
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2018

Improving Asynchronous Advantage Actor Critic with a More Improving Asynchronous Advantage Actor Critic with a More

Intelligent Exploration Strategy Intelligent Exploration Strategy

James B. Holliday
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
Holliday, J. B. (2018). Improving Asynchronous Advantage Actor Critic with a More Intelligent Exploration
Strategy. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2689

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2689?utm_source=scholarworks.uark.edu%2Fetd%2F2689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

Improving Asynchronous Advantage Actor Critic with a More Intelligent Exploration Strategy

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science

by

James Bradley Holliday
University of Arkansas

Bachelor of Science in Computer Science, 1998

May 2018
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

———————————————————
Michael Gashler, Ph.D.
Thesis Director

———————————————————
M. Gordon Beavers, Ph.D.
Committee Member

———————————————————
Xintao Wu, Ph.D.
Committee Member

Abstract

We propose a simple and efficient modification to the Asynchronous Advantage Actor Critic (A3C)

algorithm that improves training. In 2016 Google’s DeepMind set a new standard for state-of-the-

art reinforcement learning performance with the introduction of the A3C algorithm. The goal of

this research is to show that A3C can be improved by the use of a new novel exploration strategy we

call “Follow then Forage Exploration” (FFE). FFE forces the agents to follow the best known path

at the beginning of a training episode and then later in the episode the agent is forced to “forage”

and explores randomly. In tests against A3C implemented using OpenAI’s Universe-Starter-Agent,

FFE was able to show on average that it reached the maximum score faster.

Acknowledgments

Thank you to Dr. Michael Gashler. Without your help this thesis may have never taken shape.

Contents

1 Introduction 1

2 Related Work 5

3 Asynchronous Advantage Actor Critic (A3C) 7

4 Follow Then Forage Exploration 9

5 Experiments 13

6 Conclusion and Discussion 18

References 19

Appendix 21

Chapter 1

Introduction

The three main branches of Machine Learning (ML) are supervised, unsupervised, and reinforce-

ment learning and all have been aided by the introduction of Deep Neural Networks (DNNs). A

DNN is a neural network with multiple hidden layers between the input and output layers, which

enables the neural network to approximate more complex functions.

Stated simply, in reinforcement learning an agent explores an environment seeking to learn

an optimal policy. Each “location” an agent experiences is called a state. A policy is defined as

a mapping from states to corresponding actions. When a reward is discovered, the reinforcing

component of reinforcement learning takes place whereby the state and action that lead to the

reward is given a corresponding utility or value, and that value is propagated (with some discount

factor) to states and actions leading up to the reward. This results in a path where an agent can

follow the higher utilities to maximize its long-term rewards. In order for the agent to discover any

reward the agent must choose actions. Actions move the agent from state to state. Before rewards

are known all states are equally valued and generally random actions are made until the agent

discovers a reward. Still the found reward might not be the only reward nor the best reward possible

so there needs to be a mixture of the agent following the increasing utilities (exploiting what it

knows) and choosing actions that lead to unknown states (exploring what it does not know). This

trade-off is a classic problem in reinforcement learning and is generally known as “Exploitation

versus Exploration.”

Q-Learning (Watkins, 1992) is an example of this type of reinforcement learning. Q-Learning

works by learning a utility function we denote as Q(i,a) where the inputs of the function are states

and actions. States here are the same as defined by Markov Decision Processes (MDP) (Bellman

1957). This Q function defines the policy that will control the agent’s actions. An optimal policy

is a mapping from states to the corresponding actions the agent should take to maximum rewards

1

in the long run. That is, it computes the action (a) for a given state (i) that will yield the highest

discounted horizon utility. After learning has fully converged, the optimal policy will be known.

The utility function in Q-Learning is updated with the following formula derived from the Bellman

equation (Bellman 2003):

Q(i,a)← (1−α
k)Q(i,a)+α

k
[

r(i,a, j)+ γ max
b∈A(j)

Q(j,b)
]

(1.1)

In this formula, α is a learning rate, which controls how much the Q value is changed for each

occurrence of a and i. The closer is to 1, the faster the old Q value will be forgotten and replaced

by the value computed by the rest of the formula. The term r(i,a,j) is the reward function, that for

a given state (i), action (a) and subsequent state (j) returns a reward value. The two states of the

reward function are i and j where i is the current state where action a is performed to arrive in state

j. The reward is added to the maximum Q value when we check each possible action (b) for state

(j) and discount that Q value by the discount factor (γ). For γ, values near 0 prioritize immediate

rewards, whereas values closer to 1 prioritize long-term utility. For most cases γ must be tuned

to the problem at hand, but will always fall between 1 and 0. Over the course of training the

factor k can be used to adjust the learning rate, which controls how much of the newer information

derived from the sum of the reward and discounted future Q value replaces the old Q value. In

fully deterministic environments a learning rate of 1 is optimal, where deterministic is defined as

action a in state i always leads to state j. In stochastic environments the learning rate is decreased

to zero over time, where stochastic is defined as there is a chance that action a in state i leads to

state j. Because of this stochastic behavior it is not ideal to always replace the Q value with new

information, so overtime as trust for the Q value grows it is changed less and less as the Q values

are updated. Q values can be stored in a lookup table (Q table). The Q table can then be queried

by the agent to make decisions based on the returned Q values.

There are many known methods for balancing between exploitation and exploration. When

the state and action space is discrete, optimal solutions are possible. Bayesian Reinforcement

Learning (Ghavamzadeh, 2015) is an example of reinforcement learning that can generate an op-

2

timal solution. However, when the state/action spaces are not discrete or the number of states

grows very large, those previously optimal solutions become impractical. In these cases we turn

to heuristic approaches that are not perfect but are workable. The simplest approaches are random

and greedy methods. With random choices the agent always chooses its action randomly during

training. With greedy choices the agent always chooses its action based on the best known utility

both during training as well as execution. The most commonly implemented non-ideal approach

is the ε-greedy method. ε-Greedy exploration is a combination of random and greedy where the

variable, ε, determines a rate at which the agent will choose randomly or choose greedily. Gener-

ally, as the agent learns the algorithm will decay towards zero, so that over time more exploiting

and less exploring takes place. This ensures the agent can satisfactorily explore, while still acting

nearly optimally when is very small.

A3C models its policy probabilistically where the policy output provides a probability for each

possible action. These probabilities sum to 1 according to the current distribution of the model.

In the case of A3C multiple agents choose actions nearly greedily (argmax of the policy output),

but also seek to maximize an entropy term (Williams, 1991). Entropy is used to skew the values

used by the neural network optimizer in a manner that encourages heterogeneity in the way it

assigns probability to the possible actions. The purpose for entropy is to “encourage diversity”

in the action selection, so that the algorithm doesn’t settle on a small select group of actions or

action sequences. Entropy influences the error signal which influences how the model is trained.

It causes the model to lean away from giving 100% of the probability to a specific action. This

indirectly causes the agent to explore because it chooses actions probabilistically according to the

distribution in its model.

While A3C demonstrates good training performance, we show that A3C’s training performance

can be improved by adding FFE as an exploration strategy. FFE changes the way A3C chooses the

actions to perform. In A3C the argmax of the policy output layer of its DNN is always selected,

but as mentioned above that output is influenced by entropy so exploration is encouraged. FFE

builds on top of that by controlling when to stop choosing the argmax of the output and choose an

3

action randomly.

Analogous behavior can be observed in the physical world in ants. As ants search for food they

begin by following a pheromone trail from ants that have gone before them, but as the pheromone

grows weak they start to explore on their own. Similarly, at the start of an episode of reinforcement

learning with FFE, an agent will exploit its knowledge to take actions that lead to higher rewards,

but after following the reward trail for a variable length of time the agent stops exploiting and starts

exploring. This leads to agents exploring more where exploration is most needed, which leads to

faster learning times.

4

Chapter 2

Related Work

In the area of reinforcement learning the last few years have been filled with landmark achieve-

ments and ground breaking research (Schmidhuber, 2015). In 2013, Mnih introduced Deep Q

Learning in the form of the Deep Q Network (DQN) (Mnih 2013, 2015). DQN uses Q learning as

described in the introduction except in the case of DQN the Q table is replaced by a DNN. DQN

was able to reach human and beyond human level ability playing several specific Atari games.

In 2016, Asynchronous Reinforcement learning (Mnih, 2016) and specifically the development of

A3C significantly improved previous efforts playing specific Atari games. A3C was able to pro-

duce better results than had been previously recorded by DQN, and was able to learn much faster.

Our research is an effort to improve A3C.

Exploration research in reinforcement learning is not a new topic (Kaelbling, 1996), but since

the emergence of deep learning many new efforts have been made to improve this important aspect

of reinforcement learning. Because reinforcement learning builds on the discovery of rewards,

important to a models improvement. Many times rewards are very sparse or only take place at the

end of the episode. In those cases generating intrinsic rewards can create stepping stones towards

actual rewards. (Stadie, 2015) (Houthooft, 2016) and (Pathak, 2017) attempt to do this by adding

additional DNNs to their systems structure. Those additional DNNs learn what part of the state

space is well known and what part is unknown and generate an intrinsic reward to explore places

that are less familiar to the model. Some of these researchers call this intrinsic reward, curiosity.

Our method is much simpler and does not require the expensive cost of additional networks to

improve learning.

Another classical system for improved exploration is keeping track of (or counting) every

unique state the agent visits. In this way it can encourage the model to explore states that have

a lower count or no count at all. The challenge here is that as states grow in size and complexity

5

processing all this information is costly and the chances of the agent seeing all the possible states is

unlikely. (Silver, 2016) and (Tang, 2017) try to overcome this challenge by using Monte Carlo tree

search or hashing algorithms to estimate states. A historic achievement came as a result of related

research that created AlphaGo (Silver, 2016), which was able to defeat some of the worlds best GO

players. In the case of AlphaGo the number of possible states in a 19×19 GO board is: ∼2.082 ×

10170, but Monte Carlo searching combined with DQN proved capable of navigating this massive

state space. Again, these efforts are considerably more costly and complex to implement than our

simple method.

(Dorigo, 2006) described in detail the idea of Ant Colony Optimization (ACO) as a form of

swarm intelligence. They explained how it could be applied to computer intelligence. Their appli-

cations for ACO are similar to FFE as they used it in a different domain.

Actor Critic reinforcement learning (Grondman, 2012) is similar to Q-Learning except with

Actor Critic the policy and utility or value are separated into their own functions meaning the

policy is independent of the value. In this case the policy is known as the actor and the value is

known as the critic. The actor chooses actions and the critic critiques the actions. The critiquing is

done by critic estimating a value at the start of an action or sequence of actions and comparing that

with the actual value that was generated by the end of the action or sequence. The difference in the

estimated value and the actual value is used as a signal that can be used to train both the actor and

the critic. (Baird, 1993) showed how to generate a signal called an advantage (A) for state (s) and

action (a). Where Q is the same Q value as in Q learning and V is the value associated with given

state (s).

Advantage : A(s,a) = Q(s,a)−V (s) (2.1)

(Sutton, 2000) showed how to estimate the advantage instead of calculating Q values. The dis-

counted reward that is used in calculating Q values is used as the replacement for the actual Q

value. The formula for estimated advantage is the same as above except the Q function is replaced

with the discounted reward.

6

Chapter 3

Asynchronous Advantage Actor Critic (A3C)

The three As of A3C stand for Asynchronous, Advantage, and Actor. The C of A3C stands for

Critic. The algorithm is asynchronous because it relies on more than one agent playing the envi-

ronment at the same time. For A3C, advantage, A(s) is the estimated advantage (Sutton, 2000).

The actor calculates the policy, (s), in the form of probabilities for each possible action for a given

state in the form of a softmax output. The critic estimates the value of a given state V(s) in the

form of a linear output.

One of the benefits of A3C is that it uses many agents to explore different regions of isolated but

equal environments, which is one of the reasons A3C learns much faster than its predecessor DQN.

DQN (Mnih, 2013) relied on a single agent while for their research, A3C, (Mnih, 2016) utilized

sixteen agents each running their own environment. A3C creates agents or workers that each have

their own DNN and environment, such as an Atari game. Each agent operates in a separate thread,

but they share the same actor and critic which are represented by a global DNN. However, the

agents only operate on their own local copy of the global DNN. This network functions as both the

actor and critic by using shared input and hidden layers but distinct output layers. One output layer

is for the policy and the other output layer is for the value. At the start of a cycle each agent copies

the global DNN over its local DNN, and collects experience as it plays the game. The experience is

in the form of states, actions, and values. When the agents experience is large enough it is used to

determine the discounted reward, R, and advantage, A. Once the discounted reward and advantage

are known losses can be calculated for the value (V) and the policy (). The entropy (H) of the policy

is also calculated.

Value Loss : L = Σ(R−V (s))2 (3.1)

Policy Loss : L =−log(π(s))∗A(s)−β∗H(π) (3.2)

7

The entropy correlates with the spread of action probabilities output from the policy. When the

probabilities are relatively equal entropy will be small, but when the probabilities are spread out

the entropy is large. Entropy acts as a neutralizer that encourages the model to be conservative in

regards to how strongly it thinks it knows the correct action. The agent takes the losses and uses

them to calculate gradients that are used to optimize its local DNN parameters. The updated local

DNN is then copied over the global DNN. This causes the global DNN to be constantly updated

by the agents. This training process is repeated until convergence is detected.

8

Chapter 4

Follow Then Forage Exploration

When any state in an environment is equally likely and there isnt much progression from start to

end, exploring at any time makes sense, but if an actual path from start to end has been found

then exploring at the beginning of a run through an environment is less valuable than following

the best known path and exploring later. We define this idea of a run through an environment as

a single episode, and for our experiments this would be a single Atari game played from start to

game over. In simple terms, the agent already knows what to do in the beginning, and it also knows

what to do when the reward is near, but it is not sure of what is best to do in the middle. This is

the foundational idea supporting FFE. With FFE we can ensure that the agent exploits closer to the

beginning and end of the episode and is more likely to explore in the middle.

To evaluate A3C (Mnih, 2016) used multiple experiments, but the majority of those tests were

playing various Atari games. That was accomplished through a program called the Atari Learn-

ing Environment (ALE). ALE is a simulator that can receive inputs that mimic Atari controller

inputs and produce appropriate visual output that show an Atari game being played. ALE has

many Atari games implemented. ALE itself has multiple implementations and for our research

we used OpenAIs Gym (GYM) implementation of ALE. For our research we used OpenAIs stan-

dard A3C implementation called Universe-Starter-Agent (USA). USA is a Python program that we

used as our benchmark. We then used a modified version of USA with FFE to compare against the

benchmark results.

9

Algorithm 1 Asynchronous advantage actor-critic pseudo-code for each actor-learner thread.
(Simplified)

1: //Assume global shared parameter vectors θ and θv and global shared counter T = 0
2: //Assume thread-specific parameters vectors θ′ and θ′v
3: //Assume thread-specific variables m,n,o and p
4: Initialize m,n,o and p← 0
5: Initialize thread step counter t← 1
6: repeat
7: Reset gradients: dθ← 0 and dθv← 0.
8: Synchronize thread-specific parameters θ′ = θ and θ′v = θv
9: tstart = t

10: Get state st
11: repeat
12: Perform FFE
13: Receive reward rt and new state st+1
14: t← t +1
15: T ← T +1
16: until terminal st or t− tstart == tmax
17: if terminal st then
18: Perform FFE Update
19: end if

20: R =

{
0 for terminal st

V (st ,θ
′
v) for non-terminal st

21: for i ∈ {t−1, ..., tstart} do
22: R← ri + γR
23: Accumulate gradients θ′ and θ′v
24: end for
25: Perform asynchronous update of θ′ and θ′v
26: until T >Tmax

Algorithm 2 Follow then forage pseudo-code for an actor-learner thread. (FFE)
1: if m > 0 then
2: Choose at according to policy π(at |st ;θ′)
3: m← m−1
4: else
5: if n ≥ 0 then
6: Choose at from a uniform distribution in a
7: n← n−1
8: else
9: Choose at according to policy π(at |st ;θ′)

10: end if
11: end if
12: Perform at

10

Algorithm 3 Follow then forage parameter update pseudo-code for an actor-learner thread. (FFE
Update)

1: //Assume meta parameter Φ and Ψ

2: U ←Uni f . Unif denotes the random number generator
3: o← o+1
4: p← (o−1)/o∗ p+(1/o)∗ t
5: m←U ∗ p
6: if U < Φ then
7: n← 0
8: else
9: n =U ∗ (p−m)∗Ψ

10: end if

Algorithm 1 describes a simplified version of A3C, derived from work by (Mnih, 2016). It is

not a primary contribution of this work. Algorithms 2 and 3 are the primary contributions of this

thesis. Algorithm 2 determines how the agent balances exploration with exploration. Algorithm 3

describes how parameters are updated.

Algorithm 3 keeps track of a running value of the agents completed episode count (o) and

average episode length (p). For example, if FFE is used while learning to play an Atari game this

would be the number of actions required on average for an Atari game to reach the game over state.

At the end of each episode (ie. game) p is calculated from previous experience and is multiplied by

a random number percentage to set the Follow/Forage threshold. After each action the agent will

decrement its Follow (m) value until that variable is zero. While m is greater than zero the agent

always exploits. When m reaches zero the agent switches to Forage mode, where after each action

the agent will decrement its Forage (n) value until that variable is zero. While n is greater than zero

the agent always explores randomly. Once n reaches zero the agent returns to always exploiting.

The use of the p ensures that the values for m and n are dynamic and diverse in each episode.

In our experimentation we determined that best results were obtained with a large proportion

of following and only a relatively small amount of foraging. The last if statement of the Algorithm

3 was added to ensure that foraging was controlled. We use the parameters Φ and Ψ to limit the

foraging. Parameter Φ controls the frequency of foraging actions. Then we use the difference of

p and the value for m and scale that down by Ψ so that n is again limited. For our testing Φ was

11

set to 0.5 and Ψ was set to 0.15. The intuition for only foraging half of the time was to allow

the model to flex while foraging. By flex we mean that the model would not be presented with so

many potentially poor action choices that the model was pulled away from improvement. Also the

0.15 value for the scalar Ψ was used because m could be set to a potentially small value and then

n could end up very large. This scalar ensured foraging never dominated following.

12

Chapter 5

Experiments

To validate our research we ran numerous tests comparing a default implementation of A3C with

a version of A3C modified with FFE. For our benchmark we used OpenAIs USA, and for our

modified version we added FFE to the default USA implementation. The environments tested

were various Atari games as implemented by OpenAIs GYM.

All of our experiments were conducted on a Microsoft Azure Data Science Virtual Machine for

Linux. Some initial tests were conducted using 8 cpu virtual machines, but for all of the recorded

experiments in this paper a Standard DS5 v2 Promo (16 vcpus, 56 GB memory) virtual machine

was used. A3C was configured with all the default settings from USA. For each experiment three

test runs were done and the results were averaged together for the results presented.

For the Atari game, Pong, the score is calculated based on the total score of the agent minus the

total score of the computer opponent. The game/episode is over when either the agent or computer

opponent achieves a score of 21. Figure 5.1 shows USA modified with FFE (indicated in blue)

outperforms the default USA (orange) by reaching a higher score faster. For this test entropy was

left at the default value.

We also tested a range of different entropy scalers to see how entropy affected the performance

of the algorithm. Figure 5.2 shows that when entropy is not used FFE alone is not sufficient

to generate a good result (NoE). Figure 5.2 also shows when we tried scaling entropy by .001

(SmallE) instead of the default .01 (DefaultE) we obtained an interesting result: SmallE actually

starts to improve in a fewer number of episodes, but both algorithms reach the max reward about

the same time. We found that both SmallE and DefaultE learned in about the same number of

episodes total, but by scaling entropy by .001 this caused the agents to play less optimally and

thus the agents took more actions to complete the episodes, which can be seen in Figure 5.3. The

curves of the average game length rise and then fall because the game takes longer when both

13

players scores get close to 21, but then as the agent starts to play much better than the computer

opponent the average length starts to decrease until it plateaus when the agent is winning episodes

21 to 0.

Our next experiments involved more challenging Atari games. We tested Boxing, Amidar, and

Beamrider. Figure 5.4 shows the results of experiment of the default USA and USA modified with

FFE playing Atari Boxing. Boxing has a maximum score of 100. When either player punches the

other player successfully they are rewarded with a point, and the game is over when either opponent

reaches a score of 100 or time runs out. The final score is the agent’s score minus the computer

opponents score. While the results of both algorithms are close, FFE narrowly outperforms default

USA by reaching a higher score faster. Figure 5.5 shows the results of the experiment with the

same algorithms playing Atari Amidar. Amidar has no maximum score. That being the case our

agents did not score very high. Still our results were better than the high score achieved by A3C

LSTM (Mnih, 2016) which was 176 after four days of training. Lastly, Figure 5.6 shows the results

of the experiment with the same algorithms playing Atari Beamrider. In this experiment FFE failed

to outperform default USA. This result is perhaps due to instability in the models DNN. Figures

5.4, 5.5 and 5.6 are found in the Appendix. In our tests training 100 million global steps of A3C

took approximately 24 hours. The cost associated with that much Microsoft Azure virtual server

usage limited how much we could train.

The documentation concerning USA states that the algorithm is tuned for good Pong perfor-

mance. Meaning USA might perform poorly on other Atari games. Here is a list of some differ-

ences between (Mnih, 2016) and USAs implementation of A3C. The original A3C used a shared

optimizer for all agents, and USA uses distinct optimizers for each agent. Also to note USA is

designed to be able to play games in real time, so it stores experience in a separate process while

the optimizer ran, and the original A3C would force the agents to wait while the optimizer ran.

14

Figure 5.1: shows the average reward all the agents achieved per episode playing Atari Pong. Def
represents the Universe-Starter-Agent with default configuration. FFE represents the Universe-
Starter-Agent modified with Follow Then Forage exploration. This chart limits the results to each
algorithm performing 4 million global steps.

15

Figure 5.2: shows the average reward all the agents achieved per episode. Each line represents
the Universe-Starter-Agent modified with Follow Then Forage exploration. SmallE represents the
algorithm using an entropy scaled by 0.001. DefaultE represents the algorithm using an entropy
scaled by 0.01. NoE represents the algorithm with entropy scaled to zero. This chart limits the
results to each algorithm performing 10 million global steps.

16

Figure 5.3: shows the average length (or number of moves) to complete an episode for all the
agents per episode. Each line represents the Universe-Starter-Agent modified with Follow Then
Forage exploration. SmallE represents the algorithm using an entropy scaled by 0.001. DefaultE
represents the algorithm using an entropy scaled by 0.01. NoE represents the algorithm with
entropy scaled to zero. This chart limits the results to each algorithm performing 10 million global
steps.

17

Chapter 6

Conclusion and Discussion

FFE demonstrates that relying on entropy alone is not the most efficient method to train A3C.

Exploration utilizing FFE can allow the learning process (training) to be improved. We compared

a version of A3C equipped with FFE against the default A3C with several different Atari games,

and found that FFE improved results in the majority of cases. These results are promising, and

provide evidence that FFE improves the default exploration strategy utilized by A3C.

When training Pong we were able to reach the maximum score in less than forty minutes for

a best case. (Mnih, 2016) listed a Pong training time at taking two hours. (Mnih, 2016) showed

the result of a good score for Breakout in less than four hours, in our research we did not have

meaningful results after twenty four hours of training on Breakout. For future work we plan to

utilize a more cost efficient computing environment to allow training on more diverse and difficult

environments.

For future work we will evaluate an implementation of A3C that uses a shared optimizer instead

of distinct optimizers.

Entropy plays an interesting role in all of the experiments. For future work we plan to analyze

entropy more closely. FFE also utilizes meta parameters. We set Forage to only happen in half

of the episodes and also scaled the computed Forage value smaller. Because of these parameters

more testing is needed to determine their optimal values.

18

References

Leemon C Baird III. Advantage updating. Technical report, WRIGHT LAB WRIGHT-
PATTERSON AFB OH, 1993.

Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, page
679, 1957.

Richard Bellman. Dynamic programming. Courier Corporation, 2013.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE Computa-
tional Intelligence Magazine, 1(4):28, Nov 2006.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforce-
ment learning: A survey. Foundations and Trends R© in Machine Learning, 8(5-6):359, 2015.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291, 2012.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, page 1109, 2016.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237, 1996.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 02 2015.

Volodymyr Mnih, Adri Puigdomnech, Mehdi Mirza Badia Badia, Alex Graves, Timothy P. Lil-
licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In 33rd International Conference on Machine Learning (ICML), page
1928, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), volume
2017, 2017.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85,
2015.

19

David Silver, Aja Huang, Arthur Guez Chris J. Maddison, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484, 01 2016.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural infor-
mation processing systems, page 1057, 2000.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in Neural Information Processing Systems, page
2750, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learn-
ing algorithms. Connection Science, 3(3):241, 1991.

20

Appendix

Figure 5.4: shows the average reward all the agents achieved per episode playing Atari Boxing.
Def represents the Universe-Starter-Agent with default configuration. FFE represents the Universe-
Starter-Agent modified with Follow Then Forage exploration. This chart is limited to reporting the
results of each algorithm performing 40 million global steps.

21

Figure 5.5: shows the average reward all the agents achieved per episode playing Atari Amidar.
Def represents the Universe-Starter-Agent with default configuration. FFE represents the Universe-
Starter-Agent modified with Follow Then Forage exploration. This chart is limited to reporting the
results of each algorithm performing 60 million global steps.

22

Figure 5.6: shows the average reward all the agents achieved per episode playing Atari Beamrider.
Def represents the Universe-Starter-Agent with default configuration. FFE represents the Universe-
Starter-Agent modified with Follow Then Forage exploration. This chart is limited to reporting the
results of each algorithm performing 100 million global steps.

23

	Improving Asynchronous Advantage Actor Critic with a More Intelligent Exploration Strategy
	Citation

	Introduction
	Related Work
	Asynchronous Advantage Actor Critic (A3C)
	Follow Then Forage Exploration
	Experiments
	Conclusion and Discussion
	References
	Appendix

