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Abstract 
 

Analyses of morphological integration among primates commonly focus on relationships 

between the face, braincase and base of the skull, as well as the upper and lower dentition, and 

the within portions of the post-cranial skeleton. Despite the prominence of these studies, the 

associations between the bones of the foot and their articular surfaces have largely been ignored 

among primates, even though the foot demonstrates high degrees of variation and modification. 

This variation offers an ideal opportunity to study the relationship between morphology and 

locomotion. Because the talus, calcaneus and navicular act together to stabilize the foot in 

locomotion and form a direct interface with the substrate, they comprise a complex structural 

unit, and the matching articular surfaces should be tightly integrated. However, preliminary 

results suggest there is no difference in the magnitude or pattern of integration within and 

between bones. While there is no systematic difference in the magnitude of correlations 

distinguishing articular surfaces from non-articular parts of the bones, the pattern of covariation 

is itself correlated across species for each bone, with correlations among measurements of 

articular surfaces consistently positive. This suggests at the least that there are shared patterns of 

integration across species. 
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Chapter 1 Literature Review 

Introduction 

Morphological integration, a term first coined by Olson and Miller (1958), refers to the 

phenomenon that an organism’s individual characters or traits are interdependent and result in 

the formation of functionally- and developmentally-related units (Cheverud, 1982; Zelditch, 

1987). More simply, studies of morphological integration allow us to examine patterns of 

covariation of features that constitute units/complexes. There are three principal mechanisms by 

which morphological integration can occur: features may serve similar functions, they may be 

related genetically, or they may be linked by processes of growth and development. According to 

Olson and Miller (1958), all living organisms are composed of these related units, whose degree 

of relatedness varies based on their relationships to each other and the surrounding environment 

(Cheverud, 1982). Therefore, a population’s phenotype should reflect the relatedness of 

functionally- and/or developmentally-linked traits (Cheverud, 1982). Additionally, this 

relatedness should be reflected in the degree of genotypic integration (Cheverud, 1989). Because 

natural selection occurs at the genetic level, it is these integrated units that evolve by selection 

instead of individual morphological features. Thus, it is possible then that selection will either act 

on these individual features as absolutely constrained units that change in synchrony, or they will 

covary together while retaining some degree of freedom between individual units; the latter is 

typically what is observed in nature. Thus, it is also possible to approximate the degree of 

genotype integration using morphological integration (Lande, 1980; Cheverud 1982; Lande and 

Arnold, 1983). Furthermore, the term morphological integration also refers to patterns of 

covariation between traits, and can thus be used to describe both a process and a pattern. 



	 2 

At a more basic level, studies of morphological integration can also be used to highlight 

specific questions related to the existence of correlated features. Analysis of morphological 

integration within a single species can indicate whether patterns of covariation match predictions 

related to a single function. Beyond this, analysis of morphological integration among closely 

related species can be used to identify what factors—function, genetics, and/or development—

cause the observed integration for a particular complex of features. If similar patterns of 

correlation and covariation identified between species where the function of the complex differs, 

then this pattern is likely the result of genetically- and/or developmentally-determined 

morphological integration. If, on the other hand, a different pattern of covariation is observed 

between closely related species where the function of the complex differs, then the observed 

phenotypic integration pattern is likely to be epigenetically- and/or functionally- determined. 

Therefore, interspecific studies of morphological integration can be used to evaluate the cause 

behind observed patterns of covariation. Studies of this kind have been conducted on the skull 

and face, dentition, and post-crania of mammals including rats and even some primates 

(Cheverud et al., 1982; Cheverud et al., 1992; Kohn et al., 1993; Ackermann and Cheverud, 

2000; Marroig and Cheverud, 2001; Lieberman et al., 2000; Ackermann, 2002; Ackermann, 

2004; Grabowski et al., 2011; Lewton, 2012). Thus, studies of morphological integration have 

been critical for understanding how functional morphological complexes change in response to 

new functional demands and selective regimes.  

Surprisingly, despite the fact that anatomical changes to the foot play a key role in 

understanding human evolution, especially with regard to the origins of bipedalism, few studies 

have investigated integration of the foot bones in humans and their closest relatives. Therefore, 

the goal of this study is to evaluate shape variation of the calcaneus, navicular, and talus among 
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Homo sapiens, Gorilla gorilla, and Pan troglodytes. The study’s null hypothesis predicts that the 

calcaneus, navicular, and talus share the same patterns of morphological integration across H. 

sapiens, G. gorilla, and P. troglodytes. 

 

Morphological integration 

Sources of morphological integration 

 Morphological integration at the genetic level is often the result of pleiotropy, gene 

duplication, and linkage disequilibrium (Lande, 1980; Cheverud, 1989, Marroig and Cheverud, 

2001, Porto et al., 2009), where genes that serve similar purposes with regards to morphological 

function either become linked or their link is maintained by natural selection. Developmentally-

integrated units, on the other hand, result in the covariation of structures due to growth, 

intercellular interactions, and/or tissue interactions during ontogeny (Zelditch, 1987, 1988). 

Finally, functionally-integrated units result from similar selective pressures, usually 

environmentally-based, acting on a series of traits or characters that serve a particular function 

(Olson and Miller, 1958; Cheverud, 1982, 1989); if traits are functionally linked but not 

genetically covarying, they may still show a pattern of phenotypic integration in a population. As 

noted by Zelditch (1988), citing studies of the impact of diet on occlusal surface morphology of 

teeth, these interactions can have a pronounced effect on patterns of integration. Again, it should 

be noted that these factors, i.e., genetics, development, and function, are not mutually exclusive 

and frequently act together to generate morphologically integrated units on which natural 

selection acts (Olson and Miller, 1958; Cheverud, 1989). Therefore, Marroig and Cheverud 

(2001: 2577) state that “functional and developmental integration at the individual level leads to 

genetic integration at the population level, which, in turn, leads to evolutionary integration”. 
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Because of this phenomenon, it is possible to use phenotypic variation as a proxy for genetic 

variation when examining morphological integration (Marroig and Cheverud, 2001), a task much 

more feasible for application to the fossil record where genetic material is either absent or highly 

damaged (Lande, 1980; Cheverud 1982; Lande and Arnold, 1983; Marroig and Cheverud, 2001). 

Again, these processes result in the evolution of units that are acted upon as a whole by 

natural selection (Olson and Miller, 1958; Cheverud, 1982, 1989). Therefore, it would be 

expected that structures that form a unit are highly integrated whereas independent structures are 

less integrated (Porto et al., 2009). For example, matching articular surfaces between the bones 

of a joint should show a high degree of integration with each other either resulting from similar 

genetic pathways, developmental trajectories that cause the surfaces to match, and/or functional 

and selective pressures that force genetically and developmentally independent structures to 

match. In other words, evolutionary forces are unable to cause change in independent structures 

of perfectly integrated units (Porto et al. 2009). Furthermore, several studies have demonstrated 

that patterns of morphological integration have remained similar among closely related species, 

suggesting that the degree and pattern of integration have more to do with phylogeny than 

environment (Ackermann and Cheverud, 2000; Marroig and Cheverud, 2001; Porto et al., 2009). 

However, some authors have provided evidence that evolutionary forces can be strong enough to 

“override” (Porto et al., 2009: 119) patterns of morphological integration brought about by 

phylogeny. Therefore, the study of morphological integration and its causes and patterns, can 

help answer a variety of questions about the nature of certain functional units within an 

organism. 
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Morphological integration of the postcranial skeleton in primates 

Analysis of morphological integration in regions of the post-cranial skeleton are not as 

common and have primarily focused on the pelvic girdle (Grabowski et al., 2011; Lewton, 2012) 

and the relationships between the upper and lower limbs (Lawler, 2008; Rolian, 2009; Williams, 

2010). These structures have been the focus of such studies because they are highly variable 

among primates and show varying degrees of modification. Therefore, determining the causes 

behind this variation, especially in closely related taxa, can shed light on evolution of these 

morphologically integrated units. In addition, these units have served major roles in the 

evaluation of the evolution of modern great apes and humans, providing key insights into aspects 

of biology related to locomotion. Together, these studies have supported Olson and Miller’s 

(1958) hypothesis of morphological integration where traits sharing either common 

function/development, genetic basis, or evolutionary pressures show higher degrees of 

covariation than those that do not (Cheverud et al., 1982; Cheverud et al., 1992; Kohn et al., 

1993; Ackermann and Cheverud, 2000; Marroig and Cheverud, 2001; Lieberman et al., 2000; 

Ackermann, 2002; Ackermann, 2004; Lawler, 2008; Rolian, 2009; Williams, 2010; Grabowski et 

al., 2011; Lewton, 2012). Interestingly, the relationships between the bones of the foot and their 

articular surfaces have largely gone unexplored in the context of morphological integration, even 

though the foot also demonstrates high degrees of variation and modification among primates. 

Differing patterns of integration between species might imply different selective environmental 

pressures acting via any, or all, of the mechanisms that result in morphological integration, and 

this could highlight important differences in evolutionary trajectories, especially in a structural 

unit like the primate foot. 
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Morphological integration and the foot 

The foot is comprised of 26 bones that have been modified across primates as adaptations 

for different substrates and locomotor behaviors (Day and Wood, 1968; Day and Wood; 1969; 

Lisowski, 1984; Oxnard, 1980; Latimer et al., 1987; Latimer and Lovejoy, 1989; Sarmiento, 

2000; Harcourt-Smith, 2002; DeSilva, 2009; Turley and Frost, 2013; Knigge et al., 2015; Prang, 

2015; Prang, 2016). The degree to which this variation is adaptive allows us to study the 

relationship between morphology and locomotion, which can then be used to study how fossil 

hominins and apes moved around in the past and what is unique about humans. In particular, the 

calcaneus, navicular, and talus have been studied extensively individually (Day and Wood, 1968; 

Lisowski et al., 1974; Latimer et al., 1987; Latimer and Lovejoy, 1989; Gebo, 1992; Sarmiento, 

2000; Harcourt-Smith, 2002; Harcourt-Smith and Aiello, 2004; DeSilva, 2009; Turley and Frost, 

2013; Prang, 2014; Knigge et al., 2015). However, few studies have evaluated covariation of 

these bones, though some exist (Turley and Frost, 2014; Prang, 2015; Prang, 2016). Thus, 

morphological integration studies can inform us about the phenotypic plasticity of these bones as 

a functional complex, but have yet to be evaluated.  

The calcaneus, navicular, and talus function together and are adapted for species-specific 

substrate use and locomotor behavior. Therefore, selection for change in any of these integrated 

regions may result in corresponding changes to the other related regions, as one of many 

phenomena that facilitate selection and evolution of a complex of features (Hallgrimsson et al., 

2002; Hallgrimsson et al., 2009; Lewton, 2012). In contrast, functionally unrelated and/or less 

integrated regions should result in neutral effects of selection and evolution, resulting in less 

covariation, which could ultimately lead to separate evolutionary and developmental trajectories 

(Hallgrimsson et al., 2002; Hallgrimsson et al., 2009; Lewton, 2012). The variation observed 
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among taxa in all three of these bones indicates that if they form a functional unit that varies 

adaptively, then changes in any one of these bones should be correlated to changes in the others. 

 

Locomotor differences in humans and great apes 

 Humans and great apes are characterized by different locomotor behaviors. Humans walk 

almost exclusively bipedally (Aiello and Dean, 1990; Harcourt-Smith, 2002; Harcourt-Smith and 

Dean, 2004), and are therefore considered specialized for bipedal locomotion. In contrast, the 

African great apes preferentially move quadrupedally on both terrestrial and arboreal substrates. 

While the degree and amount of time spent on each substrate varies between species, the African 

apes demonstrate some major similarities to each other: in a terrestrial environment, the 

predominant mode of locomotion is quadrupedal knuckle-walking, while in an arboreal 

environment, quadrupedalism and upright bipedal postures are common, especially in the context 

of feeding (Elftman and Manter, 1935a; Hunt, 1994; Thorpe et al., 2007). These bouts of 

arboreal bipedalism, however, are distinct from the human mode in that Pan and Gorilla adopt a 

flexed hip and knee posture (also known as a compliant posture) instead of the extended posture 

seen in humans (Schmitt, 2003; Thorpe et al., 2017). It is important to note that there is a major 

difference in terrestrial locomotion between Pan and Gorilla. Generally, Pan more commonly 

uses the flexed stance of bipedal locomotion when foraging from low-hanging branches (Hunt, 

1994), whereas Gorilla much less frequently exhibits this behavior (Doran, 1997; Thorpe et al., 

2007). Another major difference between Pan and Gorilla is the amount of time spent either 

arboreally or terrestrially. In general, the larger Gorilla species spend more time in terrestrial 

settings than Pan species (Doran, 1997). However, when the animals are similar in size, they 

spend approximately the same amount of time on the ground or in the trees (Doran, 1997). This 
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suggests that body size may play a major factor in the substrate use of the great apes (Doran, 

1997; Harcourt-Smith, 2002); even within Gorilla, there is variation in the proportion of time 

spent in the trees across species and it has been suggested that body size is a contributing factor 

to this inter-generic variation as well (Doran, 1997). 

 

Overview of human foot anatomy 

 The primate foot is composed of 26 bones that can be divided into three major categories, 

the tarsals, metatarsals, and phalanges. The most posterior portion of the foot, the tarsals, 

contains seven relatively rectangular bones: the talus, calcaneus, cuboid, navicular, and three 

cuneiform bones. The intermediate portion of the foot is composed of five metatarsals, long rod-

like bones that help form the longitudinal and transverse arches of the human foot. Each of these 

five metatarsals articulates posteriorly with the tarsals for arch support and anteriorly with a 

series of phalanges. Anteriorly, the phalanges comprise the five toes of the human foot where 

each toe possesses three phalanges with the exception of the hallux, or great toe, which only 

contains two phalanges. The focus of this project is the subtalar joint complex, a joint situated 

between three of the aforementioned tarsal bones: the calcaneus, navicular, and talus; therefore, 

these three bones will be the focus of the subsequent discussion. 

 

Calcaneus   

 The calcaneus is the largest and most robust bone in the foot of both humans and apes 

since it initially receives all the ground reaction force. Posteriorly, the calcaneus is composed of 

the calcaneal tuberosity, a large and robust mass of bone while anteriorly, the calcaneal body 

possesses posterior, middle, and anterior talocalcaneal (Aiello and Dean, 1990). Importantly, the 
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middle talocalcaneal facet rests on a bony projection for the talar head known as the 

sustentaculum tali (Aiello and Dean, 1990). The most anterior aspect of the calcaneus contains 

the cuboid facet for anterior articulation with the cuboid (Aiello and Dean, 1990). In terms of 

size, the human foot is more robust than that of the African apes. In addition, the human 

calcaneus possesses an enlarged calcaneal tuberosity whose plantar surface is wide and flattened 

compared to the calcaneal tuberosity of African apes. In humans, this enlargement is likely the 

result of the larger Achilles (calcaneal) tendon attachment (Aiello and Dean, 1990). Another 

stark difference between the human and African ape foot is the calcaneonavicular articulation 

(Aiello and Dean, 1990). While the African apes retain this articulation, it is completely lost in 

humans. Furthermore, the cuboid facet of the human foot is asymmetrical where the superior 

margin extends more anteriorly than the inferior margin, positioning the human cuboid as a 

keystone of the longitudinal arch and forming a locking mechanism (Aiello and Dean, 1990). In 

the African apes, however, the cuboid facet is mostly flat and symmetric, and therefore lacks 

such a locking mechanism (Aiello and Dean, 1990). 

 

Navicular 

 The navicular is located in the medial portion of the foot where it articulates posteriorly 

with the talus via a deep concave facet to accommodate the talar head, and anteriorly with the 

three cuneiform bones (Aiello and Dean, 1990; Harcourt-Smith, 2002). The shape and 

orientation of the human navicular allows it to assist with arch support of the foot. In addition, 

the navicular is markedly less wedge-shaped than other extant great apes, contributing to the 

adducted position of the hallux in humans. The wedge-shape observed in great apes, in 
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combination with a flatter talar facet, provides the foot with more flexibility and increased range 

of motion (Aiello and Dean, 1990). 

 

Talus 

 The talus acts as the link between the foot and the rest of the body by articulating with the 

tibia superiorly and the calcaneus inferiorly, and thus plays a large role in the functional anatomy 

of the associated joints. Superiorly, the talus articulates with the tibia via the talar trochlea, a 

large convex surface on the talar body (Aiello and Dean, 1990). Inferiorly, the talus articulates 

with the calcaneus at several points comprising the sub-talar joint: the posterior talocalcaneal 

joint and the anterior and medial talocalcaneal joints (Czerniecki, 1988; Aiello and Dean, 1990). 

Both the medial and lateral sides of the talus have facets for the medial and lateral malleoli of the 

tibia and fibula, respectively. Anteriorly, the talar head articulates with the body of the navicular 

(Aiello and Dean, 1990).  

Locomotor differences between the African great apes and humans are reflected in 

overall talar morphology. The trochlear surface, in conjunction with the small and flattened 

malleolar facets, forms a locking mechanism that restricts mediolateral movements of the ankle 

joint in humans. On the other hand, the angled talar surface, and the concave and superiorly 

oriented malleolar facets of the African great apes facilitates inversion and eversion of the ankle 

joint, which is important for flexibility on arboreal substrates. Talar head torsion angle may 

provide a feature of distinction between ape and human tali (Aiello and Dean, 1990). The angle 

of inclination of the talar neck is distinct in humans and has been suggested to be related to the 

presence of the longitudinal arch. In addition, the talar neck of the human foot is shorter and 

wider than that in the African apes. This feature is thought to be associated with the extreme 
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weight-bearing required by bipedal locomotion on the medial side of the foot (Aiello and Dean, 

1990). 

 

Functional morphology and biomechanics of the human and Africa ape  

Human foot function in bipedal locomotion 

 The biomechanics of the human foot have been extensively studied via force plate and 

footprint analyses, which allow us to understand how force is transmitted through the foot to the 

rest of the body as well as how each structure of the foot responds to this stress (Czerniecki, 

1988). Human bipedal locomotion can be broken down into three major phases: heel strike, 

stance phase, and toe-off (Czerniecki, 1988). Force plate and footprint analyses demonstrate that, 

at heel strike, all the ground reaction force is transmitted through the foot via the calcaneal 

tuberosity (Czerniecki, 1988). Subsequent shifts in body weight promote entrance to stance 

phase and are accommodated by transmitting the body weight across the lateral longitudinal arch 

of the foot, supported by the lateral metatarsals, cuneiforms, and cuboid, as the body shifts over 

the ankle via the talocrural joint (Aiello and Dean, 1990; Harcourt-Smith, 2002; DeSilva, 2010). 

In humans, the talus forms a locking mechanism with the tibia and fibula to provide stability and 

allow weight transfer in the anteroposterior direction. More specifically, the trochlear surface of 

the talus sits parallel to the substrate, where the medial and lateral margins are equal in elevation. 

This shape provides humans with a large range of motion in the anteroposterior direction while 

preventing motion in the mediolateral direction (Elftman and Manter, 1935b; Aiello and Dean, 

1990). Then, as body weight shifts and the swinging leg begins to drop to the substrate, force is 

transmitted medially across the planted foot via the medial longitudinal arch and the transverse 

arch to the medial metatarsal heads and phalanges. This transfer of weight, from lateral to 
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medial, is permitted by the locked positions of the medial metatarsals and navicular which 

support the medial longitudinal and transverse arches. Finally, the force of body weight is 

concentrated on the ball of the foot (the head of the first metatarsal (Aiello and Dean, 1990; 

Harcourt-Smith, 2002; DeSilva, 2010). Once the swinging leg has entered the heel strike phase, 

the planted foot enters toe-off, where body weight opposes the ground reaction force to propel 

the body forward primarily using the great toe (Aiello and Dean, 1990; Harcourt-Smith, 2002; 

DeSilva, 2010). Throughout this entire cycle, the subtalar joint complex of the human foot is 

largely involved in generating stiffness and stability in order to create an effective lever arm for 

efficient weight transfer and toe-off (Aiello and Dean, 1990; Harcourt-Smith, 2002). 

 

Great ape foot & terrestrial locomotion 

 In contrast to the numerous biomechanical studies conducted on the human foot, few 

studies have assessed force transmission and gait mechanics in the foot of the great apes 

(Schmitt, 2003). This is especially true for Pongo, with comparatively more studies having been 

conducted on Pan and Gorilla foot mechanics (Schmitt, 2003). Unlike humans, the great ape 

foot never contacts the ground via an exclusive heel strike, resulting in the lack of an expanded 

and flattened calcaneal tuberosity (Elftman and Manter, 1935a). Instead, the lateral margin of the 

foot contacts the substrate at the same time as the lateral portion of the heel (Aiello and Dean, 

1990; Gebo, 1992). As body weight shifts anteriorly, force is spread across the lateral and medial 

portions of the foot. During this time, and unlike the human foot, the entire plantar surface of the 

great ape foot is in contact with the substrate (Elftman and Manter, 1935a; Aiello and Dean, 

1990; Gebo, 1992). During the next stage of the gait cycle, entering toe-off, the great ape foot 

experiences a “midtarsal break” (Elftman and Manter 1935a; Aiello and Dean, 1990), where the 
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anterior portion of the foot remains completely in contact with the substrate as the heel and tarsus 

lift. This movement is permitted by the mobility of the tarsometatarsal joint, whose joint surfaces 

are flat and lack the locking mechanisms that characterize the human tarsometatarsal joint. As a 

result, the great apes push off from the midfoot rather than the great toe, and thus lack the 

robusticity of the first metatarsal (Aiello and Dean, 1990; Harcourt-Smith, 2002). Additionally, 

the length and curvature of the phalanges prevent the efficient toe-off observed in humans. In 

contrast to the stability provided by the subtalar joint complex in humans, this functional unit in 

the great apes promotes flexibility. The shapes of the joint surfaces between the calcaneus, 

navicular, and talus suggest that more movement between bones is permitted in this region to 

accommodate movement on arboreal substrates and ultimately results in less effective weight 

transfer and toe in terrestrial locomotion (Harcourt-Smith, 2002). 

 

Great ape foot & arboreal locomotion 

 Like their behavior on terrestrial substrates, Pan and Gorilla adopt a plantigrade foot 

posture on arboreal substrates (Gebo, 1992; Harcourt-Smith, 2002). Therefore, the Pan and 

Gorilla foot experiences significant compressive force. When the substrate is small, Pan elevates 

the heel until it can be safely planted on the substrate when it is large enough; contrastingly 

Gorilla rarely travels on small substrates (Gebo, 1992). The grasping function of the great ape 

foot plays a much larger role on smaller substrates than larger ones and is facilitated by the 

mobile calcaneonavicular, tarsometatarsal, and metatarsophalangeal joints, especially in the first 

ray (Harcourt-Smith, 2002). On larger substrates, both Pan and Gorilla exhibit a style of 

knuckle-walking like that observed on terrestrial substrates (Gebo, 1992). The African ape foot is 

equipped to accommodate arboreal substrates by having highly mobile joints and long, curved 
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phalanges. It is largely the shape of the talar trochlea that determines the range of mobility 

present in great ape talocrural joint. Compared to humans, this joint forms a “looser” articulation 

with the medial and lateral malleoli, allowing the ankle to have a greater range of motion in the 

mediolateral direction, which is also facilitated by the lower elevation of the medial margin of 

the trochlea compared to the lateral margin (Aiello and Dean, 1990). This configuration and 

flexibility allows the ape ankle to accommodate movement on arboreal substrates, where 

inversion and eversion of the foot are crucial (Elftman and Manter, 1935a). 

 

Summary of human and African ape foot biomechanics 

Morphological differences observed between humans and extant great apes suggest that 

the human foot is modified for increased stability, shock absorption, and propulsion to 

accommodate human obligate bipedalism. The trochlear surface of the talus forms a locking 

mechanism that restricts motion of the ankle joint to the anteroposterior direction. On the other 

hand, the angled talar trochlea of great apes facilitates inversion and eversion of the ankle joint, 

important for flexibility on arboreal substrates. Additionally, the overall morphology of the 

calcaneus in humans follows the pattern of increased stability while the enlarged calcaneal 

tuberosity also forms an efficient lever arm for bipedal locomotion. The facet for the cuboid 

promotes the formation of the longitudinal arches of the foot, which play an important role in 

shock absorption during bipedal locomotion. Finally, the shape and orientation of the navicular 

follows the calcaneus, cuboid, and talus in assisting with arch support of the foot. The navicular 

is markedly less wedge-shaped than other extant great apes, contributing to the adducted position 

of the hallux in humans. Together, these differences result in a foot structure functionally 

adapted for bipedal locomotion. 
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Research questions 

 Analysis of morphological integration can be broken down into two categories: 

examination of patterns of covariation and integration within species and patterns of integration 

between species. Patterns of covariation and integration within species should mirror the 

differing biomechanical demands of articular and non-articular surfaces within each bone. 

Therefore, I expect that within species, within bone patterns of correlation are expected to be 

greater between articular surfaces than non-articular surfaces for the calcaneus, navicular and 

talus, since these surfaces should be related to adaptive function. Additionally, differing 

locomotor behaviors exhibit different biomechanical and functional demands on the subtalar 

joints of African apes and humans. Thus, between species, it is expected that the pattern of 

integration will differ due to differing locomotor demands of Homo sapiens, Gorilla gorilla, and 

Pan troglodytes. 
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Chapter 2 Materials and Methods 

Data collection 

Data were collected from the Hamann-Todd Collection at the Cleveland Museum of 

Natural History. Calipers were used to collect linear measurements that have been defined by 

previous studies (Gebo and Schwartz, 2006; Prang, 2014; Sarmiento and Marcus, 2000; Seiffert 

and Simons, 2000; Zipfel et al, 2011). The data for this study includes linear measurements from 

the talus, calcaneus, and navicular of 12 Homo sapiens, 12 Gorilla gorilla, and 11 Pan 

troglodytes. Measurements were taken from both the left and right foot, where possible. A total 

of 20 measurements were taken for the talus, 16 for the calcaneus, and 11 for the navicular 

(Tables 1-3). Additionally, articular surface areas, calculated using the formula for area of a 

rectangle and corresponding linear measurements, and the geometric mean of each bone using all 

variables were calculated in Microsoft Excel (Tables 1-3). All specimens were randomly selected 

adults (determined by collected information), and an effort was made to sample equal numbers 

of males and females. However, equal sampling of the sexes was not achieved and this could 

cause problems in the data analysis. For example, all H. sapiens specimens are male, all but two 

G. gorilla specimens are male, and three of the P. troglodytes specimens are male. Because of 

this unequal sampling, sexes were pooled for all analyses. 

 

Statistical analysis 

Analysis of shape variation and covariation 

To evaluate how each bone for each species differs in shape, principal components 

analyses of the variance/covariance matrices for the size-adjusted data were conducted in PAST 

(Hammer et al., 2001) and was bootstrapped 1000 times to account for small sample size. The 
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results of these analyses for each bone were used to identify which variables load on the relevant 

PC axes most heavily. Relevant PC axes were defined as those that account for more than five 

percent of the observed variance, and the cut-off point for PC loadings was set to the absolute 

value of 0.2; this value was selected as the cut-off point because all values below this dropped 

off dramatically. 

For all analyses, the critical α was set at 0.05. A multivariate analysis of variance 

(MANOVA) was conducted in PAST (Hammer et al., 2001) to examine differences in group 

means when scaled by the geometric mean. The results of the MANOVA analyses were used to 

further refine subsequent analyses by eliminating variables that whose groups means were not 

significantly different to focus analysis on just those variables that show differing relationships 

between taxa. Finally, a one-way analysis of variance (ANOVA) was conducted for each of the 

most important shape variables to examine differences in group means. For each variable, a 

Levene’s test was performed to test for homogeneity of variance. When this assumption was not 

met, a Welch’s test was used instead of the classic one-way ANOVA model (Field, 2013). A 

Bonferroni post-hoc test was used to examine pairwise differences between groups for each of 

these variables (Field, 2013). 

 

Analysis of morphological integration 

 In order to detect patterns of morphological integration both within and between bones of 

each species, correlation matrices were generated in IBM SPSS (IBM Corp, 2013) and the 

Pearson correlation coefficients were plotted in Microsoft Excel to visualize any patterns that 

may be present within and between bones of each species (Microsoft, 2016). In addition, 

principal component analyses based on the correlation matrices were generated for each bone 
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using PAST (Hammer et al., 2001) to examine relationships between species and to evaluate 

which bony features best separate taxa. A factor analysis of the correlation matrix for each bone 

was conducted in SYSTAT V.13 to examine patterns and relationships between species and to 

further identify which bony features best distinguish taxa. Finally, SYSTAT V.13 was used to 

generate correlation matrices for each bone of each taxon, and Microsoft Excel (Microsoft, 2016) 

was used to calculate the median positivized correlation coefficients for between articular 

surfaces, between non-articular surfaces, and between articular and non-articular surfaces of each 

bone for each taxon in order to examine the magnitude of overall patterns of correlation within 

each bone. 
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Chapter 3 Results 

Shape variation and covariation 

Calcaneus 

The PCA of the scaled data reveals that PC1 and PC2 account for 71.21% and 28.51% of 

variance, respectively. However, examination of the scatter plot shows very poor separation 

between taxa along both axes (Figure 1). Talar articular surface area and cuboid facet area 

contribute most to the loadings of each axis (Table S1). Therefore, these variables were used for 

all subsequent analyses.  

 Comparison of group means using MANOVA revealed that, when adjusted by geometric 

mean, groups means of these shape variables are significantly different (Wilk’s λ= 0.00476, 

F(36,80) = 29.24, p < 0.001) (Table 4). Additionally, Bonferroni-corrected p-values for multiple 

comparisons demonstrate that all groups are significantly different from one another (p < 0.001). 

Comparison of group means using one-way ANOVA (Table 5) demonstrates that species clearly 

differ in means of talar surface area and cuboid facet area (p < 0.001), where post hoc Bonferroni 

multiple comparisons tests reveal that all three groups are significantly different from one 

another (p < 0.05) (Table 6). 

 

Navicular 

 The PCA model for the scaled navicular linear measurements demonstrates that the 

first three PC axes represent the majority of variance within the sample, where PC1 accounts for 

76.6%, PC2 for 18.51%, and PC3 for 4.75%. For the first component axis, P. troglodytes 

separates relatively well from H. sapiens and G. gorilla, but there appears to be poor separation 

of H. sapiens and G. gorilla for each of these subsequent components (Figure 2). The variables 



	 20 

that load on these components most strongly include all of the articular surface areas on the 

navicular, such as those for the cuboid, talus, and three cuneiforms (Table S2). Therefore, these 

variables were used for all subsequent analyses. 

Comparison of group means using MANOVA revealed that, when adjusted by geometric 

mean, groups means of these shape variables are significantly different (Wilk’s lambda = 0.0156, 

F(32,84) = 18.39, p < 0.001) (Table 4). Additionally, Bonferroni-corrected p-values for multiple 

comparisons demonstrate that all groups are significantly different from one another (p < 0.001) 

(Table 7). Finally, one-way ANOVA of groups means for talar facet area revealed that groups 

are statistically significantly different (F(2) = 49.126, p < 0.001) (Table 5). The post hoc 

Bonferroni multiple comparisons test (Table 8) revealed that while H. sapiens and G. gorilla 

groups means are not significantly different from one another whereas all other species pairings 

are (p < 0.001).  

 

Talus  

The PCA model on the linear talar measurements shows that the first three PC axes 

represent most variance within the sample, 76.7%, 18.5%, and 4.8%, respectively. For the first 

component, P. troglodytes separates relatively well from H. sapiens and G. gorilla, but there 

appears to be poor separation of H. sapiens and G. gorilla for each of the subsequent components 

(Figure 3). The variables loading each component most heavily include talar head area, plantar 

facet area, and plantar facet length (Table S3). Therefore, the variables used for further analysis 

were based on those shown to be most heavily loading from the scaled PCA: talar head area, 

plantar facet area, and plantar facet length.  
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 Comparison of group means using MANOVA revealed that, when adjusted by geometric 

mean, groups means of these shape variables are significantly different (Wilk’s lambda = 

0.004319, F(44,74) = 23.91, p < 0.001) (Table 4). Additionally, Bonferroni-corrected p-values for 

multiple comparisons demonstrate that all groups are significantly different from one another (p 

< 0.001) (Table 9). Finally, one-way ANOVA analysis of groups means for talar head area 

reveals that groups are statistically significantly different (Table 5). The post hoc Bonferroni 

multiple comparisons test (Table 10) reveals that while H. sapiens and G. gorilla, and H. sapiens 

and P. troglodytes groups means are significantly different from one another (p < 0.001), G. 

gorilla and P. troglodytes are not significantly different from one another (p = 0.18). 

 

Morphological integration 

Within species patterns of correlation 

 Visualizations of the Pearson correlation coefficients for comparison within and between 

bones revealed minimal degrees of correlation, at best. Preliminary results show no general 

difference in the magnitude of correlations within and between bone articular surfaces and non-

articular features (Figures 4-9). Together, these figures (Figures 4-9) demonstrate that there is no 

clear pattern of correlation within or between bones for each species. However, PCA analyses for 

the correlation matrices of the calcaneus, talus, and navicular revealed that there is some 

patterning present that separates H. sapiens from P. troglodytes and G. gorilla along components 

1 and 2 for each bone (Figure 10); other principal component axes lack meaningful separation 

between taxa.  
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Calcaneus. The PCA loadings based on the correlation matrices of the calcaneus for each taxon 

are presented in Table S4. Overall, there seem to be few commonalities between taxa in terms of 

the variables that contribute most strongly to either the positive or negative ends of each PC axis. 

The cut-off point for the relevant loadings were determined based on where the magnitude 

dropped-off dramatically. Based on these loading scores, it appears as though most 

commonalities observed are those shared by H. sapiens and G. gorilla, although some exist 

between all three and others exist between G. gorilla and P. troglodytes, and P. troglodytes and 

H. sapiens. For example, mediolateral tuberosity width is common to all taxa, strongly loading at 

the negative end of PC1. 

 Alternatively, the factor analysis based on the correlations matrices of the calcaneus for 

each taxon show very few, if any, common patterns between taxa (Table S5). Only mediolateral 

tuberosity width at the peroneal trochlea is common to loading all three taxa on the negative end 

of factor 1. For all other factors, there are no shared measurements that load the axes in either 

direction for any taxa. 

 

Navicular. The PCA loadings based on the correlation matrices of the navicular for each taxon 

are presented in Table S6. Unlike the calcaneus, more patterns of similarity are observed 

between taxa for the navicular. For example, all three taxa share talar facet minor axis diameter 

as a common measurement driving variation toward the negative end of PC1. Similarly, H. 

sapiens and G. gorilla share cuboid facet area (CFA) and cuboid facet dorsoplantar diameter at 

the positive end of PC2. For PC3, all taxa are most heavily loaded by mesocuneiform facet 

mediolateral diameter on the positive end, where other similarities are shared between H. sapiens 

and G. gorilla, G. gorilla and P. troglodytes, and H. sapiens and P. troglodytes. Similar patterns 
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are observed for the other PC axes as well, with various combinations of shared patterns between 

taxa. 

 The opposite case appears to be true for the factor analysis of the navicular correlation 

matrices for each taxon (Table S7). Few measurements load commonly among taxa. While a 

few, such as cuboid facet dorsoplantar diameter, cuboid facet mediolateral diameter, and cuboid 

facet area (CFA) contribute to most of the variation on the positive end of factor 2, are shared by 

H. sapiens and G. gorilla, most other commonalities between taxa for the remaining factors 

occur between H. sapiens and P. troglodytes or G. gorilla and P. troglodytes, if they exist at all. 

 

Talus. The PCA loadings based on the correlation matrices of the talus for each taxon are 

presented in Table S8. Commonalities between taxa are marginal best. While all three taxa share 

lateral body height, anterior trochlear width, and posterior trochlear width as measurements that 

drive the positive loading along PC1, other patterns of shared measurements are variable and 

heavily loaded measurements are shared between all possible combinations of taxa for each PC 

axis. A similar phenomenon is apparent for the factor analysis as well (Table S9). Therefore, 

unlike the results of these analyses for the calcaneus and navicular, common patterns observed 

for the talus are tentative, and there is no clear association between specific groups of 

measurements between taxa. 

 

Summary of PCA and factor analysis results 

Results of the factor analysis, which allows rotational freedom of the axes, corroborated 

the results generated from the correlation matrix PCA. For all bones, only factors 1 and 2 

successfully separated taxa into clear groupings (Figure 11). The variables that drive separation 
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are listed in Tables S10-S12. In general, the PCA and factor analyses use the same measurements 

to distinguish between taxa, where those related to articular surfaces were used most frequently. 

 

 

Within bone patterns of integration 

The median values for the Pearson correlation coefficients, calculated within each bone 

according to the aforementioned pairings (i.e., between articular surfaces, between non-articular 

surfaces, and between articular and non-articular surfaces), demonstrate that within each species 

there is no evident pattern of integration between any of the pairings (Table 11). This pattern, or 

lack thereof, holds across all three taxa for each bone studied. Where slight differences in median 

correlation do exist, it cannot at this time be determined if this reflects a true pattern or is an 

effect of small sample size. 

In summary, the overall magnitude of correlations is relatively low (Table 11), though 

some features did show very high correlations (Figures 4-9, 11). Factor analysis (Figure 11) 

clearly separates humans, gorillas and chimpanzees, as expected, but the pattern of loadings 

could not be clearly matched to the pattern of within-species correlations. However, plotting 

arrays of within-species correlations against one another suggests that species share similar 

patterns of correlations for each bone (Figure 12); this observation holds true across taxa for all 

three bones. Interestingly, articular surface dimensions consistently show positive correlations in 

these comparisons. However, at this time it cannot be determined which specific shape variables 

are driving these patterns due to small sample sizes. 
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Chapter 4 Conclusion and Discussion 

Shape variation and covariation 

The most important variables for loadings of shape variation in the calcaneus PCA were 

talar articular surface area and cuboid facet area. Analysis of these shape variables using the 

MANOVA model demonstrates that taxa group means are significantly different. Results of the 

one-way ANOVA of talar articular surface area and cuboid facet area demonstrate that group 

means are significantly different, where all three species (H. sapiens, G. gorilla, and P. 

troglodytes) are significantly different from one another. Two additional variables that 

demonstrate differences in species are neighboring joint surfaces between the navicular and talus 

(talar facet area and talar head area, respectively). The post hoc Bonferroni comparisons show 

differences about which groups are statistically different from one another in each case. 

Therefore, talar facet area is probably a good proxy to use when examining differences in shape 

variation between H. sapiens and P. troglodytes, and G. gorilla and P. troglodytes; however, it is 

not advisable to use talar facet area to distinguish between H. sapiens and G. gorilla, since 

species means are not significantly different. On the other hand, talar head area is probably a 

good proxy to use when examining differences in shape variation between H. sapiens and G. 

gorilla, and H. sapiens and P. troglodytes; however, it is not advisable to use talar head area to 

distinguish between G. gorilla and P. troglodytes since species means are not significantly 

different. 

The primary goal of this study was to evaluate which measurements separate species to 

see if any pattern in differences of locomotory behavior can be recognized. The results 

demonstrate that the variables that best separate species are talar articular surface area and 
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cuboid facet area on the calcaneus, talar facet area of the navicular, and talar head area of the 

talus. This is interesting because these variables are all articular surfaces and together are 

associated with mobility of the foot, and could thus be associated with differences in locomotor 

behavior (Aiello and Dean, 1990; Harcourt-Smith, 2002; Harcourt-Smith and Aiello, 2004). In 

modern humans, the joints formed by these surfaces are associated with supporting the 

longitudinal arches of the foot, whereas these joints are associated with foot mobility in P. 

troglodytes and G. gorilla (Aiello and Dean, 1990; Harcourt-Smith, 2002; Harcourt-Smith and 

Aiello, 2004). Joint stability and arch support occurs in humans as a response to bipedal 

locomotion, while joint mobility in great apes helps accommodate foot positioning on branches 

in arboreal locomotion (Aiello and Dean, 1990; Harcourt-Smith, 2002; Harcourt-Smith and 

Aiello, 2004), so it is not surprising that species differ in these surfaces. 

 

Morphological integration 

Results of the correlation and integration analyses suggest that while species can be 

grouped based on variables related to articular surface morphology, especially with respect to the 

joint between the navicular and talus, overall differences in patterns of morphological integration 

are minimal. Pearson correlation coefficients, based on the correlation matrices, demonstrated 

that there was no substantial difference between species in terms of patterns of morphological 

integration when comparing within bone to between bone data. This could indicate that all taxa 

examined, H. sapiens, G. gorilla, and P. troglodytes, have very loosely integrated foot 

morphology which would allow for the evolution of the major differences related to varying 

locomotor behaviors, such as a more flexible or more restricted subtalar joint. Furthermore, any 

differences that are demonstrated by the patterning of the Pearson correlation coefficients were 
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detected by the PCA and factor analysis. For both analyses, only the first two axes successfully 

separated taxa and the variables that best account for these differences are related to articular 

surface measurements. Therefore, the analysis of shape variation/covariation, in conjunction with 

analysis of morphological integration, suggest that articular surface shape could potentially be 

used to distinguish between H. sapiens, G. gorilla, and P. troglodytes, where patterns of 

integration among these articular surfaces are loose enough, because overall patterns of 

correlation are low, to be able evolve in correspondence with differing locomotor modes. This 

result is similar to that presented by Grabowski et al. (2011) and Williams (2010). Just as 

patterns of morphological integration were most variable in regions of the hip (Grabowski et al., 

2011) and wrist (Williams, 2010) associated with locomotor behavior, here too the subtalar joint 

surfaces show less integration within and between bones, resulting in less constraint on 

morphology of the foot in the evolution of bipedal locomotion in humans. While at this time it 

cannot be definitively determined which articular surfaces of the calcaneus, navicular, and talus 

are driving these patterns of loose integration, it is likely that the talonavicular joint is a 

contributing factor because its provides stability to the human subtalar joint (Aiello and Dean, 

1990; Harcourt-Smith, 2002; Harcourt-Smith and Aiello, 2004) and was able to separate taxa in 

the aforementioned shape variation analyses. 

However, analyses of morphological integration suggest that there are no general patterns 

of integration distinguishing articular surfaces from non-articular parts of the bones in any taxa. 

These results suggest two possibilities: either the bones of the foot are loosely integrated and 

facilitate evolutionary modification, or the sample size is too small to detect true patterns of 

integration. It is interesting that these results demonstrate no pattern difference between humans 

and African great apes because similar results have been found in morphological integration 
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studies of the wrist (Williams, 2010), where the magnitude and pattern of integration were not 

unique among knuckle-walkers like chimpanzees and gorillas. Instead, the magnitude and pattern 

of integration within the wrist were similar between African great apes and humans, even though 

humans are not knuckle-walkers (Williams, 2010). This lack of unique patterning in the human 

subtalar joint could suggest that this joint does not constitute a functional complex, as Williams 

(2010) has suggested for the African great ape and human wrist. The pattern of correlation is 

itself correlated consistently across species for each bone (Table 11), with correlations among 

measurements of articular surfaces consistently positive (Figure 12). This suggests that at the 

least there are shared patterns of integration across species in the articular surfaces, again 

demonstrating that the human subtalar joint is not unique in terms of pattern of morphological 

integration. Again, this finding corroborates the idea that the subtalar joint does not form a 

functional complex and should not be used as such in cladistics analyses (Williams, 2010). 

However, the small sample size of this study may be obscuring more subtle pattern differences 

that suggest otherwise. Thus, if there are patterns of integration, then larger sample sizes will be 

needed to detect patterns of integration and elucidate which shape variables are driving these 

patterns. It is surprising and intriguing, however, that any common patterns have been 

demonstrated at all given these limitations, and future work will continue to resolve and refine 

the analysis presented here. 

In sum, within species locomotor behavior, at least between articular surfaces, does not 

appear to drive patterns of integration within the subtalar joint. On the other hand, humans, 

gorillas, and chimpanzees do share similar patterns of integration within each one of the bones. 

This could mean two things: either that some degree of constraint is limiting the degree of 

modification allowed throughout evolution, or that the patterns of integration themselves are 
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fluid enough to allow modification for adequate functional variation. Unfortunately, it is unclear 

at this time which of these drives the differences observed in the human and African great ape 

foot. What can be concluded, though, is that patterns of integration are not different between 

species, so differences in human foot anatomy are not constrained by ancestry, i.e., the human 

foot evolved within the pattern of integration that likely already existed. Therefore, the 

modifications of the subtalar joint in humans could be a function of differing biomechanical 

demands related to bipedalism. A study focusing on the ontogeny of the talocrural joint (Turley 

and Frost, 2014) demonstrated that substrate use significantly impacts the shape of this joint. 

Though this sort of study has yet to be conducted on the subtalar joint, one could hypothesize 

that a similar phenomenon maybe be at play. Because patterns of integration are not different 

between the taxa examined here, differences in subtalar joint morphology could be attributed to 

differences in substrate use related to locomotor behavior and developmental plasticity (Elftman 

and Manter, 1935a; Gebo, 1992; Aiello and Dean, 1990; Harcourt-Smith, 2002) rather than 

differing evolutionary selection pressures and evolutionary integration (Zelditch, 1987, 1988). 

These biomechanical and functional demands would have acted on a foot that could just as easily 

become that of an African ape due to shared patterns of integration. Because the African apes 

and humans share similar patterns of integration, any biomechanical or functional demand that 

differs between taxa would have resulted in corresponding changes in foot structure, probably 

throughout ontogeny, but without altering the degree or pattern of morphological integration. 

Other processes associated with genetic integration, such as gene linkage and duplication (Lande, 

1980; Cheverud, 1989, Marroig and Cheverud, 2001, Porto et al., 2009), could have transformed 

these epigenetic pressures into heritable characteristics (Marroig and Cheverud, 2001) that result 

in the differences observed today between human and African great ape subtalar morphology.  
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Limitations and future directions 

 While the results of this study suggest that there are no morphological integration pattern 

differences of the subtalar joint between African great apes and humans, this study was 

conducted on a very small sample size, where only 12 humans and gorillas, and 11 chimps were 

examined. This sample size is simply too small to truly detect reliable patterns of covariation and 

integration considering most studies of this sort include hundreds of individuals from several 

species (Grabowski and Porto, 2016). Additionally, unequal sampling of sexes may confound the 

results presented. While it is unclear whether sexual dimorphism plays a role in the 

morphological integration of the foot, differences in degree of sexual dimorphism could 

contribute to the observed patterns. Thus, the results presented here are tentative but intriguing.  

To overcome these limitations, future analyses of morphological integration of the 

subtalar joint should incorporate larger samples with wider phylogenetic diversity and locomotor 

behaviors to better detect patterns of covariation and integration within and between species. 

Additionally, more refined analyses of integration, could help shed light on the degree of 

relatedness between patterns of integration, function, and phylogeny. Furthermore, future 

analyses should examine which specific shape variables seem to contribute most strongly to the 

observed patterns of integration between species to identify which aspects of foot morphology 

are most susceptible to forces of evolutionary change, such as functional and biomechanical 

demands. Examination of the developmental pathways leading to the formation of the subtalar 

joint and whether these observed patterns of integration could be a result of developmental 

integration is another worthwhile pursuit in evaluating the evolution of bipedal locomotion. 

Furthermore, an examination of the genetic control of foot development to identify the genes 
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involved for each species and whether these are linked to one another in some way, and if so, is 

this linkage the same across species.  
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Figures and Tables 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 1. Plot of PC1 and PC2 for the scaled calcaneus data. Red = P. 
troglodytes, black = H. sapiens, blue = G. gorilla; x = female, dot = male. 
	

Figure 2. Plots of PC axes 2-3 against PC axis 1 for the scaled navicular data. Red = 
P. troglodytes, black = H. sapiens, blue = G. gorilla; x = female, dot = male. 
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Figure 13. Scatter plot of the correlation matrix residuals for 
comparison of surfaces within the talus and between the talus and 
calcaneus. Blue = within the talus; orange = between the talus 
and calcaneus.

Figure 3. Plots of PC axes 2-3 against PC axis 1 for the scaled navicular data. Red = 
P. troglodytes, black = H. sapiens, blue = G. gorilla; x = female, dot = male. 
	

Figure 4. Scatter plot of the correlation 
matrix residuals for comparison of 
surfaces within the talus and between 
the talus and calcaneus for each 
species. Blue = within the talus; orange 
= between the talus and calcaneus. 
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Figure 14. Scatter plot of the correlation matrix residuals for comparison of surfaces 
within the talus and between the talus and navicular. Blue = within the talus; orange 
= between the talus and navicular.
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Figure 15. Scatter plot of the correlation matrix residuals for comparison of surfaces 
within the calcaneus and between the calcaneus and talus. Blue = within the 
calcaneus; orange = between the calcaneus and talus.

Figure 5. Scatter plot of the correlation 
matrix residuals for comparison of 
surfaces within the talus and between the 
talus and navicular for each. Blue = within 
the talus; orange = between the talus and 
navicular. 

Figure 6. Scatter plot of the correlation 
matrix residuals for comparison of 
surfaces within the calcaneus and between 
the calcaneus and talus for each species. 
Blue = within the calcaneus; orange = 
between the calcaneus and talus. 
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Figure 16. Scatter plot of the correlation matrix residuals for comparison of surfaces 
within the calcaneus and between the calcaneus and navicular. Blue = within the 
calcaneus; orange = between the calcaneus and navicular.
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Figure 17. Scatter plot of the correlation matrix residuals for comparison of surfaces 
within the navicular and between the navicular and talus. Blue = within the 
navicular; orange = between the navicular and talus.

Figure 7. Scatter plot of the correlation 
matrix residuals for comparison of surfaces 
within the calcaneus and between the 
calcaneus and navicular for each species. 
Blue = within the calcaneus; orange = 
between the calcaneus and navicular. 

Figure 8. Scatter plot of the correlation 
matrix residuals for comparison of 
surfaces within the navicular and 
between the navicular and talus for 
each species. Blue = within the 
navicular; orange = between the 
navicular and talus. 
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Figure 17. Scatter plot of the correlation matrix residuals for comparison of surfaces 
within the navicular and between the navicular and talus. Blue = within the 
navicular; orange = between the navicular and talus.
Figure 9. Scatter plot of the correlation 
matrix residuals for comparison of 
surfaces within the navicular and between 
the navicular and calcaneus for each 
species. Blue = within the navicular; 
orange = between the navicular and 
calcaneus. 

Calcaneus Navicular

Talus

Figure 19. Principal components 1 and 2 plotted against each other from the PCA 
conducted on the correlation matrices of the datasets. Red = P. troglodytes; black = H. 
sapiens; blue = G. gorilla. X = female; dot = male.

Figure 10. Principal components 1 and 2 
plotted against each other from the PCA 
conducted on the correlation matrices of the 
datasets. Red = P. troglodytes; black = H. 
sapiens; blue = G. gorilla. X = female; dot = 
male. 
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Figure	20.	Results	of	the	factor	analysis	based	on	the	correlation	matrix	generated	from	all	measurements,	scaled	by	
geometric	mean,	for	each	bone.	Only	factors	1	and	2	and	shown	because	these	best	separated	taxa,	while	other	factors	
demonstrated	poor	separation.	Red	dot	=	H.	sapiens,	blue	x	=	G.	gorilla,	green	+	=	P.	troglodytes.

Figure 11. Results of the factor analysis based on the correlation matrix generated from all 
measurements, scaled by geometric mean, for each bone. Only factors 1 and 2 and shown 
because these best separated taxa, while other factors demonstrated poor separation. Red 
dot = H. sapiens, blue x = G. gorilla, green + = P. troglodytes. 
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Figure 12. Plot of arrays of within-species correlations comparing the human calcaneus to 
the chimpanzee calcaneus. Articular surfaces (red) are clustered along the positive ends of 
the X and Y axes, whereas other correlations are scattered throughout the positive and 
negative regions. 
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Table 1. Linear measurements for the calcaneus. 
Calcaneus 

1 Proximodistal tuber length 
2 Proximodistal neck length 
3 Minimum dorsoplantar tuber height 
4 Dorsoplantar neck height 
5 Minimum mediolateral tuber width 
6 Mediolateral tuber width at the peroneal trochlea 
7 Maximum length 
8 Sustentaculum breadth 
9 Calcaneal body 
10 Overall articular dimension 
11 Tuberosity breadth 
12 Posterior talar articular surface a 
13 Posterior talar articular surface b 
14 Dorso/plantar cuboid facet dimension 
15 Medio/lateral cuboid facet dimension 
16 Talar facet articular surface area 
17 Cuboid facet area 
18 Geometric mean 

 
Table 2. Linear measurements for the navicular. 

Navicular 
1 Talar facet major axis (dorsoplantar) diameter 
2 Talar facet minor axis (mediolateral) diameter 
3 Ectocuneiform facet dorsoplantar diameter 
4 Ectocuneiform facet mediolateral diameter 
5 Mesocuneiform facet dorsoplantar diameter 
6 Mesocuneiform facet mediolateral diameter 
7 Entocuneiform facet mediolateral diameter 
8 Entocuneiform facet dorsoplantar diameter 
9 Navicular maximum length 
10 Cuboid facet dorsoplantar diameter 
11 Cuboid facet mediolateral diameter 
16 Sustentaculum tali projection 
17 Talar facet area 
18 Ectocuneiform facet area 
19 Mesocuneiform facet area 
20 Entocuneiform facet area 
21 Cuboid facet area 
22 Geometric mean 
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Table 3. Linear measurements for the talus. 
Talus 

1 Distance from the most distolateral point on the talar trochlea to the most medial 
point on the cotylar fossa 

2 Medial body length 
3 Lateral body height 
4 Mid-trochlear width 
5 Medial body height 
6 Medial height (overall) 

7 Distance from the most lateral point on fibular facet to the medial aspect of the 
cotylar fossa 

8 Anteroposterior length of the ectal facet 
9 Mediolateral width of the distal ectal facet 
10 Head width 
11 Head height 
12 Talar length 
13 Talar neck length 
14 Talofibular lateral projection 
15 Plantar facet length 
16 Plantar facet width 
17 Talar width 
18 Lateral body height 
19 Anterior trochlear width 
20 Posterior trochlear width 
21 Talar head area 
22 Anteroposterior talar facet difference 
23 Plantar facet area 
24 Mediolateral talar body height difference 
25 Geometric mean 
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MANOVA Summary 
Calcaneus Wilk’s lambda 0.00476 
 F 29.24 
 df1 36 
 df2 78 
 p-value < 0.001 
Navicular Wilk’s lambda 0.0156 
 F 18.39 
 df1 36 
 df2 80 
 p-value < 0.001 
Talus Wilk’s lambda 0.004319 
 F 23.91 
 df1 44 
 df2 74 
 p-value < 0.001 

ANOVA Summary 

  F df p-value 

Calcaneus Cuboid facet 
area 1.24 2 < 0.001 

 Talar articular 
surface area* 16.91 2,34 < 0.001 

Navicular Talar facet area 49.13 2 < 0.001 

Talus Talar head area 25.16 2 < 0.001 

*Welch’s test 

Table 4. MANOVA results summary for the calcaneus, navicular, and 
talus.	

Table 5. Summary of ANOVA results for the size-adjusted data of the calcaneus, navicular, and 
talus. 
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Table 6. Bonferroni multiple comparisons of the calcaneus species means demonstrating which 
species means are significantly different from one another for talar articular surface area and 
cuboid facet area. 

Multiple Comparisons 

Species Mean 
Difference Std. Error Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Homo 
Gorilla -3.36 1.23 0.025 -6.39 -0.33 

Pan 3.20 1.19 0.029 0.26 6.15 

Gorilla 
Homo 3.36 1.23 0.025 0.33 6.39 
Pan 6.56 1.26 < 0.01 3.47 9.66 

Pan 
Homo -3.20 1.19 0.029 -6.15 -0.26 

Gorilla -6.56 1.26 0.000 -9.66 -3.47 

 
 
 
 
 
 
 
 

 
Table 8. Bonferroni multiple comparisons of the navicular species means demonstrating which 
species means are significantly different from one another for talar facet area. 

Multiple Comparisons 
Species Mean 

Difference 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper 
Bound 

Homo Gorilla -1.18 0.62 0.19 -2.71 0.36 
Pan 4.81 0.63 0.00 3.25 6.36 

Gorilla Homo 1.18 0.62 0.19 -0.36 2.71 
Pan 5.98 0.64 0.00 4.41 7.56 

Pan Homo -4.81 0.63 0.00 -6.36 -3.25 
Gorilla -5.98 0.64 0.00 -7.56 -4.41 

*. The mean difference is significant at the 0.05 level. 

Bonferroni-corrected p-values 
 Homo sapiens Gorilla gorilla Pan troglodytes 
Homo sapiens  < 0.001 < 0.001 
Gorilla gorilla < 0.001  < 0.001 

Pan troglodytes < 0.001 < 0.001  

Table 7. Bonferroni-corrected p-values for multiple comparisons of the navicular data from 
the MANOVA.	
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Bonferroni-corrected p-values 

 Homo sapiens Gorilla gorilla Pan troglodytes 

Homo sapiens  < 0.001 < 0.001 

Gorilla gorilla < 0.001  < 0.001 

Pan troglodytes < 0.001 < 0.001  

Multiple Comparisons 

Species Mean 
Difference 

Std. Error Sig. 95% Confidence Interval 
Lower Bound Upper 

Bound 
Homo Gorilla 4.22 0.88 0.00 2.05 6.40 

Pan 5.92 0.86 0.00 3.81 8.04 
Gorilla Homo -4.22 0.88 0.00 -6.40 -2.05 

Pan 1.70 0.88 0.18 -0.47 3.87 
Pan Homo -5.92 0.86 0.00 -8.04 -3.81 

Gorilla -1.70 0.88 0.18 -3.87 0.47 

Table 9. Bonferroni-corrected p-values for multiple comparisons of the talus data from the 
MANOVA.	

Table 10. Bonferroni multiple comparisons of the talus species means demonstrating which 
species means are significantly different from one another for talar head area. 
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Table 11. Values for the median correlation coefficients of articular and non-articular surfaces 
for each species, separated by bone.	X = no correlation coefficients generated for non-articular 
surfaces. 

Median Correlations 
  H. 

sapiens 
G. 

gorilla 
P. 

troglodytes 
Calcaneus Articular surface-articular surface 0.27 0.32 0.28 
 Non-articular surface-non-articular surface 0.31 0.38 0.22 
 Articular surface-non-articular surface 0.25 0.38 0.31 
     
Navicular Articular surface-articular surface 0.25 0.23 0.30 
 Non-articular surface-non-articular surface X X X 
 Articular surface-non-articular surface 0.24 0.23 0.15 
     
Talus Articular surface-articular surface 0.16 0.25 0.31 
 Non-articular surface-non-articular surface -0.02 0.29 0.16 
 Articular surface-non-articular surface 0.02 0.28 0.26 
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PC Loadings of the Calcaneus 
 PC 1 PC 2 
1 0.017691 0.0097652 
2 0.010674 -0.0050439 
3 0.0078097 -0.0088003 
4 0.005931 -0.0063416 
5 0.0076168 -0.0010086 
6 0.0055783 0.00036182 
7 0.030928 0.0050202 
8 0.0054967 0.00229 
9 0.026782 0.0038184 
10 0.016084 0.0006215 
11 0.0095518 -0.0019601 
12 0.010156 -0.0066727 
13 0.0097313 -0.01009 
14 0.0093683 0.0083128 
15 0.0090558 0.010562 
16 0.0075144 0.0069879 
Talar Articular SA 0.74123 -0.67 
Cuboid Facet Area 0.66895 0.74191 

Table S1. Principal components loadings for the first two axes of the scaled 
variance/covariance matrix for the calcaneus.	
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PC Loadings of the Navicular 

 PC 1 PC 2 PC 3 PC 4 PC 5 
1 0.011977 -0.017391 0.0015027 -

0.0020918 
0.00083972 

2 0.0087512 0.0028814 -0.0093057 0.001005 -0.0016396 
3 0.0056502 0.010791 0.0086361 0.0052752 -0.021378 
4 0.0045521 -

0.0033725 
0.0049447 0.002878 -0.010102 

5 0.0062114 0.0057022 0.0062098 -
0.0083635 

0.00011229 

6 0.0072038 0.0040232 0.0091429 -0.019954 0.0062691 
7 0.0071494 0.0040204 0.0041195 0.0081851 0.0057022 
8 0.0082013 0.016785 -0.0040267 0.0096659 0.0079143 
Navicular 
Maximum Length 

0.0166 -0.0191 0.019302 0.0048311 -0.0051703 

10 -0.0014711 -0.017355 0.028746 0.010186 0.0072896 
11 0.0014833 -

0.0057458 
0.006615 0.0046172 0.0074957 

Talar Facet Area 0.77542 -0.52733 -0.34507 -0.01513 -0.025273 
Ectocuneiform 
Facet Area 

0.26787 0.18096 0.37775 0.21815 -0.83915 

Mesocuneiform 
Facet Area 

0.35926 0.25915 0.43303 -0.76671 0.16623 

Entocuneiform 
Facet Area 

0.44383 0.61631 0.0030261 0.50627 0.40755 

Cuboid Facet Area 0.012244 -0.4906 0.74102 0.32743 0.31721 
 
 
 
 
 
 
 
 
 
 
 

Table S2. Principal components loadings for the first five axes of the scaled 
variance/covariance matrix for the navicular.	
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PC Loadings of the Talus 
 PC 1 PC 2 PC 3 
1 0.013287 -0.0040599 0.28869 
2 0.01208 -0.0047194 0.30696 
3 0.011793 0.002749 -0.018464 
4 0.0081468 -0.0068592 0.17238 
5 0.006491 -0.0022598 0.026214 
6 0.0095374 0.0013168 0.051021 
7 0.013275 -0.0056392 0.35707 
8 0.012727 -0.0080985 0.19561 
9 0.0073507 -0.0042042 0.12329 
10 0.0084235 0.013861 -0.045654 
11 0.0077757 0.0079672 0.059791 
12 0.015634 -0.0032101 0.34331 
13 0.00443 -0.001308 0.16397 
14 0.0010611 -0.0057411 0.12491 
15 0.013472 -0.0073019 0.12541 
16 0.0094719 -0.0072074 -0.072201 
17 0.010444 -0.010871 0.40015 
18 0.010411 -0.0043582 0.15236 
19 0.012887 -0.0070453 0.23515 
20 0.010574 0.0010815 -0.036312 
Talar Head Area 0.58233 0.81249 -0.0020099 
AP Talar Facet Diff 0.0023133 -0.0081268 0.27146 
Plantar Facet Area 0.81159 -0.58217 -0.040413 

Table S3. Principal components loadings for the first three axes of the scaled 
variance/covariance matrix for the talus.	
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Table S4. PCA loadings based on the correlation matrices for the calcaneus of H. sapiens, G. 
gorilla and P. troglodytes. 
 PC1 PC2 PC3 PC4 PC5 PC6 
H. sapiens       
_1_GEOM 0.703 0.251 -0.279 0.087 -0.219 -0.347 
_2_GEOM 0.529 -0.513 -0.402 0.055 0.001 -0.16 
_3_GEOM 0.337 -0.626 0.224 -0.515 -0.15 0.155 
_4_GEOM -0.493 -0.449 -0.271 0.402 0.251 -0.156 
_5_GEOM 0.339 -0.31 -0.51 0.623 0.123 0.044 
_6_GEOM -0.896 0.023 0.089 0.373 0.019 -0.013 
_7_GEOM 0.72 -0.111 0.094 0.063 -0.4 -0.342 
_8_GEOM 0.408 0.355 0.234 -0.041 0.341 -0.577 
_9_GEOM 0.842 0.002 0.177 0.142 0.135 -0.241 
_10_GEOM 0.844 0.095 -0.072 -0.11 0.28 0.317 
_11_GEOM 0.298 -0.375 -0.412 0.232 -0.539 0.384 
_12_GEOM 0.629 -0.418 -0.187 0.047 0.493 0.111 
_13_GEOM 0.25 -0.636 0.675 0.043 0 0.118 
_14_GEOM 0.474 0.404 -0.433 -0.351 0.296 0.363 
_15_GEOM 0.537 0.313 0.286 0.597 -0.277 0.104 
_16_GEOM 0.456 0.363 0.688 0.08 -0.133 0.246 
CFA 0.108 0.759 0.013 0.42 0.159 0.315 
TASA 0.015 -0.513 0.628 0.348 0.354 0.115 
 
G. gorilla       
_1_GEOM -0.298 0.659 0.293 -0.326 -0.114 0.341 
_2_GEOM 0.757 -0.355 0.261 -0.158 -0.135 0.053 
_3_GEOM 0.43 -0.365 -0.496 -0.413 0.052 0.329 
_4_GEOM -0.265 -0.051 0.447 0.288 0.625 0.262 
_5_GEOM 0.88 0.008 -0.079 -0.207 0.18 0.051 
_6_GEOM -0.893 0.142 0.014 -0.199 0.25 -0.19 
_7_GEOM 0.72 0.621 0.113 0.127 -0.129 0.153 
_8_GEOM 0.234 -0.677 0.265 0.213 -0.348 0.419 
_9_GEOM 0.631 0.569 0.228 0.141 -0.184 0.363 
_10_GEOM 0.726 -0.16 0.339 0.209 -0.133 -0.159 
_11_GEOM 0.606 0.024 0.382 0.03 -0.327 -0.51 
_12_GEOM 0.462 -0.256 0.421 0.255 0.33 0.025 
_13_GEOM 0.781 -0.248 -0.1 -0.023 0.366 -0.003 
_14_GEOM 0.682 0.35 -0.443 0.29 0.206 0.156 
_15_GEOM -0.395 -0.355 -0.492 0.521 -0.216 0.153 
_16_GEOM -0.651 0.144 0.189 0.664 0.016 -0.027 
CFA 0.501 0.306 -0.65 0.378 -0.047 -0.168 
TASA 0.885 0.062 -0.024 0.035 0.259 -0.257 
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Table S4. Continued from previous page. 
 PC1 PC2 PC3 PC4 PC5 PC6 
P. troglodytes       
_1_GEOM 0.782 -0.22 -0.231 -0.252 -0.12 0 
_2_GEOM 0.351 -0.343 0.498 0.568 0.075 0.065 
_3_GEOM -0.546 -0.429 0.34 0.001 -0.046 0.22 
_4_GEOM -0.167 0.819 -0.147 0.081 -0.24 -0.064 
_5_GEOM 0.137 -0.535 0.388 -0.188 0.561 0.061 
_6_GEOM -0.841 0.299 0.086 -0.165 0.159 0.105 
_7_GEOM 0.82 -0.354 -0.198 0.051 0.054 -0.01 
_8_GEOM 0.423 -0.148 -0.512 0.499 -0.191 0.026 
_9_GEOM 0.911 -0.065 0.102 0.031 0.124 -0.141 
_10_GEOM 0.613 -0.077 0.202 0.481 -0.31 -0.218 
_11_GEOM 0.482 0.321 0.267 -0.342 -0.251 -0.328 
_12_GEOM 0.337 0.085 0.694 0.02 -0.409 0.338 
_13_GEOM 0.183 0.644 0.117 0.463 0.509 -0.041 
_14_GEOM 0.757 0.117 -0.193 -0.119 0.406 -0.156 
_15_GEOM 0.734 0.07 -0.046 -0.258 -0.123 0.533 
_16_GEOM 0.391 0.158 0.526 -0.405 -0.041 -0.431 
CFA 0.768 0.278 -0.218 -0.302 0.1 0.367 
TASA 0.351 0.751 0.304 0.19 0.175 0.26 
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Table S5. Factor loadings based on the correlation matrices for the calcaneus of H. sapiens, G. 
gorilla and P. troglodytes. 
 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
H. sapiens       
_1_GEOM 0.249 -0.08 -0.316 0.119 0.792 -0.029 
_2_GEOM 0.317 -0.506 0.05 -0.352 0.454 0.213 
_3_GEOM 0.302 0.236 0.423 -0.671 0.147 0.265 
_4_GEOM -0.369 -0.701 0.089 -0.111 -0.344 0.004 
_5_GEOM 0.189 -0.799 0.04 0.211 0.252 0.305 
_6_GEOM -0.721 -0.164 0.008 0.213 -0.597 -0.036 
_7_GEOM 0.082 0.058 0.115 -0.098 0.882 0.097 
_8_GEOM 0.149 0.052 -0.007 0.114 0.457 -0.742 
_9_GEOM 0.417 -0.077 0.281 0.119 0.716 -0.226 
_10_GEOM 0.878 0.027 0.118 0.155 0.327 0.027 
_11_GEOM 0.109 -0.224 -0.026 -0.039 0.268 0.869 
_12_GEOM 0.691 -0.473 0.32 -0.144 0.194 -0.025 
_13_GEOM 0.013 0.107 0.913 -0.246 0.147 0.101 
_14_GEOM 0.843 0.092 -0.424 0.134 -0.023 -0.005 
_15_GEOM 0.023 0.096 0.245 0.694 0.574 0.175 
_16_GEOM 0.183 0.603 0.423 0.469 0.315 -0.044 
CFA 0.186 0.106 -0.184 0.893 -0.063 -0.086 
TASA -0.059 -0.176 0.923 0.045 -0.122 -0.117 

 
G. gorilla       
_1_GEOM -0.227 0.792 -0.245 -0.161 -0.069 -0.274 
_2_GEOM 0.393 0.067 0.023 0.536 0.069 0.602 
_3_GEOM 0.238 -0.14 0.163 0.826 -0.147 -0.198 
_4_GEOM -0.017 0.037 -0.16 -0.233 0.838 -0.176 
_5_GEOM 0.021 0.155 0.416 0.694 0.111 0.41 
_6_GEOM -0.533 -0.135 -0.505 -0.381 0.026 -0.502 
_7_GEOM 0.013 0.668 0.598 0.106 -0.011 0.399 
_8_GEOM 0.908 -0.111 -0.178 0.117 0.113 0.176 
_9_GEOM 0.19 0.771 0.48 0.065 0.055 0.301 
_10_GEOM 0.297 0.043 0.221 0.152 0.132 0.758 
_11_GEOM 0.01 0.079 0.067 0.022 -0.174 0.916 
_12_GEOM 0.211 -0.048 0.093 0.132 0.593 0.455 
_13_GEOM 0.078 -0.153 0.401 0.627 0.316 0.366 
_14_GEOM -0.014 0.149 0.909 0.274 0.084 0.055 
_15_GEOM 0.43 -0.514 0.194 -0.359 -0.18 -0.466 
_16_GEOM 0.033 -0.099 -0.033 -0.894 0.228 -0.241 
CFA -0.085 -0.121 0.914 0.052 -0.271 0.083 
TASA -0.133 -0.003 0.531 0.457 0.185 0.616 
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Table S5. Continued from previous page. 
 Factor 

1 
Factor 
2 

Factor 
3 

Factor 
4 

Factor 
5 

Factor 
6 

P. trogloytes       
_1_GEOM 0.734 -0.238 0.213 0.372 0.074 -0.073 
_2_GEOM -0.127 0.225 -0.052 0.627 0.465 0.378 
_3_GEOM -0.467 -0.308 -0.234 -0.237 0.347 0.323 
_4_GEOM -0.091 0.379 0.098 -0.201 -0.767 0.004 
_5_GEOM 0.069 -0.009 0.087 -0.059 0.891 0.005 
_6_GEOM -0.514 0.104 -0.155 -0.744 -0.122 -0.008 
_7_GEOM 0.633 -0.092 0.051 0.592 0.26 -0.119 
_8_GEOM 0.284 -0.038 -0.379 0.662 -0.234 -0.175 
_9_GEOM 0.575 0.202 0.371 0.559 0.243 -0.017 
_10_GEOM 0.079 0.109 0.212 0.827 -0.056 0.217 
_11_GEOM 0.267 0.047 0.746 0.107 -0.197 0.116 
_12_GEOM 0.113 0.074 0.287 0.168 0.034 0.868 
_13_GEOM -0.02 0.955 0.003 0.093 -0.07 -0.112 
_14_GEOM 0.649 0.324 0.27 0.256 0.177 -0.362 
_15_GEOM 0.874 0.022 0.028 0.091 -0.002 0.371 
_16_GEOM 0.096 0.065 0.872 0.036 0.134 0.11 
CFA 0.94 0.219 0.1 0.014 -0.072 0.065 
TASA 0.251 0.818 0.154 -0.033 -0.207 0.336 
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Table S6. PCA loadings based on the correlation matrices for the navicular of H. sapiens, G. 
gorilla and P. troglodytes. 
 PC1 PC2 PC3 PC4 PC5 
H. sapiens      
_1_GEOM 0.346 -0.197 -0.117 0.738 -0.397 
_2_GEOM -0.698 0.295 0.376 0.024 0.473 
_3_GEOM 0.706 -0.163 -0.145 -0.448 0.323 
_4_GEOM 0.477 -0.384 0.452 0.003 -0.193 
_5_GEOM 0.811 0.209 -0.048 -0.163 0.057 
_6_GEOM 0.62 0.251 0.655 0.026 -0.121 
_7_GEOM 0.418 0.121 0.572 0.248 0.314 
_8_GEOM 0.569 -0.286 -0.589 0.224 0.347 
_10_GEOM 0.347 0.765 -0.021 -0.031 -0.293 
_11_GEOM 0.461 0.437 -0.286 0.339 0.415 
CFA_GEOM 0.394 0.764 -0.156 0.284 0.013 
ECFA_GEOM 0.465 -0.649 0.2 -0.338 0.124 
ENTFA_GEOM 0.436 -0.475 0.079 0.462 0.482 
MSFA_GEOM 0.653 0.077 0.632 -0.001 -0.126 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.694 -0.294 -0.386 -0.036 -0.468 

TFA_GEOM -0.596 -0.426 0.257 0.526 -0.128 
 

G. gorilla      
_1_GEOM -0.203 0.171 0.098 -0.237 0.819 
_2_GEOM -0.904 -0.215 0.065 -0.19 -0.02 
_3_GEOM 0.138 0.508 0.462 -0.153 -0.393 
_4_GEOM 0.073 0.344 0.306 -0.301 0.274 
_5_GEOM -0.24 0.432 0.705 0.163 0.226 
_6_GEOM -0.06 -0.47 0.593 0.318 0.418 
_7_GEOM -0.099 0.292 0.525 -0.443 0.033 
_8_GEOM 0.126 -0.182 0.276 0.815 -0.078 
_10_GEOM 0.026 0.808 -0.236 0.276 0.3 
_11_GEOM -0.707 0.323 -0.091 0.386 0.018 
CFA_GEOM 0.035 0.706 -0.485 0.359 0.239 
ECFA_GEOM 0.69 0.424 0.199 -0.331 -0.243 
ENTFA_GEOM 0.79 -0.133 0.07 0.061 -0.066 
MSFA_GEOM 0.662 -0.332 0.327 0.214 0.38 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.899 0.224 -0.059 0.196 0.021 

TFA_GEOM 0.39 -0.293 -0.472 -0.384 0.564 
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Table S6. Continued from previous page. 
 PC1 PC2 PC3 PC4 PC5 
P. troglodytes      
_1_GEOM 0.685 0.314 0.14 -0.144 0.505 
_2_GEOM -0.4 0.855 0.003 -0.053 -0.204 
_3_GEOM 0.446 0.614 -0.265 -0.106 -0.231 
_4_GEOM 0.09 0.642 -0.406 -0.52 0.223 
_5_GEOM 0.188 -0.114 0.791 -0.203 -0.209 
_6_GEOM 0.238 0.628 0.478 0.227 -0.118 
_7_GEOM 0.008 -0.001 -0.36 0.699 0.271 
_8_GEOM 0.184 0.58 -0.104 0.588 -0.243 
_10_GEOM 0.844 0.184 0.168 0.241 0.028 
_11_GEOM 0.918 0.158 -0.179 -0.138 -0.049 
CFA_GEOM 0.863 0.107 0.171 0.16 0.121 
ECFA_GEOM -0.401 0.61 -0.166 -0.306 0.212 
ENTFA_GEOM -0.347 0.194 -0.106 0.878 0.158 
MSFA_GEOM -0.239 0.199 0.921 0.12 -0.046 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.398 -0.853 0.011 0.062 0.2 

TFA_GEOM -0.408 0.327 0.473 -0.033 0.658 
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Table S7. Factor loadings based on the correlation matrices for the navicular of H. sapiens, G. 
gorilla and P. troglodytes. 
 Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
H. sapiens      
_1_GEOM 0.638 0.193 0.179 0.343 -0.529 
_2_GEOM -0.932 -0.005 -0.088 -0.084 -0.238 
_3_GEOM 0.234 -0.096 0.19 0.295 0.814 
_4_GEOM 0.323 -0.324 0.633 0.071 0.027 
_5_GEOM 0.336 0.336 0.388 0.167 0.574 
_6_GEOM 0.068 0.227 0.902 -0.069 0.13 
_7_GEOM -0.225 0.143 0.704 0.331 0.022 
_8_GEOM 0.44 0.089 -0.201 0.759 0.326 
_10_GEOM 0.137 0.761 0.221 -0.34 0.175 
_11_GEOM -0.008 0.663 0.027 0.531 0.223 
CFA_GEOM 0.053 0.899 0.139 0.078 0.095 
ECFA_GEOM 0.261 -0.623 0.352 0.23 0.418 
ENTFA_GEOM 0.093 -0.195 0.285 0.859 -0.032 
MSFA_GEOM 0.152 0.078 0.892 -0.014 0.152 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.929 0.003 0.076 0.081 0.25 

TFA_GEOM -0.149 -0.402 -0.07 0.085 -0.837 
 

G. gorilla      
_1_GEOM -0.219 0.256 -0.038 0.37 0.754 
_2_GEOM -0.909 -0.233 0.122 -0.009 0.02 
_3_GEOM 0.088 0.004 -0.96 -0.05 -0.088 
_4_GEOM 0.11 0.138 0.051 0.01 0.089 
_5_GEOM -0.233 0.245 -0.517 0.552 -0.061 
_6_GEOM -0.057 -0.281 0.071 0.883 0.03 
_7_GEOM -0.082 -0.113 -0.185 -0.024 -0.011 
_8_GEOM 0.177 0.11 0.177 0.56 -0.638 
_10_GEOM 0.063 0.916 -0.112 -0.054 0.063 
_11_GEOM -0.674 0.489 0.03 0.073 -0.253 
CFA_GEOM 0.075 0.938 0.056 -0.172 0.027 
ECFA_GEOM 0.656 -0.012 -0.604 -0.261 0.08 
ENTFA_GEOM 0.823 -0.133 0.262 -0.011 -0.226 
MSFA_GEOM 0.658 -0.18 0.051 0.602 0.158 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.906 0.241 -0.122 0.012 -0.028 

TFA_GEOM 0.362 -0.078 0.38 -0.1 0.79 
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Table S7. Continued from previous page. 
 Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
P. troglodytes      
_1_GEOM 0.836 0.041 -0.045 -0.117 0.383 
_2_GEOM -0.155 0.93 0.177 0.119 0.034 
_3_GEOM 0.533 0.559 -0.142 -0.028 -0.307 
_4_GEOM 0.276 0.695 -0.472 -0.28 0.211 
_5_GEOM 0.139 -0.188 0.728 -0.416 0.009 
_6_GEOM 0.427 0.423 0.589 0.19 0.023 
_7_GEOM 0.069 -0.141 -0.272 0.769 0.043 
_8_GEOM 0.316 0.427 0.159 0.623 -0.302 
_10_GEOM 0.865 -0.115 0.18 0.132 -0.148 
_11_GEOM 0.873 -0.013 -0.201 -0.185 -0.29 
CFA_GEOM 0.875 -0.191 0.127 0.052 -0.067 
ECFA_GEOM -0.167 0.707 -0.185 -0.072 0.362 
ENTFA_GEOM -0.201 0.07 0.072 0.95 0.107 
MSFA_GEOM -0.108 0.087 0.924 -0.005 0.299 
NAVICULAR MAXIMUM 
LENGTH_GEOM 

0.154 -0.931 -0.161 -0.113 -0.034 

TFA_GEOM -0.118 0.218 0.291 0.079 0.882 
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Table S8. PCA loadings based on the correlation matrices for the talus of H. sapiens, G. gorilla 
and P. troglodytes. 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 
H. sapiens        
_1_GEOM 0.692 0.389 0.441 0.094 -0.05 -0.051 -0.103 
_2_GEOM 0.591 -0.282 0.222 -0.604 0.229 0.239 0.035 
_3_GEOM 0.759 0.257 0.457 0.145 -0.282 -0.043 0.05 
_4_GEOM 0.236 0.072 -0.05 0.104 0.754 0.067 -0.367 
_5_GEOM -0.212 -0.161 -0.731 0.1 -0.266 0.025 -0.155 
_6_GEOM 0.117 -0.229 0.188 -0.34 -0.481 0.59 -0.381 
_7_GEOM 0.014 0.619 0.597 -0.076 0.257 0.048 -0.167 
_8_GEOM 0.659 0.503 -0.307 -0.363 0.069 -0.044 0.088 
_9_GEOM 0.435 -0.538 -0.321 -0.244 -0.101 -0.44 0.028 
_10_GEOM 0.419 -0.664 0.508 0.011 0.061 0.066 0.283 
_11_GEOM -0.12 -0.591 0.558 0.285 0.118 -0.242 -0.277 
_12_GEOM -0.293 0.398 0.497 -0.264 -0.255 -0.184 0.255 
_13_GEOM -0.324 0.026 0.465 0.281 0.012 0.548 0.294 
_14_GEOM 0.274 0.696 0.266 -0.265 0.174 -0.294 0.109 
_15_GEOM 0.431 0.695 -0.367 -0.03 -0.016 0.225 0.274 
_16_GEOM 0.664 -0.315 -0.292 0.51 0.202 0.012 0.094 
_17_GEOM -0.395 0.533 0.029 0.379 0.226 0.377 -0.055 
_18_GEOM 0.433 -0.593 -0.082 0.144 0.282 0.082 0.097 
_19_GEOM 0.78 0.298 0.155 0.105 -0.091 -0.06 -0.445 
_20_GEOM 0.734 -0.185 -0.159 0.061 -0.399 0.249 -0.136 
MLTALARBHDIF
F 

-0.082 -0.376 -0.253 -0.712 0.402 0.289 0.032 

PFA_GEOM 0.654 0.268 -0.514 0.34 0.058 0.156 0.242 
THA_GEOM 0.325 -0.653 0.531 0.109 -0.003 0.031 0.237 

 
G. gorilla        
_1_GEOM 0.357 0.45 0.012 -0.622 -0.096 0.248 0.149 
_2_GEOM 0.003 -0.085 0.798 0.25 0.344 0.343 -0.003 
_3_GEOM 0.88 0.208 0.121 -0.259 0.131 -0.035 -0.051 
_4_GEOM 0.303 0.216 -0.369 0.11 0.187 -0.193 0.644 
_5_GEOM 0.441 -0.66 0.029 -0.069 0.205 0.476 0.198 
_6_GEOM 0.275 0.418 -0.539 0.287 0.18 0.453 0.036 
_7_GEOM -0.358 0.502 0.628 -0.128 -0.113 0.067 -0.15 
_8_GEOM 0.106 0.592 0.565 0.001 0.242 -0.226 0.317 
_9_GEOM 0.417 0.371 0.32 0.395 -0.304 -0.287 -0.015 
_10_GEOM 0.494 0.328 0.125 0.166 -0.49 0.456 -0.174 
_11_GEOM 0.594 0.561 -0.232 0.116 0.377 0.022 -0.159 
_12_GEOM 0.502 0.306 0.555 0.257 0.288 -0.309 0.035 
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Table S8. Continued from previous page. 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 
G. gorilla        
_13_GEOM 0.577 0.164 -0.232 0.564 0.1 -0.259 -0.269 
_14_GEOM 0.062 -0.378 0.616 0.267 -0.35 -0.318 0.052 
_15_GEOM -0.592 0.535 0.43 -0.3 0.129 -0.019 0.111 
_16_GEOM 0.186 -0.066 -0.218 0.527 -0.48 0.209 0.514 
_17_GEOM -0.218 0.778 -0.414 -0.168 0.106 -0.059 0.143 
_18_GEOM -0.588 0.26 -0.567 -0.019 -0.324 -0.278 -0.126 
_19_GEOM 0.659 -0.317 0.385 -0.353 -0.24 0.064 0.136 
_20_GEOM 0.659 0.132 0.231 -0.403 -0.43 -0.153 -0.005 
MLTALARBHDIF
F 

-0.649 -0.091 0.544 0.322 0.161 0.277 0.011 

PFA_GEOM -0.659 0.489 0.195 0.137 -0.267 0.137 0.308 
THA_GEOM 0.059 0.793 0.067 0.161 -0.212 0.37 -0.25 
        
P. troglodytes        
_1_GEOM 0.536 0.166 0.274 0.03 -0.284 0.429 0.385 
_2_GEOM 0.158 0.697 -0.276 0.37 0.128 -0.392 0.092 
_3_GEOM 0.741 0.253 -0.142 0.169 0.451 -0.18 0.131 
_4_GEOM -0.143 -0.203 0.357 0.472 0.048 -0.189 -0.371 
_5_GEOM -0.256 -0.555 -0.603 0.155 0.251 0.091 -0.249 
_6_GEOM -0.353 0.485 -0.365 0.077 0.402 0.223 0.171 
_7_GEOM 0.655 0.236 0.495 -0.219 0.12 0.152 0.166 
_8_GEOM 0.582 0.525 0.183 -0.16 -0.051 -0.394 -0.248 
_9_GEOM -0.509 0.651 0.115 0.111 -0.228 0.061 0.067 
_10_GEOM 0.683 -0.302 0.077 0.348 0.099 -0.027 0.307 
_11_GEOM 0.668 0.217 -0.167 0.338 -0.241 0.117 -0.21 
_12_GEOM 0.165 0.086 -0.035 -0.14 -0.788 -0.499 0.123 
_13_GEOM -0.483 0.034 0.569 0.44 -0.223 0.21 0.172 
_14_GEOM 0.311 0.299 0.507 0.178 0.43 -0.415 -0.056 
_15_GEOM 0.678 0.351 -0.31 -0.417 -0.002 0.182 -0.073 
_16_GEOM -0.352 0.8 0.009 0.221 0.077 0.16 -0.257 
_17_GEOM 0.04 0.186 0.464 -0.396 -0.162 0.216 -0.53 
_18_GEOM -0.468 0.542 0.482 0.125 0.21 0.191 0.128 
_19_GEOM 0.295 -0.12 -0.089 0.765 -0.258 0.277 -0.258 
_20_GEOM 0.756 -0.194 0.255 0.1 0.054 0.081 -0.231 
MLTALARBHDIF
F 

-0.42 0.557 -0.418 0.201 -0.363 -0.196 0.057 

PFA_GEOM 0.284 0.741 -0.389 -0.179 0.002 0.327 -0.155 
THA_GEOM 0.835 -0.058 -0.277 0.254 -0.189 0.18 0.077 
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Table S9. Factor loadings based on the correlation matrices for the talus of H. sapiens, G. gorilla 
and P. troglodytes. 
 Factor 

1 
Factor 
2 

Factor 
3 

Factor 
4 

Factor 
5 

Factor 
6 

Factor 
7 

H. sapiens        
_1_GEOM 0.202 -0.111 0.854 0.215 0.027 -0.018 0.14 
_2_GEOM 0.247 -0.076 0.058 0.687 0.425 0.312 0.365 
_3_GEOM 0.193 -0.025 0.885 0.333 0.071 0.022 -0.137 
_4_GEOM 0.012 0.211 0.094 0.004 -0.137 -0.07 0.839 
_5_GEOM 0.052 0.444 -0.366 -0.521 0.12 0.21 -0.218 
_6_GEOM -0.093 -0.019 0.072 0.092 0.951 -0.04 -0.109 
_7_GEOM 0.053 -0.591 0.439 -0.004 -0.048 -0.389 0.378 
_8_GEOM 0.811 -0.048 0.329 -0.014 0.026 0.334 0.217 
_9_GEOM -0.013 0.303 -0.043 0.236 -0.015 0.831 -0.078 
_10_GEOM -0.287 0.176 0.133 0.901 0.079 0.095 -0.07 
_11_GEOM -0.882 0.049 0.119 0.305 -0.074 0.021 0.101 
_12_GEOM 0.014 -0.764 0.108 0.033 -0.094 -0.145 -0.313 
_13_GEOM -0.136 -0.093 -0.09 0.281 0.072 -0.799 -0.177 
_14_GEOM 0.43 -0.569 0.439 0.004 -0.275 0.058 0.221 
_15_GEOM 0.9 0.066 0.263 -0.164 -0.058 -0.132 0.004 
_16_GEOM 0.119 0.832 0.277 0.275 -0.216 0.128 0.114 
_17_GEOM 0.092 -0.06 -0.024 -0.38 -0.132 -0.76 0.17 
_18_GEOM -0.087 0.565 -0.041 0.514 -0.017 0.187 0.186 
_19_GEOM 0.159 0.134 0.864 -0.038 0.2 0.191 0.272 
_20_GEOM 0.23 0.509 0.445 0.166 0.468 0.247 -0.157 
MLTALARBHDIFF 0.192 -0.066 -0.693 0.297 0.347 0.259 0.41 
PFA_GEOM 0.679 0.613 0.309 -0.019 -0.179 -0.008 0.01 
THA_GEOM -0.389 0.175 0.154 0.81 0.052 0.044 -0.134 

 
G. gorilla        
_1_GEOM -0.116 0.278 0.384 0.746 0.118 0.023 -0.029 
_2_GEOM 0.2 0.336 -0.192 -0.222 0.135 0.816 -0.138 
_3_GEOM 0.45 -0.209 0.243 0.727 0.056 0.264 -0.117 
_4_GEOM 0.266 -0.058 0.409 0.163 -0.43 -0.088 0.559 
_5_GEOM -0.298 -0.496 0 0.182 -0.109 0.735 0.153 
_6_GEOM 0.087 -0.198 0.799 -0.09 0.3 0.006 0.28 
_7_GEOM 0.091 0.79 -0.158 -0.004 0.309 0.018 -0.277 
_8_GEOM 0.576 0.68 0.077 0.19 -0.151 0.177 0.034 
_9_GEOM 0.707 0.09 -0.204 0.181 0.327 -0.078 0.224 
_10_GEOM 0.153 -0.041 0.087 0.348 0.809 0.124 0.223 
_11_GEOM 0.572 -0.153 0.692 0.213 0.137 0.026 -0.097 
_12_GEOM 0.847 0.173 -0.053 0.176 -0.044 0.336 -0.06 
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Table S9. Continued from previous page. 
 Factor 

1 
Factor 

2 
Factor 

3 
Factor 

4 
Factor 

5 
Factor 

6 
Factor 

7 
G. gorilla        
_13_GEOM 0.723 -0.513 0.196 -0.074 0.194 -0.095 0.069 
_14_GEOM 0.265 0.022 -0.836 -0.004 0.034 0.187 0.131 
_15_GEOM -0.07 0.925 0.047 -0.076 -0.085 -0.084 -0.241 
_16_GEOM 0.01 -0.185 -0.056 -0.062 0.235 -0.005 0.897 
_17_GEOM 0.05 0.419 0.655 0.034 -0.051 -0.523 0.052 
_18_GEOM -0.249 0.095 0.084 -0.287 0.018 -0.879 0.021 
_19_GEOM 0.023 -0.191 -0.342 0.739 0.034 0.428 0.063 
_20_GEOM 0.217 -0.049 -0.202 0.865 0.192 -0.03 0.01 
MLTALARBHDIF
F 

-0.146 0.505 -0.276 -0.649 0.095 0.381 -0.065 

PFA_GEOM -0.148 0.787 -0.018 -0.307 0.18 -0.232 0.306 
THA_GEOM 0.221 0.389 0.402 0.045 0.726 -0.128 0.005 

 
P. troglodytes        
_1_GEOM 0.139 -0.072 -0.044 0.333 -0.048 0.815 -0.011 
_2_GEOM 0.209 0.57 0.562 0.201 -0.143 -0.09 -0.384 
_3_GEOM 0.425 -0.149 0.67 0.309 0.179 0.138 -0.341 
_4_GEOM -0.619 -0.057 0.228 0.217 0.055 -0.259 0.177 
_5_GEOM 0.025 -0.239 -0.403 0.114 0.319 -0.714 -0.223 
_6_GEOM 0.232 0.607 -0.047 -0.168 0.441 -0.092 -0.29 
_7_GEOM 0.226 -0.227 0.44 0.066 0.088 0.7 0.209 
_8_GEOM 0.356 0.073 0.718 0.143 -0.345 0.15 0.288 
_9_GEOM -0.173 0.818 -0.059 -0.157 -0.116 0.14 0.09 
_10_GEOM -0.022 -0.517 0.264 0.445 0.04 0.311 -0.395 
_11_GEOM 0.281 0.013 0.205 0.77 -0.141 0.128 0.034 
_12_GEOM 0.058 0.003 -0.008 0.04 -0.963 0.096 -0.011 
_13_GEOM -0.791 0.325 -0.183 0 0.055 0.323 0.057 
_14_GEOM -0.181 -0.013 0.876 -0.035 0.102 0.147 0.042 
_15_GEOM 0.861 -0.061 0.158 0.213 -0.037 0.229 0.147 
_16_GEOM -0.005 0.89 0.164 0.061 0.197 -0.044 0.216 
_17_GEOM 0.04 0.032 0.058 -0.057 -0.011 0.159 0.853 
_18_GEOM -0.359 0.626 0.153 -0.297 0.319 0.324 0.137 
_19_GEOM -0.258 0.017 -0.086 0.907 0.052 -0.046 -0.05 
_20_GEOM 0.095 -0.517 0.348 0.496 0.068 0.224 0.223 
MLTALARBHDIF
F 

0.061 0.78 -0.131 0.017 -0.382 -0.227 -0.22 

PFA_GEOM 0.74 0.528 0.077 0.242 0.102 0.133 0.158 
THA_GEOM 0.392 -0.302 0.072 0.738 -0.103 0.25 -0.219 
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Component Loadings 
  1 2 3 4 
1/GEOM 0.679 0.416 -0.308 -0.007 
2/GEOM 0.539 -0.359 0.488 0.284 
3/GEOM -0.598 0.275 0.549 -0.078 
4/GEOM -0.624 0.295 0.238 0.002 
5/GEOM 0.127 -0.367 0.538 0.035 
6/GEOM -0.639 0.426 -0.440 0.173 
7/GEOM 0.787 0.524 0.016 0.144 
8/GEOM 0.542 -0.645 -0.265 0.002 
9/GEOM 0.772 0.555 0.072 0.034 
10/GEOM 0.717 -0.054 0.395 -0.187 
11/GEOM -0.009 -0.114 0.604 -0.231 
12/GEOM -0.109 0.288 0.742 -0.269 
13/GEOM 0.449 -0.449 0.117 0.270 
14/GEOM 0.592 -0.481 0.028 -0.093 
15/GEOM 0.121 0.141 -0.056 -0.822 
16/GEOM 0.469 -0.092 -0.460 -0.433 
TALAR ARTICULAR SA 0.457 0.656 0.285 0.319 
CUBOID FACET AREA 0.549 0.672 -0.047 -0.064 

Table S10. Factor analysis loadings for the first four axes of the scaled correlation matrix for 
the calcaneus. 
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Component Loadings 
  1 2 3 4 5 
1/GEOM -0.377 -0.345 0.513 0.205 0.043 
2/GEOM 0.401 0.668 -0.476 0.261 -0.097 
3/GEOM 0.194 0.716 0.197 -0.510 0.174 
4/GEOM -0.594 0.428 0.090 -0.205 -0.268 
5/GEOM 0.192 0.683 0.312 0.129 0.366 
6/GEOM 0.149 0.406 0.636 0.462 -0.104 
7/GEOM -0.134 0.397 0.278 0.005 -0.776 
8/GEOM 0.591 0.540 -0.028 0.009 0.224 
NAVICULAR MAXIMUM LENGTH/GEOM -0.379 -0.680 0.476 -0.267 0.099 
10/GEOM -0.864 0.317 0.131 -0.018 0.009 
11/GEOM -0.701 0.460 0.031 0.165 0.202 
TFA/GEOM 0.641 -0.612 0.102 0.133 -0.025 
ECFA/GEOM 0.506 0.139 0.324 -0.718 -0.019 
MSFA/GEOM 0.698 -0.005 0.594 0.258 0.097 
ENTFA/GEOM 0.841 0.056 0.163 -0.052 -0.204 
CFA/GEOM -0.851 0.146 0.196 0.009 0.132 

Table S11. Factor analysis loadings for the first four axes of the scaled correlation matrix for 
the navicular. 
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Component Loadings 
  1 2 3 4 5 6 7 
1/GEOM -0.240 0.684 0.182 0.088 0.320 0.108 0.004 
2/GEOM -0.377 0.237 0.423 0.275 -0.558 -0.299 0.183 
3/GEOM 0.834 0.271 0.315 -0.088 0.091 0.098 0.060 
4/GEOM -0.285 -0.084 0.114 0.296 0.122 0.600 0.324 
5/GEOM 0.552 -0.485 -0.057 -0.403 -0.376 0.173 0.080 
6/GEOM 0.604 -0.148 -0.020 0.110 -0.031 -0.167 -0.140 
7/GEOM -0.657 0.484 0.198 0.016 0.280 -0.133 0.213 
8/GEOM 0.015 0.743 0.215 0.104 -0.152 0.142 0.173 
9/GEOM -0.051 -0.031 0.215 0.617 -0.423 0.128 -0.388 
10/GEOM 0.714 -0.159 0.346 0.322 0.084 -0.262 0.129 
11/GEOM 0.464 -0.318 0.480 0.151 0.317 -0.181 0.173 
12/GEOM -0.249 0.412 0.534 -0.260 0.061 -0.071 -0.462 
13/GEOM -0.356 -0.328 0.304 0.283 0.278 0.221 -0.497 
14/GEOM -0.507 -0.396 0.427 0.085 -0.168 0.099 0.326 
15/GEOM 0.106 0.926 -0.271 -0.098 -0.005 -0.033 -0.012 
16/GEOM 0.658 0.044 -0.154 0.461 -0.171 0.279 -0.006 
17/GEOM -0.777 -0.093 -0.040 0.068 0.328 0.075 0.080 
18/GEOM -0.003 -0.049 -0.526 0.746 0.218 -0.075 0.046 
19/GEOM 0.061 0.637 0.241 -0.103 -0.156 0.381 -0.012 
20/GEOM 0.843 0.175 0.177 -0.010 0.004 0.209 0.054 
THA/GEOM 0.704 0.398 0.147 0.201 0.212 -0.359 0.045 
PLANTAR FACET AREA 0.284 0.834 -0.375 0.083 -0.063 0.051 -0.043 

Table S12. Factor analysis loadings for the first four axes of the scaled correlation 
matrix for the talus. 
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