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Abstract

The transformation of traditional power grids into smart grids has seen more new tech-

nologies such as communication networks and smart meters (sensors) being integrated into

the physical infrastructure of the power grids. However, these technologies pose new vul-

nerabilities to the cybersecurity of power grids as malicious attacks can be launched by

adversaries to attack the smart meters and modify the measurement data collected by these

meters. If not timely detected and removed, these attacks may lead to inaccurate system

state estimation, which is critical to the system operators for control decisions such as eco-

nomic dispatch and other related functions.

This dissertation studies the challenges associated with cyberattacks in power grids and

develops solutions to effectively and timely detect these attacks to ensure an accurate state

estimation. One of the common approaches to improving the state estimation accuracy is

to incorporate phasor measurement unit (PMU) devices into the system to provide extra

and more secure measurements. In this research, we design algorithms that place PMUs at

strategic locations to enhance the system’s state estimation accuracy and its capability to

detect cyberattacks. This approach of installing PMU devices in power grids, nonetheless,

does not guarantee a timely attack detection that is critical for a timely deployment of

countermeasures to prevent catastrophic impacts from the attacks. Thus, the low latency

intrusion detection problem is studied to reduce attack detection delays. The state estimation

and intrusion detection problem is further extended to a dynamic power system, where there

are sudden changes in system loads.
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Chapter 1

Introduction

1.1 Background and Motivation

The increasing energy demand from businesses, schools, hospitals, and residences requires a

reliable energy supply by the utilities around the globe. The power grid, a critical infrastruc-

ture for energy supply needs constant monitoring by the utility operators to ensure that the

dynamic energy demand is met without exceeding the power generation limits. The power

grid operators use power grid state estimation to constantly track the state, bus voltage

magnitudes and phases, of the system and use the estimated state variables to determine

the power flow and power injections of the system. Moreover, modern power grids are inte-

grated with communication networks and smart meters (sensors), which can be susceptible

to malicious cyberattacks by an adversary. These malicious attacks cannot merely modify

the measurements acquired by the smart meters but can also cause erroneous state estima-

tions, which could result into costly decisions by the SCADA. The control system, SCADA

system, makes decisions to increase or decrease the amount of power injected at certain

buses and/or the power flows at certain transmission lines based on the current state of the

system obtained through state estimations. The wrong decisions could, for instance, cause

to decrease the power generation below the demand levels which could cause power outage

to certain clients. It could also cause to increase the power generation at certain buses and

power flows at some transmission lines and result in power overflows at these lines.
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Considering this, there is a necessity for consistent upgrade of the state estimation and

malicious attack detection methods in the power grid as the new technologies get integrated

in the systems and bring new challenges. This dissertation studies various approaches of

detecting the attacks and enhancing the accuracy of the state estimation. First, we de-

velop techniques to strategically incorporate new devices, phasor measurement unit (PMU)

devices, which provide extra and more secure measurements into the system. The PMU

measurements are then used along with the traditional measurements to maximize the at-

tack detection probability and minimize the state estimation error. Second, we design low

latency attack detection algorithms that can minimize the detection delay to ensure the

timely deployment of countermeasures to prevent catastrophic impacts from the attack.

Since the early 1980s, PMUs have been installed in many power systems around the globe

[15] to enhance the robustness of power grid state estimations and malicious attack detection.

A PMU device installed at a certain bus can provide accurate measurements of the voltage

phasor at the bus and the current phasors of the branches incident to that bus [18]. The

state estimator benefits from the PMU data by using these more accurate data along with

the conventional measurements to improve the state estimation performance. However, due

to the financial limitations of the utilities and the cost associated with the installation of

these devices in the power grid, there are usually far less PMUs than buses. Therefore, one

of the critical problems faced by power system design is PMU placement, that is, identifying

the buses on which the PMUs should be installed.

Many existing approaches seek to solve the PMU placement problem by converting the

system’s critical measurements into redundant ones, thus to render it fully observable. The

critical measurements, as opposed to the redundant measurements, are those measurements
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whose removal in the system results in the system being unobservable [2] and [7]. In other

words, an error in a redundant measurement will have very little effect on the state estimation

while an error in critical measurement can degrade the entire state estimation and is very

difficult to detect with the common statistical tests based on measurement residual [1].

The critical measurement based PMU placement approach has been adopted in the de-

velopment of numerous existing algorithms, such as [15], [18], [7], and [1]. These works

thoroughly explained how the critical measurements can be converted into redundant mea-

surements to improve system observability. While increasing the system observability can

enhance the state estimation and malicious attack or error detection, these works did not

study the extent at which the observability obtained from a PMU addition into the system

can improve the state estimation and malicious attack detection of the system.

In our research, we develop PMU placement algorithms that aim at improving the accu-

racy of power state estimation and algorithms that increase the capabilities of the system in

detecting malicious attacks. For the designed state estimation algorithms, the design met-

ric is the MSE, which can give insight on the estimation accuracy gained with each PMU

installation. For the designed malicious attack detection algorithms, the probability of de-

tection is used as a measure of how much gain obtained with each PMU installation. Our

algorithms are quite different from the previous approaches that are based on the critical

measurements in that they can almost guarantee a certain gain in terms of state estimation

accuracy and/or malicious attack detection accuracy for each installed PMU.

The designed PMU placement approaches focus on maximizing the attack detection

probability and the state estimation accuracy. However, a high attack detection probability

alone may not guarantee a short detection delay without which there is no timely deployment
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of countermeasures to prevent catastrophic impacts from the attack. To tackle this challenge,

this dissertation studies the low latency detection problem to minimize the attack detection

delay, the time difference between the occurrence and detection of the attack.

There are limited works on low latency detection of malicious attacks in smart grids. A

generalized cumulative sum (CUSUM) detector is proposed in [13] for false data detection,

where the generalized likelihood ratio test (GLRT) is utilized to estimate the unknown

parameters. The complexity of the generalized CUSUM detector grows exponentially with

the number of meters. The complexity mainly arises from the need to identify the meters

under attack. A low complexity approximation of the generalized CUSUM is developed in

[13], where each meter tracks the false data injection separately. In [8, 9], an adaptive multi-

thread CUSUM algorithm is proposed for false data detection in power grids. It is pointed

out in [9] that the complexity of GLRT might be too high for practical implementation, thus

the Rao test is used for unknown parameter estimation. The elements in the attack vector

are assumed to be positive in [8], and such assumption is not always true in practical attacks.

For a large power grid with a large number of buses and meters, it is extremely difficult,

if not impossible, for an attacker to attack all meters at once. In almost all cases the attacker

can modify the measurements from a small number of meters, that is, the attack is sparse

among meters [11]. In recognition of the sparse nature of false data injections, we design a

new orthogonal matching pursuit (OMP) CUSUM algorithm, which utilizes sparse recovery

to identify the meters under attack. In the OMP-CUSUM algorithm, the attack vector is

modeled as a sparse vector with dimension equal to the number of power measurements in

the grid. The indices of the non-zero elements of the attack vector correspond to meters

under attack, and the number of non-zero elements is called the sparsity level. A naive
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way to locate the meters under attack will be to perform exhaustive search of all possible

combinations of attack patterns with GLRT, the complexity of which grows exponentially

with the number of buses. To reduce the complexity, we resort to the OMP algorithm

[17, 14, 4, 5], which is a well known algorithm for sparse signal recovery. Given the fact

that neither the sparsity nor the support of the attack vector is known, we develop a new

stopping condition for the OMP algorithm by analyzing the statistical properties of the

measurements in the grid. The stopping condition can accurately terminate the iterative

OMP procedure once all meters under attack are successfully identified, without the prior

knowledge of the sparsity level. The results of the OMP are then used in the CUSUM

algorithm to minimize the detection delay of false data injection, subject to constraints on

the detection accuracy and probability of false alarm. The OMP algorithm and CUSUM is

combined in an iterative and sequential manner, that is, for each new group of measurements,

OMP is used to estimate the support of the attack vector, and the results are then used for

the sequential CUSUM test. Theoretical analysis and simulation results show that the newly

proposed OMP-CUSUM algorithm can efficiently and promptly detect false data injections

with low complexity, low detection delays, and good detection accuracy.

All of these state estimation and false data detection methods described in the previous

paragraphs of this section assume a static system model, where the system is in a steady

state and its measurements are quasi-static over time. In reality, though, the state of a

power system changes with time due to the dynamic nature of system loads [3]. Therefore,

state estimation and false data detection methods need a dynamic model to track the time

evolution of the system states, which can be used to detect and replace corrupt measurements

in the system. A dynamic state estimator can capture the system transients due to sudden
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system changes faster and more accurately than its static counterpart does. A dynamic state

estimator owes these properties to its capability to use past state estimations to predict the

future state of the system one step ahead. The predicted states can be used to initialize the

state estimation algorithm during the next step and detect measurements that deviate from

these predictions. A mismatch between newly collected measurements and their predicted

values indicates that there has been sudden changes in the system such as a loss of a large

load and changes in network configurations, or malicious attacks that have modified some

system measurements. It is necessary to detect and identify these malicious attacks in order

to replace the corrupt measurements before they are processed by the state estimator.

The problem of dynamic state estimation has been studied before in [3, 6, 16, 12, 10].

These works use different versions of an extended Kalman filter (EKF) to perform dynamic

state estimation by filtering the predicted state variables. All these algorithms utilize an

amplitude test on the innovation vector, difference vector between the newly collected mea-

surements and their predictions, to test the presence of false data and sudden changes in

the system. Once the magnitude of the innovation vector exceeds a certain threshold, a flag

is raised indicating that there is a sudden change in the system’s operating point or false

data injection attacks on the system. The false data are discriminated from sudden system

changes by analyzing correlated measurements in the region near the abnormality and if the

correlated measurements simultaneously fail the detection test, a sudden change is character-

ized. Otherwise, the suspected measurements contain false data and they are replaced with

their predictions. This method of discriminating attacks from sudden change in the system

operating point, however, may not be effective if the attacks are simultaneously injected

in the correlated measurements. This may lead to a mischaracterization of the attacks as

6



sudden changes, and therefore, fail to remove and prevent the corrupt measurements from

entering the state estimation stage.

In this research study, we propose a new detection algorithm that can accurately detect

the bad data and discriminate them from sudden changes in the system. Based on the

statistical distribution of the innovation vector, a hypothesis test is developed to study the

system behavior with and without false data injections. From the hypothesis test, a chi-

square test is then designed to detect the attacks. Once the false data are detected, corrupt

measurements are identified and replaced with their predictions and then forwarded to the

state estimator. Theoretical analysis and simulation results show that the newly proposed

detection algorithm can effectively detect and replace false data injections including those

injected in correlated measurements.

1.2 Objectives

The goal of this dissertation is to design low latency attack (intrusion) detection algorithms

that maximize the detection probability and state estimation accuracy. These algorithms

are developed in four folds.

First, PMU placement algorithms are designed with an objective of finding the best PMU

locations that minimize the state estimation MSE or equivalently maximize the state estima-

tion accuracy. The state estimation MSE is expressed as an explicit function of the locations

of the PMUs and the problem is then formulated as a combinatorial optimization problem.

The best PMU locations are obtained by solving the combinatorial optimization problem.

The simulation results compare the MSE performance of these developed algorithms with

7



some of the most common PMU placement algorithms that are based on critical measure-

ments. Our developed algorithms exhibit a better MSE performance than the common PMU

placement algorithms.

Second, PMU placement algorithms are designed with an objective of finding the best

PMU locations that maximize the probability of malicious attack detection. Similar to

the first objective, the probability of malicious attack detection is expressed as an explicit

function of the locations of the PMUs and the problem is then formulated as a combinatorial

optimization problem. The best PMU locations are obtained by solving the combinatorial

optimization problem. Once again, the simulation results show that the developed PMU

placement algorithms for attack detection outperform that of the common PMU placement

algorithms in terms of attack detection.

Third, low latency algorithms are studied with an objective of minimizing the attack

detection delay. The attack is modeled as a sparse attack vector, with each non-zero ele-

ment corresponding to one meter under attack. Since neither the support nor the values

of the sparse attack vector is known, a new orthogonal matching pursuit (OMP) algorithm

with a high computational efficiency is designed to identify the meters under attack. The

OMP algorithm is then combined with a cumulative sum (CUSUM) test to sequentially test

the statistical properties of each new measurement and declare an attack if the expected

statistical properties are not met.

Fourth, the problems of state estimation and intrusion detection are further extended

to a dynamic power system, where the system states and measurements vary with time

owing to the dynamic nature of the system loads. A detection algorithm is designed that

is capable of distinguishing intrusions from sudden changes in the system’s operating point.
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Moreover, the detected false data are removed from the corrupt measurements before these

measurements enter the state estimator.

1.3 Dissertation Outline

The outline of the rest of the dissertation is given as follows.

Chapter 2: In this chapter, the optimum PMU placement for power system state estima-

tion is studied. The MSE is expressed as a function of the PMU locations and the problem

is solved by finding the PMU locations that minimize the MSE function. Different algo-

rithms are developed to tackle the tradeoff between the complexity and performance. The

algorithms are simulated on different IEEE bus systems to analyse their performances and

compare them to other commonly used algorithms.

Chapter 3: This chapter builds on the system model of Chapter 2 to study the optimum

PMU placement for intrusion detection in power systems. The impacts of PMU placement in

detecting the malicious attacks on the power grid is investigated. The probability of detecting

the malicious attacks is expressed as a function of the PMU locations and the problem is

solved by finding the PMU locations that maximize this probability. Furthermore, a least

detectable attack is designed that is used to test the performances of the attack detection

algorithms on various IEEE bus systems.

Chapter 4: In this chapter, low latency detection algorithms are designed to minimize

the attack detection delay. We develop an orthogonal matching pursuit (OMP) CUSUM

algorithm, which utilizes sparse recovery to identify the meters under attack and sequentially

apply a statistical CUSUM test to each new group of measurements for attack detection. The

simulation results show that the OMP-CUSUM algorithm can efficiently detect the attacks

9



with low detection delay and good detection accuracy.

Chapter 5: In this chapter, we study the state estimation and attack detection problems

in dynamic systems, where sudden changes in the system loads generate transients that may

be confused with attacks on the system if they are not correctly identified. We design a

detection algorithm that detects and discriminate the attacks from sudden changes in the

system. The designed detector alleviates the impact of attacks on the system by removing

these attacks from the affected measurements before these measurements are processed by

the state estimator.

Chapter 6: Conclusion remarks are drawn in this chapter. The major contributions of

this dissertation are summarized and some future research topics are listed.
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Chapter 2

Optimum PMU Placement for Power System State Estimation

2.1 Abstract

The integration of phasor measurement units (PMUs) in power grids can greatly enhance the

robustness of power grid state estimations. Due to the cost of components and installations,

the number of PMUs is usually much less than that of buses in a power system. Therefore one

of the critical problems faced by power system design is PMU placement, that is, identifying

the buses on which the PMU should be installed. The objective of this chapter is to develop

PMU placement algorithms to improve the power grid state estimation. Unlike many existing

PMU placement algorithms developed based on the concept of critical measurements, we

use the estimation mean squared error (MSE) as the design metric. By applying a linear

minimum MSE (MMSE) algorithm, the MSE is expressed as an explicit function of the

locations of the PMUs. The problem is formulated as a combinatorial optimization problem

that is known to be NP-hard. To balance the tradeoff between complexity and performance,

we propose two low complexity algorithms, a greedy algorithm that sequentially searches for

the best PMU location, and a heuristic ordered MSE algorithm that places PMUs at buses

with highest MSE. Simulation results show that the proposed low complexity algorithms

can almost achieve the globally optimum performance, and they significantly outperform

existing PMU placement algorithms.
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2.2 Introduction

Ever since their introduction in the power grid in the early 1980s, phasor measurement units

(PMUs) have been installed in many power systems around the globe at an increasing rate

[7]. A PMU device installed at a certain bus accurately measures the positive sequence

voltage phasors at the bus and the current phasors of the branches incident to that bus

[8]. The state estimator benefits from the PMU data by using these data along with the

conventional measurements to improve the state estimation performance. However, due to

the financial limitations of the utilities and the cost associated with the installation of these

devices in the power grid, there are usually far less PMUs than buses. Therefore, one of the

critical problems faced by power system design is PMU placement, that is, identifying the

buses on which the PMUs should be installed.

Many existing approaches seek to solve the PMU placement problem by converting the

system’s critical measurements into redundant ones, thus to render it fully observable. The

critical measurements, as opposed to the redundant measurements, are those measurements

whose removal in the system results in the system being unobservable [2] and [3]. In other

words, an erroneous critical measurement cannot be detected by the statistical tests based

on measurement residual unless it is converted into a redundant measurement [1].

The critical measurement based PMU placement approach has been adopted in the devel-

opment of numerous existing algorithms, such as [7], [8], [3], and [1]. These works thoroughly
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explained how the critical measurements can be converted into redundant measurements to

improve system observability and error detection. While making the system observable can

increase the probability of error detection, it does not necessarily improve the accuracy of

state estimation. The power system state is carried in the phase angles of all the buses,

and it provides critical information regarding the health condition and security of a power

system. Therefore, it is critical to develop PMU placement algorithms that can improve the

accuracy of power state estimation.

In this chapter, we propose to develop PMU placement algorithms that aim at improving

the accuracy of power state estimation. The design metric is the mean squared error (MSE)

of the state estimation. This is quite different from the previous approaches that based on the

critical measurements. In addition, the MSE provides a good metric in measuring the gain

obtained by installing PMUs in the power system. With a linear minimum MSE (MMSE)

algorithm, we express the state estimation MSE as an explicit function of the PMU locations.

The optimum PMU placement problem is then formulated as a combinatorial optimization

problem, the optimum solution of which can be achieved by means of exhaustive search. It is

well known that the combinatorial optimization problem is NP-hard. To balance the tradeoff

between complexity and performance, we propose two low complexity algorithms, a greedy

algorithm that sequentially finds the best PMU location one at a time without considering

future PMU placements, and a heuristic algorithm that place the PMUs at buses with highest

estimation MSE. Although, the greedy algorithms adopted in [5] and [6] seek to improve the

accuracy of the state estimation, they have different objective functions as the one in this

chapter.

Simulation results show that the performance of the low complexity algorithms are very
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close to that of the exhaustive search algorithm, but with a much lower complexity. In

addition, the proposed algorithms achieve significant performance gains in terms of MSE

over existing critical measurement based algorithms.

The remainder of this chapter is organized as follows. The system model is introduced

in Section 5.3. In Section 2.4, the linear MMSE state estimator is developed, and the MSE

is expressed as a function of the PMU locations. The optimum and sub-optimum PMU

placement algorithms are proposed in Section 2.5. Simulation results are given in Section

5.6, and Section 5.7 concludes this chapter.

2.3 System Model

We consider a power system with n+1 buses. Each bus is equipped with a meter measuring

the power flow and power injections. Without loss of generality, we will only consider a

system model of active power flows and power injections. Define the set of buses connected

to bus i as Xi with cardinality ci = |Xi|. Denote the power injection into bus i as Pi, and the

power flow from bus i to bus j as Pij , ∀ j ∈ Xi. The SCADA (Supervisory Control and Data

Acquisition) system provides a total of m = m1 + m2 measurements, where m1 = n + 1 is

the number of power injections and m2 =
1
2

∑n+1
i=1 |Xi| is the number of power flows. Define

the power measurement vector as z = [zT1 , z
T
2 ]

T ∈ Rm×1, where (·)T is the matrix transpose

operator, z1 ∈ Rm1×1 and z2 ∈ Rm2×1 are the power injection measurement vector and

power flow measurement vector, respectively, with R being the set of real numbers.

The objective of state estimation is to estimate the phase angles of the buses based on the

measurement vector z. In phase estimation, one of the n+ 1 buses will serve as a reference,

and we only need to estimate the phases of the remaining n buses relative to that of the
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reference bus. Without loss of generality, assume that the (n + 1)-th bus is the reference,

and define the phase vector of the remaining n buses as x = [θ1, θ2, . . . , θn]
T , where θi is the

phase of the i-th bus.

The relationship between the observation vector z and the state vector x can be expressed

as

z = h(x) + e, (2.1)

where e = [e1, e2, . . . , em]
T ∈ Rm×1 is the measurement error vector, and

h(x) = [h1(θ1, θ2, . . . , θn), . . . , hm(θ1, θ2, . . . , θn)]
T is a function of bus phase angles.

In this chapter we use the standard DC power flow model [4], which results in a linear

approximation of the model in (5.1) as

z = Hx+ e, (2.2)

where H ∈ Rm×n is the measurement Jacobian matrix for the real power flow and power

injection measurements. As in [4], we assume that the measurement noise e is zero-mean

Gaussian with covariance matrix Σe, that is, e ∼ N (0, σ2
eIm), where Im is a size-m identity

matrix.

Adding PMUs to a power system provide additional measurements to the SCADA system.

A PMU installed on a bus can measure both the voltage phasor of the bus and the current

phasors on incident branches of the bus. The measurement results are sent directly to the

state estimator of the SCADA system through communication networks. Similar to [1], we
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assume that all branch impedances and bus voltages are j1.0 p.u. and 1.0 p.u, respectively.

According to [1], for a PMU installed on the i-th bus, it can measure the voltage phase angle

θi, and the real part of the current phasor from bus i to bus j, for all j ∈ χi, as

Iij = θi − θj , (2.3)

where χi is the set of all the buses connected to bus i.

Based on the voltage and current measurements, define a PMU measurement matrix for

the i-th bus as

Hi =





























θi θj

θi · · · 1 · · · 0 · · ·

... · · · · · · · · · · · · · · ·

Ii,j · · · 1 · · · −1 · · ·

... · · · · · · · · · · · · · · ·





























, (2.4)

The matrix Hi is of size (ci + 1) × n. The first row corresponds to the voltage phasor

measurement, and the remaining rows correspond to the current phasor measurements on

the incident branches of the i-th bus. The i-th column of Hi is an all-one vector. If j ∈ Xi,

then there will be exactly one -1 on the j-th column, with all other elements being 0.

If a PMU is placed on the i-th bus, define the corresponding PMU measurement vector as

vi = [θi, Iiji,1, · · · , Ii,ji,ci ]T ∈ R(ci+1)×1, where ji,u ∈ Xi is the index of the u-th bus connected

to the i-th bus, for u = 1, · · · , ci. With the above notation, the measurement from the PMU
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on the i-th bus can be written as

yi = Hix+ ei (2.5)

where ei ∈ N (0, σ2
eIci) is the measurement noise.

Denote the indices of the buses with the k PMUs as d1 < d2 < dk. Then the measurement

vector provided by the PMUs is zPMU = [yT
d1
, · · · ,yT

dk
]T ∈ Rm3×1, where m3 =

∑k

i=1 cdi + k

is the total number of measurements provided by the PMUs. Similarly, define HPMU =

[HT
d1
, · · · ,HT

dk
]T ∈ Rm3×n, and ePMU = [eTd1 , · · · , eTdk ]T ∈ Rm3×1.

Then we can represent the measurement vector of the system with k PMUs as









z

zPMU









=









H

HPMU









x+









e

ePMU









(2.6)

or in a more compact form

z̄ = H̄x+ ē, (2.7)

where z̄ = [zT , zTPMU]
T ∈ Rm̄×1, m̄ = m1 +m2 +m3 is the total number of measurements,

ē = [eT , eTPMU]
T ∼ N (0, σ2

eIm̄), and H̄ = [HT ,HT
PMU]

T ∈ Rm̄×n.

The PMUs provide additional measurements that can improve the accuracy of state

estimation. Denote x̂ as the state vector estimated by using z̄. The objective is to find the

optimum PMU placement vector, d = [d1, d2, · · · , dk]T , that can minimize the mean squared
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error (MSE)

σ2
0 = E

[

‖x̂− x‖22
]

(2.8)

where ‖a‖2 =
√
aTa is the l2-norm of the vector a.

To solve the above problem, we will first assume that the PMU location vector d is given,

and find the minimum MSE σ2
0 as a function of the PMU locations. The results will then be

used to identify the optimum PMU locations.

2.4 MMSE State Estimation

In this section, we study the minimum mean squared error (MMSE) estimation of the state

variables for a given PMU placement vector d. For a given d, the objective of the MMSE

estimation is to find an estimate of the state variable by using the observation vector such

that the MSE σ2
0 is minimized. The results will be used to identify the optimum PMU

placement.

Based on the assumption that x and z̄ are jointly Gaussian distributed, the MMSE

estimator is a linear function of z̄ as x̂ = Wz̄, where W ∈ Rn×m̄ is the MMSE matrix.

Based on the orthogonality principal, E
[

(x̂− x)zT
]

= 0, we have

W = ΣxH̄
T
(

H̄ΣxH̄
T +Σē

)−1
. (2.9)

where Σx and Σē are the covariance matrices of x and ē, respectively.
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Based on the orthogonality principal, we have

σ2
0 = trace

{

E
[

(x̂− x)(x̂− x)T
]}

= trace
(

Σx −WH̄Σx

)

(2.10)

Substituting (2.9) into the above equation yields

σ2
0 = trace

[

Σx −ΣxH̄
T
(

H̄ΣxH̄
T +Σē

)−1
H̄Σx

]

. (2.11)

Based on the Woodbury matrix identity A−1 − A−1C
(

B−1 +CTA−1C
)−1

CTA−1 =

(

A+CBCT
)−1

, the MSE in (2.11) becomes

σ2
0 = trace

[

Σ−1
x + H̄TΣ−1

ē H̄
]−1

. (2.12)

Assume there are k ≤ n PMUs available. Define a binary PMU indicator vector as

b = [b1, b2, · · · , bn] ∈ Bn×1, where B = {0, 1}. The indicator variable bi = 1 if a PMU is

placed on bus i, and bi = 0 otherwise.

From the definition of H̄ and Σē, we have

σ2
0 = trace

[

Σ−1
x + σ−2

e HTH+ σ−2
e

n
∑

i=1

biHi
THi

]−1

. (2.13)

where bi ∈ B = {0, 1} is an indicator vector with bi = 1 if a PMU is placed at bus i and

bi = 0 otherwise.

When there is no PMU, we have bi = 0 ∀i, and the MSE for system with no PMU can
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thus be written as

ǫ20 = trace
[

Σ−1
x + σ−2HTH

]−1
. (2.14)

In (2.13), the MSE is expressed as an explicit function of the PMU location indication

vector b = [b1, · · · , bn]T . Comparing (2.13) and (2.14) reveals the impact of PMU on the

estimation performance. The choice of the PMU placement vector will affect the MSE σ2
0 .

The objective is to find the optimum b that can minimize the MSE given in (2.13).

2.5 PMU Placement Algorithms

In this section, we study the placement of PMU into a power grid to minimize the MSE of the

estimated state variables. This is different from most existing PMU placement techniques,

such as [1], which aim to find the best PMU placement that renders the power system observ-

able. That is, the critical power measurements in the system are converted into redundant

measurements by adding PMUs at certain bus locations [2] and [3].

From (2.13), the PMU placement problem can be formulated as

min. trace

[

Σ−1
x + σ−2

e HTH+ σ−2
e

n
∑

i=1

biHi
THi

]−1

(2.15)

s.t.
n
∑

i=1

bi = k

bi ∈ B, for i = 1, · · · , n
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2.5.1 Optimum PMU Placement Algorithm

The optimization problem in (2.15) is in general non-convex. Given n buses and k < n

PMUs, it is a combinatorial problem with a complexity
(

n

k

)

. The optimum solution to the

problem can be solved by means of exhaustive search as described in Algorithm 1.

Algorithm 1 Exhausitve Search Algorithm

1: Define the index set for all buses I = {1, 2, · · · , n}
2: Formulate the set of

(

n

k

)

possible location indicator vectors D = {b|b ∈ Bn, ‖b‖1 = k}
3: for s = 1 to

(

n

k

)

do
4: pick bs ∈ D
5: Calculate the MSE σ2

0(s) with (2.13)

6: end for
7: ŝ = argmins σ

2
0(s)

8: Output: b̂ = bŝ

In the exhaustive search algorithm, we try all the
(

n

k

)

possible values of the location

vector d, and calculate the corresponding MSE. The one that renders the smallest MSE is the

optimum PMU placement vector. Such an approach can provide the optimum performance,

at the cost of a high complexity. It is well known that the combinatorial optimization

problem is NP hard. In each repetition, the calculation of the MSE requires the inverse of

a size n × n matrix, with a complexity on the order of O(n3). Thus the complexity of the

exhaustive search algorithm scales with O
(

n3
(

n

k

))

.

2.5.2 A Greedy Algorithm

We propose a greedy algorithm to balance the tradeoff between complexity and performance.

The greedy algorithm sequentially adds the PMUs to the power system, one at a time. The

PMU is added in a greedy manner, that is, each newly added PMU is placed at a location

that can minimize the MSE of the current system configuration, without considering possible
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future PMU placements. The greedy algorithm is described in Algorithm 2.

Algorithm 2 Greedy algorithm

1: Initialize the index set of all buses I = {1, 2, · · · , n}
2: Initialize b = 0n, a length-n all-zero vector.
3: for s = 1 to k do
4: for u ∈ I do
5: Formulate bu by flipping the u-th bit of b.
6: Calculate σ2

0(u) with bu and (2.13)

7: end for u

8: û = argminu σ
2
0(u)

9: Update bû = 1.
10: Update I = I\û
11: end for s

12: Output b

The greedy algorithm requires k steps to find the solution, and one PMU is added at the

end of each step in a greedy manner. At step s, there are n− s+1 buses without PMU, and

the algorithm will try to place the PMU on each one of the n− s + 1 buses to find the one

that can minimize the MSE of the current system configuration.

In the greedy algorithm, there are a total of
∑k

s=1(n − s + 1) = (n + 1)k + 1
2
k(k + 1)

repetitions. Inside each repetition, we need to calculate the MSE, which involves the inverse

of a size n× n matrix, with a complexity on the order of O(n3). Thus the complexity of the

greedy algorithm scales with O
(

n3(n + 1)k + 1
2
n3k(k + 1)

)

.

2.5.3 PMU Placement based on Ordered MSE

To further reduce the complexity, we propose a heuristic PMU placement algorithm by

ordering the MSE of the estimation results.
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When there is no PMU, from (2.14), the MSE covariance matrix can be written as

Σǫ =
[

Σ−1
x + σ−2HTH

]−1
(2.16)

The error variance for the estimated phase on each bus are located on the diagonal of

Σǫ, and it can be expressed as σǫ = diag (Σǫ).

A high error variance means a less accurate estimate of the state variable. Intuitively, we

should place the PMUs on the buses with higher error variances to improve the estimation

accuracy, such that more information can be collected regarding the phase angle on that

bus.

Based on the above heuristic argument, we propose to order the elements in the MSE

vector σǫ from high to low, and place the k PMUs at the k buses associated with the highest

estimation MSE. Details of the ordered MSE algorithm is given in Algorithm 3. Such a

heuristic algorithm only requires performing the inverse of an n × n matrix once, with a

complexity scales with O(n3).

Algorithm 3 Ordered MSE Algorithm

1: Calculate the MSE covariance matrix Σǫ with (2.16).
2: Extract the MSE vector σǫ = diag (Σǫ)
3: Order the elements in σǫ from high to low
4: Place the k PMUs at the buses with the k highest MSE

Table I compares the complexity of the three algorithms for IEEE 14-, 57-, and 118-bus

system. The number of PMUs is chose as k = ⌊n
2
⌋. The complexities are measured by using

the scaling factors with respect to n and k. The exhaustive search algorithm has the highest

complexity, followed by the greedy algorithm, and the one based on covariance matrix has
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the lowest complexity.

Table 2.1: Comparison of Complexities of Different Algorithms

Algorithms Exhaustive Greedy Ordered MSE

14-bus 9.40× 106 3.65× 105 2.74× 103

57-bus 2.78× 1021 3.76× 108 1.85× 105

118-bus 4.0× 1040 1.44× 1010 1.64× 106

2.6 Simulation Results

In this section, we present the simulation results by using several standard IEEE bus con-

figurations. The simulations are performed by using the MATPOWER software. In the

simulation, it is assumed that the state variables x are Gaussian distributed with zero mean

and covariance matrix Σx = σ2
xIn. The covariances of the measurement noise are Σē = σ2

eIm̄

and Σe = σ2
eIm for the systems with and without PMU, respectively. The signal-to-noise

ratio (SNR) in dB is defined as 10 log σ2
x

σ2
e
.

Fig. 2.1 shows the MSE as a function of the number of PMUs for the IEEE 57-bus

system. This system has 57 buses and 80 branches. Hence, the number of state variables is

n = 57 − 1 = 56 because bus 1 is used as the reference bus. We consider a reduced IEEE

bus 57 system in [1] to simplify the comparison between our algorithm and the one in [1].

As a result, the number of measurements is m = 33 + 32 = 65, of which m1 = 32 are power

injection measurements and m2 = 33 are the real power flow measurements. The SNR is 10

dB. The performance of system without PMU is also shown in the figure for reference. The

simulated MSE curves are obtained through Monte-Carlo simulations by generating zero-

mean Gaussian distributed state variables, and the theoretical MSE curves are obtained from

(2.13) and (2.14) for the systems with and without PMUs, respectively. The performance
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of the proposed algorithms are compared to the existing critical measurement-based PMU

placement algorithm [1]. For systems with PMU, the performance improves as more PMUs

are deployed in the system. Among all algorithms considered in this example, the greedy

algorithm has the best performance. The algorithm based on ordered MSE is slightly worse

than the greedy algorithm when the number of PMUs k is between 10 and 20, and it is almost

identical to the greedy algorithm when k ≥ 20. The performance of the algorithm based on

critical measurement [1] is far worse than the proposed algorithms. All algorithms achieve

the best performance when there are k = n = 56 PMUs. The majority of the performance

improvement of the proposed algorithms is achieved when k is small (e.g. k ≤ 20), and

the performance improvement gradually diminishes as k becomes large. For the proposed

algorithms, the MSE achieved at k = 30 is almost identical to that of system with k = n = 56

PMUs. Thus the optimum performance can be achieved by using only k = 30 PMUs. When

k = 30, the proposed algorithms outperform the system with the critical measurement

algorithm and the system without PMU by 31.3% and 75%,respectively.
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Ordered MSE (Algorithm 3, Analytical)
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Greedy (Algorithm 2, Analytical)
Greedy (Algorithm 2, Simulation)

Figure 2.1: The MSE as a function of the number of PMUs for IEEE 57-bus system.
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To demonstrate the performance of the exhaustive algorithm, Fig. 2.2 shows the per-

formance of various algorithms for the IEEE 14-bus system. This system has 14 buses and

20 branches. Hence, the number of state variables is n = 14 − 1 = 13. The number of

measurements is m = 20 + 14 = 34, with m1 = 14 real power injection measurements and

m2 = 20 real power flow measurements. The SNR is 10 dB. The performance of the greedy

algorithm is almost the same as that of the exhaustive search algorithm, but with a much

lower complexity. This means the greedy algorithm can almost achieve the optimum perfor-

mance. The performance of the ordered MSE algorithm is slightly worse than that of the

greedy algorithm. All proposed algorithms significantly outperform the conventional critical

measurement-based algorithm.
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Figure 2.2: The MSE as a function of the number of PMUs for IEEE 14-bus system.

2.7 Conclusion

We have studied the PMU placement problem to improve the accuracy of phase estimation

in a power system. The design metric was the MSE of the estimated phase angles. With a

linear MMSE estimator, the estimation MSE has been expressed as an explicit function of the
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PMU placement vector. The optimum PMU placement can be achieved with an exhaustive

search algorithm with combinatorial complexity. Two low complexity algorithms have been

proposed to balance the tradeoff between performance and complexity. Simulation results

have shown that the performance of the low complexity algorithms approach that of the

exhaustive search algorithm, but with a much lower complexity. All proposed algorithms

achieve significant performance gains over conventional algorithms designed based on the

concept of critical measurement. For a 57-bus system, the proposed algorithms can achieve

the optimum performance with only 30 PMUs while conventional algorithms require 56

PMUs.
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2.8 Appendix of the Copyright

2.8.1 Copyright Clearance
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Chapter 3

Optimum PMU Placement for Bad Data Detection in Power Systems

3.1 Abstract

We study the detection of bad data maliciously injected in a power grid by strategically

placing phasor measurement units (PMUs) at various buses across the power system. The

employment of PMU in power grids can greatly improve the capability of bad data detection.

However, a power grid is normally so large that it can be costly to install PMUs at every bus

in the grid. Thus it is critical to identify the buses on which the PMU should be installed.

We propose to optimize PMU placements by maximizing the probability of detecting the

attack of bad data injection, subject to a constraint on the probability of false alarm. We

first develop an optimum bad data detector by following the Neyman Pearson criterion. The

corresponding detection probability is derived as a closed-form expression of the Kullback

Leibler (KL) divergence between the measurement data with and without attack. It is shown

that the detection probability is monotonically increasing in the KL divergence, thus we pro-

pose to design the PMU placement algorithms by maximizing the KL divergence. Since the

data used in an attack is unknown, the PMU algorithms are developed by following a max-

min criterion, that is, maximizing the minimum KL divergence (or detection probability)

under the assumption of the least detectable attack vector. Under the max-min criterion,

we present an optimum PMU placement algorithm based on exhaustive search and a low

complexity greedy algorithm based on sequential search. Simulation results show that using
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the KL divergence as a design metric results in significant performance gains over existing

methods that are developed based on critical measurements.

Keywords

phasor measurement units, PMU placement, Anomaly detection, Kullback-Leibler diver-

gence, probability of detection.

3.2 Introduction

Ever since their introduction in the power grid in the early 1980s, phasor measurement units

(PMUs) or synchrophasors have been installed in many power systems around the globe

at an increasing rate [12]. A PMU device installed at a certain bus accurately measures

the positive sequence voltage phasors at the bus and the current phasors of the branches

incident to that bus [16]. The state estimator benefits from the PMU data by using these data

along with the conventional measurements to improve the performance of state estimations

and error detections. However, due to the financial limitations of the utilities and the cost

associated with the installation of these devices in the power grid, there are usually far less

PMUs than buses. Therefore, one of the critical problems faced by power system design is

PMU placement, that is, identifying the buses on which the PMUs should be installed.

Many existing approaches seek to solve the PMU placement problem by converting the

system’s critical measurements into redundant ones, thus to render the power system fully

observable. The critical measurements, as opposed to the redundant measurements, are

those measurements whose removal results in the system being unobservable [2] and [4]. In

other words, an erroneous critical measurement cannot be detected by the statistical tests
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based on measurement residual unless it is converted into a redundant measurement [1].

The problem of bad data injection was first studied in [11]. Contrary to the bad mea-

surements due to faults, equipment failures, and other random causes, the bad data injection

attacks are arbitrary measurement errors introduced into the state estimation of an electric

power grid by an adversary. [11] demonstrated that an attacker can take advantage of the

configuration of the power system by compromising certain meters and therefore misleading

the state estimator. [14] discussed various ways that an intruder may use to carry out these

attacks: First,the intruder may corrupt the power flow measurements by remotely access-

ing the internet protocol (IP)-based automation devices such as the remote terminal units

(RTU) installed at the substations that allow control engineers to perform system diagnostic

functionality from a remote area. Second, the intruder may tamper with the communication

network or break into the supervisory control and data acquisition (SCADA) system through

the control center office Local Area Network (LAN).

The countermeasures have been studied in [10], [3], and [17] based on the residue test that

uses the difference between the observed and estimated measurements to detect and identify

the bad measurements. However, [11] shows that an attack designed with knowledge of the

network topology can bypass these detection algorithms. The introduction of PMU has been

discussed in the literature to improve the system robustness and enhance the measurement

residual tests by converting the critical measurements into redundant measurements. This

approach, however, suffers, in turn, of its reliance on measurement residual testing.

The critical measurement based PMU placement approach has been adopted in the de-

velopment of numerous existing algorithms, such as [12], [16], [4], and [1]. These works
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thoroughly explained how the critical measurements can be converted into redundant mea-

surements to improve system observability and thus error detection. While making the

system observable can increase the probability of detecting some specific attacks, such as

those that only target the critical measurements, this approach may not be sufficient to de-

tect any random attacks. Furthermore, most of these approaches deploy the residual based

statistical tests to measure the performance of the designed PMU placement algorithms, and

these tests possess well documented limitations in detecting certain attacks. It is very diffi-

cult, if not impossible, to predict how the adversary will design the attack. Therefore, it is

critical to develop PMU placement algorithms that can enhance the power state estimator’s

capabilities of detecting not merely specific attacks but any random attacks.

In this chapter, we propose to develop PMU placement algorithms that can maximize

the probability of detecting bad data maliciously injected in the power system, subject to a

constraint on the probability of false alarm. The bad data detection is performed by using

the measurement data collected by the SCADA (Supervisory Control and Data Acquisition)

system and the PMUs. We first develop an optimum detector by using the Neyman Pearson

criterion. The probability of detection of the optimum detector are expressed as closed-form

expressions of the Kullback-Leibler (KL) divergence between the measurements with and

without malicious attacks. It is shown that the probability of detection is monotonically

increasing in the KL divergence, thus maximizing the probability of detection is equivalent

to maximizing the KL divergence. The KL divergence measures the difference between the

distributions of the normal and corrupted data, and it has been used to assist line outage

detection [15]. The KL divergence depends on the data covariance matrices, which are in

turn determined by the locations of the PMU in the power system. Therefore we can identify
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the optimum PMU locations by maximizing the KL divergence.

By using the KL divergence as the design metric, we identify the least detectable attack

vector, that is, the attack vector that will result in the smallest KL divergence with the

normal data. The PMU placement problem is then formulated based on the max-min cri-

terion, that is, maximizing the minimum KL divergence or detection probability due to the

least detectable attack vector. The problem is a combinatorial optimization problem, the

optimum solution of which can be achieved by means of exhaustive search. To balance the

tradeoff between complexity and performance, we also propose a low complexity algorithm

that sequentially finds the best PMU location that can maximize the current KL diver-

gence without considering future PMU placements. It is worth pointing out greedy PMU

placement algorithms are adopted in [8] and [9] to improve the accuracy of state estimation,

and they have different objectives as the greedy algorithm in this chapter. Simulation results

show that using KL divergence as a design metric for bad data detection results in significant

performance gains over conventional methods based on critical measurements.

The remainder of this chapter is organized as follows. The system model is described in

Section 3.3. In Section 3.4, the Neyman Pearson detector is developed, and the corresponding

probability of detection is expressed as a function of the KL divergence between corrupted

and normal measurements. In Section 3.5, we first identify the least detectable attack vector,

which is used to formulate the max-min optimization problem. The optimum and greedy

PMU placement algorithms are then present. Simulation results are given in Section 3.6,

and Section 3.7 concludes this chapter.
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3.3 System Model

We consider a power system with n+1 buses. Each bus is equipped with a meter measuring

the power flow and power injections. Without loss of generality, we will only consider a

system model of active power flows and power injections. Define the set of buses connected

to bus i as Xi with cardinality ci = |Xi|. Denote the power injection into bus i as Pi, and the

power flow from bus i to bus j as Pij , ∀ j ∈ Xi. The SCADA (Supervisory Control and Data

Acquisition) system provides a total of m = m1 + m2 measurements, where m1 = n + 1 is

the number of power injections and m2 =
1
2

∑n+1
i=1 |Xi| is the number of power flows. Define

the power measurement vector as z = [zT1 , z
T
2 ]

T ∈ Rm×1, where (·)T is the matrix transpose

operator, z1 ∈ Rm1×1 and z2 ∈ Rm2×1 are the power injection measurement vector and

power flow measurement vector, respectively, with R being the set of real numbers.

In phase measurement, one of the n+1 buses will serve as a reference, and we only need

to measure or estimate the phases of the remaining n buses relative to that of the reference

bus. Without loss of generality, assume that the (n + 1)-th bus is the reference, and define

the phase vector of the remaining n buses as x = [θ1, θ2, . . . , θn]
T , where θi is the phase of

the i-th bus.

The relationship between the observation vector z and the state vector x can be expressed

as

z = h(x) + e, (3.1)

where e = [e1, e2, . . . , em]
T ∈ Rm×1 is the measurement error vector, and the function h(x) =
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[h1(θ1, θ2, . . . , θn), . . . , hm(θ1, θ2, . . . , θn)]
T is a function of bus phase angles.

In this chapter we use the standard DC power flow model [13], which results in a linear

approximation of the model in (3.1) as

z = Hx+ e, (3.2)

where H ∈ Rm×n is the measurement Jacobian matrix for the real power flow and power

injection measurements. As in [7], we assume that the measurement noise e is zero-mean

Gaussian with covariance matrix Σe, that is, e ∼ N (0, σ2
eIm), where Im is a size-m identity

matrix.

Adding PMUs to a power system provides additional measurements to the SCADA sys-

tem. A PMU installed on a bus can measure both the voltage phasor of the bus and the

current phasors on incident branches of the bus. The measurement results are sent directly

to the state estimator of the SCADA system through communication networks. Similar to

[1], we assume that all branch impedances and bus voltages are j1.0 p.u. and 1.0 p.u, re-

spectively. For a PMU installed on the i-th bus, it can measure the voltage phase angle θi,

and the real part of the current phasor Iij from bus i to bus j, for all j ∈ χi. According to

[1], the current phasor can be approximated by

Iij = θi − θj , (3.3)

Based on the voltage and current measurements, define a PMU measurement matrix for
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the i-th bus as

Hi =





























θi θj

θi · · · 1 · · · 0 · · ·

... · · · · · · · · · · · · · · ·

Ii,j · · · 1 · · · −1 · · ·

... · · · · · · · · · · · · · · ·





























, (3.4)

The matrix Hi is of size (ci + 1) × n. The first row corresponds to the voltage phasor

measurement, and the remaining rows correspond to the current phasor measurements on

the incident branches of the i-th bus. The i-th column of Hi is an all-one vector. If j ∈ Xi,

then there will be exactly one -1 on the j-th column, with all other elements being 0.

If a PMU is placed on the i-th bus, define the corresponding PMU measurement vector as

vi = [θi, Iiji,1, · · · , Ii,ji,ci ]T ∈ R(ci+1)×1, where ji,u ∈ Xi is the index of the u-th bus connected

to the i-th bus, for u = 1, · · · , ci. With the above notation, the measurement from the PMU

on the i-th bus can be written as

yi = Hix+ ei (3.5)

where ei ∈ N (0, σ2
eIci) is the measurement noise.

Assume k PMUs are used in the power network. Denote the indices of the buses with the

k PMUs as d1 < d2 < dk. Then the measurement vector provided by the PMUs is zPMU =

[yT
d1
, · · · ,yT

dk
]T ∈ Rm3×1, where m3 =

∑k

i=1 cdi + k is the total number of measurements
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provided by the PMUs. Similarly, define HPMU = [HT
d1
, · · · ,HT

dk
]T ∈ Rm3×n, and ePMU =

[eTd1 , · · · , eTdk ]T ∈ Rm3×1.

Then we can represent the measurement vector of the system with k PMUs as









z

zPMU









=









H

HPMU









x+









e

ePMU









(3.6)

or in a more compact form

z̄ = H̄x+ ē, (3.7)

where z̄ = [zT , zTPMU]
T ∈ Rm̄×1, m̄ = m1 +m2 +m3 is the total number of measurements,

ē = [eT , eTPMU]
T ∼ N (0, σ2

eIm̄), and H̄ = [HT ,HT
PMU]

T ∈ Rm̄×n.

The PMUs provide additional measurements that can improve the accuracy of state

estimation and bad data detection. The objective is to find the optimum PMU placement

vector, d = [d1, d2, · · · , dk]T , that can maximize the probability of detecting malicious data

injection in the power grid.

To do so, we will first assume that the PMU location vector d is given, and develop

optimum detection algorithms that can maximize the probability of detection. The maximum

probability of detection will be expressed as a function of the PMU locations. The results

will then be used to identify the optimum PMU locations.
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3.4 Bad Data Detection

The optimum detection of bad data in the SCADA measurements is studied in this section for

systems with a given PMU location vector d. In a power grid, malicious data can be injected

into the SCADA measurements by an attacker so as to mislead the SCADA into making

wrong state estimations. An attacker seeks to find an attack vector a = [a1, a2, . . . , am]
T that

can cause a high mean squared error (MSE) at the estimator while keeping the probability

of detection as low as possible.

It is assumed that the attack vector will only affect the traditional SCADA measurements

vector z, which includes the power flows and power injections at different buses, The attacker

has no access to the PMU measurements, because the locations of the PMUs are usually

unknown to the attacker and the PMU data are usually encrypted [6].

With the measurement model given in (3.2) after the malicious data injection by an

adversary, the corrupted measurement SCADA can be written as

za = Hx+ a+ e, (3.8)

where a ∈ Rm×1 is the attack vector.

For a system with PMU, from (3.7), the corrupted measurement can be written as

z̄a = H̄x+ ā+ ē, (3.9)

where z̄a =
[

zTa , z
T
PMU

]T ∈ Rm̄×1, and ā =
[

aT , 0T
m3

]T ∈ Rm̄×1 with 0m3 being a length-m3

all-zero vector.
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3.4.1 Conventional Residual-based Bad Data Detectors

Many conventional bad data detectors rely on the residual errors of state estimation to detect

the presence of malicious data. Denote the residual error of state estimation as r = z−Hx̂,

where x̂ as the minimum mean squared error (MMSE) estimate of x by using the SCADA

measurement z. The properties of r can be used to detect the presence of bad data.

An example of such detectors is the largest normalized residue (LNR) test [7], which can

be written as

max
i

|ri|
σri

H1

≷
H0

τ, (3.10)

where τ is a pre-defined threshold, ri is the i-th entry of the residual error vector r with σri

being its standard deviation.

One of the limitations of the detector in (3.10) is, according to [11], that it cannot detect

an attack vector a = Hc, where c = [c1, c2, . . . , cn]
T is an arbitrary vector chosen by the

adversary. To design such an attack vector, an adversary needs knowledge of the Jacobian

matrix, H.

3.4.2 Optimum Detector

In this subsection, we develop the optimum detector that can maximize the probability of

detection for a given probability of false alarm (PFA).

For the bad data detection, the null hypothesis H0 and the alternative hypothesis H1,
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respectively, are

H0 : a = 0 and H1 : a 6= 0, (3.11)

The attack vector can be any arbitrary vector and is unknown to the detector.

During the detection, we adopt the common assumption that the state vector x is zero

mean Gaussian distributed with covariance matrix Σx, that is, x ∼ N (0,Σx). Under the

null hypothesis, from (3.9), the measurement vector z̄a is zero-mean Gaussian distributed

with covariance matrix Σ̄z = H̄ΣxH̄
T + Σ̄e, where Σ̄e = σ2

eIm̄ is the covariance matrix of

the noise vector ē. On the other hand, under the alternative hypothesis, the measurement

vector z̄a is Gaussian distributed with mean vector ā and covariance matrix Σ̄z. That is

H0 : z̄a ∼ N (0, Σ̄z)

H1 : z̄a ∼ N (ā, Σ̄z), ā 6= 0, (3.12)

Given the hypotheses in (3.12), we wish to design a detector that can maximize the

probability of detection subject to a constraint on the upper bound of the probability of false

alarm PFA. Based on the Neyman-Pearson Lemma, the optimum detector is the likelihood

ratio test (LRT) as

L(z̄a) ≡ log
f(z̄a | H1)

f(z̄a | H0)

H1

≷
H0

τ ′. (3.13)

where L(z̄a) is the log likelihood ratio (LLR), f(z̄a | Hb) is the conditional probability density
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function (pdf) of the measurement vector z̄a under hypothesis Hb, for b = 0, 1, and τ ′ is a

threshold determined by the probability of false alarm PFA.

After some algebraic operations and simplification, the detector in (3.13) is equivalent to

y ≡ z̄Ta Σ̄
−1
z ā− 1

2
āT Σ̄−1

z
ā

H1

≷
H0

τ, (3.14)

where τ is a predefined threshold determined by PFA and y is the test statistic that depends

on the measurement results ā. It should be noted that the knowledge of ā is required in

the test described in (3.14). However, in practical systems, ā is unknown to the detector.

The optimum detector is used to provide a guideline for the PMU placement. The PMU

placement algorithm developed in the next section will not require the knowledge of ā.

Since z̄a|Hb is conditionally Gaussian distributed and the test statistic y is a linear

function of z̄a, it is straightforward that y|Hb is conditionally Gaussian distributed, for

b = 0, 1. Based on (3.14), we have

H0 : y ∼ N (µ0y, σ
2
y)

H1 : y ∼ N (µ1y, σ
2
y), (3.15)

where µ0y = −1
2
āT Σ̄−1

z
ā and µ1y =

1
2
σ2
y = 1

2
āT Σ̄−1

z
ā.

Denote the distributions of y under the null and alternative hypothesis as p0(y) and p1(y),

respectively. The performance of the threshold test depends on the KL divergence between

p1(y) and p0(y). Based on [5], the KL divergence between p1(y) and p0(y) can be calculated
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as

D(p1‖p0) =
1

2

[

tr
(

σ2
yσ

−2
y

)

+ µσ−2
y µ− 1 + ln

(

σ2
y

σ2
y

)]

=
1

2
āT Σ̄−1

z
ā, (3.16)

where µ = µ0y − µ1y. It is interesting to note that µ1y = −µ0y = D(p1‖p0).

With the threshold test given in (3.14), we have the following lemma that establishes the

relationship between PFA and the threshold τ .

Lemma 3.1 : With the threshold test defined in (3.14), the probability of false alarm is

PFA = Q

(

τ − µ0y
√

2D(p1‖p0)

)

, (3.17)

where Q(t) = 1√
2π

∫∞
t

exp (−u2

2
)du is the Gaussian-Q function, and D(p1‖p0) is the KL

divergence given in (3.16).

Proof: False alarm happens when a bad data is detected under the null hypothesis.

Based on the threshold test, the probability of false alarm can be calculated as

PFA = Pr (y > τ | H0)

=

∫ ∞

τ

1
√

2πσ2
y

exp

(

− 1

2σ2
y

(y − µ0y)
2

)

dy

= Q

(

τ − µ0y

σy

)

(3.18)

The result in (3.17) can then be obtained by substituting µ0y and σ2
y = 2D(p1‖p0) into the

above equation.
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With the results in Lemma 3.1, we can select the threshold as

τ = Q−1(PFA)
√

2D(p1‖p0) + µ0y (3.19)

where Q−1(x) is the inverse function of Q(x).

With the threshold given in (3.19), the maximum probability of detection is given in the

following theorem.

Theorem 3.1 : Consider the threshold detector given in (3.14). For a given probability of

false alarm, PFA, the probability of detection is

PD = Q
(

Q−1 (PFA)−
√

2D(p1 || p0)
)

, (3.20)

where D(p1 || p0) = 1
2
aTΣ−1

z a is the KL divergence given in (3.16).

Proof: From (3.14) and (3.15), the probability of detection can be calculated by

PD = Pr (y > τ | H1)

=

∫ ∞

τ

1√
2πσy

exp

[

−(y − µ1y)
2

2σ2
y

]

dy,

= Q

(

τ − µ1y
√

σ2
y

)

(3.21)

where σ2
y = 2µ1y = 2D(p1‖p0). Substituting (3.19) into the above equation yields (3.20).

From the results in Theorem 3.1, it is easy to show that for a given PFA, the probability

of detection is an increasing function in the KL divergence D(p1‖p0), because Q(x) is a

decreasing function in x. Therefore, maximizing the probability of detection is equivalent to
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maximizing the KL divergence. On the other hand, the objective of a malicious attacker is

to design an attack vector such that D(p1‖p0) is minimized to minimize the probability of

detection.

3.5 PMU Placement Algorithms

In this section, we study the placement of PMUs into a power grid that can maximize the

probability of detecting bad data injections. The probability of detection is maximized by

maximizing the KL divergence between the probability distributions of the measurements

with and without attack. This is different from most existing PMU placement techniques

that are designed based on critical measurements or observability of the power system [1],

[2] and [4].

The KL divergence in (3.16) is a function of the attack vector ā and the inverse of the

measurement covariance matrix Σ̄z. The covariance matrix Σ̄z = H̄ΣxH̄
T + Σ̄e can be

alternatively expressed as

Σ̄z =









Σzz Σzp

Σpz Σpp









, (3.22)

where

Σzz = E[zzT ] = HΣxH
T + σ2

eIm (3.23)

Σpp = E[zPMUz
T
PMU] = HPMUΣxH

T
PMU + σ2

eIm3 (3.24)

Σzp = E[zzTPMU] = HΣxH
T
PMU (3.25)
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and Σzp = ΣT
pz.

The KL divergence D(p1‖p0) can be calculated by employing the following matrix inver-

sion result









A B

C D









−1

=









(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1









(3.26)

Combining (3.16), (3.26) and the fact that ā = [aT , 0T
m3

]T , we can rewrite the KL diver-

gence as

D(p1‖p0) =
1

2
aT (Σzz −ΣzpΣ

−1
pp Σpz)

−1a. (3.27)

The KL divergence is a function of the attack vector a and the covariance matrices

Σzp and Σpp, which in turn depend on the PMU locations. We propose to identify the

PMU locations that can maximize the KL divergence, thus to maximize the probability of

detection. However, the attack vector a is generally unknown at the detector. To address

this problem, we propose to develop the PMU placement algorithm by following the max-min

criterion, that is, maximizing the KL divergence under the least detectable attack vector.

48



3.5.1 Least Detectable Attack Vector

The least detectable attack vector can be obtained by solving the following problem

min
a

aT (Σzz −ΣzpΣ
−1
pp Σpz)

−1a (3.28)

s.t. aTa = 1.

It is well known that the solution to the above problem is the eigenvector associated with

the minimum eigenvalue of the matrix
(

Σzz −ΣzpΣ
−1
pp Σpz

)−1
, or equivalently, the eigenvector

associated with the maximum eigenvalue of the inverse matrix, Σzz −ΣzpΣ
−1
pp Σpz.

Therefore, the least detectable attack vector, a∗, is the eigenvector corresponding to the

eigenvector corresponding to to the maximum eigenvalue of the matrix Σzz − ΣzpΣ
−1
pp Σpz,

and we denote the eigenvalue of λmax

(

Σzz −ΣzpΣ
−1
pp Σpz

)

.

The constraint aTa = 1 in (3.28) is merely for convenience of representation. In practice

the attack vector might be scaled by a certain factor according to the amount of the mean

squared error (MSE) that the attacker intends to impose to the state estimator. That is, the

actual attack vector might be scaled with a factor α such that the attack MSE, as defined

in [7], is

σ2
a = α2‖ΣxH

TΣ−1
zz a‖22 (3.29)

It should be noted that the choice of the scaling factor α will not affect the maximum

eigenvalue λmin

(

Σzz −ΣzpΣ
−1
pp Σpz

)−1
, or the probability of detection.
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3.5.2 Optimum PMU Placement Algorithm

Define an indicator vector of the PMU locations b ∈ Bn, where B = {0, 1}, with bi = 1 if a

PMU is placed on the i-th bus and bi = 0 otherwise. For a system with k PMUs, we have

the constraint ‖b‖0 = k, where ‖b‖0 is the ℓ0-norm of the vector b. The covariance matrices

Σzp and Σpp are functions of HPMU, the structure of which depends on the PMU location

indicator vector b.

With the least detectable attack vector identified through the solution of (3.28), we can

formulate the max-min PMU placement problem as

max .
b

λmax

(

Σzz −ΣzpΣ
−1
pp Σpz

)

(3.30)

s.t. b ∈ Bn

‖b‖0 = k

This is a non-convex combinatorial problem with a complexity scales with
(

n

k

)

. The

optimal solution for (3.30) can be obtained by exhaustively searching the
(

n

k

)

possible PMU

location vectors b and find the one that can maximize the largest eigenvalue of Σzz −

ΣzpΣ
−1
pp Σpz. The exhaustive search algorithm is given in Algorithm 4.

In the exhaustive search algorithm, we try all the
(

n

k

)

possible values of the location

indicator vector b. The one that renders the largest minimum KL divergence, or equivalently

the largest maximum eigenvalue of the matrix Σzz − ΣzpΣ
−1
pp Σpz, is the optimum PMU

placement vector. Such an approach can provide the optimum performance, at the cost of a

high complexity. It is well known that the combinatorial optimization problem is NP hard.
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Algorithm 4 Exhausitve Search Algorithm

1: Formulate the set of
(

n

k

)

possible PMU location indicator vectors D = {b|b ∈ Bn, ‖b‖0 =
k}

2: for s = 1 to
(

n

k

)

do
3: pick bs ∈ D
4: formulate Σzp and Σpp based on bs.
5: Calculate the maximum eigenvalue λs of the matrix Σzz −ΣzpΣ

−1
pp Σpz.

6: end for
7: s∗ = argmaxs λs

8: Output: b∗ = bs∗

In each repetition, the calculation of the KL divergence requires the inverses of a m3 ×m3

matrix, the complexity of which scales with O(m3
3), and and finding the maximum eigenvalue

of a m ×m matrix, the complexity of which scales with O(m3). Therefore, the complexity

of the complexity of the exhaustive search algorithm scales with O
(

(m3
3 +m3)

(

n

k

))

.

Since the optimum PMU locations are identified off-line during the design of a power grid,

we can utilize the exhaustive search algorithm for a power system with a moderate number

of buses. However, for large systems with large n, we have to resort to low complexity

sub-optimum algorithms to reduce the computation complexity.

3.5.3 A Greedy Algorithm

We propose a greedy algorithm to balance the tradeoff between complexity and performance.

The greedy algorithm sequentially adds the PMUs to the power system, one at a time. The

PMU is added in a greedy manner, that is, each newly added PMU is placed at a location

that can maximize the minimum KL divergence of the current system configuration, without

considering possible future PMU placements. The greedy algorithm is described in Algorithm

5.

The greedy algorithm requires k steps to find the solution, and one PMU is added at the
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Algorithm 5 Greedy algorithm

1: Initialize the index set of all buses I = {1, 2, · · · , n}
2: Initialize b∗ = 0n, a length-n all-zero vector.
3: for s = 1 to k do
4: for u ∈ I do
5: Formulate bu by flipping the u-th bit of b.
6: formulate Σzp and Σpp based on bu.
7: Calculate the maximum eigenvalue of Σzz −ΣzpΣ

−1
pp Σpz

8: end for u

9: û = argmaxu λu

10: Set b∗û = 1.
11: Update I = I\û
12: end for s

13: Output b∗

end of each step in a greedy manner. At step s, there are n − s + 1 buses without PMU,

and the algorithm will try to place the PMU on each one of the n− s + 1 buses to find the

one that can maximize the maximum eigenvalue of the matrix Σzz −ΣzpΣ
−1
pp Σpz under the

current system configuration.

In the greedy algorithm, there are a total of
∑k

s=1(n − s + 1) = (n + 1)k + 1
2
k(k + 1)

iterations. Inside each iteration, we need to find the inverse of a m3 × m3 matrix and

perform the eigenvalue decomposition of a m×m matrix. Thus the complexity of the greedy

algorithm scales with O
(

(m3 +m3
3)((n+ 1)k + 1

2
k(k + 1))

)

.

It should be noted that the PMU placement algorithms are developed by using the least

detectable attack vector a∗. Thus they do not require the knowledge of the actual attack

vector a, which is unknown and in general different from the least detectable vector.
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3.6 Simulation Results

In this section, we present the simulation results by using several standard IEEE bus con-

figurations. The simulations are performed by using the MATPOWER software [18]. In

the simulations, it is assumed that the state variables x are Gaussian distributed with zero

mean and covariance matrix Σx = σ2
xIn. The covariance matrices of the measurement noise

are Σē = σ2
eIm̄ and Σe = σ2

eIm for the systems with and without PMUs, respectively. The

signal-to-noise ratio (SNR) in dB is defined as 10 log σ2
x

σ2
e
.

Fig. 3.1 shows the probability of detection as a functions of the number of PMUs installed

in a reduced IEEE 57-bus system [1]. The reduced 57-bus system is adopted such that we

can compare our algorithms with the critical measurement based PMU placement algorithm

proposed in [1]. The system has 57 buses. Hence, the number of state variables is n =

57 − 1 = 56, with bus 1 used as the reference bus. In the reduced 57-bus system, there

are m1 = 32 power injection measurements and m2 = 33 real power flow measurements,

which results in a total number of m = 65 measurements if we do not count the ones

from the PMUs. The performance of the proposed greedy algorithm is compared to that

of the critical measurement based algorithm [1]. The probability of detection increases

monotonically with the number of PMUs for both algorithms, because the measurements

provided by the PMUs provide extra information for the bad data detection. Under the

current system configuration, the maximum detection probability is 0.34, which is achieved

when k = n = 56, that is, a PMU is installed on each bus. The proposed greedy PMU

placement algorithm consistently outperforms the critical measurement based algorithm.

The greedy algorithm achieves the maximum detection probability with as little as k = 31
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Figure 3.1: The probability of detection as a function of the number of PMUs for IEEE
57-bus system.

PMUs, yet the critical measurement based algorithm needs k = 55 PMUs to achieve the

same performance. Therefore, the proposed algorithm requires less PMUs than the critical

measurement based algorithm, and can achieve a higher detection probability.

Fig. 3.2 shows the probability of detection as a function of the probability of false

alarm for the reduced IEEE 57-bus system, that is, the receiver operating characteristic

(ROC) curve. The number of PMUs is k = 31 for systems with PMUs. The attack vector

is the least detectable attack vector scaled by a constant to achieve an attack MSE of -

10 dB as in (3.30). All other configurations are the same as Fig. 3.1. The ROC curve

for system without PMU is also provided as a baseline. The ROC curves illustrate the

tradeoff between probabilities of false alarm and detection. The proposed greedy algorithm

significantly outperforms the critical measurement based system and the system without

PMU. When k = 31, the performance of the critical measurement based system is only

slightly better than that of the system without PMU. This is consistent with the results

in Fig. 3.1. When the probability of false alarm is 0.2, the detection probabilities for the

greedy algorithm, the critical measurement based algorithm, and the system without PMU
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Figure 3.2: The probability of detection as a function of the probability of false alarm for
IEEE 57-bus system.

are 0.912, 0.301, and 0.299, respectively.

In the above two examples we do not show the performance of the exhaustive search

algorithm due to the prohibitive complexity in a 57-bus system. To demonstrate the per-

formance of the exhaustive algorithm, Fig. 3.3 shows the performance of various algorithms

for the IEEE 14-bus system. This system has 14 buses and 20 branches. Hence, the number

of state variables is n = 14 − 1 = 13. The number of measurements is m = 20 + 14 = 34,

with m1 = 14 real power injection measurements and m2 = 20 real power flow measure-

ments. The SNR is 10 dB, the probability of false alarm is 0.3, and the attack vector is the

least detectable attack vector a∗. The exhaustive search algorithm outperforms the greedy

algorithm as expected. However, the performance gap is very small. When k ≥ 8, systems

with the greedy algorithm and the exhaustive search algorithm achieve almost the same

performance. Since the optimum performance is achieved at k ≥ 8, the greedy algorithm

can approach the optimum performance with a much lower complexity than the exhaustive

search algorithm.

Fig. 3.4 shows the probability of detection as a function of the attack MSE for the
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Figure 3.3: The probability of detection as a function of the number of PMUs for IEEE
14-bus system.

reduced IEEE 57-bus system. The number of PMUs is k = 31 for systems with PMUs. The

attack vector is the least detectable attack vector scaled by a constant to achieve different

attack MSEs. All other configurations are the same as Fig. 3.1. As depicted in this figure,

the adversary may attempt to scale the optimum attack vector so as to cause more errors

or increase the MSE of the state estimator. This, however, comes with a price for it will

increase the probability of detection. The greedy algorithm significantly outperforms the

other two systems under all system configurations. The greedy algorithm achieves perfect

detection (detection probability is 1) when the attack MSE is higher than -7 dB. On the

other hand, at the same attack MSE, the detection probabilities of the critical measurement

algorithm and system without PMU are only 0.482 and 0.475, respectively.

3.7 Conclusion

We have studied the optimum placement of k PMUs in a power grid with n ≥ k buses,

with an objective to maximize the probability of detecting malicious data injection under a
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Figure 3.4: The probability of detection as a function of the attack MSE for IEEE 57-bus
system.

constraint on probability of false alarm. For a given PMU placement, we first proposed an

optimum Neyman-Pearson detector and derived the corresponding probability of detection,

which is expressed as an explicit function of the KL divergence between measurement dis-

tributions under the alternative and null hypothesis, respectively. It has been shown that

the probability of detection is an increasing function in the KL divergence, which in turn

depends on the PMU locations. Thus the PMU placement algorithms were developed by

using the KL divergence as a design metric. Since the attack vector is unknown, we resorted

to a max-min criterion in the PMU placement algorithms, that is, maximizing the KL diver-

gence under the least detectable attack vector. Two PMU placement algorithms have been

developed under the max-min criterion. It has been shown by simulations that KL diver-

gence based algorithms achieve significant performance gains over conventional algorithms

developed based on critical measurements. For a 57-bus system, the proposed low complex-

ity greedy algorithm achieves the maximum detection probability with only 31 PMUs while

55 PMUs are required by conventional algorithms to achieve the same performance.
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Chapter 4

Low Latency Detection of Sparse False Data Injections in Smart Grids

4.1 Abstract

We study the low latency detection of sparse false data injection in power grids, where an

adversary can maliciously manipulate power grid operations by modifying measurements at

a small number of smart meters. When a power grid is under attack, the detection delay,

which is defined as the time difference between the occurrence and detection of the attack, is

critical to the cybersecurity of power grids. A shorter detection delay can ensure the timely

deployment of countermeasures to prevent catastrophic impacts from the attack. The ob-

jective of this chapter is to develop low latency false data detection algorithms that can

minimize the detection delay subject to constraints on false alarm probability. The false

data injection can be modeled with a sparse attack vector, with each non-zero element cor-

responding to one meter under attack. Since neither the support nor the values of the sparse

attack vector is known, a new orthogonal matching pursuit cumulative sum (OMP-CUSUM)

algorithm is proposed to identify the meters under attack while minimizing the detection

delay. In order to recover the support of the sparse vector, we develop a new stopping condi-

tion for the iterative OMP algorithm by analyzing the statistical properties of the power grid

measurements. Theoretical analysis and simulation results show that the proposed OMP-

CUSUM algorithm can efficiently identify the meters under attack, and reliably detect false

data injections with low delays while maintaining good detection accuracy.
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4.2 Introduction

Smart grid is a combination of power infrastructure, smart meters, and a network of com-

puters [13]. Compared to traditional power grids, smart grid is more robust and efficient

owing to the improvement in energy management, control, and system monitoring enabled

by the incorporation of networks of computers and smart meters. This, though, comes with

a price of grid security and privacy.

Attackers can exploit the cyber-infrastructure of the grid to launch cyber-attacks that

can compromise normal grid operations. Some malicious party can launch a cyber-attack by

modifying the measurement results obtained by the supervisory control and data acquisition

(SCADA) system, such as the power injected or flowing on different buses, and the phase

angle of the voltage phasors at different buses. False data injected in the measurement results

will affect the real time control of grid operations, thus cause significant damages to power

grids. In [11], it is demonstrated that an attacker can take advantage of the configuration

of the power system by compromising a small number of meters. The cyber-attacks can

be performed by breaking into the communication network of the SCADA system, or by

remotely accessing the automation devices such as the remote terminal units (RTU) installed

at the substations [20].

A large number of methods have been developed to detect various forms of cyber-attacks

in smart grids [11, 7, 10, 3, 22]. Most of these methods rely on residual based detection,
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where the detection is performed by analyzing the difference between the estimated and

actual power measurements. In addition, almost all existing detection methods are developed

to improve detection accuracy or state observability, with little or no attention given to

detection delay, which is defined as the time difference between the occurrence and detection

of cyberattacks. Detection delay of cyber-attacks is crucial to the stability and operations

of power grids. A longer detection delay might comprise the entire power grids and cause

power loss to millions of people. On the other hand, a lower detection delay can shorten

the response time, such that remedial actions and/or counter measures can be taken to

significantly reduce the damages and economic losses caused by cyber-attacks.

Low latency detection can be performed by employing theories from quickest change

detection (QCD), which is designed to detect a change in the statistical distribution of a

random process [17, 18].The time instant of the occurrence of the change in distribution is

denoted as a change point. The objective of QCD is to minimize the detection delay of the

change point under the constraints of an upper bound on probability of false alarm (PFA)

or a lower bound on average run length (ARL). QCD can be classified into two categories:

Bayesian and non-Bayesian change detections. For Bayesian change detection such as the

well known Shiryaev procedure [17], the change point is modeled as a random variable,

and Bayesian detection methods rely on knowledge of the prior distribution of the change

point. When the change point prior distribution is unknown, we can resort to non-Bayesian

methods such as the cumulative sum (CUSUM) test [14], which follows the min-max criterion

to minimize the detection delay under the worst case change point distribution.

Both Bayesian and non-Bayesian QCD methods require precise knowledge of the statis-

tical distributions of the random process before and after the change. However, it might
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be difficult, if not impossible, to obtain the exact distributions in many practical applica-

tions, especially the post-change distribution that usually corresponds to abnormal operation

conditions. In case of false data injection, it is impossible to obtain the exact post-change

distribution, which depends on the unknown attack vector. In [8], the classical CUSUM

algorithm is extended with the generalized likelihood ratio test (GLRT), which estimates

the unknown parameter in the distribution through maximum likelihood estimation.

There are limited works on low latency detection of false data injection in smart grids.

A generalized CUSUM detector is proposed in [9] for false data detection, where the GLRT

is utilized to estimate the unknown parameters. The complexity of the generalized CUSUM

detector grows exponentially with the number of meters. The complexity mainly arises

from the need to identify the meters under attack. A low complexity approximation of the

generalized CUSUM is developed in [9], where each meter tracks the false data injection

separately. In [5, 6], an adaptive multi-thread CUSUM algorithm is proposed for false data

detection in power grids. It is pointed out in [6] that the complexity of GLRT might be

too high for practical implementation, thus the Rao test is used for unknown parameter

estimation. The elements in the attack vector are assumed to be positive in [5], and such

assumption is not always true in practical attacks.

For a large power grid with a large number of buses and meters, it is extremely difficult,

if not impossible, for an attacker to attack all meters at once. In almost all cases the attacker

can modify the measurements from a small number of meters, that is, the attack is sparse

among meters [7]. In recognition of the sparse nature of false data injections, we propose a

new orthogonal matching pursuit (OMP) CUSUM algorithm, which utilizes sparse recovery

to identify the meters under attack. In the OMP-CUSUM algorithm, the attack vector is
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modeled as a sparse vector with dimension equal to the number of power measurements in the

grid. The indices of the non-zero elements of the attack vector correspond to meters under

attack, and the number of non-zero elements is called the sparsity level. A naive way to locate

the meters under attack will be to perform exhaustive search of all possible combinations of

attack patterns with GLRT, the complexity of which grows exponentially with the number

of buses. To reduce complexity, we resort to the OMP algorithm [19, 15, 1, 2], which is a

well known algorithm for sparse signal recovery. Given the fact that neither the sparsity

nor the support of the attack vector is known, we develop a new stopping condition for the

OMP algorithm by analyzing the statistical properties of the measurements in the grid. The

stopping condition can accurately terminate the iterative OMP procedure once all meters

under attack are successfully identified, without the prior knowledge of the sparsity level.

The results of the OMP are then used in the CUSUM algorithm to minimize the detection

delay of false data injection, subject to constraints on the detection accuracy and probability

of false alarm. The OMP algorithm and CUSUM is combined in an iterative and sequential

manner, that is, for each new group of measurements, OMP is used to estimate the support of

the attack vector, and the results are then used for the sequential CUSUM test. Theoretical

analysis and simulation results show that the newly proposed OMP-CUSUM algorithm can

efficiently and promptly detect false data injections with low complexity, low detection delays,

and good detection accuracy.

The remainder of this chapter is organized as follows. The system model and problem

formulation are described in Section 4.3. In Section 4.4, we study the quickest attack de-

tection problem using CUSUM test, and highlight the high computational complexity of

GLRT-based CUSUM. The OMP-CUSUM algorithm is presented in Section 4.5. In Section
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4.6, we develop a worst case attack vector, which will be used to test the performance of the

proposed algorithm. Simulation results are given in Section 4.7, and Section 4.8 concludes

this chapter.

4.3 Problem Formulation

4.3.1 System Model

We consider a power system with n+1 buses. Each bus is equipped with a meter measuring

the power flow and power injections. Without loss of generality, we will only consider a

system model of active power flows and power injections. Define the set of buses connected

to bus i as Xi with cardinality ci = |Xi|. Denote the power injection into bus i as Pi, and

the power flow from bus i to bus j as Pij , ∀ j ∈ Xi. The SCADA system provides a total

of m = m1 + m2 measurements, where m1 = n + 1 is the number of power injections and

m2 = 1
2

∑n+1
i=1 |Xi| is the number of power flows. Define the power measurement vector as

z = [z1, z2, . . . , zm]
T ∈ Rm×1, where (·)T is the matrix transpose operator and R is the set

of real numbers.

In phase measurement, one of the n+1 buses will serve as a reference, and we only need

to measure or estimate the phases of the remaining n buses relative to that of the reference

bus. Without loss of generality, assume that the (n + 1)-th bus is the reference, and define

the phase vector of the remaining n buses as x = [x1, x2, . . . , xn]
T , where xi is the phase of

the i-th bus.

The relationship between the observation vector zl and the state vector x can be expressed
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as

z = h(x) + e, (4.1)

where e = [e1, e2, . . . , em]
T ∈ Rm×1 is the measurement error vector at the sampling instant

l, and h(x) = [h1(x), . . . , hm(x)]
T is a function of bus phase angles.

In this chapter we use the standard DC power flow model [16], which results in a linear

approximation of the model in (5.1) as

z = Hx+ e, (4.2)

where H ∈ Rm×n is the measurement Jacobian matrix for the real power flow and power

injection measurements. As in [7], we assume that both the state variables x and measure-

ment noise el are zero-mean Gaussian with covariance matrices Σx and Σe, respectively.

That is, e ∼ N (0, σ2
eIm) and x ∼ N (0, σ2

xIm1), where Im is a size-m identity matrix and σ2
e

and σ2
x are the variances of e and x, respectively. It is not hard to see that zl is Gaussian

distributed with zero mean and covariance matrix Σz = σ2
xHHT + σ2

eIm.

Based on the observations in (4.2), the state estimator can obtain an estimate x̂ of

the state variable x, such that the mean squared error (MSE) σ2
0 = E [‖x̂− x‖22] between

the estimated and the actual state variables is minimized. This can be achieved with the

minimum mean squared error (MMSE) estimator [7], x̂ = Kz, where K = ΣxH
TΣ−1

z .

The adversary’s intention is to mislead the state estimator into making more estimation

errors by modifying the power measurements at certain meters. This could lead to wrong
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decisions by the control center, which may decide to increase/decrease power injections at

certain buses in the system based on the faulty state estimate.

4.3.2 Mathematical Problem Formulation

An intruder can launch an attack on certain meter readings and intentionally modify the

measurements corresponding to these meters. Assume attack happens at time θ and it

modifies the measurements on s < m meters. The attack vector can thus be modeled by

using a s-sparse attack vector a of dimension m, which has s non-zero values corresponding

to the s meters under attack. The observed measurement vector at the sampling instant l is

zl =



















Hx+ e, if l < θ

Hx+ a+ e, if l > θ

. (4.3)

Under the Bayesian setting, the attack time θ is modeled as a random variable with prior

probability Pr(θ = k) = πk, for k = 1, 2, . . .. We want to detect the attack as soon as it

occurs, subject to certain performance constraints, such as the probability of false alarm.

The detection is performed by using all historical measurement data z1, z2, . . . , zl up to this

moment l. To this end, we define the detection procedure δ as a mapping from the observed

measurement sequence z1:l = [z1, z2, . . . , zl] to a positive integer as

δ : z1:l → {k : k ≤ l}, l = 1, 2, . . . (4.4)

The estimated attack time is thus δ(z1:l) = θ̂ ≤ l for some l.

Following the detection procedure in (4.4), we define, respectively, the probability of false
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alarm (PFA) and the average detection delay (ADD) as

PFA(δ) = Pr(θ̂ < θ), (4.5)

and

ADD(δ) = E

[

θ̂ − θ | θ̂ > θ
]

. (4.6)

The problem of quickest detection aims to minimize the average detection delay under

the constraint of an upper bound of the probability of false alarm. Thus, our problem is

formulated as

min .δ ADD(δ) (4.7)

s.t. PFA(δ) ≤ β.

Solving the above problem requires knowledge of the distributions of the observed mea-

surements before and after the attack. From (4.3), define the null hypothesis H0, which

corresponds to the distribution before the attack, and the alternative hypothesis H1, which

corresponds to the distribution after the attack, as

H0 : zl ∼ N (0,Σz)

H1 : zl ∼ N (a,Σz), ‖a‖0 = s. (4.8)

where ‖a‖0 is the ℓ0 norm that returns the number of non-zero elements in a.
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Denote the distributions of zl before and after the attack as f0(zl) and f1(zl|a), respec-

tively. It should be noted that the attack vector a is unknown at the receiver. Thus the

post-attack distribution is unknown.

4.4 Quickest Detection with Unknown Attack Vector

In this section, we develop the quickest detection algorithm with an unknown attack vector.

The quickest detection algorithm is developed by extending the CUSUM procedure [12] with

GLRT.

First we will formulate the CUSUM procedure by assuming that the attack vector a is

known. Then we will extend the CUSUM procedure to the case with unknown attack vector.

If the attack vector a is known, then the likelihood ratio (LR) at time instant l can be

calculated as

λl =
f1(zl | a)
f0(zl)

= exp

(

zTl Σ
−1
z a− 1

2
aTΣ−1

z a

)

. (4.9)

Define the cumulative log-likelihood ratio (LLR) of the samples zk:l = {zk, zk+1, . . . , zl}

as

ηk:l = log

(

l
∏

i=k

λi

)

=
l
∑

i=k

(zTi Σ
−1
z a− 1

2
aTΣ−1

z a). (4.10)

With the cumulative LLR given in (4.10), the CUSUM procedure with known attack
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vector can be written as [14]

δ = inf {l : Cl ≥ B} , with Cl = max
1≤k≤l

ηk:l (4.11)

where B is the threshold chosen such that the constraint on the false alarm probability in

(4.7) is satisfied.

The test statistics Cl can be recursively calculated as

Cl = max (0, Cl−1) + log λl (4.12)

with C0 = 0.

The classical CUSUM procedure in (4.11) requires the knowledge of the attack vector

a. In practice, a is unknown at the detector. As a result, we cannot directly calculate the

cumulative LLR ηk:l or the test statistics Cl. This problem can be solved by using GLRT,

where we estimate the value of a by maximizing the cumulative log-likelihood ratio (GLR)

as [7]

âk,l = argsup
a∈Ωs,s=1,2,...,m

l
∑

i=k

(

zTi Σ
−1
z a− 1

2
aTΣ−1

z a

)

. (4.13)

where Ωs is the set of all s-sparse attack vectors.

For a length-m s-sparse vector a, there are Qs =
(

m

s

)

sparse patterns. For the q-th

sparse pattern, denote the indices of the non-zero elements as kq,1 < kq,2 < · · · < kq,s, for

q = 1, · · · , Qs. If the attack vector assumes the q-th sparse pattern, then removing the zero

elements in a results in aq = [aq,1, aq,2, · · · , aq,s]T . The cumulative LLR in (4.10) can be
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alternatively written as

η
(q)
k:l =

l
∑

i=k

(zTi Λqaq −
1

2
aT
q Φqaq). (4.14)

where Λq is a m × s submatrix of Σ−1
z , and it is obtained by removing the m − s columns

with indices corresponding to the zero elements in the q-th sparse pattern. Similarly, Φq is

a s× s submatrix of Σ−1
z , and it is obtained by removing the m− s rows and columns with

indices corresponding to the zero elements in the q-th sparse pattern.

The cumulative GLR can then be obtained by solving the following two optimization

problems.

η̂
(q)
k:l = sup

aq∈Rs

l
∑

i=k

(zTi Λqaq −
1

2
aT
q Φqaq) (4.15)

η̂k,l = max
q=1,··· ,Qs,s=1,2,...,m

η̂
(q)
k,l (4.16)

In the above two-step procedure, for each sparsity 1 ≤ s ≤ m, we first identify the

maximum cumulative GLR for a certain sparse pattern, and the optimum cumulative GLR

is then obtained by comparing the results from all Q =
∑m

s=1Qs = 2m − 1 sparse patterns .

We first solve the optimization problem in (4.15). The objective function in (4.15) is

quadratic in aq, so it has a unique solution. Taking the first derivative of the objective

function, and setting it to zero, we have

ΛT
q

l
∑

i=k

zi − (l − k + 1)Φqaq = 0 (4.17)
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Thus the vector aq that maximizes the objective function is

âq =
1

l − k + 1
Φ−1

q ΛT
q

l
∑

i=k

zi (4.18)

Combining (4.15) with (4.18) yields

η̂
(q)
k:l =

1

2(l − k + 1)

(

l
∑

i=k

zi

)

ΛqΦ
−1
q ΛT

q

(

l
∑

i=k

zi

)

(4.19)

From (4.16) and (4.19), the CUSUM with GLR can be alternatively represented as

δ = inf

{

l : max
1≤k≤l

max
q=1···Qs,s=1,2,...,m

η̂
(q)
k:l ≥ B

}

. (4.20)

The above quickest detection algorithm requires the exhaustive search of all
∑m

s=1Qs =

2m − 1 sparse patterns, and the exhaustive search needs to be performed for each value of

1 ≤ k ≤ l. The complexity grows exponentially with m and it becomes prohibitively high

when m is large. A low complexity OMP-CUSUM algorithm is proposed in the next section

to balance the tradeoff between complexity and performance.

4.5 Orthogonal Matching Pursuit-CUSUM (OMP-CUSUM) Test

A low complexity OMP-CUSUM algorithm is proposed in this section to balance the tradeoff

between complexity and performance. Instead of performing exhaustive search over all sparse

patterns, we propose to adopt the OMP algorithm [19] [15] and modify it for the CUSUM

test. The OMP algorithm will be used to identify the sparse attack vector that can maximize

the cumulative GLR as in (4.13).
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In order to employ the OMP in the cumulative GLR calculation, we need to rewrite the

optimization problem in (4.13) in the form of a linear optimization. The result is given as

follows.

Lemma 4.1 : The optimization problem in (4.13) can be alternatively expressed as

min . ‖y−Aa‖22 (4.21)

s.t. ‖a‖0 = s (4.22)

where ‖b‖2 =
√
bTb is the ℓ2-norm of a vector, ‖b‖0 is the ℓ0-norm, A = D− 1

2U, D is a

diagonal matrix with the eigenvalues of Σz on its main diagonal, U is the corresponding

orthonormal eigenvector matrix, that is, Σz = UTDU, and

y =
1

l − k + 1
A

l
∑

i=k

zi. (4.23)

The proof is shown in Appendix 4.9.1.

We propose to solve the problem in Lemma 4.1 by using OMP. The basic idea of OMP is

to sequentially identify the columns of A that has the strongest correlation with the vector

y, given the fact that y is a linear combination of the columns of A corresponding to the

non-zero elements of the sparse vector a.

We first describe the OMP algorithm when the sparsity level s is known. The results are

then used to develop an OMP algorithm with unknown sparsity level.
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4.5.1 OMP with Known Sparsity Level

Based on the optimization problem in Lemma 4.1, the OMP algorithm is described as follows.

• Step 1. Initialize the residual r0 = y and the iteration counter t = 1. Initialize the set

of non-zero index vector as I0 = ∅. Define the index set I = {1, 2, · · · , m}

• Step 2. At the t-th iteration, find the column of A that has the maximum absolute

inner product with the residual rt−1 as

i∗t = argmax i ∈ I\It−1

∣

∣rTt−1Aj

∣

∣ , (4.24)

where Aj denotes the j-th column of A. Update It = {i∗t} ∪ It−1. Denote AIt as a

submatrix of A consisting the columns Ai with i ∈ It.

• Step 3. Update the residual rt by projecting y onto the null space of AIt

rt = (Im −Pt)y (4.25)

where Im is a size m identity matrix, Pt = AIt(A
T
ItAIt)

−1AT
It is the projection onto

the linear space spanned by the columns of AIt.

• Step 4. Set t = t + 1, and go back to step 2 until the stopping conditions are met.

If the sparsity level s is known, we can stop at the s-th iteration. When the sparsity

level is unknown, the stopping condition will be discussed in the next subsection.

• Step 5. If the stopping conditions are met, then stop and output an estimate of a by
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solving the following optimization problem

â = argmax ‖y −AIta‖22 = (AT
ItAIt)

−1AT
Ity (4.26)

At time instant l, we need to perform the OMP algorithm for each 1 ≤ k ≤ l to identify

the attack vector âk,l. Once âk,l is identified, then we can update the cumulative GLR as

η̂k:l =
l
∑

i=k

(

zTi Σ
−1
z âk,l −

1

2
(âk,l)

TΣ−1
z âk,l

)

(4.27)

With the cumulative GLR defined in (4.27), the CUSUM with GLR can then be written

as

δ = inf

{

l : max
1≤k≤l

η̂k:l ≥ B

}

. (4.28)

In some sparse sensing applications such as those in [19] [15] where the signal sparsity

is known, the above algorithm stops in Step 4 when the iteration t = s. In contrast, for

our problem, the detector has no knowledge of the sparsity level, s, of the attack vector,

which is crucial to the performance of the OMP algorithm. In the next sub-section, we solve

this problem by developing new stopping conditions for the OMP algorithm based on the

residual analysis.

4.5.2 OMP with Unknown Sparsity Level

We propose to develop the stopping condition of the OMP algorithm by analyzing the sta-

tistical properties of the residual rt in (4.25) at each iteration t. From (4.3), (4.23), and

75



(4.25), the residual can be written as

rt =
1

L
P⊥

t A

l
∑

i=k

zi (4.29)

where P⊥
t = Im − Pt ∈ Rm×m projects to the null space of the column space spanned by

AIt , L = l − k + 1, and zi is the observation vector defined in (4.3).

Denote the true support set of a as I∗
s , that is, the elements of I∗

s are the indices of the

non-zero elements of a. If the support set of the attack vector is successfully recovered at

the t-th iteration, that is, I∗
s ⊆ It, then the residual rt does not contain any information of

a. We denote this as the null hypothesis H0, and the OMP algorithm should stop once H0

is detected. On the other hand, if I∗
s

⋂It 6= I∗
s , that is, the index of at least one non-zero

elements of a is not in It, then rt still depends on a. This is denoted as the alternative

hypothesis H1, and the algorithm needs to continue to the next iteration under H1.

From (4.3) and (4.29), the hypothesis test on the residual rt can be written as

H0 : rt =
1

L
P⊥

t A

l
∑

i=k

vi

H1 : rt =
1

L
P⊥

t A
l
∑

i=k

(vi + a) , if a 6= 0, (4.30)

where vi = Hxi + ei ∼ N (0,Σz).

Since P⊥
t ∈ Rm×m projects to the null space of AIt ∈ Rm×t, which has a column rank

of t, the rank of P⊥
t is m − t. Due to row-rank deficiency of the matrix P⊥

t , the residual

rt in (4.30) is a degenerate Gaussian distribution. However, as illustrated in [21], we can

formulate a full rank sub-matrix Ct ∈ R(m−t)×m by choosing m − t arbitrary rows of P⊥
t .
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Without loss of generality, we formulate Ct ∈ R(m−t)×m by using the first m− t rows of P⊥
t .

Then the the hypothesis in (4.30) can be reformulated as

H0 : r̃t =
1

L
CtA

l
∑

i=k

vi ∼ N (0,Σt)

H1 : r̃t =
1

L
CtA

l
∑

i=k

(vi + a) ∼ N (µt,Σt), (4.31)

We have the following lemma regarding the distribution of r̃t under the null and alter-

native hypotheses, respectively.

Lemma 4.2 : The reduced residual vector r̃t is Gaussian distributed under both the null

and alternative hypotheses, and

r̃t|H0 ∼ N (0,Σt)

r̃t|H1 ∼ N (µt,Σt) (4.32)

where Σt =
1
L
CtC

T
t , µt =

ρ

L
CtAa, and ρ is the number of corrupted measurements out of

the L collected measurement samples.

The proof is shown in Appendix 4.9.2.

It should be noted that the value of ρ used in Lemma 4.2 is unknown, and we do not

need ρ for the stopping condition developed in this subsection.

We can perform likelihood ratio test (LRT) at Step 4 of the OMP algorithm to detect

between the null and alternative hypothesis. If H0 is detected at iteration t, then the

algorithm stops. Otherwise we move on to the next iteration. The development of the
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optimum decision rule requires the statistical distribution of y, which is given in the following

lemma.

Lemma 4.3 : The distributions of y = 1
L
A
∑l

i=k zi under the null and alternative hy-

potheses are, respectively,

y|H0 ∼ N
(

0,
1

L
Im

)

y|H1 ∼ N
(

Aa,
1

L
Im

)

. (4.33)

The proof is shown in Appendix 4.9.3.

Theorem 4.1 : For a given probability of false positive σ, The OMP algorithm with un-

known sparsity stops at the t-th iteration if the following condition is met

Tt = yTCT
t Σ

−1
t Cty < λt. (4.34)

The threshold λt is calculated as a function of the probability of false positive σ = Pr(T >

λt|H0) as

λt = 2Γ−1

(

m− t

2
, σΓ(

m− t

2
)

)

, (4.35)

where Γ(m) =
∫∞
0

xm−1 exp(−x)dx is the Gamma function, Γ(M, b) =
∫∞
b

yM−1 exp(−y)dy

is the upper incomplete Gamma function, and Γ−1(M, y) is its inverse.

The proof is shown in Appendix 4.9.4.
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4.6 Optimum Attack Vector From Adversary’s Perspective

In order to evaluate the performance of the proposed algorithm, we design a worst case

attack vector that is difficult to detect, but can cause large damage to the system. Then we

can evaluate the performance of the proposed OMP-CUSUM algorithm by using the worst

case attack vector.

For the CUSUM procedure, the average detection delay is asymptotically inversely pro-

portional to the Kullback-Leibler (KL) divergence between the distributions before and after

change [18, 8]. Thus the adversary can make the attack harder to detect by minimizing the

KL divergence between f1(z|a) and f0(z). Under the Gaussian assumption, the KL diver-

gence between f1(z|a) and f0(z) can be calculated as [4]

D(f1‖f0) =
1

2

[

tr
(

ΣzΣ
−1
z

)

+ aTΣ−1
z a− 1 + ln

( | Σz |
| Σz |

)]

=
1

2
aTΣ−1

z
a. (4.36)

In general, it is difficult for an attacker to gain access to every meter in the system. In-

stead, the adversary might have access to a subset of smeters with indices I∗
s = {i1, i2, · · · , is}.

Denote as = aI∗

s
, which contains the elements ak with k ∈ I∗

s . Thus the KL divergence can

be rewritten as

D(f1‖f0) =
1

2
aT
s Φsas (4.37)

where Φs is an s× s submatrix of Σ−1
z , and it contains the rows and columns of Σ−1

z with

indices in I∗
s .
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The damage caused by the attack vector can be measured by the energy of the attack, or

equivalently, the additional mean square error of state estimation due to the attack. From

[7], the energy of the attack can be calculated as

σ2
a = ‖ΣxH

TΣ−1
z a‖22 = ‖ΣxH

TΛsas‖22 = ‖Ksas‖22. (4.38)

where Λs contains the columns of Σ−1
z with indices in I∗

s , and Ks = ΣxH
TΛs.

We can then design the worst case attack vector by solving the following optimization

problem.

min
as∈Ωs

aT
s Φsas (4.39)

s.t. ‖Ksas‖22 ≥ γ,

where γ is the minimum attack energy desired by the adversary. A similar approach, but

with different objective function, has been taken in [7], where the attack vector is designed

to minimize the estimation residue error subject to the constraint on a lower bound of the

attack energy.

The optimization problem in (4.39) can be solved analytically, and the solution is given

as follows.

Corollary 4.1 : The optimum attack vector that solves the optimization problem in (4.39)

80



is

a∗
s =

√

γ

‖Ksumin‖22
umin (4.40)

where umin is the generalized eigenvector corresponding to the minimum eigenvalue of the

matrix pair (Φs,K
T
s Ks).

The proof is shown in Appendix 4.9.5.

4.7 Simulation Results

In this section, we present the simulation results by using several standard IEEE bus con-

figurations. The simulations are performed by using the MATPOWER software [23]. In

the simulations, it is assumed that the state variables x are Gaussian distributed with zero

mean and covariance matrix Σx = σ2
xIn. The covariance matrices of the measurement noise

is Σe = σ2
eIm. The signal-to-noise ratio (SNR) in dB is defined as 10 log σ2

x

σ2
e
. The change point

is assumed to follow a geometric distribution with parameter p0, that is, πk = (1− p0)
k−1p0.

In all simulations, we set SNR = 10 dB and p0 = 0.1.

Fig. 4.1 shows the probability that the OMP algorithm will meet the stopping conditions

in Theorem 4.1 as a function of the probability of false positive (PFP) in (4.56) for the IEEE

14-bus system. The attack vector is randomly generated with sparsity s = 5 and then scaled

as in (4.40) with γ = σ2
a = 0.0217. Each point on the curves in Fig. 4.1 was obtained by

running 10,000 trials. As predicted by our theoretical analysis, the probability that the OMP

algorithm stops increases with the number of iterations. With s = 5, ideally the algorithm

should stop at the 5-th iteration. Stopping at t < 5 iterations means that some attacks are

81



10-2 10-1 100

Probability of false positive PFP

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

to
pp

in
g 7th iteration

6th iteration
5th iteration
4th iteration
3rd iteration
2nd iteration
1st iteration

Figure 4.1: The probability of stopping versus the probability of false positive for the IEEE
14-bus system.
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Figure 4.2: The average recovered sparsity for the OMP with known sparsity , OMP with
unknown sparsity, and GLR with exhaustive search as a function of the actual sparsity for
the IEEE 14-bus system.

not identified. In this experiment, the probability of stopping is relatively low (less than 0.27

at PFP = 0.05) during the first four iterations because the residual vector (4.25) still contains

non-zero components of the attack vector. On the other hand, the stopping probability rises

significantly after the 4th iterations. At PFP = 0.05, the probabilities of stopping at the

5th, 6th, and 7th iterations are 0.89, 0.93, and 0.95, respectively.

In Fig. 4.2, the support recovery rates of the proposed OMP algorithms with and with-

out known sparsity level are compared with the GLRT algorithm with exhaustive search
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described in Section 4.4. The support recovery rate is defined as the percentage of trials that

can successfully recover the exact support of the attack vector. For the case with known

sparsity level, the value of s is known at the detector, but the actual support of the sparse

vector is unknown. For the case with unknown sparsity level, neither s nor its support is

known. The recovery rate of the OMP algorithm with unknown sparsity is very close to that

with known sparsity, which means the stopping condition in Theorem 4.1 is very effective.

The recovery rates of OMP algorithms with known or unknown sparsity are consistently

above 90% for all sparsity levels. It is interesting to note that the performance of the OMP

algorithms increases with s, yet this trend is reversed for the GLRT algorithm with exhaus-

tive search. This can be explained by the fact that the primarily objective of the OMP is

to recover the correct support of the attack vector and then subsequently find the optimum

values of the entries in the support. On the contrary, the GLRT algorithm with exhaustive

search attempts to find the support and values together to maximize the objective in (4.19).

The GLRT with exhaustive search performs poorly when s < 4. At s = 4, the GLRT algo-

rithm with exhaustive search outperforms the OMP algorithm, because the OMP algorithm’s

performance generally deteriorates as the ratio of the sparsity and number of measurements

grows.

The average detection delays are shown as functions of the false alarm probability for

the IEEE 14-bus and 57-bus systems in Figs. 4.3 and 4.4, respectively. The attack vectors

are designed in the same way as those used in Fig. 4.1 with γ = 0.0217. As in [5], the

threshold B in (4.11) is obtained by fixing the probability of false alarm, PFA = β, and

setting B = log β−1

po
. The probability of false positive for the OMP stopping conditions is

σ = 0.01. Each point in the figures was obtained through Monte Carlo simulations with 4,000
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Figure 4.3: The Average detection delay of the OMP-CUSUM as a function of false alarm
probability with various sparsity values (number of attacked meters) for IEEE 14-bus system.

trials. The average detection delay is represented as the number of observation samples. For

both the 14- and 57-bus systems, the ADD decreases as the sparsity s becomes smaller,

mainly due to the fact that a smaller s results in a better recovery rate of the support of

the attack vector. As expected, the ADD is a monotonic decreasing function in PFA for all

system configurations. At PFA = 0.05, the ADDs of the 14-bus system with s = 2, 5, and

6 are 1.4, 4.8, and 9.0 samples, respectively; the ADDs of the 57-bus system with s = 2, 6,

and 15 are 1.04, 1.32, and 1.95 samples, respectively. Therefore the algorithms can detect

various attacks with low latency and high accuracy.

Fig. 4.5 shows the average detection delay as a function of the normalized attack energy

γ

σ2
x
. Two different attack vectors are considered. One is the optimum attack vector as

designed in Corollary 4.1, and the other one is a random attack vector normalized to meet

the attack energy constraint. For the random attack vector, each point in the curve is

obtained by averaging over 10,000 different realization of the random attack vectors. The

probability of false alarm is set as β = 0.072, and the sparsity level is s = 2. All other
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Figure 4.4: The Average detection delay of the OMP-CUSUM as a function of false alarm
probability with various sparsity values (number of attacked meters) for IEEE 57-bus system.
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Figure 4.5: The Average detection delay of the OMP-CUSUM with unknown sparsity as a
function of attack energy with both random and optimum attack vectors for IEEE 14-bus
system.

parameters are the same as in Fig. 4.3. The proposed OMP-CUSUM algorithm can reliably

and quickly detect both types of attack vectors, but the optimum attack vector is more

difficult to detect than the random one. For instance, at the average detection delay of

1 sample, the minimum detectable normalized attack energy of the optimum and random

attack vectors are -16.1 dB and -38.3 dB, respectively.
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4.8 Conclusion

Quickest detections of false data injected to smart grids have been studied in this chapter.

Motivated by the fact that a malicious party usually can only attack a small number of

meters, we have developed a new OMP-CUSUM algorithm for low latency detection of false

data injections. Unlike conventional CUSUM algorithm that relies on the knowledge of the

attack vector, the OMP-CUSUM algorithm can efficiently identify the meters under attack,

and minimize the detection delay of bad data injection under the constraint of the probability

of false alarm. An optimum attack vector has also been developed to test and validate the

performance of the proposed algorithm. Simulation results have shown that the proposed

OMP-CUSUM algorithm can accurately and reliably detect intrusions with small delays and

low complexities, and the detection performance improves as the sparsity level of the attack

vector decreases.

4.9 Appendix

4.9.1 Proof of Lemma 4.1

Define wk:l = 1
l−k+1

∑l

i=k zi. Then the objective function in (4.13) can be alternatively

written as

J = (l − k + 1)

(

wT
k:lΣ

−1
z a− 1

2
aTΣ−1

z a

)

(4.41)
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Based on the eigenvalue decomposition of Σz, we have

Σ−1
z = UTD−1U = ATA (4.42)

In addition, y = Awk:l.

Then (4.41) can be alternatively represented as

2J

l − k + 1
= 2yTAa− aTATAa− yTy + yTy (4.43)

= −‖y −Aa‖2 + yTy (4.44)

Finding a to maximize J is thus equivalent to minimize ‖y − Aa‖2. This completes the

proof.

4.9.2 Proof of Lemma 4.2

Since vi ∼ N (0,Σz) and r̃t is a linear combination of vi, r̃t is Gaussian distributed under

both the null and alternative hypotheses.

Under H1, the mean of r̃t is E[r̃t|H1] =
1
L
CtA

∑l

i=k a = ρ

L
CtAa.

The covariance matrices under both H0 and H1 are

Σt = E
[

r̃tr̃
T
t | H0

]

= E

[

(r̃t − µt) (r̃t − µt)
T | H1

]

=
1

L
CtAΣzA

TCT
t =

1

L
CtC

T
t (4.45)

where the last equality is based on the fact that A = D− 1
2U and Σz = UTDU. This
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completes the proof.

4.9.3 Proof of Lemma 4.3

Since y is the linear combination of zi, which is Gaussian distributed, y is Gaussian dis-

tributed under both the null and alternative hypotheses.

Under the null hypothesis, we have zi = vi ∼ N (0,Σz). Given that zi and zj are

independent for i 6= j, the covariance matrix of y is

E[yyT |H0] =
1

L2
A

l
∑

i=k

l
∑

j=k

E[ziz
T
j ]A

T (4.46)

=
1

L2

l
∑

i=k

AΣzA
T =

1

L
Im (4.47)

Under the alternative hypothesis, we have zi = vi + a ∼ N (a,Σz). Thus E[y|H1] =

1
L
A
∑l

i=k a = Aa. The covariance matrix under the alternative hypothesis can be derived

in a similar manner as (4.46). This completes our proof.

4.9.4 Proof of Theorem 4.1

The LLR for the hypothesis test in (4.31) is

logL(r̃t, a) = log
Pr(r̃t|a,H1)

Pr(r̃t|H0)

= r̃Tt Σ
−1
t µt −

1

2
µ

T
t Σ

−1
t µt (4.48)
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where µt =
ρ

L
CtAa. Since a is unknown, we can perform GLRT, where a can be estimated

by maximizing the LLR. Setting ∂ logL(r̃t)
∂a

= 0 yields

ρ

L
CtAâ = r̃t, (4.49)

where â is the maximum likelihood (ML) estimate of a.

Replacing a in (4.48) with â in (4.49) results in

logL(r̃t, â) =
1

2
r̃Tt Σ

−1
t r̃Tt (4.50)

Given that r̃t =
1
L
CtA

∑l

i=k zi = Cty and Σt =
1
L
CtCt, the LLR can be written as

logL(r̃t, â) =
L

2
yTCT

t (CtC
T
t )

−1Cty (4.51)

It is apparent that CT
t (CtC

T
t )

−1Ct is a projection matrix that projects to the linear space

spanned by the (m− t) rows of Ct, thus it can be represented as

CT
t (CtC

T
t )

−1Ct = V · Diag[1m−t; 0t] ·VT (4.52)

where diag[1m−t; 0t] is a m × m diagonal matrix with the vector [1m−t; 0t] on its main

diagonal, that is, the first m− t elements of the main diagonal are 1s, and all the rest are 0s.

Define w =
√
LVy. Since y is Gaussian distributed as in Lemma 4.3, it can be easily
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shown that

w|H0 ∼ N (0, Im)

w|H1 ∼ N
(√

LVAa, Im

)

(4.53)

The LLR in (4.51) can then be alternatively written as

logL(r̃t, â) =
1

2
w · Diag[1m−t; 0t] ·w =

1

2

m−t
∑

k=1

w2
i (4.54)

From (4.54), the hypothesis test can be represented as

Tt = yTCT
t Σ

−1
t Cty = LyCT

t (CtC
T
t )

−1Cty

=

m−t
∑

k=1

w2
i

H1
≷
H0

λt (4.55)

where the threshold λt will be determined based on the probability of false positive σ.

Given the distribution of w in (4.53), it can be easily shown that T follows the χ2

distribution with m − t degrees of freedom under H0 and the non-central χ2 distribution

with m− t degrees of freedom under H1.

Therefore, the distributions of T under H0 is

f0(x | H0) =
x

m−t
2

−1 exp(−x
2
)

2
m−t
2 Γ(m−t

2
)

.

90



The probability of false positive is

σ = Pr (T > λt|H0) =

∫ ∞

λt

f0(x | H0)dx

=
1

Γ
(

M−t
2

)Γ

(

m− t

2
,
λt

2

)

. (4.56)

The above equation can then be used to obtain the threshold in (4.35). It should be

noted that the threshold does not require the knowledge of a. This completes the proof.

4.9.5 Proof of Corollary 4.1

The Lagrangian of the optimization problem in (4.39) is

L(as, λ) = aT
s Φsas − λ

(

‖Ksas‖22 − γ
)

(4.57)

= aT
s (Φs − λKT

s Ks)as + λγ (4.58)

If Φs − λKT
s Ks is positive semidefinite, i.e., Φs − λKT

s Ks � 0, then L(as, λ) is convex.

It can be minimized by setting ∂L(a,λ)
a

= 0, and the solution is

Φsas = λKT
s Ksas (4.59)

From (4.59), λ must be a generalized eigenvalue of (Φs,K
T
s Ks). From (4.57) and (4.59), the

minimum Lagrangian is λγ when Φs − λIs � 0.

On the other hand, Φs − λIs ≺ 0 implies infas
L(as, λ) = −∞.
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Thus the dual function of the optimization problem in (4.39) is

g(λ) = inf
as

L(as, λ) =















λγ, if Φs − λKT
s Ks � 0

−∞, if Φs − λKT
s Ks ≺ 0

(4.60)

The dual problem of (4.39) can then be written as

max
a∈Ωs

λγ (4.61)

s.t. Φs − λKT
s Ks � 0,

The maximum λ that satisfies Φs − λKT
s Ks � 0 is λmin, which is the minimum generalized

eigenvalue of (Φs,K
T
s Ks).

Substituting λ with λmin in (4.59), we can see that the optimum attack vector a∗
s should

be in the form a∗
s = c ·umin, where umin is the generalized eigenvector corresponding to λmin,

and c is a constant used to ensure that ‖Ksa
∗
s‖2 = γ. Solving ‖Kscumin‖22 = γ yields (4.40).

Even though the primal problem in (4.39) is non-convex, it can be easily shown that

primal and dual problems have zero duality gap. That is

(a∗
s)

TΦsa
∗
s ≥ inf

as∈Ωs

L(as, λmin) (4.62)

= (a∗
s)

TΦsa
∗
s − λmin

(

‖Ksa
∗
s‖22 − γ

)

(4.63)

= (a∗
s)

TΦsa
∗
s (4.64)

where (4.62) is based on the fact that the dual function is a lower bound of the original

objective function, (4.63) is true because L(as, λ) is convex in as and can be minimized by
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a∗
s, and (4.64) is true because ‖Ksa

∗
s‖22 = γ. Thus the inequality in (4.62) is actually an

equality, which means the primal and dual problems can achieve the same objective. As a

result, (a∗
s, λmin) are the optimum solutions to the problem. This completes our proof.
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Chapter 5

Dynamic State Estimation and False Data Detection in Power Systems

5.1 abstract

We study the detection of false data injection in dynamic power grids, where an adversary

can maliciously manipulate power grid operations by modifying measurements collected at

certain system meters. Due to dynamic system changes such as sudden load changes and

changes in network configuration, the state of a power grid changes with time. Dynamic

state estimations are used to track this dynamism. Nevertheless, the presence of malicious

false data in the measurements may be confused to transients due to these sudden changes

and lead to inaccurate state estimations, which can, in turn, have catastrophic impacts on

the grid. It is necessary to detect and discriminate these false data from sudden system

changes to alleviate their impact on the state estimation. The objective of this chapter is to

develop a false data detection algorithm that can effectively detect and identify false data in

dynamic power systems. Theoretical analysis and simulation results show that the proposed

algorithm can accurately detect and remove false leading to a high state estimation accuracy.

IEEEkeywords

false data injection, dynamic state estimation, dynamic load change, power system .
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5.2 Introduction

Smart grid is a combination of power infrastructure, smart meters, and a network of com-

puters [11]. Compared to traditional power grids, smart grid is more robust and efficient

owing to the improvement in energy management, control, and system monitoring enabled

by the incorporation of networks of computers and smart meters. This, though, comes with

a price of grid security and privacy.

Attackers can exploit the cyber-infrastructure of the grid to launch cyber-attacks that

can compromise normal grid operations. Some malicious party can launch a cyber-attack by

modifying the measurement results obtained by the supervisory control and data acquisition

(SCADA) system, such as the power injected into different buses or flowing into the lines

between the buses. False data injected in the measurement results will affect the real time

control of grid operations, thus cause significant damages to power grids. The cyber-attacks

can be performed by breaking into the communication network of the SCADA system, or by

remotely accessing the automation devices such as the remote terminal units (RTU) installed

at the substations [15].

A large number of methods have been developed to detect various forms of cyber-attacks

in smart grids [10, 6, 9, 4, 16, 8, 13]. All of these methods assume a static system model,

where the system is in a steady state and its measurements are quasi-static over time. In

reality, though, the state of a power system changes with time due to the dynamic nature

of system loads [2]. Therefore, state estimation and false data detection methods need a

dynamic model to track the time evolution of the system states, which can be used to detect

and replace corrupt measurements in the system. A dynamic state estimator can capture
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the system transients due to sudden system changes faster and more accurately than its

static counterpart does. A dynamic state estimator owes these properties to its capability

to use past state estimations to predict the future state of the system one step ahead. The

predicted states can be used to initialize the state estimation algorithm during the next step

and detect measurements that deviate from these predictions. A mismatch between newly

collected measurements and their predicted values indicates that there has been sudden

changes in the system such as a loss of a large load and changes in network configurations,

or malicious attacks that have modified some system measurements. It is necessary to detect

and identify these malicious attacks in order to replace the corrupt measurements before they

are processed by the state estimator.

The problem of dynamic state estimation has been studied before in [2, 3, 14, 7, 5].

These works use different versions of an extended Kalman filter (EKF) to perform dynamic

state estimation by filtering the predicted state variables. All these algorithms utilize an

amplitude test on the innovation vector, difference vector between the newly collected mea-

surements and their predictions, to test the presence of false data and sudden changes in

the system. Once the magnitude of the innovation vector exceeds a certain threshold, a flag

is raised indicating that there is a sudden change in the system’s operating point or false

data injection attacks on the system. The false data are discriminated from sudden system

changes by analyzing correlated measurements in the region near the abnormality and if the

correlated measurements simultaneously fail the detection test, a sudden change is character-

ized. Otherwise, the suspected measurements contain false data and they are replaced with

their predictions. This method of discriminating attacks from sudden change in the system

operating point, however, may not be effective if the attacks are simultaneously injected
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in the correlated measurements. This may lead to a mischaracterization of the attacks as

sudden changes, and therefore, fail to remove and prevent the corrupt measurements from

entering the state estimation stage. In this chapter, we propose a new detection algorithm

that can accurately detect the bad data and discriminate them from sudden changes in the

system. Based on the statistical distribution of the innovation vector, a hypothesis test is

developed to study the system behavior with and without false data injections. From the

hypothesis test, a chi-square test is then designed to detect the attacks. Once the false

data are detected, corrupt measurements are identified and replaced with their predictions

and then forwarded to the state estimator. Theoretical analysis and simulation results show

that the newly proposed detection algorithm can effectively detect and replace false data

injections including those injected in correlated measurements.

The remainder of this chapter is organized as follows. The system model and problem

formulation are described in Section 5.3. In Section 5.4, we explain the dynamic state

estimation algorithm in details. The problem of false data detection is studied in Section

5.5, where we present the design procedures of our proposed detection algorithm. Simulation

results are given in Section 5.6, and Section 5.7 concludes this chapter.

5.3 Mathematical Model

We consider a power system with N buses. Each bus is equipped with a meter measuring

the active and reactive power injections. The line connecting two buses is equipped with

two sensors, one at each end, measuring the active and reactive power flows. Without loss

of generality, assume that the first bus is the reference.

Define the set of buses connected to bus i as Xi with cardinality ci = |Xi|. Denote the
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active and reactive power injections into bus i as Pi and Qi, respectively. Similarly, the active

and reactive power flows from bus i to bus j are denoted Pij and Qij , respectively, ∀ j ∈ Xi.

The SCADA system provides a total of m = m1 +m2 + 1 measurements, where m1 = 2N is

the number of active and reactive power injections, m2 =
∑N

i=1 |Xi| is the number of active

and reactive power flows. In addition to the power measurements, the measurement of the

voltage magnitude at the reference bus is also available. Define the power measurement

vector as z = [z1, z2, . . . , zm]
T ∈ Rm×1, where (·)T is the matrix transpose operator and R is

the set of real numbers.

In phase measurement, one of the N buses will serve as a reference, and we only need to

measure or estimate the phases of the remaining N−1 buses relative to that of the reference

bus. Define the state vector as x = [x1, x2, . . . , xn]
T ∈ Rn×1 for n = 2N − 1, where the first

N − 1 elements of x are the voltage angles of N − 1 non-reference buses and the last N

elements are the voltage magnitudes of N buses.

The relationship between the measurement vector zk and the state vector xk, at an

instant of time k can be expressed as

zk = h(xk) + ek, (5.1)

where ek ∈ Rm×1 is the measurement error vector at the sampling instant k, and h(xk) =

[h1(xk), . . . , hm(xk)]
T is a function of voltage magnitudes and phase angles. As in [2], we

assume that the measurement noise ek is zero-mean Gaussian with covariance matrix Rk.

Based on the observations in (5.1), the state estimator can obtain an estimate x̂k of

the state variable xk, such that the error zk − h(x̂k) between the estimated and the actual
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measurements is minimized.

5.4 Dynamic State Estimation

In this section, we present the dynamic state estimation, which relies on previous estimates

to predict the future state of the system. The predicted states can, in turn, be used by the

system operator for timely anomaly detection and other control decisions such as economic

dispatch and other related functions.

Consider the following state transition model, which describes the time behavior of the

state vector, as

xk+1 = Fkxk +Gk +wk, (5.2)

where Fk ∈ Rn×n is a non-zero diagonal matrix, Gk ∈ Rn×1 is a non-zero column vector,

and wk ∈ Rn×1 is a white Gaussian noise with zero mean and covariance matrix Qk.

The parameters Fk and Gk can be identified according to the Holt’s exponential smooth-

ing methods [2] for forecasting by smoothing an original series with two smoothing parame-

ters, α and β, with values between 0 and 1. Denote the predicted state vector at time k as

x̃k and the predicted state vector at time k + 1 as x̃k+1. The Holt’s method is expressed as

x̃k+1 = ak + bk, (5.3)
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where

ak = αxk + (1− α)x̃k

and

bk = β [ak − ak−1] + (1− β)bk−1.

Rewrite (5.3) as

x̃k+1 = Fkxk +Gk, (5.4)

where Fk = α(1 + β)In and Gk = (1 + β)(1 − α)x̃k − βak−1 + (1 + β)bk−1. By adding

a zero mean Gaussian noise wk with covariance matrix Qk to (5.4) to account for model

uncertainties yields the equation in (5.2).

5.4.1 System State Forecasting

The main advantage of the dynamic state estimator that sets it apart from the static state

estimator is its ability to use the past state estimates to predict the future system states.

Let x̂k be the estimated state vector at time k and Σk its error covariance matrix. The

predicted state vector x̃k+1 and its error covariance matrix Mk+1 at time k can be obtained

by performing the conditional expectation on (5.2) as follows

x̃k+1 = E [xk+1 | xk = x̂k] = Fkx̂k +Gk (5.5)
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Mk+1 = E

[

(xk+1 − x̃k+1) (xk+1 − x̃k+1)
T | xk = x̂k

]

= FkΣkFk +Qk, (5.6)

where E [.] is the expectation operator.

5.4.2 System State Estimation

The state estimation, also known as state filtering, seeks to filter the predicated state vector

x̃k+1, obtained at the preceding step k, by using the newly received measurement vector zk+1

at time k+1. During this stage, a new estimate x̂k+1 along with its error covariance matrix

Σk+1 are obtained at time k + 1 by minimizing the objective function

J (xk+1) = [zk+1 − h(xk+1)]R
−1
k+1 [zk+1 − h(xk+1)]

T

+
[

(xk+1 − x̃k+1)M
−1
k+1 (xk+1 − x̃k+1)

T
]

. (5.7)

The estimate x̂k+1 that minimizes the objective function (5.7) can be obtained through an

iterative Extended Kalman Filter (EKF) [2] as

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z− h(x(i))]

−M−1[x(i) − x̃]}, (5.8)

where i denotes the iteration counter and
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Σ(i) =
[

HT (x(i))R−1H(x(i)) +M−1
]−1

. (5.9)

It should be noted that the subscript k + 1 was omitted in (5.8) and (5.9) for simplicity.

One of the main benefits of the state forecasting stage is that it provides the initial states

to the iterative EKF algorithm in (5.8). Thus, the convergence of the EKF algorithm partly

depends on the accuracy of the forecast state vector. A High state forecasting accuracy leads

to a faster convergence of the EKF algorithm.

Let the initial guess x(i) = x̃ at time k + 1 and by perform only one iteration in (5.8),

the estimated state vector is approximated as

x̂k+1 = x̃k+1 +Kk+1vk+1, (5.10)

where

vk+1 = zk+1 − h(x̃k+1) (5.11)

is the innovation vector,

Kk+1 = Σk+1H
T (x̃k+1)R

−1
k+1

104



is the gain matrix, and

Σk+1 =
[

HT (x̃k+1)R
−1
k+1H(x̃k+1) +M−1

k+1

]−1
.

5.5 False Data Detection and Identification

The problem of detecting and identifying false data injections in the measurement vector

is studied in this section. Based on (5.10), the estimated state vector x̂k+1 is a function

the innovation vector vk+1, the difference between newly received measurements at time

k + 1 and its corresponding predictions h(x̃k+1. The newly received measurement vector

zk+1 may deviate from its predicated value h(x̃k+1). This mismatch between the measured

and predicted measurements may be a result of two factors: a sudden change in the system’s

operating point due to a loss of a large load [3] and false data injections in the measurements.

The change in system’s operating point is considered a normal event. However the presence

of false data injections is abnormal and can be harmful to the system. It is important to

detect and remove any false data injections from the measurements zk+1 before performing

the state estimation.

5.5.1 False Data Detection

Unusual events, sudden system changes and false data, in the measurements can be detected

by means of statistical analysis on the innovation or residual vector vk+1 in (5.11) and its

covariance matrix Sk+1 written as

Sk+1 = HT (x̃k+1)Mk+1H(x̃k+1) +Rk+1. (5.12)
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The proof for (5.12) is given in Appendix 5.8.2.

A frequently used bad data detector [2] applies a threshold test to the magnitude of each

component vk+1(i) of the innovation vector as follows.

|vk+1(i)| ≤ γσSi
, (5.13)

where |vk+1(i)| is the absolute value of the i-th element of vk+1, σSi
is the standard deviation

of the i-th element of vk+1, and γ defines the limit of confidence (usually equal to 3 for

Gaussian variables). To account for approximation errors due to linearization during the

calculation of (5.12), γ is set slightly higher than 3.

If the component vk+1(i) of the innovation vector does not satisfy the test (5.13) then

the i-th element of measurement vector zk+1 carries bad data or has experienced sudden

changes in the system’s operating point. To discriminate bad data from sudden changes, the

correlated or adjacent measurements to the suspect measurement are checked. If they fail

the test (5.13) then the suspect measurement is a sudden change in the system. Otherwise,

the suspect measurement has bad data and it is removed by setting zk+1(i) equal to the i-th

component of the predicted measurement vector h(x̃k+1).

It should be noted that the detector (5.13) cannot distinguish bad data from sudden

changes if the correlated measurements of a certain region simultaneously experience bad

data. To this end, we propose a detector that can detect false data injections including those

injected into correlated measurements.
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5.5.2 Proposed Bad Data Detector

Define the null hypothesis H0, which corresponds to the measurements without bad data at

time k+1, and the alternative hypothesis H1, which corresponds to the measurements with

bad data at time k + 1, as

H0 : zk+1 = h(xk+1) + ek+1

H1 : zk+1 = h(xk+1) + ek+1 + a, (5.14)

where a is a vector of bad data injected in the measurements.

From (5.11), (5.14), and (5.26), the hypothesis test on the innovation vector vk+1 can be

written as

H0 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1

H1 : vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1 + a. (5.15)

The innnovation vector vk+1 under the null hypothesis H0 is known to be a zero mean

Gaussian vector [2] and [12] with covariance matrix Sk+1 in (5.12). Assuming that a is a

deterministic vector, under H1, vk+1 is Gaussian with mean a and covariance matrix Sk+1.

Based on the hypotheses in (5.15), we have the following theorem regarding the bad data

detection.

Theorem 5.1 : Given a whitening matrix Wk+1 at time k + 1 and a whitened innovation
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vector v̄k+1 = Wk+1vk+1, an attack vector a in the measurements zk+1 is detected if

m
∑

i=1

v̄2
k+1(i) > τ, (5.16)

where τ is the threshold, Wk+1 = D− 1
2U, D is a diagonal matrix with the eigenvalues of

Sk+1 on its main diagonal, U is the corresponding orthonormal eigenvector matrix, that is,

Sk+1 = UTDU.

The proof is shown in Appendix 5.8.3.

Owing to the normal distribution of v̄k+1(i), as shown in (5.28), the test
∑m

i=1 v̄
2
k+1(i)

is theoretically a chi-square test and the threshold τ can be theoretically calculated. In

practice, however, v̄k+1(i) is not distributed normally with accuracy. This is because v̄k+1 =

Wk+1vk+1 is a linear transformation of vk+1 whose covariance matrix Sk+1 is only an ap-

proximation of its true value [12]. As a result, the threshold τ is calculated offline.

At time k+1, the test (5.16) is applied and the presence of bad data or an attack vector

a in the measurements is declared if the test is greater than the threshold τ . Otherwise,

there is no bad data in the measurements. In case the bad data are detected, the test (5.13)

is used to identify affected components of the measurement vector zk+1, which are replaced

with their corresponding components of the predicted measurement vector h(x̃k+1).

5.6 Simulation Results

In this section, we present the simulation results performed on a 13-bus two area system

shown in Fig. 5.1. Bus 1 is used as the reference bus. The measurement vector is composed

of m = 55 components: the voltage magnitude of bus 1, the active and reactive power
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Figure 5.1: Single Line Diagram Two Area System

injections at all 13 buses, the active and reactive power flows at all 14 lines. The state

vector is composed of n = 25 components: the voltage magnitudes at all 13 buses and the

phase angles at the non reference buses. The system dynamic is simulated by increasing

the active load at bus 4 by 0.5 per unit (p.u) and the resulting measurement and state

vectors are considered the true values of the system. The noisy measurement vector (5.1) is

then obtained by adding a zero mean Gaussian noise to each of the true measurements and

covariance bfRk. The noise variances, diagonal elements of bfRk, are 10
−5 and 10−6 for the

voltage magnitude of bus 1 and the active and reactive power measurements, respectively.

The matrix Qk = 10−6In is kept constant at every sampling time k. The parameters Fk and

Gk are obtained according to the Holt’s exponential smoothing method [2] with α = 0.95

and β = 0.001. For the detector in (5.13) γ = 3.5.

To test the performance of the proposed detector, two scenarios are simulated: bad data

and sudden load change conditions. The bad data condition is simulated by injecting errors

of −1.5 and 1 p.u into the active power measurements at buses 3 and 4, respectively, during

a time period 20 ≤ k ≤ 60 unless specified otherwise. The sudden load change condition is

simulated by cutting the active power injection of bus 4 by 1 p.u. In each figure, every point
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Figure 5.2: The real power at bus 4 vs time k with bad data at k ≥ 20 and the detector in
(5.13)

on the curves is obtained by averaging over 1000 observations.

Fig. 5.2 shows the active power at bus 4 with bad data injected into the active power

measurements at buses 3 and 4. The detector (5.13) is used to detect and remove the bad

data. As expected the detector (5.13) is unable to distinguish the bad data from the sudden

changes in the system because the bad data are injected into the correlated measurements

of adjacent buses 3 and 4. Hence, no measures are taken to remove these bad data. Conse-

quently, the performance of the estimator deteriorates an estimation error of as high as 0.64

p.u at k = 25.
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Figure 5.3: The voltage magnitude (top) and phase angle (bottom) at bus 3 vs time k with
bad data at k ≥ 20 and the detector in (5.13).
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Fig. 5.3 shows the voltage magnitude (top) and phase angle (bottom) at bus 3 with

bad data injected into the active power measurements at buses 3 and 4. As in Fig. 5.2 the

detector (5.13) fails to detect the bad data. As a result, the state estimation is inaccurate

at k ≥ 20.

time k
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Figure 5.4: The test statistic (5.16) vs time k with bad data at 20 ≤ k ≤ 25 and a sudden
load change at k = 60.

Fig. 5.4 illustrates how the proposed test statistic (5.16) changes over time. Different

scenarios are simulated to test our test statistic. During the time period 20 ≤ k ≤ 25 errors

(bad data) of −1.5 and 1 p.u are injected into the active power measurements at buses 3

and 4, respectively. During the time period k ≥ 60, a sudden change is triggered by cutting

the active power at bus 4 by 1 p.u. As depicted in the figure, the value of the test statistic

drastically increases during the bad data injection period, 20 ≤ k ≤ 25, to 106 while its

maximum value is only 387.5 during the period, k ≥ 60, of the sudden change. Therefore,

with a carefully selected threshold τ the proposed detector (5.16) can effectively distinguish

bad data from sudden changes with high accuracy.

Fig. 5.5 and Fig. 5.6 show the effectiveness of our proposed detector in removing bad

data. The proposed detector (5.16) with a threshold τ = 500 is used to detect the bad
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Figure 5.5: The real power at bus 4 vs time k with bad data at k ≥ 20 and the detector in
(5.16).

data while the detector (5.13) is used to identify the affected measurements to be replaced.

As for Fig. 5.2, the errors (bad data) of −1.5 and 1 p.u are injected into the active power

measurements at buses 3 and 4, respectively, during a time period 20 ≤ k ≤ 60. In Fig. 5.5,

the proposed detector detects and replaces the bad data in the active power measurement at

bus 4. As a result, the active power at bus 4 is accurately estimated with an estimation error

of as low as 0.03 p.u. Similarly, Fig. 5.6 shows the voltage magnitude (top) and phase angle

(bottom) at bus 3 with a high state estimation accuracy after the bad data are removed.
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Figure 5.6: The voltage magnitude (top) and phase angle (bottom) at bus 3 vs time k with
bad data at k ≥ 20 and the detector in (5.16).
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Figure 5.7: The real power at bus 4 vs time k with a load change at k = 60.

Fig. 5.7 and Fig. 5.8 show the performance of our proposed detector during a sudden

load change. The proposed detector (5.16) with a threshold τ = 500 is used. The sudden

load change condition is simulated by cutting the active power injection of bus 4 by 1

p.u. As shown in Fig. 5.7, the proposed detector does not detect the sudden load changes

and thus no measurements are replaced as we expected. As a result, the active power at

bus 4 is accurately estimated. It should be noted that the load change at bus 4 does not

abruptly change the active power. This change happens rather gradually during the time

period 60 ≤ k ≤ 85 and this allows the predictor to adapt to the new changes in the load

with gradually decreasing prediction error. For example, the predicted value for the active

power of bus 4 at time k = 60 is −10.23 p.u ( predicted at time k = 59 ) while the true

value is −10.06 p.u. which is equivalent to a 0.17 prediction error. However the prediction

error becomes as low as 0.025 at k = 85 when the predictor is fully adapted to the load

changes. Similarly, in Fig. 5.8 the voltage magnitude (top) and phase angle (bottom) at bus

3 are estimated with a high state estimation accuracy and an adaptive predictor with low

prediction error. This demonstrates the capability of a dynamic state estimator to adapt to

dynamic load changes.
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Figure 5.8: The voltage magnitude (top) and phase angle (bottom) at bus 3 vs time k with
a load change at k = 60.

5.7 Conclusion

The problem of detection and removal of false data injected into smart grids have been

studied in this chapter. By applying a hypothesis test on measurement innovation vector,

we have developed a detection algorithm that accurately detected and removed false data

before they were processed by the state estimator. Unlike conventional algorithms that rely

on measurement correlation to discriminate false data from sudden changes in the system,

the designed algorithm can detect any false data including those injected into correlated

measurements. Simulation results have shown that the proposed algorithm, detected and

removed attacks and thus enhanced the state estimation accuracy.
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5.8 Appendix

5.8.1 Proof of (5.8)

The point x, which minimizes (5.7) can be obtained by calculating the first derivative of

J(x) and setting it to zero. Define the first derivative of J(x) as

g(x) =
∂J (x)

∂x
= −∂hT(x)

∂x
R−1 [z− h(x)] +M−1 (x− x̃) . (5.17)

The minimum point x̂ of J(x) is calculated by solving

g(x̂) = 0. (5.18)

Given the non-linearity of (5.17), (5.18) is solved by iterative methods such as the Newton-

Raphson method [1].

The Taylor series expansion of g(x) for x = x(0) +∆x is

g(x) = g(x(0)) +
∂g(x)

∂x
|x=x(0) ∆x, (5.19)

where x(0) is the initial point and

∂g(x)

∂x
= g

′

(x) =
[

HT (x)R−1H(x) +M−1
]−1

. (5.20)

According to the Newton-Raphson method [1], by setting (5.19) to zero, the increment
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∆x is obtained as

∆x = −
[

g
′

(x(0))
]−1

g(x(0)). (5.21)

Thus

x = x(0) −Σ(0)g(x(0)), (5.22)

where

Σ(0) =
[

g
′

(x(0))
]−1

=
[

HT (x(0))R−1H(x(0)) +M−1
]−1

. (5.23)

By combining (5.17), (5.22), and (5.23) at the (i + 1)-th iteration with an initial point

x(i) = x(i+1) −∆x, the i+ 1-th point becomes

x(i+1) = x(i) +Σ(i){HT (x(i))R−1[z+ h(x(i))]

−M−1(x(i) − x̃)}, (5.24)

where H(x) = ∂h(x)
∂x

. And this completes the proof.
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5.8.2 Proof of (5.12)

Write the Taylor series expansion of h(xk+1) around a linearization point x̃k+1 as

h(xk+1) = h(x̃k+1) +H(x̃k+1)(xk+1 − x̃k+1), (5.25)

where H(x̃k+1) =
∂h(x)
∂x

|x=x̃k+1
.

The higher order terms of (5.25) are omitted by assumption that the difference (xk+1 −

x̃k+1) is very small.

Combining (5.1), (5.11), and (5.25) gives

vk+1 = H(x̃k+1)(xk+1 − x̃k+1) + ek+1. (5.26)

Following (5.26), the covariance Sk+1 is given by

Sk+1 = E
[

vk+1v
T
k+1 | xk = x̂k

]

= E
[

H(x̃k+1)∆x∆
T
x
HT (x̃k+1) | xk = x̂k

]

+ E
[

ek+1e
T
k+1

]

= H(x̃k+1)E
[

∆x∆
T
x
| xk = x̂k

]

HT (x̃k+1) +Rk+1

= H(x̃k+1)Mk+1H
T (x̃k+1) +Rk+1, (5.27)

where ∆x = xk+1 − x̃k+1. This completes our proof.
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5.8.3 Proof of Theorem (5.1)

Write the covariance matrix of the innovation vector as Sk+1 = UTDU, where D is a

diagonal matrix with the eigenvalues of Sk+1 on its main diagonal andU is the corresponding

orthonormal eigenvector matrix. The whitening transformation of the innovation vector vk+1

is v̄k+1 = Wk+1vk+1, where Wk+1 = D− 1
2U.

Following the Gaussian distribution of vk+1 given in (5.15), the hypothesis test on v̄k+1

is

H0 : v̄k+1 = Wk+1vk+1 ∼ N (0, Im)

H1 : v̄k+1 = Wk+1vk+1 ∼ N (µ, Im), (5.28)

where Im is a m×m identity matrix and µ = Wk+1a.

The LLR for the hypothesis test in (5.28) is

logL(v̄k+1, a) = log
Pr(v̄k+1|a,H1)

Pr(v̄k+1|H0)

H1
≷
H0

τ

= 2v̄T
k+1Wk+1a− aTWT

k+1Wk+1a
H1
≷
H0

τ. (5.29)

Since a is unknown, we can perform GLRT, where a can be estimated by maximizing

the LLR (5.29). Setting ∂
logL(v̄k+1,a)

∂a
= 0 yields

ā = W−1
k+1v̄k+1, (5.30)

where ā is the maximum likelihood (ML) estimate of a.
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Replacing a in (5.29) with ā in (5.30) results in

logL(v̄k+1, a) = v̄T
k+1v̄k+1

H1
≷
H0

τ

=

m
∑

i=1

v̄2
k+1(i)

H1
≷
H0

τ. (5.31)

This completes our proof.
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Chapter 6

Conclusions

This chapter briefly explains the main findings of this dissertation and the improvements

made over other research projects that focus on intrusion detection and state estimation in

power grids. To close the chapter, a list of some possible directions for the future research

is provided.

6.1 Contributions

This dissertation designed algorithms to enhance the robustness of power grid state estima-

tion system by improving its intrusion detection capabilities and reducing its state estimation

errors. The designs were presented in four main chapters, namely: optimum PMU placement

for power system state estimation, optimum PMU placement for bad data detection in power

systems, low latency detection of sparse false data injections in smart grids, and dynamic

state estimation and false data detection in power systems. The main findings of each of the

mentioned chapters are summarized as follows.

First, optimum PMU placement algorithms for power system state estimation were de-

signed. The objective of these algorithms was to find the best PMU locations that maximized

the state estimation accuracy. The design metric was the MSE (mean squared error) of the

state variables. Two low complexity algorithms were developed to balance the encountered

tradeoff between performance and complexity. The simulation results showed that the MSE
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performance of the designed low complexity algorithms approached that of the optimum but

less computationally efficient algorithm based on exhaustive search. All proposed algorithms

achieved significant gains over common algorithms designed based on the concept of critical

measurements.

Second, optimum PMU placement algorithms for malicious attack or intrusion detection

in power systems were designed. The objective of these algorithms was to find the best

PMU locations that maximize the probability of detecting the attacks. Similarly to the

preceding chapter, the algorithms tackled the encountered tradeoff between performance and

complexity. The simulation results showed that the developed algorithm can outperform the

common algorithms, based on the concept of critical measurements, in terms of the attack

detection probability.

Third, quickest detection of false data injected to smart grids was studied in this dis-

sertation. we developed a new OMP-CUSUM algorithm for low latency detection of false

data injections can efficiently identify the meters under attack, and minimize the detection

delay of bad data injections. furthermore, an optimum attack vector was developed to test

and validate the performance of the proposed algorithm. The simulation results indicated

that the designed OMP-CUSUM algorithm accurately and reliably detected intrusions with

short delays. Particularly, the designed OMP-CUSUM algorithm had considerably lower

complexities as compared to its conventional counterparts based on exhaustive search.

Fourth, dynamic state estimation and false data detection in power systems was studied

in this dissertation. A detector was designed to detect and remove false data in dynamic

systems, where false data can be confused with infrequent but normal sudden changes in

the systems. Unlike conventional algorithms, which cannot detect false data injected into
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correlated measurements, the designed detector accurately detected and removed attacks on

the system including those injected into correlated measurements.

6.2 Future Work

The presented low latency intrusion detection algorithms uses a linear static model for the

system measurements. Such a model assumes that the system is operating in the steady state

and states and power measurements are quasi-static over time. Therefore, the state-power

measurement relationship is approximately linear.

A nonlinear dynamic model such as that presented in Chapter 6 is practically more

realistic, albeit its complexity. For the future work, we intend to further extend our low

latency intrusion detection research to nonlinear dynamic models.
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