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Abstract 

The Department of Defense (DoD) and Engineered Resilient Systems (ERS) community seek to 

improve decision making in the Analysis of Alternatives (AoA) process by incorporating 

resilience and leveraging the capabilities of model-based engineering (MBE) early in the design 

process. Traditional tradespace exploration utilizing Point-Based Design (PBD) often converges 

quickly on a solution with subsequent engineering changes to modify the design. However, this 

process can lead to a suboptimal solution if an incorrect initial solution is chosen. Enabled by 

MBE, Set-Based Design (SBD) considers sets of all possible solutions and enables down-

selecting possibilities to converge on a final solution. Using a US Army Armament Research, 

Development, and Engineering Center case study and an open source Excel® add-in called 

SIPmath, this research develops an integrated MBE case study demonstration that 

simultaneously generates numerous designs using physics models into the value and cost 

tradespace allowing for tradespace exploration and SBD. In addition, this research explores 

incorporating resilience quantification and uncertainty into SBD. 
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1. Introduction 
1.1. ERS Program 

In recent years there has been an increased need for resilience in complex military and civilian 

systems due to evolving adversarial and environmental threats.  As systems become increasingly 

interconnected and technology advances more quickly, it becomes harder for systems to resist 

threats. Often systems are used in unplanned missions or new scenarios with different threats. 

Therefore, systems need to be resilient not only to planned threats and functions, but they also 

need to be resilient to uncertain threats and be easily modified to add new functionality.  

“A resilient engineered system is able to successfully complete its planned mission(s) 
in the face of a disruption (environmental or adversarial), and has capabilities 
allowing it to successfully complete future missions with evolving threats” (Specking, 
et al., 2017) 

As a response to the need for resilient systems, the Department of Defense (DoD) has created the 

Engineering Resilient Systems (ERS) program. ERS focuses on the effective and efficient design 

and development of complex resilient engineered systems throughout their lifecycle. Analysis of 

Alternatives (AoA) is a DoD requirement of military acquisition policy to ensure multiple design 

alternatives have been analyzed prior to making costly investment decisions. (U.S. Office of 

Management and Budget, 2008) In the military and defense industries, current AoAs using 

requirements analysis do not always plan for future threats, missions, or scenarios. Through 

ERS, the DoD seeks to improve its AoAs and get better buying power by: addressing resilience 

early in the design cycle, using tradespace and analytics tools and high-performance computing 

to explore the design space, and using Computational Research & Engineering Acquisition Tools 

and Environments (CREATE) shown in Figure 1. (Holland, 2015) 
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Figure 1- ERS Summary (Holland, 2015) 

 

To engineer resilient systems, system designers and managers must contemplate design 

options considering various scenarios, missions, functions and their performance measures, 

threats including environmental conditions, adversary actions, detectable performance 

degradation, uncertain survivability, and measurable recovery over time. Resilient design options 

include means for flexible adaptability, which provide the ability to reconfigure and/or replace 

components during the system lifetime. The criteria to evaluate the design options must include 

the impact on performance, cost, and schedule.  A trade-off analysis is critical to ensure senior 

decision makers can determine the affordability of systems and their design options allowing for 

improved resilience.  

1.2.AoA Improvements 

In current AoA best practices, analysts begin by identifying missions, scenarios, threats, and 

capability gaps. Based on these, possible system solutions are identified. However, these 

solutions have typically been Point-Based Design (PBD) solutions which do not fully explore the 

design space. Specifically, “at a minimum, the AoA must include the following alternatives: the 

baseline, alternatives based on potential, yet unfunded improvements to the baseline, [and] 
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alternatives identified in the AoA study guidance (for example allied systems etc.)” (OAS, 2013) 

Then cost drivers, performance measures, and relevant “illities” need to be determined. To 

quantify the future capabilities of these alternatives, analysts perform modeling and simulation. 

Using these results, the value and the costs are determined for the alternatives considered. Lastly, 

the affordability of the systems is analyzed using trade-offs between both the value and cost 

estimates. 

To incorporate ERS into AoAs, the three steps in red in Figure 2 have been identified as new 

steps to be added to the current AoA process (Small C. , et al., 2017). Instead of considering a 

limited number of Point-Based Designs, the design space should be expanded and options to 

improve resilience should be added. Options to extend the service lifetime should also be 

evaluated. Lastly, analysis of resilience options and resilience tradeoffs need to be made. To 

improve the AoA process, the DoD (especially the Navy) is interested in using SBD to expand 

the design space considered and improve their buying power. (Specking, et al., 2017) (Singer, 

Doerry, & Buckley, 2009) 
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Figure 2- Incorporating ERS into AoAs (Small C. , et al., 2017) 

 

1.3.MBE and Set-Based Design to Improve AoAs 

The DoD and the ERS program seek to leverage the capabilities of model-based engineering 

early in the design process to improve decision making in the AoA.  Advances in computing 

capabilities have increased the use of models (e.g., physics-based performance models) and 

simulations to explore the design space by simulating the performance of a large number of 

system design variants in a relatively short time. (Rinaudo, Buchanan, & Barnett, 2016) 

Tradespace exploration (TSE) supports engineered resilient system design and development by 

providing mission analysts, designers, systems analysts, and decision makers with an 

understanding of capabilities, gaps, and potential trade-offs required to achieve system 

objectives. Additionally, decisions can be made throughout a system’s lifecycle that 

continuously redefine its capabilities, performance, cost, manufacturability, delivery, and 

Perform affordability analysis 

Assess resilience tradeoffs

Quantify 
value trade 

space

Quantify life 
cycle cost

Extend 
service 
lifetime

Quantify uncertainty

Perform modeling and simulation

Identify cost 
drivers

Identify 
performance 

measures

Identify 
relevant  

illities

Identify missions, scenarios, threats, and 
capability gaps

Expand  the design space and provide 
resilience options

Ad
di

ng
 E

RS
 to

 b
es

t p
ra

ct
ic

es



5 
 

sustainability. (Kelley, Goerger, & Buchanan, 2016) TSE provides decision makers with an 

understanding of candidate system component choices and the implications of decisions on 

multiple missions across joint war fighting environments. (Spero, Avera, Valdez, & Goerger, 

2014) 

TSE of traditional PBD quickly converges on a single design, resulting in the modification of the 

chosen solution until it meets the design objectives. While this may seem to be an effective 

approach, if an inferior Point-Based Design is chosen, the following refinements can be time 

consuming and end at a suboptimal design. (Iansiti, 1995) (Kalyanaram & Krishnan, 1997) 

However, using SBD for TSE considers sets of all possible solutions and enables eliminating 

possibilities to converge at a final solution. When many solutions are considered in the 

beginning, the likelihood identifying an optimal solution increases. While it is a large investment 

to fully define and explore the tradespace, SBD provides for the discovery of an optimal solution 

which may have been missed by a Point-Based Design process.  For DoD and ERS, Set-Based 

Design is useful for projects with many design variables, tight coupling among design variables, 

conflicting requirements, flexibility in requirements allowing for trades, or technologies and 

design problems not well understood. (GovEvents, 2017) 

1.4.Research Objective 

Based on the desires and needs of ERS, this research seeks to develop and implement an 

integrated trade-off analytics framework (See Figure 3) for a hypothetical unmanned aerial 

vehicle (UAV) case study developed by the Army Armament Research Development and 

Engineering Center (ARDEC) to stimulate and focus academic discussion regarding systems 

engineering tradeoff analyses. (Cilli, Decision Framework Approach Using the Integrated 

Systems Engineering Decision Management (ISEDM) Process., 2017) Using this framework, 

this research seeks to develop, refine, and implement methods for performing SBD in the UAV 



6 
 

case study. In addition, this research also seeks to develop methods to incorporate model-based 

engineering, resilience quantification, and uncertainty in physics, cost, and value models, into 

SBD. 

In the remainder of the document, Section 2 describes the integrated trade-off analytics 

framework applied to the UAV case study. Section 3 defines SBD. Section 4 details the UAV 

case study used, much of which is included in Appendix 1. Section 5 demonstrates the 

implementation of the trade-off analytics framework and SBD for the model. Lastly, Section 6 

describes the advantages and insights of this methodology, implementation challenges, and 

concludes the paper. 

2. Integrated Trade-off Analytics Framework 

To sufficiently explore the design space and analyze resilient systems, we have developed an 

integrated trade-off analytics framework for defining and evaluating complex engineered 

systems considering multiple missions, scenarios, uncertainties, functions, and measures. (Small 

C. , et al., 2017) Using Model-Based Engineering (MBE), this framework prescribes an 

integrated model which simultaneously propagates design decisions all the way to the 

affordability tradespace. This framework uses the three types of analytics: descriptive, predictive, 

and prescriptive. The descriptive section of the framework describes what the system is and how 

it will be used. The predictive section includes the models predicting performance, cost, etc. And 

the prescriptive section uses the requirements and values of decision makers to determine 

feasible solutions and evaluate trade-offs between feasible solutions. This framework can be 

applied to PBD or SBD. Visually this framework is shown as an influence diagram in Figure 3 

with all nodes defined in Table 1. An influence diagram is a concise representation of a decision 

opportunity. (Parnell, Bresnick, Tani, & Johnson, 2013) Influence diagrams identity the variables 
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and their relationships but suppress the details. Influence diagrams use four nodes: decision, 

uncertainty, constant, and value. A decision node represents the decision alternatives or options 

and is displayed by a rectangle. An uncertainty node represents the different outcomes of an 

uncertain event and is depicted as an oval. Constant nodes are not use in Figure 3. Lastly, an 

influence diagram has value nodes denoting the decision makers’ preferences for potential 

system outcomes and is depicted as a hexagon. This influence diagram has three value nodes: 

value (based on performance versus objectives), life-cycle cost, and affordability (value versus 

cost for the service life). In the diagram, arrows are used to display influences. There are two 

types of influences: a probabilistic relationship and the availability of information. The time 

sequence of the events is from left to right. Conditional notation is used to reduce the number of 

arrows shown in the influence diagram. For example, the annotation, L|D, R means the service 

life is dependent on the design decisions, D, and the response decisions, R. Each of the nodes is 

described in Table 1.   

 

Figure 3- Framework for Integrated Analysis of Alternatives (Small C. , et al., 2017) 
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Table 1- Node Definitions for the Integrated Framework Influence Diagram 

Analytics Type Node Definition 

Descriptive 

Design Decisions, D 
System design decisions (including set drivers and set 
modifiers) made with knowledge of the requirements and 
threat assessment. 

Missions, m 
Chance node representing the missions the system is actually 
used on, this may or may not be included in the initial threat 
assessment or requirements analysis. 

Requirements, r Decisions stating the required minimum performance in the 
planned system environments and threats. 

Scenarios, s 
Chance node representing an uncertain scenario, which may or 
may not be in the original threat assessment or requirements 
analysis. 

System Functions, f 
Chance node determining how the system is used, it is 
influenced by the missions and scenarios the future system is 
used in. 

Threat Assessment, T 
Decision identifying the anticipated adversary or 
environmental threats the system could face in the planned 
missions and scenarios. 

Predictive 

Iities, i 
Chance nodes such as reliability, survivability, availability, 
and other ilities affecting the performance and cost of the 
system. 

Life Cycle Cost, C Value node depending on the design, the produceability, the 
supportability, and the response decisions.  

Modelling and 
Simulation (M&S), M 

Decisions made about which methods and techniques are used 
to model and simulate the missions and scenarios used to 
predict system performance measures, ilities, and costs. 

Performance Measures, 
p 

Chance node representing the performance measure 
predictions from modelling and simulation depending on the 
function, the ilities, and resilience response decisions. 

Response Decisions, R 

Decision node representing short-term and long-term response 
decisions informed by threats during system operation. For 
example, selecting the most appropriate sensor for a new 
threat or environment. 

Service Life, L Chance node affected by the performance of the system, the 
ilities, and the resilience response decisions. 

Threat, t 

Chance node representing the uncertain threat depending on 
the mission. There can be different threats to different system 
functions. In this diagram, threat is the term used for any 
adverse event (environmental or adversary) which could 
degrade any capability of the system. This may or may not be 
in the original T. 

Prescriptive 
Value, V Value node depending on the performance on all functions 

and the ilities. 

Affordability, A Value node comparing value versus life cycle cost. 
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This integrated framework is based on four important concepts. First, the framework makes use 

of models or simulations to explore the design space. Second, the framework uses Multiple 

Objective Decision Analysis (MODA) to convert performance measures to a multiple objective 

value model that prescriptively defines the value tradespace. (Parnell, Bresnick, Tani, & 

Johnson, 2013) Third, the integrated framework means the design decision are simultaneously 

propagated through all the intermediary calculations to the value and cost tradespace. This is a 

very critical component not used in most AoAs. Often there are four separate teams, designers, 

capability and value analysts, cost analysts, and risk analyst, performing the analysis in AoAs. It 

is challenging to coordinate the analysis of the four teams. Using separate teams to perform the 

analysis in different areas can result in inconsistent uncertainty analysis, changes not propagated 

through the entire analysis, and errors if the different teams do not communicate well. Using an 

integrated and simultaneous approach to modelling, this framework removes these risks and 

errors, in addition to speeding up the ability of the AoA to handle changes. Fourth, includes 

uncertainties in the framework allows for assessment of uncertainty in the performance and cost 

tradespace.  

3. Set-Based Design 

Set-Based Design (SBD) is an alternative to PBD on which there have been many publications 

since Ward et al. first described the process in 1995. (Ward, Liker, Cristiano, & Sobek, 1995) In 

these publications, SBD approaches typically breaks down the overall system design problem 

into multiple distinct disciplines each using sets of possibilities. This allows the disciplines to 

work independently defining and eliminating infeasible alternatives, whilst communicating 

information among the teams on the feasibility of the combinations of sets of alternatives. In this 

process, a leader is required to identify ranges of design variables for the disciplinary design 
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teams and adjudicates the disciplinary design decisions when conflicts arise. Once enough 

information and data are available to eliminate alternatives from consideration as the process 

moves forward. In SBD, models and simulations can also be used to develop the tradespace to 

explore the value, cost, and risk for multiple concepts and multiple architectures for each 

concept.  

In point-based design, several potential designs are generated and analyzed. From these the best 

is selected as a solutions and modified until a solutions is found. (Liker, Sobek, Ward, & 

Cristiano, 1996) PBD analyzes a finite number of points in the tradespace and is dependent of 

the expertise of the system design team to identify and develop the initial alternatives. Unlike 

PBD, SBD explicitly considers sets of design choices instead of discrete points. Exploring the 

ranges of design choices, SBD considers the entire design space, breaking the tradespace into 

sets. Each set may include thousands of points. Since SBD explores significantly more points 

than PBD, SBD can potentially identify points in sets on the Pareto frontier better than the 

original PBD points. These differences between PBD trade-off analytics and SBD trade-off 

analytics are shown in Figure 4. 

 
Figure 4- Value versus Cost Tradespace with PBD and SBD (Wade et al, 2018) 
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Future research is needed to develop mathematically sound SBD trade-off analysis techniques to 

be applied throughout the system design life cycle. SBD can change how engineers and design 

teams approach system designs. To fully take advantage of SBD, designers will need to further 

embrace Model-Based Engineering (MBE) approaches. Models and simulations provide the data 

necessary to ensure feasible alternatives and perform trade-off analytics. Because SBD considers 

the entire design space, the complexity of system design trade-off analytics is drastically 

increased, especially for more complex systems where performance estimates may require High 

Performance Computers (HPCs) to calculate. SBD trade-off analytics method(s) that are 

mathematically sound, tractable, and repeatable are needed to help identify the design choices, 

explore, and evaluate the potential design space.   

4. ARDEC UAV Case Study 

4.1.Introduction 

Sponsored by ERS, a research team at ARDEC has been developing a UAV case study to 

provide a hypothetical, yet plausible example for comparing systems engineering trade-off 

analysis methods in the context of new product development efforts. (Cilli, Decision Framework 

Approach Using the Integrated Systems Engineering Decision Management (ISEDM) Process., 

2017)  Gundlach’s textbook, “Designing Unmanned Aircraft Systems: A Comprehensive 

Approach” is used as the primary basis for all physical architecture descriptions of the notional 

UAVS and requirements as well as many of the mathematical relationships that propagate design 

decisions to value and cost. (Gundlach, 2012) (Small C. , et al., 2018) Many of the other 

mathematical relationships are based on observations from UAV descriptions from Compendium 

Drone 2013. (Armada International, 2013) 
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In the case study, stakeholders require a small UAV to perform surveillance missions. There are 

7 design decisions fully broken down in Table 2: engine type, operating altitude, wingspan, and 

the field of view and resolution for two sensor packages that affect the value of the system. 

Overall the small system must be transportable. It must maneuver to, scan across, and dwell at an 

area of interest. It must be survivable. And lastly, it must detect adversary activity. The 

functions, objectives, and performance measures for the UAV case study are displayed in the 

value hierarchy in Figure 5. In an assessment flow diagram (AFD), the flow of calculations from 

physical choices through intermediate performance calculations to various value measures is 

graphically represented from the bottom of the diagram to the top. (Parnell, 2017) Following the 

UAV Case Study Assessment Flow Diagram in Figure 6, the design choices in Table 2 are 

propagated through intermediary equations to the value measures in Figure 5. The bottom rows 

are the design choices, the middle section is the intermediate performance calculations with each 

shape being a different calculation, and the top section shows the various value measures and 

objectives. The arrows represent calculation relationships. To move from the design decisions to 

the value measures in Figure 5, each calculation diagram represents a different physics based 

model or other mathematical relationship. These models and calculations are fully documented 

in Appendix 1. 

 

 

 

 

 



13 
 

Table 2- Design Choices 
Design Choice Options 
Engine Discrete Choice:  

• Electric  
• Piston 

Wingspan Continuous choice:  
• 2 ft. to 12 ft. 

Operating Altitude Continuous choice:  
• 300 m. to 1000 m. 

Electro-Optical (EO) 
Sensor Resolution 

Discrete Choice:  
• 200 Pixels X 200 Pixels 
• 400 Pixels X 400 Pixels 
• 600 Pixels X 600 Pixels 
• 800 Pixels X 800 Pixels 
• 1000 Pixels X 1000 Pixels 
• 1200 Pixels X 1200 Pixels 
• 1400 Pixels X 1400 Pixels 
• 1600 Pixels X 1600 Pixels 
• 1800 Pixels X 1800 Pixels 

EO Sensor Field of View Discrete Choice: 
• 15 Degrees 
• 30 Degrees 
• 45 Degrees 
• 60 Degrees 
• 75 Degrees 
• 90 Degrees 

Infrared (IR) Sensor 
Resolution 

Discrete Choice:  
• 200 Pixels X 200 Pixels 
• 400 Pixels X 400 Pixels 
• 600 Pixels X 600 Pixels 
• 800 Pixels X 800 Pixels 
• 1000 Pixels X 1000 Pixels 
• 1200 Pixels X 1200 Pixels 
• 1400 Pixels X 1400 Pixels 
• 1600 Pixels X 1600 Pixels 
• 1800 Pixels X 1800 Pixels 

IR Sensor Field of View Discrete Choice: 
• 15 Degrees 
• 30 Degrees 
• 45 Degrees 
• 60 Degrees 
• 75 Degrees 
• 90 Degrees 
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Figure 5- UAV Case Study Value Hierarchy 
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Figure 6- ARDEC UAV Case Study Assessment Flow Diagram (Cilli, 2017) 
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described in Parnell 2017. (Parnell, 2017) This value is calculated using the value curves, swing 
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minimum acceptable and the ideal for each measure. In the value curves in Figure 7, the relative 

value for a performance score is shown on the y-axis, from zero (minimum acceptable) to 100 

(ideal) vs. the respective performance that earns that value, shown on the x axis. The weight for 
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curves and an alternatives performance, the value for a particular system on each measure are 

calculated. These value scores are multiplied by the swing weights in Figure 8 to calculate the 

weighted value on each measure. Lastly, the weighted values on the measures are summed to 

calculate the total system value. An example of this value calculation is shown in Figure 9. 

 

Figure 7- Case Study Value Curves 
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Figure 8- Case Study Swing Weights 
 

 

Figure 9- Example Value Calculation 
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4.2. Case Study Changes 

Similar to real world AoAs, the case study assumptions changed several times. Besides small 

changes throughout the process, there were 8 large changes detailed in Table 3 during this 

research affecting data used for the case study.  

Table 3- UAV Case Study Changes 
Iteration Model Descriptive Predictive Prescriptive 
1 Initial Case Study    
2 Multiple Changes The case study was 

redeveloped from the 
ground up and given new 
design choices. 

And entirely new 
set of physics 
models was used. 
The only 
remaining model 
was the probability 
of detection.  

A completely new 
value model and 
new cost model. 

3 Design Choices The set of design choices 
was expanded as new 
combinations of sensors 
were added. 

None None 

4 Value Model None None Preferences on 
value curves were 
changed. Changing 
preferences for 
alternatives. 

5 Value Model None None The value curves 
were changed once 
more to allow 
more feasible 
solutions. 

6 Value Model None New calculation 
for distance to 
attack helicopter 
added or all 
alternatives. 

A new value 
measure (distance 
from attack 
helicopter) was 
added. 

7 Design Choices New alternatives for 
sensor FOV were added 
and altitude options were 
reduced after a discussion 
with Dr. Ham. 

None None 

8 Swing Weights None None Swing weights 
were changed after 
a discussion with 
Dr. Ham. 

9 Cost Model None Cost model was 
changed to a 
lifecycle cost 
model. 

None 
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With each change typical AoAs without integrated and simultaneous MBE techniques face 

difficulties such as recalculating consistent performance, costs, and risk for the systems.  In 

many traditional AoAs, different groups such as cost analysts, capability analysts, risk analysts, 

or other groups perform the analysis on different areas of the AoA. Accordingly, if changes are 

not continually communicated between teams, this can lead to inconsistencies in analysis. 

However, the integrated and simultaneous MBE methodology described in this paper is resilient 

to changes. During the analysis the model was able to easily respond to each of the changes 

described. Due to the integrated and simultaneous calculation of value and cost, each change in 

the case study was simultaneously propagated through both the value and cost models removing 

issues with communication, and minimizing effort required to update the AoA. 

Moreover, another advantage of the integrated framework was the ability to propagate these 

changes quickly and to identify the increase in infeasible solutions based on the new data. For 

instance, in the 4th iterations of the case study, the value curves and minimum requirements were 

very aggressive, and no solutions were feasible. However, this was not realized until these 

changes were propagated into the SBD model which showed no feasible solutions in the design 

space. This insight provided by the model and the use of the trade-off analytics framework and 

SBD led to changes in the value curves to allow more feasible solutions resulting in the 5th 

iteration of the model. 

5. Trade-off Analytics for UAV Case Study  
5.1.Overview 

Using the ARDEC UAV Case study, this research has created a tradespace tool and model for 

use in generating, developing, and exploring Set-Based Design techniques. Following the trade-

off analytics hierarchy, this methodology uses an integrated and simultaneous approach using 
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cell referencing directly propagating the design decisions (from Table 2) made on the control 

panel in Figure 10 through the intermediary calculations in the AFD in Figure 11, adapted from 

the case study, through a value model, and through a cost model. In addition to the case study, 

this tradespace tool has fully implemented the trade-off analytics framework and incorporates 

uncertainty in performance, cost, and value; investigates resilience and perfect options allowing 

the case study to explore the resilience options, expands the cost model to a lifecycle cost model 

and explores the entire design space.  
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Figure 10- UAV Tradespace Tool Control Panel 
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Figure 11- UAV Tradespace Tool Assessment Flow Diagram 
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numbers and outputs the value and cost for a unique system for each seed. Figure 12 shows one 

instance of the random numbers based on a single seed. For each iteration of a Monte Carlo 

simulation, SIPmath® varies a seed which changes each of the random numbers. Specifically, 

each of the continuous decisions (wingspan and altitude) are made by using a continuous 

distribution to distribute the choices throughout the entire range. Each of the discrete design 

choices are made by sectioning the range of 0-1 into equal partitions based on the number of 

options in that design parameter. For instance, if there are 5 discrete options, 0-0.2 represents the 

first option, 0.2-0.4 represents the second option, 0.4-0.6 represents the third, etc. Using a 

uniform random variable for each discrete design choice, the choice for each instance of the 

Monte Carlo simulation is chosen based on where the random variable falls within the partitions. 

Since each of the design choices are uniform, the distribution of solutions will uniformly explore 

the entire design space.  

Using this methodology, we generated 100,000 alternatives for use in exploring and analyzing 

the tradespace using SBD techniques. Although there were 100,000 alternatives identified in this 

tool, any number of solutions can be generated using SIPmath. Summarized in the Analytics 

Hierarchy in Figure 12, this model simultaneously propagates each of the 100,000 alternatives 

through 47 physics models and formulas into 11 performance measures and a life cycle cost 

model. This results nearly 22 million intermediary physics model calculations. Propagating these 

solutions into the value and cost tradespace, we discovered 2,576 feasible solutions meeting the 

minimum requirements in the value model and all feasibility requirements. 
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Figure 12- Trade-off Analytics Hierarchy 
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2. Wingspan 4-6 ft. with Engine E 

3. Wingspan 6-8 ft. with Engine E- 

4. Wingspan 8-10 ft. with Engine E 

5. Wingspan 10-12 ft. with Engine E 

6. Wingspan 2-4 ft. with Engine P 

7. Wingspan 4-6 ft. with Engine P 

8. Wingspan 6-8 ft. with Engine P 

9. Wingspan 8-10 ft. with Engine P 

10. Wingspan 10-12 ft. with Engine P 

Using these partitions of the design space as the sets, this methodology graphs the solutions into 

the value vs. cost tradespace. Without the uncertainty analysis, the basic value and cost 

tradespace is shown in Figure 13.  

 
Figure 13- Cost vs Value without uncertainty 
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From this graph, decision makers gain greater insight into the design space than traditional Point-

Based Design. Since the entire design space is fully mapped with thousands of possible 

solutions, decision makers can see that only a few solutions with a wingspan of 10-12 feet were 

met the minimum requirements. Based on this, the sets containing no feasible solutions can be 

eliminated. In addition, the solutions for the piston engines dominate the electric engine and have 

higher value for the same cost. Accordingly, designers might eliminate the electric engines from 

consideration. Moreover, designers can see that as the wingspan increases the cost and value also 

incrementally increase. However, the value begins to decrease as the ability of the soldier to 

carry the system and the probability of enemy detecting the larger aircraft begins to increase at 

wingspans greater than 10. However, although Point-Based Design may provide a point in a one 

of the sets, they do not map the entire design space, nor does Point-Based Design explore what 

decisions drive cost and value and are thus not able to provide these types of insights. 

Lastly, this methodology identifies a better efficient frontier than Point-Based Design. Using an 

earlier version of the tool and the original 32 Point-Based Designs provided by the initial case 

study, SBD was able to dominate all solutions of the case study in Figure 14 providing better 

value for lower cost. 
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Figure 14- Cost vs Value SBD Efficient Points and UAV Case Study Point Solutions (Small C. , 

et al., 2018) (Small, et al., 2017) 
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Hardware Cost 

𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉ℎ𝐴𝐴𝑖𝑖𝑖𝑖𝑉𝑉 𝑅𝑅𝑉𝑉𝑖𝑖𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 ∗ 1.002 

𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑉𝑉 𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝑅𝑅𝑉𝑉𝑖𝑖𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 ∗ 5.607 

𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅 𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝑅𝑅𝑉𝑉𝑖𝑖𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = (𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 − 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈) ∗ 1.808 

𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃 𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐹𝐹𝑅𝑅𝑉𝑉 𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 0.5 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑉𝑉𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 

𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖 𝐻𝐻𝐹𝐹𝐴𝐴𝑃𝑃𝐻𝐻𝐹𝐹𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈($𝐾𝐾 2013) =  𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖𝑇𝑇𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇𝑈𝑈𝐹𝐹𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝑉𝑉ℎ𝐴𝐴𝑖𝑖𝑖𝑖𝑉𝑉𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈                    

+ 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐹𝐹𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 + 𝑃𝑃𝐴𝐴𝐶𝐶𝑃𝑃𝑅𝑅𝑖𝑖𝐶𝐶𝐴𝐴𝐶𝐶𝑅𝑅𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝑉𝑉𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 

 

Support Costs 

𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝐿𝐿𝑉𝑉𝐴𝐴𝑉𝑉𝑖𝑖 𝑀𝑀𝐹𝐹𝑅𝑅𝑃𝑃𝐶𝐶𝐻𝐻𝑉𝑉𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 250 ∗ 0.5 ∗ 𝑁𝑁𝑅𝑅𝐹𝐹𝑁𝑁𝑉𝑉𝐴𝐴𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹𝐶𝐶𝑈𝑈𝑉𝑉𝐹𝐹𝐶𝐶 

𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝑁𝑁𝑃𝑃𝑉𝑉𝐴𝐴𝐹𝐹𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013)
= (24676 + 0.8286 ∗ 1156 ∗ 𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐹𝐹𝑁𝑁𝑈𝑈𝑇𝑇𝑅𝑅𝐴𝐴𝑉𝑉𝑅𝑅𝑈𝑈𝐶𝐶𝐴𝐴𝐹𝐹) ∗ 1/10 

𝑀𝑀𝐹𝐹𝐴𝐴𝑅𝑅𝑈𝑈𝑉𝑉𝑅𝑅𝐹𝐹𝑅𝑅𝑖𝑖𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = � 41223 + 0.1261 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑉𝑉𝐹𝐹𝑉𝑉𝑅𝑅𝑈𝑈𝐶𝐶𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 ∗
𝐴𝐴𝑅𝑅𝑉𝑉𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐹𝐹𝑁𝑁𝑈𝑈 ∗ 𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐹𝐹𝑁𝑁𝑈𝑈𝑇𝑇𝑅𝑅𝐴𝐴𝑉𝑉𝑅𝑅𝑈𝑈𝐶𝐶𝐴𝐴𝐹𝐹� ∗

1
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𝑇𝑇𝑅𝑅𝐶𝐶𝑈𝑈𝐹𝐹𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 𝑇𝑇𝑅𝑅𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖𝐻𝐻𝐶𝐶𝑅𝑅𝐴𝐴𝐶𝐶^0.7303 ∗ 𝑁𝑁𝑅𝑅𝐹𝐹𝑁𝑁𝑉𝑉𝐴𝐴𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹𝐶𝐶𝑈𝑈𝑉𝑉𝐹𝐹𝐶𝐶 

𝑇𝑇𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑖𝑖𝑈𝑈 𝑇𝑇𝑅𝑅𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ($𝐾𝐾 2013) = 2777 ∗ 𝑉𝑉(0.01824∗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 

 

Life Cycle Cost 

𝐿𝐿𝐴𝐴𝑁𝑁𝑉𝑉 𝐶𝐶𝐹𝐹𝑖𝑖𝑖𝑖𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ( $𝐾𝐾 2013) = 𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖𝐻𝐻𝐹𝐹𝐴𝐴𝑃𝑃𝐻𝐻𝐹𝐹𝐴𝐴𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 ∗ 𝑁𝑁𝑅𝑅𝐹𝐹𝑁𝑁𝑉𝑉𝐴𝐴𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹𝐶𝐶𝑈𝑈𝑉𝑉𝐹𝐹𝐶𝐶 + 

(𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝐿𝐿𝑉𝑉𝐴𝐴𝑉𝑉𝑖𝑖 𝑀𝑀𝐹𝐹𝑅𝑅𝑃𝑃𝐶𝐶𝐻𝐻𝑉𝑉𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶 + 𝑈𝑈𝑅𝑅𝐴𝐴𝑈𝑈 𝑁𝑁𝑃𝑃𝑉𝑉𝐴𝐴𝐹𝐹𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶 + 𝑀𝑀𝐹𝐹𝐴𝐴𝑅𝑅𝑈𝑈𝑉𝑉𝑅𝑅𝐹𝐹𝑅𝑅𝑖𝑖𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈
+ 𝑇𝑇𝑅𝑅𝐶𝐶𝑈𝑈𝐹𝐹𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅 𝑇𝑇𝑅𝑅𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈 + 𝑇𝑇𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑉𝑉𝑖𝑖𝑈𝑈 𝑇𝑇𝑅𝑅𝑃𝑃𝑃𝑃𝐶𝐶𝐴𝐴𝑈𝑈 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈) ∗ 𝑇𝑇𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑉𝑉 𝐿𝐿𝐴𝐴𝑁𝑁𝑉𝑉  

 

In the tool, the number of systems operated, the total aircraft inventory, and the service life are 

choices that can be varied. In the instance used in this research, the service life is 5 years and the 

number of systems operated and total aircraft inventory are 50 UAVS. 

5.2.2. Using Mission Chain Analysis to Incorporate Resilience 

The resilience options in the trade-off analytics framework are short-term and long-term 

response decisions informed by threats during system operation. For example, selecting the most 
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appropriate sensor for a new threat or environment. This methodology seeks to investigate these 

resilience options through the ilities (availability, reliability, survivability, and recoverability). 

While many AoAs include the ilities as value measures, this methodology has incorporated the 

use of mission chain analysis using the ilities to analyze the effect of resilience on various 

performance measures. (Wade et al. 2018) 

In typical mission chain analysis, analysts multiply the performance of a system by the 

probability of a system being available to perform a mission, the reliability percentage, and the 

probability the system with survive a threat as a simple decision tree. To further aid in the ability 

to analyze resilience, this methodology adds the possibility that the system survives but has 

degraded performance.  If the system has a degraded performance, the system also has a chance 

of recovering performance. This calculation methodology is shown as decision tree in Figure 15. 

 
Figure 15- Mission Chain with Resilience 

 

5.2.3. Using Perfect Options to Explore the Value of Resilience Options 

To incorporate the value of mission resilience response decisions to threats, this methodology 

uses perfect options. Instead of attempting to determine a list of possible actions or methods, the 

value of perfect options explores the sensitivity of the model to various parameters informing 

decision makers of their relative importance. This type of analysis exploring the design space to 

determine which parameters are the most important has previously been performed on Air Force 
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systems. (Stafira Jr., Parnell, & Moore, 1997)  In this model, we explore five different perfect 

options (perfect availability, perfect reliability, perfect survivability, perfect restorability, and 

perfect detection) in the mission chain. These measures directly influence and determine the 

mission chain and are related to various resilience response decisions and depending on their 

importance, decisions makers can pursue different resilience response strategies to make the 

system perform better. For instance, if the availability of the system is the most important ility, 

purchasing more systems or including duplicate sensors or components on the ground can 

improve the performance. However, if the reliability is the most important ility, a decision maker 

may wish to add a duplicate sensor to the UAV so if a sensor fails during mission, the backup 

sensor will still work. If the survivability is the most important ility, the decision maker may 

wish to incorporate hardening to increase performance. If the restorability is the most important, 

the decision maker may wish to pursue strategies to improve the restorability. Lastly, if perfect 

detection is more important than the ilities, the decision maker may wish to pursue research 

better sensors and include the option to include new sensors developed in the future. Overall, 

exploring perfect options can provide decision makers with insight into which resilience 

response options can have the greatest impact on performance. 

In this model we explicitly allow the user to choose which perfect options are considered using 

the control panel section in Figure 16. 
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Figure 16- Perfect Options Control Panel 

 

Depending on the whether the user allows each of the types of perfect options, the model uses 

the random numbers to determine which perfect options are used in a specific instance of the 

system. Each of the random numbers is a uniform distribution between 0 and 1. If the perfect 

option is allowed, the option is used if the random number for that option is above 0.5. This 

allows for instances of alternatives with and without perfect options allowing for direct 

comparison. 

Running each perfect option through the tradespace tool provides insight into which perfect 

options provide the most relative. The tradespace for the perfect options in graphed in Figure 17. 
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Figure 17- Cost vs Value for Perfect Options 

 

According to these results, in this case study, improving survivability would provide the most 

value to the system. Beyond survivability, both perfect availability and perfect reliability provide 

value to the system. Alternatively, adding more restorability to the system would not add much 

value. Therefore, analysts should investigate resilience response decisions that increase 

survivability, such as system hardening, to increase the value of the system. However, this 

analysis only explores the value of perfect options and does not address the costs. Instead it 

provides areas that designers may wish to research how to improve. 
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Lastly, through exploring perfect options this research discovered that not only can improving 

the ilities increase value, but if the option is cheap enough, it can reduce the costs. This is 

because as performance increases with perfect options, some of the cheaper sets that did not meet 

the minimum requirements now meet the requirements. If the cost to increase the ility in turn 

making the set feasible is less than the difference in the cost, investigating perfect options may 

reveal cheaper sets. 

5.2.4. Uncertainty 

In AoAs there are large amounts of uncertainty. To better explore the effects of uncertainty on 

the tradespace using SBD, this methodology incorporates uncertainty in all the performance 

measures, cost, and decision maker preferences for the system.  

Uncertainty in performance was incorporated using two different approaches. The first approach 

is to incorporate the uncertainty in the physics-based calculations. The calculations used in the 

case study are derived from actual points and have different variance associated with each 

model. For instance, in Figure 18, the equations for the piston engine and electric engine to 

calculate endurance based on weight each have a variance around the prediction line. This is 

because the models are based on simple linear regression. In the model, this type of uncertainty 

was included in both the endurance and cruising velocity calculations. 
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Figure 18- UAV Endurance Physics model. 

 

The second approach is to include uncertainty in the ilities used in calculating the performance. 

In this analysis, uncertainty was included in availability and reliability. However, uncertainty 

could be included in all ilities. 

To incorporate uncertainty in these two sections the tradespace tool allows the user to select 

parameters to increase or decrease the uncertainty in the model using the section on the control 

panel shown in Figure 19. Using a triangular distribution selected by the user on the control 

panel and the corresponding SIPmath random numbers, each instance of the Monte Carlo 

simulation assesses a different value for the ilities. Since there is a variance that can be 

calculated around the physics models, using random numbers the performance is modified by a 

standard normal distribution based on the variance.  
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Figure 19- Performance Uncertainty Control Panel Section 

 

These two types of uncertainties are propagated through the model as shown in red in the AFD in 

Figure 11 eventually impacting 8 out of the 11 value measures. 

To incorporate uncertainty in the cost, a selectable variation was used to create uncertainty in 

each of the cost types. The user can select a certain percentage of variation around the predicted 

value in the control panel section in Figure 20. Using unique uniform distribution random 

numbers based on the choices in the control panel, uncertainty can be propagated through the 

lifecycle cost model. For instance, if the user selects 5% variation, the cost will vary uniformly 

from 97.5% of the calculated cost to 102.5% of the calculated costs. 
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Figure 20- Cost Uncertainty Control panel Section 
 

One of the most unique types of uncertainty is the uncertainty in preferences. Although 

preferences are elicited using the swing weight matrix methodology, preferences are still not 

completely static or deterministic. Often different decision makers have different preferences and 

different desires. This leads to compromises in the swing weight matrix. However, by 

incorporating uncertainty in the preferences, the effects of different preferences can be analyzed. 

The section on the control panel in Figure 21 allows users to select the variation amount and 

whether the variation is above, below, or around the elicited value. Specifically, that means that 

based on the instance of uniformly distributed random numbers, the unnormalized weight used in 

the model can be varied around the unnormalized elicited weight. For instance, if 20% variation 

above and below is selected the unnormalized weight can range from 90-110% of the elicited 

number. If only below is selected, the unnormalized weight can vary from 80-100% of the 
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elicited number. And if only above is selected, the weight used can vary from 100-120% of the 

elicited weight. 

 
Figure 21 -Preference Uncertainty Control Panel Section 

 

By using the random numbers and SIPmath in the uncertainties, designers can gain insight into 

exactly how uncertainty affects the tradespace. Based on the different types of uncertainty, the 

tradespace will vary in different ways. In general, the uncertainty makes the design space more 

fluid and continuous and increases the overlap of sets. However, one of the intriguing features of 

incorporating uncertainty is how performance and value can increase. Although generally not 

expected, incorporating variation in performance expands the range of different sets. In some 

situations, sets can have reduced number of feasible solutions within them if the set has a value 

measure near the minimum requirement and it drops below the minimum requirement. However, 
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some sets can also have new feasible solutions, which were not feasible due to performance 

lower than the minimum requirement, performing better than the minimum requirements. This 

reflects real world analysis as systems often are better or worse than expected.  

As performance was varied, the range of value achieved by each set in Figure 22 expanded, 

however, the costs remained the same.  Depending on each set, the expansion in the range is 

different however. As seen in Figure 22, the piston engine with a wingspan range of 4-6 ft. had a 

larger increase in range than the wingspan of 6-8 ft. This is because depending on where the 

system performs on the value curves, changes in performance in different systems can provide 

different value. For instance, if we have s-shaped value curves such as probability of detection in 

Figure 7, meaning value doesn’t increase very much until a certain level where value increases 

large amounts for small levels of changes but after a certain point there are diminishing gains, 

depending on where a system lies on each of the value curves the variation may drastically 

change performance. Specifically, if one set is near the upper end of one value curve, and the 

bottom end of the other value curve and another set that lies near the middle of both value 

curves. Without uncertainty the sets may have similar value. However, variations in performance 

in the set near the ends of the value curves might not drastically change the value of the system, 

but the system with performances near the middle of the value curves may have a much larger 

range in possible value. 
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Figure 22- Cost vs Value with performance uncertainty 

 

Adding uncertainty in the costs blended the boundaries between sets and overlaps more in the 

value and cost tradespace as shown in Figure 23. In particular, the piston engine UAVs with a 

wingspan of 8-10 and 10-12 overlap in the tradespace, making them more difficult to distinguish. 

However, this demonstrates how uncertainty can allow the performance and costs of sets to 

overlap in the tradespace in the real world. 
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Figure 23- Cost vs Value with Cost Uncertainty 

 

Lastly, incorporating the preference uncertainty into the model shows how much the tradespace 

and sets are sensitive to the weighting elicitation. In Figure 24, this case study and model is not 

extremely sensitive to swing weight preferences, this will not always be the case. In many 

situations depending on the performance of sets, the preference of decision makers for different 

sets may switch with uncertainty in preferences. For instance, although it did not occur in this 

case study, one set deterministically dominated in the value and cost tradespace by another set 

might not be dominated if the preferences for different value measures change. 
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Figure 24- Cost vs Value with preference uncertainty 

Incorporating all types of uncertainties in the model provides the tradespace in Figure 25. In this 

model the boundaries beyond the sets are blurred and the sets overlap. Showing how in the real 

world, many systems that deterministically appear to be different may in fact have similar 

performance. In addition, analyzing the tradespace in this manner provides the decision makers 

with insights into which sets are susceptible to large variation due to uncertainty and which have 

more predictable performance. This alone based on the risk preferences of a decision maker can 

be key in an analysis. For if the decision maker is very risk averse, they may wish to choose a 

system that determistically performs worse than others but has far less uncertainty or less 

probability of performing very poorly. 
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Figure 25- Cost vs Value with All Uncertainties Included 

 

6. Conclusions 

This thesis research has developed an integrated framework for trade-off analytics as well as a 

detailed repeatable model. Using an Excel add-in SIPmath, this research develops a realistic 

method to perform Set-Based Design. Using Set-Based Design combined with the trade-off 

analytics framework provides a methodology that is robust to changes.  

Overall this research demonstrated the ability of SBD to discover insights including: 1) 

identifying design set drivers and design set modifiers, 2) identifying a better efficient frontier 

than standard Point-Based Design, 3) identifying the value that can be provided by resilience 

options and the ilities, revealing the importance of including ilities in the calculation of 

performance, and 4) identifying how various sets and different sections of the tradespace can be 

affected by various uncertainties. In addition, this research shows the ability of SBD to quickly 
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analyze the design space, revealing infeasible requirements and solutions throughout the design 

process even as the AoA continually adapts. 

Lastly this research shows the ability of MBE and the trade-off analytics framework developed 

to quickly adapt to changes and to efficiently explore the design space throughout an AoA 

process quickly providing insights to designers that can lead to changes in the AoA process. Due 

in large part to this research, the creator of the UAV case study has begun to incorporate major 

portions of this methodology and Set-Based Design within his systems engineering trade-off 

analysis for the ARDEC. (Cilli, 2018) 

7. Future Research

There are four major areas for future research: 1) an online trade-off analytics tool, 2) set-based

design methodology, 3) resilience options, and 4) UAV case study improvements. First, in

support of the ERS research effort at ERDC this tradespace tool will be implemented in an online

trade-off analytics tool (TradeBuilder). Second, in this study the sets drivers were determined by

using a heuristic method by looking at the impact of design decisions on the cost and value

tradespace. To increase the feasibility of set-based design methodology, a repeatable,

mathematical method of defining set-drivers needs to be developed. Third, the resilience options

research needs to be expanded to include explicit resilience options as well as the cost of

resilience options. Lastly, to improve the realism of the model the cost model could be expanded

to include a learning curve for large procurements and the time-value of money.
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9. Appendix I. Case Study Calculations

This appendix includes the physics model calculations that lead from the design decisions to the

value measures. Specifically, it includes: UAV Weight Calculations, Operating Altitude Distance

to Attack Helicopter Altitude and Perceived Area at Operating Altitude, Endurance, Cruising

Velocity, and Sensor Calculations.

9.1.UAV Weight Calculations 

𝐹𝐹𝑖𝑖𝐹𝐹 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 

𝑇𝑇𝑁𝑁 𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖𝑈𝑈𝐴𝐴𝐴𝐴𝑖𝑖 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉: 𝐹𝐹𝑖𝑖𝐹𝐹 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 (𝑖𝑖𝑁𝑁𝐶𝐶. ) =  𝐹𝐹𝐴𝐴𝑅𝑅𝑅𝑅𝐶𝐶𝑃𝑃𝐹𝐹𝑅𝑅 ∗ 1.3 + 0.91 

𝐴𝐴𝑁𝑁 𝑃𝑃𝐴𝐴𝐶𝐶𝑈𝑈𝐶𝐶𝑅𝑅 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉:𝐹𝐹𝑖𝑖𝐹𝐹 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 (𝑖𝑖𝑁𝑁𝐶𝐶. ) = 𝐹𝐹𝐴𝐴𝑅𝑅𝑅𝑅𝐶𝐶𝑃𝑃𝐹𝐹𝑅𝑅 ∗ 2.68 + 4.92 

𝑀𝑀𝐹𝐹𝑀𝑀 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃 

𝑇𝑇𝑁𝑁 𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖𝑈𝑈𝐴𝐴𝐴𝐴𝑖𝑖 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉:𝑀𝑀𝐹𝐹𝑀𝑀 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃 (𝑖𝑖𝑁𝑁𝐶𝐶. ) = 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 ∗ 0.18 

𝑇𝑇𝑁𝑁 𝑃𝑃𝐴𝐴𝐶𝐶𝑈𝑈𝐶𝐶𝑅𝑅 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉:𝑀𝑀𝐹𝐹𝑀𝑀 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃 (𝑖𝑖𝑁𝑁𝐶𝐶. ) = 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 ∗ 0.31 
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𝐵𝐵𝐹𝐹𝑖𝑖𝑖𝑖 𝑇𝑇𝑉𝑉𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴 𝐷𝐷𝐴𝐴𝐹𝐹𝐹𝐹𝑉𝑉𝑈𝑈𝑉𝑉𝐴𝐴 (𝐴𝐴𝑅𝑅𝑖𝑖ℎ𝑉𝑉𝐶𝐶) = (𝐴𝐴𝑁𝑁 𝐻𝐻𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐶𝐶𝑅𝑅𝑈𝑈𝐹𝐹𝑖𝑖 𝑃𝑃𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖𝐶𝐶 + 𝐴𝐴𝑁𝑁 𝑉𝑉𝑉𝑉𝐴𝐴𝑈𝑈𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖 𝑃𝑃𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖𝐶𝐶 + 

𝑇𝑇𝑅𝑅 𝐻𝐻𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐶𝐶𝑅𝑅𝑈𝑈𝐹𝐹𝑖𝑖 𝑃𝑃𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖 + 𝑇𝑇𝑃𝑃 𝑉𝑉𝑉𝑉𝐴𝐴𝑈𝑈𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖 𝑃𝑃𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖𝐶𝐶) ∗ 0.0024 + 0.0741  

𝑇𝑇𝑉𝑉𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 (𝑖𝑖𝑁𝑁𝐶𝐶. ) =  0.0164 ∗ 1.5 ∗ 𝑇𝑇𝑉𝑉𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴𝐷𝐷𝐴𝐴𝐹𝐹𝐹𝐹𝑉𝑉𝑈𝑈𝑉𝑉𝐴𝐴3 

𝑇𝑇𝐶𝐶𝑈𝑈𝐹𝐹𝑖𝑖 𝑃𝑃𝐹𝐹𝐹𝐹𝑖𝑖𝐶𝐶𝐹𝐹𝑃𝑃 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 = 𝑇𝑇𝑉𝑉𝑅𝑅𝐶𝐶𝐶𝐶𝐴𝐴 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 + 𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝐹𝐹𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅𝐶𝐶 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 

𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝐹𝐹𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅𝐶𝐶 𝐹𝐹𝑉𝑉𝐴𝐴𝑅𝑅ℎ𝑈𝑈 = 𝑅𝑅𝐶𝐶𝑈𝑈𝐴𝐴𝐶𝐶𝑅𝑅𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹 𝐹𝐹𝐶𝐶𝐶𝐶𝑅𝑅𝐹𝐹𝑉𝑉𝑃𝑃 0.5 𝑖𝑖𝑁𝑁𝐶𝐶. 

9.2. Operating Altitude Distance to Attack Helicopter Altitude and Perceived Area at Operating 
Altitude 

𝑇𝑇𝑁𝑁 𝐴𝐴𝑖𝑖𝑉𝑉𝑖𝑖𝑈𝑈𝐴𝐴𝐴𝐴𝑖𝑖 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉: 𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅𝑈𝑈ℎ (𝑁𝑁𝑈𝑈. ) =
𝐹𝐹𝐴𝐴𝑅𝑅𝑅𝑅𝐶𝐶𝑃𝑃𝐹𝐹𝑅𝑅

1.92

𝑇𝑇𝑁𝑁 𝑃𝑃𝐴𝐴𝐶𝐶𝑈𝑈𝐶𝐶𝑅𝑅 𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑉𝑉: 𝐿𝐿𝑉𝑉𝑅𝑅𝑅𝑅𝑈𝑈ℎ (𝑁𝑁𝑈𝑈. ) =
𝐹𝐹𝐴𝐴𝑅𝑅𝑅𝑅𝐶𝐶𝑃𝑃𝐹𝐹𝑅𝑅

1.62

𝑃𝑃𝑉𝑉𝐴𝐴𝑖𝑖𝐴𝐴𝑉𝑉𝐴𝐴𝑉𝑉𝑃𝑃 𝐴𝐴𝐴𝐴𝑉𝑉𝐹𝐹 𝐹𝐹𝑈𝑈 𝑁𝑁𝑃𝑃𝑉𝑉𝐴𝐴𝐹𝐹𝑈𝑈𝐴𝐴𝑅𝑅𝑅𝑅 𝐴𝐴𝑖𝑖𝑈𝑈𝐴𝐴𝑈𝑈𝑅𝑅𝑃𝑃𝑉𝑉 =
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𝐷𝐷𝑖𝑖𝐻𝐻𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻

𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐷𝐷ℎ + 𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐷𝐷𝑉𝑉
 

𝑇𝑇𝑅𝑅 𝑁𝑁𝑉𝑉𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁 =
𝐷𝐷𝑖𝑖𝑉𝑉𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐷𝐷ℎ + 𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐷𝐷𝑉𝑉
 

 

𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻𝐺𝐺𝑁𝑁𝐺𝐺𝐻𝐻𝑁𝑁ℎ (𝐹𝐹)  = �𝑇𝑇𝐴𝐴𝑁𝑁 �0.5 ∗ 𝑇𝑇𝑅𝑅𝐹𝐹𝑁𝑁𝑉𝑉 ∗
𝜋𝜋

180
� −  𝑇𝑇𝐴𝐴𝑁𝑁 �−0.5 ∗ 𝑇𝑇𝑅𝑅𝐹𝐹𝑁𝑁𝑉𝑉 ∗

𝜋𝜋
180

�� 

∗
𝑁𝑁𝑃𝑃𝑉𝑉𝐴𝐴𝐹𝐹𝑈𝑈𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑖𝑖𝑈𝑈𝐴𝐴𝑈𝑈𝑅𝑅𝑃𝑃𝑉𝑉

3.281
 

𝑇𝑇𝑅𝑅 𝑇𝑇𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉𝐴𝐴𝐹𝐹𝑅𝑅𝑉𝑉 𝑅𝑅𝐹𝐹𝑈𝑈𝑉𝑉 �
𝐹𝐹2

𝐶𝐶2
� = 𝑇𝑇𝑅𝑅𝐺𝐺𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻𝐺𝐺𝑁𝑁𝐺𝐺𝐻𝐻𝑁𝑁ℎ ∗ 𝐶𝐶𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖𝐶𝐶𝑖𝑖𝐴𝐴𝑈𝑈𝐹𝐹 ∗ 1.852/3.6 

𝑃𝑃𝐴𝐴𝐶𝐶𝑁𝑁𝐹𝐹𝐴𝐴𝑁𝑁𝑖𝑖𝐴𝐴𝑈𝑈𝐹𝐹 𝐶𝐶𝑁𝑁 𝐷𝐷𝑉𝑉𝑈𝑈𝑉𝑉𝑖𝑖𝑈𝑈𝐴𝐴𝑅𝑅𝑅𝑅 𝐹𝐹 𝐻𝐻𝑅𝑅𝐹𝐹𝐹𝐹𝑅𝑅 𝐹𝐹𝑈𝑈 𝑁𝑁𝐴𝐴𝑅𝑅ℎ𝑈𝑈 =
�𝑇𝑇𝑅𝑅 𝑁𝑁𝐻𝐻𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻

0.75 �
2.7+0.7∗�𝐼𝐼𝐼𝐼 𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝑁𝑁50
�

1 + �𝑇𝑇𝑅𝑅 𝑁𝑁𝐻𝐻𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻
0.75 �

2.7+0.7∗�𝐼𝐼𝐼𝐼 𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑁𝑁50

�
 

𝑃𝑃𝐴𝐴𝐶𝐶𝑁𝑁𝐹𝐹𝑁𝑁𝐴𝐴𝑖𝑖𝐴𝐴𝑈𝑈𝐹𝐹 𝐶𝐶𝑁𝑁 𝐷𝐷𝑉𝑉𝑈𝑈𝑉𝑉𝑖𝑖𝑈𝑈𝐴𝐴𝑅𝑅𝑅𝑅 𝐹𝐹 𝑉𝑉𝑉𝑉ℎ𝐴𝐴𝑖𝑖𝑖𝑖𝑉𝑉 𝐹𝐹𝑈𝑈 𝑁𝑁𝐴𝐴𝑅𝑅ℎ𝑈𝑈 =
�𝑇𝑇𝑅𝑅 𝑁𝑁𝑉𝑉𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁

0.75 �
2.7+0.7∗�𝐼𝐼𝐼𝐼 𝑁𝑁𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉

𝑁𝑁50
�

1 + �𝑇𝑇𝑅𝑅 𝑁𝑁𝑉𝑉𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁
0.75 �

2.7+0.7∗�𝐼𝐼𝐼𝐼 𝑁𝑁𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉
𝑁𝑁50

�
 

𝑇𝑇𝐴𝐴𝐹𝐹𝑉𝑉𝐴𝐴𝑉𝑉𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑉𝑉𝑃𝑃 𝑈𝑈𝐶𝐶 𝐶𝐶𝑖𝑖𝐹𝐹𝑅𝑅 𝐹𝐹 5𝑘𝑘𝐹𝐹 𝑁𝑁𝐶𝐶𝑀𝑀 𝑁𝑁𝐹𝐹 5𝑘𝑘𝐹𝐹 𝑁𝑁𝐶𝐶𝑀𝑀 𝐹𝐹𝑈𝑈 𝑅𝑅𝐴𝐴𝑅𝑅ℎ𝑈𝑈 =
25000000 ∗ 60

𝑇𝑇𝑅𝑅𝑇𝑇𝐴𝐴𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉𝐴𝐴𝐹𝐹𝑅𝑅𝑉𝑉𝑅𝑅𝐹𝐹𝑈𝑈𝑉𝑉
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10. Appendix 2- Case Study UAV Tradespace Tool

Appendix 2 provides the components of the Case Study UAV Tradespace Tool. The control 

panel of the tool contains all choices made by either the SIPMath random numbers or the user. In 

the intermediary calculations, the design choices are propagated through the physics-based 

models described in Appendix 1 and in the paper to the value measures. These value for each 

instance is calculated using the additive value model panel. And the cost for each instance is 

calculated in the cost model panel.  

All Appendix 2 Figures follow the legend below 

10.1. Control Panel Components 

Legend
Data
Calculation
Notional Data

Wingspan 9 Engine Type P Operating Altitude 565

Air Vehicle

Operating Altitude

Engine Type must be either E or P
Wingspan must be 
between 2 and 12

Fliying altitude must be between 300 and 
1000 M

Engine TypeWingspan

EO Sensor 
Pixel Width 

Choice:

Horizonal 
Pixels

Vertical 
Pixels

EO Sensor Pixel FOV 
Choice: Field of View IR Sensor Pixels 

Choice:
Horizonal 

Pixels Vertical Pixels
IR Sensor 

FOV 
Choice:

Field of View

1 200 200 1 15 1 200 200 1 15

2 400 400 2 30 2 400 400 2 30

3 600 600 3 45 3 600 600 3 45

4 800 800 4 60 4 800 800 4 60

5 1000 1000 5 75 5 1000 1000 5 75

6 1200 1200 6 90 6 1200 1200 6 90

7 1400 1400 7 1400 1400

8 1600 1600 8 1600 1600

9 1800 1800 9 1800 1800

4 800 800 6 90 3 600 600 6 90

IR SensorEO Imager

Payload
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Service Life 5 years

Swing Weight Matrix

Assessed 
fi used fi wi Assessed 

fi used fi wi Assessed fi Assessed 
fi used fi wi

Probability of detecting a 
vehicle night 100 85.82 0.13 Probability of detecting a 

human day 75 71.76 0.10 Time Required to scan 
night 60 58.91 0.09

Probability of detecting a 
vehicle day 99 84.59 0.12 Time Required to scan 

day 50 56.45 0.08

Probability of detecting a 
human night 98 80.02 0.12 Difference from attack 

helicopter altitude 50 41.30 0.06

Time required to fly 10km 
(Mins) 60 55.68 0.08 Percieved Area of SUAV 

at Altitude 20 29.93 0.04

Dwell Time (Mins) 60 50.92 0.07

UAS Weight 50 68.94 0.10

sum of fi 684.34

Fixable with dollarsCritical to mission Important to mission

Some impact of 
site variation

Minor impact 
of site variation

Significant 
impact of 

performance 
variation

Preference Uncertainty
Percentage Minus Plus Plus and Minus

20% FALSE TRUE FALSE

20% TRUE FALSE FALSE

20% TRUE TRUE TRUE

20% TRUE TRUE TRUE

20% TRUE TRUE TRUE

20% FALSE TRUE FALSE

20% TRUE TRUE TRUE

20% TRUE FALSE FALSE

20% TRUE FALSE FALSE

20% TRUE FALSE FALSE

20% TRUE FALSE FALSE Probability of detecting a vehicle night 

 Weight 

 Percieved Area of SUAV at Altitude 

 Difference from attack helicopter altitude 

 Probability of detecting a human day 

 Probability of detecting a vehicle day 

 Probability of detecting a human night 

 UAS Weight 

 Time required to fly 10km (Mins) 

 Time Required to scan day 

 Time Required to scan night 

 Dwell Time (Mins) 
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Percent Varied

-0.01

-0.02
0.01

-0.02

0.00
-0.02

Sustaining Support Cost
Indirect Support Cost

5%
5%

Maintenance Cost

5%

5%
5%

5%

Measure

Cost Uncertainty

Initial Cost of UAVs

Unit Manpower Cost
Unit Operations Cost

Percent Variation Allowed

TRUE

TRUEUncertainty included in Cost?

Inclue Deterministic

Ility Minimum Most 
Likely Best Number in use

Availabiltity 0.9 0.95 0.97 96%
Reliability 0.92 0.95 0.97 95%

Uncertainty included in model

Include Deterministic

Uncertainty in Illities

Performance Model

Standard 
Deviations 
Away from 
predicted

Uncertainty in Performance Models 
is based on a normal distribution

Performance Uncertainty

TRUE

TRUE

Endurance
Cruising Velocity

          (0.69)
          (0.39)

FALSE

Allowed? Used?

FALSE  FALSE 

FALSE  FALSE 

FALSE  FALSE 

FALSE  FALSE 

TRUE  FALSE 

 FALSE 
 FALSE 

 Allow Perfect Options 

 Perfectly Detecting 
Sensors 

 All Perfect Options? 
 Any Perfect Options 

Perfect Options

 Perfectly Available 
Sensors 

 Perfectly Reiliable 
Sensors 

 Perfect Option 

 Perfectly Survivable 
Sensors 

 Perfectly Restorable 
Sensors 
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 Weighted Value Score 

4

8

8

8

7

3

1

3

7

0

7

57

Value Calculations
Value Measure

UAS Weight

Time required to fly 10km (Mins)

Time Required to scan day

Time Required to scan night

Dwell Time (Mins)

Difference from attack helicopter altitude

Percieved Area of SUAV at Altitude

Probability of detecting a human day

Total Value

Probability of detecting a vehicle day

Probability of detecting a human night

Probability of detecting a vehicle night

$9,260

$6,250
$7,257

$4,176

$2,396
$6,913

$142,710 Total Cost in millions 

 Unit Manpower Cost 

 Unit Operations Cost 

 Maintenance Cost 

 Sustaining Support Cost 
 Indirect Support Cost 

Cost Analysis

 Initial Cost of UAVs 
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10.2. SIPMath Random Variables (1 Instance) 

Measure Random Number Distribution

Wingspan 0.68 Uniform
Engine Type 0.88 Uniform

Altitude 0.38 Uniform
EO Sensor Pixels 0.64 Uniform
IR Sensor Pixels 0.34 Uniform
EO Sensor FOV 0.96 Uniform
IR Sensor FOV 0.88 Uniform

Design Choice Random Numbers

Measure Random Number Distribution

UAS Weight 0.95 Uniform

Time required to fly 10km (Mins) 0.22 Uniform

Time Required to scan day 0.18 Uniform
Time Required to scan night 0.55 Uniform

Dwell Time (Mins) 0.95 Uniform

Percieved Area of SUAV at Altitude 0.50 Uniform
Difference from attack helicopter altitude 0.93 Uniform

Probability of detecting a human day 0.16 Uniform
Probability of detecting a vehicle day 0.72 Uniform

Probability of detecting a human night 0.90 Uniform
Probability of detecting a vehicle night 0.71 Uniform

Preference Uncertainty Choice Random Numbers

Measure Random Number Distribution Uncertiainty 
Included in Meaure

Uncertainty Included in Endurance 0.11 Uniform FALSE
Uncertainty Included in Cruising Velocity 0.07 Uniform FALSE

Endurance Standard Deviations Away -0.69 Standard Normal
Cruising Velocity Standard Deviations Away -0.39 Standard Normal

Day or Night 0.60 Uniform
Availability 0.98 Triangular
Reliability 0.75 Triangular

Is Uncertainty Included in the Model TRUE

Performance Uncertainty Choice Random Numbers
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Measure Random Number Distribution Uncertiainty 
Included in Meaure

Is Uncertainty Included in Cost 0.73 Uniform TRUE

Initial Cost of UAVs 0.65 Uniform

Unit Manpower Cost 0.91 Uniform
Unit Operations Cost 0.38 Uniform

Maintenance Cost 0.95 Uniform

Sustaining Support Cost 0.44 Uniform
Indirect Support Cost 0.84 Uniform

Cost Uncertainty Random Numbers

Measure Random Number Distribution

Reliability 0.63 Uniform

Availability 0.08 Uniform

Survivability 0.06 Uniform
Recoverability 0.14 Uniform

Detection 0.46 Uniform

Perfect Options Random Numbers
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10.3. Intermediary Calculation Pages 
10.3.1. Weight 

10.3.2. Length 

Wingspan 8.8 Sensor Weight 7.7
Engine Type P Communications Link Weight 0.5
Fly Weight 28.5 Total Payload Weight 8.2

Max Payload 8.83
Appropriate Payload? TRUE

Engine Type P Legend
Wingspan 8.8 Data

Vehicle Length 5.4 Calculation
Notional Data

Number of Calculations 3

Number of Physics Calculations 1
Number of Physics Calculations/ Models w/ uncertainty 0
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10.3.3. Endurance 

 

 

Endurance in hours 11.73827
Endurance with Uncertainty (True or False) FALSE

Number of Physics Calculations/ Models 1 Piston Engine 0.557830721
Number of Physics Calculations/ Models w/ uncertainty 1 Electic Engine 0.930603926

Number of Calculations 22

Piston
X Y Yhat delta^2

15 9 8.8212 0.03196944
20 10 9.9367 0.00400689
33 12 12.837 0.700569

39.5 15 14.28715 0.508155122
sum 1.244700453
Variance 0.311175113

Electric Standard D 0.557830721
X Y Yhat delta^2

1 1 1.3162 0.09998244
2 0.5 1.3508 0.72386064
3 2 1.3854 0.37773316
4 4 1.42 6.6564

4.5 1 1.4373 0.19123129
6.5 0.75 1.5065 0.57229225
7.5 1 1.5411 0.29278921

8 2 1.5584 0.19501056
8.5 1 1.5757 0.33143049

12.5 1 1.7141 0.50993881
13 2 1.7314 0.07214596

13.5 3.2 1.7487 2.10627169
14 1.5 1.766 0.070756

16.5 1 1.8525 0.72675625
16.5 1.6 1.8525 0.06375625

sum 12.990355
Variance 0.866023667
Standard D 0.930603926

Standard Deviation

Probability of %
Availability 96%
Reliability 95%

Full Survival 50%
Partial Survival 35%
Complete Loss 15%

Restorability 40%

System Properties %
Degradibility 75%

Recoverability 25%

Performance Category Score
Full Performance 11.74

Reduced (With Recover) 9.54
Reduced (No Recover) 8.80

No Performance 0.00

Adjusted Endurance 8.34
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10.3.4. Cruising Velocity 

Endurance With Mission Resilience

Available

Not
Available

Mission 
Availability

Reliable

Not
Reliable

Mission 
Reliability

Full 
Surviva

l

Mission
Survivability

Restores

Doesn’t Restore

Complete
Loss

Reduced Performance 
(No Recover)

Full Performance

No Performance

No Performance

No 
Performance

Reduced 
Performance
(With Recover)

Restorability
96%

4%

95%

5%

40%

60%

50%

35%

15%

11.7

9.54

8.80

0.00

8.34

UAV Weight 28 Dwell Time (Mins) 487
Airspeed 49.79
Standard Deviations Away 0.00 Time required to fly 10km (Mins) 6.5
Airspeed with Uncertainty 49.79

Legend
Standard Deviation Data

Piston Engine 3.2 Calculation
Electric Engine 10.5 Notional Data

Piston
X Y Yhat delta^2
15 32 35.818 14.577124
20 46 40.944 25.563136
33 55 54.2716 0.53056656

39.5 60 60.9354 0.87497316
Sum 41.54579972

Variance 10.38644993
Standard Deviation 3.222801565

Electric
X Y Yhat delta^2
1 21 24.6877 13.59913129
3 29.5 26.8631 6.95324161
4 19.5 27.9508 71.41602064

4.5 35 28.49465 42.31957862
8.5 32.5 32.84545 0.119335703
12.5 37 37.19625 0.038514062
14 60 38.8278 448.2620528
17 25 42.0909 292.0988628

Sum 874.8067376
Variance 109.3508422

Standard Deviation 10.4570953
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10.3.5. Sensor Calculations 

 

 

 

Dc_human, m 1 Operating Altitude 565
Dc_vehicle, m 5 Sensor Ball Diameter 7
N_50 1 Sensor Weight 8

EO Imager Pixels Horizontal 800 IR Pixels Horizontal 600
EO Imager Pixels Vertical 800 IR Pixels Vertical 600
EO FOV 90 IR FOV 90
EO GSD_h 0.338 IR GSD_h 0.45
EO GSD_v 0.338 IR GSD_v 0.45
EO N_human 1.38 IR N_human 1
EO N_vehicle 7.96 IR N_vehicle 6
EO Ground Swath (m) 345 IR Ground Swath (m) 345
EO Ground Coverage Rate (m 2̂/s 2̂) 8824 IR Ground Coverage Rate (m 2̂/s 2̂) 8824
Probability of detecting a human during the day 92% Probability of detecting a human during the night 77%
Probability of detecting vehicular activity during the day 100% Probability of detecting vehicular activity during the night 100%

47

IR Time required to scan 5km x 5km 
Search Box Using Raster Scan Flight 
Pattern at proposed operating altitude 
and a slant angle from normal of zero. 

(minutes)

47

EO Time required to scan 5km x 5km 
Search Box Using Raster Scan Flight 
Pattern at proposed operating altitude 
and a slant angle from normal of zero. 

(minutes)

Probability of %
Availability 96%
Reliability 95%

Full Survival 85%
Partial Survival 5%
Complete Loss 10%
Restorability 60%

System Properties %
Degradibility 75%

Recoverability 25%

Performance Category Score
Full Performance 1.00

Reduced (With Recover) 0.81
Reduced (No Recover) 0.75

No Performance 0.00

Adjusted probability detecting human activity during the day 75%

Adjusted probability detecting vehicular activity  during the day 82%

Adjusted EO sensor 82%
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EO Performance with Mission Chain

Available

Not
Available

Mission 
Availability

Reliable

Not
Reliable

Mission 
Reliability

Full 
Surviv

al

Mission
Survivability

Restores

Doesn’t Restore

Complete
Loss

Reduced 
Performance (No 
Recover)

Full
Performance

No 
Performance

No Performance

No Performance

Reduced 
Performance
(With 
Recover)

Restorability
96%

4%

95%

5%

60%

40%

85%

5%

10%

1.0

0.8

0.7

0.0

82%

Probability of %
Availability 96%
Reliability 95%

Full Survival 85%
Partial Survival 5%
Complete Loss 10%
Restorability 60%

System Properties %
Degradibility 60%

Recoverability 25%

Performance Category Score
Full Performance 1.00

Reduced (With Recover) 0.70
Reduced (No Recover) 0.60

No Performance 0.00

Adjusted probability detecting human activity during at night 0.62

Adjusted probability detecting vehicular activity  during at night 0.81

Adjusted IR sensor 0.81

IR Performance With Mission Chain

Available

Not
Available

Mission 
Availability

Reliable

Not
Reliable

Mission 
Reliability

Full 
Surviv

al

Mission
Survivability

Restores

Doesn’t Restore

Complete
Loss

Reduced 
Performance (No 
Recover)

Full
Performance

No 
Performance

No Performance

No Performance

Reduced 
Performance
(With 
Recover)

Restorability
96%

4%

95%

5%

60%

40%

85%

5%

10%

1.0

0.7

0.6

0.0

0.81
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10.3.6. Altitude Based Calculations 

 

10.4. Value Model  

 

 

 

Length 5.4
Operating Altitude 565.2
Percieved area at 
operating altitude 6.5

Absolute value of 
difference to 1000M 
operating altitude of 

attack helicoper

434.8

Function
Value Measure

Score Value of Score
x= Weight in lbs. v(x)

1 100
10 90
25 50
40 10
50 0

Be transportable
UAS Weight

0

50

100

0 10 20 30 40 50

Value Curve

Function
Value Measure

Score Value of Score
x= Time (Mins) v(x)

5 100
7 90

10 50
13 10
15 0

Maneuver to, scan across, and dwell at area of interest
Time required to fly 10km (Mins)

0

50

100

5 10 15

Value Curve

Function
Value Measure

Score Value of Score
x= Time (Mins) v(x)

0 100
80 90
100 50
140 10
200 0

Maneuver to, scan across, and dwell at area of interest
Time required to scan a 5km X 5km box during the day


0

50

100

0 50 100 150 200

Value Curve
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Function
Value Measure

Score Value of Score
x= Time (Mins) v(x)

0 100
80 90
100 50
140 10
200 0

Maneuver to, scan across, and dwell at area of interest
Time required to scan a 5km X 5km box during the day


0

50

100

0 50 100 150 200

Value Curve

Function
Value Measure

Score Value of Score
x= Area in ft 2̂ v(x)

0 100
5 90

10 50
15 10
20 0

Be Survivable
Percieved Area of SUAV at Operating Altitude (ft 2̂)

0

50

100

0 5 10 15 20

Value Curve

Function
Value Measure

Score Value of Score
x= Distance (m) v(x)

0 1
500 25

1000 50
1500 75
2000 100

Avoid friendly helicopter airspace
Difference between operating altitude and attack helicopter operating altitude of 1000m

0

50

100

0 500 1000 1500 2000

Value Curve

Function
Value Measure

Score Value of Score
x= %Probability v(x)

0.6 0
0.7 10
0.8 50
0.9 90
1 100

Detect Enemy Activity
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 Performance 
Score Value Score Swing Weight Weighted Value

                    28 41 0.10 4
                     7 92 0.08 8

                    47 94 0.08 8

                    47 94 0.09 8

                  487 99 0.07 7

                     7 78 0.04 3

                  435 22 0.06 1

                 0.75 31 0.10 3

                 0.82 58 0.12 7

                 0.62 2 0.12 0
                 0.81 55 0.13 7

 Value 1.0 50.0

 Time Required to scan night 

Value Calculations

 Dwell Time (Mins) 

Value Measure

 Time required to fly 10km (Mins) 

 Time Required to scan day 

 UAS Weight 

 Probability of detecting a human night 
 Probability of detecting a vehicle night 

 Probability of detecting a vehicle day 

 Percieved Area of SUAV at Altitude 

 Difference from attack helicopter altitude 

 Probability of detecting a human day 
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10.5. Cost Model 

Cost Parameters
Total Aircraft Inventory 50 
Number of Systems 50 
Total Ground Station 50$  

Age of Aircraft 3 
Total Hours 200 

Hardware Costs
Air Vehicle Unit Recurring Cost 29$  
Air Frame Unit Recurring Cost 46$  
Propulsion Unit Recurring Cost 38$  
Payload Average Unit Cost 23$  

Total Hardware Cost 185$  

Hardware Cost Breakdown
Total SEPM Cost Development 41$  
Total SEPM Cost Production 28$  
System Test and Evaluation Development 17$  
System Test and Evaluation Production 8$  
Development Training Mean Cost 8$  
Development Training Median Cost 7$  
Development Training Standard Deviation 6$  
Data Development 5$  
Data Production 0.19$  
Tooling Development Mean 2.22$  
Tooling Development Standard Deviation 3.70$  
Tooling Production Mean Cost 11$  
Tooling Production Median 4.26$  
Tooling Produciton Standard Deviation 12$  
Common Support Equipment Mean 0.74$  
Common Support Equipment Median 0.19$  
Common Support Equipment Standard Deviation 1.67$  
Operational Site Activation Mean 32$  
Operational Site Activation Median 11$  
Operational Site Activation Standard Deviation 49$  
Initial Spare and Repair Parts Mean 34$  
Initial Spare and Repair Parts Median 22$  
Initial Spare and Repair Parts Standard Deviation 27$  
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Support Costs
Unit Level Manpower Cost 6,250$  
Unit Operations Cost 7,257$  
Maintenance Cost 4,176$  
Sustaining Support Cost 2,396$  
Indirect Support Cost 6,913$  

Percent Varied
-0.007272
-0.020317
0.005930
-0.022430
0.002771
-0.016920

Maintenance Cost 5%
Sustaining Support 5%

Indirect Support Cost 5%

Initial Cost of UAVs 5%
Unit Manpower Cost 5%
Unit Operations Cost 5%

Cost Uncertainty
Uncertainty included in Cost? TRUE

Measure Percent Variation Allowed

Cost of UAVs Unit Manpower Cost Unit Operations Cost
Maintenance 
Cost

Sustaining 
Support Cost Indirect Support Cost

UAV 9,193$           30,615$  36,500$  20,413$                 12,011$                   33,979$  

System Cost 142,710.44$  
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