
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2018

Essays on Applications of Transportation Network Design and Essays on Applications of Transportation Network Design and

Optimization Optimization

Amirali Ghaharikermani
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Transportation

Engineering Commons

Citation Citation
Ghaharikermani, A. (2018). Essays on Applications of Transportation Network Design and Optimization.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2745

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2745?utm_source=scholarworks.uark.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

Essays on Applications of Transportation Network Design and Optimization

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Engineering

by

Amirali Ghaharikermani

Sharif University of Technology

Bachelor of Science in Industrial Engineering, 2010

Sharif University of Technology

Master of Science in Socio-Economic System Engineering, 2012

May 2018

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Edward Pohl, Ph.D.

Dissertation Director

________________________ ________________________

Manuel Rossetti, Ph.D. Chase Rainwater, Ph.D.

Committee Member Committee Member

Marc Scott, Ph.D.

Committee Member

Abstract

In this dissertation we address different transportation problems. The three main outcomes are:

designing a battery swap station network, studying gaps in Empty Container Management lit-

erature, designing a model with similar characteristics to the vehicle routing problem as well as

implementation scenario for it to be applied for a real-world case.

For the designed battery swap station, a model is developed for customer demand satisfaction that

permits construction of different types of BSS in the planning network. Our solution methodol-

ogy is a Tabu Search algorithm combined with a dynamic programming initialization. Numerous

tests showed that the proposed TS approach provides improvement compared to CPLEX both in

terms of time and solution quality.

The comprehensive literature review on Empty Container Management resulted in realizing inter-

modal environment as problem areas not being investigated much. Moreover, limited number of

research has targeted large problem instances. The outcome of this investigation was to develop

a demand forecasting model over the empty containers, a DSS for daily decision making, and a

mathematical model to optimize the problem. Case studies with large instance of even more than

500 nodes as well as customization of the approach for a major transportation company in the US

proves the applicability of the outcomes.

The final outcome of the presenting dissertation aims at implication of a novel process for TB di-

agnostic process. For this reason, a simulation model is developed that quantifies the impact of

different scenarios which are feasible options to be executed. However, our investigation resulted

that among different scenarios, TBOnDemand, in which patients request a vehicle to take their

sample at their location, provides significant improvements. We developed a model with similar

characteristics to vehicle routing problem with predetermined, but dynamic sample processing

capacity allocated to each vehicle. Results of the solutions gained by CPLEX an offline assign-

ment of vehicles to patients showed substantial reduction in serving time.

As stated above, the contribution of presenting dissertation includes but is not limited to intro-

ducing novel mathematical models, developing heuristic approaches, simulating uninvestigated

problem area with largescale samples, constructing DSS tool with customized case studies.

Acknowledgement

I would like to express appreciation to my advisor Dr. Edward Pohl, who convincingly con-

veyed a spirit of adventure regarding research and teaching. This dissertation would not have

been complete successfully without his guide. I would also like to thank my committee mem-

bers, Dr. Chase Rainwater, Dr. Manuel Rossetti, and Dr. Marc Scott, whose works and sugges-

tions demonstrated to me that concern for global problems supported by related literature and

technology, should always transcend academia. In addition, a thank you to our industry partner

who introduced actual restrictions and requirements that helped this research to fit into applicable

real-world cases. I thank the University of Arkansas faculty and staff who in one way or another

supported me during the academic years that resulted in this research. Last but not least, I appre-

ciate my family and friends who made my journey valuable and meaningful.

Dedication

I would like to dedicate my work to my family who continuously supported me for following my

dreams. They have always been the most encouraging members of my life.

Contents

List of Tables

List of Figures

1 Introduction 1

2 DESIGNING A TRANSPORTATION NETWORK FOR A UAV DELIVERY SERVICE 3

2.1 Introduction . 3

2.2 Literature Review . 4

2.3 Problem Description . 6

2.3.1 Assumptions . 8

2.3.2 Notations . 8

2.3.3 Mathematical Model . 10

2.3.4 Valid inequality . 11

2.4 Solution methodology . 11

2.4.1 Tabu Search . 12

2.4.1.1 Current Solution . 13

2.4.1.2 Operators . 13

2.4.1.3 Performance Measures . 13

2.4.1.4 Objective function evaluation 16

2.4.1.5 Initialization . 20

2.4.1.6 Tabu Search steps . 23

2.5 Computational Result . 24

2.5.1 Characteristics of Instances . 24

2.5.2 Results . 26

2.6 Conclusion and future study . 31

3 Empty Container Management in an intermodal Network 32

3.1 Intermodal Freight Networks . 33

3.1.1 Comparison to Over-the-Road Networks 34

3.1.2 Explanation of Typical Problems that Arise 35

3.1.3 Empty Container Management . 35

3.2 Empty Container Management Literature Review 36

3.2.1 Maritime Transportation . 36

3.2.2 Inland Transportation . 41

3.3 Minimum Cost Network Flow Problems . 47

3.4 Empty Container Management Model . 48

3.4.1 Specific Problem Instance . 48

3.4.2 Modeling Approach . 50

3.4.3 Data Analysis . 52

3.4.3.1 Simulation . 53

3.4.3.1.1 Scheduling a Move 53

3.4.3.1.2 Initializing a Move 54

3.4.3.1.3 Container Arrival . 55

3.4.3.2 Simulation Result . 57

3.4.3.2.1 Move Analysis . 57

3.4.3.2.2 Containers Analysis 58

3.4.4 Forecasting Model . 58

3.4.5 Decision Support System . 65

3.4.5.1 DSS Architecture . 66

3.4.6 Case Study . 69

3.4.6.1 Rail Movement Only . 69

3.4.6.2 Rail Movement and Truck Movement based on Zip Code 71

3.4.6.3 Rail Movement and Truck Movement with no zip codes 72

3.5 Future Work and Contribution . 74

4 Designing a Supply Chain Network for TB response in high-risk infected countries 76

4.1 Introduction . 76

4.2 Emergency Medical Service Literature review . 77

4.2.1 Deterministic models . 78

4.2.2 Stochastic models . 79

4.2.3 Dynamic models . 80

4.3 Simulation . 81

4.3.1 Proposed Scenarios . 81

4.3.1.1 Base Model . 81

4.3.1.2 POC device at TB Microscopy Center 82

4.3.1.3 POC device at clinical centers 83

4.3.1.4 TB OnDemand . 84

4.3.2 Simulation Model . 85

4.3.2.1 Base Model . 85

4.3.2.2 POC at Microscopy Center . 86

4.3.2.3 POC at Clinics . 87

4.3.2.4 TB On Demand . 88

4.3.3 Simulation Experiment . 88

4.3.3.1 Parameters . 89

4.3.4 Sensitivity Analysis of Simulation’s parameters 96

4.3.4.1 Warm up period analysis . 96

4.3.4.2 Number of Replications . 96

4.3.4.3 Incident Rate Analysis . 98

4.3.4.4 Infrastructure Type . 99

4.3.4.5 Doctor evaluation process . 99

4.3.4.6 Geographical Location . 100

4.3.4.7 Factorial Design . 100

4.3.5 TBOnDemand . 102

4.3.6 Comparison of Base Model Setting and TBOnDemand 105

4.3.7 Simulation Conclusion . 107

4.4 Mathematical Model . 108

4.4.1 Notation and Parameters . 108

4.4.2 Model . 109

4.5 Optimal vs Simulation . 111

4.6 Conclusion and Future Research . 113

5 Contribution and Conclusion 115

6 References 117

Appendix A Chapter 2 Programming Codes 125

A.1 Tabu Search Class . 125

A.2 Max Flow Solver Class . 131

A.3 Dynamic Programming Class . 133

A.4 Data Reader Class . 139

A.5 Demand Point Class . 147

A.6 BSS Station Class . 148

A.7 Solution Class . 151

A.8 CPLEX Solver Class . 161

Appendix B Chapter 3 Programming Codes 170

B.1 Network Class . 170

B.2 Node Class . 171

B.3 Customer/Ramp Class . 173

B.4 Forcaster Class . 174

B.5 Math Model Code . 176

B.6 Simulation . 179

B.6.1 Container Class . 179

B.6.2 Move Class . 180

B.6.3 Ramp Class . 184

B.6.4 Control Class . 185

Appendix C Chapter 4 Programming Codes 190

C.1 Care Center Class . 190

C.2 Clinic Class . 191

C.3 Microscopy Center Class . 194

C.4 Major Hospital Class . 196

C.5 Patient Class . 198

C.6 Vehicle Class . 200

C.7 Simulator Class . 202

List of Tables

1 Results of 10 Instances run with and without the valid inequality 12

2 Characteristics of instances . 25

3 BSS attributes . 26

4 Tabu search results for 300 instances . 27

5 Summary of results of 300 instances based on the region size. 28

6 Result of 15 Instances . 29

7 Classification of the literature of empty containers management modeling 46

8 System status since 2008 to 2015. 52

9 Sample Data for Simulation . 55

10 The forecasted value against the actual value and cost associated with SS calcula-

tion for a customer. 64

11 The incident rate and infrastructure type of each region 92

12 The geographical information of 10 regions. 94

13 ADP Values in the pilot study. 97

14 Speedś bounds for each region type in the simulation model 99

15 Different Doctor Visit bounds . 99

16 Parameters List for simulation model . 102

17 Setting description for simulation experiment . 106

18 Number of devices and Result of 25 replications for each setting 107

19 Result of CPLEX runs against simulation runs . 112

List of Figures

1 Small sample to show the difference of facility location and coverage problem

with proposed problem. 7

2 An example of different steps of calculating the lost sale for a network. 17

3 Transformation of each arc of fixed charge network design problem to our re-

search problem. 19

4 Example of how value function of dynamic programming works. 22

5 Example of an initial solution for Tabu Search . 23

6 Final Solution from Tabu Search for an instance 30

7 Number of Empty Containers Management by Publisher 43

8 Number of Empty Containers Management Research in each domains 44

9 Empty container flows- regional and local level (adapted from [87]) 45

10 Ramps Location throughout USA, Canada and Mexico 50

11 Flow Diagram for a move in the System. 56

12 Number of loaded and empty moves . 57

13 Status of containers . 58

14 15 Different Configurations for forecasting model of ”Customer A” 61

15 15 Different Configurations for forecasting model of ”Customer B” 62

16 Process Flow of developed DSS. 67

17 First window of DSS before entering/uploading any input file. 67

18 Window of DSS after entering/uploading any input file. 68

19 DSS Window while it is processing. 68

20 Location of 41 Ramps. 70

21 The comparison between the historical flow of empty containers between ramps

to optimal solution obtained from DSS. 71

22 Location of 41 Ramps and 110 center of zip codes. 72

23 Location of 41 Ramps and 480 customers. 73

24 Empty Container Demand Volume of each node on the system in 2014. 74

25 Current process of TB diagnostic . 82

26 Current process of TB diagnostic . 83

27 Current process of TB diagnostic . 84

28 Simulation Process for the base model . 86

29 Simulation process for POC at Microscopy Center 87

30 Simulation process for POC at Microscopy Center 87

31 Simulation process for TB On Demand . 88

32 Ghana’s map with its different regions (adapted from [38]) 89

33 Ghana’s map with its different regions (adapted from [38]) 91

34 Poverty Level of Ghana’s districts (adapted from [38]) 92

35 Microscopy centers locations in Ghana . 95

36 Approximation of Country Representation . 95

37 Welchś Plot based on 5 runs for Average Diagnostic Period (ADP) 97

38 An example of different facilities’ locations in the simulation model 100

39 Different Plots on the Residuals . 101

40 The Result of Minitab Software for full factorial design of 4 factors and 3 levels. . 101

41 The main effects plot for the 4 factors. 102

42 ADP Average over 5 replication for different number of vehicle and devices un-

der Nearest Vehicle Policy . 103

43 ADP Average over 5 replication for different number of vehicle and devices un-

der region based Vehicle Policy . 104

44 NDP Average over 5 replication for different number of vehicle and devices un-

der Nearest Vehicle Policy . 105

45 NDP Average over 5 replication for different number of vehicle and devices un-

der region based Vehicle Policy . 105

46 An example of TBOnDemand optimal solution vs traditional VRP 110

1 Introduction

This dissertation investigates and implements novel approaches in the field of transportation.

Each chapter deals with a different transportation concept which is briefly outlined in the follow-

ing.

In the first chapter, we investigate the use of Unmanned Aerial Vehicles (UAV) as new means of

transportation in last mile delivery. Recently, the use of UAVs for delivery services has become

a topic of interest and research for large commercial service providers such as Google and Ama-

zon. The delivery speed of UAVs provides such companies with significant advantage in their

market. Although utilizing the UAVs in product delivery has received tremendous excitement,

there are several issues that need to be resolved prior to real world implementation. The first issue

with using UAVs as a transportation mode is their limited flying range. Small UAVs are not able

to fly long distances due to their limited battery life. Flight range can be improved by using bat-

tery swapping stations in the planning horizon. UAVs can change their depleted batteries at these

stations and continue their flights. In our research, we attempt to develop a model to construct a

network of those stations in order to enable the UAVs to fly long distances and make deliveries to

different demand points. We developed a Tabu-Search heuristic to solve different instances.

In the second chapter, we investigate and develop a decision support system (DSS) for a major

transportation company in order to facilitate their tactical problem. Freight transportation net-

works are responsible for delivering filled containers from one point to another point. These are

profitable movements for transportation companies. When not every node in a network has the

same number of containers going into it as it has going out of it, surpluses develop at some nodes

while shortages occur at others. If companies do not address this behavior, most of the containers

eventually end up at a few nodes. Network operators must perform rebalancing moves in order

to allow the network to continue to operate. However, they are generating cost without any direct

revenue. In this chapter, a mathematical model for minimum cost flow is formulated in terms of

a company’s requirement. Also, a customer dependent forecasting model is developed to manage

1

the uncertainty of each customer’s demand.

The third chapter deals with logistic issues associated with supporting the diagnosis process of

Tuberculosis (TB) in developing countries. The increased chance of mortality for drug resistant

patients makes it important to diagnose TB infection in the early stage. Conventional diagnosis

method normally take significant amounts of time to prepare a result for a suitable treatment so-

lution. Infrastructure issues in the developing countries makes the supply chain process difficult.

A newly developed device, GeneXpert Omni, has recently made a significant decrease in TB di-

agnosis time. In this chapter, we aim to model the utilize of this device in a real-world health care

system. Our model will consider a fleet of devices for which the capacity, location, and routes

must be determined.

2

2 DESIGNING A TRANSPORTATION NETWORK FOR A UAV DELIVERY SERVICE

2.1 Introduction

Recently, the application of Unmanned Aerial Vehicles (UAVs) for delivery has become a topic

of increasing interest. Two well-known companies, Google and Amazon, are exploring this type

of delivery mechanism as part of their newest technology innovation strategy (Google X [2]

Amazon Prime Air [1]). Other applications of UAVs include disaster relief, border security, and

uses in agriculture. In undeveloped countries with road deficiencies or for developed countries

with congestion problems, UAVs are a qualified mechanism of transport. When a disaster oc-

curs, the roads might become unpassable and the UAVs can become an appropriate way to deliver

medicine and first aid packages.

Small UAVs can fly at low altitudes and can easily avoid obstacles at low altitudes. However,

they are limited in the size of the payloads they can carry and they can only fly for short distances

due to their battery capacity. For example, Micro UAVs can fly for only one hour and carrying a

maximum load of 5 kilograms [10]. Long operations in terms of distance or time will require a

system of UAVs and automated service stations to swap batteries making the UAVs capable of

traveling longer distances. These kinds of stations currently exist and they operate automatically

without the need for any labor [85].

In this chapter, the problem of locating these battery swap stations is studied. The remainder of

this paper is structured as follows: Section 2 reviews the existing literature. Latter sections de-

scribe the problem, discusses the details and present a mathematical model. In the fourth and fifth

sections, a heuristic algorithm is developed and the results are discussed. The chapter ends by

explaining the conclusions and contributions of the research.

3

2.2 Literature Review

Several research studies have begun to explore the design of the service stations for UAVs. Ji and

Xia [50] proposed an analytical method to minimize the number of identical automated guided

vehicles (AGVs) in order to guarantee the stability of the system (stability implies that the num-

ber of waiting orders at any time should be maintained at a stable level). Also, they used a simu-

lation model to solve the numerical instances. Godzdanker et al. [43] proposed a p-median prob-

lem to locate a fixed number of stations. They extended their work in [44] by studying the station

location problem while considering the UAV flight path. Suzuki et al. [85] developed a Petri net

to find the required number of UAVs and service stations to maintain a desired number of UAVs

in flight. Russell and Lamont [70] studied a Genetic Vehicle Representation (GVR), a recent ap-

proach to solve instances of the Vehicle Routing Problem (VRP) using genetic algorithms. VRP

focuses on finding the best route to serve multiple customers using a fleet of vehicles. Kim et al.

[55] developed a mixed integer linear program (MILP) model to handle the problem of schedul-

ing a system of UAVs with multiple shared bases in disparate geographic locations and they

solved the problem using a genetic algorithm. Kim and Morrison [54] developed a mixed inte-

ger linear program to describe the joint design and scheduling of the UAV problem. The authors

assumed returning flights, deterministic demand and multiple tasks conducted by a UAV. Song et

al. [77] extended the work in [54] by allowing for arbitrary UAV initial locations and fuel levels

over a finite horizon. They improved the heuristic method described in [54] and proposed a new

heuristic algorithm to solve the problem efficiently. Lee and Morrison [57] developed a method

to efficiently use UAVs for maritime search and rescue operations over a planning horizon. They

formulated a mixed integer linear program to search and rescue task planning considering lim-

ited UAV fuel capacity and changing the priority of the task search. They conducted numerical

examples based on CPLEX to show the performance of their model. Levy et al. [58] considered

the routing problem for multiple target locations, fuel stations (or depots) and UAVs such that

each target is visited at least once by a vehicle and the fuel constraint is satisfied. Two heuris-

tic methods were developed to find reasonable solutions for large problems and tested on a set

4

of large instances (up to 280 targets) obtained from a standard library using simulation. Sunder

et al. [84] considered routing problem for a general single Unmanned Aerial Vehicle with fuel

constraints and multiple depots and the UAV is allowed to refuel at any depot. They proposed a

mixed-integer linear model to find optimal solutions to the problem. An approximate algorithm

and fast heuristics were developed to solve the problems in a reasonable time. He et al. [46] op-

timized the location of public charging stations for electric vehicles on a network of roads with

the assumption of determining tour paths and recharging plans simultaneously by drivers. They

formulated the problem as a bi-level mathematical program to minimize the travel and recharg-

ing time by drivers and solved it using a genetic algorithm. Then, a numerical example consist-

ing of 24 nodes and 74 links (Sioux Fall network) is solved to demonstrate the performance of

the mathematical model and heuristic method to find the location and types of charging stations.

Cavadas et al. [13] proposed a mixed integer programming model to locate the electric vehicles

slow-charging stations. In this problem, drivers can stop at various locations but they can only

charge the EV at one of the charging stations. The travelers parking locations and their daily ac-

tivities are considered in this model because tour-based network equilibrium can trace the state-

of-charge of battery for each vehicle and stopping time at each destination. They applied their

model to a real problem in the city of Coimbra, with nine stations comparing the optimal solu-

tion generated by the multi-period model with the solutions obtained without using optimization.

Yang and Sun [92] determined the location of electric vehicles battery swap stations and vehicle

routing plans simultaneously by considering the limited driving range due to the battery. They

model their problem as an integer program and develop two heuristics to solve the large-scale

problems. They applied these methods on three sets of small, medium, and large instances (480).

The results revealed that the proposed heuristic methods can find good solutions in a reasonable

time in comparison with CPLEX. Gimenez-Gaydou et al. [39] proposed a new approach to locate

the battery charging stations for electric vehicles in urban areas. The approach is based on a novel

location-allocation model considering the charging requirements of electric vehicles and range

of charges. The proposed approach was applied on a set of random instances. By comparing the

5

results with the classic gradual maximal covering model, the authors found that the proposed ap-

proach had better performance when the locations of charging stations are known. Hiermann et

al. [47] introduced a new approach by combining two problems, Fleet Size Mix Vehicle Rout-

ing Problem with Time Windows (FSMFTW), and Electric Vehicle Routing Problem with Time

Windows and Recharging Stations (EVRPTW). They proposed a MIP model for their problem

and solved smaller instances using a branch-and-price method. To solve real size problems, they

developed a metaheuristic approach based on an Adaptive Large Neighborhood Search. The com-

putational results revealed that the proposed approach could solve small instances optimally and

perform well for larger problems.

2.3 Problem Description

The problem that is considered in this paper is constructing a network of battery swap stations

(BSS) to support UAV delivery routes. In order to enhance the flying range of the UAVs, BSS

should be located in the planning area such that a UAV can use them in order to satisfy the de-

mand at the delivery points. It is worth noting that the difference between classic problems in

the literature and the proposed research problem are in two areas. The first area of difference

is within the facility location problem (FLP). Our research question is partly a facility location

problem for a network of BSS. The classical FLP assumes independence among facility loca-

tions, meaning that there is no relationship between them. However, the nature of our problem

requires consideration of relationships between locations because each UAV depends on sev-

eral BSS in order to get to the demand location. In other word, a single BSS cannot support the

UAV trip independently. The closest class of FLP to our problem, that is studied in the litera-

ture is FLP problems with a backup facility for each customer [76] but still does not consider the

relationship between two facilities. The second part of our problem is a location routing prob-

lem (LRP). In this class of research, the main focus is to locate the facilities such that the cost of

routing between customers is minimized [7], [56]. Similar to FLP, this category of problem does

not study the routing between depots. It focuses on the vehicles starting their trips from a depot

6

and delivering products to customers on the route and finally going back to the depot. In our re-

search problem UAVs rely on a network of BSS (facilities not customers) to deliver a product to

a customer. As a result, unlike LRP that studies the location of one depot, our research problem

requires to determine the locations of multiple battery swap stations. The only known location

in the problem is the demand point. The same argument is true for the coverage problem (CP),

since it does not study the relationship between facilities nor the routing between them. The only

impact of two facilities on each other is whether their covered areas overlap or not. In figure 1,

the difference between FLP, CP and the proposed problems are illustrated. Let C1, C2 and C3 be

considered as potential locations, in addition let S and D be the supplier and a customer respec-

tively. The arcs around C1 and C3 are the coverage radius. A facility location formulation would

locate C3 in order to cover the customer and a coverage formulation would locate C1 and C3 to

cover most of the area. However, for the proposed problem, all three locations should be properly

located to get an UAV from the supplier to the customer.

S D

C1

C2

C3

Figure 1: Small sample to show the difference of facility location and coverage problem with
proposed problem.

Perhaps the most relevant literature is the electrical vehicle facility location problem. These stud-

ies mostly focus on the maximal covering problem such as [34]. The most related study is [90]

which investigates how to locate the recharging stations for a commercial company. There are

7

several key differences between our proposed research and theirs. First, we assume capacitated

BSS which means there is no queue at each station. This requires a UAV to not arrive at an occu-

pied BSS. Second, there is a limited number of batteries available at each station. Third, in our

approach we are accepting a lost sale by using a large penalty.

In this section we have reviewed the current literature and identified the key differences between

this paper and the most relevant ones.

2.3.1 Assumptions

This section explains the key assumptions that are considered for developing the mathematical

model. All UAVs are considered as identical and have a limited flying range which is assumed

to be constant. A UAV can only carry one unit of product during a trip from a supplier to a cus-

tomer. The return flight from a customer to a supplier is through the same route of the delivery

flight. Any point within inside the planning area can be a positional location for BSS due to the

small size of this device. It can be placed on the top of a building or in a vacant field. There can

be different BSS. The main difference between them, is the number of batteries that they can

hold. Different number of batteries directly impacts the construction and operational cost. Since

the number of available batteries at each station reduces as it serves the UAVs, a pre-determined

schedule is considered to replenish the available batteries at each BSS. This can be alternatively

done by a ground unit that delivers batteries to the stations or allocating the required amount of

time in order to recharge the used batteries. Each customer location has a stochastic demand with

a known probability function prior to the planning. A lost sale is acceptable but there is large cost

associated with it.

2.3.2 Notations

This section lists the notations used in the paper and their associated meaning.

• Sets

– S: Set of all suppliers

8

– D: Set of all demand points

– B: Set of all candidate locations for battery swap stations

– A: Set of all arcs between locations

– T : Set of all time slots. At the end of each time slot, all the batteries assume to be

available, charging or ground crew replenishing.

– K: Set of all types of battery swap stations

– Ω: Set of all scenarios

• Parameters

– dω
i : Demand size of demand point i in scenario ω

– bk: Number of batteries available at battery swap stations type k

– cl: Penalty cost for each lost sale

– ck
s : Cost of constructing a battery swap station type k

– ck
o: Operational cost of a battery swap station in one period type k

– pω : The probability of each scenario ω

• Decision Variables

– Xωt
i j Number of full travels between locations i and j at time t in scenario ω

– V ωt
i the total amount of satisfied demand for location i in period t in scenario ω

– Lωt
i Lost sale for demand point i in period t in scenario ω

– Zk
i 1 if we construct batteries swap station i. 0 Otherwise

– Okt
i 1 if battery swap station type k is functional in period t. 0 otherwise.

9

2.3.3 Mathematical Model

The mathematical model of the problem using the defined notations is presented below:

Min ∑
i∈B,k∈K

ck
s ∗Zk

i + ∑
i∈d,ω∈Ω

pω ∗ cl ∗Lω
i + ∑

i∈B,k∈K,t∈T
ck

o ∗Okt
i (1)

Subject to

∑
j∈FS(i)

Xωt
i j − ∑

j∈RS(i)
Xωt

ji +V ωt
i = 0, ∀i ∈ (S∪D∪B),∀t ∈ T,∀ω ∈Ω (2)

∑
i∈D

V ωt
i +∑

i∈S
V ωt

i = 0, ∀t ∈ T,∀ω ∈Ω (3)

Lω
i + ∑

t∈T
V ωt

i = dω
i , ∀i ∈ D,∀ω ∈Ω (4)

∑
j∈FS(i)

Xωt
i j ≤ ∑

k∈K
bk ∗Okt

i , ∀i ∈ B,∀t ∈ T,∀ω ∈Ω (5)

∑
k∈k

Zk
i ≤ 1, ∀i ∈ B (6)

∑
t∈T

Okt
i ≤ |T | ∗Zk

i , ∀i ∈ B,∀k ∈ K (7)

V ωt
i = 0, ∀i ∈ B,∀t ∈ T,∀ω ∈Ω (8)

Xωt
i j ≥ 0, Okt

i ,Z
k
i ∈ {0,1} ∀i ∈ S, t ∈ T,k ∈ K,∀ω ∈Ω (9)

The objective function (1) includes three parts; First is the construction cost function associated

with the selected locations. The second term represents the operational cost of the network while

the latter part is the penalty cost for the lost sales. Constraint set (2) are the flow balance con-

straints for suppliers, customers and BSS. Constraint set (3) assures that the amount of supplied

product is equal to the demanded product at each time slot and scenario. Constraint set (4) calcu-

lates the amount of lost sales over all time slots. Constraint set (5) assures that a UAV can only

use an operational BSS which has an available battery. Constraint set (6) allows the problem to

only construct one type of station at each location. Constraint set (7) assures that stations can

only be operational if we construct them and finally constraint set (8) does not allow the BSS to

10

become a demand location or supplier.

2.3.4 Valid inequality

In this section, we introduce a valid inequality in order to tighten the feasible region of the prob-

lem. This inequality is estimated to reduce the time needed to reach optimality by 35%. In order

to develop this inequality, the following theorem is defined

Proposition 1 Each selected BSS candidate in the optimal solution is adjacent to at least one

other selected BSS candidate or a supplier.

Proposition Assume the selected BSS candidate in the optimal solution is not adjacent to any

other selected BSS candidate or a supplier. Thus, UAV can access it only from demand locations.

Since, any flight out of the demand locations is an empty flight returning to depot by taking the

same delivery route, loaded UAVs will not be able to use the selected BSS candidate on their de-

livery route. Therefore, we can remove this BSS candidate from the solution and obtain a better

objective function value which is a contradiction to our assumption. By using this theorem we

can introduce a new valid inequality to the problem in order to tighten the feasible region.

∑
k∈K

Zk
i ≤ ∑

j∈RS(i),k∈K
Zk

j {i ∈ B|(i,s) /∈ A,s ∈ S} (10)

This constraint set is defined on the BSS candidates that are not adjacent to any supplier. In order

to evaluate the impact of the valid inequality, 10 random instances were generated and solved

optimally. Table 1 shows the number of processed nodes when CPLEX solves the instances with

the valid inequality and without it. Based on the random sample, the valid inequality on average

reduce the number of nodes processed by 11%.

2.4 Solution methodology

In this section, the solution methodology for the proposed model is discussed.

11

Table 1: Results of 10 Instances run with and without the valid inequality

of Nodes Processed
With Valid Inequality Without Valid Inequality Difference

1 37 37 0%
2 91 91 0%
3 457 573 20%
4 721 722 0%
5 120 120 0%
6 4366 5245 17%
7 16461 28032 41%
8 6017 6871 12%
9 14439 16902 15%

10 147167 148891 1%

2.4.1 Tabu Search

Tabu search was first introduced by Fred W. Glover [42] as a metaheuristic search method to

find a potential solution to an optimization problem and explore its neighbors in order to find an

improved solution. This approach uses a memory to enhance the quality of the neighborhood

search. In TS, a list is utilized to escape local optima and make the neighborhood search more

efficient. At each iteration, a set of neighbors for the current solution is generated and the best

neighbor in terms of objective function will be selected. If the selected neighbor does not violate

the tabu list moves, it will be used in the next iteration as the current solution. The tabu list con-

sists of all moves that we cannot make at each iteration. These moves are determined based on

previous iterations. The tabu list facilitates the process of escaping the local optima . Note that

in the selection process of TS, the best neighbor among the generated neighbors will selected

which means it is possible to move to an inferior solution compared to the current solution. For

our problem, the tabu list structure is straightforward however, tuning the tabu tenure and aspira-

tion criterion can significantly improve the results. Since, the element of our tabu list is BSS, an

acceptable ratio between the number of BSS and tabu tenure has to be determined. If the length

of tabu tenure’ is too long, it will avoid several candidates from entering as new solutions. On the

other hand, if it is short, the tabu list will not be effective in finding new areas for good solutions.

12

2.4.1.1 Current Solution

The structure of the solution for the proposed algorithm consists of three components. First,

which BSS candidates are selected to be constructed. Second, which types of BSS will be con-

structed at the selected location and the last one is at which time slot the stations are functioning.

In order to incorporate all three components in the solution, the following structure is developed.

Each solution consists of three arrays. The size of the first array is equal to the number of can-

didates (n), while the size of the second one is equal to the number of different types of stations

multiplied by number of candidates (k ∗ n). The last array is the number of time slots multiplied

by the number of candidates (t ∗n). To further clarify, assume we have two candidates, three time

slots, and two types of BSS. The following is an example of a solution:

1 0

1 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

In this solution, first row determines which candidate is selected. Second row indicates which

types of stations are selected to be constructed and finally last row shows in which time slots the

stations are functioning.

2.4.1.2 Operators

In this section, we introduce the operators that are used in the TS algorithm. In order to find an

immediate neighbor of a solution, there are two solution components that can be altered. First

is the type of BSS and second is either adding or removing a BSS based on some performance

measures. In the following section, we introduce the operators that we use in TS. First, we define

the performance measures for adding operators.

2.4.1.3 Performance Measures

Different performance measures can be considered in placing a station. First is the distance from

the demand locations. A populated area with multiple demand points, supplier locations and

13

other charging stations is a good choice since they are in a close proximity. The new station can

be used for delivering goods to demand points in its coverage area, or to other parts of the net-

work or even to improve the coverage area of other charging stations. This performance measure

can be defined as follows:

PMS
i = ∑

j∈FS(i)
|b j| (11)

Equation 11 is a summation of absolute values of all supplier and demand points accessible from

station i. We call it Performance Measure Station since it calculates the impact of the station on

the other stations.

The other impact of adding a new station is on improving the coverage of the entire network. The

selection process favors the stations that make the entire network more connected. For example,

if selecting station i connects two unconnected clusters of the network, it is more preferable than

selecting a station that solely covers some demand points and is disconnected from other parts

of the network. This performance measure seeks to incentivize the creation of a coherent and

well-connected network. Let set Ns the biggest connected component of a network before adding

station i and N′s be the biggest connected component of the network after adding station i. Thus,

we can define this performance measure as follows:

PMN
i = |N′s|− |Ns| (12)

Equation 12 calculates the number of stations connected to the network (|Ns| is the cardinality of

set Ns). We call it Network Performance Measure.

So far, we discussed the positive impacts of adding a new station to the network. The other aspect

is the cost of adding a new station.

Finally, we introduce performance measures for selecting new stations. The benefit-cost ratio

(BSR) is a reasonable representation thus we propose the Total Performance Measure of station i

14

is defined as follows:

PMT
i =

PMN
i ∗PMS

i
fi

(13)

Equation 13 is the BCR indicator for station i. Its numerator is the potential benefits of adding

station i (Connectivity and Coverage). Since PMN
i does not increase with a rapid slope, it is more

representative of the impact when is multiplied by PMS
i . The denominator is the required cost of

constructing the station (fi).

Given the aforementioned performance measures, we can define the following insertion opera-

tors:

• Performance Measure Insertion (PM Insertion):

This operator constructs the BSS candidate that has the highest value of PMS. If the BSS is

already constructed, the next station will be selected.

• Network Performance Insertion (PN Insertion):

The station with the highest value of PMN is selected to be constructed.

• Total Performance Insertion (TP Insertion):

The station with the highest PMT value will be inserted into the solution.

• Random Insertion:

A random station will be selected to be inserted into the solution.

The other types of operators are removal operators. These operators help to refine remove some

extra stations in order to reduce the cost of a solution. In other words, they evaluate to see if the

saving on the construction of a station is justifiable by the lost sale it might cause. Here is the list

of them:

• Smart Removal:

We calculate a utilization value for each constructed station. The utilization value is equal

to the number of used batteries divided by the total number of batteries at that station. In

15

other words, utilization of a station shows how many UAVs is served. Smart removal strat-

egy removes the station with the least utilization value.

• Random Removal:

A random station will be removed from the solution.

We also developed operators that combine both the insertion and removal strategies. The first op-

erator is the Swap Operator. Swap operator randomly selects a station (C1) to be removed from

the solution. Then among all stations that are reachable by the removed station C1, we randomly

select one station to be inserted to the solution. Similar to the swap operator is the Broading Op-

erator which chooses two stations to be inserted instead of one station. Thus, this operator will

improve the coverage area of the network.

So far all the operators are altering the set of selected stations. There are two other operators that

can change the type of the selected stations: Upgrade and Downgrade. This operators change

the type of a station to include more batteries (Upgrade) or less number of batteries (downgrade).

Finally, it is worth noting that a station is only operational when an UAV passes from it otherwise

the station will not be functioning.

2.4.1.4 Objective function evaluation

The objective function of the problem consists of three terms. The first and the third terms are

associated with the construction and operating costs. Since its unit cost parameters are determin-

istic they can be calculated based on the solution. On the other hand, the second term, which is

associated with the lost sale, cannot be calculated directly. The problem that arise for this term

is, we need to the maximum flow possible between all suppliers and demand points via the con-

structed network. The maximum flow problem solution will determine the number of demand

that the network is capable of satisfying. Therefore, lost sale can be calculated by deducting the

solution of maximum flow problem from total demand.

In order to develop a network, two key components of nodes and arcs should be defined. All the

locations including demand locations, suppliers and selected BSS are considered as nodes. In or-

16

der to calculate the maximum flow of the constructed network, We have to add a MainSupplier

(MS) node as well as MainDemand (MD) node. MS is connected to all of the suppliers, while all

the demand locations are connected to MD. With respect to the arcs, we define set A as the set of

all the arcs. The arcs have no capacity except for those that are connecting the demand locations

to MD. The capacity of those arcs are equal to the demand of the corresponding demand loca-

tions.

Using the described network, we need to solve a maximum flow problem via CPLEX for repeat-

edly. At each iteration, the maximum flow problem solved and using its solution, we can see

which demands are satisfied. Then, we update the demand. In other words, we will reduce the

capacity of those arcs that connect the demand locations and MD based on the amount of satis-

fied demand. Then, we repeat this procedure for the next time slot. We explain the procedure in

more detail for the following network:

S1

S2

C1

C2

C3

D1

D2

(a) The initial network

MS

S1

S2

C1S

C2S

C3S

C1E

C2E

C3E

D1

D2

MD

2

2

2

4

8

(b) The transformed network

MS

S1

S2

C1S

C2S

C3S

C1E

C2E

C3E

D1

D2

MD4

2

2

2

2

2

2

2

2

2

2

4

2

(c) First Iteration Solution

MS

S1

S2

C1S

C2S

C3S

C1E

C2E

C3E

D1

D2

MD4 2

2

2

2

2

2

4

(d) Second Iteration Solution

Figure 2: An example of different steps of calculating the lost sale for a network.

17

The network as shown Figure 2a, consist of two suppliers (S1, S2), three BSS (C1, C2, and C3)

and two customers (D1, D2). We are planning for two time slots and each BSS has 2 batteries in

each time slot. D1 and D2 demands are equal to 4, 8 respectively. Current structure of the net-

work do not allow us to solve the maximum flow problem. First, there is a capacity on the nodes

and second we do not have source-sink nodes. As a result, we need to transform the network to

the network in Figure 2b. There are three steps for the transformation. First, adding aforemen-

tioned nodes MD and MS. Then, we break each BSS node to two nodes (Start, End) connected

with an arc in order to eliminate the capacities on the node. The arc between the two nodes has

a capacity equal to the number of batteries at the BSS. Finally, we need to limit the capacity of

arcs going into MD from each demand point. This makes sure we do not deliver more than we

need to for each demand point. Blue arcs in figure 2b are the capacitated arcs. Now, we solve the

maximum flow problem for the first time slot. Figure 2c illustrate the flow on the transformed

network. In this solution, 4 and 2 unit of demand of D1 and D2 is satisfied. Therefore, we change

the capacity of (D1-D) arc to zero and (D2 - D) arc to 6. In the second iteration, 4 units delivered

to D2, 6 in total. So there is 2 unit of lost sale associated with D2. Note that the capacity of (D1-

D) is zero in second iteration since we satisfied all demands in the previous iteration.

Note that by executing this procedure on all the time slots, not only we will have the exact num-

ber of lost sales but also the stations that are operating within each time slot. Hence the exact

value of the objective function can be calculated.

We discuss the NP-hardness of the problem in the following. The capacitated fixed charge net-

work design problem (CFCNDP) is a well known NP-hard problem [53]. Here is the definition

for a general CFCNDP problem. A given network consist of (N,A). Each arc (ai j ∈ A) has fixed

charge (fi j), variable charge (ci j) and a capacity (ui j). The problem is to minimize the cost of

18

flow in the network to satisfy different demands. Here is the formulation of CFCNDP problem:

Z = min ∑
(i, j)∈A

ci jxi j + ∑
(i, j)∈A

fi jyi j (14)

Subject To:

∑
(i, j)∈A

xi j− ∑
(j,i)∈A

x ji =


d if i = O(k),

−d if i = D(k),

0 Otherwise

(15)

0≤ xi j ≤ ui jyi j, ∀(i, j) ∈ A (16)

yi j ∈ {0,1}, ∀(i, j) ∈ A (17)

O(K) represent the set of depots and D(K) represent set of demand location. We can reduce this

problem to our problem with the following transformation steps:

• Each Arc transforms to a BSS station (i j) with a construction cost of fi j, operational cost of

ci j and battery capacity of ui j.

• BSS Station (i j) is reachable from all adjacent nodes of node i and node j.

• All Nodes with a negative demand act as demand node and the ones with positive demand

as supplier.

• The Lost sale cost is equal to zero.

Here is an example of how each arc in CFCNDP problem reduce to a BSS in our research prob-

lem:

1 2
(c12, f12,u12)

(a) General Arc of CFCNDP

(c12, f12,u12)

1 BSS12 2

(b) Transformed Arc

Figure 3: Transformation of each arc of fixed charge network design problem to our research
problem.

19

Each new arc in figure 3b has unlimited capacity and zero cost associated with it. This transfor-

mation can happen in a O(|A|) which is polynomial. Now that we show that a general form of

CFCNDP can be reduce to our research problem, we can say if there is an algorithm that solves

our problem to the optimality which leads to solve the CFCNDP to optimality by using the re-

verse of the transformation (i.e. Each constructed BSS in the solution is equal to use of crosspond-

ing arc in CFCNDP). This proves that our problem is NP-Hard.

2.4.1.5 Initialization

In this step, a feasible solution is identified for the problem. Although we can start with no se-

lected station, this is not a initialization condition because, given the defined operators, the algo-

rithm is not capable of adding multiple number of stations in one iteration. Therefore no product

can be delivered to demand locations, which in turn increases the objective function. As a result,

the algorithm will find the initial solution (i.e., no stations) more attractive than adding a station

to the solution. This necessitates an initial solution that contains a network of BSS to cover all

the demand locations. In order to obtain such a network, first the farthest demand location to the

depot is selected. Then, using the dynamic programming (Markov decision process), a chain of

connected BSS’s is constructed to which the farthest demand location is connected. In the next

step, the farthest unconnected demand location to the network is selected and using same ap-

proach it will become connected. This will continue till we have a connected network that covers

all demand locations. In the following we explain the dynamic programming procedure that we

used to find a connected route between two nodes.

In order to find a route between two nodes (S, M), we start from one node (S) and using equations

18 and 19 to find the route with the highest value. RS is all demand locations that are reachable

from node S. R is the set of all demand locations covered by a node on the route. NS is the set

of nodes adjacent to Node S. vi is the demand value of demand location i and diS is distance be-

tween i and S.

20

VM(S,R) =

D, if S = M

FS(RS,R)+MaxS′∈NS
VM(S

′
,R∪RS), otherwise

(18)

where:

FS(RS,R) = ∑
i∈RS/R

vi + ∑
i∈RS∩R

0.5∗ vi + ∑
i∈R′S/R

vi/diS (19)

Equation 19 is the score function. This function consists of 3 terms. First term is equal to sum-

mation of all the demand nodes that are not covered by the route so far. Second term is a partial

value for the covered demand. The last term gives stations that are closer to uncovered demand

higher score. Equation 18 is the recursive function to find the best connected chain of station

from node S to node M.

Here, we explain the three terms in the value function in more detail. The first term (Covering

Demand Term) is making sure that among adjacent stations to S, a station gets selected that cov-

ers demand nodes that are not already covered by the network. This will make sure that a route

will be created that covers most of the demand nodes. The second term (Back-Up Station Term)

is trying to give credits to a station that is near a covered demand. Although these demand nodes

are already covered by other stations, this will assure that if the magnitude of demands are signif-

icant, the obtained network has several stations covering that area. The last term (Direction Term)

is trying to select a station that gets the route near demand nodes that are not reachable from the

network currently i.e. as the distance of station S gets closer to demand node i, the term vi/diS

gets larger.

21

M

S1

S2

S3

2

4

6

11

Figure 4: Example of how value function of dynamic programming works.

In Figure 4, the route is at node (M) (green node) and now it should select among S1 (red node)

and S2 (blue node). The dashed circle shows the coverage of each node. Orange rectangles are

demand points on the network. The demand node with a value of 2 is already covered by the net-

work. Now we will compare S1 and S2 in terms of the value function. The Covering Demand

Term for S2 is higher than S1 since it is covering a demand point with the magnitude of 6. On the

other hand, the back up station term for S2 is equal to zero but S1 is reaching the demand that is

already covered by M. Finally, S1 is closer to the demand node with the value of 11 in compar-

ison with S2. As a result, the value function returns S1 as the selected station for the next step.

The other obstacle of using dynamic programming to find an initial solution is the curse of di-

mensionality. This means if the two nodes that we are trying to find a route between are far from

each other, the computational time of calculating the best route between them grows exponen-

tially. In order to over come this issue, we break down routes longer than ten time units of flying

22

range of UAV. It means if the rectangular distance of two nodes are more than ten time units of

flying range of UAV, we will find several routes with the length of ten or less. The following

figure represents an example of initial solution for the TS using the dynamic programming. The

grid is the planning area and each intersection on it is represent a candidate location for a BSS.

Red circles on the left represent the location of the demand points while the number inside them

indicate the magnitude of demand. The black circles on the right is the output of dynamic pro-

gramming. Each circles show the location of BSS on the grid. The first digit inside the circle is

the ID of each BSS and the second one shows the type of BSS.

Figure 5: Example of an initial solution for Tabu Search

2.4.1.6 Tabu Search steps

A brief description of the developed tabu search is as follows:

• Step 1. Initialization

Using the aforementioned dynamic programming, the initial solution of the tabu search is

obtained.

23

• Step 2. Creating Neighborhood Solutions

Using the defined operators, we generate a list of solutions that are immediate neighbors of

the current solution. In order to calculate the objective function for each solution, we have

to solve the maximum flow problem for each time slot. This would determine the demand

magnitude that can be satisfied during each time slot.

• Step 3. Finding the Best Neighbors

A solution with the minimum objective function value which is not forbidden by the tabu

list is chosen to be the next solution. There are two types of tabu lists. The first one avoids

adding a recently removed station and the second one does not allow to remove a recently

added station. Note that if any of the solutions is better than what TS has identified so far,

the algorithm will choose that solution regardless of the tabu lists.

• Step 4. Update the tabu lists and Termination

The tabu lists are updated accordingly. If the algorithm reaches a predetermined number

of iterations, it will terminate and the best solution will be reported. Otherwise, we repeat

steps 2 and 3.

2.5 Computational Result

In this section, numerical tests are conducted for the proposed model. We first present the charac-

teristics of instances followed by a discussion on the computational results.

2.5.1 Characteristics of Instances

There are four different parameters for each instance. Area of coverage, number of demand loca-

tions, magnitude of demand at each location, and number of available time slots. The instances

are categorized in three different groups based on the number of demand points and BSS loca-

tions. Size of the region has a direct impact on the number of BSS candidates, while the number

of demand locations impact the complexity of the BSS network. The following table shows how

24

the instances are categorized.

Table 2: Characteristics of instances

Scenario Distribution

Low Demand Nodes (L) Uniform(5, 15)

High Demand Nodes (H) Uniform(15,20)

Small Region (S) Uniform(20,30)

Medium Region (M) Uniform(50,60)

Large Region (LA) Uniform(80,90)

Demand Size Uniform(1, 15)

For each category, the demand locations are generated based on a Uniform distribution function.

Each location is randomly placed throughout the region. Also, BSS candidates are generated us-

ing a grid created in the region. Each square inside the grid has a side length equal to UAV flying

distance. Each BSS Candidate is located at the intersection of the grid. In these instances four

types of BSS with different attributes are considered (Table 3). For these instances, only one de-

pot is considered and the penalty cost associated with the lost sale is 50,000. The reason for us-

ing a large lost sale value is to justify the high cost of constructing a path from a depot to a cus-

tomer.

In addition to the aforementioned parameters, we utilize the cost presented in table 3 in our in-

stances. There is limited information available about the price of constructing a new BSS. Based

on our research, the smallest station cost at least 20,000. As a result, we estimate the other cost

with respect to this number and assume the number of batteries is a driver for the cost. This as-

sumption means that more number of batteries needs a bigger station which will cost more. In

respect to operational cost, this is the cost to recharge the batteries and maintain the BSS. As a

result the bigger station will have a bigger operational cost since it needs to recharge more batter-

ies.

In total, 300 instances are generated and solved using the developed TS and CPLEX. There is

25

Table 3: BSS attributes

BSS Attributes
Construction Cost Operational Cost Number of Batteries

BSS Type
A $20000 $10 5
B $30000 $20 10
C $35000 $40 15
D $40000 $80 25

a 60 minute time limit for the CPLEX algorithm. This time limit allowed us to only solve 46%

of the instances optimally, which gives us enough instances to evaluate the performance of the

TS. We run the TS for the following number of iterations: 100, 200, 500 and 1000. ANOVA test

at 5% significance level shows there is a significant difference between the results of different

iterations. Tukey HSD shows that the results of 1000 iterations out performed others.

All of these approaches are coded in JAVA and executed on Intel Core-i7 3.6 Mhz, 16 GB RAM

under Windows operating system.

2.5.2 Results

The results are represented in Table 4. The first column define the instance characterstics. For

example LS1 is a low demand scenario in a small region with 1 time slot.

26

Table 4: Tabu search results for 300 instances

CPLEX Tabu Search

Time (s) # Optimal Gap Time (s) CPLEX Solution Gap Out Perform CPLEX

LS1 1.35 10 0% 0.11 6% 0

LS2 18.03 10 0% 3.03 2% 0

LS3 1093.72 7 2% 217.70 10% 0

LS4 798.72 8 0% 31.49 10% 0

LS5 2973.77 2 36% 182.34 10% 0

LM1 388.52 9 0% 29.64 18% 0

LM2 2966.88 2 5% 555.50 10% 2

LM3 3600.12 0 39% 622.01 16% 1

LM4 3600.31 0 67% 28.52 8% 1

LM5 3600.17 0 87% 602.92 9% 0

LLA1 3140.88 1 4% 35.14 11% 2

LLA2 3600.35 0 32% 224.52 10% 1

LLA3 3600.27 0 62% 90.66 9% 4

LLA4 3600.29 0 78% 451.99 12% 0

LLA5 3600.29 0 92% 86.40 10% 2

HS1 0.02 10 0% 0.00 10% 0

HS2 0.06 10 0% 0.01 1% 0

HS3 13.80 10 0% 2.42 9% 0

HS4 464.89 10 0% 73.49 10% 0

HS5 547.87 8 0% 83.62 3% 0

HM1 0.33 10 0% 0.06 8% 0

HM2 160.39 9 0% 131.20 10% 0

HM3 864.13 8 0% 97.39 22% 0

HM4 2731.11 2 1% 268.51 8% 1

HM5 3150.97 1 4% 622.98 8% 3

HLA1 221.31 9 0% 179.10 10% 0

HLA2 2650.51 3 2% 411.67 6% 0

HLA3 3346.79 0 6% 326.74 11% 2

HLA4 3600.32 0 19% 387.56 11% 1

HLA5 3600.27 0 22% 397.76 9% 4

27

It is apparent that by growing the complexity of the instances, the performance of TS with re-

gards to the objective function value improves. In the small instances in terms of region, TS can-

not outperform the CPLEX because it is trivial to solve the instances. However, in the medium

and large region, the number of instances in which TS outperforms the CPLEX increases. The

other benefits of using TS to solve the problem is the consistency of algorithm with the running

time. The average running time for TS is about three minutes, while CPLEX uses 32 minutes on

average. Table 5 summarize the result of 300 instances based on the region size.

Table 5: Summary of results of 300 instances based on the region size.

Small Medium Large

CPLEX Gap (%) 4% 20% 32%

TS and CPLEX Gap (%) 7% 12% 10%

of Instances TS out perform

CPLEX
0 8 16

of Optimal solutions by

CPLEX
85 41 13

Average CPLEX running time (s) 591.22 2106.29 3096.13

Average TS running time (s) 59.42 283.36 259.15

Figure 6 is an example of the final solution of TS for 4 time slots. The initial solution of this in-

stance is shown in Figure 5. Each black arc shows the flow between two BSS, while red arcs

show the delivery to customers. The numbers on each arc is the total number of UAV trips. In

each period, the depot will serve the nearest customer until one of the BSS run out of battery, in

which case it waits until the next period for making new deliveries. This pattern is shown in Fig-

ure 6.

In this part, we provide a detail analysis of the impact of dynamic programming as an initial solu-

tion of tabu search. Fifteen instances are created based on LS1, LM1, and LLA1 categories param-

eters explained in table 2.

28

Table 6: Result of 15 Instances

Objective Value Time (s)

DP TS CPLEX DP TS CPLEX

1 240480 150090 140080 1.3 27.9 604.2

2 200400 140120 140120 2.4 108.1 210.3

3 360720 220230 215200 1.3 79.6 395.1

4 360720 260300 240290 3.6 113.1 533.7

5 280560 255450 235330 4.0 107.8 188.2

6 320640 180100 170090 18.0 211.9 1456.6

7 280560 225300 220280 19.0 238.4 914.7

8 520960 360380 355360 19.3 387.5 776.1

9 480960 325300 315260 82.6 211.6 1781.3

10 480960 400540 320360 38.7 223.1 771.3

11 601200 440480 390300 15.2 330.7 447.1

12 761520 480320 435280 110.5 559.1 3600.2

13 921840 720820 605690 54.6 482.1 3600.0

14 841680 585500 510480 14.6 388.9 3600.0

15 721360 530650 495620 38.3 185.4 539.2

Table 6 shows that dynamic programming on average accounts for 9% of running time of TS.

Also, TS on average improves the result of dynamic programming initial solution by 29%. Still,

TS solution is on average for these 15 instances, 8% worse than CPLEX solution but 69% faster.

Lastly, we select 5 instances where the best solutions are obtained by CPLEX (C Instances) and

5 instances where CPLEX outperformed by TS (T S Instances) (Instances selected among 300

instances presented in table 4). These 10 instances are solved by CPLEX with an initial solution

provided by TS and Dynamic programming.

When instances are solved using TS as an initial solution, C Instances solution does not improve

29

and in one case leads to a worse solution and for T S Instances, 3 out of 5 instances is improved

compare to current best solution. The reduction in optimality gap is on average 3.18%. The dy-

namic programming initial solution does not impact the solution obtain by CPLEX in any cases.

Figure 6: Final Solution from Tabu Search for an instance

30

2.6 Conclusion and future study

In this paper, we focus on locating battery swap stations for UAVs that transport commodities

from suppliers to customers. The problem is designing a network of battery swap stations in the

planning area with limited number of batteries in order to enhance the flying range of UAVs. The

customer demands are assumed to be uncertain while a penalty cost is considered for lost sales.

We developed a scenario-based stochastic programming model to satisfy the customer demands

that allows constructing different types of BSS in the planning network.

To address the computational complexity of this problem, a Tabu Search heuristic is developed as

the solution methodology. The initial solution is generated using dynamic programming. Multi-

ple numerical tests are conducted using CPLEX and TS on a deterministic model (by consider-

ing only one scenario for demands) due to the complexity of the problem. The results show that,

compared with CPLEX, TS generates significant improvement in running time and quality of so-

lutions, especially for large problems.

As a future work, other solution approaches can be explored to solve the stochastic programming

model with a large number of scenarios. Adding the time dimension to the problem, a dynamic

model can be developed to construct battery swap stations over time.

31

3 Empty Container Management in an intermodal Network

In today’s world, the transportation of goods is an essential part of supply chains. One of the

mostly used way of transporting goods are third party logistics (3PL) transportation company.

These companies are responsible to move goods from one point such as plant, warehouse to an-

other point such as retailer. Usually company’s request a container from transportation company

and after loading it, the transportation company is responsible to move it to its the destination.

One of the cost elements for transportation companies is the cost of repositioning their contain-

ers. These companies make a profit by moving a loaded container for a customer, but to provide

them with a container, they need to reposition their assets accordingly. These moves are neces-

sary due to an imbalance in the demand and supply of customers. For example, transportation

companies move a loaded container through their network and deliver it to a customer. The cus-

tomer empties the container and no longer needs to move goods. It is the transportation com-

pany’s responsibility to move that container to a different location to satisfy another company’s

request. Companies remedy this cost inducing moves by utilizing different transportation modes

such as inland, rail and maritime. There are advantages and disadvantages regarding intermodal

moves. One advantage is that some modes are generally cheaper than the other ones. For exam-

ple moving a container on a train is usually cheaper than moving it by truck due to fuel efficiency

and labor. On the hand, the complexity of planning this move makes it harder for the companies

to benefit from them to the best of their ability. If they are able to successfully reduce the number

of empty moves, it will positively impact the operational cost to the company. In this chapter, we

investigate this problem in collaboration with a major transportation company in the US. We in-

vestigate the challenges of planning empty container moves in the intermodal setting and develop

a mathematical and forecasting model based on the needs of our collaborator.

32

3.1 Intermodal Freight Networks

Freight transportation networks deliver containers filled with goods from one point (its origin)

and deliver them to another point (its destination). Freight transportation networks can employ

any number of vehicles: large container-carrying ships, transcontinental railroads, barges, short-

haul railroads and tractor trailers can all be used to transport freight in containers. However,

due to a variety of factors (start-up cost, operational complexity, regulatory barriers to entry,

etc.), usually just one mode is employed by any single freight transportation provider. Recently

though, transportation providers have recognized the competitive advantage that can be achieved

by working together. For example, from a customers perspective, its easier to deal with a single

transportation entity rather than multiple entities, thereby making an integrated service opera-

tion more attractive to customers. Additionally, by pooling transport resources, transportation

providers are able to provide a higher level of service, over a larger geographic area, at a lower

cost.

The main issue being addressed in this research is that of network rebalancing. When not every

node in a network has the same number of containers going into it as it has going out of it, sur-

pluses develop at some nodes while shortages occur at others. If nothing were done to mitigate

this behavior, all of the containers would eventually accumulate at a few nodes in the network

and no more freight would be able to move. To prevent this from happening, network operators

must perform rebalancing moves of empty containers. Rebalancing moves reposition empty con-

tainers from where they accumulate to where they are needed. Rebalancing moves are beneficial

in that they allow the network to continue operating, but they are detrimental in that they cost

money and do not directly generate revenue. As such, transportation network operators would

like to make as few rebalancing moves as possible while still being able to move freight through-

out their network. This makes it a minimum cost network flow problem. This research will exam-

ine how to best achieve this goal in an intermodal transportation network. This chapter examines

the tactical planning problem of how to rebalance resources in an intermodal transportation net-

work at a minimum cost.

33

The intermodal freight networks considered in this research are those consisting of trucks and

trains. Intermodal freight networks exist to move their customers freight. Most customers usu-

ally have at least one empty container on site at all times. So, customers fill empty containers as

needed and when the customer has a shipment that is ready to be moved, the customer contacts

the intermodal freight coordinator and requests a container pickup. The intermodal freight coor-

dinator then sends a truck to the customers site to pick up the laden container. In an intermodal

regime, all containers are treated as full and no consolidation takes place. The truck then takes

the container from the customers site to a railway ramp. The railway ramp is where the trans-

port mode transfer occurs. A ramp is a rail depot where containers can be transferred from trucks

to trains and vice versa. The container may be put on a train immediately or it may wait in the

rail yard for a few days to be assigned to a train. When the train is ready, it departs the ramp and

heads to other ramps. Eventually, the container gets to a ramp where it is transfered from a train

onto another truck for delivery to the containers recipients site.

3.1.1 Comparison to Over-the-Road Networks

What is the benefit of intermodal freight transport? Intermodal freight transport is more logisti-

cally challenging than over-the-road transport, as it involves more parties and vehicle and sched-

ules, and it is also more labor intensive as there is significantly more container handling involved.

So why would anyone ever choose to use an intermodal carrier as opposed to a point-to-point

over-the-road carrier? The answer is because of a significant cost savings.

Moving freight by rail is significantly cheaper than moving freight by truck for two reasons:

moving freight by rail uses significantly less fuel than by moving freight by truck and there is

significantly less driver labor involved. One truck can haul one container or occasionally two;

whereas one train can haul two hundred containers. A train is significantly heavier than a truck,

but it is not one hundred times heavier than a truck. So there is less non-revenue generating weight

being moved on a train than on a truck. Alternatively, one can think of a train as being a more

cost-efficient source of thrust. Another reason for the fuel efficiency of trains is that they can

34

maintain a constant speed and do not have to speed up and slow down as much as trucks (al-

though trains do have to slow down or stop for other trains from time to time). Additionally,

long-haul trucking requires one or two drivers for each container being transported, whereas a

train requires a crew of operators while hauling possibly two hundred containers. This reduction

in driver labor more than offsets the increase in container handling.

The advantages that over-the-road networks have over intermodal network are speed and flexibil-

ity. With an over-the-road network, the primary delay is waiting for a container to be picked up at

the customers site. In an intermodal network, the container waits to be picked up at the customers

site, waits at the origin ramp, the destination ramp, and possibly intermediate train stations as

well. Additionally, the railroads in the United States west of the Mississippi River are not well-

connected north-south. This makes travel by rail infeasible or impractical.

3.1.2 Explanation of Typical Problems that Arise

There are many logistical challenges that arise in an intermodal transportation network. Drivers

have to be scheduled, trucks have to be maintained, containers have to be organized and allocated

onto an appropriate train at the rail yard, locomotives have to be schedule and maintained, etc.

All of these problems are rich and challenging in their own right. This chapter will only examine

a subset of the problems associated with resource management in intermodal freight transport:

empty container management, i.e., container stacking and repositioning. The reason these prob-

lems are challenging is due to the stochastic nature of supplies and demands of empty containers

and the variable travel times of containers through the network. These issues will be discussed

further in the next section.

3.1.3 Empty Container Management

Most realistic transportation networks are unbalanced, i.e., some nodes have more containers go-

ing into them than out of them and vice versa. In locations that have more containers going into

them than out of them, e.g. Florida and the west coast, empty containers build up and must ei-

35

ther be stored or else relocated to where they are needed. In locations that have more containers

departing than arriving, empty containers must be shipped in from elsewhere to satisfy demand.

Some degree of network balancing can be achieved through price signals, but market forces usu-

ally require some amount of empty container rebalancing to occur. Rebalancing flows of con-

tainers can either be small scale, i.e., consisting of just a few containers and cost nothing, or else

they can be large scale (a locomotive can pull 200) and incur a significant cost. Due to pricing

structures, it is unlikely that a rebalancing flow of 5-180 containers would ever occur. The empty

container management problem then becomes a matter of how to most cost-effectively rebalance

empty containers while satisfying customer demand, which is itself not known with certainty un-

til the period in which it occurs.

Seasonality adds another layer of complexity to the problem. There are peak demand seasons in

the spring and in the fall during which the network is unable to meet demand in a timely manner

in some locations. This requires the build up (pre- positioning) of empty container inventory in

high-demand locations in anticipation of meeting the surge in demand.

3.2 Empty Container Management Literature Review

The empty container management literature can be divided into two different domains: maritime

transportation and inland transportation. In this section, we summarize relevant literature, iden-

tify synergies and potential gaps associated with Empty container management. In the following,

we first review the existing literature for both maritime and inland transportation domains and

then identify how this research addresses the existing gaps in the literature.

3.2.1 Maritime Transportation

The use of containers for transporting goods between two continents has increased dramatically

in the past years and is a reason for significant interest in the empty container management stud-

ies. In 1995, Shen et al. [74] studied this problem as a planning problem. They developed a deci-

sion support system for a shipping company to tackle the empty container management problem.

36

The problem is modeled as a mixed integer program (MIP) and used to answer these strategic

questions: how to determine the number of leasing containers, how to reposition the containers

and how to preposition the containers (i.e., how to move them to another port when we expect

demand to appear there). Their DSS interface is developed in Excel with an AMPL solver. In

their paper, they do not solve any instances therefore no performance efficiency is reported. Che-

ung et al. [17] considers a similar problem but proposes a dynamic empty container allocation

model. They formulate the problem as a two-stage stochastic program and model it as a min-cost

network flow problem. They solve these models using a stochastic quasi-gradient method and

stochastic hybrid approximation procedures. In addition to these methods, hybrid solution tech-

niques are proposed as well. They have three instances to test their model, 8, 10, 15 ports over a

seven-day planning horizon.

Choong et al.[19] are the first to formulate the problem differently by studying the effect of the

planning horizon length for shipping companies. Unlike previous studies, they formulate the

problem to minimize the total cost of moving empty containers and illustrate the effect of plan-

ning horizon on empty moving cost. Container-on-barge operations within the Mississippi River

basin is studied in their research. The size of their problem is 3 ports and 12 customer locations

(along the river). They show that a more extended planning horizon provides shippers with the

opportunity to use slower, less expensive modes of transportation. Olivo et al. [63] model the

same problem with an hourly time-step but weekly planning horizon. They implement two inte-

ger programming (IP) formulations. A case study with 9 ports and 35 customers on the Mediter-

ranean basin network is proposed, and ports act as storage pools with some maritime links ex-

isting between them. CPLEX is used as the solver for their problem. Jula et al. [52] add a new

element of supporting retailers for each port. These retailers will help the port with its empty

containers needs. They formulate the problem as a deterministic mixed integer program and use

two-phase optimization to solve the problem. The first step transforms the model into a bipartite

transport network and then matches the demand and supply. They then use simulation to evaluate

their approach for Los Angeles and Long Beach ports using current data and projected data for a

37

20 year period. The projected data is obtained from a technical report submitted to the Gateway

Cities Council of Governments and not a specific forecasting model.

Shintani et al. [75] add routing and deploying ships as a new element to the model. They for-

mulate the problem as a two-stage problem. The first stage chooses the best set of demand ports

while the second stage determines the sequence that a ship should visit them. In addition to empty

containers, they considered the loaded moves as well. The objective function in this problem is

to maximize company profit, because of loaded moves, they may not necessarily minimize the

cost of empty ones. They use a genetic algorithm to solve the problem and utilize a data set from

companies in Japan. Their largest instance considers 20 ports.

Song et al. [79] take a new approach to the problem and consider the empty container reposition-

ing problem as a flow balancing problem. They consider worldwide shipping service routes in the

maritime environment for their model and develop a simple heuristic to minimize the reposition-

ing cost. The novel element of this study is that they use their approach for point-to-point rebal-

ancing versus whole system rebalancing. The point-to-point rebalancing is a better representation

of the real world because there is no central system for rebalancing moves. Their work includes

sensitivity analysis under deterministic and stochastic situations. They expand their work in [80]

to consider multiple service routes, multiple vessels, and multiple voyages with a shortest path

based integer program and a two-stage heuristic. They have tested their solution methodology on

two small instances and a realistic large scale network instance. The small instance consists of 5

ports and 3 shipping service routes, and the large-scale network has 24 ports and 5 service routes.

Chang et al. [14] study a different aspect of the problem. For a vessel, containers compete for a

limited space. Naturally, companies prefer to perform profitable loaded moves rather than incur

the cost associated with empty container moves. However, to continue their operations, they are

forced to do empty container moves. Chang studied the allocation of these moves with loaded

moves and its trade-off. A LP model is developed to solve the problem, as well as a decision-

assist tool for the intra-Asia route. They solved several instances from which the largest one in-

cludes 20 ports. Westarp et al. [89] expand Chang study to consider the effects of seasonality,

38

constant change in market change as well. They test this approach on random instances with five

ports.

Another approach to these types of problems is to use an inventory approach. We briefly summa-

rize the literature associated with an inventory approach. Li et al. [60] explore the problem from

the inventory perspective. They formulate the problem for a single port as a (U, D) allocation

inventory policy. (U, D) policy means empty containers are exported down to D when the num-

ber of empty containers exceeds D, and empty containers are imported up to U when the number

of empty containers falls below U. This policy is different from a traditional (s, S) policy in in-

ventory replenishment. The level of inventory is strictly non-increasing except in the event of a

replenishment. However, the inventory of empty containers at a port may fluctuate with the ar-

rival/departure of vessels. Li extends his study in [59] to minimize the average cost of such a pol-

icy and develop a heuristic model to find a (U, D) policy. Song et al. [78] extend Lis work and

add uncertainty elements to the model for a cyclic shipping route. They developed a three-phase

threshold policy. This policy estimates the total number of containers needed to be moved at the

current time, then allocates the empty containers to moves and assigns them to the vessels. They

evaluate their approach using simulation models against several heuristic policies.The studied

instance consists of 3 ports. They show that their approach is on average 20% better than other

approaches.

Song et al. [81] continue their effort to find the optimal policy for empty container repositioning

by formulating the problem as two-state Markov process. They assume the flow of containers as

continuous fluid flows and find an optimal policy’s threshold in closed-form in terms of param-

eters. Yun et al. [94] study the problem to find a traditional (s, S) policy for a port. In addition

to the traditional source of empty containers for a port (i.e. other ports), they consider another

source of empty containers as well. A leasing company with a zero lead time. Using Arena and

its optimization tool OptQuest, they have found near optimal (s, S) policies for their randomly

generated problems. In 2014, Zhang et al. [95] expanded Li’s model in [59] to include operating

cost, idle cost, back order cost, and importing/exporting cost. They developed a (U, D) policy us-

39

ing a polynomial-time algorithm to develop a policy for a multi-port problem, and evaluate the

performance of it using simulation. The largest instance consists of 49 ports and their solution.

It is worth mentioning another possible view point to this problem. Bernat et al. [71] study the

impacts of pollution and repair options. They develop a heuristic algorithm to find a near opti-

mal policy for inventory management system parameters. The total cost increased 10% with the

emission cost included.

There are several other studies that consider additional aspects of the problem. Imai et al. [49]

study the shipping network design in addition to the empty containers distribution. The problem

is formulated as a two-stage problem; locating the ports and creating the whole network and then

distributing the empty containers along that network. Their largest instance consists of 19 can-

didates. Di Francesco et al. [31] study the uncertainty in the model for several parameters which

cannot be forecasted using historical data such as demand of empty container. They claim the in

the demand is significant enough that leads to new observed value that cannot be predicted. They

formulate the problem as an integer programming multi-scenario optimization model.

Chang et al. [15] study the concept of interchangeability of containers. There are several types of

containers in terms of length that usually cannot be used in substitution. They study an approach

to substitute the containers in Los Angeles and Long Beach ports to reduce the cost of satisfying

demand. They develop a heuristic algorithm to obtain the near-optimal solution.Their compu-

tation results shows 4% to 41% cost reduction. Moon et al. [61] consider another type of con-

tainer in the study; foldable containers. These containers consume a smaller space and are easier

to transport. The downside of using these containers is that not all ports have the equipment to

fold/unfold them. They consider an environment where several ports have the capability of using

them and developed a hybrid genetic algorithm to solve their linear programming problem. The

largest instance consists of 25 ports.

Hariga et al. [45] investigate the coordination between ports and their customers and assume un-

certain return time for the customers when they receive a loaded container. They also consider

the capability of renting containers. Their research uses an exact solution procedure to find an op-

40

timal replenishment cycle and the required number of containers and trucks for the mixed integer

non-linear model. They solved the model for one vendor and cluster all of its customers to one

customer.

The literature on maritime transportation of empty containers is quite extensive. Researchers

have looked at different approaches such as mathematical modeling and inventory policies. There

are two aspects that we would like to point out. First, there is a limited number of DSS developed

in this literature. Second, the size of instances does not exceed 40 ports across current studies.

We believe this is due to the nature of the maritime shipping problem.

3.2.2 Inland Transportation

In this section, we summarize the literature on inland empty container management studies. De-

jax et al. [30] provide a literature review on empty vehicle movements, the lack of any models

for empty container management for inland transportation is pointed out. They note that the first

study on empty container management was completed by Florez [33] in 1986 where they model

the problem as a network optimization problem. Using network optimization techniques, Florez

explores the impact of a rolling horizon. To the best of our knowledge, the first attempt to address

the problem was made by Crainic et al. [23] in 1993. They model the problem using a variant

of a location-allocation problem. They develop a heuristic solution as a solution methodology

and evaluate their methodology on random sets of instances where the largest instance consists of

44 depots and 219 customers. They extend their study in [22] by developing a Tabu Search (TS)

approach to the problem. In this study, the goal was to plan for three elements. First, where to lo-

cate the depots in the network, then how customers should be assigned to the depots, and finally

how should containers move between depots. Note that in this study, movements of containers

between customers are not considered. They perform extensive computational testing on random

data sets where the largest instance was 44 depots and 220 customers. Bourbeau et al. [12] de-

velop parallelization strategies for a typical branch and bound algorithm for the same problem.

Eleven instances are generated to evaluate the new approach and the largest instance consists of

41

130 depots. Unlike Crainic in [22], they did not consider customers.

Bandeira et al. [8] develop a DSS for a multi-commodity variant of the problem. Loaded and

empty containers are the two commodities in their study. In their research, the depots’ locations

are input, and their objective is to minimize total transportation, storage, and handling costs.

They formulate the problem as a MIP and develop a two-stage heuristic to solve it. The first

stage of the heuristic, prioritizes the capability of the company to answer all demands. In the

next stage, they minimize the costs. The largest instance they study is eight customers and 216

containers. This is still a small instance by which to evaluate the performance of a DSS in this

industry. Glock et al. [41] studied a different aspect of the problem. They formulate the problem

to find the optimal number of returnable transport items (RTI) (e.g., container, pallet). Their in-

stances consist of one vendor and multiple retailers. A heuristic approach is developed based on

different parameters such as lead time and demand. They claim that the demand of each retailer

and the capability for unloading a container are crucial to determine the number of RTIs.

There are a limited number of studies that address the intermodal environment for this problem

and the resulting complexity. Dang et al. [26] study the repositioning of empty containers in the

port area with several depots. In their research, the sources of empty containers are three points:

maritime ports, inland depots, and leasing companies. They minimize the total cost of reposition-

ing empty containers via a simulation-based genetic algorithm. Their problem instance consists

of 4 depots. Jiele in [51] considers two types of containers and SteadieSeifi et al. in [82] con-

sider perishable commodities. For perishables, the empty container management is more impor-

tant because of the small lead time for an empty container provision. Their network consists of

maritime moves and rail transport. Their MIP model is solved using an adaptive large neighbor-

hood search. The largest instance in their study consist of only 20 hubs. Xie et al. in [91] point

out an essential aspect of the problem. Authors advise that in the real world several companies

should be in coordination with each other to perform the empty container management. Unlike

most of the studies which assume a central planner, their study focuses on the decentralized in-

termodal environment which consists of a railroad and a maritime company. They approach the

42

problem as an inventory sharing game. Their designed solution is a buy-back contract to develop

coordination between the two companies.

To sum up, we reviewed 32 studies related to container management. The most commonly used

models for this class of problem are mixed integer programs (in the deterministic case) and two-

stage stochastic programs (in the stochastic case). The mixed integer program approach uses bi-

nary variables to represent the decision of which storage facilities to use while the continuous

variables are used to represent network flows ([24], [74], [19], [63]). In the two-stage stochastic

programs, the first stage typically decides which set of facilities to use based on expected network

flows, while the second stage evaluates network realizations [17], [75], [8]. Many of the models

are executed on a rolling horizon basis, i.e., planning is updated every period based on the newly

available information. Numerous papers noted the importance of end-of-horizon effects on their

models. Figure 7 shows the journal sources and their corresponding number of articles for the 32

papers.

Figure 7: Number of Empty Containers Management by Publisher

Fig 8 shows the number of papers in the maritime versus inland transport domains.

43

Figure 8: Number of Empty Containers Management Research in each domains

To conclude, we focus on three studies that pointed out the importance of our research. In the

2017 literature review conducted by Glock [40], they pointed out the lack of applicability of de-

cision support systems for use on real cases in Returnable Transport Items (RTI). Therefore, he

suggests that future DSS studies should be industry specific to improve the applicability of them.

Theofanis et al. [87] review the major factors affecting the empty container management problem

in different levels. In their detailed history of containerization since the 1970s, they have iden-

tified three different levels for the problem, global, interregional and regional-local levels. The

global level is the maritime movement which is not the focus of our study. However, interregional

and regional-local levels include the intermodal moves. The main decisions for the land environ-

ment (interregional and regional-local) are shown in Fig 9. As depicted, the interregional level,

forecast, repositioning choice and routing are three out of four main decisions that we try to ad-

dress in our modeling effort.

Finally, in 2017, Sze et al. [86] state that the containerization of inland transportation is more

complex than maritime. These complexities arise due to several uncertainties such as customer’s

unloading time. As they state, limited research had been done on empty container management

for inland transportation. Sze et al. [86] develop a simple heuristic to address the problem for ran-

dom instances as big as eight depots and 15 customers. Significantly smaller than what is needed

44

Figure 9: Empty container flows- regional and local level (adapted from [87])

by industry. We summarize the studies on empty containers management in table 7.

The contribution of our research is supported by these three studies. In our research, we address

three of the known deficiencies in empty container management modeling. First, developing a

new DSS targeted for a major transportation companies in the trucking industry by considering

its specific characteristics. Next, developing a model to integrate the decision making process for

three out of four major factors of the domain, forecasting, repositioning choice, and routing the

containers. Finally, we solve a large scale representative instance which is orders of magnitude

larger than those formulated in the literature.

45

Table 7: Classification of the literature of empty containers management modeling

Domain Model Type Solution Size

Florez [33] Inland MIP OR - 10

Dejax et al. [30] Inland - - - -

Crainic et al. [23] Inland MIP OR Heuristic 44

Crainic et al. [22] Inland MIP OR Tabu Search 44

Shen et al. [74] Maritime MIP OR Exact N/A

Jiele [51] Maritime LP OR

Bourbeau et al. [12] Inland MIP OR Branch/Bound 130

Choong et al. [19] Maritime Planning Horizon OR Exact 12

Li et al. [60] Maritime (U, D) Inventory Heuristic 4

Olivo et al. [63] Maritime IP OR Exact 12

Jula et al. [52] Maritime MIP OR Exact 20

Shintani et al. [75] Maritime Stochastic OR Heuristic 15

Shintani et al. [75] Maritime Two Stage OR Genetic 20

Li et al. [59] Maritime (U, D) Inventory Heuristic 3

Chang et al. [15] Maritime LP OR Heuristic 20

Song et al. [78] Maritime Three Phase Policy Inventory Policy 3

Imai et al. [49] Maritime Two Stage OR Heuristic 19

Di Francesco et al. [31] Maritime Multi Scenario OR Heuristic 5

Bandeira et al. [8] Inland MIP OR Heuristic 8

Song et al. [81] Maritime Markov Process Inventory Policy 1

Song et al. [79] Maritime Deterministic/Stochastic OR Heuristic N/A

Yun et al. [94] Maritime Policy Inventory Exact 1

Song et al. [80] Maritime Deterministic/Stochastic OR Two-Stage Heuristic 24

Dang et al. [26] Inland/Maritime (U, D) Inventory Genetic 4

Zhang et al. [95] Maritime (U, D) Inventory Heuristic 49

Westarp et al. [89] Maritime LP OR Exact 5

Bernat et al. [71] Maritime Policy Inventory Heuristic 1

Moon et al. [61] Maritime LP OR Genetic 25

Hariga et al. [45] Maritime MIP OR Exact 1

SteadieSeifi et al. [82] Inland/Maritime MIP OR ALNS 20

Xie et al. [91] Inland/Maritime Policy Inventory Policy 1

Glock [40] Inland N/A N/A N/A -

46

3.3 Minimum Cost Network Flow Problems

This chapter considers a stochastic minimum cost network flow problem in the context of an in-

termodal freight transportation system. The first section describes the minimum cost network

flow problem generally and the next section discusses the specific application dealt with in this

work. The simplest version of the minimum cost network flow problem is to find the cheapest set

of feasible flows through a network that satisfy all demands. Given a directed graph G = (V,A)

where V is a set of nodes and A is a set of arcs, the network flow problem is defined mathemati-

cally as [68]

min ∑
(i, j)∈A

ci j ∗Xi j, (20)

s.t.

∑
(i,k)∈A

Xik− ∑
(k, j)∈A

Xk j = bk ∀k ∈V (21)

0≤ Xi j ≤ ui j ∀(i, j) ∈ A (22)

where i, j ∈ V and (i, j) ∈ A. xi j is the flow along arc (i, j) and ci j is the cost per unit flow along

arc (i, j). ui j is the maximum capacity of flow along arc (i, j) and bk is the demand at node k ∈V .

When bk is positive, node k has a net demand and when bk is negative, node k has a net supply.

The objective function (20) is to minimize the sum of the cost of all flows through the network.

Constraints (21) are flow balance constraints, ensuring that the flow into a node is equal to the

flow out of a node and Constraints (22) ensure that arc capacities are respected and that there

are no negative flows. In this simplest form, there is no dependency on time and all costs, de-

mands and capacities are assumed to be known. This is a deterministic linear program and it can

be solved very easily by any commercial solver, using either the simplex method or an interior

point algorithm.

Unfortunately, most real-world problems are not this straight forward. To begin with, the assump-

tion that all costs, demands and capacities are known may not be valid and frequently it is not.

47

Additionally, most real-world planning problems take place over periods of time (called planning

horizons), which means that the linear program presented above must be modified to be indexed

over time. Finally, in any sort of physical distribution environment, flows will not be instanta-

neous which means that there will be a lead time between when a flow begins and when it ends.

This lead time too is frequently not known with certainty. All these sources of uncertainty make

it necessary to consider the use of stochastic optimization methods, which will be discussed at the

end of this chapter.

3.4 Empty Container Management Model

This chapter deals with the planning problem of repositioning containers in an inter-modal freight

network such that demand is satisfied. We want to find the minimum cost solution to such a prob-

lem. The following sections of this chapter describe the problem and the modeling approach, the

model validation process, and an analysis of the results. This section deals with the tactical plan-

ning problem.

3.4.1 Specific Problem Instance

This section will describe the network being studied, its operational characteristics and some

baseline statistics to give the reader an idea of the scale involved. In the transportation network

considered in this research, a rail operator has partnered with a trucking company to form an

inter-modal transportation network, i.e., more than one mode of transportation is used within

the same network. In this network, when a customer needs a container picked up, the customer

calls the trucking company which then has a driver go to the customers site and pick up the con-

tainer. The driver then takes the container to a railyard (or ramp) where the container is loaded

onto a train. Once the train is satisfactorily loaded, it travels to another ramp where the container

is then unloaded and delivered by a truck to its destination. [It is worth noting that in this regime,

even though most of the distance the container travels is by rail, most of the cost incurred is by

the truck. Due to economies of a scale (a train can carry 200 cars) and overall fuel efficiency, it is

48

much cheaper to use rail to ship containers whenever possible.] In this scenario the trucking com-

pany benefits by being able to provide a cost benefit compared with its competitors and the rail

operator benefits from higher freight volumes (more business). If the network can be efficiently

managed and coordinated, both transportation operators can mutually benefit from the partner-

ship. There are, however, a few logistical challenges involved in operating such a network. The

focus of this research is on that of empty container management.

The representative network under consideration consists of rail links and road links throughout

North America. Rail links are typically cheaper than road links, but road links are economic for

relatively short distances (i.e., less than 100 miles) and also have the advantage of being dense in

the network (i.e., freight can go anywhere by road, but can only go where there are tracks by rail).

The network we studied, mainly operates in the United States, but also provides some service to

Canada and Mexico. The rail network studied consists of 153 ramps. Figure 10 on page 50 shows

the location of these ramps. Since 2008, the network transported 40,316,447 containers. In order

to serve those 40.3 million revenue generating loads, they had to move 651,539 empty containers.

On average each empty moves costs $ 130 for the company. Due to the high cost of attracting

and retaining drivers, rebalancing moves are only done via rail. The cost of hiring new drivers

prevents the use of road rebalancing movements, even though it may be more cost effective over

relatively small distances, e.g. the northeast. Any reduction in the number of required rebalancing

moves would decrease operating expenses and would result in more profit for the partnership.

That is the goal of this research.

Rebalancing moves (for the network under consideration) are currently centrally planned by a

small team (3 or 4 people) at the network operators corporate headquarters. The central planning

team faces multiple challenges:

• Stochastic demand: The biggest challenge facing central planners is that 45% of the com-

panys demand is same day, i.e., a customer calls and wants a container picked up that same

day. Such high variability necessitates high inventory level, i.e., having many empty con-

tainers on hand.

49

Figure 10: Ramps Location throughout USA, Canada and Mexico

• Stochastic travel time: This is less of a problem, but it still needs mentioning. While the

average travel time for individual rail lanes is well known, any particular shipping time

may vary by a few days.

3.4.2 Modeling Approach

Consider an inter-modal transportation network. The sets, costs, parameters and decision vari-

ables are described below. Note that Location means either a customer or a ramp.

• Sets

– Customers (C): Set contains all customers. (Represented by n).

– Ramps (R): Set contains all ramps. (Represented by k,q).

– Location (L): Union of Customers set and Ramps set. (Represented by i, j)

50

– Time Line (T): set of time slots. (Represented by t)

• Parameters

– CT
i j: Cost of driving between a location i and a location j.

– CR
kq: Cost of rail movement between the ramp k and ramp q.

– CI: Idle cost associated with an empty container stored at a location.

– CN : Purchase cost of each new container.

– St
i: Supply of empty container at location i at time slot t.

– Dt
i: Demand of empty container at location i at time slot t.

– Capi: Yard capacity of location i.

• Decision Variables

– Y t
i j: denotes the number of truck movements between location i and location j.

– X t
kq: denotes the number of rail movements between ramp k and ramp q.

– It
i : denotes the number of containers stored at location i at time slot t.

– Zt
q: denotes the number of new containers delivered at ramp q at time slot t.

The mathematical model for our problem is given as

min ∑
t∈T

∑
i, j∈L

CT
i j ∗Y t

i j + ∑
t∈T

∑
k,q∈R

CR
kq ∗X t

kq + ∑
t∈T

∑
i∈L

(CI ∗ It
i +CN ∗Zt

i), (23)

s.t.

∑
i∈L

Y t
iq + ∑

k∈R
X t−1

kq + It−1
q +St

q = ∑
i∈L

Y t
qi + ∑

k∈R
X t

qk + It
q +Dt

q +Zt
q, ∀q ∈ R∀t ∈ T, (24)

∑
i∈L

Y t
in + It−1

n +St
n = ∑

i∈L
Y t

ni + It
n +Dt

n, ∀n ∈C∀t ∈ T, (25)

It
i ≤Capi, ∀i ∈ L,∀t ∈ T, (26)

X t
qk ≤ 200, ∀q,k ∈ R,∀t ∈ T. (27)

51

Table 8: System status since 2008 to 2015.

Year Customers Ramp Total Moves Load Empty
2008 20680 86 824815 824815 0
2009 23971 100 977028 898709 78319
2010 25612 109 1150675 1044181 106494
2011 31056 114 1587055 1192158 29919
2012 36901 121 1824522 1371531 33988
2013 39799 126 1944778 1547965 39090
2014 43310 124 8981681 1665534 158988
2015 40969 125 10936469 1740037 204741

The objective function equation (23) consists of three main elements. The first term is the trans-

portation cost via road. The second term is the cost of rail movements. The last term is the cost of

idle containers and new containers. The constraint set (24) is the flow balance for each ramp. The

inflow consists of incoming road and truck movements, inventory from previous time slots and

empty containers supplied at the ramp. The out flow is the outgoing road and truck movements,

inventory at the end of the time slot and the demand required at the ramp. Constraint set (25) is

the same as the flow balance at a ramp just without the rail movement terms. Constraint set (26)

assures that the number of containers stored at a location does not exceed its capacity. Constraint

set (27) limits the number of containers on the rail movement to 200. The capacity of the rail line

is determine by the system experts.

3.4.3 Data Analysis

The company has provided us with a representative sample data set of 11 millions rows for the

period from 2008 to 2015. Each row of the data provides us with the shipper and receiver code,

origin and destination ramp, revenue, pick up and delivery time, time stamp at each ramp and

type of moves (Empty or Loaded). Table 4 presents a summary of the data. Note that the data for

the empty moves in 2008 is missing and 2011 to 2013 is partially missing as well.

In order to get an initial starting point for our model, the location of each container in the system

needs to be known. Therefore, a simulation model is developed using similar data to establish a

52

representation of the current system status and behavior.

3.4.3.1 Simulation

In order to obtain the current state of the system, a monte-carlo simulation has been developed. In

this section, the detail of the simulation model used is explained.

Each row of the provided data represented a move. A ”Move” is defined to be the transport of

a container (Loaded/Empty) between two locations (Customer/Ramp). Each row has several

columns such as ”pick up date”, ”time stamp at origin stamp”, ”time stamp at destination ramp”

and ”delivery date”. Using this information, three events can be defined. Scheduling a Move,

Initializing a move and Arrival of a container. In the mathematical model, truck delivery is con-

sidered to be within the same day of the container arriving at the ramp. As a result, the time that

the container arrives at the origin ramp is assumed to be the date that the move started (In Gate

time stamp) and the date that the container leaves the destination ramp is considered the delivery

date (Out Gate). Each move is flagged as loaded or not as a result of when a move is concluded

and we assume the container will be available for use after seven days. This timeline lets the cus-

tomer unload their products.

3.4.3.1.1 Scheduling a Move

Scheduling a move is the act of planning an initialization of a move. The logic of this event is

presented as follow:

53

Algorithm 1 Logic of Scheduling
if In Gate Available then

Start at In Gate

else

if Pick up date available then

Start at pick up date

else

Schedule arrival at Out gate

end if

end if

In this psudo code, we assume if the In Gate data is available we schedule the move to be started

at that time stamp if not, we check to see if the data for truck pick up (Pick up) is available or

not. If we have a pick up date we can schedule the move at that time. In the cases where we have

no information about when the move is initiated we only schedule the arrival of the container at

the destination. Note that, all rows have an Out Gate date.

3.4.3.1.2 Initializing a Move

Initializing a move is the act of picking up a container from a location and starting its move through

the system. The logic of this event is presented as follow:

Algorithm 2 Starting a move logic
if Container is Free at Ramp then

Use that container and schedule arrival

else

Create a new container and schedule arrival

end if

Read a new Line and schedule a move

The logic consist of evaluating the status of containers at the pick up location. Since we do not

54

have any information about the state of the system, all locations are considered empty. With each

move, if the system cannot find a free and idle container it will assume that there is a container at

that location and create a new container to start a move. Upon finding the container, the system

will schedule arrival using the Out Gate time stamp.

3.4.3.1.3 Container Arrival

The last step of each move is the arrival of the container at the destination site. When a move

concludes at a destination site based on the type of the move (load/empty) the container will be-

come available immediatly (empty move) or 7 days later (loaded move)

Algorithm 3 Ending a move logic
if Empty Move then

Set the container free

else

Schedule a release after 7 day

end if

In order to better illustrate the process of simulation, we will walk through a couple of sample

data rows presented in table 9.

Table 9: Sample Data for Simulation

In Gate (day) Out Gate (day) Status From To

1 1 5 L 1 2

2 2 5 E 1 2

3 5 9 E 2 1

The Simulation first reads the first row, it will schedule a move at the ingate time stamp (Day 1).

The only event in the model currently is the start move that is created by the first row of data.

The model is advanced to day 1, the move is initiated from Ramp # 1 to Ramp #2. Since ramp #1

does not contain any container, we create a new container and schedule its arrival at ramp #2 at

55

day 5. Now, we read the second line of the data and schedule a move for day 2. Now, the model

advances to second day and schedules an empty move between ramp #1 and #2. then reads the

third line and schedules a move from ramp #2 to ramp#1. The Model now advances to day 5,

first we have two arrival and one start move. The model will always process the arrivals and then

schedule the moves because it might be able to use the containers without creating a new one.

The first arrival is the container from the first line of the data which is a loaded move. The sys-

tem schedules the container availability for 7-days later which is day 12. The second arrival is the

container from the second line. This is an empty move so the container becomes available im-

mediately. Now it is time to schedule the move associated with third line of data. Since we have

a container available at ramp # 2, we use that container to send to ramp #1. Figure 11 shows the

flow diagram for one move in the system.

Figure 11: Flow Diagram for a move in the System.

56

In the next section we will present a summary of results obtained via the simulation model.

3.4.3.2 Simulation Result

In this section we analyze the results that we obtained from the simulation to give us some better

insight to the system’s performance and the impact of our data set.

3.4.3.2.1 Move Analysis

In this section, we focus on the behavior of the empty and loaded moves using our simulation and

dataset.

Figure 12: Number of loaded and empty moves

Figure 12 represent the number of empty moves (red) and loaded moves (blue) since 2008. Based

on the increasing trend of loaded moves, the empty moves are expected to increase as well but

during 2010 to 2014 there seems to be a drop. Based on discussion with the company experts,

this might be due to their inability to track the empty moves during that time period. As a result,

our analysis will focus on years 2014 and 2015.

57

3.4.3.2.2 Containers Analysis

In this section, we analyzed the status of the containers in the system. Figure 13 represents the

status of each container at each point in time. Free and ready to use containers (orange), busy

containers at a customer location (light blue) and on a train (dark blue) are shown. Also, the total

number of containers are estimated to be 100,000. We can observe the behavior of the system

which tends to collect all of its containers at the end of the year. Company experts confirmed this

behavior which provides some face validity for our simulation model.

Figure 13: Status of containers

3.4.4 Forecasting Model

In this section we describe briefly our preliminary forecasting method for obtaining the future

empty container demand for the company. The current method for forecasting the demand in the

company is purely based on human judgment. A group of employees who work in different parts

of the country use their experience to make a recommendation about how many containers their

58

region needs in the upcoming week. At the end of the week, they will decide on how they should

make the moves in order to satisfy all demands. This approach provides us with an opportunity

to reduce their error margin by using a forecasting model. For the first step of our research effort,

we used the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The demand

for empty containers is seasonal in its nature. For example, companies need to move more prod-

ucts during the holiday season.

Seasonal Autoregressive Integrated Moving Average model is a well-known forecasting method

consisting of three different elements. First, the autoregressive (AR) model, this specifies that the

value of the variable is dependent on its p previous values and a random (stochastic) term. The

general form of AR(p) is as follow:

Xt = c+∑
p
i=1 ϕi ∗Xt−i + εt

where c is a constant value, ϕi is the coefficient of autoregressive model while p is its order (num-

ber of time lags). Xt−i is the time series lagged i periods. εt is an error term following normal dis-

tribution with its mean as 0 and standard deviation as 1.

Second, the moving average (MA) model, the model predicts the value of the variable based on

several past stochastic terms. The general form of MA(q) is as follow:

Xt = µ + εt +θ1 ∗ εt−1 + · · ·+θq ∗ εt−q

where µ is the mean of the series, θi is the coefficient of the moving average model while q is its

order. εt ,εt−1, ...,εt−q are error terms.

Last, is the seasonality element. Seasonality in a model incorporates the behavior of the variable

over different time periods. The SARIMA model utilizes autoregressive and moving average

models to create an accurate forecasting model. SARIMA model is determined by four param-

eters. p and q which as defined above, are AR and MA parameters (non-seasonal part) and also P

and Q which are defined as seasonality parameters of AR, MA models. P and Q are very similar

to the non-seasonal elements of the forecasting model with the only difference that they involve

backshifts to the seasonal periods. As an example, if a SARIMA(p = 1, q = 2)(P = 1, Q = 2) is

59

utilize to forecast January 2018 demand, the model uses historical data for December 2017 (p = 1

one period back), December and November 2017 (q = 2, two periods back) for non-seasonal part

of the model and January 2017 (P = 1 one seasonal period back), and January 2017 and 2016

(Q = 2), two seasonal periods back) for seasonal part of model.

Each customers in this system has a unique behavior in terms of its demand request. The com-

putational time to estimates all the coefficient of optimal SARIMA model is directly related to

the magnitude of p, q, P, and Q. Since the company has thousands of customers, Finding the best

forecasting model for each customer is not computationally feasible. Therefore, we need to come

up with an approach to minimize the amount of computational time spent on the forecasting

model. To this end, we limit the different parameters values to 0 and 1. Using these small values

for the four parameters of SARIMA, made it possible to find suitable forecasting model for each

customer. The combination of different value for p, q, P, and Q creates 16 different configura-

tions for the SARIMA parameters (i.e. SARIMA(1,1)(1,1), SARIMA(1,1)(1,0), SARIMA(1,1)(0,1)

and so on). Among these models, the best model is chosen using the Bayesian Information Crite-

rion (BIC) [73]. The BIC is a criterion for selecting among a finite set of models. The most im-

portant benefit of using the BIC is the ability to automating the process.

The other concern about the forecasting model is the time unit. Although all of the data provided

is daily, the amount of computation for finding a decent daily forecasting model is not reasonable

or necessary at this time. As a result, for now the model is forecast monthly and the result of each

month will be distributed uniformly over the 4 weeks which is consistent with our mathematical

model. The company will provide us with the historical percentage of daily distribution of the

demand over a week so we can calculate daily forecast as well.

60

Figure 14: 15 Different Configurations for forecasting model of ”Customer A”

61

Figure 15: 15 Different Configurations for forecasting model of ”Customer B”

62

In figures 14 and 15, the forecast for two different customers are shown under 15 different config-

uration. The blue line shows the forecasted demand versus black line the actual demand and the

dark shaded area represent the 95% confidence interval on the forecast and light shaded represent

the 99%.

Among different configuration, SARIMA(1,0)(1,0) and SARIMA(0,0)(1,0) is the best fit model

for customer A and Customer B respectively. For customer A, the model over estimates the de-

mand and for customer B it underestimates the demand. In order to address this issue, safety

stock (SS) is presented to support the forecasting model. For each customer there are three dif-

ferent SS levels (0% , 5%, and 10%). Based on the company’s expert, the cost ratio of underesti-

mating the demand (shortage) to overestimating the demand (inventory cost) is 2 to 1. Using this

information, the back order cost and inventory costs are assumed to be $10 and $5 respectively.

63

Table 10: The forecasted value against the actual value and cost associated with SS calculation
for a customer.

Forecasts Difference Inventory & Lost Order Cost

Actual Model 1 0% SS 5% SS 10% SS 0% SS 5% SS 10% SS

Jan 15800 14279.2 -1520.76 -806.798 -92.836 7603.8 4033.99 464.18

Feb 15266 15015.42 -250.58 500.191 1250.962 1252.9 5001.91 12509.62

Mar 16923 15872.96 -1050.04 -256.392 537.256 5250.2 2437.99 17882.18

Apr 16597 15355.46 -1241.54 -473.767 294.006 6207.7 1149.84 20822.24

May 18200 16336.54 -1863.46 -1046.63 -229.806 9317.3 5233.165 18524.18

Jun 17565 16775.41 -789.59 49.1805 887.951 3947.95 491.805 27403.69

Jul 17878 15983.35 -1894.65 -1095.48 -296.315 9473.25 5231.51 24440.54

Aug 18381 17557 -824 53.85 931.7 4120 538.5 33757.54

Sep 16783 16347.66 -435.34 382.043 1199.426 2176.7 4358.93 45751.8

Oct 19208 16692.34 -2515.66 -1681.04 -846.426 12578.3 6225.75 37287.54

Nov 17631 16796.34 -834.66 5.157 844.974 4173.3 51.57 45737.28

Dec 15297 15911.4 614.4 1409.97 2205.54 6144 14151.27 67792.68

Total 205529 192923.1 -12605.9 -2959.72 6686.432 72245.4 48906.23 352373.47

Table 10 shows the safety stock calculation. First, the difference between forecasted model with

different level of SS and actual data is calculated. Then, based on the mentioned cost, total cost

for three different safety stock levels is calculated. The model with the lowest cost is selected.

For example for Customer A, the model with 5% SS has the lowest total cost.

To sum up, in order to find the best forecasting model for each customer, the following algorithm

is followed:

64

Algorithm 4 The best SARIMA model for a customer
Step 1. Iterate through all models with different configuration of p, q, P, and Q.

Step 2. Calculate the BICs and select the model with the lowest value

Step 3. Forecast the values for the last year.

Step 4. Calculate the cost fuction for different safety stock levels scenario using forecasted

values and actual values

Step 5. Select the SS level with the cheapest cost function.

3.4.5 Decision Support System

In this section, we developed a Decision Support System (DSS) for the trucking company. The

goal of this DSS is to facilitate the process of decision making and making it efficient. In this

section, the current process of decision making is explained and then the architecture of DSS is

outlined.

There are several experts who are responsible for making the decision of empty moves across the

company. Each expert is responsible for a region. These experts gather field information about

their region during the week such as the performance their forecast to the realized demand of that

week, holiday of customer’s factory, etc. For example if they under estimate the demand the pre-

vious week they will over estimate this week to catch up with back orders from the last week, or

if they know a company’s employees are on strike they deduct that demand from their estimated

values. Using relevant information, each expert updates their spreadsheet. These spreadsheets are

built by the experts themselves independent from each other. At the end of a working week, They

will tweak their results based on their experience and hold a meeting. During this meeting, each

expert announces their demand/supply of nodes in their region and some other expert will fulfill

those request by either using the supply or satisfying the demand. The only degree of optimiza-

tion observed is they usually estimate the distance in order to fulfill a shortage. After the meeting

they will put in a ”Moving Order” i.e. how many empty containers should reposition from one

location to another one.

65

This process is vastly inefficient and time consuming. The forecasting process is mainly manual

and the quality of it, is based on the experience of the expert. In the developed DSS, we tried to

address several of these issues.

3.4.5.1 DSS Architecture

In this section, the DSS structure and its communication channels are explained. In order to have

a maintainable and scalable DSS, object oriented concepts are utilized.

In order to define a network, the first class that is developed is ”Node”. This class is represen-

tative of each node in the network. At the time of initializing each node, the program will auto-

matically forecast its demand/supply for the planning horizon. Two sub-classes of this class are

”Ramp” and ”Customer”. These two classes contain information specific to that type of ”Node”.

”Adjacency” is another class that defines all of the arcs on the network. There are two types of

adjacency, it can be a Truck or Rail Adjacency. Truck adjacency is defined by the distance be-

tween two nodes. If the distance is less than a predetermined parameter, two nodes are accessi-

ble from each other by truck. If the company provides us with the cost of rail move between two

nodes we assume those two nodes are adjacent. ”TimeLine” and ”TimeSlot” are responsible for

holding the forecast value and types of the value (i.e. Demand or Supply).

”Network” is the main class that contains all of the company’s network. In addition to the ele-

ments of the network, this is the class that holds the mathematical model and its connection to

CPLEX. ”Forecaster” class is responsible for all of the connections between the DSS and the R

libraries and contains the forecasting methods. Figure 16 on page 67 shows the process flow of

the DSS.

The User Interface (UI) of the DSS is developed in Visual Studio 2017. This part is coded in

VB.NET and after getting all of the inputs from the user it will use the engine that is developed

in JAVA. The different snapshot of the UI is shown in Figures 17, 18 and 19 on pages 67 and 68.

66

Figure 16: Process Flow of developed DSS.

Figure 17: First window of DSS before entering/uploading any input file.

In figure 17, Ramp Info, Customer Info includes the location of all rail ramps/customers, their de-

mands and their yard capacities. Rail Cost and driving data can be uploaded or enter the cost per

mile for each mode. In parameters section, the user could select to include customers or not. The

planning horizon is determine by ”# of Weeks”. Run Forecaster will just run the RStudio to find

the best ARIMA model for all the customers and ramps. Finally, The result of ”Run Optimizer”

67

Figure 18: Window of DSS after entering/uploading any input file.

Figure 19: DSS Window while it is processing.

is obtained by CPLEX is placed in a spreadsheet for ease of use of the end user. The result is the

number of moves between two nodes and the move’s mode (i.e. Rail or Truck).

68

3.4.6 Case Study

In this section, we create three test cases for our DSS using the representative data obtained from

the company. The following assumptions are made for all of the test cases.

• Range (2011 - 2013) used for forecasting 2014

• Yard capacity selected based on the data from the simulation data

• Cost of rail movement

– Direct distance between two ramps is used

• Order cost added to the model to prevent sending small batch of containers.(i.e. economy

of scale is used for different order size of container movement)

In the following we discuss the three test cases and DSS performance.

3.4.6.1 Rail Movement Only

In the first the test case, only rail movement is considered. As a result, the demands and sup-

plies of all of the customers associated with a ramp are summed over and all truck movements

removed from the mathematical model. In this case, the top 41 ramps from the representative

dataset are selected (Ramps associated with the Top 25 customers in the representative dataset).

Figure 20 shows the location of selected ramps. Note that some of the ramps appear to be out of

the borders that is because of lack of precision associated with the representative dataset that we

were provided with.

69

Figure 20: Location of 41 Ramps.

The model is solved optimally using CPLEX software. The historical data shows that 29247

empty moves happen between these 41 ramps. Our optimal solution maintain the balance of each

ramp with only 6110 moves which is a 79% decrease. Based on the data, assuming the average

cost of moving an empty container is $130, there is an opportunity to save $3M in operational

cost. Although the result shows a large potential savings opportunity, the actual savings is signif-

icantly affected by the initial conditions. The initial condition is provided by the simulation and

it does not reflect the exact situation encountered by the company. As a result, the company pro-

vided us with a representative snapshot of our initial date. Using that as an input for the model.

Using this as an input for the model, CPLEX solved the model optimally with 17251 moves. This

still shows 41% reduction (i.e. $1.55M) in empty moves. The other advantage of this test case is

even if the size of problem reaches a point that the DSS cannot solve the problem optimally we

can still solve it by aggregating nodes together.

70

(a) Historical Flow (b) Optimal Solution

Figure 21: The comparison between the historical flow of empty containers between ramps to
optimal solution obtained from DSS.

3.4.6.2 Rail Movement and Truck Movement based on Zip Code

In this test case, we include the truck movements from the ramp to the customers’ locations. In

addition to all of our nodes from the previous test case, the smaller customers, in terms of vol-

ume, are also added to the problem. One of the obstacles of having smaller customers in the test

case is the quality of the forecasting function. Since these customers are not ordering a container

for most of the days, the forecasting function is less likely to predict their demands. Company ex-

perts suggest that we aggregate the customers based on their location into zip codes. As a result,

each zip code will have several customers and the demand/supply of that zip code is the sum-

mation of all its customers. All the distances are calculated to the center of each zip code. In to-

tal, for the 41 Ramps, 110 Zip codes are considered. Based on the representative dataset, 94,472

empty moves happen between these ramps and zip codes.

71

Figure 22: Location of 41 Ramps and 110 center of zip codes.

Note that some zip codes are far from a ramp. This happen because we are only considering the

top 41 ramps and omit some of the ramps that are feeding those zip codes. This will affect our

solution. The DSS can still solve the problem optimally using the snap shot provided by the com-

pany. The results suggests 67,918 empty moves. This shows a potential reduction of 28% in the

number of empty moves required to balance the network.

3.4.6.3 Rail Movement and Truck Movement with no zip codes In the last test case, we

wanted to test the performance of the DSS with a larger dataset. In this test case, we consider

each customer as a node. The previously mentioned problem of small customers in the earlier test

case is an issue. Since our approach considers a SS for each customer, these customers will have

some SS to avoid a back order. This test case considered 41 Ramps and 480 customers. Figure 23

illustrate the location of nodes.

72

Figure 23: Location of 41 Ramps and 480 customers.

Since the planning meeting takes an hour in the company, we set an hour as time limit for CPLEX.

The DSS terminates by reaching the time limit. The optimality gap reported by CPLEX at 1 hour

time limits is 31.17%. The solution consists 115,072 empty moves. The historical data shows

134,960 moves, which means a potential 15% reduction. In addition to the size of test case,

which inhibits the results not being optimal, the small customers lead to more empty moves due

to their SS. We also increased the time limits of CPLEX to be 2 hour and 4 hour to see how much

improvement can be obtain by more computational time. The optimality gap for these two new

time limits are 24.58% and 22.16%. Based on our test cases, we believe the approach of clus-

tering customers based on zip codes performs best, it is worth mentioning that our collaborators

were interested in this case as well. Figure 24 shows the relative volume of each node of the sys-

tem for the year 2014 in our representative dataset.

73

Figure 24: Empty Container Demand Volume of each node on the system in 2014.

3.5 Future Work and Contribution

In this chapter we try to address a traditional problem which is widely studied in the literature.

However, in our literature review, we showed that the problem of inland empty container manage-

ments is not studied as much as maritime empty container management. In addition to that, the

problem is not studied in an intermodal environment. Also, based on our observation and inter-

action with our industry partners process, the companies are not utilizing this knowledge in their

daily decision making. Right now, this process is completely manual. Our analysis illustrates the

impact of utilizing this knowledge and customizing it for this company which highlights the im-

portance of this chapter. There are several other approaches that can be an extension of this study.

First, develop a unique solution methodology or heuristic for this specific problem to provide a

better/faster solution for larger instances. Second, consider other aspects of the real world

74

problem such as chassis and bobtail moves. Finally, explore the use of some newer AI and Ma-

chine Learning techniques on the large data set available.

75

4 Designing a Supply Chain Network for TB response in high-risk infected countries

Currently, the diagnostic process for TB takes several weeks. In a high-risk infected country, this

lengthy process leads to higher mortality rates caused by TB. In this research, we are investigat-

ing several approaches to redesign the logistics of the diagnostic process utilizing a new techno-

logically advanced device. These new methods could reduce the process from weeks to several

hours. The following section is an overview of TB and its current diagnostic process.

4.1 Introduction

Tuberculosis (TB) is a disease caused by a bacteria called Mycobacterium tuberculosis (Mtb).

More people die by active TB in comparison to other infectious illnesses.It is estimated that more

than 1 billion people are infected with Mtb [64].

Quick diagnosis as well as getting a fast suitable treatment is of importance in treating Mtb, since

there is a higher probability of mortality during the first few weeks of diagnosis [4], [32], [9],

[62]. An obstacle in diagnosis of this disease is that conventional laboratory identification may

take more than 10 weeks. Another obstacle is that the high risk infected countries do not have

the necessary laboratory infrastructure to support rapid evaluation and response. They must use

a solid culture method instead of liquid method which leads to even slower growth of bacterium.

As a result the final drug susceptibilities are diagnosed way after the important early months [35].

On the other hand, applying empirical treatments may cause unpredictable health issues.A new

test has been developed in which the diagnosis of TB and drug resistance are determined based

on studying single nucleotide mutations (SNPs) [96], [25], [69]. Some of these methods re-

quire expensive instruments and complex laboratory processes (MTBDRplus) [96], while others

prepare results in about two hours (Xpert MTB/RIF) [65], [16], [83]. Infrastructure issues in

potential countries often force Xpert MTB/RIF or MTBDRplus laboratories to be far from the in-

fected population. Considering the issues above, Point-of-care testing (POC) is of importance in

order to dignose and propose the best treatment on the first visit [66]. A new device, GeneXpert

76

Omni, is a portable device capable of diagnosing on the first visit. With its simplicity, rapidness,

and accuracy, the GeneXpert Omni device is supposed to be applicable for a POC test as it does

not require that the test be done in a TB Microscopy Center which is often far from the patients.

There are three main delivery scenarios for use with this new technology. POC devices at clinical

centers, a mobile laboratory with the device in it (TB-OnDemand) and locate them in the existing

TB Microscopy Center. The second option works by having a fleet of delivery vehicles carrying

many of the GeneXpert Omni devices. A fleet gets notified when a clinical patient is detected,

goes and picks the sample and uses the device for the required test, sends the test results to the

clinic. For such systems, the vehicle position, devices readiness, and number of devices in each

fleet needs to be determined. In order to do this several influencing parameters must be consid-

ered: TB incidence rate in a city, location of clinics, network and road pathways. Based on these,

we look to explore the required number of vehicles, number of devices per each vehicle, whether

to choose between moving fleets or waiting vehicles. Additional scenarios would not use a fleet

but instead deploy the device either at clinics or at TB Microscopy Centers. Thus, the model de-

pendency to the above parameters should be investigated.

4.2 Emergency Medical Service Literature review

The problem that we are studying in this chapter has similar characteristic to the Emergency

Medical Service (EMS) and Vehicle Routing Problem (VRP). EMS studies the location and re-

location of medical vehicles which have attracted special attention during decades of research.

The EMS vehicle location problem deals with locating the available vehicles in some specific

stations to cover all of the emergency service demands when the number of vehicles is restricted

(Cordeau et al. [21]). There are three main categories for this problem: deterministic, stochastic

and dynamic models.

On the other hand, the VRP is a well-studied problem. The only new characteristic that our prob-

lem introduces is the concept of time capacity on the vehicle. In the traditional VRP, the capacity

is only considered as a physical capacity. Although in our problem the number of devices sets a

77

physical capacity on the number of samples that we can process, the capacity will be replenished

by passing a specified period and not arriving at a depot.

4.2.1 Deterministic models

The first article in this area was introduced by Toregas et al [88]. They formulated a location set

covering problem as an integer programming model. The objective minimizes the number of fa-

cilities to cover all of the demands in the network. Another early model for emergency vehicle

location problem is Church and ReVelle [20]. They introduced the maximal covering location

problem which maximizes coverage (demand points covered) within a stated service distance

when the number of facilities are fixed. These two problems are static models, because they do

not consider the stochastic nature of an EMS system. When a vehicle is dispatched to the de-

mand location, it is not available anymore for other demand points. Another problem is when

simultaneous demands occur and each of these should be covered. Daskin and Stern [29] intro-

duced a hierarchical objective set covering problem (HOSC) for locating EMS vehicles. The

objectives minimize the number of vehicles to cover all of the demand zones and maximize the

multi-coverage of demands. Hogan and ReVelle [48] introduced two models for backup cover-

age in the location problem for emergency vehicles. Backup coverage handles high demand areas

by covering demand points using two vehicles. Gendreau et al. [36] proposed a double standard

model (DSM) that uses multiple ambulances to cover each demand point. In this model, any am-

bulance must cover all demands located within r2 time units and a proportion α of the total de-

mand within r1 time units. This model is based on the standards defined in North America. This

problem is solved using a Tabu search algorithm for randomly generated instances and real data

obtained from the Island of Montreal. Tabu search was shown to provide near optimal solutions

in a reasonable time.

78

4.2.2 Stochastic models

Stochastic models consider uncertainty arising from availability of the vehicles (when they are

busy, the time of availability is unknown) or the time of service requested in the demand point.

Daskin [27] proposed an expected covering location model by considering the probability of be-

ing busy for each vehicle to cover a demand. One year later, Daskin [28] formulated the maximal

expected covering location model given a fixed number of vehicles. This model considers the

possibility that all vehicles are busy when a new demand arrives. A heuristic algorithm is pro-

posed to solve the larger problems in a reasonable time. Beraldi [11] proposed a robust model for

locating emergency medical services. The problem deals with locating the vehicles in the demand

points and finding the number of vehicles at each location in order to satisfy the demand using

a chance constraint and minimizes the total cost. Reliability in this problem is defined as prob-

ability of covering an uncertain level of demand by a sufficient number of emergency vehicles.

Cho et al. [18] studied the problem of locating trauma centers and helicopters as an emergency

medical service vehicle simultaneously. The availability of helicopters is considered as a random

parameter, thus the objective function maximizes the expected demand covered in less than one

hour. Helicopters are assumed to be a substitute for a trauma center. Therefore, the problem is

challenging because of the uncertainty and interdependent demands for trauma centers and heli-

copters. Two solution methodologies are considered in this article: a shifting quadratic envelopes

method and a generalized Benders decomposition approach and they are applied to a real data set

from Korea. The computational results revealed that these methods perform reasonably well in

comparison with the solutions obtained from several benchmark heuristics. An et al. [5] proposed

a scenario-based stochastic programming model as a mixed-integer linear program for emergency

service facility location. They assumed that each emergency facility is subjected to disruption

which is the uncertain parameter in the model and scenarios are generated base on the number

of disrupted facilities at each location. The model determined the optimal location of facilities,

patient to facility assignment in each scenario and traffic routing decision. The objective is mini-

mizing the total expected cost of the system including facility set-up cost, travel cost and waiting

79

cost for the patients to receive a service in a facility. Then, they found lower and upper bounds

to approximate the objective value which facilitated the development of a Lagrangian Relaxation

approach to solve complex problems.

4.2.3 Dynamic models

The most recent problems in this area are Dynamic (multi-period) models that consider the changes

in the system over time. Gendreau [37] considered the redeployment problem of ambulances

which is relocating available ambulances to the potential sites when the new demands are re-

quested. They proposed a dynamic programing approach to maximize the coverage of demand

points and minimize the cost of movement of ambulances. A parallel tabu search heuristic is de-

veloped as a solution methodology and it is successfully applied on the EMS system of Mon-

treal. Andersson and Varbrand [6] developed a new algorithm for a dynamic ambulance reloca-

tion problem. The objective is to minimize the maximum time of movement for the relocated

vehicles between demand points. They introduce a new concept of Preparedness which states

that there should be at least a certain level (Pmin) at all demand points. This parameter measures

the capacity of the EMS system to cover the demands at each zone and the vehicles are relo-

cated when one or more zones have a preparedness less than Pmin. A simulation model is used

to demonstrate the effectiveness of the model in covering the demands with less waiting time.

Rajagopalan et al. [67] formulated a dynamic model where the demand is uncertain and changes

significantly over time. Their objective is to minimize the number of ambulances when a speci-

fied level of reliability for coverage of demand points should be satisfied. A reactive tabu search

heuristic is proposed and a look ahead policy is used to reduce the computational time. The nu-

merical results revealed that high quality solutions can be obtained in a reasonable time. Schmid

and Doerner [72] model the ambulance location and relocation problem as a dynamic program-

ming model in which ambulances need to be located in the specific locations in order to cover

the requests in a reasonable time. Travel time is uncertain and time-dependent in this model. A

variable neighborhood search (VNS) is proposed as the solution methodology and is tested on a

80

real data set from Vienna (Austria). The results show that the VNS method works very well in

comparison with CPLEX.

4.3 Simulation

The complexity of the model and its stochasticity suggest the use of simulation. Simulation will

helps us calculate different metrics under different scenarios and compare the effectiveness of

each approach in terms of those metrics such as average diagnostic period. In the first section we

define the different scenarios. These scenarios consist of a base model and suggested alternative

models. The base model is the current implementation. The scenarios are explained as follow:

4.3.1 Proposed Scenarios

4.3.1.1 Base Model

In this scenario, the current situation of the country is simulated to be used as a base model for

all of the other comparisons. We describe the system briefly; patients (people who are suspicious

of TB) are going to the nearest clinic, and a doctor examines them and gets a sample for further

analysis. The clinic will collect all the samples and at the end of the day, send all the samples to

the assigned microscopy center. The microscopy center is responsible for processing the sam-

ples and reporting back to the clinics with the result. The samples with the negative results will

be sent to the major hospital for further processing which can take an extensive amount of time.

Figure 25 shows the flow of information in this scenario.

81

Figure 25: Current process of TB diagnostic

4.3.1.2 POC device at TB Microscopy Center

This scenario and the other three are proposed configurations that our collaborator would like us

to compare to the current situation. In this scenario, each microscopy center will have a specified

number of devices to process the samples. In this scenario, patients will provide the clinics with

the samples. The purpose of this model is to have higher utilization for each device and reduce

the diagnostic period by eliminating the hospital from the process. The following figure shows

the flow of information in this scenario.

82

Figure 26: Current process of TB diagnostic

4.3.1.3 POC device at clinical centers

This scenario brings the device one step closer to the patients by having devices at the clinic

level. The down side of this scenario is the low utilization on each device and the capital cost

of providing each clinic with devices. On the other hand, this will eliminate the waiting time for

samples to be sent to the centers. Figure 27 shows this scenario.

83

Figure 27: Current process of TB diagnostic

4.3.1.4 TB OnDemand

In this scenario, we examine the performance of the process by locating several vehicles on the

planning horizon of the city. Each vehicle is equipped with several devices (The number of de-

vices can be different from one vehicle to the other). As a patient requests a test, the nearest vehi-

cle will be dispatched to the location of the patient to pick up the sample. The vehicle assignment

can be done in several different ways. The following approaches will be considered for assign-

ment: a. Nearest Assignment: The nearest available vehicle is assigned; this will reflect the time

travel as well. In this context, if a busy vehicle can become free and drive to that location sooner

than the nearest free vehicle, the system will assign the busy one to save time. b. Zone Assign-

ment: The vehicles are assigned to a zone to cover that area’s requirements. Each zone can have a

different number of assigned vehicles.

In the following section, details of the simulation model and then simulation experiments are dis-

cussed.

84

4.3.2 Simulation Model

In this section, we explain the simulation model for each of the scenarios.

4.3.2.1 Base Model

In this configuration, using incident rate and exponential distribution, the appearance of first pa-

tient is created. At appearance of patient, its location is generated uniformly across the region.

Each patient will select the nearest clinic to their location and will go there. After arriving at the

clinic location, they will wait if there is no doctor available to visit them. After doctor’s visit they

leave the clinics. Clinics gather all patients samples and send them to the microscopy center to

process. The microscopy center will process the samples. If a sample is positive they will no-

tify the patient about the result if not, they will send the sample to a major hospital for further

processing. The major hospital will examine the samples and send the final result to the patient.

Figure 28 shows the process of this simulation.

85

Figure 28: Simulation Process for the base model

4.3.2.2 POC at Microscopy Center

In this model, the process is identical to the base model except for when the samples arrives at

microscopy centers, the TB device processes them and the final answer is sent to the patients.

Figure 29 shows the process for simulation under this scenario.

86

Figure 29: Simulation process for POC at Microscopy Center

4.3.2.3 POC at Clinics

In this scenario a patient visits the nearest clinic and after doctor visit. Their sample is processed

using the TB device. Figure 30 shows the process for this simulation.

Figure 30: Simulation process for POC at Microscopy Center

87

4.3.2.4 TB On Demand

The last scenario is when the patient is not going to any clinics instead he/she will wait for a ve-

hicle to collect its sample. In this scenario, patients notify the system and based on their location

and assignment policy of vehicles, a vehicle is assigned to go to their place and collect their sam-

ple. As soon as their sample is collected, the TB device in the vehicle will process their sample

and notify the patient.

Figure 31: Simulation process for TB On Demand

4.3.3 Simulation Experiment

The simulation model is developed to compare the base model with the three different scenarios

that our collaborator suggests. In this section, we will discuss our approach to model the problem

and the different parameters that we explore.

The focus of the study is on Ghana, Africa, Fig 32 shows the general map of Ghana with its 10

different regions. The data that we obtained from our collaborator is aggregated to the region

level and based on our discussion it will take years before we have the required data at the level

of clinics, microscopy centers, and major hospitals. As a result, the simulation is developed at a

88

regional level.

Figure 32: Ghana’s map with its different regions (adapted from [38])

4.3.3.1 Parameters

Four parameters are defined and their values must be determined for each region. In the following

we will introduce these four parameters and elaborate how we evaluate them for each region.

• Incident Rate: The value of this parameter shows how frequent people develop TB symp-

toms in a region and go to a clinic for a doctor visit. This visit leads to providing the sam-

ple to the clinic and starting the diagnostic process. The exact value of this parameters is

not available but based on the report ”The National Tuberculosis Health Sector Strategic

89

Plan 2015-2020” provided by Country Coordinating Mechanism of the Global Fund to

Fight AIDS, Tuberculosis and Malaria1 (CCM Report), we know which regions reflect a

higher rate of incident in comparison to the others. As a result, we have three different lev-

els for the incident rate; High, Medium, Low. Fig 33 shows each region’s incident rate.

The distribution of the interval of two patients arriving at a clinic is assumed exponential

with the rate of λ . The exact value of λ cannot be calculated with the current data set. We

assume that the λ is in direct relation with the population of that region. Later, we will per-

form sensitivity analysis on the exact value of the λ .

• Infrastructure Type: As we discussed earlier, each clinic will send its samples to a mi-

croscopy center to retrieve results. Also, each microscopy center sends its negative result

sample to a major hospital for further analysis. The time travel between each pair of facil-

ities is another input to our model. This time travel is in direct relation to the distance and

quality of infrastructure of that region. It is not possible to evaluate the infrastructure type

for each region, but using the poverty level details, we can categorize the infrastructure

type to three categories of Good, Medium, and Poor. Fig 34 shows the poverty level of each

district. It gives us an idea about how to make assumptions about the Infrastructure type in

each region. Based on the infrastructure types, three different vehicle speeds are defined.

These numbers are based on the average speed of vehicles during different type of conges-

tion in Ghana since it is impossible to conduct a survey in each region to find the average

speed of vehicle for the purpose of this study. The high level of infrastructure assumes no

congestion scenario, with an average speed of 44 MPH, the medium level is during normal

traffic, with average speed of 16 MPH, and the low level is in the rush hour, with an aver-

age speed of 10 MPH. These numbers are obtained from a study of traffic congestion in

Accra [3].
1”The Ghana Country Coordinating Mechanism (CCM) of the Global Fund to fight AIDS, Tuberculosis and

Malaria was established in 2002 with an overall responsibility of managing Global Fund grants in the country. It is
responsible for developing grant proposals, setting the policy framework for effective implementation of approved
grants, exercising oversight of grants, monitoring progress towards meeting set targets and reviewing program perfor-
mance”

90

Figure 33: Ghana’s map with its different regions (adapted from [38])

Table 11 shows Incident Rate and Infrastructure type of each region for our study. Each of

them are an estimates based on figures 33 and 34.

91

Figure 34: Poverty Level of Ghana’s districts (adapted from [38])

Table 11: The incident rate and infrastructure type of each region

Regions Incident rate Infrastructure type

Ashanti Medium Good

Bring Ahafo Low Medium

Central High Medium

Eastern Medium Medium

Greater Accra High Good

Northern Low Poor

Upper East High Poor

Upper West Low Medium

Volta High Medium

Western High Good

92

• Processing Time: There are several categories of processing time in our model. We dis-

cuss each of them briefly. The first processing time is for a doctor visit at the clinic (Doctor

Visit Process). This process is the time that a doctor spends to see if the patient has enough

symptoms to be a candidate for providing a sample or not. Still, there is no concrete evi-

dence about the length of this process, therefore in the next section we will perform sen-

sitivity analysis to see the impact of such processing time. The next process is the time

a microscopy center spends to get the first results of testing the sample (TB Center Pro-

cessing). Based on the information we gained from our collaborator, it takes between 3 - 8

weeks for such testing results to get prepared. If the results of this test turn out to be neg-

ative, the sample is sent to a major hospital for further tests (Hospital Test). Again, this

process takes between 2 - 3 weeks. These three processing times are the main ones in the

traditional pathway to test TB in Ghana. In the newly proposed way, the new device can

process the sample in only 90 minutes while there is no need for further testing of negative

result samples.

• Geographical Information: This parameter consists of the number of clinics, microscopy,

and hospitals and their locations. Based on the CCM Report, table 12 provides information

on the number of clinics, microscopy centers, and major hospitals in each region.

93

Table 12: The geographical information of 10 regions.

Regions Population # Clinics # Microscopy centers # hospitals

Ashanti 4,725,046 79 50 0

Bring Ahafo 2,356,534 53 30 0

Central 2,107,209 55 33 0

Eastern 2,596,013 62 34 1

Greater Accra 3,909,764 123 60 2

Northern 2,468,557 37 28 0

Upper East 1,031,478 55 22 0

Upper West 677,763 21 10 0

Volta 2,099,876 64 33 0

Western 2,325,597 52 25 0

Total 24,297,837 601 325 3

Information on the exact locations are not provided except for the three major hospitals.

In this part, we assume that all of these locations are uniformly distributed in their corre-

sponding regions. Figure 35 demonstrates the location of microscopy centers in each loca-

tion at the high level. Another difficulty in the simulation phase is defining the borders of

each region and the country. As a result we simplify the shape of the country to a rectangle

where each smaller rectangle corresponds to a region. The area of each region is in direct

relation with the area of rectangles in the shape. Fig 36 shows the representative approx-

imation of the country shape used for our model. The locations corresponding to patients

are also generated using a uniform distribution since real data on that is not on hand. Note

that the location of patients is only important for TBOnDemand scenario.

Our sensitivity analysis in the next section will also assess the level of dependency of our

metrics to the location of clinics, microscopy centers, and hospitals.

94

Figure 35: Microscopy centers locations in Ghana

Figure 36: Approximation of Country Representation

Now, we define the two main outputs (KPIs) of our simulation. These KPIs are defined based on

our discussion with our collaborator.

• Average Diagnostic Period (ADP): This measures the average time in minutes from when

a patient shows up at a clinic until the results are determined.

• Number of diagnosed patient (NDP): This number measures the number of diagnostic

95

processes that have been completed during the simulation process.

4.3.4 Sensitivity Analysis of Simulation’s parameters

In this section, we evaluate the impact of the parameters defined in the previous section on the

KPIs and also determine the warm-up period and required number of replications for each exper-

iment. Note that all of our experiments used a Replication Method for a period of 52 weeks. This

means we will run N simulation with different random seeds and use those results to estimate the

KPIs and their confidence intervals.

4.3.4.1 Warm up period analysis

In order to find the warm-up period, Welch’s method is used. To create the Welch’s plot, we used

5 different seed numbers to execute 5 runs for 52 weeks of simulation run length, and took ADP

as the studied output. Every 10 minutes we calculated the ADP for the model and used the aver-

age of these runs for each observation to generate the Welchś plot. As Fig 37 shows, ADP cannot

be calculated for the first phase of the simulation since none of the patients has completed the

diagnostic process during that time.

Based on the Welchś plot, we select 20 weeks (201,600 minutes) as a warm up period for our

experiments.

4.3.4.2 Number of Replications

In order to find the number of replication, we need to do a pilot study. For this study, we use 10

replications with 20 weeks as warm-up period.

96

Figure 37: Welchś Plot based on 5 runs for Average Diagnostic Period (ADP)

Table 13: ADP Values in the pilot study.

Observation ADP (minutes)

1 67094.59

2 67142.07

3 67170.81

4 67107.01

5 67114.92

6 67048.1

7 67155.27

8 67121.14

9 67145.05

10 67171.34

Using the confidence interval formulation, we determine the number of replications to construct

the required confidence interval for ADP at 99% confidence level within ±1 hour. It can be shown

97

that n can be obtained from the following formula:

n≥ (
tα/2;n−1 ∗S

ε
)2

n≥ (
3.249836∗38.14263

60
)2

n≥ 4.26

The number of replications is chosen to be 5. We will use 5 replications to construct any con-

fidence interval. In order to find significant factors in our simulation, we will do a full factorial

design with four factors and three levels. In the following we explain each factor and their levels.

4.3.4.3 Incident Rate Analysis

The incident rate is the rate that a patient shows up with TB symptoms at a clinic. This rate is

directly related to the number of people in that region. Since we do not have actual incident rate

by region, to calculate this parameter, we make a couple of assumptions. The arrival of patients

has an exponential distribution with the rate λ . This rate is defined as a specific percentage of

population of that region. Figure 33 on page 91 shows that the number of diagnosed TB in green

region is less than 50 per 100,000 which is 0.05% of the population. For yellow zone is between

0.05% and 0.06% and for red region is more than 0.06%. Therefore, Assume the diagnosed TB

rate of 0.05%, 0.055%, and 0.06% for each type of region. We are testing if incident rate in each

region is 5 times, 10 times, and 15 times higher than diagnosed TB rate. Thus, the incident rate

(λ) for each region is calculated using the following formula:

λRegion = X ∗DiagnosedT BRateRegion ∗PopulationRegion

where X is the magnifier and DiagnosedTBRate of each region is the percentage of actual TB

cases in that region.

98

4.3.4.4 Infrastructure Type

The type of the infrastructure is another factor considered in our simulation model. A summary

of the speed range for each region is provided in the following table. The speed for each trip is

uniformly generated based on the region type.

Table 14: Speedś bounds for each region type in the simulation model

Region Type Minimum Speed (MPH) Maximum Speed (MPH)

Good 42 46

Medium 12 20

Poor 8 12

In this analysis, we evaluate what would happen to ADP if we increase the speed by 50% and

reduce it by 50%.

4.3.4.5 Doctor evaluation process

Another parameter which we consider the sensitivity of the model upon, is the time a doctor

spends to visit a patient and order a test. Young in [93] the median of patient visit is 35.8 min-

utes. Based on this number, we introduce three different categories. These categories that we test

for are represented in the following table:

Table 15: Different Doctor Visit bounds

Visit Type Minimum Time (min) Maximum Time (min)

Fast 5 20

Medium 20 40

Slow 40 60

99

4.3.4.6 Geographical Location

The last parameter that we will evaluate is the location of the clinics, microscopy centers, and

hospitals. We used three different seed numbers to create three sets of locations. Fig 38 shows

microscopy centers, hospitals, and clinics as an instance set.

(a) Microscopy Centers and Hospitals locations (b) Clinics locations

Figure 38: An example of different facilities’ locations in the simulation model

4.3.4.7 Factorial Design

In order to evaluate the significance level of each of the discussed parameters. We create a full

factorial design with 10 replications. The random seed stays constant among different levels but

varies for the same level tests. Before analyzing the result of the factorial design, we investigate

the assumptions by evaluating the residual plots. Figure 39 shows residual plots.

It is apparent that there is no shift, trend, or cycle in the residuals and they follow normality as-

sumption as well. Now, we can analyze the result of design. The results shown in figure 41 are

achieved by doing factorial design in Minitab Software:

100

Figure 39: Different Plots on the Residuals

Figure 40: The Result of Minitab Software for full factorial design of 4 factors and 3 levels.

Based on the p− value, there are two significant factors, Incident Rate and Doctor visit time.

In the next section, we want to compare the ADP of base model setting with TBOnDemand. In

order to be conservative, we will choose the significant factors at a level where ADP is lower. We

101

will utilize such a strategy even for the insignificant factors. In this way, we consider the base

model setting as competitive as possible. In order to see which levels has a lower ADP, the main

effects plot is drawn.

Figure 41: The main effects plot for the 4 factors.

The main effects plot suggests choosing the following parameter levels for the future analysis in

this section:

Table 16: Parameters List for simulation model

Parameters Value

Magnifier of Incident Rate 5

Doctor Visit Range [5,20]

Speed Range Easy Region Type [63, 69]

Speed Range Medium Region Type [18, 30]

Speed Range Hard Region Type [12, 18]

Location Random Seed 0

4.3.5 TBOnDemand

In this section, we investigate two factors for the TBOnDemand scenario; number of vehicles in

each region, and number of devices per vehicle. These parameters mainly depend on the budget

102

of the government and the amount of investment. As a result, we provide our collaborator with

different levels of service for different numbers of vehicles and devices in each region.

Another aspect of TBOnDemand that we should consider is the policy of assigning a vehicle to a

patient (Assigning Policy). There are two policies suggested by the collaborator. First; the nearest

Vehicle policy, which will assign a vehicle to a patient considering the travel time. Vehicle on the

other hand, will choose a patient on its list depending on travel time and its devices’ status. This

means if the vehicle has at least one available device it will go to the nearest patient; otherwise, it

selects a patient such that when it arrives at his/her location a device becomes available. The goal

of this policy is to reduce the wait time at a patient’s location. In the second policy, there is one

difference. Vehicles are selected from the vehicle’s pool corresponding to that specific region and

not all regions. The average ADP of 5 replications for different number of vehicles and devices

under different policies is provided below.

Figure 42: ADP Average over 5 replication for different number of vehicle and devices under
Nearest Vehicle Policy

103

Figure 43: ADP Average over 5 replication for different number of vehicle and devices under
region based Vehicle Policy

It is perceivable that the ADP value is more affected by the number of devices than by number of

vehicles. The reason behind this, is each device can serve a patient and process a sample and it

can free up while the vehicle is traveling to the next patient. On the other hand, if we have more

vehicles and only one device on board, vehicles should wait at patient’s location for a free device.

The other observation from this experiment is ADP is much better under TBOnDemand. The

other KPI in this analysis is NDP. Figures 44 and 45 shows the number of processed patient. As

you can see when the number of vehicles is low, the two policies are almost performing identical

in terms of NDP. The reasoning behind this behaviour is that the limited number of device/vehi-

cle is the bottleneck for performance. Regardless of how we choose to get to the next patient, we

should wait do to limited number of device. This leads to similar number of processed patients.

We will analyze these observations more in the next section.

104

Figure 44: NDP Average over 5 replication for different number of vehicle and devices under
Nearest Vehicle Policy

Figure 45: NDP Average over 5 replication for different number of vehicle and devices under
region based Vehicle Policy

4.3.6 Comparison of Base Model Setting and TBOnDemand

In this section, we will evaluate different base model settings against the TBOnDemand scenario.

All simulation runs are using the parameters from the previous section. As for the TBOnDemand

scenario, number of vehicles and number of devices can take the value of 1 and 2. We select the

lowest value to evaluate the TBOnDemand in its worst case against base model settings. For the

two other scenario, POC at clinics and POC at Microscopy centers, also we use 1 or 2 devices.

105

In order to have a conservative approach in comparing the base model and TBOnDemand, we

choose a TBOnDemand under a policy to result in longer ADP, as a result the region based policy

is selected based on the numbers in Figure 42 and 43

The random seed number is constant for an observation across the settings which means the same

set of patients are appearing in the system. Note that the random seed is different from an obser-

vation to another one. 25 replications are executed for each setting. The following table lists and

explains different settings.

Table 17: Setting description for simulation experiment

Setting Explanation

Base Model No Diagnostic Device is used.

MS 1 1 Diagnostic Devices are located at each Microscopy Center

MS 2 2 Diagnostic Devices are located at each Microscopy Center

C 1 1 Diagnostic Device is located at each clinic

C 2 2 Diagnostic Devices is located at each clinic

T 1 1 1 Vehicle per region with 1 device on board under Region based policy.

T 1 2 1 Vehicle per region with 2 devices on board under Region based policy.

T 2 1 2 Vehicle per region with 1 device on board under Region based policy.

T 2 2 2 Vehicle per region with 2 device on board under Region based policy.

The following table summarizes the result of 25 replications for each setting along with the num-

ber of devices in each scenario.

106

Table 18: Number of devices and Result of 25 replications for each setting

Setting ADP (mins) ADP (days) # of Devices

Base Model 677337.19 46.76 0

MS 1 869.52 0.6 348

MS 2 834.73 0.57 696

C 1 104.04 0.07 558

C 2 102.52 0.07 1116

T 1 1 66901.59 46.45 10

T 1 2 8044.2 5.58 20

T 2 1 8060.8 5.59 20

T 2 2 102.28 0.07 40

From these results we can see that base model setting and T 1 1 are not performing well. On the

other hand, T 2 2, C 1, and C 2 has the smallest ADP among other settings but T 2 2 performed

better since it has only 40 devices comparing to 558 and 1116 devices for C 1 and C 2.

4.3.7 Simulation Conclusion

In this section, we evaluated different settings for TB diagnostic process via simulation. Our re-

sults showed that using the new device will improve the average diagnostic process except for

one scenario. Based on the number of devices and the ADP, our suggestion is T 2 2 setting which

utilizes 2 vehicles for each region each of which having 2 devices on board. It is important to

note that the final decision of which setting to utilize is dependent on the budget and service level

that our collaborator needs. In the next section, we will focus on the routing of these vehicles for

one particular region and compare the performance with the two assignment policies of this sec-

tion.

107

4.4 Mathematical Model

In this section, we want to evaluate the assignment policies of the previous section against the

optimal assignment and routing. Since the area that we are studying is suffering from poor in-

frastructure, we can assume that online assignment is not a suitable approach. Online assignment

needs additional communication devices and a center to solve the routing and dispatch vehicles.

Since the performance of TBOnDemand is significantly better than the base model setting (0.07

days against 46.76 days), we make an assumption that we collect patients’ notifications with the

request for a vehicle on a daily basis. All these requests are accumulated for a day and at the end

of the day, a system solves the routing problem. Based on its suggested solution, the system lets

vehicles to serve the patients in the morning. This will add one day to the process but is still sig-

nificantly faster than the base model setting. This will improve the vehicle’s travel distance and

reduce total service time for all patients.

We model the TB on Demand scenario as a mathematical model. This model has similar charac-

teristic to classic vehicle routing problem (VRP). The main difference in our formulation is that

the capacity will be updated over time. As a result there is no need for vehicles to return back to

the depot and they can wait at the patientś location until the device becomes available and then

take the patient sample. In this section, we introduce the notations and parameters followed by

problem formulation. The results of the model will be illustrated afterwards with several exam-

ples.

4.4.1 Notation and Parameters

In our mathematical model, we have N as the set of all patients that we need to visit and take

their samples. Let q be the number of vehicles. Each vehicle has m number of devices. The pro-

cessing time of each device on a sample is denoted as T minutes. After that the device can pro-

cess another sample. Let ti j be the traveling time between node i and j. The goal of this model is

to find shortest tour while visiting all of the patients.

We require four sets of decision variables for our model formulation. Letting Xi j equal 1 if a ve-

108

hicle traverses from node i to node j and 0 otherwise, we denote Zie as the time capacity left on

a device when the vehicle arrives at location i. Also we let Yie equal 1 if the sample of patient i is

assigned to device e and 0 otherwise. Let Si be the amount of time that a vehicle should wait at

node i so that at least one of its devices becomes available, we formulate the problem and related

constraints in the next section.

4.4.2 Model

In this section, we formulate the problem as a mixed integer programming problem.

min
X ,S

∑
i, j

ti jXi j +∑
i

Si

s.t.

(1) Zie ≥ T ∗Yie ∀i ∈ N,∀e ∈ {1..m}

(2) Zie−T ∗Yie + ti j +S j ≥ Z je−M ∗ (1−Xi j) ∀i, j ∈ N,∀e ∈ {1..m}

(3) ∑
j

Xi j = 1 ∀i ∈ N

(4) ∑
i

Xi j = 1 ∀ j ∈ N

(5) ui−u j ≥ d j−C(1− xi j) ∀i, j ∈ N/{0}

(6) ui ≤ C−di ∀i ∈ N/{0}

(7) ∑
e

Yie = 1 ∀i ∈ N

(8) Z0e = T ∀e ∈ {1..m}

(9) Zie ≤ T ∀i ∈ N

(10) Xi j ∈ {0,1} ∀i, j ∈ N

(11) Yie ∈ {0,1} ∀i ∈ N,∀e ∈ {1..m}

(12) Zie ≥ 0 ∀i ∈ N,∀e ∈ {1..m}

(13) Si ≥ 0 ∀i ∈ N

(14) ui ≥ 0 ∀i ∈ N

109

The objective function in this formulation aims to minimize the total time of traveling and wait-

ing at patients’ locations of all vehicles. Constraint set (1) is to make sure that we assign a sam-

ple to a device if it has enough time capacity. Constraint Set (2) is calculating the amount of

time capacity left on each device from one node to the other node. This is based on the assign-

ment of a sample to a device at node i and the time travel distance between two nodes i, j. Con-

straint Set (3),(4) are making sure that we visit each patient only one time. Constraint sets (5),

(6) are MTZ sub-tour elimination constraint. Constraint set(7) is making sure at each node only

one device is assigned to the sample. Constraint Set (8) sets the initial time capacity to T while

Constraint set (9) makes sure a device does not violate its maximum capacity. Constraint Set

(10),(11) correspond to the binary decision variables whereas constraint set (12)-(14) represent

the non-negativity conditions.

Figure 46 is a demonstration of an instance of mathematical model result. The instance is gener-

ated with the same parameters as our simulation analysis.

(a) The optimal routes for TBOnDemand (b) The optimal routes for traditional VRP

Figure 46: An example of TBOnDemand optimal solution vs traditional VRP

In figure 46a, vehicle picks up the first two patients’ samples and starts processing them. When

the driver arrives at third patient’s location, both of the devices are busy so he waits for 89.7 min-

utes to have at least one available device and then it continues its route. The traveling time in the

optimal solution of TBOnDemand is equal to 2.81 while it is 2.58 for VRP. In the next section,

110

we will evaluate the model performance in terms of traveling time and waiting time at patient’s

location against the simulation result (i.e. online assignment).

4.5 Optimal vs Simulation

In this section, several instances are generated using the simulation model. In the simulation

model, only the nearest vehicle assignment policy is used, the instances are considering only one

region so in several cases the performace of these policies are the same. Since the nearest vehi-

cle assignment performed better based on NDP and ADP in the previous section, we choose to

use that. Three key performance indicators for each instance are reported; The amount of time

that they are used to serve all customers and come back to the depot, the amount of time that they

wait at a patient’s location, and their idle time. After that each scenario is solved by means of the

mathematical model formulated in the previous section and the same KPIs are reported and com-

pared with the two policies.

The simulation instances are for the T 2 2 setting and for only one day. Note that in this part,

we are only interested in the vehicle performance and won’t be studying the ADP. The goal is to

obtain the daily plan for each vehicle. Table 19 represents the results of 150 instances. The time

limit on CPLEX solution is 30 minutes.

111

Table 19: Result of CPLEX runs against simulation runs

of Patients
Nearest Vehicle Policy CPLEX

Total Traveling No Device Idle Total Traveling No Device Idle

5 1226.34 17.42 0 1208.92 101.78 13.01 88.77 0.00

6 1228.97 16.51 0.8 1211.66 102.3 13.01 89.29 0.00

7 1186.2 15.19 10.32 1160.69 191.61 12.74 178.87 0.00

8 1218.64 17.21 10.96 1190.47 192.04 13.35 178.69 0.00

9 1409.94 15.93 10.06 1383.95 281.55 12.85 268.7 0.00

10 1336.18 15.76 13.01 1307.41 282.44 13.52 268.92 0.00

11 1418.58 17.03 20.01 1381.54 371.21 13.66 357.55 0.00

12 1513.82 16.28 21.97 1475.57 371.66 13.76 357.9 0.00

13 1571.39 16.71 29.56 1525.12 461.13 14.83 446.3 0.00

14 1321.37 15.19 31.38 1274.8 458.77 13.56 445.21 0.00

15 1503.85 16.71 58.32 1428.82 545.92 13.81 532.11 0.00

16 1242.61 14.81 12.95 1214.85 543.88 13.06 530.82 0.00

17 1856.84 17.92 75.43 1763.49 639.06 13.95 625.11 0.00

18 1297.44 13.82 1.62 1282 634.87 13.3 621.57 0.00

19 1957.1 17.3 63.79 1876.01 725.43 13.59 711.84 0.00

20 1287.32 13.99 8.93 1264.4 726.43 13.04 713.39 0.00

Note that first column of each policy, ”Total”, corresponds to the total time required to serve all

patients. The ”Traveling” column represents the total traveling time of vehicles. ”No Device”

column denotes the time that a vehicle is at the patient location but all of its devices are busy.

”Idle” time is the sum of the times that vehicles wait for the next patient to appear in the system.

There are three major differences between the results gained from CPLEX and the nearest vehicle

assignment policy.

First, the idle time in the CPLEX solution is always zero since the list of all patients are available

at the beginning of planning horizon and therefore, it’s possible to serve all of them in an optimal

112

back to back way which leads to elimination of idle time. On the other hand, the assignment pol-

icy is happening at the moment, i.e. online, and as a result a vehicle becomes idle if there exists

no patient to serve at the moment. This elaborates one of the advantages of a CPLEX solution.

The other observation is related to the ”No Device” time. The CPLEX solution has higher value

in comparison with online assignments. This again goes to the fact that, in the online assignment,

usually there is significant amount of idle time between two patients which leads to have at least

one available device to serve with. On the other hand, offline assignment will serve patients back

to back so it will run out of devices more frequently.

The most notable observation which distinguishes offline method from online policies, is the to-

tal time needed for serving all the patients. Despite having higher ”No Device” time, the offline

method serves patients in less total amount of time compared to online plicies. This advantage

provides the opportunity of letting the vehicles be utilized for other purposes for the rest of the

day.

4.6 Conclusion and Future Research

The goal of our collaborator is to implement this in Accra, Ghana in Africa. Since there has never

been a POC test for TB, the implementation/deployment of GeneXpert Omni must fit within the

existing healthcare infrastructure, TB diagnostic pathways and economic systems of the deployed

location.

First, we quantified the value of each of the scenarios for our stakeholder in order to help them

make better strategic decisions for developing a new POC test infrastructure in Accra. As we in-

vestigated the different scenarios, the TBOnDemand plan turned out to bring significant improve-

ment results over the current process.

Two online and one offline assignment policies are introduced and investigated with their advan-

tages and disadvantages discussed. As a result, a new model that has similar characteristic to ve-

hicle routing problem is formulated. For this new VRP problem we have vehicles with a prede-

termined capacity which is the number of samples they can process at a time. However, the oc-

113

cupied capacity will be available after a certain amount of time. This is a new twist on the classic

capacitated vehicle routing problem. The solution for this problem is obtained using CPLEX and

the results are discussed. As a matter of fact, we showed that using the offline assignment policy

can significantly save time on serving all patients.

114

5 Contribution and Conclusion

In this dissertation, we investigate different transportation problems. In each chapter, a trans-

portation problem is introduced and addressed. We briefly outline the contribution of each chap-

ter.

In the second chapter, we focused on designing a battery swap station network to transport com-

modities from suppliers to customers via UAV. This chapter addressed the limited flying range

of UAVs. We developed a scenario-based stochastic programming model to satisfy the customer

demand that allows constructing different types of BSS in the planning network. To address the

computational complexity of this problem, a Tabu Search heuristic is developed as the solution

methodology. To achieve a better performance, a dynamic programming is developed to gener-

ate the initial solution for Tabu Search algorithm. Multiple numerical tests are conducted using

CPLEX and TS on a deterministic model (by considering only one scenario for demands) due to

the complexity of the problem. Results show that, compared with CPLEX, TS generates signifi-

cant improvement in running time and quality of solutions, especially for large problems.

In third chapter, we performed a literature review on a traditional problem, Empty Container

Management. We showed that the problem of inland empty container management is not studied

as much as maritime empty container management. In addition to that, the problem is not studied

in an intermodal environment and limited number of research studied a problem with the size of

our problem. Also, based on our observation and interaction with our industry partner process,

the companies are not utilizing this knowledge in their daily decision making procedures. Right

now, this process is completely manual. In this chapter, we first develop a forecasting model to

predict the demand of empty containers on their network. Later, a DSS is developed based on

the forecasting model and mathematical model to forecast and optimize the problem. Three case

studies are solved with the largest instance having over 500 nodes. We showed the impact of uti-

lizing this knowledge and customizing it for a major transportation company in the US which

highlights the importance and applicability of this chapter.

115

Finally, In fourth chapter, first we studied diagnostic process of TB in Ghana in collaboration

with our academia partner. Their goal is to implement a novel process in Accra, Ghana in Africa.

First, we determine the difference between scenarios for the stakeholder in order to help them

make better strategic decisions for developing a new POC test infrastructure in Accra. A Sim-

ulation model is developed that quantifies the impact of each scenario. As we investigated, the

TBOnDemand plan turned out to bring significant improvement over the current process. TBOn-

Demand is a setting in which patients will request a vehicle to take their sample at their locations.

Three assignment policies are introduced and investigated with their advantages and disadvan-

tages discussed. As a result, a new variant of vehicle routing problem is formulated. For this vari-

ant of VRP problem we have vehicles with a predetermined capacity which is the number of sam-

ples they can process at a time. However, the occupied capacity will be available after a certain

amount of time. The solution for this problem is obtained using CPLEX and the results are dis-

cussed. As a matter of fact, we showed that using the offline assignment policy can significantly

save time on serving all patients.

116

6 References

[1] Amazon prime air. http://www.amazon.com/b?node=8037720011. Accessed: 2014-10-01.

[2] Inside googles secret drone-delivery program. Online. Accessed: 2014-10-01.

[3] Albert M Abane. Tackling traffic congestion in accra, ghana: a road user’s perspective.
Journal of advanced transportation, 27(2):193–206, 1993.

[4] Shama D Ahuja, David Ashkin, Monika Avendano, Rita Banerjee, Melissa Bauer, Jamie N
Bayona, Mercedes C Becerra, Andrea Benedetti, Marcos Burgos, Rosella Centis, et al. Mul-
tidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an indi-
vidual patient data meta-analysis of 9,153 patients. PLoS Med, 9(8):e1001300, 2012.

[5] Shi An, Na Cui, Yun Bai, Weijun Xie, Mingliu Chen, and Yanfeng Ouyang. Reliable emer-
gency service facility location under facility disruption, en-route congestion and in-facility
queuing. Transportation research part E: logistics and transportation review, 82:199–216,
2015.

[6] Tobias Andersson and Peter Värbrand. Decision support tools for ambulance dispatch and
relocation. Journal of the Operational Research Society, 58(2):195–201, 2007.

[7] Anantaram Balakrishnan, James E Ward, and Richard T Wong. Integrated facility location
and vehicle routing models: Recent work and future prospects. American Journal of Mathe-
matical and Management Sciences, 7(1-2):35–61, 1987.

[8] Denise Lindstrom Bandeira, João Luiz Becker, and Denis Borenstein. A dss for integrated
distribution of empty and full containers. Decision Support Systems, 47(4):383–397, 2009.

[9] Mayara L Bastos, Hamidah Hussain, Karin Weyer, Lourdes Garcia-Garcia, Vaira Leimane,
Chi Chiu Leung, Masahiro Narita, Jose M Penã, Alfredo Ponce-de Leon, Kwonjune J Se-
ung, et al. Treatment outcomes of patients with multidrug-resistant and extensively drug-
resistant tuberculosis according to drug susceptibility testing to first-and second-line drugs:
an individual patient data meta-analysis. Clinical Infectious Diseases, page ciu619, 2014.

[10] H Bendea, Piero Boccardo, S Dequal, Fabio Giulio Tonolo, Davide Marenchino, and Marco
Piras. Low cost uav for post-disaster assessment. In Proceedings of The XXI Congress of
the International Society for Photogrammetry and Remote Sensing, Beijing (China), 3-11
July 2008, 2008.

[11] Patrizia Beraldi, Maria Elena Bruni, and Domenico Conforti. Designing robust emergency
medical service via stochastic programming. European Journal of Operational Research,
158(1):183–193, 2004.

[12] Benoıt Bourbeau, Teodor Gabriel Crainic, and Bernard Gendron. Branch-and-bound par-
allelization strategies applied to a depot location and container fleet management problem.
Parallel Computing, 26(1):27–46, 2000.

117

[13] Joana Cavadas, Gonçalo Homem de Almeida Correia, and Joao Gouveia. A mip model
for locating slow-charging stations for electric vehicles in urban areas accounting for driver
tours. Transportation Research Part E: Logistics and Transportation Review, 75:188–201,
2015.

[14] Chia-hui Chang, Lawrence W Lan, and Mee Lee. An integrated container management
model for optimizing slot allocation plan and empty container repositioning. Maritime Eco-
nomics & Logistics, 17(3):315–340, 2015.

[15] Hwan Chang, Hossein Jula, Anastasios Chassiakos, and Petros Ioannou. A heuristic solu-
tion for the empty container substitution problem. Transportation Research Part E: Logis-
tics and Transportation Review, 44(2):203–216, 2008.

[16] Kai Chang, Weiping Lu, Junji Wang, Kejun Zhang, Shuangrong Jia, Fake Li, Shaoli Deng,
and Ming Chen. Rapid and effective diagnosis of tuberculosis and rifampicin resistance
with xpert mtb/rif assay: a meta-analysis. Journal of Infection, 64(6):580–588, 2012.

[17] Raymond K Cheung and Chuen-Yih Chen. A two-stage stochastic network model and solu-
tion methods for the dynamic empty container allocation problem. Transportation science,
32(2):142–162, 1998.

[18] Soo-Haeng Cho, Hoon Jang, Taesik Lee, and John Turner. Simultaneous location of trauma
centers and helicopters for emergency medical service planning. Operations Research,
62(4):751–771, 2014.

[19] Sook Tying Choong, Michael H Cole, and Erhan Kutanoglu. Empty container management
for intermodal transportation networks. Transportation Research Part E: Logistics and
Transportation Review, 38(6):423–438, 2002.

[20] Richard Church and Charles R Velle. The maximal covering location problem. Papers in
regional science, 32(1):101–118, 1974.

[21] Jean-François Cordeau, Gilbert Laporte, Jean-Yves Potvin, and Martin WP Savelsbergh.
Transportation on demand. Handbooks in operations research and management science,
14:429–466, 2007.

[22] Teodor G Crainic, Michel Gendreau, Patrick Soriano, and Michel Toulouse. A tabu search
procedure for multicommodity location/allocation with balancing requirements. Annals of
Operations research, 41(4):359–383, 1993.

[23] Teodor Gabriel Crainic and Louis Delorme. Dual-ascent procedures for multicommod-
ity location-allocation problems with balancing requirements. Transportation Science,
27(2):90–101, 1993.

[24] Teodor Gabriel Crainic and Gilbert Laporte. Planning models for freight transportation.
European journal of operational research, 97(3):409–438, 1997.

118

[25] Pedro Eduardo Almeida Da Silva and Juan Carlos Palomino. Molecular basis and mecha-
nisms of drug resistance in mycobacterium tuberculosis: classical and new drugs. Journal
of antimicrobial chemotherapy, 66(7):1417–1430, 2011.

[26] Quang-Vinh Dang, Izabela Ewa Nielsen, and Won-Young Yun. Replenishment policies
for empty containers in an inland multi-depot system. Maritime Economics & Logistics,
15(1):120–149, 2013.

[27] Mark S Daskin. Application of an expected covering model to emergency medical service
system design. Decision Sciences, 13(3):416–439, 1982.

[28] Mark S Daskin. A maximum expected covering location model: formulation, properties and
heuristic solution. Transportation science, 17(1):48–70, 1983.

[29] Mark S Daskin and Edmund H Stern. A hierarchical objective set covering model for emer-
gency medical service vehicle deployment. Transportation Science, 15(2):137–152, 1981.

[30] Pierre J Dejax and Teodor Gabriel Crainic. Survey papera review of empty flows and fleet
management models in freight transportation. Transportation science, 21(4):227–248, 1987.

[31] Massimo Di Francesco, Teodor Gabriel Crainic, and Paola Zuddas. The effect of multi-
scenario policies on empty container repositioning. Transportation Research Part E: Logis-
tics and Transportation Review, 45(5):758–770, 2009.

[32] Dennis Falzon, Neel Gandhi, Giovanni B Migliori, Giovanni Sotgiu, H Cox, Timothy H
Holtz, Maria-Graciela Hollm-Delgado, Salmaan Keshavjee, Kathryn DeRiemer, Rosella
Centis, et al. Resistance to fluoroquinolones and second-line injectable drugs: impact on
mdr-tb outcomes. European Respiratory Journal, pages erj01347–2012, 2012.

[33] Humberto Florez. Empty-container repositioning and leasing: An optimization model.
1986.

[34] Inês Frade, Anabela Ribeiro, Gonçalo Gonçalves, and António Antunes. Optimal location
of charging stations for electric vehicles in a neighborhood in lisbon, portugal. Transporta-
tion research record: journal of the transportation research board, (2252):91–98, 2011.

[35] M Gauthier, A Somoskövi, JL Berland, O Ocheretina, MM Mabou, J Boncy, C Gutier-
rez, G Vernet, and JW Pape. Stepwise implementation of a new diagnostic algorithm for
multidrug-resistant tuberculosis in haiti. The International Journal of Tuberculosis and
Lung Disease, 18(2):220–226, 2014.

[36] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. Solving an ambulance location
model by tabu search. Location science, 5(2):75–88, 1997.

[37] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. A dynamic model and parallel tabu
search heuristic for real-time ambulance relocation. Parallel computing, 27(12):1641–1653,
2001.

[38] CCM Ghana. The national tuberculosis health sector strategic plan 2015-2020. 2015.

119

[39] Diego A Giménez-Gaydou, Anabela SN Ribeiro, Javier Gutiérrez, and António Pais An-
tunes. Optimal location of battery electric vehicle charging stations in urban areas: A new
approach. International Journal of Sustainable Transportation, 10(5):393–405, 2016.

[40] Christoph H Glock. Decision support models for managing returnable transport items in
supply chains: A systematic literature review. International Journal of Production Eco-
nomics, 183:561–569, 2017.

[41] Christoph H Glock and Taebok Kim. Container management in a single-vendor-multiple-
buyer supply chain. Logistics Research, 7(1):112, 2014.

[42] Fred Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & operations research, 13(5):533–549, 1986.

[43] Roy Godzdanker, Matthew J Rutherford, and Kimon P Valavanis. Islands: a self-leveling
landing platform for autonomous miniature uavs. In Advanced Intelligent Mechatronics
(AIM), 2011 IEEE/ASME International Conference on, pages 170–175. IEEE, 2011.

[44] Roy Godzdanker, Matthew J Rutherford, and Kimon P Valavanis. Improving endurance
of autonomous aerial vehicles through intelligent service-station placement. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 3179–3184. IEEE,
2012.

[45] Moncer Hariga, Christoph H Glock, and Taebok Kim. Integrated product and container
inventory model for a single-vendor single-buyer supply chain with owned and rented re-
turnable transport items. International Journal of Production Research, 54(7):1964–1979,
2016.

[46] Fang He, Yafeng Yin, and Jing Zhou. Deploying public charging stations for electric ve-
hicles on urban road networks. Transportation Research Part C: Emerging Technologies,
60:227–240, 2015.

[47] Gerhard Hiermann, Jakob Puchinger, Stefan Ropke, and Richard F Hartl. The electric fleet
size and mix vehicle routing problem with time windows and recharging stations. European
Journal of Operational Research, 252(3):995–1018, 2016.

[48] Kathleen Hogan and Charles ReVelle. Concepts and applications of backup coverage. Man-
agement science, 32(11):1434–1444, 1986.

[49] Akio Imai, Koichi Shintani, and Stratos Papadimitriou. Multi-port vs. hub-and-spoke port
calls by containerships. Transportation Research Part E: Logistics and Transportation Re-
view, 45(5):740–757, 2009.

[50] Min Ji and Jun Xia. Analysis of vehicle requirements in a general automated guided vehicle
system based transportation system. Computers & Industrial Engineering, 59(4):544–551,
2010.

[51] Z Jiele. Empty container distribution problem. UROP Report, 6019, 1999.

120

[52] Hossein Jula, Anastasios Chassiakos, and Petros Ioannou. Port dynamic empty container
reuse. Transportation Research Part E: Logistics and Transportation Review, 42(1):43–60,
2006.

[53] Dukwon Kim and Panos M Pardalos. A solution approach to the fixed charge network flow
problem using a dynamic slope scaling procedure. Operations Research Letters, 24(4):195–
203, 1999.

[54] Jonghoe Kim and James R Morrison. On the concerted design and scheduling of multiple
resources for persistent uav operations. Journal of Intelligent & Robotic Systems, 74(1-
2):479–498, 2014.

[55] Jonghoe Kim, Byung Duk Song, and James R Morrison. On the scheduling of systems of
uavs and fuel service stations for long-term mission fulfillment. Journal of Intelligent &
Robotic Systems, 70(1-4):347–359, 2013.

[56] Gilbert Laporte. Location routing problems. 1987.

[57] Seunghyeon Lee and James R Morrison. Decision support scheduling for maritime search
and rescue planning with a system of uavs and fuel service stations. In Unmanned Aircraft
Systems (ICUAS), 2015 International Conference on, pages 1168–1177. IEEE, 2015.

[58] David Levy, Kaarthik Sundar, and Sivakumar Rathinam. Heuristics for routing heteroge-
neous unmanned vehicles with fuel constraints. Mathematical Problems in Engineering,
2014, 2014.

[59] Jing-An Li, Stephen CH Leung, Yue Wu, and Ke Liu. Allocation of empty containers be-
tween multi-ports. European Journal of Operational Research, 182(1):400–412, 2007.

[60] Jing-An Li, Ke Liu, Stephen CH Leung, and Kin Keung Lai. Empty container management
in a port with long-run average criterion. Mathematical and Computer Modelling, 40(1-
2):85–100, 2004.

[61] Ilkyeong Moon and Hwajin Hong. Repositioning of empty containers using both standard
and foldable containers. Maritime Economics & Logistics, 18(1):61–77, 2016.

[62] Olanrewaju Oladimeji, Petros Isaakidis, Olusegun J Obasanya, Osman Eltayeb, Mohammed
Khogali, Rafael Van den Bergh, Ajay MV Kumar, Sven Gudmund Hinderaker, Saddiq T
Abdurrahman, Lovett Lawson, et al. Intensive-phase treatment outcomes among hospital-
ized multidrug-resistant tuberculosis patients: results from a nationwide cohort in nigeria.
PloS one, 9(4):e94393, 2014.

[63] Alessandro Olivo, Paola Zuddas, Massimo Di Francesco, and Antonio Manca. An opera-
tional model for empty container management. Maritime Economics & Logistics, 7(3):199–
222, 2005.

[64] World Health Organization. Global tuberculosis report 2016. World Health Organization,
2016.

121

[65] World Health Organization et al. Policy statement: automated real-time nucleic acid am-
plification technology for rapid and simultaneous detection of tuberculosis and rifampicin
resistance: Xpert mt. 2011.

[66] Nitika Pant Pai, Caroline Vadnais, Claudia Denkinger, Nora Engel, and Madhukar Pai.
Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and
middle-income countries. PLoS Med, 9(9):e1001306, 2012.

[67] Hari K Rajagopalan, Cem Saydam, and Jing Xiao. A multiperiod set covering location
model for dynamic redeployment of ambulances. Computers & Operations Research,
35(3):814–826, 2008.

[68] Ronald L Rardin. Optimization in operations research, volume 166. Prentice Hall Upper
Saddle River, NJ, 1998.

[69] Timothy C Rodwell, Faramarz Valafar, James Douglas, Lishi Qian, Richard S Garfein, Ashu
Chawla, Jessica Torres, Victoria Zadorozhny, Min Soo Kim, Matt Hoshide, et al. Predicting
extensively drug-resistant mycobacterium tuberculosis phenotypes with genetic mutations.
Journal of clinical microbiology, 52(3):781–789, 2014.

[70] Matthew A Russell and Gary B Lamont. A genetic algorithm for unmanned aerial vehicle
routing. In Proceedings of the 2005 conference on Genetic and evolutionary computation,
pages 1523–1530. ACM, 2005.

[71] Norberto Sáinz Bernat, Frederik Schulte, Stefan Voß, and Jürgen Böse. Empty container
management at ports considering pollution, repair options, and street-turns. Mathematical
problems in engineering, 2016, 2016.

[72] Verena Schmid and Karl F Doerner. Ambulance location and relocation problems with time-
dependent travel times. European journal of operational research, 207(3):1293–1303, 2010.

[73] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[74] WS Shen and CM Khoong. A dss for empty container distribution planning. Decision
Support Systems, 15(1):75–82, 1995.

[75] Koichi Shintani, Akio Imai, Etsuko Nishimura, and Stratos Papadimitriou. The container
shipping network design problem with empty container repositioning. Transportation Re-
search Part E: Logistics and Transportation Review, 43(1):39–59, 2007.

[76] Lawrence V Snyder and Mark S Daskin. Reliability models for facility location: the ex-
pected failure cost case. Transportation Science, 39(3):400–416, 2005.

[77] Byung Duk Song, Jonghoe Kim, and James R Morrison. Towards real time scheduling
for persistent uav service: A rolling horizon milp approach, rhta and the stah heuristic. In
Unmanned Aircraft Systems (ICUAS), 2014 International Conference on, pages 506–515.
IEEE, 2014.

122

[78] Dong-Ping Song and Jing-Xin Dong. Empty container management in cyclic shipping
routes. Maritime Economics & Logistics, 10(4):335–361, 2008.

[79] Dong-ping Song and Jing-xin Dong. Flow balancing-based empty container repositioning in
typical shipping service routes. Maritime Economics & Logistics, 13(1):61–77, 2011.

[80] Dong-Ping Song and Jing-Xin Dong. Cargo routing and empty container repositioning
in multiple shipping service routes. Transportation Research Part B: Methodological,
46(10):1556–1575, 2012.

[81] Dong-Ping Song and Qing Zhang. A fluid flow model for empty container repositioning
policy with a single port and stochastic demand. SIAM Journal on Control and Optimiza-
tion, 48(5):3623–3642, 2010.

[82] M SteadieSeifi, NP Dellaert, W Nuijten, and T Van Woensel. A metaheuristic for the mul-
timodal network flow problem with product quality preservation and empty repositioning.
Transportation Research Part B: Methodological, 106:321–344, 2017.

[83] Karen R Steingart, Ian Schiller, David J Horne, Madhukar Pai, Catharina C Boehme, and
Nandini Dendukuri. Xpert R© mtb/rif assay for pulmonary tuberculosis and rifampicin resis-
tance in adults. The Cochrane Library, 2014.

[84] Kaarthik Sundar and Sivakumar Rathinam. Algorithms for routing an unmanned aerial
vehicle in the presence of refueling depots. IEEE Transactions on Automation Science and
Engineering, 11(1):287–294, 2014.

[85] Koji AO Suzuki, Paulo Kemper Filho, and James R Morrison. Automatic battery replace-
ment system for uavs: Analysis and design. Journal of Intelligent & Robotic Systems, 65(1-
4):563–586, 2012.

[86] San-Nah Sze, Siaw-Ying Doreen Sek, Kang-Leng Chiew, and Wei-King Tiong. Simulation
of empty container logistic management at depot. In AIP Conference Proceedings, volume
1863, page 050016. AIP Publishing, 2017.

[87] Sotirios Theofanis and Maria Boile. Empty marine container logistics: facts, issues and
management strategies. GeoJournal, 74(1):51, 2009.

[88] Constantine Toregas, Ralph Swain, Charles ReVelle, and Lawrence Bergman. The location
of emergency service facilities. Operations Research, 19(6):1363–1373, 1971.

[89] A Graf von Westarp and O Schinas. A fuzzy approach for container positioning considering
sustainable profit optimization. Transportation Research Part E: Logistics and Transporta-
tion Review, 92:56–66, 2016.

[90] Owen Worley, Diego Klabjan, and Timothy M Sweda. Simultaneous vehicle routing and
charging station siting for commercial electric vehicles. In Electric Vehicle Conference
(IEVC), 2012 IEEE International, pages 1–3. IEEE, 2012.

123

[91] Yangyang Xie, Xiaoying Liang, Lijun Ma, and Houmin Yan. Empty container manage-
ment and coordination in intermodal transport. European Journal of Operational Research,
257(1):223–232, 2017.

[92] Jun Yang and Hao Sun. Battery swap station location-routing problem with capacitated
electric vehicles. Computers & Operations Research, 55:217–232, 2015.

[93] Richard A. Young, Sandra K. Burge, Kaparaboyna A. Kumar, Jocelyn M. Wilson, and
Daniela F. Ortiz. A time-motion study of primary care physicians work in the electronic
health record era. Family Medicine, 50(2):91–99, 2 2018.

[94] Won Young Yun, Yu Mi Lee, and Yong Seok Choi. Optimal inventory control of empty
containers in inland transportation system. International Journal of Production Economics,
133(1):451–457, 2011.

[95] Bo Zhang, CT Ng, and TCE Cheng. Multi-period empty container repositioning with
stochastic demand and lost sales. Journal of the Operational Research Society, 65(2):302–
319, 2014.

[96] Y Zhang and WR Jr Jacobs. Mechanisms of drug action, drug resistance and drug tolerance
in mycobacterium tuberculosis: expected phenotypes from evolutionary pressures from a
highly successful pathogen. Handbook of tuberculosis. Weinheim: Wiley-VCH Verlag, 2008.

124

A Chapter 2 Programming Codes

A.1 Tabu Search Class

package phdalgorithm;

import ilog.concert.IloException;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

/**

*

* @author aghahari

*/

public class Heuristic {

Solution CurrentSolution;

DataReader Data;

String CurrentCandidate;

String CurrentGrade;

String[] PotentialCandidate;

String TabuInsert = "";

String TabuRemove = "";

String TabuUpgrade = "";

int TabuSize;

public Heuristic(DataReader InputData) {

Data = InputData;

}

public Solution InitialAll(int Num, String R) throws CloneNotSupportedException, IloException, IOException {

AI Baran = new AI(R);

String WC = Baran.Run();

return new Solution(WC.split("!")[0], WC.split("!")[1], Data, "");

}

public Solution Run(int Iteration, int SizeNeighbor, int TabuSize1, int NCandidate, String Name) throws CloneNotSupportedException,

IloException, IOException {

TabuSize = TabuSize1;

long myTime = System.currentTimeMillis();

CurrentSolution = InitialAll(NCandidate, Name);

myTime = System.currentTimeMillis() - myTime;

System.out.print(CurrentSolution.ObjectiveValue + "\t" + myTime);

myTime = System.currentTimeMillis();

PotentialCandidate = Data.getListType(DataReader.PointType.Candidate);

Solution MinSolution = null;

double MinSoFar = Double.MAX_VALUE;

for (int i = 0; i < Iteration; i++) {

List<Solution> Neighbors = new ArrayList<Solution>();

for (int j = 0; j < SizeNeighbor; j++) {

Neighbors.add(PMInsert(CurrentSolution));

Neighbors.add(PNInsert(CurrentSolution));

Neighbors.add(TPInsert(CurrentSolution));

Neighbors.add(Swap(CurrentSolution));

Neighbors.add(Upgrade(CurrentSolution));

Neighbors.add(Downgrade(CurrentSolution));

Neighbors.add(Remove(CurrentSolution));

Neighbors.add(RemoveSmart(CurrentSolution));

125

Neighbors.add(RandomInsert(CurrentSolution));

}

double Min = Double.MAX_VALUE;

for (Solution S : Neighbors) {

if (S.ObjectiveValue < MinSoFar) {

MinSoFar = S.ObjectiveValue;

CurrentSolution = S.clone();

MinSolution = S.clone();

break;

} else if (Min > S.ObjectiveValue) {

if (TabuValid(S.TabuMove)) {

Min = S.ObjectiveValue;

CurrentSolution = S.clone();

}

}

}

ChangeTabu(CurrentSolution.TabuMove);

}

myTime = System.currentTimeMillis() - myTime;

System.out.println("\t" + MinSoFar + "\t" + myTime);

return MinSolution;

}

public Solution Initial() throws CloneNotSupportedException, IloException {

CurrentCandidate = "";

CurrentGrade = "";

return new Solution("", "", Data, "");

}

public Solution Initial(String Candidate, String Type) throws CloneNotSupportedException, IloException {

return new Solution(Candidate, Type, Data, "");

}

public Solution Swap(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

String Current = S.Candidates + "-";

String NeighBSS = "";

String DelBSS = "";

if (!S.Candidates.equals("")) {

DelBSS = S.Candidates.split("-")[Data.R.nextInt(S.Candidates.split("-").length)];

for (String C : PotentialCandidate) {

if (!Current.contains(C + "-")) {

if (DataReader.Distance(C, DelBSS, DataReader.UAVmax / 2, Data) == 1) {

NeighBSS += C + "-";

}

}

}

}

if (!NeighBSS.equals("")) {

return S.removeCandidate(DelBSS).InsertCandidate(NeighBSS.split("-")[Data.R.nextInt(NeighBSS.split("-").length)]);

}

S.changeMove("NONE");

return S;

}

public Solution Remove(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

return S.removeCandidate(Data.R.nextInt(S.Candidates.split("-").length));

}

126

public Solution RemoveSmart(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

double Min = Double.MAX_VALUE;

String NameMin = "";

for (String Name : S.Utilize.keySet()) {

if (S.Utilize.get(Name) < Min) {

Min = S.Utilize.get(Name);

NameMin = Name;

}

}

return S.removeCandidate(NameMin);

}

public Solution RandomInsert(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

return S.InsertCandidate();

}

public Solution Broading(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

String DelBSS = S.Candidates.split("-")[Data.R.nextInt(S.Candidates.split("-").length)];

String Current = S.Candidates + "-";

String NeighBSS = "";

for (String C : PotentialCandidate) {

if (!Current.contains(C + "-")) {

if (DataReader.Distance(C, DelBSS, DataReader.UAVmax, Data) == 1) {

NeighBSS += C + "-";

}

}

}

if (!NeighBSS.equals("")) {

S.removeCandidate(DelBSS);

if (NeighBSS.split("-").length >= 2) {

String C1 = NeighBSS.split("-")[Data.R.nextInt(NeighBSS.split("-").length)];

String C2 = NeighBSS.split("-")[Data.R.nextInt(NeighBSS.split("-").length)];

while (C1.equals(C2)) {

C2 = NeighBSS.split("-")[Data.R.nextInt(NeighBSS.split("-").length)];

}

return S.InsertCandidate(C1).InsertCandidate(C2);

} else {

return S.InsertCandidate(NeighBSS.split("-")[Data.R.nextInt(NeighBSS.split("-").length)]);

}

}

S.changeMove("NONE");

return S;

}

public Solution Upgrade(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

double Max = -1;

String MaxName = "";

if (!S.Utilize.isEmpty()) {

for (String C : S.Utilize.keySet()) {

if (Max < S.Utilize.get(C)) {

Max = S.Utilize.get(C);

MaxName = C;

}

}

String T = "";

127

for (int i = 0; i < S.Candidates.split("-").length; i++) {

if (S.Candidates.split("-")[i].equals(MaxName)) {

if (Integer.parseInt(S.CandidateType.split("-")[i]) < Data.MaxUpgrade) {

T += Integer.toString(Integer.parseInt(S.CandidateType.split("-")[i]) + 1) + "-";

} else {

T += Data.MaxUpgrade + "-";

}

} else {

T += S.CandidateType.split("-")[i] + "-";

}

}

T = T.substring(0, T.length() - 1);

return new Solution(S.Candidates, T, Data, MaxName + "-Up");

}

return S;

}

public Solution PMInsert(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

HashMap<String, Double> DemandNeighborHood = new HashMap<String, Double>();

String[] DemandArray = S.Demands.split("-");

String CCandidate = S.Candidates + "-";

for (String C : PotentialCandidate) {

double NDemand = 0;

if (!CCandidate.contains(C + "-")) {

for (String D : DemandArray) {

if ((DataReader.Distance(C, D, DataReader.UAVmax, Data) != 0)) {

NDemand += 1;

}

}

DemandNeighborHood.put(C, NDemand);

}

}

double Max = -1 * Double.MAX_VALUE;

String CandidateInsert = "";

for (String C : DemandNeighborHood.keySet()) {

if (Max < DemandNeighborHood.get(C)) {

Max = DemandNeighborHood.get(C);

CandidateInsert = C;

}

}

return S.InsertCandidate(CandidateInsert);

}

public Solution TPInsert(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

HashMap<String, Double> AllNeighbor = new HashMap<String, Double>();

String AllPoint = Data.Suppliers + "-" + S.Candidates + "-";

String[] DemandArray = S.Demands.split("-");

String[] AllCurrentLocations = AllPoint.substring(0, AllPoint.length() - 1).split("-");

for (String C : PotentialCandidate) {

double NDemand = 0;

double MDemand = 0;

if (!AllPoint.contains(C + "-")) {

for (String D : AllCurrentLocations) {

if ((DataReader.Distance(C, D, DataReader.UAVmax, Data) != 0)) {

NDemand += 1;

}

128

}

for (String D : DemandArray) {

if ((DataReader.Distance(C, D, DataReader.UAVmax, Data) != 0)) {

MDemand += 1;

}

}

AllNeighbor.put(C, (NDemand * MDemand) / Data.CostConstruction[0]);

}

}

double Max = -1 * Double.MAX_VALUE;

String CandidateInsert = "";

for (String C : AllNeighbor.keySet()) {

if (Max < AllNeighbor.get(C)) {

Max = AllNeighbor.get(C);

CandidateInsert = C;

}

}

return S.InsertCandidate(CandidateInsert);

}

public Solution PNInsert(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

HashMap<String, Double> AllNeighbor = new HashMap<String, Double>();

String AllPoint = Data.Demands + "-" + Data.Suppliers + "-" + S.Candidates + "-";

String[] AllCurrentLocations = AllPoint.substring(0, AllPoint.length() - 1).split("-");

for (String C : PotentialCandidate) {

double NDemand = 0;

if (!AllPoint.contains(C + "-")) {

for (String D : AllCurrentLocations) {

if ((DataReader.Distance(C, D, DataReader.UAVmax, Data) != 0)) {

NDemand += 1;

}

}

AllNeighbor.put(C, NDemand);

}

}

double Max = -1 * Double.MAX_VALUE;

String CandidateInsert = "";

for (String C : AllNeighbor.keySet()) {

if (Max < AllNeighbor.get(C)) {

Max = AllNeighbor.get(C);

CandidateInsert = C;

}

}

return S.InsertCandidate(CandidateInsert);

}

public Solution AreaInsertation(Solution CS) {

return null;

}

public Solution Downgrade(Solution CS) throws CloneNotSupportedException, IloException {

Solution S = CS.clone();

double Min = 2;

String MinName = "";

if (!S.Utilize.isEmpty()) {

for (String C : S.Utilize.keySet()) {

if ((Min > S.Utilize.get(C)) && (S.Utilize.get(C) > 0) && (S.getType(C) > 1)) {

Min = S.Utilize.get(C);

129

MinName = C;

}

}

String T = "";

for (int i = 0; i < S.Candidates.split("-").length; i++) {

if (S.Candidates.split("-")[i].equals(MinName)) {

T += Integer.toString(Integer.parseInt(S.CandidateType.split("-")[i]) - 1) + "-";

} else {

T += S.CandidateType.split("-")[i] + "-";

}

}

T = T.substring(0, T.length() - 1);

return new Solution(S.Candidates, T, Data, MinName + "-Up");

}

return S;

}

private void ChangeTabu(String TabuMove) {

if (TabuMove.split("-")[1].equals("Insert")) {

if (!TabuRemove.equals("")) {

TabuRemove += "-" + TabuMove.split("-")[0];

} else {

TabuRemove = TabuMove.split("-")[0];

}

if (TabuRemove.split("-").length > TabuSize) {

String[] T = TabuRemove.split("-");

TabuRemove = "";

for (int i = T.length - 1; i > T.length - TabuSize - 1; i--) {

TabuRemove += T[i] + "-";

}

}

} else if (TabuMove.split("-")[1].equals("Remove")) {

if (!TabuInsert.equals("")) {

TabuInsert += "-" + TabuMove.split("-")[0];

} else {

TabuInsert = TabuMove.split("-")[0];

}

if (TabuInsert.split("-").length > TabuSize) {

String[] T = TabuInsert.split("-");

TabuInsert = "";

for (int i = T.length - 1; i > T.length - TabuSize - 1; i--) {

TabuInsert += T[i] + "-";

}

}

} else {

if (!TabuUpgrade.equals("")) {

TabuUpgrade += "-" + TabuMove.split("-")[0];

} else {

TabuUpgrade = TabuMove.split("-")[0];

}

if (TabuUpgrade.split("-").length > TabuSize) {

String[] T = TabuUpgrade.split("-");

TabuUpgrade = "";

for (int i = T.length - 1; i > T.length - TabuSize - 1; i--) {

TabuUpgrade += T[i] + "-";

}

}

130

}

}

private boolean TabuValid(String TabuMove) {

String T = "";

if (!TabuMove.equals("")) {

if (TabuMove.equals("NONE")) {

return false;

}

if (TabuMove.split("-")[1].equals("Insert")) {

T = TabuInsert;

} else if (TabuMove.split("-")[1].equals("Remove")) {

T = TabuRemove;

} else {

T = TabuUpgrade;

}

for (int i = 0; i < T.split("-").length; i++) {

if (T.split("-")[i].equals(TabuMove.split("-")[0])) {

return false;

}

}

}

return true;

}

}

A.2 Max Flow Solver Class

package phdalgorithm;

/**

*

* @author aghahari

*/

import ilog.concert.*;

import ilog.cplex.*;

import java.util.ArrayList;

import java.util.HashMap;

public class CplexSolver {

IloCplex Model;

// List of Each Arc associated with a Node!

ArrayList<ArrayList<String>> AdjList = new ArrayList();

ArrayList<ArrayList<String>> RevAdjList = new ArrayList();

// String = Name of Node - Integer = Row of Array Associate with

HashMap<String, Integer> NodeList = new HashMap<String, Integer>();

IloNumVar[] X;

IloNumVar V;

public CplexSolver(String InputPoints, HashMap<String, Integer> InputArcs) throws IloException {

Model = new IloCplex();

Model.setOut(null);

String[] ArrPoint = InputPoints.split("-");

for (int i = 0; i < ArrPoint.length; i++) {

if (!NodeList.containsKey(ArrPoint[i])) {

NodeList.put(ArrPoint[i], i);

}

131

ArrayList<String> NewAdj = new ArrayList<String>();

ArrayList<String> RevNewAdj = new ArrayList<String>();

for (String ID : InputArcs.keySet()) {

String IDTemp = ID + "!!"; //Half ID the same

if (ID.contains(ArrPoint[i] + "-")) {

NewAdj.add(ID);

}

if (IDTemp.contains("-" + ArrPoint[i] + "!!")) {

RevNewAdj.add(ID);

}

}

AdjList.add(NewAdj);

RevAdjList.add(RevNewAdj);

}

V = Model.numVar(0, Double.MAX_VALUE, "Maximum_Flow");

X = new IloNumVar[InputArcs.size()];

HashMap<String, Integer> ArcList = new HashMap<String, Integer>();

int Counter = 0;

for (String ID : InputArcs.keySet()) {

if (!ArcList.containsKey(ID)) {

ArcList.put(ID, Counter);

}

X[Counter] = Model.numVar(0.0, InputArcs.get(ID), "X_" + ID);

Counter++;

}

// Objective Value MAXIMIZE FLOW

IloLinearNumExpr Obj1 = Model.linearNumExpr();

Obj1.addTerm(V, 1.0);

Model.addMaximize(Obj1);

// Flow Balance Constraint

for (String S : NodeList.keySet()) {

IloLinearNumExpr FlowExpr = Model.linearNumExpr();

int NodeNum = NodeList.get(S);

ArrayList<String> Adj = AdjList.get(NodeList.get(S));

ArrayList<String> RevAdj = RevAdjList.get(NodeList.get(S));

for (int i = 0; i < Adj.size(); i++) {

FlowExpr.addTerm(1.0, X[ArcList.get(Adj.get(i))]);

}

for (int i = 0; i < RevAdj.size(); i++) {

FlowExpr.addTerm(-1.0, X[ArcList.get(RevAdj.get(i))]);

}

if (S.equals("MainSupplier")) {

FlowExpr.addTerm(-1.0, V);

}

if (S.equals("MainDemand")) {

FlowExpr.addTerm(1.0, V);

}

Model.addEq(FlowExpr, 0.0, "FlowBalance-" + S);

}

}

public void Solve() throws IloException {

Model.solve();

}

public void end() {

Model.end();

}

132

public double getObj() throws IloException {

return Model.getObjValue();

}

public HashMap<String, Integer> getPreflow() throws IloException {

double[] XValue = Model.getValues(X);

HashMap<String, Integer> Ans = new HashMap<String, Integer>();

for (int i = 0; i < XValue.length; i++) {

if (!Ans.containsKey(X[i].getName().replace("X_", ""))) {

Ans.put(X[i].getName().replace("X_", ""), (int) XValue[i]);

}

}

return Ans;

}

}

A.3 Dynamic Programming Class

package phdalgorithm;

import java.io.IOException;

/**

*

* @author aghahari

*/

public class AI {

ReadData Data;

private Station[] StationList;

private DemandPoint[] DemandList;

private int CoveredDemand = 0;

private int SelectedSize = 0;

private int CoveredSize = 0;

private double CoveredPoint = 0.5;

private Station[] Network;

public AI(String Name) throws IOException {

Data = new ReadData(this, Name);

// Supplier ID is negative one

Station Supplier = new Station(this, -1, 0, 0, "Supplier");

Station.setMySides(StationList);

Network = new Station[StationList.length];

this.Selecting(Supplier);

this.AddtoNetwork(Supplier);

}

public String Run() {

DemandPoint Dem = null;

Dem = getFarDemand();

while (Dem != null) {

ConnectDemand(Dem);

Dem = getFarDemand();

}

String Sr = "";

String SrG = "";

for (Station S : Network) {

if (S != null) {

Selecting(S);

133

if (S.getID() >= 0) {

Sr += "Candidate" + Integer.toString(S.getID() + 1) + "-";

SrG += S.getType() + "-";

}

}

}

return Sr.substring(0, Sr.length() - 1) + "!" + SrG.substring(0, SrG.length() - 1);

} // Run The AI

int getTimeLine() {

return Data.getTime();

} // Get Number of Time Slot

void setStationArray(int NumCandidates) {

// Num Candidates + Supplier

StationList = new Station[NumCandidates + 1];

} // Set the Size of Station

void addStation(Station aThis) {

if (aThis.getID() != -1) {

StationList[aThis.getID()] = aThis;

} else {

StationList[StationList.length - 1] = aThis;

}

} // Add a Station

void setDemandArray(int NumDemand) {

DemandList = new DemandPoint[NumDemand];

} // Set the Size of Demand Point

void addDemand(DemandPoint aThis) {

DemandList[aThis.getID()] = aThis;

} // Add Demand Point

int FinalDecision = -1;

public void ConnectDemand(DemandPoint Destination) {

Station Source = getNearestStation(Destination);

int MaxMove = getMaxMove(Source, Destination);

String History = "";

Station St = Source;

Station[] Route = new Station[MaxMove + 1];

for (int i = 0; i <= MaxMove; i++) {

History = "-" + St.getName() + "-";

AddtoNetwork(St);

ConnectPair(St, Destination, History, MaxMove - i);

switch (FinalDecision) {

case 2:

St = St.getUp();

break;

case 3:

St = St.getDown();

break;

case 1:

St = St.getLeft();

break;

case 0:

St = St.getRight();

break;

}

}

} // Connect a Demand to Network

public void stationstatus() {

134

for (Station S : StationList) {

if (S.isSelected()) {

System.out.println(S.getName());

}

}

}

public DemandPoint getFarDemand() { //

Station[] selectedStation = getSelectedStation();

DemandPoint[] uncoveredDemand = getUnCoveredDemand();

double Distance = -1 * Double.MAX_VALUE;

DemandPoint FarDemand = null;

if (uncoveredDemand != null) {

for (DemandPoint Dem : uncoveredDemand) {

double DistanceMin = Double.MAX_VALUE;

for (Station St : selectedStation) {

if (Distance(St, Dem) < DistanceMin) {

DistanceMin = Distance(St, Dem);

}

}

if (DistanceMin > Distance) {

FarDemand = Dem;

Distance = DistanceMin;

}

}

}

return FarDemand;

} // Get Farthest Demand to a Station

public Station[] getSelectedStation() {

if (getSelectedSize() != 0) {

Station[] SelectedStation = new Station[getSelectedSize()];

int Counter = 0;

for (Station A : StationList) {

if (A.isSelected()) {

SelectedStation[Counter++] = A;

}

}

return SelectedStation;

}

return null;

} // Return All Selected Station

private Station getNearestStation(DemandPoint Demand) {

Station[] SelectedList = getSelectedStation();

double Distance = Double.MAX_VALUE;

Station NearestOne = null;

for (Station St : SelectedList) {

if (Distance(St, Demand) < Distance) {

NearestOne = St;

Distance = Distance(St, Demand);

}

}

return NearestOne;

} // Get Nearest Station to a Demand Point

private int getSelectedSize() {

return SelectedSize;

} // Get Selected Stations Size

private int getCoveredSize() {

135

return CoveredSize;

} // Return Demand Covered Size

private void Selecting(Station Station) {

if (!Station.isSelected()) {

SelectedSize += 1;

DemandPoint[] unCoveredDemand = getUnCoveredDemand();

if (unCoveredDemand != null) {

for (DemandPoint Dem : unCoveredDemand) {

if (Distance(Station, Dem) <= Data.getFlyingRange()) {

Covering(Dem, Station);

Station.incrementCoverage();

}

}

}

Station.selecting(3);

}

} // Selecting a Station

private void Deselecting(Station Station) {

if (!IsNetwork(Station)) {

if (Station.isSelected()) {

SelectedSize -= 1;

Station.deselect();

DemandPoint[] CoverdDemand = getCoveredDemand(Station);

if (CoverdDemand != null) {

for (DemandPoint Dem : CoverdDemand) {

Uncovering(Dem);

Station.DecrementCoverage();

}

}

}

}

}

private void Covering(DemandPoint Demand, Station station) {

CoveredSize += 1;

CoveredDemand += Demand.getDemand();

Demand.Covering(station);

} // Adjust Parameters - Cover Demand Object

private String Cord(Station S) {

return S.getXString() + "," + S.getYString();

} // String Coordinate X-Y Station Object

private String Cord(DemandPoint D) {

return D.getXString() + "," + D.getYString();

} // String Coordinate X-Y Demand Object

private double Distance(String Cord, String Cord0) {

return Data.getDistance(Cord, Cord0);

} // Distance Based on String Coordinate

private DemandPoint[] getUnCoveredDemand() {

DemandPoint[] Uncovered = new DemandPoint[DemandList.length - getCoveredSize()];

int Counter = 0;

for (DemandPoint Demand : DemandList) {

if (!Demand.isCover()) {

Uncovered[Counter++] = Demand;

}

}

if (Counter == 0) {

return null;

136

}

return Uncovered;

} // Get All Uncovered Demand

private double ConnectPair(Station Source, DemandPoint Destination, String MoveHistory, int MaxMove) {

Selecting(Source);

// STOP SIGN

if (MaxMove == 0) {

if (Destination.isCover()) {

Deselecting(Source);

return 0;

} else {

Deselecting(Source);

return -10000;

}

} else {

double LeftMove;

if (Source.isLeft() && (!MoveHistory.contains("-" + Source.getLeft().getName() + "-"))) {

LeftMove = ConnectPair(Source.getLeft(), Destination, MoveHistory + "-" + Source.getLeft().getName() + "-", MaxMove - 1) +

ScoreSelecting(Source.getLeft());

} else {

LeftMove = -100;

}

double RightMove;

if (Source.isRight() && (!MoveHistory.contains("-" + Source.getRight().getName() + "-"))) {

RightMove = ConnectPair(Source.getRight(), Destination, MoveHistory + "-" + Source.getRight().getName() + "-", MaxMove - 1) +

ScoreSelecting(Source.getRight());

} else {

RightMove = -100;

}

double UpMove;

if (Source.isUp() && (!MoveHistory.contains("-" + Source.getUp().getName() + "-"))) {

UpMove = ConnectPair(Source.getUp(), Destination, MoveHistory + "-" + Source.getUp().getName() + "-", MaxMove - 1) +

ScoreSelecting(Source.getUp());

} else {

UpMove = -100;

}

double DownMove;

if (Source.isDown() && (!MoveHistory.contains("-" + Source.getDown().getName() + "-"))) {

DownMove = ConnectPair(Source.getDown(), Destination, MoveHistory + "-" + Source.getDown().getName() + "-", MaxMove - 1) +

ScoreSelecting(Source.getDown());

} else {

DownMove = -100;

}

double Max;

//System.out.println(MoveHistory);

if (LeftMove < RightMove) {

Max = RightMove;

FinalDecision = 0;//"Right";

} else {

Max = LeftMove;

FinalDecision = 1;//"Left";

}

if (Max < UpMove) {

Max = UpMove;

FinalDecision = 2;//"Up";

}

137

if (Max < DownMove) {

Max = DownMove;

FinalDecision = 3;//"Down";

}

Deselecting(Source);

return Max;

}

} // Connecting Two Pair of Station and Demand Based on best Route!!

private double Distance(Station Station, DemandPoint Dem) {

return Distance(Cord(Station), Cord(Dem));

} // Get Distance based on Objects

private int getMaxMove(Station Source, DemandPoint Destination) {

return (int) ((Math.abs(Source.getY() - Destination.getY()) + Math.abs(Source.getX() - Destination.getX())) / Data.getFlyingRange());

}

private double ScoreSelecting(Station sStation) {

double Point = 0;

for (DemandPoint Dem : DemandList) {

if (reachable(sStation, Dem)) {

if (!Dem.isCover()) {

Point += Dem.getDemand();

} else {

Point += CoveredPoint * Dem.getDemand();

}

} else if (!Dem.isCover()) {

Point += Dem.getDemand() / Distance(sStation, Dem);

} else {

Point += CoveredPoint * Dem.getDemand() / Distance(sStation, Dem);

}

}

return Point;

}

private boolean reachable(Station sStation, DemandPoint Dem) {

if (Distance(sStation, Dem) < Data.getFlyingRange()) {

return true;

} else {

return false;

}

}

DemandPoint[] getDemandList() {

return DemandList;

}

private DemandPoint[] getCoveredDemand(Station Station) {

DemandPoint[] Demands = new DemandPoint[Station.getCoverage()];

int Counter = 0;

for (DemandPoint Dem : DemandList) {

if (Dem.isCover()) {

if (Dem.getStation().getID() == Station.getID()) {

Demands[Counter++] = Dem;

}

}

}

if (Counter == 0) {

return null;

}

return Demands;

}

138

private DemandPoint[] getCoveredDemand() {

DemandPoint[] CoveredDemand = new DemandPoint[CoveredSize];

int Counter = 0;

for (DemandPoint Dem : DemandList) {

if (Dem.isCover()) {

CoveredDemand[Counter++] = Dem;

}

}

return CoveredDemand;

}

private void Uncovering(DemandPoint Dem) {

Station[] SelectedStation = getSelectedStation();

boolean reset = false;

for (Station S : SelectedStation) {

if (reachable(S, Dem)) {

Dem.ResetStation(S);

S.incrementCoverage();

reset = true;

break;

}

}

if (!reset) {

CoveredDemand -= Dem.getDemand();

CoveredSize -= 1;

Dem.Uncover();

}

}

private void AddtoNetwork(Station St) {

if (!IsNetwork(St)) {

for (int i = 0; i < Network.length; i++) {

if (Network[i] == null) {

Network[i] = St;

break;

}

}

}

}

private boolean IsNetwork(Station St) {

for (int i = 0; i < Network.length; i++) {

if (Network[i] != null) {

if (Network[i].getID() == St.getID()) {

return true;

}

}

}

return false;

}

}

A.4 Data Reader Class

package phdalgorithm;

import java.io.BufferedReader;

139

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Random;

/**

*

* @author aghahari

*/

public class DataReader {

HashMap<String, Point> Points = new HashMap<String, Point>();

static double UAVmax;

HashMap<String, Integer> Distance = new HashMap<String, Integer>();

double[] CostConstruction;

double CostLostSale;

double[] CostOperational;

HashMap<Integer, Integer> Battery;

String Suppliers;

String Demands;

int Horizon;

HashMap<String, Integer> DemandScenario;

int MaxUpgrade = 3;

static Random R = new Random();

String DistanceType;

HashMap<String, Double> ObjHistory = new HashMap<String, Double>();

int NCandidate;

int NSupplier;

int NDemand;

private PointType getType(String Name) {

if (Name.contains("Supplier")) {

return PointType.Supplier;

} else if (Name.contains("Candidate")) {

return PointType.Candidate;

}

return PointType.Demand;

}

static public enum PointType {

Candidate, Supplier, Demand

}

public void InsertObj(String ID, double Value) {

if (!ObjHistory.containsKey(ID)) {

ObjHistory.put(ID, Value);

}

}

public double getObjective(String ID) {

if (ObjHistory.get(ID)==null){

return -1.0;

}else{

return ObjHistory.get(ID);

}

}

140

public DataReader(String Name, String Distance) throws IOException {

ReadBender(Name, Distance);

}

public DataReader(double UAV, String InputBattery, String InputSupplier, String InputDemandPoint, HashMap<String, Integer>

InputDemandScenario, int InputHorizon, String InCostConstruction, String InCostOperation, double CLostSale, String DistanceT) throws

FileNotFoundException, IOException {

DistanceType = DistanceT;

CostLostSale = CLostSale;

CostConstruction = new double[InCostConstruction.split("-").length];

for (int i = 0; i < InCostConstruction.split("-").length; i++) {

CostConstruction[i] = Double.parseDouble(InCostConstruction.split("-")[i]);

}

CostOperational = new double[InCostOperation.split("-").length];

for (int i = 0; i < InCostOperation.split("-").length; i++) {

CostOperational[i] = Double.parseDouble(InCostOperation.split("-")[i]);

}

BufferedReader Input = new BufferedReader(new FileReader("Input.txt"));

String newLine = "";

while (!newLine.equals("Data")) {

newLine = Input.readLine();

}

String[] NBattery = InputBattery.split("-");

Battery = new HashMap<Integer, Integer>();

MaxUpgrade = InputBattery.split("-").length;

for (int i = 0; i < NBattery.length; i++) {

Battery.put(i + 1, Integer.parseInt(NBattery[i]));

}

while ((newLine = Input.readLine()) != null) {

Points.put(newLine.split("!")[0], new Point(Double.parseDouble(newLine.split("!")[1]), Double.parseDouble(newLine.split("!")[2]),

newLine.split("!")[0]));

}

Suppliers = InputSupplier;

Demands = InputDemandPoint;

DemandScenario = InputDemandScenario;

UAVmax = UAV;

Horizon = InputHorizon;

for (Point P1 : Points.values()) {

for (Point P2 : Points.values()) {

if (!Distance.containsKey(P1.Name + "-" + P2.Name)) {

Distance.put(P1.Name + "-" + P2.Name, DistanceCalculator(P1, P2, this));

}

}

}

System.out.println("Data Read!");

WriteBender("NInput.txt");

}

public HashMap<String, Integer> getDemandScenario() {

return DemandScenario;

}

public int getDistance(String T1, String T2) {

if (Distance.get(T1 + "-" + T2)==null){

return 0;

}else{

return Distance.get(T1 + "-" + T2);

}

}

141

public int getBattery(int Type) {

return Battery.get(Type);

}

public String[] getListType(PointType Type) {

List<String> A = new ArrayList<String>();

for (Point P : Points.values()) {

if (this.getType(P.Name) == Type) {

A.add(P.Name);

}

}

String[] Ans = new String[A.size()];

for (int i = 0; i < Ans.length; i++) {

Ans[i] = A.get(i);

}

return Ans;

}

public static int DistanceCalculator(Point P1, Point P2, DataReader Data) {

if (Data.DistanceType.equals("Linear")) {

return DistanceLinear(P1, P2);

} else {

return Distance(P1, P2);

}

}

public static int Distance(Point P1, Point P2, double UAVMax) {

double R = 3963.1676;

double lat1 = P1.lat * (Math.PI / 180.0);

double lng1 = P1.lng * (Math.PI / 180.0);

double lat2 = P2.lat * (Math.PI / 180.0);

double lng2 = P2.lng * (Math.PI / 180.0);

double deltaPhi = lat2 - lat1;

double deltaLambda = lng2 - lng1;

double a = Math.sin(deltaPhi / 2.0) * Math.sin(deltaPhi / 2.0) + Math.cos(lat1) * Math.cos(lat2) * Math.sin(deltaLambda / 2.0) *

Math.sin(deltaLambda / 2.0);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

double d = R * c;

if ((d > UAVMax) || (d == 0)) {

return 0;

} else {

return 1;

}

}

public static int Distance(String PS1, String PS2, double UAVMax, DataReader Data) {

double R = 3963.1676;

Point P1 = null;

Point P2 = null;

for (Point P : Data.Points.values()) {

if (P.Name.equals(PS1)) {

P1 = P;

}

if (P.Name.equals(PS2)) {

P2 = P;

}

}

double lat1 = P1.lat * (Math.PI / 180.0);

double lng1 = P1.lng * (Math.PI / 180.0);

double lat2 = P2.lat * (Math.PI / 180.0);

142

double lng2 = P2.lng * (Math.PI / 180.0);

double deltaPhi = lat2 - lat1;

double deltaLambda = lng2 - lng1;

double a = Math.sin(deltaPhi / 2.0) * Math.sin(deltaPhi / 2.0) + Math.cos(lat1) * Math.cos(lat2) * Math.sin(deltaLambda / 2.0) *

Math.sin(deltaLambda / 2.0);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

double d = R * c;

if ((d > UAVMax) || (d == 0)) {

return 0;

} else {

return 1;

}

}

public static int Distance(Point P1, Point P2) {

double R = 3963.1676;

double lat1 = P1.lat * (Math.PI / 180.0);

double lng1 = P1.lng * (Math.PI / 180.0);

double lat2 = P2.lat * (Math.PI / 180.0);

double lng2 = P2.lng * (Math.PI / 180.0);

double deltaPhi = lat2 - lat1;

double deltaLambda = lng2 - lng1;

double a = Math.sin(deltaPhi / 2.0) * Math.sin(deltaPhi / 2.0) + Math.cos(lat1) * Math.cos(lat2) * Math.sin(deltaLambda / 2.0) *

Math.sin(deltaLambda / 2.0);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

double d = R * c;

if ((d > UAVmax) || (d == 0)) {

return 0;

} else {

return 1;

}

}

public String getSupplier() {

return Suppliers;

}

public String getDemandPoint() {

return Demands;

}

int getHorizon() {

return Horizon;

}

public static int DistanceLinear(Point P1, Point P2) {

double d = Math.sqrt(Math.pow(P1.lat - P2.lat, 2) + Math.pow(P1.lng - P2.lng, 2));

if ((d > UAVmax) || (d == 0)) {

return 0;

} else {

return 1;

}

}

public void WriteBender(String Name) throws IOException {

BufferedWriter OutputData = new BufferedWriter(new FileWriter(Name));

int NumDemand = 0;

String SDemand = "";

int NumCandidate = 0;

String SCandidate = "";

int NumSupplier = 0;

String SSupplier = "";

143

for (String S : Points.keySet()) {

Point P = Points.get(S);

if (this.getType(P.Name) == PointType.Candidate) {

NumCandidate += 1;

} else if (this.getType(P.Name) == PointType.Supplier) {

NumSupplier += 1;

} else {

NumDemand += 1;

}

}

OutputData.write(UAVmax + "\n");

OutputData.write(NumCandidate + "\n");

OutputData.write(CostConstruction.length + "\n");

OutputData.write(Horizon + "\n");

for (int i = 0; i < CostConstruction.length; i++) {

OutputData.write(Double.toString(CostConstruction[i]) + "\n");

}

for (int i = 0; i < CostOperational.length; i++) {

OutputData.write(Double.toString(CostOperational[i]) + "\n");

}

for (int i = 1; i <= CostConstruction.length; i++) {

OutputData.write(Battery.get(i) + "\n");

}

for (String S : Points.keySet()) {

Point P = Points.get(S);

if (this.getType(P.Name) == PointType.Candidate) {

OutputData.write(P.lat + "," + P.lng + "\n");

}

}

OutputData.write(NumDemand + "\n");

for (String S : Points.keySet()) {

Point P = Points.get(S);

if (this.getType(P.Name) == PointType.Demand) {

OutputData.write(P.lat + "," + P.lng + "," + DemandScenario.get(P.Name) + "\n");

}

}

OutputData.write(NumSupplier + "\n");

for (String S : Points.keySet()) {

Point P = Points.get(S);

if (this.getType(P.Name) == PointType.Supplier) {

OutputData.write(P.lat + "," + P.lng + "\n");

}

}

OutputData.write(Double.toString(CostLostSale));

OutputData.close();

}

public void WriteCplex(String Name) throws IOException {

BufferedWriter OutputData = new BufferedWriter(new FileWriter(Name));

OutputData.write("param b :=" + "\n");

String Allpoint = "";

for (int C : Battery.keySet()) {

OutputData.write(C + "\t" + Battery.get(C) + "\n");

}

OutputData.write(";" + "\n" + "param S:=" + "\n");

for (int i = 0; i < this.CostConstruction.length; i++) {

144

OutputData.write(Integer.toString(i + 1) + "\t" + CostConstruction[i] + "\n");

}

OutputData.write(";" + "\n" + "param Loss = " + this.CostLostSale + ";" + "\n");

OutputData.write("param Operational :=" + "\n");

for (int i = 0; i < this.CostOperational.length; i++) {

OutputData.write(Integer.toString(i + 1) + "\t" + CostOperational[i] + "\n");

}

OutputData.write(";" + "\n" + "set Time := ");

for (int i = 1; i <= Horizon; i++) {

OutputData.write(Integer.toString(i) + "\t");

}

OutputData.write(";" + "\n" + "set Type:=" + "\n");

for (int i = 1; i <= MaxUpgrade; i++) {

OutputData.write(Integer.toString(i) + "\t");

}

OutputData.write(";" + "\n" + "set Scenario := 1;" + "\n" + "set Supplier :=" + "\n");

for (int i = 0; i < this.Suppliers.split("-").length; i++) {

OutputData.write(this.Suppliers.split("-")[i] + "\n");

Allpoint += this.Suppliers.split("-")[i] + "-";

}

OutputData.write(";" + "\n" + "set Demands :=" + "\n");

for (int i = 0; i < Demands.split("-").length; i++) {

OutputData.write(Demands.split("-")[i] + "\n");

Allpoint += Demands.split("-")[i] + "-";

}

OutputData.write(";" + "\n" + "set Candidate :=" + "\n");

for (String P1 : Points.keySet()) {

if (P1.contains("Candidate")) {

OutputData.write(P1 + "\n");

Allpoint += P1 + "-";

}

}

OutputData.write(";" + "\n" + "param Demand := " + "\n");

for (String C : DemandScenario.keySet()) {

OutputData.write(C + "\t1\t" + DemandScenario.get(C) + "\n");

}

Allpoint = Allpoint.substring(0, Allpoint.length() - 1);

OutputData.write(";" + "\n" + "param a:\t");

for (int i = 0; i < Allpoint.split("-").length; i++) {

OutputData.write(Allpoint.split("-")[i] + "\t");

}

OutputData.write(":=" + "\n");

int Siz1 = Allpoint.split("-").length;

for (int i = 0; i < Siz1; i++) {

Point P1 = Points.get(Allpoint.split("-")[i]);

String distance = P1.Name + "\t";

for (int j = 0; j < Siz1; j++) {

Point P2 = Points.get(Allpoint.split("-")[j]);

distance += Integer.toString((int) DistanceCalculator(P1, P2, this)) + "\t";

}

OutputData.write(distance + "\n");

}

OutputData.write(";" + "\n");

OutputData.close();

System.out.println("CPLEX Done");

145

}

public static class Point {

double lat;

double lng;

String Name;

public Point(double lat1, double lng1, String Name1) {

lat = lat1;

lng = lng1;

Name = Name1;

}

}

public void ReadBender(String Name, String DistanceT) throws IOException {

BufferedReader Input = new BufferedReader(new FileReader(Name));

DistanceType = DistanceT;

UAVmax = Integer.parseInt(Input.readLine());

NCandidate = Integer.parseInt(Input.readLine());

CostConstruction = new double[Integer.parseInt(Input.readLine())];

Horizon = Integer.parseInt(Input.readLine());

for (int i = 0; i < CostConstruction.length; i++) {

CostConstruction[i] = Double.parseDouble(Input.readLine());

}

CostOperational = new double[CostConstruction.length];

for (int i = 0; i < CostOperational.length; i++) {

CostOperational[i] = Double.parseDouble(Input.readLine());

}

Battery = new HashMap<Integer, Integer>();

for (int i = 1; i <= CostConstruction.length; i++) {

Battery.put(i, Integer.parseInt(Input.readLine()));

}

MaxUpgrade = Battery.size();

for (int i = 1; i <= NCandidate; i++) {

String A = Input.readLine();

Point P = new Point(Double.parseDouble(A.split(",")[0]), Double.parseDouble(A.split(",")[1]), "Candidate" + i);

Points.put("Candidate" + i, P);

}

NDemand = Integer.parseInt(Input.readLine());

DemandScenario = new HashMap<String, Integer>();

Demands = "";

for (int i = 1; i <= NDemand; i++) {

String A = Input.readLine();

Demands += "Demand" + i + "-";

DemandScenario.put("Demand" + i, Integer.parseInt(A.split(",")[2]));

Point P = new Point(Double.parseDouble(A.split(",")[0]), Double.parseDouble(A.split(",")[1]), "Demand" + i);

Points.put("Demand" + i, P);

}

Demands = Demands.substring(0, Demands.length() - 1);

NSupplier = Integer.parseInt(Input.readLine());

Suppliers = "";

for (int i = 1; i <= NSupplier; i++) {

String A = Input.readLine();

Suppliers += "Supplier" + i + "-";

Point P = new Point(Double.parseDouble(A.split(",")[0]), Double.parseDouble(A.split(",")[1]), "Supplier" + i);

146

Points.put("Supplier" + i, P);

}

Suppliers = Suppliers.substring(0, Suppliers.length() - 1);

CostLostSale = Double.parseDouble(Input.readLine());

for (Point P1 : Points.values()) {

for (Point P2 : Points.values()) {

if (!Distance.containsKey(P1.Name + "-" + P2.Name)) {

Distance.put(P1.Name + "-" + P2.Name, DistanceCalculator(P1, P2, this));

}

}

}

}

public String getCor(String Name) {

return Points.get(Name).lat + "," + Points.get(Name).lng;

}

}

A.5 Demand Point Class

package phdalgorithm;

/**

*

* @author aghahari

*/

public class DemandPoint {

private int ID;

private String Name;

private double X;

private double Y;

private double Amount;

private double CoveredAmount;

private boolean Covered;

private Station CoverStation;

public DemandPoint(AI parent, int ID1, double Amount1, double X1, double Y1) {

this(parent, ID1, "Demand_" + Integer.toString(ID1), Amount1, X1, Y1);

}

public DemandPoint(AI parent, int ID1, String Name1, double Amount1, double X1, double Y1) {

ID = ID1;

Name = Name1;

Amount = Amount1;

CoveredAmount = 0;

X = X1;

Y = Y1;

Covered = false;

CoverStation = null;

parent.addDemand(this);

}

public double getDemand() {

return Amount;

}

public String getName() {

return Name;

}

147

public int getID() {

return ID;

}

String getXString() {

return Double.toString(X);

}

String getYString() {

return Double.toString(Y);

}

double getX() {

return X;

}

double getY() {

return Y;

}

public void Covering(Station station) {

this.Covered = true;

this.CoverStation = station;

}

boolean isCover() {

return this.Covered;

}

Station getStation() {

return CoverStation;

}

void ResetStation(Station S) {

this.CoverStation = S;

}

void Uncover() {

this.Covered = false;

this.CoverStation = null;

}

}

A.6 BSS Station Class

package phdalgorithm;

/**

*

* @author aghahari

*/

public class Station {

AI Parent;

private final int ID;

private final double X;

private final double Y;

private final String Name;

private Station Up;

private Station Down;

private Station Left;

private Station Right;

private int Battery;

private int UsedBattery;

148

private double BuildCost;

private double OperationCost;

private int[] Operational;

private boolean Selected;

private int CoveringDemand;

private int Type;

static int distance = 5;

public Station(AI parent, int ID1, double X1, double Y1, String Name1) {

Parent = parent;

ID = ID1;

X = X1;

Y = Y1;

Name = Name1;

Type = 0;

Battery = 0;

UsedBattery = 0;

BuildCost = 0;

OperationCost = 0;

CoveringDemand = 0;

Selected = false;

Parent.addStation(this);

}

public Station(AI parent, int ID1, double X1, double Y1) {

this(parent, ID1, X1, Y1, "Station_" + Integer.toString(ID1));

}

static public void setMySides(Station[] StationList) {

for (Station thisOne : StationList) {

thisOne.Up = null;

thisOne.Right = null;

thisOne.Down = null;

thisOne.Left = null;

for (Station Other : StationList) {

if ((Other.X - thisOne.X == 0) && (Other.Y - thisOne.Y == distance)) {

thisOne.Up = Other;

}

if ((Other.X - thisOne.X == distance) && (Other.Y - thisOne.Y == 0)) {

thisOne.Right = Other;

}

if ((Other.X - thisOne.X == 0) && (Other.Y - thisOne.Y == -1 * distance)) {

thisOne.Down = Other;

}

if ((Other.X - thisOne.X == -1 * distance) && (Other.Y - thisOne.Y == 0)) {

thisOne.Left = Other;

}

}

}

}

public Station getLeft() {

return Left;

}

public Station getRight() {

return Right;

}

public Station getUp() {

return Up;

}

149

public Station getDown() {

return Down;

}

public int getID() {

return ID;

}

public String getName() {

return Name;

}

void selecting(int Type1) {

Type = Type1 + 1;

Battery = Parent.Data.getBattery(Type1);

BuildCost = Parent.Data.getConstruction(Type1);

OperationCost = Parent.Data.getOperation(Type1);

UsedBattery = 0;

Selected = true;

}

boolean isSelected() {

return Selected;

}

String getXString() {

return Double.toString(X);

}

String getYString() {

return Double.toString(Y);

}

double getX() {

return X;

}

double getY() {

return Y;

}

boolean isLeft() {

return Left != null;

}

boolean isUp() {

return Up != null;

}

boolean isDown() {

return Down != null;

}

boolean isRight() {

return Right != null;

}

void incrementCoverage() {

CoveringDemand++;

}

void DecrementCoverage() {

CoveringDemand--;

}

int getCoverage() {

return CoveringDemand;

}

void deselect() {

Selected = false;

Type = 0;

150

Battery = 0;

BuildCost = 0;

OperationCost = 0;

UsedBattery = 0;

}

String getType() {

return Integer.toString(this.Type);

}

}

A.7 Solution Class

package phdalgorithm;

import ilog.concert.IloException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

/**

*

* @author aghahari

*/

public class Solution implements Cloneable {

HashMap<String, Integer> DemandScenario;

String Points;

HashMap<String, Integer> Arcs = new HashMap<String, Integer>();

DataReader Data;

String CandidateType;

String Suppliers;

String Demands;

String Candidates;

int Horizon;

HashMap<String, Double> Utilize = new HashMap<String, Double>();

double ObjectiveValue = 0;

String TabuMove;

public Solution(String InputCandidate, String InputCandidateType, DataReader InputData, String Tabu) throws CloneNotSupportedException,

IloException {

TabuMove = Tabu;

int MaxDemand = 0;

Data = InputData;

for (int C : Data.getDemandScenario().values()) {

MaxDemand += 2 * C;

}

Horizon = Data.getHorizon();

Suppliers = Data.getSupplier();

CandidateType = InputCandidateType;

Demands = Data.getDemandPoint();

DemandScenario = Data.getDemandScenario();

Candidates = InputCandidate;

Points = "";

// Create different Type of BSS

List<String> AllPoints = new ArrayList<String>();

String[] ArrDemands = Divider(Demands);

String[] ArrSupplier = Divider(Suppliers);

151

String[] ArrCandidate = Divider(Candidates);

//All Demand Point

for (String D : ArrDemands) {

AllPoints.add(D);

Points += D + "-";

}

// All Supplier

for (String S : ArrSupplier) {

AllPoints.add(S);

Points += S + "-";

}

// Arcs b/w Supplier and Demand ONE WAY!

for (String S : ArrSupplier) {

for (String D : ArrDemands) {

int Dis = Data.getDistance(S, D);

if (Dis == 1) {

if (!Arcs.containsKey(S + "-" + D)) {

Arcs.put(S + "-" + D, MaxDemand);

}

}

}

}

// Update Candidate! Arcs b/w Candidate and Supplier and Demand!

for (int i = 0; i < ArrCandidate.length; i++) {

String C = ArrCandidate[i];

String HeadNode = C + "Start";

String TailNode = C + "End";

if (!Arcs.containsKey(HeadNode + "-" + TailNode)) {

Arcs.put(HeadNode + "-" + TailNode, Data.getBattery(Integer.parseInt(CandidateType.split("-")[i])));

}

}

for (String P : AllPoints) {

for (int i = 0; i < ArrCandidate.length; i++) {

String C = ArrCandidate[i];

Utilize.put(C, 0.0);

int Dis = Data.getDistance(P, C);

String HeadNode = C + "Start";

String TailNode = C + "End";

if (Dis == 1) {

if (!P.contains("Supplier")) {

if (!Arcs.containsKey(TailNode + "-" + P)) {

Arcs.put(TailNode + "-" + P, MaxDemand);

}

}

if ((P.contains("Supplier")) || (P.contains("Candidate"))) {

if (!Arcs.containsKey(P + "-" + HeadNode)) {

Arcs.put(P + "-" + HeadNode, MaxDemand);

}

}

}

}

}

for (int i = 0; i < ArrCandidate.length; i++) {

for (int j = 0; j < ArrCandidate.length; j++) {

if (i != j) {

152

String C = ArrCandidate[i];

String D = ArrCandidate[j];

int Dis = Data.getDistance(D, C);

if (Dis == 1) {

if (!Arcs.containsKey(C + "End-" + D + "Start")) {

Arcs.put(C + "End-" + D + "Start", MaxDemand);

}

}

}

}

}

for (String C : ArrCandidate) {

Points += C + "Start-";

Points += C + "End-";

}

Points += "MainSupplier-";

for (String T : ArrSupplier) {

if (!Arcs.containsKey("MainSupplier-" + T)) {

Arcs.put("MainSupplier-" + T, MaxDemand);

}

}

Points += "MainDemand";

for (String T : ArrDemands) {

if (!Arcs.containsKey(T + "-MainDemand")) {

Arcs.put(T + "-MainDemand", DemandScenario.get(T));

}

}

ObjectiveValue = this.getObjective();

}

public Solution(String InputCandidate, String InputCandidateType, DataReader InputData, String Tabu, double Obj, HashMap<String, Double>

Utilize1) {

TabuMove = Tabu;

int MaxDemand = 0;

Data = InputData;

for (int C : Data.getDemandScenario().values()) {

MaxDemand += C;

}

Horizon = Data.getHorizon();

Suppliers = Data.getSupplier();

CandidateType = InputCandidateType;

Demands = Data.getDemandPoint();

DemandScenario = Data.getDemandScenario();

Candidates = InputCandidate;

Points = "";

// Create different Type of BSS

List<String> AllPoints = new ArrayList<String>();

String[] ArrDemands = Divider(Demands);

String[] ArrSupplier = Divider(Suppliers);

String[] ArrCandidate = Divider(Candidates);

//All Demand Point

for (String D : ArrDemands) {

AllPoints.add(D);

Points += D + "-";

}

// All Supplier

153

for (String S : ArrSupplier) {

AllPoints.add(S);

Points += S + "-";

}

// Arcs b/w Supplier and Demand ONE WAY!

for (String S : ArrSupplier) {

for (String D : ArrDemands) {

int Dis = Data.getDistance(S, D);

if (Dis == 1) {

if (!Arcs.containsKey(S + "-" + D)) {

Arcs.put(S + "-" + D, MaxDemand);

}

//Arcs.putIfAbsent(D + "-" + S, MaxDemand); Arc az Demand be Supplier ?! Not Possible

}

}

}

// Update Candidate! Arcs b/w Candidate and Supplier and Demand!

for (int i = 0; i < ArrCandidate.length; i++) {

String C = ArrCandidate[i];

String HeadNode = C + "Start";

String TailNode = C + "End";

if (!Arcs.containsKey(HeadNode + "-" + TailNode)) {

Arcs.put(HeadNode + "-" + TailNode, Data.getBattery(Integer.parseInt(CandidateType.split("-")[i])));

}

}

for (String P : AllPoints) {

for (int i = 0; i < ArrCandidate.length; i++) {

String C = ArrCandidate[i];

if (Utilize1 == null) {

Utilize.put(C, 0.0);

} else {

if (Utilize1.get(C) == null) {

Utilize.put(C, 0.0);

} else {

Utilize.put(C, Utilize1.get(C));

};

}

int Dis = Data.getDistance(P, C);

String HeadNode = C + "Start";

String TailNode = C + "End";

if (Dis == 1) {

if (!P.contains("Supplier")) {

if (!Arcs.containsKey(TailNode + "-" + P)) {

Arcs.put(TailNode + "-" + P, MaxDemand);

}

}

if ((P.contains("Supplier")) || (P.contains("Candidate"))) {

if (!Arcs.containsKey(P + "-" + HeadNode)) {

Arcs.put(P + "-" + HeadNode, MaxDemand);

}

}

}

}

}

for (int i = 0; i < ArrCandidate.length; i++) {

154

for (int j = 0; j < ArrCandidate.length; j++) {

if (i != j) {

String C = ArrCandidate[i];

String D = ArrCandidate[j];

int Dis = Data.getDistance(D, C);

if (Dis == 1) {

if (!Arcs.containsKey(C + "End-" + D + "Start")) {

Arcs.put(C + "End-" + D + "Start", MaxDemand);

}

}

}

}

}

for (String C : ArrCandidate) {

Points += C + "Start-";

Points += C + "End-";

}

Points += "MainSupplier-";

for (String T : ArrSupplier) {

if (!Arcs.containsKey("MainSupplier-" + T)) {

Arcs.put("MainSupplier-" + T, MaxDemand);

}

}

Points += "MainDemand";

for (String T : ArrDemands) {

if (!Arcs.containsKey(T + "-MainDemand")) {

Arcs.put(T + "-MainDemand", DemandScenario.get(T));

}

}

ObjectiveValue = Obj;

}

public Solution(String InputCandidate, String InputCandidateType, DataReader InputData, String Tabu, double Obj) {

this(InputCandidate, InputCandidateType, InputData, Tabu, Obj, null);

}

@Override

public Solution clone() {

return new Solution(this.Candidates, this.CandidateType, Data, this.TabuMove, this.ObjectiveValue, this.Utilize);

}

public String[] Divider(String S) {

return S.split("-");

}

public void changeCapacity(HashMap<String, Integer> InputDemandScenario) {

// Update Capacity of Arcs

for (String T : Divider(Demands)) {

Arcs.put(T + "-MainDemand", InputDemandScenario.get(T));

}

}

public double getObjective() throws CloneNotSupportedException, IloException {

if (Data.getObjective(this.Candidates + "!" + this.CandidateType) != -1) {

return Data.getObjective(this.Candidates + "!" + this.CandidateType);

}

// Calculate the Construction Cost

double Obj = 0;

if (!CandidateType.equals("")) {

for (int i = 0; i < CandidateType.split("-").length; i++) {

155

Obj += Data.CostConstruction[Integer.parseInt(CandidateType.split("-")[i]) - 1];

}

}

this.changeCapacity(DemandScenario);

HashMap<String, Integer> preflow = new HashMap<String, Integer>();

Utilize = new HashMap<String, Double>();

for (int i = 0; i < Horizon; i++) {

CplexSolver CSolver = new CplexSolver(Points, Arcs);

CSolver.Solve();

HashMap<String, Integer> InputDemandScenario = new HashMap<String, Integer>();

preflow = CSolver.getPreflow();

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

// Update Arcs based on satisfied demand in this time slot

if (!InputDemandScenario.containsKey(C.split("-")[0])) {

InputDemandScenario.put(C.split("-")[0], Math.max(Arcs.get(C) - preflow.get(C), 0));

}

}

if ((C.contains("Start-")) && (C.contains("End"))) {

if (preflow.get(C) != 0) {

// Calculate the cost if a station is used

String Name = C.split("-")[0].replace("Start", "");

for (int j = 0; j < this.Candidates.split("-").length; j++) {

if (this.Candidates.split("-")[j].equals(Name)) {

Obj += Data.CostOperational[Integer.parseInt(this.CandidateType.split("-")[j]) - 1];

}

}

}

}

}

//Calculate Stat

this.updateStat(preflow);

// Change the Capacity on the Arcs at the end of the time horizon

this.changeCapacity(InputDemandScenario);

CSolver.end();

}

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

Obj += Data.CostLostSale * Arcs.get(C);

}

}

Data.InsertObj(this.Candidates + "!" + this.CandidateType, Obj);

ObjectiveValue = Obj;

return Obj;

}

public Solution removeCandidate(int R) throws CloneNotSupportedException, IloException {

String[] C;

String[] T;

String AnsC = "";

String AnsT = "";

String Name = "";

if (!this.Candidates.equals("")) {

Name = this.Candidates.split("-")[R];

Utilize.remove(Name);

C = this.Candidates.split("-");

T = this.CandidateType.split("-");

156

for (int i = 0; i < C.length; i++) {

if (!C[i].equals(Name)) {

AnsC += C[i] + "-";

AnsT += T[i] + "-";

}

}

if (AnsC.equals("")) {

this.Candidates = "";

this.CandidateType = "";

} else {

this.Candidates = AnsC.substring(0, AnsC.length() - 1);

this.CandidateType = AnsT.substring(0, AnsT.length() - 1);

}

}

return new Solution(this.Candidates, this.CandidateType, Data, Name + "-Remove2");

}

public Solution InsertCandidate() throws CloneNotSupportedException, IloException {

String[] PotentialCandidate = Data.getListType(DataReader.PointType.Candidate);

String C = this.Candidates;

List<String> ActualCandidate = new ArrayList<String>();

for (String C1 : PotentialCandidate) {

if (!C.contains(C1)) {

ActualCandidate.add(C1);

}

}

String Select = "";

if (!ActualCandidate.isEmpty()) {

Select = ActualCandidate.get(Data.R.nextInt(ActualCandidate.size()));

if (!this.Candidates.equals("")) {

this.Candidates += "-" + Select;

this.CandidateType += "-1";

} else {

this.Candidates += Select;

this.CandidateType += "1";

}

}

return new Solution(this.Candidates, this.CandidateType, Data, Select + "-Insert");

}

private void updateStat(HashMap<String, Integer> preflow) {

for (String C : preflow.keySet()) {

if ((C.contains("Start-")) && (C.contains("End"))) {

String Name = C.split("-")[0].replace("Start", "");

double Utl = 0;

if (Utilize.get(Name) != null) {

Utl = Utilize.get(Name);

}

Utilize.put(Name, Utl + (preflow.get(C) * 1.0) / (Horizon * Arcs.get(C)));

}

}

}

public Solution removeCandidate(String NameMin) throws CloneNotSupportedException, IloException {

String[] C;

String[] T;

String AnsC = "";

String AnsT = "";

Utilize.remove(NameMin);

157

if (!this.Candidates.equals("")) {

C = this.Candidates.split("-");

T = this.CandidateType.split("-");

for (int i = 0; i < C.length; i++) {

if (!NameMin.equals(C[i])) {

AnsC += C[i] + "-";

AnsT += T[i] + "-";

}

}

if (AnsC.equals("")) {

this.Candidates = "";

this.CandidateType = "";

} else {

this.Candidates = AnsC.substring(0, AnsC.length() - 1);

this.CandidateType = AnsT.substring(0, AnsT.length() - 1);

}

}

return new Solution(this.Candidates, this.CandidateType, Data, NameMin + "-Remove1");

}

public Solution InsertCandidate(String Name) throws CloneNotSupportedException, IloException {

if (!this.Candidates.equals("")) {

this.Candidates += "-" + Name;

this.CandidateType += "-1";

} else {

this.Candidates = Name;

this.CandidateType = "1";

}

return new Solution(this.Candidates, this.CandidateType, Data, Name + "-Insert");

}

int getType(String C) {

for (int i = 0; i < this.Candidates.split("-").length; i++) {

if (this.Candidates.split("-")[i].equals(C)) {

return Integer.parseInt(this.CandidateType.split("-")[i]);

}

}

return -1;

}

void changeMove(String string) {

TabuMove = string;

}

public String writeAnswer() throws CloneNotSupportedException, IloException {

String AnsFinal = "";

AnsFinal = Double.toString(this.ObjectiveValue) + "\t";

this.changeCapacity(DemandScenario);

HashMap<String, Integer> preflow = new HashMap<String, Integer>();

Utilize = new HashMap<String, Double>();

for (int i = 0; i < Horizon; i++) {

// Calculate the Max flow Using the Updated or Initial Arc

CplexSolver Solver = new CplexSolver(Points, Arcs);

Solver.Solve();

HashMap<String, Integer> InputDemandScenario = new HashMap<String, Integer>();

preflow = Solver.getPreflow();

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

// Update Arcs based on satisfied demand in this time slot

if (!InputDemandScenario.containsKey(C.split("-")[0])) {

158

InputDemandScenario.put(C.split("-")[0], Math.max(Arcs.get(C) - preflow.get(C), 0));

}

}

}

//Calculate Stat

this.updateStat(preflow);

// Change the Capacity on the Arcs at the end of the time horizon

this.changeCapacity(InputDemandScenario);

}

int LsS = 0;

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

LsS += Arcs.get(C);

}

}

AnsFinal += Integer.toString(LsS) + "\t";

return AnsFinal;

}

public String Latex(int Period) throws CloneNotSupportedException, IloException {

String Ans = "";

Ans += ("\\begin{tikzpicture}[scale = 0.5]") + "\n";

Ans += ("\\tikzstyle{every node} = [draw, shape=circle, minimum size = 12pt]") + "\n";

Ans += ("\\path (0,0) node (-1) {S};") + "\n";

HashMap<String, Integer> P = new HashMap<String, Integer>();

HashMap<String, String> D = new HashMap<String, String>();

for (int i = 0; i < this.Candidates.split("-").length; i++) {

Ans += ("\\path (" + Data.getCor(this.Candidates.split("-")[i]) + ") node (C" + Integer.toString(i) + ") {" +

this.Candidates.split("-")[i].replace("Candidate", "") + "," + this.CandidateType.split("-")[i] + "};") + "\n";

P.put(this.Candidates.split("-")[i].replace("Candidate", ""), i);

}

String Sr = Data.getDemandPoint();

for (String S : Sr.split("-")) {

D.put(S, Data.getCor(S));

}

this.changeCapacity(DemandScenario);

HashMap<String, Integer> preflow = new HashMap<String, Integer>();

Utilize = new HashMap<String, Double>();

Ans += ("\\tikzstyle{every node} = []") + "\n";

for (int i = 0; i < Horizon; i++) {

// Calculate the Max flow Using the Updated or Initial Arc

CplexSolver Solver = new CplexSolver(Points, Arcs);

Solver.Solve();

HashMap<String, Integer> InputDemandScenario = new HashMap<String, Integer>();

preflow = Solver.getPreflow();

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

// Update Arcs based on satisfied demand in this time slot

if (!InputDemandScenario.containsKey(C.split("-")[0])) {

InputDemandScenario.put(C.split("-")[0], Math.max(Arcs.get(C) - preflow.get(C), 0));

}

}

if (preflow.get(C) != 0) {

if (i == Period) {

int dem = preflow.get(C);

if (!(C.contains("Start-") && C.contains("End"))) {

if (C.contains("End-") && C.contains("Start")) {

159

C = C.replace("Candidate", "");

C = C.replace("End", "");

C = C.replace("Start", "");

Ans += ("\\path (C" + Integer.toString(P.get(C.split("-")[0])) + ") edge[->, >=stealth’] node[above] {" +

Integer.toString(dem) + "} (C" + Integer.toString(P.get(C.split("-")[1])) + ");") + "\n";

}

if (C.contains("Supplier") && (!C.contains("MainSupplier"))) {

if (C.contains("Demand")) {

C = C.replace("Supplier1-", "");

Ans += ("\\path (-1) edge[->, >=stealth’,color=red] node[above] {" + Integer.toString(dem) + "} (" + D.get(C) +

");") + "\n";

} else if (C.contains("Candidate")) {

C = C.replace("Supplier1-Candidate", "");

C = C.replace("Start", "");

Ans += ("\\path (-1) edge[->, >=stealth’] node[above] {" + Integer.toString(dem) + "} (C" +

Integer.toString(P.get(C)) + ");") + "\n";

}

}

if (C.contains("Demand") && C.contains("Candidate")) {

C = C.replace("Candidate", "");

C = C.replace("End", "");

Ans += ("\\path (C" + Integer.toString(P.get(C.split("-")[0])) + ") edge[->, >=stealth’,color=red] node[above] {" +

Integer.toString(dem) + "} (" + D.get(C.split("-")[1]) + ");") + "\n";

}

}

}

}

}

//Calculate Stat

this.updateStat(preflow);

// Change the Capacity on the Arcs at the end of the time horizon

this.changeCapacity(InputDemandScenario);

}

Ans += ("\\end{tikzpicture}");

return Ans;

}

void writeAnswer(int Period) throws IloException {

this.changeCapacity(DemandScenario);

HashMap<String, Integer> preflow = new HashMap<String, Integer>();

Utilize = new HashMap<String, Double>();

for (int i = 0; i < Horizon; i++) {

// Calculate the Max flow Using the Updated or Initial Arc

CplexSolver Solver = new CplexSolver(Points, Arcs);

Solver.Solve();

HashMap<String, Integer> InputDemandScenario = new HashMap<String, Integer>();

preflow = Solver.getPreflow();

for (String C : preflow.keySet()) {

if (C.contains("-MainDemand")) {

// Update Arcs based on satisfied demand in this time slot

if (!InputDemandScenario.containsKey(C.split("-")[0])) {

InputDemandScenario.put(C.split("-")[0], Math.max(Arcs.get(C) - preflow.get(C), 0));

}

}

}

if (i == Period) {

System.out.println("Operational at " + Integer.toString(i + 1));

160

for (String C : preflow.keySet()) {

if ((C.contains("Start-")) && (C.contains("End"))) {

if (preflow.get(C) != 0) {

// Calculate the cost if a station is used

String Name = C.split("-")[0].replace("Start", "");

System.out.println(Name);

}

}

}

}

//Calculate Stat

this.updateStat(preflow);

// Change the Capacity on the Arcs at the end of the time horizon

this.changeCapacity(InputDemandScenario);

}

}

}

A.8 CPLEX Solver Class

package bendersversion;

import ilog.concert.IloException;

import ilog.concert.IloIntVar;

import ilog.concert.IloLinearNumExpr;

import ilog.concert.IloNumVar;

import ilog.concert.IloRange;

import ilog.cplex.IloCplex;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.HashMap;

/**

*

* @author aghahari

*/

public class BendersClass {

private static double UAVmax;

protected IloCplex Master; // the master model

//Master Variable

protected IloNumVar FlowCost; // Sirrogate Variable Sub/Master

protected IloIntVar[][] Z;

protected IloIntVar[][][] O;

//Master Data

protected int NumCandidates;

protected int NumTypes;

protected double[] ConstructionCost;

protected double[] OperationalCost;

protected int NumTime;

protected HashMap<String, String[]> Connection;

protected HashMap<String, String[]> RevConnection;

161

//End Master

// Sub Variable

protected IloNumVar[][] X;

protected IloNumVar[][] V;

protected IloNumVar[] L;

// Sub Data

protected int[] Demand;

protected int[] BatteryCapacity;

protected double LostCost;

protected int NumAllPoint;

protected HashMap<String, Integer> SIArcs;

protected HashMap<Integer, String> ISArcs;

// End Sub

protected IloRange TrustRegion;

protected final double FUZZ = 1.0e-7;

protected final int NumArcs;

protected int NumDemand;

protected int NumSupply;

protected HashMap<String, Integer> CanTime;

private final String FileName;

private double[][] IValue;

public BendersClass(String InputName) throws IloException, FileNotFoundException, IOException {

// READ DATA //

BufferedReader Input = new BufferedReader(new FileReader(InputName));

FileName = InputName;

UAVmax = Integer.parseInt(Input.readLine());

NumCandidates = Integer.parseInt(Input.readLine());

NumTypes = Integer.parseInt(Input.readLine());

NumTime = Integer.parseInt(Input.readLine());

ConstructionCost = new double[NumTypes];

for (int i = 0; i < NumTypes; i++) {

ConstructionCost[i] = Double.parseDouble(Input.readLine());

}

OperationalCost = new double[NumTypes];

for (int i = 0; i < NumTypes; i++) {

OperationalCost[i] = Double.parseDouble(Input.readLine());

}

BatteryCapacity = new int[NumTypes];

for (int i = 0; i < NumTypes; i++) {

BatteryCapacity[i] = Integer.parseInt(Input.readLine());

}

HashMap<String, String> Allpoints = new HashMap<String, String>();

for (int i = 0; i < NumCandidates; i++) {

Allpoints.put("C" + i, Input.readLine());

}

NumDemand = Integer.parseInt(Input.readLine());

Demand = new int[NumDemand];

for (int i = 0; i < NumDemand; i++) {

String Line = Input.readLine();

Allpoints.put("D" + i, Line);

Demand[i] = Integer.parseInt(Line.split(",")[2]);

}

NumSupply = Integer.parseInt(Input.readLine());

for (int i = 0; i < NumSupply; i++) {

Allpoints.put("S" + i, Input.readLine());

}

162

Connection = new HashMap<String, String[]>();

RevConnection = new HashMap<String, String[]>();

for (String S : Allpoints.keySet()) {

String[] A = new String[Allpoints.size() + 1];

java.util.Arrays.fill(A, "0");

Connection.put(S, A);

RevConnection.put(S, A);

}

for (String S1 : Allpoints.keySet()) {

for (String S2 : Allpoints.keySet()) {

if (!S1.contains("D")) {

if (!S1.equals(S2)) {

if (DistanceLinear(Allpoints.get(S2), Allpoints.get(S1)) == 1) {

if (!S2.contains("S")) {

String[] F = Connection.get(S1).clone();

String[] R = RevConnection.get(S2).clone();

F[0] = Integer.toString(Integer.parseInt(F[0]) + 1);

R[0] = Integer.toString(Integer.parseInt(R[0]) + 1);

F[Integer.parseInt(F[0])] = S2;

R[Integer.parseInt(R[0])] = S1;

Connection.put(S1, F);

RevConnection.put(S2, R);

}

}

}

}

}

}

LostCost = Double.parseDouble(Input.readLine());

// END DATA //

Master = new IloCplex();

// Setup Master

// Variables

String[][] CandidNames = new String[NumCandidates][NumTypes];

IValue = new double[NumCandidates][NumTypes];

String[][][] OperationNames = new String[NumCandidates][NumTypes][NumTime];

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTypes; j++) {

CandidNames[i][j] = "Candidate_" + i + "_" + j;

IValue[i][j] = 0;

for (int k = 0; k < NumTime; k++) {

OperationNames[i][j][k] = "Operational_" + Integer.toString(i + 1) + "_" + Integer.toString(j + 1) + "_" + Integer.toString(k +

1);

}

}

}

Z = new IloIntVar[NumCandidates][NumTypes];

O = new IloIntVar[NumCandidates][NumTypes][NumTime];

for (int i = 0; i < NumCandidates; i++) {

Z[i] = Master.boolVarArray(NumTypes, CandidNames[i]);

for (int j = 0; j < NumTypes; j++) {

O[i][j] = Master.boolVarArray(NumTime, OperationNames[i][j]);

}

}

FlowCost = Master.numVar(0.0, Double.MAX_VALUE, "EstimateZ");

// Modeling

163

IloLinearNumExpr exprMaster = Master.linearNumExpr();

// Objective Function

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTypes; j++) {

exprMaster.addTerm(ConstructionCost[j], Z[i][j]);

for (int k = 0; k < NumTime; k++) {

exprMaster.addTerm(OperationalCost[j], O[i][j][k]);

}

}

}

exprMaster.addTerm(1.0, FlowCost);

Master.addMinimize(exprMaster);

// Constraint 1

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTypes; j++) {

exprMaster.clear();

for (int k = 0; k < NumTime; k++) {

exprMaster.addTerm(1.0, O[i][j][k]);

}

exprMaster.addTerm(-1.0 * NumTime, Z[i][j]);

Master.addLe(exprMaster, 0, "Operational_Candidate" + i + "_Type" + j);

}

}

// Constraint 2

for (int i = 0; i < NumCandidates; i++) {

exprMaster.clear();

for (int j = 0; j < NumTypes; j++) {

exprMaster.addTerm(1.0, Z[i][j]);

}

String[] Adj = Connection.get("C" + i);

boolean add = true;

for (int j = 1; j <= Integer.parseInt(Adj[0]); j++) {

if (Adj[j].contains("C")) {

for (int k = 0; k < NumTypes; k++) {

exprMaster.addTerm(-1.0, Z[Integer.parseInt(Adj[j].substring(1))][k]);

}

} else if (Adj[j].contains("S")) {

add = false;

break;

}

}

if (add) {

Master.addLe(exprMaster, 0, "Establishment_" + i);

}

}

//Constraint 3

for (int i = 0; i < NumCandidates; i++) {

exprMaster.clear();

for (int j = 0; j < NumTypes; j++) {

exprMaster.addTerm(1.0, Z[i][j]);

}

Master.addLe(exprMaster, 1.0, "LocationSetup" + i);

}

//End Master

// Setup Subproblem

IloLinearNumExpr exprSub = Master.linearNumExpr();

164

int Counter = 0;

SIArcs = new HashMap<String, Integer>();

ISArcs = new HashMap<Integer, String>();

for (String S : Connection.keySet()) {

String[] Adj = Connection.get(S);

for (int i = 1; i <= Integer.parseInt(Adj[0]); i++) {

SIArcs.put("!" + S + "-" + Adj[i] + "!", Counter);

ISArcs.put(Counter, "!" + S + "-" + Adj[i] + "!");

Counter++;

}

}

NumArcs = SIArcs.size();

X = new IloNumVar[NumArcs][NumTime];

L = new IloNumVar[NumDemand];

V = new IloNumVar[NumDemand + NumSupply][NumTime];

for (int i = 0; i < NumArcs; i++) {

for (int j = 0; j < NumTime; j++) {

X[i][j] = Master.numVar(0, Double.MAX_VALUE, "Shipment_" + ISArcs.get(i) + "_" + j);

}

}

for (int i = 0; i < NumDemand; i++) {

L[i] = Master.numVar(0, Double.MAX_VALUE, "LostSale_" + i);

}

for (int i = 0; i < NumDemand; i++) {

for (int j = 0; j < NumTime; j++) {

V[i][j] = Master.numVar(0, Double.MAX_VALUE, "Arrived_" + i + "_" + j);

}

}

for (int i = NumDemand; i < NumDemand + NumSupply; i++) {

for (int j = 0; j < NumTime; j++) {

V[i][j] = Master.numVar(0, Double.MAX_VALUE, "Send_" + i + "_" + j);

}

}

// Objective

exprSub.clear();

for (int i = 0; i < NumDemand; i++) {

exprSub.addTerm(LostCost, L[i]);

}

exprSub.addTerm(-1.0, FlowCost);

Master.addEq(exprSub, 0.0);

// Constraint 1

for (String S : Connection.keySet()) {

for (int i = 0; i < NumTime; i++) {

exprSub.clear();

String[] Adj = Connection.get(S);

String[] RevAdj = RevConnection.get(S);

for (int j = 1; j <= Integer.parseInt(Adj[0]); j++) {

exprSub.addTerm(1.0, X[SIArcs.get("!" + S + "-" + Adj[j] + "!")][i]);

}

for (int j = 1; j <= Integer.parseInt(RevAdj[0]); j++) {

exprSub.addTerm(-1.0, X[SIArcs.get("!" + RevAdj[j] + "-" + S + "!")][i]);

}

if (S.contains("S")) {

exprSub.addTerm(-1.0, V[NumDemand + Integer.parseInt(S.substring(1))][i]);

} else if (S.contains("D")) {

exprSub.addTerm(1.0, V[Integer.parseInt(S.substring(1))][i]);

165

}

Master.addEq(exprSub, 0.0, "FlowBalance_" + S);

}

}

//Constraint 2

for (int i = 0; i < NumTime; i++) {

exprSub.clear();

for (int j = 0; j < NumDemand; j++) {

exprSub.addTerm(1.0, V[j][i]);

}

for (int j = NumDemand; j < NumDemand + NumSupply; j++) {

exprSub.addTerm(-1.0, V[j][i]);

}

Master.addEq(exprSub, 0.0, "Feasibility_" + i);

}

//Constraint 3

for (int i = 0; i < NumDemand; i++) {

exprSub.clear();

exprSub.addTerm(1.0, L[i]);

for (int j = 0; j < NumTime; j++) {

exprSub.addTerm(1.0, V[i][j]);

}

Master.addGe(exprSub, Demand[i], "LostSale_" + i);

}

//Constraint 4

for (int i = 0; i < NumDemand; i++) {

exprSub.clear();

for (int j = 0; j < NumTime; j++) {

exprSub.addTerm(1.0, V[i][j]);

}

Master.addLe(exprSub, Demand[i], "OverSale_" + i);

}

//Constraint 5

int Count = 0;

CanTime = new HashMap<String, Integer>();

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTime; j++) {

String[] Adj = Connection.get("C" + i);

exprSub.clear();

for (int k = 1; k <= Integer.parseInt(Adj[0]); k++) {

exprSub.addTerm(1.0, X[SIArcs.get("!C" + i + "-" + Adj[k] + "!")][j]);

}

for (int k = 0; k < NumTypes; k++) {

exprSub.addTerm(-1 * BatteryCapacity[k], O[i][k][j]);

}

Master.addLe(exprSub, 0.0, "OperationalCost_" + i);

Count++;

}

}

//Invalid inequality

for (int i = 0; i < NumCandidates; i++) {

String[] RevAdj = RevConnection.get("C" + Integer.toString(i).trim());

exprSub.clear();

for (int j = 0; j < NumTypes; j++) {

exprSub.addTerm(1.0, Z[i][j]);

}

166

boolean Supplier = false;

for (int j = 1; j <= Integer.parseInt(RevAdj[0]); j++) {

if (RevAdj[j].contains("S")) {

Supplier = true;

break;

} else {

int Su = Integer.parseInt(RevAdj[j].replace("C", ""));

for (int k = 0; k < NumTypes; k++) {

exprSub.addTerm(Z[Su][k], -1.0);

}

}

}

if (!Supplier) {

Master.addLe(exprSub, 0.0);

}

}

Master.setWarning(null);

Master.setName(InputName);

Master.setParam(IloCplex.DoubleParam.TiLim, 60 * 60 * 1);

}

int CCut = 0;

void end() {

Master.end();

}

private Solution PureDegrade(Solution CurrentSolution) throws IloException {

Solution CS = CurrentSolution.Copy();

boolean Change = true;

while (Change) {

Change = false;

for (Station S : CS.ListStations) {

CS.Degrade(S);

Solution NS = CS.CopyNoRepair();

if (NS.getObj() < CS.getObj()) {

CS = NS.Copy();

Change = true;

} else {

CS.Upgrade(S);

}

}

}

return CS.Copy();

}

private Solution Initialize() throws IOException, IloException, Exception {

AI Baran = new AI(FileName);

Solution BestSoFar = null;

int min = Baran.getMinDistance();

int max = Baran.getMaxDistance();

for (int i = min; i <= max; i++) {

Baran = new AI(FileName);

Baran.Run(i);

Solution Current = new Solution(Baran.getData(), Baran.getSelectedStation());

Current = PureRemove(Current);

Current = PureDegrade(Current);

System.out.println("Obj at Move " + Integer.toString(i) + "\t" + Current.getObj());

if (BestSoFar != null) {

if (Current.getObj() < BestSoFar.getObj()) {

167

BestSoFar = Current;

}

} else {

BestSoFar = Current.Copy();

}

Baran.release();

Baran = null;

}

Baran = new AI(FileName);

DemandPoint[] Dems = Baran.getDemandList();

for (DemandPoint Dem : Dems) {

Baran = new AI(FileName);

Baran.Run(Dem);

if (Baran.getSelectedStation().length != 1) {

Solution Current = new Solution(Baran.getData(), Baran.getSelectedStation());

Current = PureRemove(Current);

Current = PureDegrade(Current);

System.out.println("Obj at DemandPoint " + Dem.getName() + "\t" + Current.getObj());

if (BestSoFar != null) {

if (Current.getObj() < BestSoFar.getObj()) {

BestSoFar = Current;

}

} else {

BestSoFar = Current.Copy();

}

Baran.release();

Baran = null;

}

}

return BestSoFar;

}

private Solution PureRemove(Solution CurrentSolution) throws IloException {

Solution CS = CurrentSolution.Copy();

boolean Change = true;

while (Change) {

Change = false;

for (Station S : CS.ListStations) {

CS.Deselect(S);

Solution NS = CS.CopyNoRepair();

if (NS.getObj() < CS.getObj()) {

CS = NS.Copy();

Change = true;

} else {

CS.Select(S, 3);

}

}

}

return CS.Copy();

}

public void solve() throws IloException, IOException, Exception {

AI Baran = new AI(FileName);

Baran.Run();

Station[] SList = Baran.getSelectedStation();

for (Station S : SList) {

if (S.getID() != -1) {

168

IValue[S.getID()][S.getType() - 1] = 1;

}

}

for (int i = 0; i < NumCandidates; i++) {

Master.addMIPStart(Z[i], IValue[i]);

}

Master.setOut(null);

Master.setWarning(null);

Master.solve();

}

public String Summary() throws IloException {

return Master.getName() + "\t\t" + Master.getStatus() + "\t\t" + Master.getMIPRelativeGap() + "\t\t" + Master.getObjValue() + "\t\t" +

Master.getBestObjValue() + "\t\t" + "NOTIME" + "\t\t" + Integer.toString((int) Master.getValue(FlowCost) / (int) LostCost);// +

Master.getCplexTime();

}

public void FullReport() throws IOException, IloException {

BufferedWriter FullReportFile = new BufferedWriter(new FileWriter("FullReport//" + Master.getName()));

String Ans = "Stations = " + "\n";

double o[][][] = new double[NumCandidates][NumTypes][NumTime];

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTypes; j++) {

o[i][j] = Master.getValues(O[i][j]);

}

}

for (int i = 0; i < NumCandidates; i++) {

for (int j = 0; j < NumTime; j++) {

double Cap = 0;

for (int k = 0; k < NumTypes; k++) {

if (o[i][k][j] > 0.95) {

Ans += O[i][k][j].getName() + "\n";

}

}

}

}

Master.writeSolution("ANSWER.sol");

FullReportFile.write(Ans);

FullReportFile.close();

}

public static int DistanceLinear(String P1, String P2) {

double X1 = Double.parseDouble(P1.split(",")[0]);

double Y1 = Double.parseDouble(P1.split(",")[1]);

double X2 = Double.parseDouble(P2.split(",")[0]);

double Y2 = Double.parseDouble(P2.split(",")[1]);

double d = Math.sqrt(Math.pow(X1 - X2, 2) + Math.pow(Y1 - Y2, 2));

if ((d > UAVmax) || (d == 0)) {

return 0;

} else {

return 1;

}

}

}

169

B Chapter 3 Programming Codes

B.1 Network Class

package chapter2;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

/**

*

* @author aghahari

*/

public class Network {

private final ArrayList<Ramp> RampList;

private final ArrayList<Customer> CustomerList;

private final ArrayList<Node> AllLocation;

private final int ScenarioCounter;

private final int TimeLineCounter;

public Network(String FileName) throws FileNotFoundException, IOException {

RampList = new ArrayList<>();

CustomerList = new ArrayList<>();

AllLocation = new ArrayList<>();

BufferedReader Input = new BufferedReader(new FileReader(FileName + "//Parameters.txt"));

int RampCount = Integer.parseInt(Input.readLine().split(",")[1]);

int CustomerCount = Integer.parseInt(Input.readLine().split(",")[1]);

TimeLineCounter = Integer.parseInt(Input.readLine().split(",")[1]);

ScenarioCounter = Integer.parseInt(Input.readLine().split(",")[1]);

Input.close();

Input = new BufferedReader(new FileReader(FileName + "//RampInfo.txt"));

Input.readLine();

for (int i = 0; i < RampCount; i++) {

String[] RampString = Input.readLine().split(",");

Ramp R = new Ramp(i, RampString[0], Double.parseDouble(RampString[1]), Double.parseDouble(RampString[2]));

RampList.add(R);

AllLocation.add(R);

}

for (Ramp R1 : RampList) {

for (Ramp R2 : RampList) {

if (!R1.isEqual(R2)) {

R1.AddAdjacent(R2);

}

}

}

Input.close();

if (Constants.CustomerMode) {

Input = new BufferedReader(new FileReader(FileName + "//CustomerInfo.txt"));

Input.readLine();

for (int i = 0; i < CustomerCount; i++) {

String[] RampString = Input.readLine().split(",");

Customer C = new Customer(i, RampString[0], Double.parseDouble(RampString[1]), Double.parseDouble(RampString[2]), RampList);

CustomerList.add(C);

170

AllLocation.add(C);

}

}

HashMap<String,String> Lines = new HashMap<>();

Input = new BufferedReader(new FileReader(FileName + "//CustomerDemandInfo.txt"));

Input.readLine();

}

}

B.2 Node Class

package chapter2;

import java.io.IOException;

import java.util.ArrayList;

import org.rosuda.REngine.REXPMismatchException;

import org.rosuda.REngine.REngineException;

/**

*

* @author aghahari

*/

public class Node {

private final int ID;

private final String Name;

private final ArrayList<TimeLine> TimeList;

private final double Latt;

private final double Long;

private final ArrayList<Adjacency> ForwardAdjacent;

private final ArrayList<Adjacency> ReverseAdjacent;

public Node(int ID, String Name, double Latt, double Long) {

this.ID = ID;

this.Name = Name;

this.Latt = Latt;

this.Long = Long;

TimeList = new ArrayList<>();

ForwardAdjacent = new ArrayList<>();

ReverseAdjacent = new ArrayList<>();

int[] ForecastNumber = null;

if (!Constants.HistoricalDemandData.getOrDefault(Name, "NONE").equals("NONE")) {

try {

ForecastNumber = Constants.Forecast(this.Name);

System.out.println(this.Name + "\tDone");

for (int i = 0; i < ForecastNumber.length; i++) {

TimeList.add(new TimeLine(i));

TimeList.get(i).AddTime(ForecastNumber[i]);

}

} catch (REXPMismatchException ex) {

System.out.println(this.Name + "\tError In Forecasting (REXPRESSION)\t" + ex.toString());

} catch (REngineException ex) {

System.out.println(this.Name + "\tError In Forecasting (RENGINE)\t" + ex.toString());

} catch (IOException ex) {

System.out.println(this.Name + "\tError In Forecasting (I/O Exception)\t" + ex.toString());

}

} else {

171

System.out.println(this.Name + "\tNONE!");

}

}

public int getID() {

return ID;

}

public String getName() {

return Name;

}

public double getLatt() {

return Latt;

}

public double getLong() {

return Long;

}

/**

*

* @param ID

* @param Scenario

* @param Amount Add a Time (Positive is Supply and Negative is Demand)

*/

public void AddTime(int ID, int Scenario, int Amount) {

if (Scenario < TimeList.size()) {

TimeList.get(Scenario).AddTime(ID, Amount);

} else {

throw new IllegalArgumentException("This Scenario is not Exist!");

}

}

/**

*

* @param Scenario

* @param Amount Add a Time at the end of list (Positive is Supply and

* Negative is Demand)

*/

public void AddTime(int Scenario, int Amount) {

TimeList.get(Scenario).AddTime(Amount);

}

public void AddForwardAdjacent(Node Adj) {

ForwardAdjacent.add(new Adjacency(this, Adj));

}

public void AddReverseAdjacent(Node Adj) {

ReverseAdjacent.add(new Adjacency(Adj, this));

}

public void AddBothAdjacency(Node Adj) {

AddForwardAdjacent(Adj);

AddReverseAdjacent(Adj);

}

public void AddAdjacent(Node Adj) {

if ((this instanceof Ramp) && (Adj instanceof Ramp)) {

if (Constants.isRailData((Ramp) this, (Ramp) Adj)) {

AddBothAdjacency(Adj);

}

} else if ((this instanceof Customer) && (Adj instanceof Customer)) {

if (Constants.DistanceCalculator(this, Adj) < Constants.DrivingRadius) {

AddBothAdjacency(Adj);

}

172

} else {

AddBothAdjacency(Adj);

}

}

/**

*

* @return Size of TimeLine

*/

public int TimeSize() {

return TimeList.size();

}

/**

*

* @return Size of adjacent Nodes.

*/

public int AdjSize() {

return ForwardAdjacent.size();

}

}

B.3 Customer/Ramp Class

package chapter2;

import java.util.ArrayList;

/**

*

* @author aghahari

*/

public class Customer extends Node {

ArrayList<Ramp> RampGroup;

public Customer(int ID, String Name, double Latt, double Long, ArrayList<Ramp> RampList) {

super(ID, Name, Latt, Long);

Customer aThis = this;

RampGroup = new ArrayList<>();

for (Ramp R : RampList) {

if (Constants.DistanceCalculator(R, aThis) < Constants.RampGroupRadius) {

RampGroup.add(R);

R.AddAdjacent(aThis);

}

}

}

}

package chapter2;

/**

*

* @author aghahari

*/

public class Ramp extends Node {

public Ramp(int ID, String Name, double Latt, double Long) {

super(ID, Name, Latt, Long);

}

173

boolean isEqual(Ramp R2) {

return this.getID() == R2.getID();

}

}

B.4 Forcaster Class

package chapter2;

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import org.rosuda.REngine.REXPMismatchException;

import org.rosuda.REngine.REngineException;

import org.rosuda.REngine.Rserve.RConnection;

import org.rosuda.REngine.Rserve.RserveException;

/**

*

* @author aghahari

*/

public class Forecaster {

RConnection connection;

private int max = 2;

public Forecaster() throws RserveException {

connection = new RConnection();

connection.eval("library(forecast)");

connection.eval("require(forecast)");

}

public void LoadData(String Address, int Skip) throws RserveException {

connection.eval("data<-scan(’" + Address + "’,skip=" + Integer.toString(Skip) + ");");

}

public void LoadData(String Address) throws RserveException {

LoadData(Address, 0);

}

public void setData(double[] Data) throws RserveException {

String data = "c(";

for (int i = 0; i < Data.length; i++) {

data += Double.toString(Data[i]) + ",";

}

data = data.substring(0, data.length() - 1) + ")";

connection.eval("data<-" + data);

}

public void setData(int[] Data) throws RserveException {

String data = "c(";

for (int i = 0; i < Data.length; i++) {

data += Double.toString(Data[i]) + ",";

}

data = data.substring(0, data.length() - 1) + ")";

connection.eval("data<-" + data);

}

public int[] Forecast(int Head, String Code) throws RserveException, REXPMismatchException, REngineException, IOException {

double min = Double.MAX_VALUE;

int pOptimal = -1;

174

int qOptimal = -1;

int spOptimal = -1;

int sqOptimal = -1;

int minimum = 0;

for (int i = minimum; i < max; i++) {

for (int j = minimum; j < max; j++) {

for (int k = minimum; k < max; k++) {

for (int l = minimum; l < max; l++) {

try {

connection.voidEval("fun <- arima(data, order = c(" + Integer.toString(i) + ", 1, " + Integer.toString(j) + "),seasonal =

list(order = c(" + Integer.toString(k) + ", 0, " + Integer.toString(l) + "), period = 52))");

if (min > connection.eval("fun$aic").asDouble()) {

pOptimal = i;

qOptimal = j;

spOptimal = k;

sqOptimal = l;

}

} catch (Exception ex) {

}

}

}

}

}

System.out.println("order = c(" + Integer.toString(pOptimal) + ", 1, " + Integer.toString(qOptimal) + "),seasonal = list(order = c(" +

Integer.toString(spOptimal) + ", 0, " + Integer.toString(sqOptimal) + ")");

connection.eval("fun <- arima(data, order = c(" + Integer.toString(pOptimal) + ", 1, " + Integer.toString(qOptimal) + "),seasonal =

list(order = c(" + Integer.toString(spOptimal) + ", 0, " + Integer.toString(sqOptimal) + "), period = 52))");

connection.eval("fcast<-forecast(fun,h=" + Integer.toString(Head) + ");");

connection.eval("fList <- as.data.frame(fcast)");

int[] Ans = new int[Head];

for (int i = 1; i <= Head; i++) {

connection.eval("mean<-fList[[1]][" + Integer.toString(i) + "];");

Ans[i - 1] = (int) connection.eval("mean").asDouble();

}

BufferedWriter OutputSetting = new BufferedWriter(new FileWriter("ForecastSetting\\" + Code + ".txt"));

OutputSetting.write(pOptimal + "\t" + qOptimal + "\t" + spOptimal +"\t" + sqOptimal);

OutputSetting.close();

return Ans;

}

public int[] Forecast(int p, int q, int sp, int sq, int Head) {

try {

connection.voidEval("fun <- arima(data, order = c(" + Integer.toString(p) + ", 1, " + Integer.toString(q) + "),seasonal = list(order =

c(" + Integer.toString(sp) + ", 0, " + Integer.toString(sq) + "), period = 52))");

connection.eval("fcast<-forecast(fun,h=" + Integer.toString(Head) + ");");

connection.eval("fList <- as.data.frame(fcast)");

int[] Ans = new int[Head];

for (int i = 1; i <= Head; i++) {

connection.eval("mean<-fList[[1]][" + Integer.toString(i) + "];");

Ans[i - 1] = (int) connection.eval("mean").asDouble();

}

return Ans;

} catch (REXPMismatchException | RserveException ex) {

return null;

}

}

175

public int[] EasyForecast(int Head) throws RserveException, REXPMismatchException {

int pOptimal = 1;

int qOptimal = 1;

int spOptimal = 1;

int sqOptimal = 1;

connection.eval("fun <- arima(data, order = c(" + Integer.toString(pOptimal) + ", 1, " + Integer.toString(qOptimal) + "),seasonal =

list(order = c(" + Integer.toString(spOptimal) + ", 0, " + Integer.toString(sqOptimal) + "), period = " + Integer.toString(Head) +

"));");

connection.eval("fcast<-forecast(fun,h=" + Integer.toString(Head) + ");");

connection.eval("fList <- as.data.frame(fcast)");

int[] Ans = new int[Head];

for (int i = 1; i <= Head; i++) {

connection.eval("mean<-fList[[1]][" + Integer.toString(i) + "];");

Ans[i - 1] = (int) connection.eval("mean").asDouble();

}

return Ans;

}

void close() throws RserveException {

connection.close();

}

}

B.5 Math Model Code

package jbhuntmodel;

import ilog.concert.IloException;

import ilog.concert.IloIntVar;

import ilog.concert.IloLinearNumExpr;

import ilog.concert.IloNumVar;

import ilog.cplex.IloCplex;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.util.HashMap;

import java.util.List;

/**

*

* @author aghahari

*/

public class MathModel {

IloNumVar[][] Y; // ID (Use MapID) -- Time

IloNumVar[][][] X; // Ramp -- Ramp -- Time

IloNumVar[][] I; // Customer(Ramp) -- Time

IloNumVar[][] Z; // Customer(Ramp) -- Time

HashMap<String, Integer> MapID;

public MathModel() throws FileNotFoundException, IloException, IOException {

IloCplex Model = new IloCplex();

MapID = new HashMap<>();

DataReader Data = new DataReader();

// Initializing

int Ramp = Data.getRampNumber();

int Time = Data.getTime();

int Customer = Data.getCustomerNumber();

int All = Ramp + Customer;

176

int Counter = 0;

for (int i = 0; i < Ramp; i++) {

String[] ListCustomer = Data.getCustomerList(i);

for (int j = 0; j < ListCustomer.length; j++) {

String ID = Data.CreateID(Data.getRampName(i), ListCustomer[j]);

MapID.put(ID, Counter++);

ID = Data.CreateID(ListCustomer[j], Data.getRampName(i));

MapID.put(ID, Counter++);

}

for (int j = 0; j < ListCustomer.length; j++) {

for (int k = 0; k < ListCustomer.length; k++) {

if (j != k) {

String ID = Data.CreateID(ListCustomer[k], ListCustomer[j]);

MapID.put(ID, Counter++);

}

}

}

}

Counter = MapID.size();

System.out.println("Map Created");

X = new IloNumVar[Ramp][Ramp][Time];

for (int i = 0; i < Ramp; i++) {

for (int j = 0; j < Ramp; j++) {

for (int k = 0; k < Time; k++) {

X[i][j][k] = Model.numVar(0, Data.getRailLimit(), "X_" + Data.getRampName(i) + "_" + Data.getRampName(j) + "_" +

Integer.toString(k));

}

}

}

System.out.println("X Done");

I = new IloNumVar[All][Time];

for (int i = 0; i < All; i++) {

for (int j = 0; j < Time; j++) {

I[i][j] = Model.numVar(0, Data.getCapacity(i), "I_" + Data.getName(i) + "_" + Integer.toString(j));

}

}

System.out.println("I Done");

Z = new IloNumVar[Ramp][Time];

for (int i = 0; i < Ramp; i++) {

for (int j = 0; j < Time; j++) {

Z[i][j] = Model.numVar(0, Data.isPurchase(i) * Data.getNewContainterLimit(), "Z_" + Data.getRampName(i) + "_" +

Integer.toString(j));

}

}

System.out.println("Z Done");

Y = new IloNumVar[Counter][Time];

for (int i = 0; i < Counter; i++) {

for (int j = 0; j < Time; j++) {

Y[i][j] = Model.numVar(0, Integer.MAX_VALUE, "Y_" + this.getNameMapID(i) + "_" + Integer.toString(j));

if (i % 1000 == 0) {

System.out.println(i + "\t" + Counter);

}

}

}

System.out.println("Y Done");

// End Initializing.

177

// Objective Function

IloLinearNumExpr Obj = Model.linearNumExpr();

for (int i = 0; i < Ramp; i++) {

for (int j = 0; j < Ramp; j++) {

for (int k = 0; k < Time; k++) {

Obj.addTerm(Data.getRailCost(i, j), X[i][j][k]);

}

}

}

for (int i = 0; i <= Counter; i++) {

for (int j = 0; j < Time; j++) {

Obj.addTerm(Data.getTruckCost(this.getNameMapID(i)), Y[i][j]);

}

}

for (int i = 0; i < All; i++) {

for (int j = 0; j < Time; j++) {

Obj.addTerm(Data.getIdleCost(i), I[i][j]);

}

}

for (int i = 0; i < Ramp; i++) {

for (int t = 0; t < Time; t++) {

Obj.addTerm(Data.getNewCost(), Z[i][t]);

}

}

Model.minimize(Obj);

Obj = null;

System.out.println("Obj Done");

//End Obj

//Constraints

// Constraint RAMP FLOW BALANCE For Time not Zero

IloLinearNumExpr Constraint = Model.linearNumExpr();

for (int i = 0; i < Ramp; i++) {

for (int j = 1; j < Time; j++) {

String[] ListCustomer = Data.getCustomerList(i);

for (int k = 0; k < Ramp; k++) {

if (i != k) {

Constraint.addTerm(1.0, X[k][i][j - 1]);

Constraint.addTerm(-1.0, X[i][k][j]);

}

}

for (int k = 0; k < ListCustomer.length; k++) {

Constraint.addTerm(1.0, Y[MapID.get(Data.CreateID(ListCustomer[k], Data.getRampName(i)))][j - 1]);

Constraint.addTerm(-1.0, Y[MapID.get(Data.CreateID(Data.getRampName(i), ListCustomer[k]))][j]);

}

Constraint.addTerm(1.0, I[Data.getRampID(i)][j - 1]);

Constraint.addTerm(-1.0, I[Data.getRampID(i)][j]);

Constraint.addTerm(1.0, Z[i][j]);

Model.addEq(Obj, Data.getRampDemand(i, j) - Data.getRampSupply(i, j));

Constraint.clear();

}

}

System.out.println("Constraint 1 Done");

// Constraint Customer FLOW BALANCE

for (int i = 0; i < Customer; i++) {

for (int t = 1; t < Time; t++) {

String[] ListRamp = Data.getRampList(i);

178

for (int k = 0; k < ListRamp.length; k++) {

Constraint.addTerm(1.0, Y[MapID.get(Data.CreateID(ListRamp[k], Data.getCustomerName(i)))][t]);

Constraint.addTerm(-1.0, Y[MapID.get(Data.CreateID(Data.getCustomerName(i), ListRamp[k]))][t]);

String[] ListCustomer = Data.getCustomerList(Data.getRampNumber(ListRamp[k]));

for (int c = 0; c < ListCustomer.length; c++) {

Constraint.addTerm(1.0, Y[MapID.get(Data.CreateID(ListCustomer[c], Data.getCustomerName(i)))][t]);

Constraint.addTerm(-1.0, Y[MapID.get(Data.CreateID(Data.getCustomerName(i), ListCustomer[c]))][t]);

}

}

Constraint.addTerm(1.0, I[Data.IDConvertor(i)][t - 1]);

Constraint.addTerm(-1.0, I[Data.IDConvertor(i)][t]);

Model.addEq(Obj, Data.getCustomerDemand(i, t) - Data.getCustomerSupply(i, t));

Constraint.clear();

}

}

System.out.println("Constraint 2 Done");

// New Containers

for (int i = 0; i < Ramp; i++) {

for (int t = 0; t < Time; t++) {

Constraint.addTerm(1.0, Z[i][t]);

}

}

Model.addLe(Constraint, Data.getNewContainterLimit());

}

private String getNameMapID(int i) { // Return the ID from a number in MapID

for (String key : MapID.keySet()) {

if (MapID.get(key) == i) {

return key;

}

}

return "";

}

}

B.6 Simulation

B.6.1 Container Class

package containersnapshot;

import java.util.ArrayList;

/**

*

* @author aghahari

*/

public class Container {

static int getType(ContainerStatus containerStatus) {

int Counter1 = 0;

return BoxList.stream().filter((B) -> (B.Status == containerStatus)).map((_item) -> 1).reduce(Counter1, Integer::sum);

}

int ID;

Ramp CurrentRampLocation;

ContainerStatus Status;

179

private static int Counter = 0;

static ArrayList<Container> BoxList = new ArrayList<>();

boolean isFree() {

if (Status == ContainerStatus.IDLE) {

return true;

}

return false;

}

void setTransit() {

Status = ContainerStatus.TRANSIT;

}

void setFree() {

Status = ContainerStatus.IDLE;

}

void setCustomerHolding() {

Status = ContainerStatus.BUSY;

}

public enum ContainerStatus {

TRANSIT, IDLE, BUSY

}

public Container() {

ID = Counter++;

Status = ContainerStatus.IDLE;

BoxList.add(this);

}

static public int getNumberBox() {

return BoxList.size();

}

}

B.6.2 Move Class

package containersnapshot;

import java.util.Calendar;

import java.util.Comparator;

/**

*

* @author aghahari

*/

public final class Move implements Comparable<Move> {

static int getLastCode() {

return counter;

}

Container Box;

Ramp OriginRamp;

Ramp DestinationRamp;

String StartDate;

String EndDate;

String ReleaseDate;

String ActionDate;

int _YearStartDate;

int _MonthStartDate;

int _DayStartDate;

180

int _YearEndDate;

int _MonthEndDate;

int _DayEndDate;

int _YearReleaseDate;

int _MonthReleaseDate;

int _DayReleaseDate;

int _YearActionDate;

int _MonthActionDate;

int _DayActionDate;

MoveTypes MoveType;

ActionType Action;

Boolean BadData;

String R = "";

private static int counter = 0;

ActionType getAction() {

return Action;

}

void setToEnd() {

Action = ActionType.END_MOVE;

setActionDate(_YearEndDate, _MonthEndDate, _DayEndDate);

}

boolean isBadData() {

return BadData;

}

String getStartTime() {

return _YearStartDate + "-" + _MonthStartDate + "-" + _DayStartDate;

}

String getEndTime() {

return _YearEndDate + "-" + _MonthEndDate + "-" + _DayEndDate;

}

void setBox() {

Box = OriginRamp.getBox();

OriginRamp.addBox(Box);

Box.setTransit();

}

private String AddSeven() {

Calendar cal = Calendar.getInstance();

cal.set(_YearEndDate, _MonthEndDate - 1, _DayEndDate);

cal.add(Calendar.DAY_OF_MONTH, 7);

return cal.get(Calendar.YEAR) + "-" + Integer.toString(cal.get(Calendar.MONTH) + 1) + "-" + cal.get(Calendar.DAY_OF_MONTH);

}

String getReleaseTime() {

return _YearReleaseDate + "-" + _MonthReleaseDate + "-" + _DayReleaseDate;

}

void releaseBox() {

Box.setFree();

this.Action = ActionType.REMOVE;

}

String getActionTime() {

return _YearActionDate + "-" + _MonthActionDate + "-" + _DayActionDate;

}

public enum MoveTypes {

LOAD, EMPTY, Holding;

}

public enum ActionType {

INITIAL_MOVE,

181

END_MOVE,

ReleaseBox, REMOVE

}

public Move(Ramp Origin1, Ramp Origin2, String SDate, String EDate, String InGate, String OutGate, String Status, String ActionD, String

OrigLine) {

R = OrigLine;

counter++;

OriginRamp = Origin1;

DestinationRamp = Origin2;

BadData = false;

_YearEndDate = Integer.parseInt(OutGate.split("-")[0]);

_MonthEndDate = Integer.parseInt(OutGate.split("-")[1]);

_DayEndDate = Integer.parseInt(OutGate.split("-")[2]);

EndDate = OutGate.split("-")[0] + "-" + OutGate.split("-")[1] + "-" + OutGate.split("-")[2];

int Year = Integer.parseInt(InGate.split("-")[0]);

if (Year == 1) {

if (!SDate.equals("")) {

StartDate = SDate;

_YearStartDate = Integer.parseInt(SDate.split("-")[0]);

_MonthStartDate = Integer.parseInt(SDate.split("-")[1]);

_DayStartDate = Integer.parseInt(SDate.split("-")[2]);

if (!EDate.equals("")) {

_YearEndDate = Integer.parseInt(EDate.split("-")[0]);

_MonthEndDate = Integer.parseInt(EDate.split("-")[1]);

_DayEndDate = Integer.parseInt(EDate.split("-")[2]);

}

Action = ActionType.INITIAL_MOVE;

setActionDate(_YearStartDate, _MonthStartDate, _DayStartDate);

} else {

StartDate = "NOTIME";

BadData = true;

System.out.println("NOTIME\t" + R.split(",")[0] + "\t" + R + "\t" + StartDate + "\t" + EndDate);

setBox();

Action = ActionType.END_MOVE;

}

} else {

_YearStartDate = Integer.parseInt(InGate.split("-")[0]);

_MonthStartDate = Integer.parseInt(InGate.split("-")[1]);

_DayStartDate = Integer.parseInt(InGate.split("-")[2]);

StartDate = InGate.split("-")[0] + "-" + InGate.split("-")[1] + "-" + InGate.split("-")[2];

Action = ActionType.INITIAL_MOVE;

setActionDate(_YearStartDate, _MonthStartDate, _DayStartDate);

}

if (_YearStartDate > _YearEndDate) {

_YearEndDate = _YearStartDate;

_MonthEndDate = _MonthStartDate;

_DayEndDate = _DayStartDate;

System.out.println("BADDATA\t" + R.split(",")[0] + "\t" + R + "\t" + StartDate + "\t" + EndDate);

} else if (_YearStartDate == _YearEndDate && _MonthStartDate > _MonthEndDate) {

_YearEndDate = _YearStartDate;

_MonthEndDate = _MonthStartDate;

_DayEndDate = _DayStartDate;

System.out.println("BADDATA\t" + R.split(",")[0] + "\t" + R + "\t" + StartDate + "\t" + EndDate);

} else if (_YearStartDate == _YearEndDate && _MonthStartDate == _MonthEndDate && _DayStartDate > _DayEndDate) {

_YearEndDate = _YearStartDate;

_MonthEndDate = _MonthStartDate;

182

_DayEndDate = _DayStartDate;

System.out.println("BADDATA\t" + R.split(",")[0] + "\t" + R + "\t" + StartDate + "\t" + EndDate);

}

if (Action == ActionType.END_MOVE) {

setActionDate(_YearEndDate, _MonthEndDate, _DayEndDate);

}

EndDate = _YearEndDate + "-" + _MonthEndDate + "-" + _DayEndDate;

if (Math.abs(_YearStartDate - _YearEndDate) >= 1) {

System.out.println("CheckDate\t" + R.split(",")[0] + "\t" + R + "\t" + StartDate + "\t" + EndDate);

}

if (Status.trim().toUpperCase().equals("L")) {

MoveType = MoveTypes.LOAD;

String R = AddSeven();

_YearReleaseDate = Integer.parseInt(R.split("-")[0]);

_MonthReleaseDate = Integer.parseInt(R.split("-")[1]);

_DayReleaseDate = Integer.parseInt(R.split("-")[2]);

} else {

MoveType = MoveTypes.EMPTY;

}

}

void setActionDate(int Year, int Month, int Day) {

_YearActionDate = Year;

_MonthActionDate = Month;

_DayActionDate = Day;

}

void endMove() {

OriginRamp.removeBox(Box);

DestinationRamp.addBox(Box);

if (MoveType == MoveTypes.LOAD) {

Box.setCustomerHolding();

Action = ActionType.ReleaseBox;

setActionDate(_YearReleaseDate, _MonthReleaseDate, _DayReleaseDate);

} else {

releaseBox();

}

}

@Override

public int compareTo(Move o) {

int thisYear = _YearActionDate;

int oYear = o._YearActionDate;

int thisMonth = _MonthActionDate;

int oMonth = o._MonthActionDate;

int oDay = o._DayActionDate;

int thisDay = _DayActionDate;

if (thisYear > oYear) {

return 1;

} else if (thisYear < oYear) {

return -1;

} else if (thisMonth > oMonth) {

return 1;

} else if (thisMonth < oMonth) {

return -1;

} else if (thisDay > oDay) {

return 1;

} else if (thisDay < oDay) {

return -1;

183

} else {

return 0;

}

}

static class MoveComparator implements Comparator<Move> {

@Override

public int compare(Move o1, Move o2) {

return o1.compareTo(o2);

}

}

}

B.6.3 Ramp Class

package containersnapshot;

import java.util.ArrayList;

/**

*

* @author aghahari

*/

public class Ramp {

private final String Name;

private int Inventory;

private final ArrayList<Container> ContainerList;

public static ArrayList<Ramp> RampList = new ArrayList<>();

public Ramp(String _Name) {

ContainerList = new ArrayList<>();

Name = _Name;

Inventory = 0;

RampList.add(this);

}

String getCode() {

return Name;

}

Container getBox() {

for (Container Box : ContainerList) {

if (Box.isFree()) {

return Box;

}

}

return new Container();

}

void addBox(Container Box) {

Box.CurrentRampLocation = this;

ContainerList.add(Box);

if (ContainerList.size()>Inventory){

Inventory = ContainerList.size();

}

}

void removeBox(Container Box) {

Box.CurrentRampLocation = null;

ContainerList.remove(Box);

}

184

int getInventory() {

return Inventory;

}

int getBoxNumber(Container.ContainerStatus StatBox) {

int Counter=0;

return ContainerList.stream().filter((B)-> (B.Status==StatBox)).map((_item)->1).reduce(Counter, Integer::sum);

}

}

B.6.4 Control Class

package containersnapshot;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.HashMap;

/**

*

* @author aghahari

*/

public class Control {

ArrayList<Ramp> RampList = new ArrayList<>();

String[] Files;

BufferedReader Input;

int FileCounter;

ArrayList<Move> ActionList = new ArrayList<>();

private int StartCounter;

private int CompletedCounter;

private int EndCounter;

private int ReleaseCounter;

private int NewCounter;

private final boolean isFast = false;

private Move FindMinTime() {

Move MinMove = null;

String MinDate = "2100-1-1";

for (Move M : ActionList) {

String Time = M.ActionDate;

if (isSooner(MinDate, Time)) {

MinDate = Time;

MinMove = M;

}

}

return MinMove;

}

private boolean isSooner(String MinDate, String Time) {

if (Integer.parseInt(MinDate.split("-")[0]) > Integer.parseInt(Time.split("-")[0])) {

return true;

185

} else if (Integer.parseInt(MinDate.split("-")[1]) > Integer.parseInt(Time.split("-")[1])) {

return true;

} else if (Integer.parseInt(MinDate.split("-")[2]) > Integer.parseInt(Time.split("-")[2])) {

return true;

}

return false;

}

private void StartMoving(Move MinMove) {

MinMove.setBox();

MinMove.setToEnd();

}

private void ReadNewLine() throws IOException {

String R = Input.readLine();

if (R != null) {

ActionList.add(new Move(getRamp(CleanSplit(R, Columns.OriginRamp)), getRamp(CleanSplit(R, Columns.DestinationRamp)), CleanSplit(R,

Columns.PickupDate), CleanSplit(R, Columns.DeliveryDate), CleanSplit(R, Columns.InGate), CleanSplit(R, Columns.OutGate),

CleanSplit(R, Columns.LoadFlag), CleanSplit(R, Columns.ActionDate), R));

} else if (FileCounter < Files.length) {

InitializeNewFile();

R = Input.readLine();

ActionList.add(new Move(getRamp(CleanSplit(R, Columns.OriginRamp)), getRamp(CleanSplit(R, Columns.DestinationRamp)), CleanSplit(R,

Columns.PickupDate), CleanSplit(R, Columns.DeliveryDate), CleanSplit(R, Columns.InGate), CleanSplit(R, Columns.OutGate),

CleanSplit(R, Columns.LoadFlag), CleanSplit(R, Columns.ActionDate), R));

}

}

private void EndMoving(Move MinMove) {

MinMove.endMove();

}

private void ReleaseBox(Move MinMove) {

MinMove.releaseBox();

}

HashMap<String, Integer> Printed = new HashMap<>();

private void ReportCreator(String Display) throws IOException {

BufferedWriter Output = null;

if (Printed.getOrDefault(Display, -1) != -1) {

Output = new BufferedWriter(new FileWriter(System.getProperty("user.dir") + "\\BigOne\\" + Display + "-SUB_" + Printed.get(Display) +

".txt"));

Printed.put(Display, Printed.get(Display) + 1);

} else {

Output = new BufferedWriter(new FileWriter(System.getProperty("user.dir") + "\\BigOne\\" + Display + ".txt"));

Printed.put(Display, 1);

}

Output.write("\nNew Moves \t" + NewCounter + "\n");

Output.write("Start Moves \t" + StartCounter + "\n");

Output.write("Arrived Moves \t" + EndCounter + "\n");

Output.write("Completed Moves \t" + CompletedCounter + "\n");

Output.write("Available Container\t" + Container.getNumberBox() + "\n");

Output.write("\tOn Rail\t" + Container.getType(Container.ContainerStatus.TRANSIT) + "\n");

Output.write("\tFree\t" + Container.getType(Container.ContainerStatus.IDLE) + "\n");

Output.write("\tBusy\t" + Container.getType(Container.ContainerStatus.BUSY) + "\n");

Output.write("Name\tInventory\tIDLE\tBUSY\n");

for (Ramp R : Ramp.RampList) {

Output.write(R.getCode() + "\t" + R.getInventory() + "\t" + R.getBoxNumber(Container.ContainerStatus.IDLE) + "\t" +

R.getBoxNumber(Container.ContainerStatus.BUSY) + "\n");

}

186

Output.write("\nOrigin\tDestination\tType\tCount\n");

HashMap<String, Integer> RailMove = new HashMap<>();

HashMap<String, Integer> RailMoveDetail = new HashMap<>();

HashMap<String, Integer> BoxDetail = new HashMap<>();

for (Move M : ActionList) {

if (M.getAction() == Move.ActionType.END_MOVE) {

String Key = M.OriginRamp.getCode() + "\t" + M.DestinationRamp.getCode() + "\t" + M.MoveType;

String Key1 = M.OriginRamp.getCode() + "\t" + M.DestinationRamp.getCode() + "\t" + M.MoveType + "\t" + M.getEndTime();

RailMove.put(Key, RailMove.getOrDefault(Key, 0) + 1);

RailMoveDetail.put(Key1, RailMove.getOrDefault(Key1, 0) + 1);

} else if (M.getAction() == Move.ActionType.ReleaseBox) {

String Key = M.DestinationRamp.getCode() + "\t" + M.getReleaseTime();

BoxDetail.put(Key, BoxDetail.getOrDefault(Key, 0) + 1);

}

}

for (String Key : RailMove.keySet()) {

Output.write(Key + "\t" + RailMove.get(Key) + "\n");

}

Output.write("\nOrigin\tDestination\tType\tTime\tCount\n");

for (String Key : RailMoveDetail.keySet()) {

Output.write(Key + "\t" + RailMoveDetail.get(Key) + "\n");

}

Output.write("\nRamp\tReleaseDate\tBoxNumber\n");

for (String Key : BoxDetail.keySet()) {

Output.write(Key + "\t" + BoxDetail.get(Key) + "\n");

}

Output.write("\nLast Read Line\t" + Move.getLastCode());

Output.close();

}

private void FastForward(String string) throws IOException {

String R = Input.readLine();

int Count = 0;

BufferedWriter Output = new BufferedWriter(new FileWriter("Sorted.txt"));

while (1 == 1) {

Count++;

Output.write(R + "\n");

if (diff(CleanSplit(R, Columns.ActionDate), string) == -1) {

ActionList.add(new Move(getRamp(CleanSplit(R, Columns.OriginRamp)), getRamp(CleanSplit(R, Columns.DestinationRamp)), CleanSplit(R,

Columns.PickupDate), CleanSplit(R, Columns.DeliveryDate), CleanSplit(R, Columns.InGate), CleanSplit(R, Columns.OutGate),

CleanSplit(R, Columns.LoadFlag), CleanSplit(R, Columns.ActionDate), R));

break;

}

R = Input.readLine();

}

for (int i = 0; i < 10; i++) {

Output.write(Input.readLine() + "\n");

}

Output.close();

}

private enum Columns {

OrderNumber,

ShipperCode,

ShipperLat,

ShipperLong,

ReceiverCode,

ReceiverLat,

187

ReceiverLong,

PickupDate,

PickupTime,

DeliveryDate,

DeliveryTime,

OriginRamp,

DestinationRamp,

TotalRevenue,

InGate,

OutGate,

LoadFlag,

ActionDate

}

public Control(String[] FileNames) throws FileNotFoundException, IOException {

Files = new String[FileNames.length];

System.arraycopy(FileNames, 0, Files, 0, Files.length);

FileCounter = 0;

InitializeNewFile();

String R = Input.readLine();

if (isFast) {

FastForward("2010-01-01");

} else {

ActionList.add(new Move(getRamp(CleanSplit(R, Columns.OriginRamp)), getRamp(CleanSplit(R, Columns.DestinationRamp)), CleanSplit(R,

Columns.PickupDate), CleanSplit(R, Columns.DeliveryDate), CleanSplit(R, Columns.InGate), CleanSplit(R, Columns.OutGate),

CleanSplit(R, Columns.LoadFlag), CleanSplit(R, Columns.ActionDate), R));

}

}

private void InitializeNewFile() throws FileNotFoundException, IOException {

System.out.println("Starting File\t" + Files[FileCounter]);

Input = new BufferedReader(new FileReader(Files[FileCounter]));

Input.readLine();

FileCounter++;

}

int Year = 0;

int Month = 0;

int Day = 0;

public void Run() throws FileNotFoundException, IOException {

String Display = "";

StartCounter = 0;

EndCounter = 0;

ReleaseCounter = 0;

NewCounter = 0;

CompletedCounter = 0;

while (!ActionList.isEmpty()) {

ActionList.sort(new Move.MoveComparator());

Move MinMove = ActionList.get(0);

if (Display.equals("")) {

Display = MinMove.getActionTime();

Year = MinMove._YearActionDate;

Month = MinMove._MonthActionDate;

Day = MinMove._DayActionDate;

} else if ((Year != MinMove._YearActionDate) || (Month != MinMove._MonthActionDate) || (Day != MinMove._DayActionDate)) {

ReportCreator(Display);

StartCounter = 0;

EndCounter = 0;

ReleaseCounter = 0;

188

NewCounter = 0;

CompletedCounter = 0;

Display = MinMove.getActionTime();

Year = MinMove._YearActionDate;

Month = MinMove._MonthActionDate;

Day = MinMove._DayActionDate;

Calendar T = Calendar.getInstance();

T = null;

}

switch (MinMove.Action) {

case INITIAL_MOVE:

StartCounter++;

StartMoving(MinMove);

NewCounter++;

ReadNewLine();

break;

case END_MOVE:

EndCounter++;

EndMoving(MinMove);

if (MinMove.isBadData()) {

ReadNewLine();

NewCounter++;

}

break;

case ReleaseBox:

ReleaseCounter++;

ReleaseBox(MinMove);

break;

}

if (MinMove.Action == Move.ActionType.REMOVE) {

ActionList.remove(MinMove);

CompletedCounter++;

}

}

ReportCreator(Display);

}

private Ramp getRamp(String Code) {

for (Ramp R : RampList) {

if (R.getCode().equals(Code)) {

return R;

}

}

Ramp R = new Ramp(Code);

RampList.add(R);

return R;

}

private static String CleanSplit(String R, Columns Index) {

return R.split(",")[Index.ordinal()].replace("\"", "").trim().toUpperCase();

}

private static int diff(String oDate, String thisDate) {

int thisYear = Integer.parseInt(thisDate.split("-")[0]);

int oYear = Integer.parseInt(oDate.split("-")[0]);

int thisMonth = Integer.parseInt(thisDate.split("-")[1]);

int oMonth = Integer.parseInt(oDate.split("-")[1]);

int oDay = Integer.parseInt(oDate.split("-")[2]);

int thisDay = Integer.parseInt(thisDate.split("-")[2]);

189

if (thisYear > oYear) {

return 1;

} else if (thisYear < oYear) {

return -1;

} else if (thisMonth > oMonth) {

return 1;

} else if (thisMonth < oMonth) {

return -1;

} else if (thisDay > oDay) {

return 1;

} else if (thisDay < oDay) {

return -1;

} else {

return 0;

}

}

}

C Chapter 4 Programming Codes

C.1 Care Center Class

package chapter3simulation;

import java.util.ArrayList;

import java.util.LinkedList;

/**

*

* @author Amir

*/

public abstract class CareCenter {

public double X;

public double Y;

protected Simulator myParent;

protected final LinkedList<Patient> myQueue;

protected final LinkedList<Patient> myDeviceQueue;

protected ArrayList<TBDevice> myDevices;

protected Region myRegion;

public Simulator getParent() {

return myParent;

}

public CareCenter(Simulator myParent, Region myRegion) {

this.X = RandomCreator.getX(myRegion);

this.Y = RandomCreator.getY(myRegion);

this.myRegion = myRegion;

this.myParent = myParent;

myQueue = new LinkedList<>();

myDeviceQueue = new LinkedList<>();

myDevices = new ArrayList<>();

}

public double getX() {

190

return X;

}

public double getY() {

return Y;

}

public Region getRegion() {

return this.myRegion;

}

protected TBDevice getFreeDevice() {

for (TBDevice myDevice : this.myDevices) {

if (myDevice.isFree()) {

return myDevice;

}

}

return null;

}

protected boolean isDeviceFree() {

for (TBDevice myDevice : this.myDevices) {

if (myDevice.isFree()) {

return true;

}

}

return false;

}

abstract void receivePatient(Object myChild);

abstract void patientLeave(Object myChild);

abstract String getName();

abstract void getNextPatient();

}

C.2 Clinic Class

package chapter3simulation;

import java.util.LinkedList;

/**

*

* @author Amir

*/

public class Clinic extends CareCenter {

private static int myIDCounter = 0;

private int ID;

private final boolean Traditional;

private int myDoctors;

private int InPatient;

private int OutPatient;

private double LastQUpdate;

private double LastDocUpdate;

private double TotalQTime;

private double TotalBusyPOC;

private LinkedList<Patient> SampleToSend;

private final double sendSampleInterval = 2 * 60;

private LinkedList<Patient> SentSample;

private int BusyAsset;

191

private TBCenter myCenter;

public Clinic(Simulator myParent, boolean traditional, int numDoc, int numDevice, Region myRegion) {

super(myParent, myRegion);

this.ID = myIDCounter++;

this.Traditional = traditional;

this.myDoctors = numDoc;

if (!this.Traditional) {

for (int i = 0; i < numDevice; i++) {

myDevices.add(new TBDevice(this));

}

}

this.SampleToSend = new LinkedList<>();

this.SentSample = new LinkedList<>();

myCenter = this.myParent.getTBCenter(this);

}

@Override

void receivePatient(Object myChild) {

Patient myPatient = (Patient) myChild;

InPatient++;

myPatient.setMyCareCenter(this);

myQueue.add(myPatient);

UpdateQStat(true);

myPatient.InQuTimeStamp();

this.processNextPatient();

}

private void UpdateQStat(boolean add) {

TotalQTime += (myQueue.size() + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastQUpdate);

LastQUpdate = this.myParent.getTime();

}

private void UpdatePOC(boolean add) {

TotalBusyPOC += (this.BusyAsset + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastDocUpdate);

LastDocUpdate = this.myParent.getTime();

}

@Override

void patientLeave(Object myChild) {

Patient myPatient = (Patient) myChild;

OutPatient++;

if (this.Traditional) {

this.SampleToSend.add(myPatient);

if (this.SampleToSend.size() == 1) {

this.myParent.addToFEL(new Event((((int) (myParent.getTime() / (60 * 24))) + 1) * 60 * 24,

EventNames.EventName.SendSampleToTBCenter, this));

}

} else {

this.processByDevice(myPatient);

}

this.reduceAsset();

}

private void reduceAsset() {

BusyAsset--;

this.UpdatePOC(false);

this.processNextPatient();

}

private void processNextPatient() {

if (this.myQueue.size() > 0) {

Patient myPatient = this.myQueue.getFirst();

192

if (BusyAsset < this.myDoctors) {

BusyAsset++;

myQueue.remove(myPatient);

this.UpdateQStat(false);

this.UpdatePOC(true);

myPatient.OutQuTimeStamp();

this.myParent.addToFEL(new Event(myParent.getTime() + RandomCreator.getTraditionalDRVisit(), EventNames.EventName.EndOfDrVisit,

myPatient));

}

}

}

@Override

public String toString() {

TotalQTime += myQueue.size() * (this.myParent.getTime() - LastQUpdate);

TotalBusyPOC += BusyAsset * (this.myParent.getTime() - LastDocUpdate);

return "Clinic_" + ID + "\t" + this.InPatient + "\t" + this.OutPatient + "\t" + this.TotalQTime / this.myParent.getTime() + "\t" +

this.TotalBusyPOC / this.myParent.getTime() + "\t" + this.SampleToSend.size() + "\t" + this.SentSample.size() + "\t" +

this.myQueue.size();

}

public void sendSamples() {

this.myParent.addToFEL(new Event(myParent.getTime() + RandomCreator.getTravelTime(this, this.getCenter()),

EventNames.EventName.TBCenterReceived, this));

SentSample = (LinkedList<Patient>) SampleToSend.clone();

SampleToSend = new LinkedList<>();

}

public TBCenter getCenter() {

return myCenter;

}

public LinkedList getSample() {

return SentSample;

}

public String getName() {

return "Clinic_" + ID;

}

private void processByDevice(Patient myPatient) {

if (isDeviceFree()) {

TBDevice myDevice = this.getFreeDevice();

myDevice.getPatient(myPatient);

} else {

this.myDeviceQueue.add(myPatient);

}

}

@Override

void getNextPatient() {

if (this.myDeviceQueue.size() > 0) {

Patient myPatient = this.myDeviceQueue.getFirst();

processByDevice(myPatient);

this.myDeviceQueue.remove(myPatient);

}

}

}

193

C.3 Microscopy Center Class

package chapter3simulation;

import java.util.LinkedList;

/**

*

* @author Amir

*/

public class TBCenter extends CareCenter {

private static int myIDCounter = 0;

private int ID;

private final int Capacity;

private int BusyAsset;

private Hospital myCenter;

private LinkedList<Patient> SampleToSend;

private final double sendSampleInterval = 4 * 60;

private LinkedList<Patient> SentSample;

private final boolean Traditional;

private int OutPatient;

private double LastQUpdate;

private double LastDocUpdate;

private double TotalQTime;

private double TotalBusyPOC;

private int InPatient;

public TBCenter(Simulator myParent, boolean Tradit, int _Capacity, Region myRegion) {

super(myParent, myRegion);

this.ID = myIDCounter++;

this.Capacity = _Capacity;

this.SampleToSend = new LinkedList<>();

this.SentSample = new LinkedList<>();

this.Traditional = Tradit;

if (!this.Traditional) {

for (int i = 0; i < _Capacity; i++) {

this.myDevices.add(new TBDevice(this));

}

}

myCenter = this.myParent.getHospital(this);

}

@Override

void receivePatient(Object myChild) {

Clinic myClinic = (Clinic) myChild;

LinkedList mySamples = myClinic.getSample();

if (!mySamples.isEmpty()) {

while (!mySamples.isEmpty()) {

InPatient++;

Patient myPatient = (Patient) mySamples.getFirst();

this.myQueue.add(myPatient);

this.UpdateQStat(true);

mySamples.remove(myPatient);

myPatient.TBCenterArriveTimeStamp();

}

}

mySamples = new LinkedList<>();

this.processNextPatient();

194

}

@Override

void patientLeave(Object myChild) {

Patient myPatient = (Patient) myChild;

myPatient.setTBCenterResult(RandomCreator.getTBCenterResult());

OutPatient++;

if (this.Traditional) {

this.reduceAsset();

if (!myPatient.getTBCenterResult()) {

this.SampleToSend.add(myPatient);

if(this.SampleToSend.size()==1){

this.myParent.addToFEL(new Event((((int) (myParent.getTime() / (60 * 24))) + 3) * 60 * 24,

EventNames.EventName.SendSampleToHospital, this));

}

} else {

myPatient.notifyOfResult();

}

} else {

reduceAsset();

}

}

public void sendSamples() {

this.myParent.addToFEL(new Event(myParent.getTime() + RandomCreator.getTravelTime(this, this.getCenter()),

EventNames.EventName.HospitalReceive, this));

SentSample = (LinkedList<Patient>) SampleToSend.clone();

SampleToSend = new LinkedList<>();

}

public Hospital getCenter() {

return myCenter;

}

private void reduceAsset() {

BusyAsset--;

this.UpdatePOC(false);

this.processNextPatient();

}

private void processNextPatient() {

while (this.BusyAsset <= this.Capacity && !myQueue.isEmpty()) {

this.BusyAsset++;

this.UpdatePOC(true);

Patient myPatient = (Patient) myQueue.getFirst();

if (Traditional) {

this.myParent.addToFEL(new Event(this.myParent.getTime() + RandomCreator.getTBCenterProcessingTime(),

EventNames.EventName.EndOfProcessingTBCenter, myPatient));

} else {

this.processByDevice(myPatient);

}

myQueue.remove(myPatient);

this.UpdateQStat(false);

myPatient.TBCenterProcessTimeStamp();

}

}

private void UpdateQStat(boolean add) {

TotalQTime += (myQueue.size() + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastQUpdate);

LastQUpdate = this.myParent.getTime();

}

private void UpdatePOC(boolean add) {

195

TotalBusyPOC += (this.BusyAsset + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastDocUpdate);

LastDocUpdate = this.myParent.getTime();

}

@Override

public String toString() {

TotalQTime += myQueue.size() * (this.myParent.getTime() - LastQUpdate);

TotalBusyPOC += BusyAsset * (this.myParent.getTime() - LastDocUpdate);

return "TBCenter_" + ID + "\t" + this.InPatient + "\t" + this.OutPatient + "\t" + this.TotalQTime / this.myParent.getTime() + "\t" +

this.TotalBusyPOC / this.myParent.getTime() + "\t" + this.SampleToSend.size() + "\t" + this.SentSample.size() + "\t" +

this.myQueue.size();

}

LinkedList getSample() {

return this.SentSample;

}

public String getName() {

return "TBCenter_" + ID;

}

private void processByDevice(Patient myPatient) {

if (isDeviceFree()) {

TBDevice myDevice = this.getFreeDevice();

myDevice.getPatient(myPatient);

}

}

@Override

void getNextPatient() {

this.patientLeave(this);

}

}

C.4 Major Hospital Class

package chapter3simulation;

import java.util.LinkedList;

/**

*

* @author Amir

*/

public class Hospital extends CareCenter {

private static int myIDCounter = 0;

private int ID;

private final int Capacity;

private int BusyAsset;

private int OutPatient;

private double LastQUpdate;

private double LastDocUpdate;

private double TotalQTime;

private double TotalBusyPOC;

private int InPatient;

public Hospital(Simulator myParent, int _Capacity, Region myRegion) {

super(myParent, myRegion);

this.ID = myIDCounter++;

this.Capacity = _Capacity;

}

196

@Override

void receivePatient(Object myChild) {

TBCenter myTBCenter = (TBCenter) myChild;

LinkedList mySamples = myTBCenter.getSample();

if (!mySamples.isEmpty()) {

while (!mySamples.isEmpty()) {

InPatient++;

Patient myPatient = (Patient) mySamples.getFirst();

this.myQueue.add(myPatient);

this.UpdateQStat(true);

mySamples.remove(myPatient);

myPatient.HospitalArrivalTimeStamp();

}

}

mySamples = new LinkedList<>();

this.processNextPatient();

}

@Override

void patientLeave(Object myChild) {

Patient myPatient = (Patient) myChild;

myPatient.setHospitalResult(RandomCreator.getHospitalResult());

OutPatient++;

this.reduceAsset();

myPatient.notifyOfResult();

}

private void reduceAsset() {

BusyAsset--;

this.UpdatePOC(false);

this.processNextPatient();

}

private void processNextPatient() {

while (this.BusyAsset <= this.Capacity && !myQueue.isEmpty()) {

this.BusyAsset++;

this.UpdatePOC(true);

Patient myPatient = (Patient) myQueue.getFirst();

this.myParent.addToFEL(new Event(this.myParent.getTime() + RandomCreator.getHospitalProcessingTime(),

EventNames.EventName.EndOfProcessingHospital, myPatient));

myQueue.remove(myPatient);

this.UpdateQStat(false);

myPatient.HospitalProcessingTimeStamp();

}

}

private void UpdateQStat(boolean add) {

TotalQTime += (myQueue.size() + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastQUpdate);

LastQUpdate = this.myParent.getTime();

}

private void UpdatePOC(boolean add) {

TotalBusyPOC += (this.BusyAsset + ((add) ? -1 : +1)) * (this.myParent.getTime() - LastDocUpdate);

LastDocUpdate = this.myParent.getTime();

}

@Override

public String toString() {

TotalQTime += myQueue.size() * (this.myParent.getTime() - LastQUpdate);

TotalBusyPOC += BusyAsset * (this.myParent.getTime() - LastDocUpdate);

return "Hospital_" + ID + "\t" + this.InPatient + "\t" + this.OutPatient + "\t" + this.TotalQTime / this.myParent.getTime() + "\t" +

this.TotalBusyPOC / this.myParent.getTime() + "\t" + this.myQueue.size();

197

}

public String getName() {

return "Hospital_" + ID;

}

}

C.5 Patient Class

package chapter3simulation;

/**

*

* @author Amir

*/

public class Patient {

private static int myIDCounter;

private int ID;

private final double X;

private final double Y;

private final Region myRegion;

private final double startTime;

private final Simulator myParent;

private Clinic myCareCenter;

private double InQ;

private double OutQ;

private double endTime;

private boolean HospitalResult;

private double TBCenterArriveTimeStamp;

private double TBCenterProcessTimeStamp;

private double HospitalProcessingTimeStamp;

private double HospitalArrivalTimeStamp;

private boolean TBCenterResult;

public Clinic getCenter() {

return (Clinic) myCareCenter;

}

public void setMyCareCenter(Clinic myCareCenter) {

this.myCareCenter = myCareCenter;

}

public double getX() {

return X;

}

public double getY() {

return Y;

}

public Patient(Simulator myParent, Region region, double currentTime) {

this.X = RandomCreator.getX(region);

this.Y = RandomCreator.getY(region);

this.ID = Patient.myIDCounter++;

//System.out.println("Patient_" + ID + "\t" + this.X + "\t" + this.Y);

this.myRegion = region;

this.startTime = currentTime + RandomCreator.getNextPatientTime(region);

this.myParent = myParent;

if (myParent.TBOnDemand) {

this.myParent.addToFEL(new Event(this.startTime, EventNames.EventName.PatientNotification, this));

198

} else {

this.myParent.addToFEL(new Event(this.startTime, EventNames.EventName.PatientArrival, this));

}

this.myParent.addToAllList(this);

}

public void patientArrive() {

this.myParent.getCareCenter(this).receivePatient(this);

new Patient(this.myParent, this.myRegion, this.startTime);

}

void OutQuTimeStamp() {

this.OutQ = this.myParent.getTime();

}

void InQuTimeStamp() {

this.InQ = this.myParent.getTime();

}

void leaveCareCenter() {

this.myCareCenter.patientLeave(this);

}

private String myString(double myTime) {

return ((myTime == 0) ? "N/A" : Double.toString(myTime));

}

boolean isDone() {

return (this.endTime != 0);

}

double getOutQ() {

return this.OutQ;

}

double getInQ() {

return this.InQ;

}

double getOut() {

return this.endTime;

}

double arrived() {

return this.startTime;

}

void TBCenterArriveTimeStamp() {

this.TBCenterArriveTimeStamp = this.myParent.getTime();

}

void TBCenterProcessTimeStamp() {

this.TBCenterProcessTimeStamp = this.myParent.getTime();

}

void setTBCenterResult(boolean result) {

this.TBCenterResult = result;

}

void setHospitalResult(boolean result) {

this.HospitalResult = result;

}

public boolean getTBCenterResult() {

return this.TBCenterResult;

}

void notifyOfResult() {

this.endTime = this.myParent.getTime();

}

void HospitalProcessingTimeStamp() {

this.HospitalProcessingTimeStamp = this.myParent.getTime();

199

}

void HospitalArrivalTimeStamp() {

this.HospitalArrivalTimeStamp = this.myParent.getTime();

}

@Override

public String toString() {

return "Patient_" + Integer.toString(ID) + "\t" + this.myCareCenter.getName() + "\t" + this.myCareCenter.getCenter().getName() + "\t" +

this.myCareCenter.getCenter().getCenter().getName()

+ "\t" + this.InQ + "\t" + myString(OutQ) + "\t" + myString(TBCenterArriveTimeStamp) + "\t" + myString(TBCenterProcessTimeStamp) +

"\t" + myString(HospitalArrivalTimeStamp)

+ "\t" + myString(HospitalProcessingTimeStamp) + "\t" + myString(this.endTime) + "\t" + this.TBCenterResult + "\t" +

this.HospitalResult;

}

Region getRegion() {

return this.myRegion;

}

void requestAVehicle() {

this.myParent.receiveAPatient(this);

new Patient(this.myParent, this.myRegion, this.myParent.CurrentTime);

}

}

C.6 Vehicle Class

package chapter3simulation;

/**

*

* @author Amir

*/

public class Vehicle extends CareCenter {

private static int IDCounter;

private final int ID;

public boolean isFree;

Patient myCurrentPatient;

public Vehicle(Simulator myParent, Region myRegion, int NumDevice) {

super(myParent, myRegion);

isFree = true;

myCurrentPatient = null;

this.ID = IDCounter++;

for (int i = 0; i < NumDevice; i++) {

myDevices.add(new TBDevice(this));

}

this.X = myRegion.getLowerX();

this.Y = myRegion.getLowerY();

}

@Override

String getName() {

return "Vehicle_" + ID;

}

private void processByDevice(Patient myPatient) {

if (isDeviceFree()) {

TBDevice myDevice = this.getFreeDevice();

myDevice.getPatient(myPatient);

200

} else {

this.myDeviceQueue.add(myPatient);

}

}

double startTravel = 0;

double TotalTravel = 0;

double startWait = 0;

double TotalWait = 0;

double startFree = 0;

double TotalFree = 0;

void notifyOfNewPatient(Patient myPatient) {

if (this.isFree) {

startTravel = this.myParent.CurrentTime;

this.myCurrentPatient = myPatient;

TotalFree += this.myParent.CurrentTime - startFree;

this.isFree = false;

this.myParent.addToFEL(new Event(this.myParent.CurrentTime + RandomCreator.getTravelTime(myPatient, this),

EventNames.EventName.VehicleArrive, this));

} else {

this.myQueue.add(myPatient);

}

}

void ArriveAtPatientLocation() {

TotalTravel += this.myParent.CurrentTime - this.startTravel;

if (isDeviceFree()) {

TBDevice myDevice = this.getFreeDevice();

myDevice.getPatient(myCurrentPatient);

this.isFree = true;

startFree = this.myParent.CurrentTime;

if (this.myQueue.size() > 0) {

if (this.isDeviceFree()) {

this.startTravel = this.myParent.CurrentTime;

Patient myPatient = this.myQueue.get(0);

this.myCurrentPatient = myPatient;

TotalFree += this.myParent.CurrentTime - startFree;

this.isFree = false;

this.myParent.addToFEL(new Event(this.myParent.CurrentTime + RandomCreator.getTravelTime(myPatient, this),

EventNames.EventName.VehicleArrive, this));

this.myQueue.remove(myPatient);

} else {

double leftTime = 90 - this.earliestDeviceTime() + this.myParent.CurrentTime;

double minDistance = Double.MAX_VALUE;

Patient myP = null;

for (Patient myPatient : this.myQueue) {

double myDistance = RandomCreator.getTravelTime(myPatient, this);

if (myDistance > leftTime) {

if (myDistance < minDistance) {

minDistance = myDistance;

myP = myPatient;

}

}

}

if (myP == null) {

for (Patient myPatient : this.myQueue) {

double myDistance = RandomCreator.getTravelTime(myPatient, this);

if (myDistance < minDistance) {

201

minDistance = myDistance;

myP = myPatient;

}

}

}

this.startTravel = this.myParent.CurrentTime;

this.myCurrentPatient = myP;

TotalFree += this.myParent.CurrentTime - startFree;

this.isFree = false;

this.myParent.addToFEL(new Event(this.myParent.CurrentTime + RandomCreator.getTravelTime(myP, this),

EventNames.EventName.VehicleArrive, this));

this.myQueue.remove(myP);

}

}

} else {

this.startWait = this.myParent.CurrentTime;

this.myDeviceQueue.add(myCurrentPatient);

}

}

void notifyFreeDevice() {

if (this.myDeviceQueue.size() > 0) {

TBDevice myDevice = this.getFreeDevice();

myDevice.getPatient(myCurrentPatient);

this.myDeviceQueue.remove(myCurrentPatient);

this.isFree = true;

startFree = this.myParent.CurrentTime;

this.TotalWait += this.myParent.CurrentTime - this.startWait;

if (this.myQueue.size() > 0) {

Patient myPatient = this.myQueue.get(0);

this.myCurrentPatient = myPatient;

this.startTravel = this.myParent.CurrentTime;

TotalFree += this.myParent.CurrentTime - startFree;

this.isFree = false;

this.myParent.addToFEL(new Event(this.myParent.CurrentTime + RandomCreator.getTravelTime(myPatient, this),

EventNames.EventName.VehicleArrive, this));

this.myQueue.remove(myPatient);

}

}

}

private double earliestDeviceTime() {

double minTime = Double.MAX_VALUE;

for (TBDevice myDevice : this.myDevices) {

if (minTime > myDevice.startTime) {

minTime = myDevice.startTime;

}

}

return minTime;

}

}

C.7 Simulator Class

package chapter3simulation;

202

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

/**

*

* @author Amir

*/

public class Simulator {

public FEL myFEL;

public double SimulationRun;

public ArrayList<Clinic> myClinics;

public ArrayList<TBCenter> myTBCenters;

public ArrayList<Hospital> myHospitals;

public double CurrentTime;

public ArrayList<Patient> AllPatients;

public ArrayList<Region> myRegions;

public int WarmUp = 1 * 20 * 7 * 24 * 60;

public boolean TBOnDemand = true;

public ArrayList<Vehicle> myVehicles = new ArrayList<>();

private boolean DistrictBase = false;

private double KPI;

public Simulator() throws IOException {

Event.myFile = new BufferedWriter(new FileWriter("Output.txt"));

AllPatients = new ArrayList<>();

myClinics = new ArrayList<>();

myTBCenters = new ArrayList<>();

myHospitals = new ArrayList<>();

myRegions = new ArrayList<>();

SimulationRun = 52 * 7 * 24 * 60;

this.myFEL = new FEL();

myRegions.add(new Region("Greater Accra", EventNames.RegionDrivingType.Easy, EventNames.RegionPatient.High, 45 * 5, 4 * 5, 31 * 5, 0, 123,

60, 2, 3909764)); // Greater Accra - 123 Clinic - 60 TB Center 20*80

if (!TBOnDemand) {

myRegions.add(new Region("Volta", EventNames.RegionDrivingType.Medium, EventNames.RegionPatient.High, 56 * 5, 202, 237, 0, 64, 33, 0,

2099876)); // Volta - 64 Clinic - 33 TB Center 138*56

myRegions.add(new Region("Upper East", EventNames.RegionDrivingType.Hard, EventNames.RegionPatient.High, 56 * 5, 85 * 5, 27 * 5, 57 *

5, 55, 22, 0, 1031479)); // Upper East - 55 Clinic - 22 TB Center 31*96

myRegions.add(new Region("Northern", EventNames.RegionDrivingType.Hard, EventNames.RegionPatient.Low, 56 * 5, 57 * 5, 0, 27 * 5, 37,

28, 0, 2468557)); // Northern - 37 Clinic - 28 TB Center 150*293

myRegions.add(new Region("Ashanti", EventNames.RegionDrivingType.Easy, EventNames.RegionPatient.Medium, 31 * 5, 19 * 5, 14 * 5, 6 * 5,

79, 50, 0, 4725046)); // Ashanti - 79 Clinic - 50 TB Center 100*100

myRegions.add(new Region("Western", EventNames.RegionDrivingType.Easy, EventNames.RegionPatient.High, 14 * 5, 19 * 5, 0, 0, 52, 25, 0,

2325597)); // Western - 52 Clinic - 25 TB Center 100*70

myRegions.add(new Region("Central", EventNames.RegionDrivingType.Medium, EventNames.RegionPatient.High, 31 * 5, 6 * 5, 14 * 5, 0, 55,

33, 0, 2107209)); // Central - 55 Clinic - 33 TB Center 50*70

myRegions.add(new Region("Eastern", EventNames.RegionDrivingType.Medium, EventNames.RegionPatient.Medium, 45 * 5, 19 * 5, 31 * 5, 4 *

5, 62, 34, 1, 259013)); // Eastern - 62 Clinic - 34 TB Center 80*80

myRegions.add(new Region("Upper West", EventNames.RegionDrivingType.Medium, EventNames.RegionPatient.Low, 27 * 5, 85 * 5, 0, 57 * 5,

21, 10, 0, 677763)); // Upper West - 21 Clinic - 10 TB Center 80*85

myRegions.add(new Region("Brong Ahafo", EventNames.RegionDrivingType.Medium, EventNames.RegionPatient.Low, 45 * 5, 27 * 5, 0, 19 * 5,

10, 53, 0, 2356534)); // Brong Ahafo - 10 Clinic - 53 TB Center 110*202

}

for (Region myRegion : myRegions) {

for (int i = 0; i < myRegion.getNumHospital(); i++) {

myHospitals.add(new Hospital(this, Integer.MAX_VALUE, myRegion));

203

}

}

if (TBOnDemand) {

for (Region R : myRegions) {

for (int i = 0; i < RandomCreator.numberOfVehicle; i++) {

myVehicles.add(new Vehicle(this, R, RandomCreator.numberOfDevices));

}

}

}

for (Region myRegion : myRegions) {

for (int i = 0; i < myRegion.getNumTBCenter(); i++) {

myTBCenters.add(new TBCenter(this, true, Integer.MAX_VALUE, myRegion));

}

}

for (Region myRegion : myRegions) {

for (int i = 0; i < myRegion.getNumClinic(); i++) {

myClinics.add(new Clinic(this, true, 2, 2, myRegion));

}

new Patient(this, myRegion, 0);

}

}

public void addToFEL(Event myEvent) {

this.myFEL.addEvent(myEvent);

}

public double getTime() {

return CurrentTime;

}

public double Run() throws IOException {

CurrentTime = 0;

double A = 0;

while (CurrentTime < SimulationRun && this.myFEL.isRemainingEvents()) {

Event myEvent = this.myFEL.getCurrentEvent();

if (myEvent.getTime() < CurrentTime) {

throw new IllegalArgumentException("CannotHappen!");

}

CurrentTime = myEvent.getTime();

myEvent.Run();

}

KPICalculator();

return KPI;

}

public CareCenter getCareCenter(Patient myPatient) {

double distance = Double.MAX_VALUE;

CareCenter mySelectedCenter = null;

for (CareCenter myCenter : myClinics) {

double myDis = Utility.getDistance(myCenter, myPatient);

if (distance > myDis) {

distance = myDis;

mySelectedCenter = myCenter;

}

}

return mySelectedCenter;

}

void addToAllList(Patient myPatient) {

this.AllPatients.add(myPatient);

}

204

public String KPICalculator() {

double totalProcessingTime = 0;

int totalPatientProcessed = 0;

double totalTimePatientSpentAtPOCQueue = 0;

for (Patient myPatient : this.AllPatients) {

if (myPatient.isDone()) {

if (myPatient.getOut() > WarmUp) {

totalPatientProcessed++;

totalProcessingTime += myPatient.getOut() - myPatient.arrived();

totalTimePatientSpentAtPOCQueue += myPatient.getOutQ() - myPatient.getInQ();

}

}

}

KPI = totalPatientProcessed;

return totalPatientProcessed + "\t" + totalProcessingTime / totalPatientProcessed;

}

private void mySummary() throws IOException {

KPICalculator();

for (CareCenter myClinic : myClinics) {

System.out.println(myClinic);

}

System.out.println("\nTB Centers");

for (CareCenter myClinic : myTBCenters) {

System.out.println(myClinic);

}

System.out.println("\nHospital");

for (CareCenter myClinic : myHospitals) {

System.out.println(myClinic);

}

System.out.println("\n\n");

Event.myFile.close();

}

TBCenter getTBCenter(Clinic myClinic) {

double distance = Double.MAX_VALUE;

TBCenter mySelectedCenter = null;

for (TBCenter myCenter : myTBCenters) {

double myDis = Utility.getDistance(myCenter, myClinic);

if (distance > myDis) {

distance = myDis;

mySelectedCenter = myCenter;

}

}

return mySelectedCenter;

}

Hospital getHospital(TBCenter myTBCenter) {

double distance = Double.MAX_VALUE;

Hospital mySelectedCenter = null;

for (Hospital myCenter : myHospitals) {

double myDis = Utility.getDistance(myCenter, myTBCenter);

if (distance > myDis) {

distance = myDis;

mySelectedCenter = myCenter;

}

}

return mySelectedCenter;

}

205

void receiveAPatient(Patient myPatient) {

if (DistrictBase) {

double distance = Double.MAX_VALUE;

Vehicle myV = null;

for (Vehicle myVehicle : myVehicles) {

if (myVehicle.myRegion.equals(myPatient.getRegion())) {

double dis = Utility.getDistance(myVehicle, myPatient) + 0.5 * myVehicle.myDeviceQueue.size() + .5 * myVehicle.myQueue.size() +

.5 * (myVehicle.isFree ? 0 : 1);

if (dis < distance) {

myV = myVehicle;

distance = dis;

}

}

}

myV.notifyOfNewPatient(myPatient);

} else {

double distance = Double.MAX_VALUE;

Vehicle myV = null;

for (Vehicle myVehicle : myVehicles) {

double dis = Utility.getDistance(myVehicle, myPatient) + 0.5 * myVehicle.myDeviceQueue.size() + .5 * myVehicle.myQueue.size() + .5

* (myVehicle.isFree ? 0 : 1);

if (dis < distance) {

myV = myVehicle;

distance = dis;

}

}

myV.notifyOfNewPatient(myPatient);

}

}

void createDataFile(double Speed) {

String Ans = "param c: ";

for (int i = 0; i <= AllPatients.size(); i++) {

Ans += Integer.toString(i) + "\t";

}

Ans += ":=\n0\t.\t";

for (int i = 0; i < AllPatients.size(); i++) {

Ans += Utility.getDistance(AllPatients.get(i)) / Speed + "\t";

}

Ans += "\n";

for (int i = 0; i < AllPatients.size(); i++) {

Ans += Integer.toString(i + 1) + "\t" + Utility.getDistance(AllPatients.get(i)) / Speed + "\t";

for (int j = 0; j < AllPatients.size(); j++) {

if (i != j) {

Ans += Utility.getDistance(AllPatients.get(i), AllPatients.get(j)) / Speed + "\t";

} else {

Ans += ".\t";

}

}

Ans += "\n";

}

}

double getSpeed() {

return this.myRegions.get(0).myType.getValue();

}

void getKPI() {

double TotalT = 0;

206

double TotalW = 0;

double TotalF = 0;

for (Vehicle myV : this.myVehicles) {

TotalT += myV.TotalTravel;

TotalW += myV.TotalWait;

TotalF += myV.TotalFree;

}

System.out.println(TotalT + "\t" + TotalW + "\t" + TotalF);

}

}

207

	Essays on Applications of Transportation Network Design and Optimization
	Citation

	DissertationTitlePage
	Dissertation_May3_Final

