
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2018

Securing Soft IPs against Hardware Trojan Insertion Securing Soft IPs against Hardware Trojan Insertion

Thao Phuong Le
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Digital Communications and Networking Commons, and the Hardware Systems Commons

Citation Citation
Le, T. P. (2018). Securing Soft IPs against Hardware Trojan Insertion. Graduate Theses and Dissertations
Retrieved from https://scholarworks.uark.edu/etd/2694

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2694?utm_source=scholarworks.uark.edu%2Fetd%2F2694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Securing Soft IPs against Hardware Trojan Insertion

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Engineering

by

Thao Le

University of Arkansas

Bachelor of Science in Computer Engineering, 2012

May 2018

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.

Dissertation Director

__________________________________ ___________________________________

James P. Parkerson, Ph.D. Dale Thompson, Ph.D.

Committee Member Committee Member

Jingxian Wu, Ph.D.

Committee Member

ABSTRACT

Due to the increasing complexity of hardware designs, third-party hardware Intellectual

Property (IP) blocks are often incorporated in order to alleviate the burden on hardware

designers. However, the prevalence use of third-party IPs has raised security concerns such as

Trojans inserted by attackers. Hardware Trojans in these soft IPs are extremely difficult to detect

through functional testing and no single detection methodology has been able to completely

address this issue. Based on a Register-Transfer Level (RTL) and gate-level soft IP analysis

method named Structural Checking, this dissertation presents a hardware Trojan detection

methodology and tool by detailing the implementation of a Golden Reference Library for

matching an unknown IP to a functionally similar Golden Reference. The matching result is

quantified in percentages so that two different IPs with similar functions have a high percentage

match. A match of the unknown IP to a whitelisted IP advances it to be identified with a known

functionality while a match to a blacklisted IP causes it to be detected with Trojan. Examples are

given on how this methodology can successfully identify hardware Trojans inserted in unknown

third-party IPs. In addition to soft IPs analysis, Structural Checking provides data flow tracking

capability to help users discover vulnerable nodes of the soft IPs. Structural Checking is

implemented with a graphical user interface, so it does not take users much time to use the tool.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Jia Di. He has been an excellent mentor. He has

encouraged me to strive for success during my graduate program. He is a great example for

mentorship and leadership. Again, I thank him for his support and guidance throughout my

graduate career.

Many thanks to my committee members Dr. Dale Thompson, Dr. James P. Parkerson and

Dr. Jingxian Wu for their guidance.

I would also like to thank George Holmes and Jason Crawley for their support.

DEDICATION

To my husband who countlessly listens to presentations, proof-reads my papers. He gives

me feedbacks and advices. He supports me through challenging time at work and research.

Finally, to my Mom and Dad and my brother for supporting me to archive this degree.

CONTENTS

1. ... INTRODUCTION

 ... 1

2. ... BACKGROUND

 ... 4

2.1 JTAG System and Scan-chain Structure Overview .. 4

2.2 Asset .. 5

2.2.1 Asset Definition ... 5

2.2.2 External Asset .. 6

2.2.3 Internal Asset ... 11

2.2.4 Asset Filtering.. 12

2.2.5 Asset Trace and Asset Pattern ... 12

2.3 Functionality ... 13

2.4 Golden Reference Library... 14

3. .. METHODOLOGY AND IMPLEMENTATION

 ... 16

3.1 Asset Pattern Matching ... 16

3.1.1 Basic asset trace matching ... 16

3.1.2 Partial asset trace matching ... 17

3.1.3 Complete asset pattern matching ... 18

3.1.4 Functionality matching .. 19

3.2 Enhanced Golden Reference Matching for both RTL and Gate-level IPs 19

3.3 Standard Logic Gate Model and Netlist Pre-processing for Structural Checking .. 23

4. .. RESULT AND ANALYSIS

 ... 25

4.1 Trojan Detection Result for Gate-level versus RTL ... 25

4.2 Examples ... 29

4.2.1 Crypto core AES-T1900 .. 29

4.2.2 Communication UART.. 30

4.2.3 Microcontroller c16 ... 31

5. ... ASSET APPLICATION IN DATA FLOW TRACKING

 ... 34

5.1 Introduction ... 34

5.2 Data Flow Analysis ... 34

5.2.1 Malicious Signal Detection ... 34

5.2.2 Confidential Data Tracking ... 36

5.2.3 Critical Data Bypass Checking .. 38

6. ... UPDATED STRUCTURAL CHECKING

 ... 39

7. ... CONCLUSION AND FUTURE WORK

 ... 45

 REFERENCES .. 46

GLOSSARY

Abbreviations

RTL Register Transfer Level

IPs Intellectual Properties

Soft IPs Intellectual Properties under RTL or gate-level

GR Golden Reference

GRL Golden Reference Library

SC Structural Checking

DFF D-Flip Flop

SDFF Scan enable DFF

DFFSR D-Flip flop with set and reset

LATSR Latch with set and reset

HPM Highest percentage matching

1

1 INTRODUCTION

As more hardware components are being outsourced to third-party entities due to economic

considerations, the concept of hardware security has become a pressing matter in the minds of

hardware designers. Since it is not financially efficient to design everything in-house from

scratch, the integration of third-party Intellectual Property (IP) blocks has become necessary.

However, since these IPs are not designed in-house, their integrity is not guaranteed. Hardware

Trojans may be inserted into these soft IPs, which pose a great threat to a large number of

important applications, such as defense and financial systems. Hardware Trojans are the insertion

of malicious logic into a circuit triggered by a specific event or sequence of events and result in a

payload compromising the operation of the circuit. Potential payloads include denial of service,

information leakage, and data tampering attacks. A hardware Trojan inserted into a third-party IP

can result in great damage to the system incorporating this hardware design and completely

compromise its higher-level security mechanism.

Many solutions have been proposed focusing on hardware Trojan detection. One approach

is to analyze side-channel signals in order to identify the impact of hardware Trojans. Multiple

side-channel characteristics have been analyzed in research, such as power [1], current [2], and

timing [3]. Trojans are revealed by comparing each of these characteristics to that of a Trojan-

free design. Another technique integrates sensors to the empty space of a layout. Sensors used in

the research [4] provide “self-authentication” by measuring circuit delays, while similar research

[5] measures path delays. Additionally, an on-chip ring oscillator network discussed in [6]

performs power analysis that aids in Trojan detection.

In contrast to those approaches which analyze circuit characteristics, several other methods

focus on activating potential Trojans. For example, randomized test vectors generated in a

2

probabilistic manner are used in [7] . Similarly, test vectors are applied in [8] for activating nets

that are rarely activated, as they could be the targets of a Trojan. Also, by narrowing down the

potential regions for Trojan detection and testing these regions thoroughly, the research

introduced in [9] finds some success in identifying Trojans.

Another strategy for Trojan detection focuses specifically on the security of third-party IPs

and how to provide improved trust to these designs. For example, in [10] researchers use testing

methods to identify vulnerable portions of the third-party IP. Additionally, the research in [11]

use formal verification and sequential Automatic Test Pattern Generation (ATPG) for the same

purpose. Another technique introduced in [12] presents a strategy of Design-for-Trojan-Test in

order to limit the abilities of an attacker to insert Trojan triggers. The research in [13] involves

the comparison of IP blocks with a similar function in order to identify malicious logic. FANCI

tool in [14] provides a statistical analysis to determine backdoor signals. Finally, the research

performed in [15] identifies vulnerable signals by applying statistical analysis to determine the

observability of the signal.

Different from the research in [13] which compares two untrusted IPs to detect Trojans, the

Golden Reference Library Matching method in [16] compares an untrusted Register-Transfer

Level (RTL) IP asset pattern and functionality with those of a collection of trusted IPs in a

Golden Reference Library (GRL). In term of hardware Trojan scenarios, Trojan detection

methods in [16] uncover case-specific hardware Trojan signal or a circuit block of hardware

Trojan while FANCI [14] flags suspicious primary signals based on their statistically rare

activity. Both tools achieve the Trojan detection goal; however, their results are compromised

when hardware Trojan is injected in a gate-level netlist. Therefore, another methodology is

developed and published in [17] to mitigate hardware Trojan at the gate-level. Since then, the

3

methodology is improved to not only identify functionality but also detect Trojan of a gate-level

netlist.

The rest of this dissertation is organized as following. Section 2 is basic knowledge of

JTAG and scan chain structure. Section 2 also includes previous works of assets, Structural

Checking (SC) tool and Golden Reference Library (GRL). Section 3 is the methodology of the

enhanced GR matching. Section 4 is results and proof of concept examples. Section 5 is the

independent data flow tracking research. Section 6 is the updated status of SC. The dissertation is

concluded in Section 6.

4

2 BACKGROUND

2.1 JTAG System and Scan-chain Structure Overview

JTAG, i.e., the Joint Test Action Group, was invented in 1985 [18] as a better and reliable

method to test and verify a complex integrated circuit (IC) or even a printed circuit boards

(PCBs) after manufacturing. Later, IEEE 1149.1 – 1990 IEEE Standard Test Access Port and

Boundary-Scan Architecture [19] became standard for JTAG in integrated circuits. The current

supported standard in [20] is IEEE 1149.1 – 2013. This standard allows for assistance in testing,

maintaining and supporting ICs. The benefits of JTAG ports offer IC manufacturers high

throughput and low-cost testing. A central test access port (TAP) controller can support a daisy-

chain of multiple blocks through boundary scan registers (BSRs) of those cores. Three basic

modes in JTAG are BYPASS, INTEST and EXTEST. During the BYPASS mode, the block’s

BSRs allow data to pass through it. When a core is under INTEST mode, the core’s BSRs shift

test data in, wait for the data to be processed by the block’s internal logic, then shift the test data

out. The EXTEST mode is used to check the interconnection between boundary scan cells.

Figure 1 is a diagram of threes cores with JTAG interface. The signals include TMS (Test Mode

Select), TCK (Test Clock), TDI (Test Data In), and TDO (Test Data Out).

Core 1
TSM
TCK
TDI TDO

Core 2
TSM
TCK
TDI TDO

Core 3
TSM
TCK
TDI TDO

TDOTDI

TSM

TCK

Figure 1. A general diagram of three circuit blocks in daisy-chain structure

5

A typical scan-chain structure is as shown in Figure 2 where scan D-type flip flops

(SDFFs) are connected as a shift register. A scan-chain netlist operates in 3 modes which are

scan-in, capture and scan-out mode. Scan-in mode allows a test value from SI port of the first

SDFF flow to the input of the test combinational logic. Once the output of the combinational

logic is ready, the second SDFF captures the value. Then, the scan-out mode allows the test

value to shift out.

2.2 Asset

2.2.1 Asset Definition

Critical to the Structural Checking process are the concepts of assets and asset patterns of a

soft IP. From [18], assets are used to define the roles of a signal while asset pattern is the

accumulation of assets in a design. In other words, asset concepts are means to capture the

purpose/use/contribution of a signal to a soft IP. It is possible to assign multiple assets to a signal

based on its role. In this way, end-users gain a better understanding of the roles of each signal.

There are two categories of assets - external and internal.

Q

Q
SET

CLR

D

SI SO

Combinational Logic

SE

D
SI

Z

Q

Q
SET

CLR

D
D
SI

Z

SE

D

CLK

CLK CLK

SE

Figure 2 A simple scan-chain diagram

6

2.2.2 External Asset

External assets are the set of potential functionalities assigned to the primary port signals

of a soft IP by the user. They were created with the purpose of encompassing all possible roles

that a port signal may assume in a design. Initially, four assets were introduced in [18] serving as

a proof-of-concept. Later in [16], fifty external assets were developed and categorized based on

functionalities for providing a much broader coverage. Then, additional four TDI, TDO, TCK,

TMS and TRST assets are added to provide coverage for JTAG and scan-chain enabled designs.

In order to utilize these assets for the research work presented in this dissertation, they are

categorized as shown from Table 1 to Table 5.

Table 1 Data external asset category

Data External Asset Description

DATA_COMPUTATIONAL Assigned to data signals of RTL or gate-level IPs such as

ALUs, adder, multipliers, etc.

DATA_MEMORY Assigned to data signals of a memory IP at the RTL or at

the gate-level

DATA_PERIPHERAL Assigned to data signals being used by peripheral units at

the RTL or at the gate-level

DATA_COMMUNICATION Assigned to data signals being used for communication

purposes by communication units at the RTL or at the

gate-level

DATA_ENCRYPTION Assigned to data signals being used being encrypted by

encryption units at the RTL or at the gate-level

TDI Assigned to a test data-in signal in JTAG or a scan-in

signal at the RTL or at the gate-level

TDO Assigned to a test data-out signal in JTAG or a scan-out

signal at the RTL or at the gate-level

DATA_SENSITIVE A general form of the data assets and should only

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable

7

Table 2 Timing external asset category

Timing External Asset Description

DONE Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is finished

HOLD Assigned to a signal of an IP at the RTL or at the gate-

level indicating to hold an operation

WAIT Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation must wait

READY Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is ready

BUSY Assigned to a signal a signal of an IP at the RTL or at the

gate-level indicating that an operation is busy

STATUS Assigned to a signal a signal of an IP at the RTL or at the

gate-level indicating the status of the system

COUNT Assigned to a signal of an IP at the RTL or at the gate-

level used in a counter

TIMER_CONTROL Assigned to a signal of an IP at the RTL or at the gate-

level controlling a timer

CLOCK_CONTROL Assigned to a signal of an IP at the RTL or at the gate-

level controlling the primary or subsystem clock

TCK Assigned to a test clock signal of an IP at the RTL or at

the gate-level in JTAG system

SYSTEM_TIMING Assigned to the primary clock signal of an IP at the RTL

or at the gate-level

SUBSYSTEM_TIMING Assigned to a subsystem clock signal of an IP at the RTL

or at the gate-level

8

Table 3 System control external asset category

System Control External

Asset

Description

SET Assigned to a signal of an IP at the RTL or at the gate-

level used to set a value

RESET Assigned to a signal of an IP at the RTL or at the gate-

level used to reset a value

READ Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a read operation

WRITE Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a write operation

SELECT Assigned to a signal of an IP at the RTL or at the gate-

level used to perform a select operation

EXECUTE Assigned to a signal of an IP at the RTL or at the gate-

level indicating that an operation is executed

LOAD Assigned to a signal of an IP at the RTL or at the gate-

level indicating that a value is to be loaded

MODE Assigned to a signal of an IP at the RTL or at the gate-

level indicating the mode of an operation

ENABLE Assigned to a signal of an IP at the RTL or at the gate-

level used to perform an enable operation

HANDSHAKING Assigned to a signal of an IP at the RTL or at the gate-

level used in communication by a handshaking operation

SHIFT Assigned to a signal of an IP at the RTL or at the gate-

level indicating that a shift operation

TMS Assigned to a test mode select signal of a JTAG system at

the RTL or at the gate-level

TRST Assigned to a test reset signal of a JTAG system at the

RTL or at the gate-level

INSTRUCTION A general form of instruction assets and should only

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable

SYSTEM_CONTROL A general form of system control assets and should only

assigned to a signal of an IP at the RTL or at the gate-

level when a more specific asset is not applicable

9

 Table 4 Specific system control external asset category

Specific System Control External

Asset

Description

MEMORY_OP Assigned to a signal of an IP at the RTL or at the

gate-level used to perform an operation within a

memory unit

DATA_OP Assigned to a signal of an IP at the RTL or at the

gate-level used to perform an operation within a

data processing unit

INTERRUPT_OP Assigned to a signal of an IP at the RTL or at the

gate-level used to perform an operation within an

interrupt unit

PROGRAM_COUNTER_OP Assigned to a signal of an IP at the RTL or at the

gate-level used to perform an operation within a

program counter unit

INTERRUPT_CONTROL Assigned to a signal of an IP at the RTL or at the

gate-level used as system control within an

interrupt unit

PERIPHERAL_CONTROL Assigned to a signal of an IP at the RTL or at the

gate-level used as system control within a

peripheral system

REGISTER_FILE_CONTROL Assigned to a signal of an IP at the RTL or at the

gate-level used as system control within a register

file unit

COMMUNICATION_CONTROL Assigned to a signal used as system control within

a communication unit

COMMUNICATION_PROTOCOL Assigned to a signal of an IP at the RTL or at the

gate-level used to handle a protocol within a

communication unit

10

Table 5 Miscellaneous external asset category

Miscellaneous External Asset Description

CRITICAL Assigned to a signal of an IP at the RTL or at the gate-

level that could lead to harm if an attacker gained

possession of it

COMPONENT Assigned to a signal of an IP at the RTL or at the gate-

level referring to another component of a system

ADDRESS_SENSITIVE Assigned to a signal of an IP at the RTL or at the gate-

level indicating the address in a memory unit

CONSTANT Assigned to a signal of an IP at the RTL or at the gate-

level indicating a value to be used as a constant

KEY Assigned to a signal of an IP at the RTL or at the gate-

level using as an encryption key in an encryption unit

REGISTER Assigned to a signal of an IP at the RTL or at the gate-

level using to handle data to in a register file unit

PROGRAM_COUNTER Assigned to a signal of an IP at the RTL or at the gate-

level indicating the value being manipulated within a

program counter

ERROR_HANDLING Assigned to a signal of an IP at the RTL or at the gate-

level performing error handling

EXCEPTION_HANDLING Assigned to a signal of an IP at the RTL or at the gate-

level performing error handling

STATE Assigned to a signal of an IP at the RTL or at the gate-

level tracking the state of system or FSM

11

2.2.3 Internal Asset

Internal assets are assigned to mostly but not exclusively internal signals of a soft IP. Some

internal assets developed in [18] are assigned to signals automatically. Other internal assets

(OBSERVABLE, CONTROLLABLE and PROTECTED) developed in [19] are assigned to

internal signals manually due to those signals’ unique contribution. The current version of the

Structural Checking tool utilized these internal assets to create complete asset patterns. Table 6

Table 6 Internal assets and their descriptions

Asset Description

PROCESS_SENSITIVE Assigned to a signal in a RTL process sensitivity

list

PROCESS_OPERATION_SENSITIVE Assigned to a signal being manipulated in a RTL

process block

CONDITIONAL_DRIVING Assigned to a signal in a RTL conditional

statement or a conditional statement of a MUX or

a DFF model at the gate-level

CONDITIONAL_DRIVEN Assigned to a signal being modified in a RTL

conditional block or a conditional block of a

MUX or a DFF model at the gate-level

CONCURRENT_DRIVING Assigned to a signal driving another signal in a

concurrent statement of both RTL and gate-level

CONCURRENT_DRIVEN Assigned to a signal being driven by another

signal in a concurrent statement of both RTL and

gate-level

CC_OPERATION_SENSITIE Assigned to a signal being driven by two or more

signals and logic operations of both RTL and

gate-level

OBSERVABLE Assigned to an observable signal under scan/test

mode at the gate-level

CONTROLLABLE Assigned to a controllable signal under scan/test

mode at the gate-level

PROTECTED Assigned to a signal that is protected from data

leakage at the gate-level

12

shows a list of internal assets and their descriptions.

2.2.4 Asset Filtering

The idea of asset filtering is comparable to the taint analysis method introduced in [20].

The taint value propagates from the input bit to the dependent output bit of a logic gate in the

gate-level netlist. Similarly, the external assets assigned to primary inputs are filtered to next

signal connections until they reach the dependent primary outputs. Then, the external assets

previously assigned to primary outputs are filtered backward to the primary inputs that they are

dependent on. This filtering mechanism was firstly introduced in [15]. The filtering rule for the

internal assets is slightly different form that of the external asset. The internal assets in the

process category propagate within the process block boundary of the VHDL code. Similarly, the

conditional internal asset category propagates within the conditional block boundary of the

VHDL code. Finally, the internal assets in the concurrent category follow the same filtering rule

as external asset filtering. The entire filtering process operates at both RTL and gate-level.

2.2.5 Asset Trace and Asset Pattern

Previously introduced in [16], the set of assets assigned to a specific signal is termed an

asset trace. The complete collection of asset traces of a design is termed an asset pattern. Asset

patterns are generated by asset filtering process and are important for functionality matching.

After assets are assigned to the signals, they are filtered along direct connections to populate the

complete set of signals with a collection of assets. The asset pattern is an essential element of the

design functionality determination.

An asset pattern includes 6 characteristics. Input port signal external asset characteristic is

denoted as (>). Input port signal internal asset characteristic is denoted as (>*). Output port

signal external asset characteristic is denoted as (<). Output port signal internal asset

13

characteristic is denoted as (<*). Internal signal external asset characteristic is denoted as (/).

Internal signal internal asset characteristic is denoted as (/).

2.3 Functionality

Every soft IP analyzed by the Structural Checking methodology is given a functionality

that represents its role in a system. During the formation of the GRL, functionalities were

manually assigned to trusted designs based on previous knowledge of that design. However, the

matched functionality is automatically assigned to the unknown design by the Structural

Checking tool when performing GRL matching. Table 7 lists several possible functionalities that

a design could be assigned to, which are categorized into whitelist and blacklist. The whitelist

category contains designs that are known to be Trojan-free, while the blacklist category contains

Trojan-infested designs. Matching a soft IP to a blacklist functionality is for Trojan detection and

will be addressed in detail in a later section.

Table 7 Whitelist and blacklist functionality

Whitelist Functionality Blacklist Functionality

SHIFT_REGISTER TROJAN_ENCRYPTION_UNIT

INTERRUPT_UNIT TROJAN_TRIGGER

COMMUNICATION TROJAN_COMMUNICATION

ENCRYPTION_UNIT TROJAN_SHIFT_REGISTER

COMPUTATIONAL

TIMING

CONTROL_GENERATION

REGISTER_FILE

PERIPHERAL

DECODER_ENCODER

DEBUG_INTERFACE

TOP_CONTROLLER

14

2.4 Golden Reference Library

An asset of a signal is an essential building block for an asset pattern and the Golden

Reference Library. The Golden Reference Library (GRL) is another foundational element of the

Structural Checking methodology, which is originated from [16]. The initial entries of GRL are

various small designs collected from OpenCores [21] and Trust-Hub [22]. Since they are small,

exhaustive verification is feasible. More entries are added from in-house designs. SC is then

applied to generate asset patterns for all entries and functionalities are assigned manually.

The GRL contains many trusted GRL files/entries. Each GRL file/entry has a functionality,

which represents the purpose of the associated soft IP, and an asset pattern. GRL files

representing the whole collection of functionalities as defined in previous section. Figure 3 is an

Entity simple_alu:

 28 port signals

 24 IntraSignals

 4 Port Signal Vectors

 3 Intra-Signal Vectors

 0 SubInstances

 1 Processes

Functionality: COMPUTATIONAL

Secondary Func: NON_SEQUENTIAL

Number of Input bits: 20

Number of Output bits: 8

>[SYSTEM_TIMING]

>*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING]

>[DATA_COMPUTATIONAL]

>[DATA_OP]

>*[CONDITIONAL_DRIVING]

<[DATA_COMPUTATIONAL]

<*[CONCURRENT_DRIVEN]

/[DATA_COMPUTATIONAL]

/*[CONCURRENT_DRIVEN]

/*[CONDITIONAL_DRIVEN, PROCESS_OPERATION_SENSITIVE]

Figure 3 A GRL file of a RTL design

15

example of a GRL file where simple_alu is a RTL design. Figure 4 is another example where

modmult_MPWID16_1_DW01_sub_2 is a gate-level netlist. After the previous work discussed in

[16] and [17], the GRL of Structural Checking has been substantially updated to a total of 152

files/entries, which are the asset patterns of distinctive designs with and without Trojan inserted.

Note that these entries already consider the situation where a port signal may be assigned

different assets.

Entity modmult_MPWID16_1_DW01_sub_2:

 56 port signals

 35 IntraSignals

 3 Port Signal Vectors

 0 Intra-Signal Vectors

 37 SubInstances

 0 Processes

Functionality: COMPUTATIONAL

Secondary Func: NON_SEQUENTIAL

Number of Input bits: 37

Number of Output bits: 19

<[DATA_COMPUTATIONAL]

>[DATA_MEMORY, DATA_COMPUTATIONAL]

>[DATA_COMPUTATIONAL]

<[CONSTANT]

>[CONSTANT]

/[DATA_COMPUTATIONAL]

/[DATA_COMPUTATIONAL, DATA_MEMORY]

Figure 4 A GRL file/entry of a gate-level netlist

16

3 METHODOLOGY AND IMPLEMENTATION

3.1 Asset Pattern Matching

3.1.1 Basic asset trace matching

 After asset filtering, the target IP (X) has six asset pattern characteristics as outlined in

Section 2.2.5, the same as a GRL entry. These characteristics are compared in pairs. For

example, the input port signal external asset trace of the unknown IP is compared to the same

characteristic of each GRL entry. The matching result is the percentage of the identical portion

between two characteristics. The same process is applied to other characteristics. Several

examples are included in Table 8to clarify the asset pattern matching methodology. In Table 8,

case number 1 is the 100% match because the asset traces of both the GRL entry and the

unknown IP are the same. In case number 2, 0% is the result of two completely different asset

traces. Case number 3 shows the result of 67% because two out of three assets in the unknown

IP’s asset trace are identical to the asset trace of the GRL entry. The last case presents the

scenario where one out of the two assets is the same on both asset traces, so the result yields

50%. If each case represents an asset pattern characteristic, the final matching result is 54.25% as

the average of the four cases. However, in a case that a soft IP does not have any internal signal,

the internal signal characteristics are empty. In the case that the same characteristic of both the

GRL entry and the unknown IP is empty, the match percentage of the empty characteristics will

be left out of the final matching result.

Table 8 Example of basic asset trace matching

Case Unknown Design Asset Traces GRL Entry Asset Traces Match

1 DATA_MEMORY, CRITICAL DATA_ MEMORY, CRITICAL 100%

2 DATA_ MEMORY, STATUS SYSTEM_CONTROL 0%

3 DATA_ MEMORY, STATE DATA_ MEMORY, STATE,

SYSTEM_CONTROL

67%

4 DATA_ SENSITIVE, RESET DATA_ SENSITIVE, SYSTEM_TIMING 50%

17

3.1.2 Partial asset trace matching

The partial asset trace matching algorithm was developed to gain more precisions in

matching assets between two traces of the same characteristic. This is due to assets in the two

asset traces often originate from the same nature. An asset that represents a specific role is

considered as 50% match to an asset that represents a general role in the same asset category. For

instance, the match result of a SYSTEM_CONTROL asset and a CLOCK_CONTROL asset is

50% because they are listed in the same system control category. If the basic matching algorithm

was applied in this case, the result would yield 0%, which would not present the similar nature of

the two assets.

 For further explanation, Table 9 below illustrates different scenarios where partial

matching is applied. First, as previously stated, case number 1 has the match of 50% because the

two assets are in the same asset category. Secondly, in case number 2, 100% match is from the

DATA_MEMORY asset of both traces while the DATA_COMPUTATIONAL only appears in one

trace, which yields the match result of that asset 0%. Therefore, the average of 100% and 0% is

50%. In case number 3, even though both DATA_MEMORY and DATA_ENCRYPTION are in the

same data category, they yield the result of 0% because those two assets represent two specific

data assets. Case number 4 is the combination of case number 1 and 2 where SET asset gives

100% match, as well as, RESET and SYSTEM_CONTROL give 50% match. Thus, the result of

Table 9 Examples of partial asset trace matching

Case Unknown Design Asset Traces GRL Entry Asset Traces Match

1 SYSTEM_CONTROL RESET 50%

2 DATA_ MEMORY,

DATA_COMPUTATIONAL

DATA_ MEMORY 50%

3 DATA_ MEMORY DATA_ENCRYPTION 0%

4 RESET, SET SET, SYSTEM_CONTROL 75%

5 RESET SET, SYSTEM_CONTROL 25%

18

case number 4 is 75%. Finally, in case number 5, since the RESET asset is a 50% partial match to

the SYSTEM_CONTROL asset, and no asset reflects 0% to SET asset. When the order of

matching reverses, the RESET asset is matched with the SET asset. This causes 0% matched. No

asset reflects the SYSTEM_CONTROL asset which leads to 0% match. Thus, the average is 0%.

Since algorithm prioritizes the highest percentage match, case number 5 has 25% match.

3.1.3 Complete asset pattern matching

Once all asset pattern characteristics of the unknown IP have been matched to the

corresponding asset pattern characteristics of the GRL entry, a final match value is determined.

The final match value is the main factor for the functionality of the matched GRL entry to be

assigned to the unknown IP. Even though each asset pattern characteristic contributes to the

overall match value, not all characteristics are weighted equally. The weighting for each

characteristic is performed experimentally by first recognizing that there are multiple

implementations representing the same functionality. The internal characteristics of a

functionality, which includes all internal asset characteristics along with the external assets

filtered to internal signals, have the potential to be vastly different from another design with the

same functionality. For this reason, the asset pattern characteristics related to internal

characteristics are weighted less than

the port signal external asset

characteristics. In addition, the

experimental results show the

external asset pattern characteristics

have a greater influence in the

functionality determination than the

Table 10 Asset pattern characteristic weight

Asset Pattern Characteristic Weight

input port signal external asset 3×

output port signal external asset 3×

internal signal external asset 1×

input port signal internal asset 1×

output port signal internal asset 1×

internal signal internal asset 1×

19

internal characteristics. Hence, they have a higher weight. Table 10 shows the weighting applied

to the associated characteristic. If new characteristics are added in the future, the weight ratio

will be adjusted. After applying these weights to the asset pattern characteristics, a final highest

match value is determined for each GRL entry to the unknown IP. The functionality of the GRL

entity with the highest match value is then assigned to the unknown IP.

3.1.4 Functionality matching

To aid in the asset pattern matching algorithm, a functionality determination algorithm was

developed to precisely identify the functionality of an unknown IP. The functionality-specific

external asset is considered as the major indication of the potential functionality for the unknown

IP. Functionality-specific assets are assets that have a clear link to a functionality category as

defined previously. Any general-purpose assets are disregarded for consideration in this

matching method. Thus, for any unknown IP containing a functionality-specific external asset,

the GRL entries with the corresponding functionality are weighted 1.5 times higher than the ones

that do not. This weight number is calculated based on observation experiments throughout

testing various IPs collect from open sources [21] and [22]. The weight ratio can be adjusted if

the future experiments suggest differently. For example, if the DATA_ENCRYPTION asset is

found in an input port signal external asset pattern of the unknown IP, the percentage of the asset

pattern that contains DATA_ENCRYPTION in all GRL entries of encryption unit functionality is

multiplied by 1.5. Other asset pattern characteristics receive the weight of 1 if they do not have

any functionality-specific external assets.

3.2 Enhanced Golden Reference Matching for both RTL and Gate-level IPs

The concept of matching an unknown asset pattern to known asset patterns in GRL is

termed GR matching. The enhanced GR matching not only addresses port mapping issues, but

20

also ensures matched results coherent. The enhanced technique is categorized into two states

which are the matching state and the evaluating state. The matching state is implemented as

matching a top-level pattern and sub-level patterns of an unknown design to known patterns in a

GRL. While the evaluating state verifies the top-level and the sub-level matched results.

The matching state analyzes either a RTL or a gate-level netlist which has one top-level

entity and many sub-level entities. For matching state to operate, GR files/entries are divided into

the top-level GRL and the sub-level GRL. Then, SC compares the top-level asset pattern of the

unknown IP (denoted as X) to each entry of the top-level GRL. SC applies all the rules outlined

in Section 3.1 to find the highest percentage matching (HPM) result. The functionality of the top-

Start Matching

Process

Top-level?NO

Evaluating

Results

End

YES

Matching X s sub-

level pattern to sub-

level GRL

Matching X s top-

level pattern to top-

level GRL

Found the HPMFound the HPM

Figure 5 A simplified flow chart for the matching state

21

level GR entry which has the HPM is assigned to the top-level asset pattern of X.

Simultaneously, SC compares each of X’s sub-level patterns to all entries of the sub-level GRL.

The same rules in Section 3.1 are applied. All the HPM results and assigned functionalities of the

sub-level patterns are recorded for the next evaluating state. Figure 5 is a simplified flow chart

for the matching state.

The current version of the evaluating state only applies to gate-level netlist analysis. SC

gives level 0 to the top-level entity of X, and the maximum level to the lowest level entity of X.

Since X is a gate-level netlist, X’s standard logic gates usually have the maximum level. The

algorithm of the evaluating state is illustrated in

Figure 6. The evaluating state operates based on the total hierarchy depth of X. If the

hierarchy is less than 2, X is a flattened netlist. SC presents users the HPM results, other possible

matched results and matched functionalities from both the top-level GRL and the sub-level GRL.

If the hierarchy ranges from 2 to 4, X is a simple circuitry. Therefore, SC verifies the matched

functionalities of X’s top-level and sub-level are the same. However, there are exceptions for

functionalities in encryption category (ENCRYPTION_UNIT,

TROJAN_ENCRYPTION_UNIT), communication category (COMMUNICATION,

TROJAN_COMMUNICATION) and generic category (COMPUTATIONAL,

TROJAN_TRIGGER). When matching top-level and sub-level patterns of a gate-level netlist,

SC does not match standard logic gate patterns because these patterns do not provide valuable

information to gate-level netlists. When matched functionalities fall in a combination of

encryption and generic category or a combination of communication and generic category, those

functionalities are considered valid. Otherwise, SC raise a flag that the matched functionalities

are invalid. Finally, the hierarchy is equal or greater than 5, X is a complex circuitry. SC notifies

users to analyze the sub-level entity of X prior to proceed the full analysis from the top-level

22

entity. Only if X’s top-level functionality is TOP_CONTROLLER; and X’s sub-level

functionalities consist of 2 or more different functionalities. SC deems the matches results as

valid. Examples in Section 4.2 further explain the methodology.

Start Evaluating Process

Max Depth < 2

NO

End

YES

Max Depth < 5

NO

Max Depth >= 5

YES

YES

A functional-specific netlist

The top-level functionality == the sub-level

functionality

A flattened netlist

Present the best result

Process sub-level

yet?

YES

NO

(Top-level functionality = TOP_CONTROLLER)

AND (Minimum of 2 different sub-level

functionalities)

Process sub-level

components

Figure 6 A simplified diagram of the evaluating state

23

3.3 Standard Logic Gate Model and Netlist Pre-processing for Structural Checking

The standard logic gate library is important while using SC to analyze a gate-level netlist.

This naming convention of this dissertation work is based on the IBM 130nm 8RF standard cell

library because this library is used in the synthesis process of all testing IPs. Most standard logic

gates are modeled in concurrent statements. Multiplexer (MUX) cells and flip flops (DFFs) are

modeled with process statements and conditional statements. Each standard logic gate has

capitalized name such as AND, OR, XOR, etc., followed with the number of inputs. The inputs

are named alphabetically and capitalized (e.g., A, B and C) and the output is named Z. Special

cells such as DFF, DFFSR, SDFFAR, LATSR, and MUX have different primary port names. For

flip flops and latches, D is data input; RN or RSTB is reset-bar input; S is set input; and Q and

QBAR are data output and inverse data output. Figure 7 is an example of standard logic gate

AND2. Figure 8 is an example of a DFFSR.

A soft IP gate-level netlist often includes many entities. All entities are grouped in a single

VHDL file due to the synthesis tool default format while SC parses an entity in a VHDL file

individually. Hence, a Python script named GateSizeRemoval_EntityPartition is developed to

partition a synthesized netlist into individual VHDL files. The name of each VHDL file is based

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity AND2 is

 port(Z : out STD_ULOGIC;

 A : in STD_ULOGIC;

 B : in STD_ULOGIC);

end AND2;

architecture ARCH_FUNC of AND2 is

begin

 Z <= (B)AND(A);

end ARCH_FUNC;

Figure 7 An AND2 standard logic gate model for SC

24

on the entity’s name in the file content. In addition, the script removes all sizes of standard logic

gates and changes BUFFER to BUFFER1. Changing buffer gate name is necessary because SC’s

parser considers BUFFER as a compiling error.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity DFFSR is

 port(

 Q : out STD_ULOGIC;

 QBAR : out STD_ULOGIC;

 CLK : in STD_ULOGIC;

 D : in STD_ULOGIC;

 RN : in STD_ULOGIC;

 S : in STD_ULOGIC);

end DFFSR;

ARCHITECTURE BEHAV OF DFFSR IS

 BEGIN

 FF: PROCESS(RN , S , CLK)

 BEGIN

 if RN = '0' then

 Q <= '0';

 QBAR <= '1';

 elsif S = '1' then

 Q <= '1';

 QBAR <= '0';

 elsif CLK'event and CLK = '1' then

 Q <= D;

 QBAR <= NOT D;

 end if;

 END PROCESS;

 END;
Figure 8 A DFFSR standard cell for SC

25

4 RESULT AND ANALYSIS

4.1 Trojan Detection Result for Gate-level versus RTL

The GR matching in [16] assigns TOP_LEVEL functionality to the top-level entity of IPs

when encountering port-map. It does not perform GR matching at the top-level entity. Examples

such as RS232-T400 and BasicRSA-T100 show that it is possible to insert Trojan payload at the

top-level of an IP. Hence, enhanced GR matching solves issues for both RTL and gate-level

analysis.

There are 38 gate-level netlists and 22 RTL IPs used to test the enhanced GR matching

methodology. All IPs used for testing are obtained from both Trust-Hub [22] and OpenCores

[21]. Testing IPs used for both RTL and gate-level methodology are mostly encryption cores,

UART cores and microcontrollers with and without hardware Trojan inserted. Hardware Trojan

payloads from testing IPs are denial-of-service and key/data leakage. Table 12 shows a list of IPs

which have their asset patterns and functionalities added to the GRL. Table 13 shows a list of IPs

used to challenge the GR matching for RTL. As shown in Table 13, the first 12 IPs are correctly

identified as Trojan infested and the last 4 IPs are Trojan free. Even though SC detects Trojan

from RS232-T100 correctly, it identifies another entity within RS232-T100 incorrectly as Trojan

infested. Therefore, the false positive of the GR matching for RTL is 6.25%.

Comparing to the GR matching for RTL IPs, the GR matching for gate-level IPs improves

with a false positive rate of 3.57%. The number of IPs used to challenge the new gate-level GR

matching is 27 as shown in Table 14. The first 22 IPs are Trojan infested while the last 5 IPs are

Trojan free. Table 11 includes a list of IPs whose asset patterns and functionalities are added to

the top-level GRL and the sub-level GRL correspondently. Due to gate-level netlists have simple

syntaxes, SC is able to analyze more synthesized IPs from both Trust-Hub [22] and OpenCores

26

[21]. SC identifies all Trojan infested and Trojan free IPs in Table 14 correctly using the

enhanced GR matching methodology outlined in Section 3.2. However, SC incorrectly identified

x_mit entity of RS232-T800 contained Trojan while it does not. Hence, it yields 3.57% false

positive. SC operates on a desktop 3.6GHz CPU with 16GB RAM. Overall, the enhanced GR

matching methodology provides a centralized whitelist and blacklist database within the GRL.

The end-users can run a quick analysis (15 – 30 minutes) to eliminate the possible presents of

these known Trojans.

Table 11 Gate-level IPs in the GRL

IPs Name Trojan Infested

BasicRSA-T300 Yes

RS232-T100 Yes

RS232-T200 Yes

RS232-T400 Yes

RS232-T600 Yes

AES-T100 Yes

AES-T300 Yes

AES-T1800 Yes

AES-T2000 Yes

debug_interface No

MSP430 No

Table 12 RTL IPs in to the GRL

IPs Name Trojan Infest

BasicRSA-T300 Yes

RS232-T200 Yes

RS232-T500 Yes

RS232-T600 Yes

RS232-T800 Yes

AES-T2000 Yes

27

Table 13 A list of IPs used to verify the RTL methodology

IPs Name Trojan

Infested Found

AES-T600 1 1

AES-T1800 1 1

BasicRSA-T100 1 1

BasicRSA-T200 1 1

BasicRSA-T400 1 1

RS232-T100 1 1

RS232-T300 1 1

RS232-T600 1 1

RS232-T700 1 1

RS232-T900 1 1

RS232-T901 1 1

Microcontroller-c16 1 1

RSA - Trojan Free 0 0

AES - Trojan Free 0 0

RS232 - Trojan Free 0 0

RegisterFile - Trojan Free 0 0

28

Table 14 A list of IPs used to verify the gate-level methodology

IPs Name Number of Trojan

Infested Found

BasicRSA-T100 1 1

BasicRSA-T200 1 1

BasicRSA-T400 1 1

RS232-T300 1 1

RS232-T500 1 1

RS232-T700 1 1

RS232-T800 1 1

RS232-T900 1 1

RS232-T901 1 1

AES-T200 1 1

AES-T500 1 1

AES-T600 1 1

AES-T700 1 1

AES-T800 1 1

AES-T900 1 1

AES-T1000 1 1

AES-T1100 1 1

AES-T1200 1 1

AES-T1300 1 1

AES-T1400 1 1

AES-T1500 1 1

AES-T1900 1 1

OpenJTAG 0 0

Microcontroller-c16 – Trojan free 0 0

RSA - Trojan free 0 0

AES - Trojan free 0 0

RS232 - Trojan free 0 0

29

4.2 Examples

4.2.1 Crypto core AES-T1900

The benchmark AES-T1900 obtained from Trust-Hub [22] is used to demonstrate the

detection of Trojans using SC. AES-T1900 originally is a RTL 128-bit encryption core. It is

infested with a cipher key leakage Trojan. AES-T1900 is synthesized with a reserved hierarchy.

The Python script GateSizeRemoval_EntityPartition (Section 3.3) is executed to remove gate

sizes and partition AES-T1900 to individual entity files. After the parsing process, assets are

assigned to AES-T1900 primary port signals. Table 15 is the asset assignment for AES-T1900.

Following the assignment process, the filtering process generates one top-level and sub-level

asset patterns for AES-T1900. Those patterns are then used to match to other patterns in the top-

level and the sub-level GRL accordingly. In this case, the functionally of top-level AES-T1900 is

correctly identified as ENCRYPTION_UNIT. Sub-level entities of AES-T1900 (aes_128,

expand_key_128, etc.) are correctly identified as ENCRYPTION_UNIT. TSC and

TSC_DW01_add_0 are correctly identified as TROJAN_ENCRYPTION_UNIT and

TROJAN_TRIGGER, respectively. Figure 9 is a screenshot of the result from SC’s log screen.

The total analysis time takes 15 minutes and 27 second on average on a 3.6GHz processor PC

with 16GB of RAM.

Table 15 Asset assignment for AES-T1900

Signals Assets

clk SYSTEM_TIMING

key KEY

out_port DATA_ENCRYPTION

rst RESET

state STATE

30

4.2.2 Communication UART

The non-flattened uart_baugen is a sub-level entity of Trojan-free microcontroller c16

obtained from OpenCores [21]. uart_baugen also has sub-level entities such as uart, UART_TX,

and UART_RX. The maximum depth hierarchy of uart_baugen is 3. Based on the methodology

in Section 3.2, the valid matched results should be COMMUNICATION. Table 16 is the asset

assignment for uart_baugen. After SC’s parsing, asset assigning, asset filtering and GR

matching, uart_baugen has the HPM as the top-level uart of RS323-T100. uart of RS323-T100

has a COMMUNICATION functionality, thus uart_baugen is assigned the COMMUNICATION

functionality. Sub-level entities of uart_baugen (uart, UART_TX and UART_RX) have the HPM

as the sub-level u_rec of RS232-T600. Since u_rec of RS232-T600 has COMMUNICATION

functionality, uart, UART_TX and UART_RX have COMMUNICATION functionality. Note that

u_rec of RS232-T100 and u_xmit of RS232-T600 are Trojan infested, the other entities of those

RS232 are Trojan free. Hence, in this example, the matching of uart_baugen is correct.

The same uart_baugen is flattened. Its maximum hierarchy is 1. The flattened uart_baugen

is assigned the same set of assets in Table 16 after the SC’s parsing process. Applying the

Figure 9 AES-T1900 matched result

31

methodology in Section 3.2, SC matches the only top-level uart_baugen to both top-level GRL

and sub-level GRL. The flattened uart_baugen has the HPM as the uart entity of the RS232-

T100 which has COMMUNICATION functionality.

4.2.3 Microcontroller c16

Microcontroller c16, is a Trojan free RTL IP. It is synthesized and used to challenge the

enhanced GR matching. The maximum depth of c16 is 5 when cpu is level 0. Figure 10 is a

simplified diagram of c16. Since the maximum level is 5, the analysis needs to start with entities

that have lower maximum depth. Therefore, alu8, uart_baugen, memory and opcode_decoder

are analyzed first. However, memory and opcode_decoder sub-level entities are RTL designs

because they are not synthesizable. SC successfully determines memory and opcode_decoder as

REGISTER_FILE and DECODER_ENCODER, respectively. Then, alu8 is identified as

COMPUTATIONAL, and uart_baugen is identified as COMMUNICATION (Section 4.2.2).

After all lower levels of cpu are analyzed, SC starts the analysis from cpu entity, the top-level.

cpu’s asset pattern is correctly recognized as TOP_CONTROLLER. Table 17 is a list of assets

assigned to the primary port signal of cpu. All conditions such as TOP_CONTROLLER

functionality for top-level pattern and more than two different functionalities for sub-level

patterns are satisfied. Hence, the matching results in this example are valid. If the sub-level

entities are not analyzed prior to the top-level entity, SC incorrectly matches alu8 and

uart_baugen to a potential REGISTER_FILE or TIMING functionality.

32

Table 17 Asset assignment for the cpu of microcontroller c16

Signals Assets

CLK_I SYSTEM_TIMING

SER_IN DATA_SENSITIVE

SER_OUT DATA_SENSITIVE

SWITCH PERIPHERAL_CONTROL

TEMP_CE READY

TEMP_SCLK SUBSYSTEM_TIMING

TEMP_SPI DATA_PERIPHERAL, DATA_COMMUNICATION

TEMP_SPO DATA_PERIPHERAL, DATA_COMMUNICATION

XM_ADR ADDRESS_SENSITIVE

XM_CE READY

XM_RDAT DATA_MEMORY

XM_WDAT DATA_MEMORY

XM_WE READ, WRITE

 Table 16 Asset assignment for the uart_baugen of

microcontroller c16

Signals Asset

CLK_I SYSTEM_TIMING

RST_I RESET

RD READ

RX_DATA DATA_COMMUNICATION

RX_READY COMMUNICATION_STATUS

RX_SERIN DATA_COMMUNICATION

TX_BUSY COMMUNICATION_STAUS

TX_DATA DATA_COMMUNICATION

TX_SEROUT DATA_COMMUNICATION

WR WRITE

33

Cpu

Cpu_engineUart_baugen

Uart

Uart_rxUart_tx

Data_core
Opcode_

decoder
Memory

Alu_DW0

1_add_0

Standard

Logic

Standard

Logic

alu8

Standard

Logic

Figure 10 c16 hierachy diagram

34

5 ASSET APPLICATION IN DATA FLOW TRACKING

5.1 Introduction

Data flow tracking using SC published in [19] is independent from GR matching

methodology. The technique uses asset concepts and asset filtering in SC as building blocks to

uncover possible critical data leakage in scan-chain gate-level netlist. Due to static analysis

nature of SC, SC does not take much time to analyze a scan-chain netlist. At the same time, SC

raise awareness to users about suspicious signals, confidential data flow and critical data bypass.

5.2 Data Flow Analysis

5.2.1 Malicious Signal Detection

The goal of malicious signal detection is discovering suspicious internal signals. Usually, a

system is operated by critical control signals. If these critical signals are controlled/driven by

other malicious internal signals, the system is compromised. The detection technique is

A suspicious signal with M/SE asset: n500

The instance has observable net: valid_out_reg

The observable signal leaks a KEY is : Q

The instance has observable net: valid_out_reg

The observable signal leaks a KEY is : QN

The instance has observable net: data_out_reg_3_inst

The observable signal leaks a KEY is : Q

The instance has observable net: data_out_reg_3_inst

The observable signal leaks a KEY is : QN

The instance has observable net: data_out_reg_2_inst

The observable signal leaks a KEY is : Q

The instance has observable net: data_out_reg_2_inst

The observable signal leaks a KEY is : QN

The instance has observable net: data_out_reg_1_inst

The observable signal leaks a KEY is : Q

The instance has observable net: data_out_reg_0_inst

The observable signal leaks a KEY is : QN

The instance has observable net: data_out_reg_0_inst

The observable signal leaks a KEY is : QN

Figure 11 A sample report of malicious signal detection and

confidential data tracking

35

implemented in SC and is illustrated in Figure 12. After the parsing process and asset assigning

process, SC performs the detection step. First, SC trace signals (Bs) of the target scan-chain

netlist are assigned with TMS assets, previously preferred as SCAN_ENABLE assets. If those

signals (Bs) are driven/assigned by other signals (Cs), SC continues to examine Cs if they

contain any asset within system control category (Table 3). If this is not true, SC raises a flag to

alert users about Cs. For example, scan_enable signal and internal signal n500 signal are inputs

of an AND2 gate. If n500 is assigned by a constant ‘1’, logically scan_enable signal is not

affected by n500. However, the presence of an extra logic gate and an extra signal increases load

capacitance and can potentially lead to system malfunction. On the other hand, if n500 is

driven/assigned by a reset signal with a RESET asset through an inverter, then n500 is not

suspicious. An output example of the malicious signal detection is highlighted in Figure 11.

36

Is it a primary port

 or assigned

 by a primary port?

Scenario 1

Start

YES
Next scenario

NO

Does it have an asset

 in control category?

YES

NO

Raise Flag

A mode/scan_enable

signal

Figure 12 Malicious signal detection flow chart

5.2.2 Confidential Data Tracking

The goal of confidential data tracking technique is to warn users about the observability of

the secret data in a scan-chain system. Cypher key is assumed as a type of confidential data;

therefore, cypher key signals are assigned with the KEY asset. The scan-in input and the scan-

out output of a scan cell are considered as a controllable net and an observable net, respectively.

Thus, the scan-in input is assigned with the CONTROLLABLE asset; and the scan-out output is

37

assigned with the OBSERVABLE asset. During the asset filtering, SC keeps track of where KEY

asset is passed to. If the KEY asset is filtered to a net that has an OBSERVABLE asset, SC raises

a flag to that net. Figure 11 is an example when SC reports to users about the secret key leakage

through observable nets. However, if the observable net also has PROTECTED asset, SC does

not raise a flag. The confidential data tracking technique is developed based on an assumption:

the end-users who develop a scan-chain system with an integrated encryption unit have

knowledge of shielding observable nets from attackers. Figure 13 is a flow chart of confidential

data tracking technique.

Are those signals observable?

Scenario 2

Start

NO
Next scenario

YES

Do those have

PROTECTED asset?

YES

NO

Raise Flag

cipher_key

signals

Figure 13 A flow chart of confidential data tracking

38

5.2.3 Critical Data Bypass Checking

Critical data bypass checking assumes that attackers circumvent critical data away from

trusted IPs. In other words, if an end-user integrates his/her trusted encryption core to a 3rd IP, it

is important for the critical data go through his/her encryption core. Therefore, it is necessary for

the end-user to know all possible data paths. For the critical data bypass checking to operate,

users must assign PROTECTED asset to all primary port signals of trusted entities. Then, SC

reports all possible data paths which connect to trusted entities. In case users do not assign

PROTECTED asset to any signal, SC reports all possible data paths which contain observable

nets. Figure 14 is a portion of the data path report SC generates using critical data bypass

checking. The report includes instances and signal along each data path.

A data path of instances: [Top_Level_Instance, U4, U3, data_out_reg_0_inst]

The data signals path: [data_in(0), IN2, Q, n800, IN4, n670, D, <data_out_0_port>]

A data path of instances: [Top_Level_Instance, U6, U5, data_out_reg_1_inst]

The data signals path: [data_in(1), IN2, Q, n799, IN4, n668, D, <data_out_1_port>]

A data path of instances: [Top_Level_Instance, U10, U9, data_out_reg_3_inst]

The data signals path: [data_in(3), IN2, Q, n797, IN4, n664, D, <data_out_3_port>]

A data path of instances: [Top_Level_Instance, U8, U7, data_out_reg_2_inst]

The data signals path: [data_in(2), Q, n798, IN4, n666, D, <data_out_2_port>]

A data path of instances: [Top_Level_Instance, data_out_reg_0_inst]

The data signals path: [test_si, SI, <Q>, <data_out_0_port>]

 Figure 14 A portion of data path report

39

6 UPDATED STRUCTURAL CHECKING

SC is implemented in Java programming language. SC has a graphical user interface for

users to navigate through the tool. The home screen is shown in Figure 15. The left side of

Figure 15 shows five steps: design parsing, external and internal asset assignment, filtering –

matching – functionality analysis, and Trojan detection. The right side is the system log screen to

display extra information for users. The round color dot is an indication of each step. Red dot

means that the previous step is not complete. Yellow dot means the step is in operation. Finally,

green dot indicates the step is complete. Step one – design parsing: users navigate the tool to the

needed analysis soft IP through a browse button. Parse design button allows users to start the

parsing process. The yellow dot of step 1 turns green as shown in Figure 16 as soon as step 1 is

finished. Step two – external asset assignments: users have the option of assigning external assets

manually for the first time or assigning external asset from file for repeated analysis. If users

wish to assign external assets manually, another window of SC appears as Figure 17 to let users

choose signals and assign assets. During this step, users are allowed to select multiple signals to

assign or remove assets using highlighted assign asset and remove asset buttons in Figure 17,

respectively. Figure 18 reflects the GUI of available external assets in SC. Step three – internal

asset assignments: users assigns internal assets appropriately to internal signals through similar

interfaces (Figure 19 and Figure 20) as step two. Step four – filtering, matching and functionality

analysis: SC first propagates assets from port signals and internal signals to generate asset pattern

for the unknown IP. Then, SC compares the unknown pattern to known patterns in the GRL and

determines the functionality for the unknown soft IP. The matched results are displayed in the

system log screen as highlighted in Figure 21. Finally, step five – Trojan analysis: SC generates a

report to alert users the type of potential hardware Trojan or Trojan triggers if the blacklist

40

functionality does not support. The blacklist functionality appearance at the end of steps four

points out the hardware Trojan within an entity boundary. Then, the report in step five points out

potential Trojan signals and Trojan trigger signals.

Figure 15 Structural Checking main GUI

41

Figure 16 SC main GUI complete status

42

Figure 17 Circuit information GUI

Figure 18 External asset GUI

43

Figure 19 Internal circuit information GUI

Figure 20 Internal asset GUI

44

Figure 21 An example of matched result

45

7 CONCLUSION AND FUTURE WORK

The enhanced GR matching is an effective methodology that allows Structural Checking to

detect hardware Trojan in a soft IP. First, the matching process includes basic asset pattern

matching, partial asset pattern matching, and functionality matching. The percentage of matching

result is determined by the similarity of unknown and known asset pattern characteristics. The

functionality is then determined by the functionality of the matched GRL entry. Hence, matching

the top-level and the sub-level of an unknown IP asset pattern to trusted top-level and sub-level

of GRL allows the Trojan to be identified efficiently and effectively. The evaluating process of

the HPM results ensures the coherence of the matching results. Based on a test vehicle suite, this

detection process overall yields 6.23% of false positive rate in testing with RTL IPs and 3.57%

of false positive rate in testing with gate-level IPs. The independent data flow tracking feature in

SC allows for scan-chain analysis. For future development, both blacklist and whitelist of the

GRL can be easily expanded to improve the accuracy and resolution of the matching process,

which is feasible because the process of creating a GRL entry is automated. More internal assets

and external assets can be added to improve the resolution of the analysis.

46

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, "Trojan Detection

using IC Fingerprinting," in 2007 IEEE Symposium on Security and Privacy (SP '07),

2007, pp. 296-310.

[2] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, "Hardware Trojan Detection

and Isolation Using Current Integration and Localized Current Analysis," in 2008 IEEE

International Symposium on Defect and Fault Tolerance of VLSI Systems, 2008, pp. 87-

95.

[3] L. Jie and J. Lach, "At-speed delay characterization for IC authentication and Trojan

Horse detection," in 2008 IEEE International Workshop on Hardware-Oriented Security

and Trust, 2008, pp. 8-14.

[4] A. Davoodi, M. Li, and M. Tehranipoor, "A Sensor-Assisted Self-Authentication

Framework for Hardware Trojan Detection," IEEE Design & Test, vol. 30, no. 5, pp. 74-

82, 2013.

[5] F. Saqib, D. Ismari, C. Lamech, and J. Plusquellic, "Within-Die Delay Variation

Measurement and Power Transient Analysis Using REBEL," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, no. 4, pp. 776-780, 2015.

[6] X. Zhang and M. Tehranipoor, "RON: An on-chip ring oscillator network for hardware

Trojan detection," in 2011 Design, Automation & Test in Europe, 2011, pp. 1-6.

[7] S. Jha and S. K. Jha, "Randomization Based Probabilistic Approach to Detect Trojan

Circuits," in 2008 11th IEEE High Assurance Systems Engineering Symposium, 2008, pp.

117-124.

[8] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, "Towards Trojan-Free

Trusted ICs: Problem Analysis and Detection Scheme," in 2008 Design, Automation and

Test in Europe, 2008, pp. 1362-1365.

[9] M. Banga and M. S. Hsiao, "A region based approach for the identification of hardware

Trojans," in 2008 IEEE International Workshop on Hardware-Oriented Security and

Trust, 2008, pp. 40-47.

[10] M. Banga and M. S. Hsiao, "Trusted RTL: Trojan detection methodology in pre-silicon

designs," in 2010 IEEE International Symposium on Hardware-Oriented Security and

Trust (HOST), 2010, pp. 56-59.

[11] X. Zhang and M. Tehranipoor, "Case study: Detecting hardware Trojans in third-party

digital IP cores," in 2011 IEEE International Symposium on Hardware-Oriented Security

and Trust, 2011, pp. 67-70.

47

[12] Y. Jin, N. Kupp, and Y. Makris, "DFTT: Design for Trojan Test," in 2010 17th IEEE

International Conference on Electronics, Circuits and Systems, 2010, pp. 1168-1171.

[13] T. Reece and W. H. Robinson, "Detection of Hardware Trojans in Third-Party

Intellectual Property Using Untrusted Modules," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 35, no. 3, pp. 357-366, 2016.

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan, "FANCI: identification of stealthy

malicious logic using boolean functional analysis," presented at the Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security, Berlin,

Germany, 2013.

[15] J. Yust, M. Hinds, and J. Di, "Structural Checking: Detecting Malicious Logic without a

Golden Reference," Journal of Computational Intelligence and Electronic Systems, vol.

1, no. 2, p. 8, 2012.

[16] L. Weaver, T. Le, and J. Di, "Golden Reference Library Matching of Structural Checking

for securing soft IPs," in SoutheastCon 2016, 2016, pp. 1-7.

[17] T. Le and J. Di, "Golden reference matching for gate-level netlist functionality

identification," in 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS), 2017, pp. 567-570.

[18] M. Hinds, J. Brady, and J. Di, "Signal Assets - a Useful Concept for Abstracting Circuit

Functionality," presented at the Government Microcircuit Applications & Critical

Technology Conference (GOMACTech), 2013.

[19] T. Le, J. Di, M. Tehranipoor, and L. Wang, "Tracking data flow at gate-level through

structural," in 2016 International Great Lakes Symposium on VLSI (GLSVLSI), 2016, pp.

185-189.

[20] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner, "Theoretical

analysis of gate level information flow tracking," in Design Automation Conference,

2010, pp. 244-247.

[21] OpenCores. Available: http://opencores.org/

[22] H. Salmani, M. Tehranipoor, and R. Karri, "On design vulnerability analysis and trust

benchmarks development," in 2013 IEEE 31st International Conference on Computer

Design (ICCD), 2013, pp. 471-474.

http://opencores.org/

	Securing Soft IPs against Hardware Trojan Insertion
	Citation

	tmp.1526324050.pdf.OQ27g

