
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

5-2018 

Securing Soft IPs against Hardware Trojan Insertion Securing Soft IPs against Hardware Trojan Insertion 

Thao Phuong Le 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Digital Communications and Networking Commons, and the Hardware Systems Commons 

Citation Citation 
Le, T. P. (2018). Securing Soft IPs against Hardware Trojan Insertion. Graduate Theses and Dissertations 
Retrieved from https://scholarworks.uark.edu/etd/2694 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu, uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2694?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu


Securing Soft IPs against Hardware Trojan Insertion 

 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy in Engineering 

 

by 

 

 

Thao Le 

University of Arkansas 

Bachelor of Science in Computer Engineering, 2012 

 

 

May 2018 

University of Arkansas 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

 

 

__________________________________ 

Jia Di, Ph.D. 

Dissertation Director 

 

 

__________________________________ ___________________________________ 

James P. Parkerson, Ph.D.   Dale Thompson, Ph.D. 

Committee Member    Committee Member 

 

 

__________________________________ 

Jingxian Wu, Ph.D. 

Committee Member 

 

 

 

 

 



 

ABSTRACT 

Due to the increasing complexity of hardware designs, third-party hardware Intellectual 

Property (IP) blocks are often incorporated in order to alleviate the burden on hardware 

designers. However, the prevalence use of third-party IPs has raised security concerns such as 

Trojans inserted by attackers. Hardware Trojans in these soft IPs are extremely difficult to detect 

through functional testing and no single detection methodology has been able to completely 

address this issue. Based on a Register-Transfer Level (RTL) and gate-level soft IP analysis 

method named Structural Checking, this dissertation presents a hardware Trojan detection 

methodology and tool by detailing the implementation of a Golden Reference Library for 

matching an unknown IP to a functionally similar Golden Reference. The matching result is 

quantified in percentages so that two different IPs with similar functions have a high percentage 

match. A match of the unknown IP to a whitelisted IP advances it to be identified with a known 

functionality while a match to a blacklisted IP causes it to be detected with Trojan. Examples are 

given on how this methodology can successfully identify hardware Trojans inserted in unknown 

third-party IPs. In addition to soft IPs analysis, Structural Checking provides data flow tracking 

capability to help users discover vulnerable nodes of the soft IPs. Structural Checking is 

implemented with a graphical user interface, so it does not take users much time to use the tool. 
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1 INTRODUCTION 

As more hardware components are being outsourced to third-party entities due to economic 

considerations, the concept of hardware security has become a pressing matter in the minds of 

hardware designers. Since it is not financially efficient to design everything in-house from 

scratch, the integration of third-party Intellectual Property (IP) blocks has become necessary. 

However, since these IPs are not designed in-house, their integrity is not guaranteed. Hardware 

Trojans may be inserted into these soft IPs, which pose a great threat to a large number of 

important applications, such as defense and financial systems. Hardware Trojans are the insertion 

of malicious logic into a circuit triggered by a specific event or sequence of events and result in a 

payload compromising the operation of the circuit. Potential payloads include denial of service, 

information leakage, and data tampering attacks. A hardware Trojan inserted into a third-party IP 

can result in great damage to the system incorporating this hardware design and completely 

compromise its higher-level security mechanism.  

Many solutions have been proposed focusing on hardware Trojan detection. One approach 

is to analyze side-channel signals in order to identify the impact of hardware Trojans. Multiple 

side-channel characteristics have been analyzed in research, such as power [1], current [2], and 

timing [3]. Trojans are revealed by comparing each of these characteristics to that of a Trojan-

free design. Another technique integrates sensors to the empty space of a layout. Sensors used in 

the research [4] provide “self-authentication” by measuring circuit delays, while similar research 

[5] measures path delays. Additionally, an on-chip ring oscillator network discussed in [6] 

performs power analysis that aids in Trojan detection. 

In contrast to those approaches which analyze circuit characteristics, several other methods 

focus on activating potential Trojans. For example, randomized test vectors generated in a 
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probabilistic manner are used in [7] . Similarly, test vectors are applied in [8] for activating nets 

that are rarely activated, as they could be the targets of a Trojan. Also, by narrowing down the 

potential regions for Trojan detection and testing these regions thoroughly, the research 

introduced in [9] finds some success in identifying Trojans. 

Another strategy for Trojan detection focuses specifically on the security of third-party IPs 

and how to provide improved trust to these designs. For example, in [10] researchers use testing 

methods to identify vulnerable portions of the third-party IP. Additionally, the research in [11] 

use formal verification and sequential Automatic Test Pattern Generation (ATPG) for the same 

purpose. Another technique introduced in [12] presents a strategy of Design-for-Trojan-Test in 

order to limit the abilities of an attacker to insert Trojan triggers. The research in [13] involves 

the comparison of IP blocks with a similar function in order to identify malicious logic. FANCI 

tool in [14] provides a statistical analysis to determine backdoor signals. Finally, the research 

performed in [15] identifies vulnerable signals by applying statistical analysis to determine the 

observability of the signal. 

Different from the research in [13] which compares two untrusted IPs to detect Trojans, the 

Golden Reference Library Matching method in [16] compares an untrusted Register-Transfer 

Level (RTL) IP asset pattern and functionality with those of a collection of trusted IPs in a 

Golden Reference Library (GRL). In term of hardware Trojan scenarios, Trojan detection 

methods in [16] uncover case-specific hardware Trojan signal or a circuit block of hardware 

Trojan while FANCI [14] flags suspicious primary signals based on their statistically rare 

activity. Both tools achieve the Trojan detection goal; however, their results are compromised 

when hardware Trojan is injected in a gate-level netlist. Therefore, another methodology is 

developed and published in [17] to mitigate hardware Trojan at the gate-level. Since then, the 
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methodology is improved to not only identify functionality but also detect Trojan of a gate-level 

netlist. 

The rest of this dissertation is organized as following. Section 2 is basic knowledge of 

JTAG and scan chain structure. Section 2 also includes previous works of assets, Structural 

Checking (SC) tool and Golden Reference Library (GRL). Section 3 is the methodology of the 

enhanced GR matching. Section 4 is results and proof of concept examples. Section 5 is the 

independent data flow tracking research. Section 6 is the updated status of SC. The dissertation is 

concluded in Section 6.   
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2 BACKGROUND 

2.1 JTAG System and Scan-chain Structure Overview 

JTAG, i.e., the Joint Test Action Group, was invented in 1985 [18] as a better and reliable 

method to test and verify a complex integrated circuit (IC) or even a printed circuit boards 

(PCBs) after manufacturing. Later, IEEE 1149.1 – 1990 IEEE Standard Test Access Port and 

Boundary-Scan Architecture [19] became standard for JTAG in integrated circuits. The current 

supported standard in [20] is IEEE 1149.1 – 2013. This standard allows for assistance in testing, 

maintaining and supporting ICs. The benefits of JTAG ports offer IC manufacturers high 

throughput and low-cost testing. A central test access port (TAP) controller can support a daisy-

chain of multiple blocks through boundary scan registers (BSRs) of those cores. Three basic 

modes in JTAG are BYPASS, INTEST and EXTEST. During the BYPASS mode, the block’s 

BSRs allow data to pass through it. When a core is under INTEST mode, the core’s BSRs shift 

test data in, wait for the data to be processed by the block’s internal logic, then shift the test data 

out. The EXTEST mode is used to check the interconnection between boundary scan cells. 

Figure 1 is a diagram of threes cores with JTAG interface. The signals include TMS (Test Mode 

Select), TCK (Test Clock), TDI (Test Data In), and TDO (Test Data Out).  

Core 1
TSM
TCK
TDI TDO

Core 2
TSM
TCK
TDI TDO

Core 3
TSM
TCK
TDI TDO

TDOTDI

TSM

TCK

 

Figure 1. A general diagram of three circuit blocks in daisy-chain structure 
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A typical scan-chain structure is as shown in Figure 2 where scan D-type flip flops 

(SDFFs) are connected as a shift register. A scan-chain netlist operates in 3 modes which are 

scan-in, capture and scan-out mode. Scan-in mode allows a test value from SI port of the first 

SDFF flow to the input of the test combinational logic. Once the output of the combinational 

logic is ready, the second SDFF captures the value. Then, the scan-out mode allows the test 

value to shift out. 

2.2 Asset 

2.2.1 Asset Definition 

Critical to the Structural Checking process are the concepts of assets and asset patterns of a 

soft IP. From [18], assets are used to define the roles of a signal while asset pattern is the 

accumulation of assets in a design. In other words, asset concepts are means to capture the 

purpose/use/contribution of a signal to a soft IP. It is possible to assign multiple assets to a signal 

based on its role. In this way, end-users gain a better understanding of the roles of each signal. 

There are two categories of assets - external and internal. 

Q

Q
SET

CLR

D

SI SO

Combinational Logic

SE

D
SI

Z

Q

Q
SET

CLR

D
D
SI

Z

SE

D

CLK

CLK CLK

SE

 

Figure 2 A simple scan-chain diagram 
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2.2.2 External Asset 

External assets are the set of potential functionalities assigned to the primary port signals 

of a soft IP by the user. They were created with the purpose of encompassing all possible roles 

that a port signal may assume in a design. Initially, four assets were introduced in [18] serving as 

a proof-of-concept. Later in [16], fifty external assets were developed and categorized based on 

functionalities for providing a much broader coverage. Then, additional four TDI, TDO, TCK, 

TMS and TRST assets are added to provide coverage for JTAG and scan-chain enabled designs. 

In order to utilize these assets for the research work presented in this dissertation, they are 

categorized as shown from Table 1 to Table 5. 

Table 1 Data external asset category 

Data External Asset Description 

DATA_COMPUTATIONAL Assigned to data signals of RTL or gate-level IPs such as 

ALUs, adder, multipliers, etc. 

DATA_MEMORY Assigned to data signals of a memory IP at the RTL or at 

the gate-level 

DATA_PERIPHERAL Assigned to data signals being used by peripheral units at 

the RTL or at the gate-level 

DATA_COMMUNICATION Assigned to data signals being used for communication 

purposes by communication units at the RTL or at the 

gate-level 

DATA_ENCRYPTION Assigned to data signals being used being encrypted by 

encryption units at the RTL or at the gate-level 

TDI Assigned to a test data-in signal in JTAG or a scan-in 

signal at the RTL or at the gate-level 

TDO Assigned to a test data-out signal in JTAG or a scan-out 

signal at the RTL or at the gate-level 

DATA_SENSITIVE A general form of the data assets and should only 

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable 
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Table 2 Timing external asset category 

Timing External Asset Description 

DONE Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is finished 

HOLD Assigned to a signal of an IP at the RTL or at the gate-

level indicating to hold an operation 

WAIT Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation must wait 

READY Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is ready 

BUSY Assigned to a signal a signal of an IP at the RTL or at the 

gate-level indicating that an operation is busy 

STATUS Assigned to a signal a signal of an IP at the RTL or at the 

gate-level indicating the status of the system 

COUNT Assigned to a signal of an IP at the RTL or at the gate-

level used in a counter 

TIMER_CONTROL Assigned to a signal of an IP at the RTL or at the gate-

level controlling a timer 

CLOCK_CONTROL Assigned to a signal of an IP at the RTL or at the gate-

level controlling the primary or subsystem clock 

TCK Assigned to a test clock signal of an IP at the RTL or at 

the gate-level in JTAG system 

SYSTEM_TIMING Assigned to the primary clock signal of an IP at the RTL 

or at the gate-level 

SUBSYSTEM_TIMING Assigned to a subsystem clock signal of an IP at the RTL 

or at the gate-level 
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Table 3 System control external asset category 

System Control External 

Asset 

Description 

SET Assigned to a signal of an IP at the RTL or at the gate-

level used to set a value 

RESET Assigned to a signal of an IP at the RTL or at the gate-

level used to reset a value 

READ Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a read operation 

WRITE Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a write operation 

SELECT Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a select operation 

EXECUTE Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is executed 

LOAD Assigned to a signal of an IP at the RTL or at the gate-

level indicating that a value is to be loaded 

MODE Assigned to a signal of an IP at the RTL or at the gate-

level indicating the mode of an operation 

ENABLE Assigned to a signal of an IP at the RTL or at the gate-

level used to perform an enable operation 

HANDSHAKING Assigned to a signal of an IP at the RTL or at the gate-

level used in communication by a handshaking operation 

SHIFT Assigned to a signal of an IP at the RTL or at the gate-

level indicating that a shift operation 

TMS Assigned to a test mode select signal of a JTAG system at 

the RTL or at the gate-level  

TRST Assigned to a test reset signal of a JTAG system at the 

RTL or at the gate-level 

INSTRUCTION A general form of instruction assets and should only 

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable 

SYSTEM_CONTROL A general form of system control assets and should only 

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable 
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 Table 4 Specific system control external asset category 

Specific System Control External 

Asset 

Description 

MEMORY_OP Assigned to a signal of an IP at the RTL or at the 

gate-level used to perform an operation within a 

memory unit 

DATA_OP Assigned to a signal of an IP at the RTL or at the 

gate-level used to perform an operation within a 

data processing unit 

INTERRUPT_OP Assigned to a signal of an IP at the RTL or at the 

gate-level used to perform an operation within an 

interrupt unit 

PROGRAM_COUNTER_OP Assigned to a signal of an IP at the RTL or at the 

gate-level used to perform an operation within a 

program counter unit 

INTERRUPT_CONTROL Assigned to a signal of an IP at the RTL or at the 

gate-level used as system control within an 

interrupt unit 

PERIPHERAL_CONTROL Assigned to a signal of an IP at the RTL or at the 

gate-level used as system control within a 

peripheral system 

REGISTER_FILE_CONTROL Assigned to a signal of an IP at the RTL or at the 

gate-level used as system control within a register 

file unit 

COMMUNICATION_CONTROL Assigned to a signal used as system control within 

a communication unit 

COMMUNICATION_PROTOCOL Assigned to a signal of an IP at the RTL or at the 

gate-level used to handle a protocol within a 

communication unit 
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Table 5 Miscellaneous external asset category 

Miscellaneous External Asset Description 

CRITICAL Assigned to a signal of an IP at the RTL or at the gate-

level that could lead to harm if an attacker gained 

possession of it 

COMPONENT Assigned to a signal of an IP at the RTL or at the gate-

level referring to another component of a system 

ADDRESS_SENSITIVE Assigned to a signal of an IP at the RTL or at the gate-

level indicating the address in a memory unit 

CONSTANT Assigned to a signal of an IP at the RTL or at the gate-

level indicating a value to be used as a constant 

KEY Assigned to a signal of an IP at the RTL or at the gate-

level using as an encryption key in an encryption unit 

REGISTER Assigned to a signal of an IP at the RTL or at the gate-

level using to handle data to in a register file unit 

PROGRAM_COUNTER Assigned to a signal of an IP at the RTL or at the gate-

level indicating the value being manipulated within a 

program counter 

ERROR_HANDLING Assigned to a signal of an IP at the RTL or at the gate-

level performing error handling 

EXCEPTION_HANDLING Assigned to a signal of an IP at the RTL or at the gate-

level performing error handling 

STATE Assigned to a signal of an IP at the RTL or at the gate-

level tracking the state of system or FSM 
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2.2.3 Internal Asset 

Internal assets are assigned to mostly but not exclusively internal signals of a soft IP. Some 

internal assets developed in [18] are assigned to signals automatically. Other internal assets 

(OBSERVABLE, CONTROLLABLE and PROTECTED) developed in [19] are assigned to 

internal signals manually due to those signals’ unique contribution. The current version of the 

Structural Checking tool utilized these internal assets to create complete asset patterns. Table 6 

Table 6 Internal assets and their descriptions 

Asset Description 

PROCESS_SENSITIVE Assigned to a signal in a RTL process sensitivity 

list 

PROCESS_OPERATION_SENSITIVE Assigned to a signal being manipulated in a RTL 

process block 

CONDITIONAL_DRIVING Assigned to a signal in a RTL conditional 

statement or a conditional statement of a MUX or 

a DFF model at the gate-level 

CONDITIONAL_DRIVEN Assigned to a signal being modified in a RTL 

conditional block or a conditional block of a 

MUX or a DFF model at the gate-level 

CONCURRENT_DRIVING Assigned to a signal driving another signal in a 

concurrent statement of both RTL and gate-level 

CONCURRENT_DRIVEN Assigned to a signal being driven by another 

signal in a concurrent statement of both RTL and 

gate-level 

CC_OPERATION_SENSITIE Assigned to a signal being driven by two or more 

signals and logic operations of both RTL and 

gate-level 

OBSERVABLE Assigned to an observable signal under scan/test 

mode at the gate-level 

CONTROLLABLE Assigned to a controllable signal under scan/test 

mode at the gate-level 

PROTECTED Assigned to a signal that is protected from data 

leakage at the gate-level 
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shows a list of internal assets and their descriptions. 

2.2.4 Asset Filtering 

The idea of asset filtering is comparable to the taint analysis method introduced in [20]. 

The taint value propagates from the input bit to the dependent output bit of a logic gate in the 

gate-level netlist. Similarly, the external assets assigned to primary inputs are filtered to next 

signal connections until they reach the dependent primary outputs. Then, the external assets 

previously assigned to primary outputs are filtered backward to the primary inputs that they are 

dependent on. This filtering mechanism was firstly introduced in [15]. The filtering rule for the 

internal assets is slightly different form that of the external asset. The internal assets in the 

process category propagate within the process block boundary of the VHDL code. Similarly, the 

conditional internal asset category propagates within the conditional block boundary of the 

VHDL code. Finally, the internal assets in the concurrent category follow the same filtering rule 

as external asset filtering. The entire filtering process operates at both RTL and gate-level. 

2.2.5 Asset Trace and Asset Pattern 

Previously introduced in [16], the set of assets assigned to a specific signal is termed an 

asset trace. The complete collection of asset traces of a design is termed an asset pattern. Asset 

patterns are generated by asset filtering process and are important for functionality matching. 

After assets are assigned to the signals, they are filtered along direct connections to populate the 

complete set of signals with a collection of assets. The asset pattern is an essential element of the 

design functionality determination. 

An asset pattern includes 6 characteristics. Input port signal external asset characteristic is 

denoted as (>). Input port signal internal asset characteristic is denoted as (>*). Output port 

signal external asset characteristic is denoted as (<). Output port signal internal asset 
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characteristic is denoted as (<*). Internal signal external asset characteristic is denoted as (/). 

Internal signal internal asset characteristic is denoted as (/). 

2.3 Functionality 

Every soft IP analyzed by the Structural Checking methodology is given a functionality 

that represents its role in a system. During the formation of the GRL, functionalities were 

manually assigned to trusted designs based on previous knowledge of that design. However, the 

matched functionality is automatically assigned to the unknown design by the Structural 

Checking tool when performing GRL matching. Table 7 lists several possible functionalities that 

a design could be assigned to, which are categorized into whitelist and blacklist. The whitelist 

category contains designs that are known to be Trojan-free, while the blacklist category contains 

Trojan-infested designs. Matching a soft IP to a blacklist functionality is for Trojan detection and 

will be addressed in detail in a later section. 

Table 7 Whitelist and blacklist functionality 

Whitelist Functionality Blacklist Functionality 

SHIFT_REGISTER TROJAN_ENCRYPTION_UNIT 

INTERRUPT_UNIT TROJAN_TRIGGER 

COMMUNICATION TROJAN_COMMUNICATION 

ENCRYPTION_UNIT TROJAN_SHIFT_REGISTER 

COMPUTATIONAL  

TIMING  

CONTROL_GENERATION  

REGISTER_FILE  

PERIPHERAL  

DECODER_ENCODER  

DEBUG_INTERFACE  

TOP_CONTROLLER  
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2.4 Golden Reference Library 

An asset of a signal is an essential building block for an asset pattern and the Golden 

Reference Library. The Golden Reference Library (GRL) is another foundational element of the 

Structural Checking methodology, which is originated from [16]. The initial entries of GRL are 

various small designs collected from OpenCores [21] and Trust-Hub [22]. Since they are small, 

exhaustive verification is feasible. More entries are added from in-house designs. SC is then 

applied to generate asset patterns for all entries and functionalities are assigned manually. 

The GRL contains many trusted GRL files/entries. Each GRL file/entry has a functionality, 

which represents the purpose of the associated soft IP, and an asset pattern. GRL files 

representing the whole collection of functionalities as defined in previous section. Figure 3 is an 

Entity    simple_alu: 

    28 port signals 

  24 IntraSignals 

   4 Port Signal Vectors 

    3 Intra-Signal Vectors 

    0 SubInstances 

    1 Processes 

Functionality: COMPUTATIONAL 

Secondary Func: NON_SEQUENTIAL 

Number of Input bits: 20 

Number of Output bits: 8 

>[SYSTEM_TIMING] 

>*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING] 

>[DATA_COMPUTATIONAL] 

>[DATA_OP] 

>*[CONDITIONAL_DRIVING] 

<[DATA_COMPUTATIONAL] 

<*[CONCURRENT_DRIVEN] 

/[DATA_COMPUTATIONAL] 

/*[CONCURRENT_DRIVEN] 

/*[CONDITIONAL_DRIVEN, PROCESS_OPERATION_SENSITIVE] 

 
Figure 3 A GRL file of a RTL design 
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example of a GRL file where simple_alu is a RTL design. Figure 4 is another example where 

modmult_MPWID16_1_DW01_sub_2 is a gate-level netlist. After the previous work discussed in 

[16] and [17], the GRL of Structural Checking has been substantially updated to a total of 152 

files/entries, which are the asset patterns of distinctive designs with and without Trojan inserted. 

Note that these entries already consider the situation where a port signal may be assigned 

different assets. 

  

Entity    modmult_MPWID16_1_DW01_sub_2: 

     56 port signals 

     35 IntraSignals 

     3 Port Signal Vectors 

     0 Intra-Signal Vectors 

     37 SubInstances 

     0 Processes 

Functionality: COMPUTATIONAL 

Secondary Func: NON_SEQUENTIAL 

Number of Input bits: 37 

Number of Output bits: 19 

<[DATA_COMPUTATIONAL] 

>[DATA_MEMORY, DATA_COMPUTATIONAL] 

>[DATA_COMPUTATIONAL] 

<[CONSTANT] 

>[CONSTANT] 

/[DATA_COMPUTATIONAL] 

/[DATA_COMPUTATIONAL, DATA_MEMORY] 

Figure 4 A GRL file/entry of a gate-level netlist 
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3 METHODOLOGY AND IMPLEMENTATION 

3.1 Asset Pattern Matching 

3.1.1 Basic asset trace matching 

 After asset filtering, the target IP (X) has six asset pattern characteristics as outlined in 

Section 2.2.5, the same as a GRL entry. These characteristics are compared in pairs. For 

example, the input port signal external asset trace of the unknown IP is compared to the same 

characteristic of each GRL entry. The matching result is the percentage of the identical portion 

between two characteristics. The same process is applied to other characteristics. Several 

examples are included in Table 8to clarify the asset pattern matching methodology. In Table 8, 

case number 1 is the 100% match because the asset traces of both the GRL entry and the 

unknown IP are the same. In case number 2, 0% is the result of two completely different asset 

traces. Case number 3 shows the result of 67% because two out of three assets in the unknown 

IP’s asset trace are identical to the asset trace of the GRL entry. The last case presents the 

scenario where one out of the two assets is the same on both asset traces, so the result yields 

50%. If each case represents an asset pattern characteristic, the final matching result is 54.25% as 

the average of the four cases. However, in a case that a soft IP does not have any internal signal, 

the internal signal characteristics are empty. In the case that the same characteristic of both the 

GRL entry and the unknown IP is empty, the match percentage of the empty characteristics will 

be left out of the final matching result. 

Table 8 Example of basic asset trace matching 

Case Unknown Design Asset Traces GRL Entry Asset Traces Match 

1 DATA_MEMORY, CRITICAL DATA_ MEMORY, CRITICAL 100% 

2 DATA_ MEMORY, STATUS SYSTEM_CONTROL 0% 

3 DATA_ MEMORY, STATE DATA_ MEMORY, STATE, 

SYSTEM_CONTROL 

67% 

4 DATA_ SENSITIVE, RESET DATA_ SENSITIVE, SYSTEM_TIMING 50% 
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3.1.2 Partial asset trace matching 

The partial asset trace matching algorithm was developed to gain more precisions in 

matching assets between two traces of the same characteristic. This is due to assets in the two 

asset traces often originate from the same nature. An asset that represents a specific role is 

considered as 50% match to an asset that represents a general role in the same asset category. For 

instance, the match result of a SYSTEM_CONTROL asset and a CLOCK_CONTROL asset is 

50% because they are listed in the same system control category. If the basic matching algorithm 

was applied in this case, the result would yield 0%, which would not present the similar nature of 

the two assets. 

 For further explanation, Table 9 below illustrates different scenarios where partial 

matching is applied. First, as previously stated, case number 1 has the match of 50% because the 

two assets are in the same asset category. Secondly, in case number 2, 100% match is from the 

DATA_MEMORY asset of both traces while the DATA_COMPUTATIONAL only appears in one 

trace, which yields the match result of that asset 0%. Therefore, the average of 100% and 0% is 

50%. In case number 3, even though both DATA_MEMORY and DATA_ENCRYPTION are in the 

same data category, they yield the result of 0% because those two assets represent two specific 

data assets. Case number 4 is the combination of case number 1 and 2 where SET asset gives 

100% match, as well as, RESET and SYSTEM_CONTROL give 50% match. Thus, the result of 

Table 9 Examples of partial asset trace matching 

Case Unknown Design Asset Traces GRL Entry Asset Traces Match 

1 SYSTEM_CONTROL RESET 50% 

2 DATA_ MEMORY, 

DATA_COMPUTATIONAL 

DATA_ MEMORY 50% 

3 DATA_ MEMORY DATA_ENCRYPTION 0% 

4 RESET, SET SET, SYSTEM_CONTROL 75% 

5 RESET SET, SYSTEM_CONTROL 25% 
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case number 4 is 75%. Finally, in case number 5, since the RESET asset is a 50% partial match to 

the SYSTEM_CONTROL asset, and no asset reflects 0% to SET asset. When the order of 

matching reverses, the RESET asset is matched with the SET asset. This causes 0% matched. No 

asset reflects the SYSTEM_CONTROL asset which leads to 0% match. Thus, the average is 0%. 

Since algorithm prioritizes the highest percentage match, case number 5 has 25% match.  

3.1.3 Complete asset pattern matching 

Once all asset pattern characteristics of the unknown IP have been matched to the 

corresponding asset pattern characteristics of the GRL entry, a final match value is determined. 

The final match value is the main factor for the functionality of the matched GRL entry to be 

assigned to the unknown IP. Even though each asset pattern characteristic contributes to the 

overall match value, not all characteristics are weighted equally. The weighting for each 

characteristic is performed experimentally by first recognizing that there are multiple 

implementations representing the same functionality. The internal characteristics of a 

functionality, which includes all internal asset characteristics along with the external assets 

filtered to internal signals, have the potential to be vastly different from another design with the 

same functionality. For this reason, the asset pattern characteristics related to internal 

characteristics are weighted less than 

the port signal external asset 

characteristics. In addition, the 

experimental results show the 

external asset pattern characteristics 

have a greater influence in the 

functionality determination than the 

Table 10 Asset pattern characteristic weight 

Asset Pattern Characteristic Weight 

input port signal external asset 3× 

output port signal external asset 3× 

internal signal external asset 1× 

input port signal internal asset 1× 

output port signal internal asset 1× 

internal signal internal asset 1× 
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internal characteristics. Hence, they have a higher weight. Table 10 shows the weighting applied 

to the associated characteristic. If new characteristics are added in the future, the weight ratio 

will be adjusted. After applying these weights to the asset pattern characteristics, a final highest 

match value is determined for each GRL entry to the unknown IP. The functionality of the GRL 

entity with the highest match value is then assigned to the unknown IP. 

3.1.4 Functionality matching 

To aid in the asset pattern matching algorithm, a functionality determination algorithm was 

developed to precisely identify the functionality of an unknown IP. The functionality-specific 

external asset is considered as the major indication of the potential functionality for the unknown 

IP. Functionality-specific assets are assets that have a clear link to a functionality category as 

defined previously. Any general-purpose assets are disregarded for consideration in this 

matching method. Thus, for any unknown IP containing a functionality-specific external asset, 

the GRL entries with the corresponding functionality are weighted 1.5 times higher than the ones 

that do not. This weight number is calculated based on observation experiments throughout 

testing various IPs collect from open sources [21] and [22]. The weight ratio can be adjusted if 

the future experiments suggest differently. For example, if the DATA_ENCRYPTION asset is 

found in an input port signal external asset pattern of the unknown IP, the percentage of the asset 

pattern that contains DATA_ENCRYPTION in all GRL entries of encryption unit functionality is 

multiplied by 1.5. Other asset pattern characteristics receive the weight of 1 if they do not have 

any functionality-specific external assets. 

3.2 Enhanced Golden Reference Matching for both RTL and Gate-level IPs  

The concept of matching an unknown asset pattern to known asset patterns in GRL is 

termed GR matching. The enhanced GR matching not only addresses port mapping issues, but 
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also ensures matched results coherent. The enhanced technique is categorized into two states 

which are the matching state and the evaluating state. The matching state is implemented as 

matching a top-level pattern and sub-level patterns of an unknown design to known patterns in a 

GRL. While the evaluating state verifies the top-level and the sub-level matched results. 

The matching state analyzes either a RTL or a gate-level netlist which has one top-level 

entity and many sub-level entities. For matching state to operate, GR files/entries are divided into 

the top-level GRL and the sub-level GRL. Then, SC compares the top-level asset pattern of the 

unknown IP (denoted as X) to each entry of the top-level GRL. SC applies all the rules outlined 

in Section 3.1 to find the highest percentage matching (HPM) result. The functionality of the top-

Start Matching 

Process

Top-level?NO

Evaluating 

Results

End

YES

Matching X s sub-

level pattern to sub-

level GRL

Matching X s top-

level pattern to top-

level GRL

Found the HPMFound the HPM

 

Figure 5 A simplified flow chart for the matching state 
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level GR entry which has the HPM is assigned to the top-level asset pattern of X. 

Simultaneously, SC compares each of X’s sub-level patterns to all entries of the sub-level GRL. 

The same rules in Section 3.1 are applied. All the HPM results and assigned functionalities of the 

sub-level patterns are recorded for the next evaluating state. Figure 5 is a simplified flow chart 

for the matching state. 

The current version of the evaluating state only applies to gate-level netlist analysis. SC 

gives level 0 to the top-level entity of X, and the maximum level to the lowest level entity of X. 

Since X is a gate-level netlist, X’s standard logic gates usually have the maximum level. The 

algorithm of the evaluating state is illustrated in  

Figure 6. The evaluating state operates based on the total hierarchy depth of X. If the 

hierarchy is less than 2, X is a flattened netlist. SC presents users the HPM results, other possible 

matched results and matched functionalities from both the top-level GRL and the sub-level GRL. 

If the hierarchy ranges from 2 to 4, X is a simple circuitry. Therefore, SC verifies the matched 

functionalities of X’s top-level and sub-level are the same. However, there are exceptions for 

functionalities in encryption category (ENCRYPTION_UNIT, 

TROJAN_ENCRYPTION_UNIT), communication category (COMMUNICATION, 

TROJAN_COMMUNICATION) and generic category (COMPUTATIONAL, 

TROJAN_TRIGGER). When matching top-level and sub-level patterns of a gate-level netlist, 

SC does not match standard logic gate patterns because these patterns do not provide valuable 

information to gate-level netlists. When matched functionalities fall in a combination of 

encryption and generic category or a combination of communication and generic category, those 

functionalities are considered valid. Otherwise, SC raise a flag that the matched functionalities 

are invalid. Finally, the hierarchy is equal or greater than 5, X is a complex circuitry. SC notifies 

users to analyze the sub-level entity of X prior to proceed the full analysis from the top-level 
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entity. Only if X’s top-level functionality is TOP_CONTROLLER; and X’s sub-level 

functionalities consist of 2 or more different functionalities. SC deems the matches results as 

valid. Examples in Section 4.2 further explain the methodology.  
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Figure 6 A simplified diagram of the evaluating state 
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3.3 Standard Logic Gate Model and Netlist Pre-processing for Structural Checking 

The standard logic gate library is important while using SC to analyze a gate-level netlist. 

This naming convention of this dissertation work is based on the IBM 130nm 8RF standard cell 

library because this library is used in the synthesis process of all testing IPs. Most standard logic 

gates are modeled in concurrent statements. Multiplexer (MUX) cells and flip flops (DFFs) are 

modeled with process statements and conditional statements. Each standard logic gate has 

capitalized name such as AND, OR, XOR, etc., followed with the number of inputs. The inputs 

are named alphabetically and capitalized (e.g., A, B and C) and the output is named Z. Special 

cells such as DFF, DFFSR, SDFFAR, LATSR, and MUX have different primary port names. For 

flip flops and latches, D is data input; RN or RSTB is reset-bar input; S is set input; and Q and 

QBAR are data output and inverse data output. Figure 7 is an example of standard logic gate 

AND2. Figure 8 is an example of a DFFSR. 

A soft IP gate-level netlist often includes many entities. All entities are grouped in a single 

VHDL file due to the synthesis tool default format while SC parses an entity in a VHDL file 

individually. Hence, a Python script named GateSizeRemoval_EntityPartition is developed to 

partition a synthesized netlist into individual VHDL files. The name of each VHDL file is based 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity AND2 is 

   port( Z : out STD_ULOGIC; 

       A : in STD_ULOGIC; 

       B : in STD_ULOGIC); 

end AND2; 

architecture ARCH_FUNC of AND2 is 

begin 

      Z <= ( B )AND( A ); 

end ARCH_FUNC; 

Figure 7 An AND2 standard logic gate model for SC 
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on the entity’s name in the file content. In addition, the script removes all sizes of standard logic 

gates and changes BUFFER to BUFFER1. Changing buffer gate name is necessary because SC’s 

parser considers BUFFER as a compiling error. 

  

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity DFFSR is 

   port( 

      Q  :  out   STD_ULOGIC; 

      QBAR :  out   STD_ULOGIC; 

      CLK :  in    STD_ULOGIC; 

      D  :  in    STD_ULOGIC; 

      RN  :  in    STD_ULOGIC; 

      S  :  in    STD_ULOGIC); 

end DFFSR; 

 

ARCHITECTURE BEHAV OF DFFSR IS 

 BEGIN 

     FF: PROCESS( RN , S , CLK ) 

     BEGIN     

  if RN = '0' then 

   Q <= '0'; 

   QBAR <= '1'; 

  elsif S = '1' then 

   Q <= '1'; 

   QBAR <= '0'; 

  elsif CLK'event and CLK = '1' then 

   Q <= D; 

   QBAR <= NOT D; 

  end if;     

     END PROCESS; 

 END; 
Figure 8 A DFFSR standard cell for SC 
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4 RESULT AND ANALYSIS 

4.1 Trojan Detection Result for Gate-level versus RTL 

The GR matching in [16] assigns TOP_LEVEL functionality to the top-level entity of IPs 

when encountering port-map. It does not perform GR matching at the top-level entity. Examples 

such as RS232-T400 and BasicRSA-T100 show that it is possible to insert Trojan payload at the 

top-level of an IP. Hence, enhanced GR matching solves issues for both RTL and gate-level 

analysis.  

There are 38 gate-level netlists and 22 RTL IPs used to test the enhanced GR matching 

methodology. All IPs used for testing are obtained from both Trust-Hub [22] and OpenCores 

[21]. Testing IPs used for both RTL and gate-level methodology are mostly encryption cores, 

UART cores and microcontrollers with and without hardware Trojan inserted. Hardware Trojan 

payloads from testing IPs are denial-of-service and key/data leakage. Table 12 shows a list of IPs 

which have their asset patterns and functionalities added to the GRL. Table 13 shows a list of IPs 

used to challenge the GR matching for RTL. As shown in Table 13, the first 12 IPs are correctly 

identified as Trojan infested and the last 4 IPs are Trojan free. Even though SC detects Trojan 

from RS232-T100 correctly, it identifies another entity within RS232-T100 incorrectly as Trojan 

infested. Therefore, the false positive of the GR matching for RTL is 6.25%.     

Comparing to the GR matching for RTL IPs, the GR matching for gate-level IPs improves 

with a false positive rate of 3.57%. The number of IPs used to challenge the new gate-level GR 

matching is 27 as shown in Table 14. The first 22 IPs are Trojan infested while the last 5 IPs are 

Trojan free. Table 11 includes a list of IPs whose asset patterns and functionalities are added to 

the top-level GRL and the sub-level GRL correspondently. Due to gate-level netlists have simple 

syntaxes, SC is able to analyze more synthesized IPs from both Trust-Hub [22] and OpenCores 
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[21]. SC identifies all Trojan infested and Trojan free IPs in Table 14 correctly using the 

enhanced GR matching methodology outlined in Section 3.2. However, SC incorrectly identified 

x_mit entity of RS232-T800 contained Trojan while it does not. Hence, it yields 3.57% false 

positive. SC operates on a desktop 3.6GHz CPU with 16GB RAM. Overall, the enhanced GR 

matching methodology provides a centralized whitelist and blacklist database within the GRL. 

The end-users can run a quick analysis (15 – 30 minutes) to eliminate the possible presents of 

these known Trojans. 

 

 

 

 

 

 

 

 

 

 

Table 11 Gate-level IPs in the GRL 

IPs Name Trojan Infested 

BasicRSA-T300 Yes 

RS232-T100 Yes 

RS232-T200 Yes 

RS232-T400 Yes 

RS232-T600 Yes 

AES-T100 Yes 

AES-T300 Yes 

AES-T1800 Yes 

AES-T2000 Yes 

debug_interface No 

MSP430 No 

 

Table 12 RTL IPs in to the GRL 

IPs Name Trojan Infest 

BasicRSA-T300 Yes 

RS232-T200 Yes 

RS232-T500 Yes 

RS232-T600 Yes 

RS232-T800 Yes 

AES-T2000 Yes 
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Table 13  A list of IPs used to verify the RTL methodology 

IPs Name Trojan 

Infested Found 

AES-T600 1 1 

AES-T1800 1 1 

BasicRSA-T100 1 1 

BasicRSA-T200 1 1 

BasicRSA-T400 1 1 

RS232-T100 1 1  

RS232-T300 1 1 

RS232-T600 1 1 

RS232-T700 1 1 

RS232-T900 1 1 

RS232-T901 1 1 

Microcontroller-c16 1 1 

RSA - Trojan Free 0 0 

AES - Trojan Free 0 0 

RS232 - Trojan Free 0 0 

RegisterFile - Trojan Free 0 0 
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Table 14 A list of IPs used to verify the gate-level methodology 

IPs Name Number of Trojan 

Infested Found 

BasicRSA-T100 1 1 

BasicRSA-T200 1 1 

BasicRSA-T400 1 1 

RS232-T300 1 1 

RS232-T500 1 1 

RS232-T700 1 1 

RS232-T800 1 1 

RS232-T900 1 1 

RS232-T901 1 1 

AES-T200 1 1 

AES-T500 1 1 

AES-T600 1 1 

AES-T700 1 1 

AES-T800 1 1 

AES-T900 1 1 

AES-T1000 1 1 

AES-T1100 1 1 

AES-T1200 1 1 

AES-T1300 1 1 

AES-T1400 1 1 

AES-T1500 1 1 

AES-T1900 1 1 

OpenJTAG 0 0 

Microcontroller-c16 – Trojan free 0 0 

RSA - Trojan free 0 0 

AES - Trojan free 0 0 

RS232 - Trojan free 0 0 
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4.2 Examples 

4.2.1 Crypto core AES-T1900  

The benchmark AES-T1900 obtained from Trust-Hub [22] is used to demonstrate the 

detection of Trojans using SC. AES-T1900 originally is a RTL 128-bit encryption core. It is 

infested with a cipher key leakage Trojan. AES-T1900 is synthesized with a reserved hierarchy. 

The Python script GateSizeRemoval_EntityPartition (Section 3.3) is executed to remove gate 

sizes and partition AES-T1900 to individual entity files. After the parsing process, assets are 

assigned to AES-T1900 primary port signals. Table 15 is the asset assignment for AES-T1900. 

Following the assignment process, the filtering process generates one top-level and sub-level 

asset patterns for AES-T1900. Those patterns are then used to match to other patterns in the top-

level and the sub-level GRL accordingly. In this case, the functionally of top-level AES-T1900 is 

correctly identified as ENCRYPTION_UNIT. Sub-level entities of AES-T1900 (aes_128, 

expand_key_128, etc.) are correctly identified as ENCRYPTION_UNIT. TSC and 

TSC_DW01_add_0 are correctly identified as TROJAN_ENCRYPTION_UNIT and 

TROJAN_TRIGGER, respectively. Figure 9 is a screenshot of the result from SC’s log screen. 

The total analysis time takes 15 minutes and 27 second on average on a 3.6GHz processor PC 

with 16GB of RAM. 

 

 

 

 

 

 

Table 15 Asset assignment for AES-T1900 

Signals Assets 

clk SYSTEM_TIMING 

key KEY 

out_port DATA_ENCRYPTION 

rst RESET 

state STATE 
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4.2.2 Communication UART 

The non-flattened uart_baugen is a sub-level entity of Trojan-free microcontroller c16 

obtained from OpenCores [21]. uart_baugen also has sub-level entities such as uart, UART_TX, 

and UART_RX. The maximum depth hierarchy of uart_baugen is 3. Based on the methodology 

in Section 3.2, the valid matched results should be COMMUNICATION. Table 16 is the asset 

assignment for uart_baugen. After SC’s parsing, asset assigning, asset filtering and GR 

matching, uart_baugen has the HPM as the top-level uart of RS323-T100. uart of RS323-T100 

has a COMMUNICATION functionality, thus uart_baugen is assigned the COMMUNICATION 

functionality. Sub-level entities of uart_baugen (uart, UART_TX and UART_RX) have the HPM 

as the sub-level u_rec of RS232-T600. Since u_rec of RS232-T600 has COMMUNICATION 

functionality, uart, UART_TX and UART_RX have COMMUNICATION functionality. Note that 

u_rec of RS232-T100 and u_xmit of RS232-T600 are Trojan infested, the other entities of those 

RS232 are Trojan free. Hence, in this example, the matching of uart_baugen is correct. 

The same uart_baugen is flattened. Its maximum hierarchy is 1. The flattened uart_baugen 

is assigned the same set of assets in Table 16 after the SC’s parsing process. Applying the 

Figure 9 AES-T1900 matched result 
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methodology in Section 3.2, SC matches the only top-level uart_baugen to both top-level GRL 

and sub-level GRL. The flattened uart_baugen has the HPM as the uart entity of the RS232-

T100 which has COMMUNICATION functionality. 

4.2.3 Microcontroller c16  

Microcontroller c16, is a Trojan free RTL IP. It is synthesized and used to challenge the 

enhanced GR matching. The maximum depth of c16 is 5 when cpu is level 0. Figure 10 is a 

simplified diagram of c16. Since the maximum level is 5, the analysis needs to start with entities 

that have lower maximum depth. Therefore, alu8, uart_baugen, memory and opcode_decoder 

are analyzed first. However, memory and opcode_decoder sub-level entities are RTL designs 

because they are not synthesizable. SC successfully determines memory and opcode_decoder as 

REGISTER_FILE and DECODER_ENCODER, respectively. Then, alu8 is identified as 

COMPUTATIONAL, and uart_baugen is identified as COMMUNICATION (Section 4.2.2). 

After all lower levels of cpu are analyzed, SC starts the analysis from cpu entity, the top-level. 

cpu’s asset pattern is correctly recognized as TOP_CONTROLLER. Table 17 is a list of assets 

assigned to the primary port signal of cpu. All conditions such as TOP_CONTROLLER 

functionality for top-level pattern and more than two different functionalities for sub-level 

patterns are satisfied. Hence, the matching results in this example are valid. If the sub-level 

entities are not analyzed prior to the top-level entity, SC incorrectly matches alu8 and 

uart_baugen to a potential REGISTER_FILE or TIMING functionality. 
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Table 17 Asset assignment for the cpu of microcontroller c16 

Signals Assets 

CLK_I SYSTEM_TIMING 

SER_IN DATA_SENSITIVE 

SER_OUT DATA_SENSITIVE 

SWITCH PERIPHERAL_CONTROL 

TEMP_CE READY 

TEMP_SCLK SUBSYSTEM_TIMING 

TEMP_SPI DATA_PERIPHERAL, DATA_COMMUNICATION 

TEMP_SPO DATA_PERIPHERAL, DATA_COMMUNICATION 

XM_ADR ADDRESS_SENSITIVE 

XM_CE READY 

XM_RDAT DATA_MEMORY 

XM_WDAT DATA_MEMORY 

XM_WE READ, WRITE 

 

 Table 16 Asset assignment for the uart_baugen of 

microcontroller c16 

Signals Asset 

CLK_I SYSTEM_TIMING 

RST_I RESET 

RD READ 

RX_DATA DATA_COMMUNICATION 

RX_READY COMMUNICATION_STATUS 

RX_SERIN DATA_COMMUNICATION 

TX_BUSY COMMUNICATION_STAUS 

TX_DATA DATA_COMMUNICATION 

TX_SEROUT DATA_COMMUNICATION 

WR WRITE 
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5 ASSET APPLICATION IN DATA FLOW TRACKING  

5.1 Introduction 

Data flow tracking using SC published in [19] is independent from GR matching 

methodology. The technique uses asset concepts and asset filtering in SC as building blocks to 

uncover possible critical data leakage in scan-chain gate-level netlist. Due to static analysis 

nature of SC, SC does not take much time to analyze a scan-chain netlist. At the same time, SC 

raise awareness to users about suspicious signals, confidential data flow and critical data bypass. 

5.2 Data Flow Analysis 

5.2.1 Malicious Signal Detection 

The goal of malicious signal detection is discovering suspicious internal signals. Usually, a 

system is operated by critical control signals. If these critical signals are controlled/driven by 

other malicious internal signals, the system is compromised. The detection technique is 

A suspicious signal with M/SE asset: n500 

The instance has observable net: valid_out_reg 

The observable signal leaks a KEY is : Q 

The instance has observable net: valid_out_reg 

The observable signal leaks a KEY is : QN 

The instance has observable net: data_out_reg_3_inst 

The observable signal leaks a KEY is : Q 

The instance has observable net: data_out_reg_3_inst 

The observable signal leaks a KEY is : QN 

The instance has observable net: data_out_reg_2_inst 

The observable signal leaks a KEY is : Q 

The instance has observable net: data_out_reg_2_inst 

The observable signal leaks a KEY is : QN 

The instance has observable net: data_out_reg_1_inst 

The observable signal leaks a KEY is : Q 

The instance has observable net: data_out_reg_0_inst 

The observable signal leaks a KEY is : QN 

The instance has observable net: data_out_reg_0_inst 

The observable signal leaks a KEY is : QN 

 
Figure 11 A sample report of malicious signal detection and 

confidential data tracking 
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implemented in SC and is illustrated in Figure 12. After the parsing process and asset assigning 

process, SC performs the detection step. First, SC trace signals (Bs) of the target scan-chain 

netlist are assigned with TMS assets, previously preferred as SCAN_ENABLE assets. If those 

signals (Bs) are driven/assigned by other signals (Cs), SC continues to examine Cs if they 

contain any asset within system control category (Table 3). If this is not true, SC raises a flag to 

alert users about Cs. For example, scan_enable signal and internal signal n500 signal are inputs 

of an AND2 gate. If n500 is assigned by a constant ‘1’, logically scan_enable signal is not 

affected by n500. However, the presence of an extra logic gate and an extra signal increases load 

capacitance and can potentially lead to system malfunction. On the other hand, if n500 is 

driven/assigned by a reset signal with a RESET asset through an inverter, then n500 is not 

suspicious. An output example of the malicious signal detection is highlighted in Figure 11. 
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Figure 12 Malicious signal detection flow chart 

 

5.2.2 Confidential Data Tracking 

The goal of confidential data tracking technique is to warn users about the observability of 

the secret data in a scan-chain system. Cypher key is assumed as a type of confidential data; 

therefore, cypher key signals are assigned with the KEY asset. The scan-in input and the scan-

out output of a scan cell are considered as a controllable net and an observable net, respectively. 

Thus, the scan-in input is assigned with the CONTROLLABLE asset; and the scan-out output is 
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assigned with the OBSERVABLE asset. During the asset filtering, SC keeps track of where KEY 

asset is passed to. If the KEY asset is filtered to a net that has an OBSERVABLE asset, SC raises 

a flag to that net. Figure 11 is an example when SC reports to users about the secret key leakage 

through observable nets. However, if the observable net also has PROTECTED asset, SC does 

not raise a flag. The confidential data tracking technique is developed based on an assumption: 

the end-users who develop a scan-chain system with an integrated encryption unit have 

knowledge of shielding observable nets from attackers. Figure 13 is a flow chart of confidential 

data tracking technique. 

Are those signals observable?

Scenario 2

Start

NO
Next scenario

YES

Do those have 

PROTECTED asset? 

YES

NO

Raise Flag

cipher_key 

signals

 

Figure 13 A flow chart of confidential data tracking 
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5.2.3 Critical Data Bypass Checking 

Critical data bypass checking assumes that attackers circumvent critical data away from 

trusted IPs. In other words, if an end-user integrates his/her trusted encryption core to a 3rd IP, it 

is important for the critical data go through his/her encryption core. Therefore, it is necessary for 

the end-user to know all possible data paths. For the critical data bypass checking to operate, 

users must assign PROTECTED asset to all primary port signals of trusted entities. Then, SC 

reports all possible data paths which connect to trusted entities. In case users do not assign 

PROTECTED asset to any signal, SC reports all possible data paths which contain observable 

nets. Figure 14 is a portion of the data path report SC generates using critical data bypass 

checking. The report includes instances and signal along each data path.  

  

A data path of instances: [Top_Level_Instance, U4, U3, data_out_reg_0_inst] 

The data signals path: [data_in(0), IN2, Q, n800, IN4, n670, D, <data_out_0_port>] 

 

A data path of instances: [Top_Level_Instance, U6, U5, data_out_reg_1_inst] 

The data signals path: [data_in(1), IN2, Q, n799, IN4, n668, D, <data_out_1_port>] 

 

A data path of instances: [Top_Level_Instance, U10, U9, data_out_reg_3_inst] 

The data signals path: [data_in(3), IN2, Q, n797, IN4, n664, D, <data_out_3_port>] 

 

A data path of instances: [Top_Level_Instance, U8, U7, data_out_reg_2_inst] 

The data signals path: [data_in(2), Q, n798, IN4, n666, D, <data_out_2_port>] 

 

A data path of instances: [Top_Level_Instance, data_out_reg_0_inst] 

The data signals path: [test_si, SI, <Q>, <data_out_0_port>] 

 Figure 14 A portion of data path report 
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6 UPDATED STRUCTURAL CHECKING 

SC is implemented in Java programming language. SC has a graphical user interface for 

users to navigate through the tool. The home screen is shown in Figure 15. The left side of 

Figure 15 shows five steps: design parsing, external and internal asset assignment, filtering – 

matching – functionality analysis, and Trojan detection. The right side is the system log screen to 

display extra information for users. The round color dot is an indication of each step. Red dot 

means that the previous step is not complete. Yellow dot means the step is in operation. Finally, 

green dot indicates the step is complete. Step one – design parsing: users navigate the tool to the 

needed analysis soft IP through a browse button. Parse design button allows users to start the 

parsing process. The yellow dot of step 1 turns green as shown in Figure 16 as soon as step 1 is 

finished. Step two – external asset assignments: users have the option of assigning external assets 

manually for the first time or assigning external asset from file for repeated analysis. If users 

wish to assign external assets manually, another window of SC appears as Figure 17 to let users 

choose signals and assign assets. During this step, users are allowed to select multiple signals to 

assign or remove assets using highlighted assign asset and remove asset buttons in Figure 17, 

respectively. Figure 18 reflects the GUI of available external assets in SC. Step three – internal 

asset assignments: users assigns internal assets appropriately to internal signals through similar 

interfaces (Figure 19 and Figure 20) as step two. Step four – filtering, matching and functionality 

analysis: SC first propagates assets from port signals and internal signals to generate asset pattern 

for the unknown IP. Then, SC compares the unknown pattern to known patterns in the GRL and 

determines the functionality for the unknown soft IP. The matched results are displayed in the 

system log screen as highlighted in Figure 21. Finally, step five – Trojan analysis: SC generates a 

report to alert users the type of potential hardware Trojan or Trojan triggers if the blacklist 
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functionality does not support. The blacklist functionality appearance at the end of steps four 

points out the hardware Trojan within an entity boundary. Then, the report in step five points out 

potential Trojan signals and Trojan trigger signals. 

 

Figure 15 Structural Checking main GUI 
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Figure 16 SC main GUI complete status 
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Figure 17 Circuit information GUI 

 

 

Figure 18 External asset GUI 
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Figure 19 Internal circuit information GUI 

 

 
Figure 20 Internal asset GUI 
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Figure 21 An example of matched result 
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7 CONCLUSION AND FUTURE WORK 

The enhanced GR matching is an effective methodology that allows Structural Checking to 

detect hardware Trojan in a soft IP. First, the matching process includes basic asset pattern 

matching, partial asset pattern matching, and functionality matching. The percentage of matching 

result is determined by the similarity of unknown and known asset pattern characteristics. The 

functionality is then determined by the functionality of the matched GRL entry. Hence, matching 

the top-level and the sub-level of an unknown IP asset pattern to trusted top-level and sub-level 

of GRL allows the Trojan to be identified efficiently and effectively. The evaluating process of 

the HPM results ensures the coherence of the matching results. Based on a test vehicle suite, this 

detection process overall yields 6.23% of false positive rate in testing with RTL IPs and 3.57% 

of false positive rate in testing with gate-level IPs. The independent data flow tracking feature in 

SC allows for scan-chain analysis. For future development, both blacklist and whitelist of the 

GRL can be easily expanded to improve the accuracy and resolution of the matching process, 

which is feasible because the process of creating a GRL entry is automated. More internal assets 

and external assets can be added to improve the resolution of the analysis.   
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