p=1 τ

p
`,ix̂

p
`,i and η?

` ← η̂`

12: Solve the UB-SD model with optimal solution P̄̀ ,i ∈ {1, . . . ,P} for each (`, i) and objective
value RSD

` (h`, ¯̄r`)
13: If RSD

` (h`, ¯̄r`)<UB then UB← RSD
` (h`, ¯̄r`)

14: for i = 1, . . . ,M` do
15: Insert a new candidate test time τ

P+1
`,i ≡ 0.5

(
τ

P̄̀ ,i
`,i + τ

P̄̀ ,i+1
`,i

)
, i = 1, . . . ,M`

16: Set P← P+1
17: end for
18: for i = 1, . . . ,M` do
19: Renumber the candidate test times such that τ1

`,i < τ2
`,i < .. . < τP

`,i
20: end for
21: Go to Line 9.
22: end function

¯̄ρ`,i = ρ̄`,i = R`,i for i = M`+1, . . . ,E`. By considering M̄` = ∑
E`
i=1 ū`,i, M̄max = Mmax and ε = εsub

in Lemma 1, the inequality N̄M̄maxε̄max/(1−M̄maxε̄max) ≤ 1 suggests that Mmaxεmax ≤ 0.5 and equality

ε = N̄M̄maxε̄max/[1−(N̄+1)M̄maxεmax] results in εsub =
Mmaxεmax/[1−2Mmaxεmax]. For each design (`, i), there

exist n̄`,i components, so

N̄

∏
`=1

[
1−

M̄`

∏
i=1

(
1− ¯̄ρ`,i

)]
= 1−

M`

∏
i=1

(
1−R`,i(¯̄τ`,i,T)

)n̄`,i
E`

∏
i=M`+1

(
1−R`,i

)n̄`,i = RSD
` (h`, ¯̄r`) . (120)

Also, τ̄`,i is a feasible solution for Model (115), hence

N̄

∏
`=1

[
1−

M̄`

∏
i=1

(
1− ρ̄`,i

)]
= 1−

M`

∏
i=1

(
1−R`,i(τ̄`,i,T)

)n̄`,i
E`

∏
i=M`+1

(
1−R`,i

)n̄`,i ≤ RS
` (h`,T) , (121)

which completes the proof.

96

In Theorem 22, we use Lemmas 9 and 12 to prove that the subproblem algorithm terminates in

finite iterations.

Theorem 22. For any arbitrary εsub > 0, the subproblem algorithm terminates in finite steps with

εsub-optimal solution.

Proof. Consider εmax =
εsub/[(1+2εsub)Mmax]; therefore,

εsub =
Mmaxεmax

1−2Mmaxεmax
. (122)

Because εsub/(1+2εsub) ≤
εsub/2εsub = 0.5,

εmax =
εsub

(1+2εsub)Mmax
≤ 0.5

Mmax
, (123)

which results in Mmaxεmax ≤ 0.5. According to Lemma 9 and using τ̄k
`,i and ¯̄τk

`,i as defined in

Lemma 12, the number of iterations k that R`,i(¯̄τk
`,i,T)−R`,i(τ̄

k
`,i,T) > εmax for some component

is bounded. Therefore, by applying Lemma 12 and for ¯̄r` defined in Theorem 21, there exists an

iteration that RSD
` (h`, ¯̄r`)−RS

` (h`,T)≤ εsub.

In the master problem, we allocate the resources to the subsystems by using a branch-and-

bound method. The master problem is defined as follows

R? = max
N

∏
`=1

RS
` (h`,T) , (124a)

s.t.
N

∑
`=1

h`,k ≤ bk, ∀k = 1, . . . ,K, (124b)

h`,k ≥ h0
`,k, ∀`= 1, . . . ,N, k = 1, . . . ,K, (124c)

where h` is a K-vector of available resources h`,k allocated to subsystem ` = 1, . . . ,N. To solve

the master problem, we develop an approach—based on the notion of branching on the master

problem’s variables—for exploring the master problem’s solution space, while using Algorithm 5

to solve subproblems. Define H as the N×K matrix of decision variables, whose elements are

97

h`,k, `= 1, . . . ,N, k = 1, . . . ,K. Each node of branch and bound tree considers a restricted master

problem (i.e., as in [7]) in which H is restricted to fall in an N×V -dimensional box [E,F] of form

[E,F]≡
{

H | e`,k ≤ h`,k ≤ f`,k, ∀`= 1, . . . ,N, k = 1, . . . ,K
}
. (125)

Let L`(E,F) and U`(E,F), ` = 1, . . . ,N define the lower and upper bound on the reliability of

subsystem ` when Model (124) is restricted to a box [E,F]. The subsystem reliability function

is nondecreasing over available resources h`,k, ` = 1, . . . ,N, k = 1, . . . ,K; therefore, the bounds

could be obtained as L`(E,F) = RS
` (e`,T) and U`(E,F) = RS

` (f`,T), where e` and f` respectively

define K-vectors of available resources e`,k and f`,k, k = 1, . . . ,K. (Unfortunately, RS
` (.,T) can

only be calculated within an εsub optimality tolerance; hence, we will settle for values L`(E,F)

and U`(E,F) such that L`(E,F) ≤ RS
` (e`,T) ≤ RS

` (f`,T) ≤U`(E,F), RS
` (e`,T)−L`(E,F) ≤ εsub,

and U`(E,F)−RS
` (f`,T) ≤ εsub). Because the system reliability is nondecreasing over subsys-

tem reliabilities, L(E,F) = ∏
N
`=1 L`(E,F) and U(E,F) = ∏

N
`=1U`(E,F) provide lower and upper

bounds on the master problem’s reliability, when restricted to box [E,F]. In Algorithm 6, we use

DISCRETIZEANDREFINE (i.e., Algorithm 5) to get lower and upper bounds on reliability for the

restricted box [E,F]. When the feasible region’s box is subdivided into smaller sub-boxes, the

bounds on system reliability become tighter. We exploit this property by branching with the hope

of using these bounds to prune sub-boxes to keep the effort reasonable. To develop the algorithm,

define the m-th N×K-dimensional box as follows

[Em,Fm]≡
{

Hm | em
`,k ≤ hm

`,k ≤ f m
`,k, ∀`= 1, . . . ,N, k = 1, . . . ,K

}
. (126)

Over the course of the algorithm, we keep track of global lower and upper bounds on the optimal

objective function value, so naturally we can prune a box if its upper bound is no more than the

global lower bound for the optimal objective function. Define LB and UB as the global lower and

upper bounds on the optimal system reliability obtained through the algorithm. The conditions

under which we can prune a box are outlined below.

98

Condition 1. If the box upper bound is no more than the global lower bound LB.

To improve computational efficiency, we may also prune certain boxes without solving sub-

problems.

Condition 2. Constraint (124b) is violated with respect to Em at least for one resource k = 1, . . . ,K.

In this case, [Em,Fm] contains no feasible solutions and hence cannot contain an optimal solution.

Condition 3. Constraint (124b) is satisfied strictly (i.e., not at equality) for all resources k =

1, . . . ,K with respect to the solution Fm. Because the monotone objective ensures there is an

optimal solution in which one of the resource constraints is tight, we can guarantee that pruning

[Em,Fm] will not remove all optimal solutions (and is therefore allowable).

Algorithm 6 calculates the lower and upper bound on system reliabilities of boxes E and F. In

Algorithm 6, Psub and εsub denote the initial number of candidate test times for each component

design and subsystem optimality tolerance. Moreover, Algorithm 7 prunes a box based on Condi-

tions 2–3. Set Z (A, respectively) as the set of active N×K-dimensional boxes for which bounds

have not (have, respectively) been computed. Let Lm and Um denote the lower and upper bound

reliability for box [Em,Fm], and define H? as the incumbent solution. The branch and bound algo-

rithm, which calls the subroutines in Algorithms 6–7, is represented in Algorithm 8. We define the

initial N×K-dimensional box in Lines 3–8. Note that in Lines 24–25 of Algorithm 8, we split the

box [Em?
,Fm?

] to two smaller boxes, and in Line 20, a binary heap algorithm is used to find box[
Em?

,Fm?]
having maximum value of Um.

Algorithm 6 Returns (L,U), εsub-tight lower and upper bounds, respectively, on RS
`(e`,T) and

RS
`(f`,T)
1: function COMPUTEBOUNDS (E, F, Psub, εsub)
2: for `= 1, . . . ,N do
3: (L`,U`)← DISCRETIZEANDREFINE(e`, Psub, εsub)
4: (L`,U`)← DISCRETIZEANDREFINE(f`, Psub, εsub)
5: end for
6: return (∏N

`=1 L`, ∏
N
`=1U`)

7: end function

99

Algorithm 7 Returns true if (E,F) can be pruned without knowledge of the objective
1: function PRUNECHECK (E,F)
2: for k = 1, . . . ,K do
3: If ∑

N
`=1 em

`,k > bk then return true . Prune based on condition 2
4: end for
5: for k = 1, . . . ,K do
6: If ∑

N
`=1 f m

`,k ≥ bk then return false
7: end for
8: return true . Prune based on condition 3
9: end function

Algorithm 8 Branch and Bound (calculate R? within ε tolerance)
1: function BRANCHANDBOUND (Psub, εsub, ε)
2: Set Z←{0}, A← /0, LB← 0, UB← 1, and j← 0
3: for `= 1, . . . ,N do
4: for k = 1, . . . ,K do
5: Set e0

`,k← h0
`,k . Initialize E0

6: Set f 0
`,k← bk−∑`′ 6=` h0

`′,k . Initialize F0

7: end for
8: end for
9: while Z 6= /0 do

10: Select m ∈ Z
11: if PRUNECHECK(Em,Fm) then
12: Set Z← Z \{m} . prune based on conditions 2–3
13: else
14: (Lm,Um)← COMPUTEBOUNDS(E, F, Psub, εsub)
15: If Lm > LB then set LB← Lm and H?← Em . new incumbent
16: If Um > LB then set A← A∪{m} . If Um ≤ LB prune based on condition 1
17: Set Z← Z \{m}
18: end if
19: end while
20: Select m? ∈ argmaxm∈AUm

21: Set UB←Um?
. update the upper bound UB

22: If UB−LB < ε then return H? . H? is ε-optimal
23: Select (`?,k?) ∈ argmax`=1,...,N, k=1,...,K{ f m?

`,k − em?

`,k}
24: Set E j+1← Em?

, F j+1← Fm?
, E j+2← Em?

, and F j+2← Fm?

25: Set f k+1
`?,k? ← 0.5(em?

`?,k? + f m?

`?,k?) and e j+2
`?,k? ← 0.5(em?

`?,k? + f m?

`?,k?)

26: Set A← A\{m?}, Z← Z∪{ j+1, j+2}, j← j+2
27: Go to line 9
28: end function

As we demonstrate in Remark 7, we can use the solved subproblems in the previous iterations

100

to find the solution for the current box, without unnecessarily solving the subproblem’s algorithm.

Remark 7. In Line 3 of Algorithm 6, let x̂` and η̂` define the lower bound solution obtained

from solving DISCRETIZEANDREFINE(e`,Psub,εsub). Let ē`,k = ∑
M`
i=1 ck

`,iτ̂`,i + dk
`,in̂`,i and ob-

serve that ē` ≤ e`, and it is possible that ē`,k < e`,k for some resource k = 1, . . . ,K. Hence,

there are distinct vectors ¯̄e` 6= {e`, ē`} such that ē` ≤ ¯̄e` ≤ e` for which we may wish to solve

DISCRETIZEANDREFINE(¯̄e`,Psub,εsub) in future iterations of Algorithm 8. Because ¯̄e` remains

feasible to this (restricted) problem, it must be εsub-optimal for this problem. Hence, by sav-

ing a list of historical solutions in memory, it is possible to avoid unnecessary calls to the DIS-

CRETIZEANDREFINE subroutine. (Similarly, upper bound solutions can saved with respect to

DISCRETIZEANDREFINE(f`,Psub,εsub) to avoid unnecessary calls to DISCRETIZEANDREFINE.)2

In Remark 8, we demonstrate that the global lower bound can be improved even after the

decomposition algorithm is terminated.

Remark 8. Define P′sub > Psub and ε ′sub < εsub as the initial number of candidate test times and the

subsystem gap for each component design, respectively. We can improve the global lower bound

LB even after Algorithm 8 is terminated. The algorithm terminates with an allocation of resources

to the subsystems, which may not be tight in any of the resource constraints. Therefore, we can

first scale up resources to have at least one tight resource constraint, and then run DISCRETIZE-

ANDREFINE with a tighter subsystem gap ε ′sub and a higher initial number of candidate test times

P′sub to get a better global lower bound solution.2

We now prove the convergence of Algorithm 8. Lemma 13 defines sufficient conditions for the

box [E,F] such that the differences between system reliabilities inside the box is less than or equal

to an arbitrary gap ε .

Lemma 13. For each ε > 0, there exists δ` > 0 such that for any box [Em,Fm] if f m
`,k− em

`,k ≤ δ`

for all resources k = 1, . . . ,K, then RS
` (f

m
` ,T)−RS

` (e
m
` ,T)≤ ε , in which em

` and fm
` are K-vectors of

available resources em
`,k and f m

`,k, k = 1, . . . ,K, respectively.

101

Proof. In Lemma 4, it is proven that for ε̄max > 0, there exists δ̄`,i > 0 such that R`,i(τ`,i+ δ̄`,i,T)−

R`,i(τ`,i,T)≤ ε̄max for τmin
`,i ≤ τ`,i ≤ τmax

`,i . Define δ̄` ≡minM`
i=1{δ̄`,i} and δ` ≡ δ̄`minK

k=1{∑
M`
i=1 ck

`,i}.

Moreover, define τ?`,i and n?`,i as the solution of Model (115) with available resources fm
` . Define

the solution with testing times τ̄`,i ≡ τ?`,i− δ̄`,i and number of redundancies n?`,i, so R`,i(τ
?
`,i,T)−

R`,i(τ̄`,i,T)≤ ε̄max. In Lemma 1, define ¯̄ρ`,i = R`,i(τ
?
`,i,T) and ρ̄`,i = R`,i(τ̄`,i,T) for i = 1, . . . ,M`,

and set ¯̄ρ`,i = ρ̄`,i = R`,i for i = M` + 1, . . . ,E`. Also, consider N̄ = 1, M̄max = ∑
E`
`=1 n?`,i and

ε̄max = ε/(N̄M̄max+ε(N̄+1)M̄max); therefore, ε = N̄M̄maxε̄max/(1−(N̄+1)M̄maxε̄max). By considering N̄ = 1,

N̄M̄maxε̄max/(1−M̄maxε̄max)≤ 1 results in M̄maxε̄max≤ 0.5 and ε̄max =
ε/(N̄M̄max+ε(N̄+1)M̄max) implies ε̄max =

ε/(M̄max+2εM̄max). In Theorem 22, it is shown ε̄max =
ε/(M̄max+2εM̄max) ≤

0.5/M̄max
or ε̄maxM̄max ≤ 0.5.

As a result, by applying Lemma 1,

[
1−

M`

∏
i=1

(1−R`,i(τ
?
`,i,T))

n?`,i
E`

∏
i=M`+1

(1−R`,i)
n?`,i

]

−

[
1−

M`

∏
i=1

(1−R`,i(τ̄`,i,T))
n?`,i

E`

∏
i=M`+1

(1−R`,i)
n?`,i

]
≤ ε. (127)

The solution τ?`,i, i = 1, . . . ,M` and n?`,i, i = 1, . . . ,E` is feasible for Model (115) with available

resources fm
` , so ∑

M`
i=1 ck

`,iτ
?
`,i +∑

E`
i=1 dk

`,in
?
`,i ≤ f m

`,k, k = 1, . . . ,K. For solution τ̄`,i and n?`,i, we have

M`

∑
i=1

ck
`,iτ̄`,i =

M`

∑
i=1

ck
`,iτ

?
`,i−

M`

∑
i=1

ck
`,iδ̄`,i ≤ f m

`,k−
E`

∑
i=1

dk
`,in

?
`,i− δ̄`

M`

∑
i=1

ck
`,i, (128a)

≤ f m
`,k−

E`

∑
i=1

dk
`,in

?
`,i−δ` ≤ em

`,k−
E`

∑
i=1

dk
`,in

?
`,i, (128b)

where the inequality in (128a) is valid due to replacing δ̄`,i with lower bound δ̄`. Also, because

δ` ≤ δ̄`∑
M`
i=1 ck

`,i, δ` is used instead of δ̄`∑
M`
i=1 ck

`,i in the first inequality of (128b). Therefore, the

solution τ̄`,i, i= 1, . . . ,M` and n?`,i, i= 1, . . . ,E` is feasible for Model (115) with available resources

em
` , which results in RS

` (e
m
` ,T)≥

[
1−∏

M`
i=1(1−R(τ̄`,i,T))

n?`,i ∏
E`
i=M`+1(1−R`,i)

n?`,i
]
. By definition,

RS
` (f

m
` ,T) =

[
1−∏

M`
i=1(1−R(τ?`,i,T))

n?`,i ∏
E`
i=M`+1(1−R`,i)

n?`,i
]

and Equation (127) completes the

proof.

102

Lemma 14 proves that for each δ > 0, there is one iteration of the master problem algorithm

such that, for the box selected in that iteration, the difference between the lower and upper bound

of available resources in the box is smaller than or equal to δ for all `= 1, . . . ,N, k = 1, . . . ,K.

Lemma 14. For each δ > 0, there exists one iteration of the algorithm in which for box m? ∈

argmaxm∈AUm that is selected in Line 20 of Algorithm 8, f m?

`,k − em?

`,k ≤ δ for all `= 1, . . . ,N, k =

1, . . . ,K.

Proof. Let Q ≡
{
{`,k} | f 0

`,k− e0
`,k ≥

δ/2

}
define the set of pairs (`,k) such that initially f 0

`,k−

e0
`,k ≥

δ/2. Also, define J ≡
⌈(

2max`=1,...,N, k=1,...,K

{
f 0
`,v−e0

`,v

})
/δ

⌉
. In each iteration, for box m?, pair

(`?,k?) ∈ argmax`=1,...,N, k=1,...,K{ f m?

`,k − em?

`,k} having maximum value of f m?

`,k − em?

`,k is selected;

therefore, until f m
`,k− em

`,k ≤
δ/2 for at least one pair (`,k) ∈ Q in a box [Em,Fm], pairs (`,k) /∈ Q

is not selected. As a result, after JNK +1 iterations, there is at least one box [Em,Fm], m ∈ A such

that f m
`,k− em

`,k ≤
δ/2 for a pair (`,k) ∈ Q. Consider box [Em̄,Fm̄] as the first box that has a pair(¯̀, k̄

)
∈ Q such that f m̄

¯̀,k̄ − em̄
¯̀,k̄ ≤

δ/2. Assume box [Em̄,Fm̄] is created from box [Em?
,Fm?

], so

box [Em?
,Fm?

] was, in the previous iteration, selected in Line 20 of Algorithm 8. In box [Em̄,Fm̄],

for the first time f m̄
¯̀,k̄− em̄

¯̀,k̄ ≤
δ/2, so the pair

(¯̀, k̄
)
∈ argmax`=1,...,N, k=1,...,K{ f m?

`,k − em?

`,k} has the

maximum value of f m?

`,k − em?

`,k for box [Em?
,Fm?

], which suggests f m?

`,k − em?

`,k ≤ δ for all pairs (`,k)

of box [Em?
,Fm?

].

We now use Lemmas 13 and 14 to prove that the decomposition algorithm terminates in finite

iterations.

Theorem 23. For each ε > 0, the decomposition algorithm terminates in finite iterations with

ε-optimal solution.

Proof. Define ε ′ = min{N̄/N̄+1,ε} and consider ε ′′ = ε ′/(N̄M̄max+(N̄+1)M̄maxε ′), in which M̄max = 1

and N̄ = N. Moreover, consider εmax = εsub =
ε ′′/3. According to Lemma 13, for every εmax > 0,

there exists δ` > 0 such that for any box [Em,Fm] if f m
`,k− em

`,k ≤ δ` for all resources k = 1, . . . ,K,

then RS
` (f

m
` ,T)− RS

` (e
m
` ,T) ≤ εmax. Define δ = minN

`=1{δ`}. By Lemma 14, there exists one

iteration of the algorithm in which for box m? ∈ argmaxm∈AUm selected in Line 20 of Algorithm 8,

103

f m?

`,k − em?

`,k ≤ δ for all ` = 1, . . . ,N, k = 1, . . . ,K, which implies for box [Em?
,Fm?

], RS
` (f

m?

` ,T)−

RS
` (e

m?

` ,T)≤ εmax. Therefore, for box [Em?
,Fm?

],

Um?

` −Lm?

` =
[
Um?

` −RS
` (f

m?

` ,T)
]
+
[
RS
` (f

m?

` ,T)−RS
` (e

m?

` ,T)
]
+
[
RS
` (e

m?

` ,T)−Lm?

`

]
, (129a)

≤ εsub + εmax + εsub = ε
′′. (129b)

Moreover, we have

ε
′′ =

ε ′

N̄M̄max +(N̄ +1)M̄maxε ′
≤ ε ′

N̄M̄max
≤ 1

(N̄ +1)M̄max
, (130)

where the second inequality results because ε ′ ≤ N̄/N̄+1. By using Equation (130), M̄maxε ′′ ≤ 1

and N̄M̄maxε ′′/1−M̄maxε ′′ ≤ 1. In Lemma 1, consider N̄ = N, M̄` = 1, ¯̄ρ` =Um?

` and ρ̄` = Lm?

` . Because

M̄maxε ′′ ≤ 1 and N̄M̄maxε ′′/1−M̄maxε ′′ ≤ 1, by applying Lemma 1,

Um?
−Lm?

≤ ε
′ ≤ ε. (131)

However, in that iteration UB =Um?
and LB≥ Lm?

, which prove the theorem.

In the following section, we discuss experiments based on our implementation of the algorithm

described in this section.

4.4 Numerical Results

The algorithms from the previous section were coded in C++ and tested on a server with an Intel

core i12 with 3.1 GHz and 12 GB RAM, using CPLEX 12.4 to solve all of the integer programming

models. Initially, we consider an example adapted from one provided by Sung and Cho [52], and

later studied by Ramirez-Marquez et al. [44]. The system includes three subsystems in a series,

each of which has two or three designs. We consider M` = 1, E1 = E2 = 3, E3 = 2 and u`,i = 10

for all ` = 1, . . . ,3, i = 1, . . . ,E`. There are two resource constraints, in which c1
`,1 = 0, ` =

1, . . . ,3, for the first constraint. For the second resource constraint and all subsystems `= 1, . . . ,3,

104

we set d2
`,i = 0, i = 1, . . . ,E`, and c2

`,1 = 1. The first resource constraint is a cost constraint and

limits the redundancy, and the second constraint is a testing constraint which limits the testing

times. We choose β`,i-values randomly selected from values 0.65, 0.7, 0.75, 0.8 and 0.85. We

select λ`,1, ` = 1, . . . ,3, such that the reliability of that design with testing time equal to b2/N is

equal to the reliability given in [52], with the exception that λ -values are then rounded with three

significant figures. Thus, the model we consider admits a feasible solution with τ1,1 = τ2,1 = τ3,1 =

b2/N = 720/3 = 240. Extending this assignment to τ with an optimal solution to the resulting RAP

(obtained from [52]) results in a reliability of 0.975934. All other parameter values are specified

in [52]. These parameters are presented in Table 16.

Table 16: Parameters for the example with 3 subsystems and 2 or 3 designs in each subsystem
Design 1 Design 2 Design 3

` λ`,1 β`,1 d1
`,1 R`,2 d1

`,2 R`,3 d1
`,3

1 1.20×10−5 0.65 4 0.95 13 0.92 7
2 6.17×10−6 0.85 8 0.8 3 0.9 3
3 1.71×10−5 0.7 11 0.92 5

b1 = 30 b2 = 720 T = 8,760

For this example, we choose ε = 1×10−8, ε ′sub = 1×10−2, εsub = 5×10−2, P′sub = 40,000 and

Psub = 20,000 (ε ′sub and P′sub are defined in Remark 8) and consider the time limit equal to 3,600

seconds. In Table 17, we summarize the results of solving the example. The obtained optimal

testing times τ`,1, `= 1, . . . ,3, and the number of redundancies n`,i, `= 1, . . . ,3, i = 1, . . . ,E`, are

also presented in Table 17, along with the cumulative solving times at each iteration when using

either Model (116) or Model (118). The results suggest that the solving time when Model (118)

is used for subproblems is less than the solving times of Model (116), and we have therefore used

Model (118) in all additional results.

In the first subsystem, the reliability value of the first design with τ1,1 = 717.99 is equal

to 0.993, so it has greater reliability and smaller cost than the second and third designs, so its

number of redundancies is greater. In the second subsystem, the third design has greater reliability

value than the second subsystem and their cost values are similar, so the number of redundancies

for the third design is greater. Moreover, the reliability of the first design of first subsystem, which

105

is equal to 0.993 under τ1,1 = 717.99, is much greater than the reliability of the third design of

second subsystem, so it needs smaller number of redundancies than the second subsystem. The

optimal solution in [52] is n1,1 = 2, n2,1 = n2,2 = n3,1 = 1, n1,2 = n1,3 = n2,3 = n3,2 = 0 with a

reliability of 0.976. By investing testing resources on the first design of the first subsystem, its

reliability may be improved to 0.993. Because all testing resources are allocated to the first design

of the first subsystem, the other subsystems are configured by using mature designs at whatever

level of redundancy can be affordable using remaining resources.

Table 17: Results for the example with 3 subsystems and 2 or 3 designs in each subsystem

Iteration Upper bound Lower bound Gap
Cumulative time
for (116) (sec)

Cumulative time
for (118) (sec)

1 0.99995894 0.820817897 1.79×10−1 133 4
100 0.99995894 0.919907607 8.00×10−2 175 9

1×104 0.999318772 0.986575814 1.27×10−2 215 42
1×106 0.993454496 0.993454542 4.64×10−8 698 185
τ1,1 = 717.99,τ2,1 = τ3,1 = 1,n1,1 = 2,n2,3 = 4,n3,2 = 2,n1,2 = n1,3 = n2,1 = n2,2 = n3,1 = 0

We now consider an additional example in order to compare a situation when reliability growth

and redundancy allocation are planned together versus when they are disjointed. As depicted

in Table 18, the example consists of a system with three subsystems and three designs in each

subsystem. This five example has a single resource (that must be divided between testing and

redundancy) with b1 = 5,500, and we consider E` = M` = 3, u`,i = 5 and τ0
`,i = 1 for all ` =

1, . . . ,3, i = 1, . . . ,3.

Table 18: Parameters for the example with 3 subsystems and 3 designs in each subsystem
Design 1 Design 2 Design 3

` λ`,1 β`,1 c1
`,1 d1

`,1 λ`,2 β`,2 c1
`,2 d1

`,2 λ`,3 β`,3 c1
`,3 d1

`,3
1 0.00005 0.85 15 620 0.00005 0.85 15.5 640 0.00005 0.85 16 660
2 0.00012 0.85 16 220 0.00012 0.85 17 200 0.00012 0.85 18 180
3 0.00012 0.85 15 620 0.00012 0.85 15.5 640 0.00012 0.85 16 660

T = 8,760

Table 19 summarizes the example’s optimal solution, obtained using Algorithm 8 using a time

limit equal to 3,600 seconds with ε = 1×10−7, ε ′sub = 1×10−2, εsub = 5×10−2, P′sub = 10,000 and

Psub = 5,000. Both designs (1,1) and (1,3) have the same AMSAA model parameters; however,

106

the cost of testing and installing components for design (1,3) is more. Therefore, it is more cost

effective to have larger τ- and n-values in design (1,1) than design (1,3). The component designs

of the first subsystem have smaller λ -values than the third subsystem, and the other parameters are

the same. The first subsystem needs less testing to reach a particular reliability, so its τ-values are

smaller than the third subsystem. The second subsystem has the same AMSAA model parameters

as the third subsystem; however, its cost for installing redundancy is less and cost per unit testing

is more. Therefore, the second subsystem has smaller τ-values and larger n-values.

Table 19: Results for the example with 3 subsystems and 3 designs in each subsystem
Design 1 Design 2 Design 3

` τ?`,1 n?`,1 τ?`,2 n?`,2 τ?`,3 n?`,3
1 16.69 2 1 0 1 0
2 1 0 1 0 12.18 5
3 20.96 4 1 0 1 0

Lower bound: 0.901102 Upper bound: 0.901161 Gap: 5.87×10−5

Using the instance from Table 18, we now examine what would happen if the redundancy

and testing decisions are considered separately. We initially consider 20 scenarios in which the

budget of 5,500 resource units is partitioned into separate budgets for redundancy and testing. For

instances s= 1, . . . ,20, we consider (1,300+200s) budget for redundancy allocation and (4,200−

200s) budget for testing of components. We initially fix equal testing time for all designs (such

that all designs have the same testing time) and solve the redundancy allocation problem. Then,

we solve the reliability growth problem with the solution acquired from redundancy allocation

problem. In each iteration, we repeat the algorithm with the solution of the previous iteration (i.e.,

using the testing times from the previous iteration to initialize solution of the redundancy allocation

problem in the current iteration). Then, we compare 20 scenarios with the integrated model in

which one resource is considered for both redundancy allocation and testing. We define ε = 1×

10−5, ε ′sub = 1×10−2, εsub = 5×10−2, Psub = 5,000 and P′sub = 15,000 and set a time limit equal

to 3,600 seconds for all instances. Figure 12 demonstrates a summary of results, and computational

times are shown in Figure 13. We display the results when each instance is repeated for one and

two iterations, because the solutions of algorithm for more than two iterations are same as its

107

solutions for two iterations. According to the results, the integrated model increases the system

reliability between 0.35% to 172.98% for the instances examined: that is if the project manager

decides to allocate 1,700 budget for redundancy allocation and 1,800 budget for reliability growth,

the system reliability is equal to 0.681322; whereas, the system reliability increases to 0.901102

if we use Model (114) with an integrated constraint for both redundancy allocation and reliability

growth. In Figure 12, examining the scenarios where a budget of 4,800 is allocated to redundancy

allocation reveals that taking the maximum objective value over these 20 scenarios results in a

system reliability that is close to the one obtained by solving the integrated problem; however,

doing this requires much more computation time, as illustrated in Figure 13.

Figure 12: Results for instances that compares the integrated model with iteratively solving relia-
bility growth and redundancy allocation models

Using the parameters from the previous example, we now solve five different instances corre-

sponding to T ∈ {2190,4380,6570,8760,10950} to obtain optimal testing times τ`,i and the num-

ber of redundancies n`,i, ` = 1, . . . ,3, i = 1, . . . ,3 for instances k = 1, . . . ,5. Using the obtained

optimal testing times τ`,i and the optimal number of redundancies n`,i, we calculate the reliability

associated with each value of T . The results are summarized in Figure 14. The obtained opti-

mal number of redundancies when T ∈ {2190,4380} are equal to n1,1 = 3, n2,3 = 5, n3,1 = 4 and

n1,2 = n1,3 = n2,1 = n2,2 = n3,2 = n3,3 = 0, and the obtained optimal number of redundancies when

T ∈ {6570,8760,10950} are equal to n1,1 = 2, n2,3 = 5, n3,1 = 4 and n1,2 = n1,3 = n2,1 = n2,2 =

108

Figure 13: Comparison of computational times between the integrated model and iteratively solv-
ing reliability growth and redundancy allocation models

n3,2 = n3,3 = 0. According to the results, the reliabilities corresponding to solutions acquired from

T = 2,190 and T = 4,380 are similar to each other, while the reliabilities of solutions acquired

from T = 6,570, T = 8,760 and T = 10,950 are similar. The results suggest that, although optimal

redundancy levels are dependent on T , optimal test strategies for two different values of T may be

similar if the two values of T result in the same redundancy levels.

Figure 14: Results of instances that study the effect of mission length T on solutions

To demonstrate the performance of our algorithm, we now report results for 32 instances. In

the following, the parameter generation procedure is discussed in detail. For each instance, there

is the combination of 2, 3, 4 or 5 subsystems, each with 2, 3, 4 or 5 designs present. We also

consider E` = M`, `= 1, . . . ,N for all instances. The first 16 instances have only a cost constraint,

while there exist two resource constraints (cost and testing time) for the next 16 instances. For

each component, c- and d-values for the budget constraint are uniformly chosen within intervals

[0.5,1] and [300,600], and λ -values are selected uniformly within intervals presented in Tables 20–

109

21. For instances, we consider the available budget b1 = 3,000 and T = 8,760. For instances 17

to 32, we define available testing time b2 = 360. In addition, we also select component’s U-

values from values 4, 5, 6 and 7 and β -values from values 0.65, 0.7, 0.75, 0.8 and 0.85 with the

equal probability. We choose ε = 1× 10−7, εsub = 5× 10−2 and ε ′sub = 1× 10−2. We consider

P′sub = 20,000 for instances 1 to 16 and P′sub = 2,000 for instances 17 to 32. The values of Psub

for all instances are represented in Tables 20–21. Table 20 provides a summary of the obtained

results for instances 1 to 16, and Table 21 displays a summary of the results for instances 17

to 32. In Tables 20–21, N and M represent number of subsystems and number of designs in each

subsystem, respectively. The time limit is set to 3,600 seconds. According to the results, the

algorithm provides tight optimality gap for all instances.

Table 20: Computational performance for instances 1–16
Inst. N M λ range Psub LB UB Gap

1 2 2 [0.0001, 0.00075] 15,000 0.962465 0.962475 1.03×10−5

2 2 3 [0.0001, 0.00025] 15,000 0.985988 0.985994 5.95×10−6

3 2 4 [0.00025, 0.00075] 10,000 0.974904 0.974918 1.35×10−5

4 2 5 [0.00025, 0.00075] 800 0.953065 0.953079 1.43×10−5

5 3 2 [0.00005, 0.00025] 7,000 0.979224 0.979242 1.74×10−5

6 3 3 [0.00005, 0.00015] 7,000 0.949622 0.949650 2.72×10−5

7 3 4 [0.00005, 0.00025] 7,000 0.977787 0.977802 1.54×10−5

8 3 5 [0.0001, 0.00025] 5,000 0.951819 0.951853 3.31×10−5

9 4 2 [0.00001, 0.00005] 5,000 0.971965 0.972007 4.23×10−5

10 4 3 [0.00001, 0.00015] 5,000 0.960397 0.960424 2.67×10−5

11 4 4 [0.00001, 0.0001] 5,000 0.979637 0.979681 4.37×10−5

12 4 5 [0.00001, 0.0001] 3,000 0.941589 0.941641 5.23×10−5

13 5 2 [0.000001, 0.000005] 3,000 0.989030 0.989061 3.01×10−5

14 5 3 [0.000001, 0.00001] 3,000 0.988868 0.988904 3.60×10−5

15 5 4 [0.000005, 0.00001] 3,000 0.979408 0.979489 8.10×10−5

16 5 5 [0.000005, 0.000015] 1,000 0.986053 0.986113 5.97×10−5

4.5 Conclusion and Future Research

This chapter contributes a new model for the problem of maximizing system reliability for a series-

parallel system. The system reliability can be improved by both testing components to remove

failure modes and installing redundant components. This study merges reliability growth and

110

Table 21: Computational performance for instances 17–32
Inst. N M λ range Psub LB UB Gap
17 2 2 [0.0001, 0.00075] 1,000 0.965927 0.965962 3.49×10−5

18 2 3 [0.0001, 0.00025] 500 0.987051 0.987073 2.12×10−5

19 2 4 [0.00025, 0.00075] 600 0.956440 0.956604 1.63×10−4

20 2 5 [0.00025, 0.00075] 500 0.972091 0.972190 9.83×10−5

21 3 2 [0.00005, 0.00025] 500 0.933879 0.934059 1.80×10−4

22 3 3 [0.00005, 0.00015] 500 0.981667 0.981757 8.98×10−5

23 3 4 [0.00005, 0.00025] 600 0.976247 0.976487 2.40×10−4

24 3 5 [0.0001, 0.00025] 500 0.970158 0.970286 1.28×10−4

25 4 2 [0.00001, 0.00005] 400 0.973258 0.973797 5.39×10−4

26 4 3 [0.00001, 0.00015] 400 0.979996 0.980690 6.93×10−4

27 4 4 [0.00001, 0.0001] 500 0.971512 0.972410 8.98×10−4

28 4 5 [0.00001, 0.0001] 600 0.981558 0.981730 1.72×10−4

29 5 2 [0.000001, 0.000005] 200 0.987197 0.987964 7.66×10−4

30 5 3 [0.000001, 0.00001] 400 0.983918 0.984702 7.84×10−4

31 5 4 [0.000005, 0.00001] 300 0.976997 0.977410 4.13×10−4

32 5 5 [0.000005, 0.000015] 300 0.984102 0.984767 6.66×10−4

redundancy allocation concepts. For this problem, we have contributed an exact algorithm which

decomposes the problem to a master problem and smaller subproblems. To solve each subproblem,

we have extended the algorithm of Chapter 2 into a multi-resource setting, and we have developed

a branch and bound method to solve the master problem. We use an example from literature to

compare our model with the redundancy allocation problem. Using an example instance, we have

demonstrated the benefits in using our model instead of disaggregated redundancy allocation and

testing planning models. Numerical experiments show that our proposed method solves (to within

ε ≈ 10−4) instances up to size 5 subsystems and 5 designs in each subsystem with 2 resources. In

addition, the algorithm provides tight optimal gaps for all instances. Our model, which considers

the redundancy allocation and reliability growth jointly, improves system reliability over iteratively

solving test planning and redundancy allocation problems.

An important point for further investigation is to extend our model for a situation in which the

parameters of the AMSAA model are unknown at the beginning of test, and they are learned during

the development of the growth test. It also will be important to study the solution methods for

large-scale instances. Furthermore, optimization methods incorporating ideas from the redundancy

111

allocation literature may yields additional efficiency on this class of problems.

112

5 Conclusion

This dissertation focuses on allocating limited testing resources across the component of a multi-

component system to improve system reliability. Complex systems such as weapon systems and

aircraft have many components and may develop separately which raises the question of how to

allocate the resources within a system to have the most reliable system. In this dissertation, we

assume that components are independent and they are connected in an active standby. In addition,

each component exhibits reliability growth according to AMSAA reliability growth model. We

also consider a fix mission length T for the purpose of evaluating reliability.

In Chapter 2, we consider the resource allocation within a series-parallel system to maximize

system reliability, when model’s parameters are known. We also extend this model to consider

the possibility of testing at different levels (system, subsystem, and component). A class of exact

algorithms that decomposes the problem based upon the series-parallel structure is provided. The

proposed algorithms quantify the quality of heuristic methods with respect to the optimality gap

for the first time in the literature.

In Chapter 3, we extend the first chapter to solve a robust version of this problem, in which the

model’s parameters are uncertain but assumed to lie within a budget-restricted uncertainty set. We

develop and analyze exact solution approaches for this problem based on a cutting plane algorithm

for both series and series-parallel systems. A simulation approach is used to compare our solutions

from the robust model with those attainable using a deterministic optimization model.

In the forth chapter, we develop a new model that merges two concepts of reliability growth

and redundancy allocation to maximize system reliability. We contribute an exact algorithm based

on the branch-and-bound method. We also compared the results from our integrated approach with

another approach which solves the test planning and redundancy allocation models iteratively.

We have extended this dissertation to consider a multi-stage reliability growth testing for a

series-parallel system. The failure information of testing is incorporated to have a better estimation

of model’s parameters in the next testing stage. In another extension for this dissertation, we

113

have developed a model for resource allocation in reliability growth within the components of

a series-parallel system when components are connected in a cold-standby redundancy. Future

research may study the resource allocation when the reliabilities of components are dependent.

Another future direction would be to model this problem when the mission reliability growth T is

indeterminate.

114

References

[1] M. Abouei Ardakan, M. Sima, A. Zeinal Hamadani, and D. W. Coit. A novel strategy
for redundant components in reliability–redundancy allocation problems. IIE Transactions,
48(11):1043–1057, 2016.

[2] M. Awad. Economic allocation of reliability growth testing using Weibull distributions. Re-
liability Engineering & System Safety, 152:273–280, 2016.

[3] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and algo-
rithms, third edition. John Wiley & Sons, 2006.

[4] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contami-
nated with uncertain data. Mathematical Programming, 88(3):411–424, 2000.

[5] A. Ben-Tal and A. Nemirovski. Selected topics in robust convex optimization. Mathematical
Programming, 112(1):125–158, 2008.

[6] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1):238–252, 1962.

[7] H. P. Benson. An outcome space branch and bound-outer approximation algorithm for convex
multiplicative programming. Journal of Global Optimization, 15(4):315–342, 1999.

[8] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimiza-
tion. SIAM Review, 53(3):464–501, 2011.

[9] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98(1):49–71, 2003.

[10] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.

[11] D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Operations
Research, 54(1):150–168, 2006.

[12] J.-E. Byun, H.-M. Noh, and J. Song. Reliability growth analysis of k-out-of-n systems using
matrix-based system reliability method. Reliability Engineering & System Safety, 165:410–
421, 2017.

[13] M. S. Chern. On the computational complexity of reliability redundancy allocation in a series
system. Operations Research Letters, 11(5):309–315, 1992.

[14] M. S. Chern and R. H. Jan. Reliability optimization problems with multiple constraints. IEEE
Transactions on Reliability, 35(4):431–436, 1986.

[15] D. W. Coit. Economic allocation of test times for subsystem-level reliability growth testing.
IIE Transactions, 30(12):1143–1151, 1998.

[16] L. H. Crow. Reliability analysis for complex, repairable systems. In Reliability and Biometry,
Proschan, F. and Serfling, R.J. (Eds.), SIAM, Philadelphia, PA, pages 379–410, 1974.

115

[17] L. H. Crow. An extended reliability growth model for managing and assessing corrective ac-
tions. In Reliability and Maintainability Symposium Annual Symposium-RAMS, Los Angeles,
CA, pages 73–80, 2004.

[18] Y. S. Dai, M. Xie, K. L. Poh, and B. Yang. Optimal testing-resource allocation with genetic
algorithm for modular software systems. Journal of Systems and Software, 66(1):47–55,
2003.

[19] J. T. Duane. Learning curve approach to reliability monitoring. IEEE Transactions on
Aerospace, 2(2):563–566, 1964.

[20] L. El-Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite programs.
SIAM Journal on Optimization, 9(1):33–52, 1998.

[21] A. O. C. Elegbede, C. Chu, K. H. Adjallah, and F. Yalaoui. Reliability allocation through
cost minimization. IEEE Transactions on Reliability, 52(1):106–111, 2003.

[22] M. J. Feizollahi, S. Ahmed, and M. Modarres. The robust redundancy allocation prob-
lem in series-parallel systems with budgeted uncertainty. IEEE Transactions on Reliability,
63(1):239–250, 2014.

[23] M. J. Feizollahi, R. Soltani, and H. Feyzollahi. The robust cold standby redundancy alloca-
tion in series-parallel systems with budgeted uncertainty. IEEE Transactions on Reliability,
64(2):799–806, 2015.

[24] D. P. Gaver and P. A. Jacobs. Reliability growth by failure mode removal. Reliability Engi-
neering & System Safety, 130:27–32, 2014.

[25] A. L. Goel and K. Okumoto. Time-dependent error-detection rate model for software relia-
bility and other performance measures. IEEE transactions on Reliability, R-28(3):206–211,
1979.

[26] J. B. Hall and A. Mosleh. An analytical framework for reliability growth of one-shot systems.
Reliability Engineering & System Safety, 93(11):1751–1760, 2008.

[27] M. Hikita, Y. Nakagawa, K. Nakashima, and H. Narihisa. Reliability optimization of systems
by a surrogate-constraints algorithm. IEEE Transactions on Reliability, 41(3):473–480, 1992.

[28] J. H. Kim and B. J. Yum. A heuristic method for solving redundancy optimization problems
in complex systems. IEEE Transactions on Reliability, 42(4):572–578, 1993.

[29] T. Kim, K. Lee, and J. Baik. An effective approach to estimating the parameters of software
reliability growth models using a real-valued genetic algorithm. Journal of Systems and
Software, 102:134–144, 2015.

[30] P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14. Springer
Science & Business Media, 2013.

[31] M. Krasich. Accelerated reliability growth testing and data analysis method. Journal of the
IEST, 50(2):98–117, 2007.

116

[32] W. Kuo, H. H. Lin, Z. Xu, and W. Zhang. Reliability optimization with the Lagrange-
multiplier and branch-and-bound technique. IEEE Transactions on Reliability, R-36(5):624–
630, 1987.

[33] W. Kuo and V. R. Prasad. An annotated overview of system-reliability optimization. IEEE
Transactions on Reliability, 49(2):176–187, 2000.

[34] W. Kuo, V. R. Prasad, F. A. Tillman, and C. L. Hwang. Optimal reliability design: funda-
mentals and applications. Cambridge university press, 2001.

[35] W. Kuo and R. Wan. Recent advances in optimal reliability allocation. In Computational
Intelligence in Reliability Engineering, pages 1–36. Springer, 2007.

[36] G. Levitin. Allocation of test times in multi-state systems for reliability growth testing. IIE
Transactions, 34(6):551–558, 2002.

[37] D. C. Li, F. M. Chang, and K. C. Chen. Building reliability growth model using sequential
experiments and the Bayesian theorem for small datasets. Expert Systems with Applications,
37(4):3434–3443, 2010.

[38] Z. Li, M. Mobin, and T. Keyser. Multi-objective and multi-stage reliability growth planning
in early product-development stage. IEEE Transactions on Reliability, 65(2):769–781, 2016.

[39] D. K. Lloyd. Forecasting reliability growth. Quality and Reliability Engineering Interna-
tional, 2(1):19–23, 1986.

[40] M. Mobin, Z. Li, and G. Komaki. A multiobjective approach for multistage reliability growth
planning by considering the timing of new technologies introduction. IEEE Transactions on
Reliability, 66(1):97–110, 2017.

[41] J. R. O’Hanley, M. P. Scaparra, and S. Garcı́a. Probability chains: A general linearization
technique for modeling reliability in facility location and related problems. European Journal
of Operational Research, 230(1):63–75, 2013.

[42] M. Pecht. Product reliability, maintainability, and supportability handbook. CRC Press,
2009.

[43] E. A. Pohl and D. L. Dietrich. Optimal stress screening strategies for multi-component sys-
tems sold under warranty: The case of phase-type lifetimes. Annals of Operations Research,
91:137–161, 1999.

[44] J. E. Ramirez-Marquez, D. W. Coit, and A. Konak. Redundancy allocation for series-parallel
systems using a max-min approach. IIE Transactions, 36(9):891–898, 2004.

[45] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding, and
C. Höglund. Selecting software reliability growth models and improving their predictive
accuracy using historical projects data. Journal of Systems and Software, 98:59–78, 2014.

[46] S. S. Rao. Engineering optimization: Theory and practice, fourth edition. John Wiley &
Sons, 2009.

117

[47] D. G. Robinson and D. Dietrich. A new nonparametric growth model. IEEE Transactions on
Reliability, R-36(4):411–418, 1987.

[48] R. Romera, J. E. Valdés, and R. I. Zequeira. Active-redundancy allocation in systems. IEEE
Transactions on Reliability, 53(3):313–318, 2004.

[49] A. Sofer and D. R. Miller. A nonparametric software-reliability growth model. IEEE Trans-
actions on Reliability, 40(3):329–337, 1991.

[50] A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact
linear programming. Operations Research, 21(5):1154–1157, 1973.

[51] K. M. Sullivan. Mixed-integer linear models for reliable system design. Technical Report.

[52] C. S. Sung and Y. K. Cho. Branch-and-bound redundancy optimization for a series system
with multiple-choice constraints. IEEE Transactions on Reliability, 48(2):108–117, 1999.

[53] T. P. Talafuse and E. A. Pohl. A bat algorithm for the redundancy allocation problem. Engi-
neering Optimization, 48(5):900–910, 2016.

[54] T. P. Talafuse and E. A. Pohl. Small sample reliability growth modeling using a grey systems
model. Quality Engineering, 29(3):455–467, 2017.

[55] Z. Tian, M. J. Zuo, and H. Huang. Reliability-redundancy allocation for multi-state series-
parallel systems. IEEE Transactions on Reliability, 57(2):303–310, 2008.

[56] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata. Structural approach to the estimation
of the number of residual software faults based on the hyper-geometric distribution. IEEE
Transactions on Software Engineering, 15(3):345–355, 1989.

[57] C. R. Torres, M. Heydari, K. M. Sullivan, H. Liao, and E. A. Pohl. Data analysis and resource
allocation in bayesian selective accelerated reliability growth. Technical Report.

[58] M. Wayne and M. Modarres. A Bayesian model for complex system reliability growth under
arbitrary corrective actions. IEEE Transactions on Reliability, 64(1):206–220, 2015.

[59] K. J. Wilson and J. Quigley. Allocation of tasks for reliability growth using multi-attribute
utility. European Journal of Operational Research, 255(1):259–271, 2016.

[60] A. Yalaoui, C. Chu, and E. Chatelet. Reliability allocation problem in a series–parallel sys-
tem. Reliability Engineering & System Safety, 90(1):55–61, 2005.

[61] W. C. Yeh and T. J. Hsieh. Solving reliability redundancy allocation problems using an
artificial bee colony algorithm. Computers & Operations Research, 38(11):1465–1473, 2011.

[62] P. S. You and T. C. Chen. An efficient heuristic for series–parallel redundant reliability
problems. Computers & Operations Research, 32(8):2117–2127, 2005.

[63] L. Zia and D. W. Coit. Redundancy allocation for series-parallel systems using a column
generation approach. IEEE Transactions on Reliability, 59(4):706–717, 2010.

118

	Optimal Allocation of Resources in Reliability Growth
	Citation

	First Page
	Dissertation

