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Abstract 

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in 

atomic-like energy levels as well as size-dependent electrical and optical properties. Self-

assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-

established fabrication techniques and versatile optical properties. This dissertation presents the 

photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-

wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon 

excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown 

by molecular beam epitaxy, are used in this study. Morphology of these samples was examined 

using atomic force microscope and transmission electron microscope. Two-photon excitation 

uses energy near half of the QDs ground state transition, all the way up to half of the GaAs 

matrix bandgap. Power dependent QDs PL with both one-photon and two-photon excitation can 

be described by power laws, with power index of 1 for one-photon excitation and two for two-

photon excitation. Photoluminescence excitation spectroscopy then provides evidence of direct 

two-photon absorption into the QDs when the two-photon excitation energy is resonant with the 

QDs state. For SQD without cavity, we observed PL of a SQD with excitation near its half 

bandgap. The QDs in a micro-cavity sample consists one layer of InAs QDs in a GaAs spacer 

sandwiched between two distributed Bragg reflectors made of alternating layers of GaAs and 

AlAs. We successfully observed PL from SQD emitted from the cavity mode with excitation 

slightly above half of the QD’s transition. These observations help us to understand the nonlinear 

optical property of InAs QDs and can be potentially used in all-optical computation or reflective 

optical limiters.   
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1 Introduction 

Nanomaterials are objects or structures that are at the nanoscale. We have known that the 

same substance at the nanoscale has different properties from its bulk counterpart [1]. This is 

because when structures come down to the nanoscale, the physical size of the object is 

comparable to the de Broglie wavelength of a charge carrier, restricting the charge carrier’s 

motion in specific energy levels. Therefore, nanomaterials open the door to a new world of 

materials. The properties of nanomaterials are not only different from those of their 

corresponding bulk, but they are also closely related to the materials’ sizes and shapes [1], [2]. 

This tunability makes nanomaterial and nanotechnology one of the critical research fields of the 

21st century.      

Quantum dots (QDs) are particles at the nanoscale in all three dimensions. The term 

“quantum dots” was coined by Reed et al. [3] in 1985, when they first provided evidence of 

energy quantization in this completely spatially quantized system. The QDs in their study was 

made by electron-beam lithography of a heterojunction system grown by molecular beam epitaxy 

(MBE). Nowadays, QDs can be prepared in several ways, including colloidal synthesis [4], 

plasma synthesis [5], [6], epitaxial growth, fabrication, etc. Characterization of the fundamental 

electronic and optical properties of QDs as well as the development of new fabrication 

techniques have also been advanced since the QDs invention.    

Optical nonlinearity of a material studies the modification of a material system’s optical 

property by the incident light. This field remained unexplored until the invention of the laser in 

1960 since the laser is intense enough, comparing to the atomic electric field, to cause the 

dielectric polarization to respond nonlinearly to the electric field of the illumination light. In 

return, the applications of lasers are greatly extended by the discovered optical nonlinearity of 
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material, including second harmonic generation (SHG), Q-switching, and mode-locking. Two-

photon absorption (TPA), as a form of multi-photon absorption, is one of the important optical 

nonlinearities of material since it can dominate over linear absorption at high illumination 

intensities. During a TPA process, the material absorbs two photons at the same time. The 

transition energy equals the sum energy of these absorbed photons. Application of TPA can be 

found in many fields: microfabrication [7], [8], optical power limiting and stabilization [9], [10], 

three-dimensional imaging [11], to name a few.   

Two-photon absorption by QDs has attracted a lot of research interest and have been 

studied across many disciplines because of its wide application. For example: material 

characterization by two-photon spectroscopy can use one laser as a fundamental pump and the 

other laser with variable energy to probe energy levels [12]–[14]; two-photon fluorescence for 

biological labeling and imaging [15], [16] uses infrared light to excite QDs so that a bigger 

penetration depth is achieved; intermediate-band solar cells (IBSC) [17]–[20] utilizes TPA 

through their intermediate-band to harvest infrared photons.  

Epitaxial-grown QDs are one of the most interested semiconductor QDs due to their well-

established fabrication techniques. As one of the most compelling nonlinear optical properties, 

TPA of III-V QDs has been investigated for fundamental physics as well as engineering 

applications. In this case, the two-photon excitation energy is focused mainly on above the inter-

band transition or within the sub-band transition. For instance, two-photon spectral hole burning 

of QDs [21] and Rabi oscillation resulted from two-photon resonant excitation of a single QD 

(SQD) [22] used two-photon excitation of biexciton states; up-conversion luminescence of 

matrix bandedge based on TPA in QDs [23], SQD [24], and QDs embedded in photonic-crystal 

waveguide [25] used excitation above QDs bandgap but below matrix bandedge; TPA into the 
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sub-band used infrared excitation longer than 10μm [26], [27]. In addition, Gautham et al. [28] 

studied the time dependence and the spin-flip time between the dark and bright states of GaAs 

QDs by investigating the luminescence resulting from two-photon excitation near the QDs 

bandgap. Li et al. [29] reported photocurrent generated by below-bandgap two-step TPA in InAs 

QD solar cells. At the SQD level, TPA has been examined in InAs/GaAs SQD [22], [24], [30], as 

well as InGaN/GaN SQD [31]–[33]. However, direct TPA in InAs/GaAs QDs with excitation 

near its half-bandgap and the resulted PL has not been reported. This dissertation would fill this 

blank.                                                                                                         

When QDs emit photons, the photons go in all directions without any control. One 

effective way to collect the photon from one direction is to put the QDs in a micro-post etched 

out of micro-cavity made of distributed Bragg reflectors (DBR) [34], [35]. Such a sample can be 

grown and fabricated using well-established techniques. A micro-post not only can make the 

photons to be emitted from the top of the post but also can choose the emission wavelength, 

since only the wavelength at the cavity mode can escape from the cavity. In this way, the cavity 

can act as a filter to help to isolate SQD from a QD ensemble.  

In this dissertation, we present a photoluminescence (PL) study of InAs/GaAs QDs with 

both above-bandgap one-photon (1hυ) excitation and below-bandgap two-photon (2hυ) 

excitation. The 2hυ excitation energy we used is near the half-bandgap of the QDs. PL by 

excitation in this range of InAs QDs and the mechanisms of TPA have not been reported to the 

best of our knowledge. The dissertation is organized as follows. Chapter 2 provides the 

background knowledge of this dissertation. It includes the samples we used; what happens when 

the sample is under laser excitation; fundamental theory of TPA; and the theory about the light 

cavity. Chapter 3 presents and discusses the PL results of ensemble QDs (EQDs). It includes the 
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excitation power dependent PL of EQDs under 1hυ excitation and 2hυ excitation; 

photoluminescence excitation (PLE) spectroscopy study of EQDs under 2hυ excitation. The 

excitation power dependent PL of wetting layer (WL) and GaAs substrate is also included for 

better understanding of the EQDs data. In Chapter 4, PL study of SQD is presented. It includes 

the SQD PL with 1hυ and 2hυ excitation, and the temperature dependent PL with 1hυ excitation. 

Chapter 5 examines the PL of SQD in a micro-cavity. PL study with 1hυ and 2hυ excitation is 

presented. The growth technique we used to get all of our samples is MBE growth. Sample 

characterization techniques we used including atomic force microscope (AFM), transmission 

electron microscope (TEM), PL and PLE. More details about these techniques and the 

experimental setups can be found in the Appendix. 
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2 Background 

2.1 Sample and Growth 

The sample used in this study was grown by molecular beam epitaxy (MBE). MBE is an 

epitaxial growth technique in which one or several atomic or molecular beams interact on the 

surface of a crystalline substrate, forming a new layer of crystal. Invented by J. R. Arthur [36] 

and A. Y. Cho [37] in the late 1960s, MBE has gone through significant development in order to 

achieve more precise atomic scale deposition, which enables us to explore new materials with 

different composition or interface as well as innovative devices with unique structures. A basic 

introduction of the MBE chamber can be found in Appendix A. 

2.1.1 QDs Sample Description and Growth 

The QDs we studied are self-assembled InAs QDs grown on GaAs under Stranski-

Krastanov (SK) growth mode. SK mode is a “layer-plus-island growth” mode, in which a 

complete two-dimensional (2D) layer (up to several monolayers) is formed first, followed by 

three-dimensional (3D) island shape growth once deposition is beyond the critical thickness to 

release strain due to lattice mismatch. In our case, the lattice constant of InAs is about 7% larger 

than that of GaAs. When InAs is deposited on GaAs, first a couple of monolayers (MLs) of InAs 

form a 2D layer called “wetting layer” (WL). This layer is strained to the GaAs lattice. Once the 

deposition is beyond the critical thickness of InAs/GaAs system, which is 1.7ML, QDs start to 

form to release the strain. During growth, this 2D to 3D transition process can be monitored by 

the reflection high energy electron diffraction (RHEED) in-situ. 2D growth will appear a streaky 

pattern, whereas 3D growth will appear a spotty pattern. Figure 2.1 [38] illustrates the RHEED 

patterns (left panel) and their corresponding growth process (right panel) of this transition. So as 

soon as we observe the spotty pattern like Figure 2.1(e), we know that InAs QDs are formed.  
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Usually, people want to grow uniform size QDs on one sample for large device purpose. 

But for our optical setup and study, we want to have a gradient density and size distribution of 

QDs on one sample. There are two main advantages about such a sample. Firstly, it gives us the 

option to choose the PL main peak position we want because bigger QDs have a lower PL 

energy whereas smaller QDs have a higher PL energy due to quantum confinement. In our case, 

we want the QDs emits below 1μm to get good detection efficiency with our silicon charge-

coupled device (Si-CCD). Secondly, such a gradient density sample enables us to locate an area 

with QDs or without QDs (WL only) on our Micro-PL setup which has a motor controlled stage. 

Plus, it will be easier to locate and separate an SQD in the low-density area.  

 
Figure 2.1. RHEED patterns (left panel) and their corresponding growth process (right 

panel) [38] . 
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To achieve such a gradient density QDs sample, one straightforward way is to create a 

gradient InAs deposition on the sample during the QDs growth. Consequently, area where InAs 

deposition is above the critical thickness will form QDs, whereas area where InAs deposition is 

below the critical thickness will only form WL. This can be realized by tilting the manipulator 

away from its optimal epitaxy position so that an indium flux gradient is created on the surface 

of the substrate.  

To catch the recipe of such a gradient density QDs sample, we went through a process 

containing ten samples as summarized in Table 2.1. The sample number is based on the MBE 

chamber growth log. Since there are samples grown by the same chamber for other projects, the 

sample number shows discontinuity. The results column briefly shows the quality of the sample. 

All samples were characterized by atomic force microscope (AFM) first and some of them were 

further characterized by PL. Detailed AFM and PL characterization of SF046, SF077, and SF094 

(indicating by *) will be shown and discussed in this dissertation. The setup of AFM and PL is 

introduced in Appendix B and D respectively.  

All samples were grown on GaAs (100) semi-insulating (S.I.) substrate. After being 

transferred into the growth chamber, the substrate goes through oxide desorption first at around 

585°C for 10 minutes. Then a 500nm thick high-quality GaAs buffer was grown at 580°C to 

make an atomic flat surface. Different recipes were then implemented for InAs QDs growth, 

followed by a 40s annealing. The QDs were normally covered with a GaAs cap layer for better 

PL signal [39]. Then another layer of InAs QDs was grown with the same recipe as the previous 

layer for morphology characterization.  
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As can be seen from Table 2.1, the deposition rate was decreased from 0.075ML/s to 

0.022ML/s to achieve low-density QDs [40]–[42]. But low growth rate leads to the increase in 

QDs’ size. Therefore, the growth temperature for QDs was decreased from 520°C to 460°C for 

smaller QDs sizes [43]. Meanwhile, the deposition amount was also reduced for the same goal. 

Manipulator with 10° and 20° tilt down from its optimal epitaxy position resulted in no QD 

formed so we reduced the tilt angle to 5° to create a proper indium flux gradient. We attempted 

migration-enhanced epitaxy (MEE) on sample SF027, shooting for lower density and more 

uniformity [44]. But the result was not ideal and we decided to go with SK growth mode for the 

rest of the samples.   

 

Table 2.1. QDs samples grown for this dissertation. 

Sample 

Number 
Recipe Result 

SF026 
1.7ML InAs at 0.075ML/s, 520°C; no 

tilt. 

Elongated islands with tiny QDs clusters 

due to indium shutter failure. 

SF027 
1.7ML InAs at 0.075ML/s by MEE, 

520°C; no tilt. 

QDs are not uniform in size or 

distribution. 

SF037 
2.0ML InAs at 0.075ML/s, 510°C; 

tilt 10°. 
No QDs, elongated islands. 

SF038 
2.0ML InAs at 0.075ML/s, 520°C; 

tilt 20°. 
No QDs, elongated islands. 

SF044 
2.0ML InAs at 0.075ML/s, 510°C; no 

tilt. 
High density QDs, not uniform size.  

*SF046 
2.0ML InAs at 0.075ML/s, 510°C; 

tilt 5°. 
Big QDs; PL center > 1μm. 

SF054 
1.8ML InAs at 0.043ML/s, 510°C; no 

tilt. 
High density big QDs 

*SF077 
1.8ML InAs at 0.022ML/s, 510°C; no 

tilt. 

Big uniform QDs deduced from PL 

result; PL center > 1μm. 

SF092 
1.7ML InAs at 0.022ML/s, 480°C; no 

tilt. 

Bi-size distribution QDs; PL center 

>1μm. 

*SF094 
1.7ML InAs at 0.022ML/s, 460°C; 

tilt 5°. 

Gradient QDs density and size; low QDs 

density region PL center < 1μm.  
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2.1.2 QDs-in-cavity Sample Design and Growth 

This sample is for the study of 2hυ absorption of the QDs inside of a cavity. This 

structure is also a very good candidate for the reflective type optical limiter [45]. When the 

radiance is below the threshold, it transmits through the cavity mode since the 2hυ absorption 

effect is negligible. When the radiance is high, the 2hυ absorption kicks in and the cavity mode is 

destroyed, turning the structure into a mirror for the incident light. And whole structure become 

reflective.  

Figure 2.2 shows the structure diagram of the QDs-in-cavity sample. Same as the QDs 

sample listed in the previous section, all QDs-in-cavity samples were grown on GaAs (100) S.I. 

substrate. After the oxide desorption process, a 420nm GaAs buffer is grown at 580°C first. Then 

a superlattice consisting of 15 repetitions of 1nm GaAs/AlAs layer was grown as a dislocation 

filter [46], followed by another 25nm GaAs buffer layer. Then 25 repetitions of quarter-

wavelength (λ/4) thick GaAs/AlAs layers are grown as the bottom DBR. The cavity is a one-

wavelength thick GaAs region, in the middle of which one layer of QDs is grown. Finally, 11 

repetitions of quarter-wavelength thick GaAs/AlAs layers are grown as the top DBR. The design 

and operation theory of such a structure will be discussed in Section 2.5. 

Three samples were grown to test out the QDs-in-cavity sample. Table 2.2 briefly 

discusses their structure and result. Some TEM, PL, and reflectance results of SF078 and SF096 

(indicated by *) will be shown in this dissertation.  
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2.2 Energy Structure of Quantum Dots and Carrier Relaxation Process 

Sometimes referred to as artificial atoms, QDs have discrete energy levels similar to 

atoms. Figure 2.3(a) shows the energy diagram of an InAs QD embedded in GaAs matrix. The 

QD’s ground state (E0) is the lowest energy state in this system. But due to quantum confinement, 

it is much higher than the InAs bandgap (EInAs). Depending on its size, a QD may have 0, 1 (E1), 

2 (E1 and E2) or more excited states above its ground state. The 2D WL has the second highest 

energy (EWL) after GaAs bandgap since its thickness is only about 1nm.  

 
Figure 2.2. Structure diagram of a QDs-in-cavity sample. 

 

Table 2.2. Description and result for the cavity samples. 

Sample 

Number 
Description Result 

SF023 
Bottom DBR & half cavity designed for 

1μm 

Multi-layers are uniform in most 

of the area.  

*SF078 
Micro-cavity designed for 1μm with one 

layer of SF077 QDs in the middle 
Cavity mode > 1μm 

*SF096 
Micro-cavity designed for 1μm with one 

layer of SF094 QDs in the middle 
Cavity mode < 1μm 
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The energy levels of QD dependent on its size and can be characterized by PL or 

capacitance measurement. As an example, the PL spectrum of sample SF077 at 10K is shown in 

Figure 2.3(b). From the low energy side, we can observe the QDs’ ground state and up to the 4th 

excited states (labeled E0 to E4 in the figure) successively. Then above 1.4eV, there is EWL at 

1.452eV and EGaAs at 1.515eV.   

 

A perturbed system tends to return to its equilibrium in nature. Therefore photo-excited 

carriers in a QDs system would relax to lower energy levels after they are pumped from their 

original state. Investigation of this relaxation process not only reveals the underlying physics but 

also helps to control the carriers, e.g. keep carriers in coherence or stay in certain state. Below 

we will discuss the process in a non-resonant excitation case where carriers are generated in the 

barrier. The resonant excitation case follows the same relaxation process once carriers are 

captured into the QDs. Previous studies also show that electron and hole are being captured 

separately into QDs and relax separately in the QDs [47], [48]. We will discuss the process of 

electrons below and the same mechanisms can be applied for holes. 

 
Figure 2.3. (a) Schematic of the energy levels of an InAs/GaAs QD system.  

(b) Photoluminescence spectrum of SF077, showing features of four excited states, WL state 

and the GaAs bandgap. 
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With non-resonant excitation, electrons are initially excited from the valence band (VB) 

into the conduction band (CB) of the barrier. Very rapidly [49], [50], the electrons are captured 

into the excited states of QDs through WL state by scattering and diffusion. There are two main 

relaxation mechanisms within a QD: phonon-assist relaxation and Auger process. In phonon-

assist relaxation, although there is no intermediate state in the QD for emission of a single optical 

or acoustic phonon, it is possible for a multi-phonon process of several optical and acoustic 

phonons [51]–[54]. These phonons can be from the GaAs barrier, the WL, the QD or defect at 

the interface [55]. In Auger-type relaxation, an electron at excited state relax to lower state by 

giving its energy to another electron in an excited state or WL state [50], [51]. At low excitation 

power, phonon-assist relaxation dominates while Auger process is more efficient at high 

excitation power since it depends on the carrier density.    

 

2.3 Rate Equation Model for Excitation Power Dependent PL 

Based on the energy 

structure of QD and the carrier 

relaxation process discussed in the 

previous section, we develop a rate 

equation model for the carriers in a 

QD system to get the relationship 

between the excitation power and 

the PL intensity. This helps us to 

understand the excitation power 

dependent PL data with 1hυ 

 
Figure 2.4. Energy diagram of a QD system. Radiative 

transitions are indicated by straight arrows while non-

radiative transitions are indicated by curved arrows. 
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excitation and to predict the result with 2hυ excitation. We will describe the model with 1hυ 

excitation case below.  

In this model, we consider the electron densities in GaAs bandedge (𝑛0), WL (𝑛1), QD 

second excited state (𝑛2), QD first excited state (𝑛3) and QD ground state (𝑛4). We include two 

excited states of QD in this model because the PL study of the QDs sample (SF094) used for 

power dependent PL shows potential of having two excited states. In fact, in the model we will 

see that the number of excited states does not change the excitation power and PL intensity 

relation. The energy diagram of such a QD system and the transitions we considered in this 

model is presented in Figure 2.4. The process considered in this model, presented by their 

transition rates, including: electron capture by WL from GaAs barrier (𝛾01), electron capture by 

QDs excited states from WL (𝛾12), cascade relaxation in the QD (𝛾23,  𝛾34); electron thermal 

escape from WL to matrix (𝛾10), from QDs to WL (𝛾21), and from a lower level to a upper level 

inside of a QD (𝛾32, 𝛾43); electron-hole radiatively recombination (𝛾𝑖
𝑟 , 𝑖 = 0,1,2,3,4) and non-

radiatively recombination (𝛾𝑖
𝑛𝑟 , 𝑖 = 0,1,2,3,4) from each level. In the model, we will consider 

low excitation power at which the photo-generated carriers are not saturated in the QDs. With 

1hυ excitation, carriers are generated in the GaAs barrier with a rate 𝑔𝐼, where 𝑔 is the 

generation coefficient and  𝐼 is the excitation power. The rate equations for the electron density 

at each level can then be written as: 

GaAs: 
𝑑𝑛0

𝑑𝑡
= 𝑔𝐼 + 𝑛1𝛾10 − 𝑛0𝛾01 − 𝑛0𝛾0

𝑟 − 𝑛0𝛾0
𝑛𝑟 . (2.1) 

WL: 
𝑑𝑛1

𝑑𝑡
= 𝑛0𝛾01 + 𝑛2𝛾21 − 𝑛1𝛾10 − 𝑛1𝛾12 − 𝑛1𝛾1

𝑟 − 𝑛1𝛾1
𝑛𝑟 . (2.2) 

QD 2nd excited state: 
𝑑𝑛2

𝑑𝑡
 =  𝑛1𝛾12 + 𝑛3𝛾32 − 𝑛2𝛾21 − 𝑛2𝛾2

𝑟 − 𝑛2𝛾2
𝑛𝑟 . (2.3) 
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QD 1st excited state:  
𝑑𝑛3

𝑑𝑡
 =  𝑛2𝛾23 + 𝑛4𝛾43 − 𝑛3𝛾32 − 𝑛3𝛾3

𝑟 − 𝑛3𝛾3
𝑛𝑟. (2.4) 

QD ground state: 
𝑑𝑛4

𝑑𝑡
 =  𝑛3𝛾34 − 𝑛4𝛾43 − 𝑛4𝛾4

𝑟 − 𝑛4𝛾4
𝑛𝑟 . (2.5) 

Three assumptions are made to eliminate variables in the above equations. Firstly, at our 

experimental temperature 77K, thermal energy 𝑘𝐵𝑇 ≈ 6.64meV which is an order of magnitude 

less than the energy interval between QD states (30-70meV [56], [57]), as well as the interval 

between WL and GaAs bandgap. Therefore, we expect the thermal escape 𝑛𝑖𝛾𝑖(𝑖−1) (𝑖 = 1,2,3,4) 

to be negligible. Secondly, at low excitation power, we don’t observe PL from WL level or GaAs 

bandgap. So we can assume that carriers has a much higher rate to be captured by the QDs than 

radiatively recombine in GaAs barrier or WL, namely 𝑛0𝛾01 ≫ 𝑛0𝛾0
𝑟 , 𝑛1𝛾12 ≫ 𝑛1𝛾1

𝑟. Thirdly, 

non-radiative recombination in QDs and WL has mainly two channels, the first one is through 

Auger recombination, and the second one is through nearby defect levels. Auger recombination 

is extrapolated to be long-lived (ns to μs range) [58], and defect is suppressed by crystalline 

around the QDs. Therefore 𝛾𝑖
𝑛𝑟 (𝑖 = 1,2,3,4) is insignificant. With these assumptions and under 

steady states condition, we can derive from the above equations: 

Eq. (2.1) => 𝑔𝐼 ≈ 𝑛0𝛾01 + 𝑛0𝛾0
𝑛𝑟 ⟹ 𝑛0 ≈

𝑔𝐼

𝛾01 + 𝛾0
𝑛𝑟  ~ 𝐼. (2.6) 

Eq. (2.2) => 𝑛0𝛾01 ≈ 𝑛1𝛾12 ⟹ 𝑛1 ≈ 𝑛0

𝛾01

𝛾12
 ~ 𝐼. (2.7) 

Eq. (2.3) => 𝑛1𝛾12 ≈ 𝑛2𝛾23 ⟹ 𝑛2 ≈ 𝑛1

𝛾12

𝛾23
 ~ 𝐼. (2.8) 

Eq. (2.4) => 𝑛2𝛾23 ≈ 𝑛3𝛾34 ⟹ 𝑛3 ≈ 𝑛2

𝛾23

𝛾34
 ~ 𝐼. (2.9) 

Eq. (2.5) => 𝑛3𝛾34 ≈ 𝑛4𝛾4
𝑟 ⟹ 𝑛4 ≈ 𝑛3

𝛾34

𝛾4
𝑟  ~ 𝐼. (2.10) 
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We can see that the electron density in each level is proportional to the excitation power. The 

relationship between the hole density  𝑝𝑖 (𝑖 = 0,1,2,3,4) and the excitation power can be derived 

similarly. And they are proportional to the excitation power too.  

Then let’s consider the relationship between PL intensity and the excitation power. PL 

intensity of each level 𝑖 (𝑖 = 0,1,2,3,4) can be written as: 

 𝑃𝐿𝑖 ~ 𝐹𝑖𝑛𝑖𝑝𝑖 + 𝐸𝑖𝑛𝑖  ~ 𝐹𝑖𝑛𝑖
2 + 𝐸𝑖𝑛𝑖  ~ 𝐹𝑖𝐼

2 + 𝐸𝑖𝐼. (2.11) 

Here we treat 𝑝𝑖~𝑛𝑖 since they have the same 𝐼 dependence. 𝐹𝑖𝑛𝑖𝑝𝑖 is free carrier (or un-

correlated electron and hole) recombination with a coefficient 𝐹𝑖, and 𝐸𝑖𝑛𝑖 is exciton (or 

correlated electron and hole) recombination [47], [59], [60] with a coefficient 𝐸𝑖. Hence, if free 

carrier dominates in the recombination process, PL intensity will have a square relationship with 

the excitation power; if exciton recombination dominates, PL intensity will have a linear 

relationship with the excitation power. The exciton Bohr radius of bulk InAs is about 34nm [61], 

much bigger than our QDs height and comparable with the QDs radius. Thus carriers are 

strongly confined in the QDs, which make them much easier to form exciton. So in QDs, exciton 

recombination dominates and PL intensity is proportional to the excitation power. In GaAs 

barrier, there is no quantum confinement, thus free carrier recombination dominates, giving a 

quadratically-increased PL intensity with the excitation power. In WL, there is one-dimensional 

quantum confinement, but the confinement is not as strong as it is in QDs. Carriers in WL can 

still interact with carriers in the GaAs matrix. Therefore, we expect the PL-excitation power 

relation to be between linear and quadratic. In summary, we can write: 𝑃𝐿𝑄𝐷𝑠~𝐼, 𝑃𝐿𝐺𝑎𝐴𝑠~𝐼2, 

and 𝑃𝐿𝑊𝐿~𝐼𝑠, where 1 < 𝑠 < 2. 
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2.4 Two-photon Absorption 

In our 2hυ excited PL measurement, the relaxation and recombination process after 

carriers are created is the same as 1hυ excitation. The difference lies in the absorption part. There 

are mainly three types of TPA: direct TPA, indirect (two-step) TPA, and Auger-type process. 

Figure 2.5 shows the diagrams of these three mechanisms and we will explain them in the frame 

of our energy system. Direct TPA means an electron is pumped from valence band (VB) to 

conduction band (CB) by absorbing two photons simultaneously. Direct TPA is a one-step 

process and there is no real intermediate band (IB) required in this process. Indirect TPA and 

Auger-type process are two-step processes, and real IBs are required for these two types. Indirect 

TPA means an electron is pumped from VB to IB by absorbing one photon in the first step. In 

the second step, this electron absorbs another photon and gets pumped to CB from IB before it 

relaxes or recombines. In Auger-type process, two electrons are pumped from VB to IB by 

absorbing two photons in the first step. In the second step, one electron relaxes to VB and gives 

out energy, which is absorbed by the other electron and this electron gets pumped from IB to CB. 

In reality, the transition rate of direct TPA is much lower compared with the other two processes. 

Thus, the direct TPA is usually not considered unless the excitation power is high (e.g. pulse 

laser excitation). Indirect TPA and Auger-type process can coexist. If the carrier has a long 

lifetime at the intermediate level, it is likely that indirect TPA will dominate. But if the carrier 

recombines fast from the intermediate level, then the Auger process is more likely to dominate. 

For all these three TPA mechanisms, the carrier density has a quadratic dependence on the 

excitation power.   
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Mathematically, TPA can be described by quantum mechanics and the rate at which TPA 

processes occur can be calculated by solving the time-dependent Schrödinger equation through 

second-order perturbation theory. Below we rehash the derivation of  TPA processes for an 

atomic system in reference [62].  

Assume that the atomic wave-function 𝜓(𝐫, 𝑡) obeys the time-dependent Schrödinger 

equation 

 𝑖ℏ
𝜕𝜓(𝐫, 𝑡)

𝜕𝑡
=  �̂�𝜓(𝐫, 𝑡)  =  (�̂�0 + �̂�(𝑡))𝜓(𝐫, 𝑡), (2.12) 

where �̂�0 is the Hamiltonian for a free atom and �̂�(𝑡) is the interaction between the atom and the 

applied laser field presented by the form  �⃗� (𝑡) = 𝐸𝑒−𝑖𝜔𝑡 + 𝐸∗𝑒𝑖𝜔𝑡. �̂�(𝑡) is represented as  

 �̂�(𝑡) =  −�̂��⃗� (𝑡),                          where   �̂� =  −𝑒�̂� . (2.13) 

Assume that the solutions to Schrödinger equation for a free atom are in the form 

 𝜓𝑛(𝐫, 𝑡) = 𝑢𝑛(𝐫)𝑒−𝑖𝜔𝑛𝑡 , (2.14) 

where 𝜔𝑛 = 𝐸𝑛/ℏ is associated with the eigenstates, and 𝑛 refers the various eigenstate. And the 

spatially varying part of the wavefunction 𝑢𝑛(𝐫) satisfies eigenvalue equation 

 
Figure 2.5. Diagrams of three types of TPA: (a) direct TPA; (b) indirect TPA; (c) Auger-type 

process. 
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 �̂�0𝑢𝑛(𝐫) = 𝐸𝑛𝑢𝑛(𝐫) . (2.15) 

The solutions are chosen so that they constitute a complete, orthonormal set, satisfying 

 ∫𝑢𝑚
∗ 𝑢𝑙𝑑

3𝑟 = 𝛿𝑚𝑙  . (2.16) 

The solution for Eq. (2.12) can then be expressed as a linear combination of these 

eigenstates as 

 𝜓(𝐫, 𝑡) = ∑𝑎𝑙(𝑡)𝑢𝑙(𝑡)𝑒
−𝑖𝜔𝑙𝑡

𝑙

 . (2.17) 

Substitute the above equation into Eq. (2.12) and apply the orthonormal condition (Eq. (2.16)), 

we obtain  

 𝑖ℏ
𝑑𝑎𝑚

𝑑𝑡
=  ∑𝑎𝑙(𝑡)𝑉𝑚𝑙𝑒

−𝑖𝜔𝑙𝑚𝑡

𝑙

 , (2.18) 

where 

 𝑉𝑚𝑙 ≡ ⟨𝑢𝑚|�̂�|𝑢𝑙⟩ =  ∫𝑢𝑚
∗  �̂�𝑢𝑙𝑑

3𝑟 (2.19) 

is the matrix elements of the interaction Hamiltonian �̂�, and 𝜔𝑙𝑚 = 𝜔𝑙 − 𝜔𝑚. 

Now we use perturbation techniques to solve Eq. (2.18) by introducing an expansion 

parameter 𝜂, which varies between 0 and 1 and 𝜂 = 1 corresponds to our physical situation. We 

replace 𝑉𝑚𝑙 by 𝜂𝑉𝑚𝑙, and expand 𝑎𝑚(𝑡) in powers of the interaction as 

 𝑎𝑚(𝑡) = 𝑎𝑚
(0)(𝑡) + 𝜂𝑎𝑚

(1)(𝑡) + 𝜂2𝑎𝑚
(2)(𝑡) + ⋯  . (2.20) 

Then we equal the powers of 𝜂 on each side of Eq. (2.18) to get 

 𝑖ℏ
𝑑𝑎𝑚

(𝑁)
(𝑡)

𝑑𝑡
=  ∑𝑎𝑙

(𝑁−1)
𝑉𝑚𝑙𝑒

−𝑖𝜔𝑙𝑚𝑡

𝑙

,            𝑁 = 1,2,3, …   . (2.21) 
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𝑁 = 1 corresponds to first-order interaction, meaning linear absorption. And 𝑁 = 2 corresponds 

to TPA. We assume that the atom is in the ground state 𝑔 when there is no applied laser field so 

that 

 𝑎𝑔
(0)(𝑡) = 1,   𝑎𝑙

(0)(𝑡) = 0  for 𝑙 ≠ 𝑔 . (2.22) 

With Eq. (2.13) and Eq. (2.19), we can present 𝑉𝑚𝑔 as 

 𝑉𝑚𝑔 = −𝜇𝑚𝑔(𝐸𝑒−𝑖𝜔𝑡 + 𝐸∗𝑒𝑖𝜔𝑡) . (2.23) 

Substitute Eq. (2.22) and Eq. (2.23) into Eq. (2.21) and integrate, we get 

 𝑎𝑚
(1)(𝑡) =

𝜇𝑚𝑔𝐸

ℏ(𝜔𝑚𝑔 − 𝜔)
[𝑒𝑖(𝜔𝑚𝑔−𝜔)𝑡 − 1] +

𝜇𝑚𝑔𝐸∗

ℏ(𝜔𝑚𝑔 + 𝜔)
[𝑒𝑖(𝜔𝑚𝑔+𝜔)𝑡 − 1] . (2.24) 

This is the probability amplitude of the first-order interaction. The first term can become 

resonant for linear absorption, where the energy difference between the ground state (𝑔) and the 

excited state (𝑚) equals to the applied photon energy. The second term can become resonant for 

simulated emission, if the state 𝑚 is below state 𝑔. We will drop the second term when we only 

consider linear absorption. 

 Similarly, for 𝑁 = 2 we can get 

 𝑎𝑓
(2)(𝑡) =  ∑

𝜇𝑓𝑚𝜇𝑚𝑔𝐸2

ℏ2(𝜔𝑚𝑔 − 𝜔)
[
𝑒𝑖(𝜔𝑚𝑔−2𝜔)𝑡 − 1

𝜔𝑓𝑔 − 2𝜔
]

𝑚

 , (2.25) 

 where state f is the final state and state m is the intermediate state.  So the probability for the 

atom to be in state f is 

 𝑝𝑓
(2)(𝑡) =  |𝑎𝑓

(2)(𝑡)|
2

= |∑
𝜇𝑓𝑚𝜇𝑚𝑔𝐸2

ℏ2(𝜔𝑚𝑔 − 𝜔)
𝑚

|

2

2𝜋𝑡𝛿(𝜔𝑓𝑔 − 2𝜔) . (2.26) 

The delta function on the right-hand side is not realistic in the physical world. In fact, the final 

state f is spread into a density of states 𝜌𝑓(𝜔𝑓𝑔), defined such that 𝜌𝑓(𝜔𝑓𝑔)𝑑𝜔𝑓𝑔 is the 
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probability that the transition frequency lies between 𝜔𝑓𝑔 and 𝜔𝑓𝑔 + 𝑑𝜔𝑓𝑔 . And the density of 

states is normalized such that 

 ∫ 𝜌𝑓(𝜔𝑓𝑔)𝑑𝜔𝑓𝑔

∞

0

= 1. (2.27) 

Then the probability for the atom to be in state f must be averaged over all possible transition 

frequency as 

 

𝑝𝑓
(2)(𝑡) =  |∑

𝜇𝑓𝑚𝜇𝑚𝑔𝐸2

ℏ2(𝜔𝑚𝑔 − 𝜔)
𝑚

|

2

𝑡 ∫ 𝜌𝑓(𝜔𝑓𝑔)2𝜋𝛿(𝜔𝑓𝑔 − 2𝜔)𝑑𝜔𝑓𝑔

∞

0

= |∑
𝜇𝑓𝑚𝜇𝑚𝑔𝐸2

ℏ2(𝜔𝑚𝑔 − 𝜔)
𝑚

|

2

2𝜋𝑡𝜌𝑓(𝜔𝑓𝑔 = 2𝜔). 

(2.28) 

Define transition rate as 

 𝑅 =
𝑝(𝑡)

𝑡
. (2.29) 

 Then the transition rate for TPA is 

 𝑅𝑓𝑔
(2)

= |∑
𝜇𝑓𝑚𝜇𝑚𝑔𝐸2

ℏ2(𝜔𝑚𝑔 − 𝜔)
𝑚

|

2

2𝜋𝜌𝑓(𝜔𝑓𝑔 = 2𝜔). (2.30) 

There are a couple of things that we can tell from Eq. (2.30). Firstly, the TPA rate is a 

function of  |𝐸|4, meaning square of the laser field intensity. Secondly, when the intermediate 

state transition frequency resonates with the laser field frequency (𝜔𝑚𝑔 ≈ 𝜔), 𝑅𝑓𝑔
(2)

 becomes 

significant. This is the case for indirect TPA. For direct TPA, there is no real intermediate state, 

we can imagine the “virtual intermediate state” to be any state exists in the system. This results 

in a big frequency difference ((𝜔𝑚𝑔 − 𝜔) is big), thus small TPA rate.  
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2.5 Distributed Bragg Reflector and Cavity Mode 

In Section 2.1.2, we introduce our QDs-in-cavity sample. In this section, we will discuss 

the theory behind it. Two mirrors can form a Fabry-Perot cavity and only the cavity mode can be 

transmitted out of the cavity. In semiconductor micro-cavity, two sets of distributed Bragg 

reflector (DBR) play the role of the mirrors. One pair of DBR consists of an alternating sequence 

of high and low refractive index layers with quarter-wavelength thickness. This arrangement 

makes the reflection from each interface adds constructively to produce a high reflectance. The 

reflectance of the DBR can be calculated by matrix propagation method [63]. With 2N pairs of 

quarter-wavelength layers at normal incidence, reflectance can be given as [64]: 

 𝑅 = [  

1 −  
𝑛𝑙

𝑛𝑓
(
𝑛1

𝑛2
)
2𝑁

1 + 
𝑛𝑙

𝑛𝑓
(
𝑛1

𝑛2
)
2𝑁  ]

2

, (2.31) 

where 𝑛𝑓 and 𝑛𝑙 are the refractive indexes of the first and last layer that the incident light 

interacts. Typically, the first layer would be air and the last would be substrate. 𝑛1 and 𝑛2 are the 

refractive indexes of the two different materials forming DBR. It would be easier to see the 

relation between 𝑅, 
𝑛1

𝑛2
, and 𝑁 if we define 𝑎 =

𝑛𝑙

𝑛𝑓
 and rewrite the above expression as: 

 𝑅 =

[
 
 
 
 
 

1

1 + 𝑎 (
𝑛1

𝑛2
)
2𝑁 −

1

1 +
1

𝑎 (
𝑛1

𝑛2
)
2𝑁

]
 
 
 
 
 
2

. (2.32) 

As we can see, a larger value of  
𝑛1

𝑛2
 or a bigger 𝑁 (providing 

𝑛1

𝑛2
< 1) would result in a higher 

reflectance. Therefore, choosing materials with bigger refractive index difference or increasing 

the number of DBR pairs could give us mirrors with higher reflectivity.  
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However, there are more factors need to be considered in the structural design in reality. 

For example, the lattice mismatch between the two material needs to be small for epitaxial 

growth. That’s why GaAs/AlAs is the most widely used pair in semiconductor micro-cavity 

DBR [34], [35]. For a DBR stack designed for an incident light at 1µm, the relation between 

reflectance and the number of GaAs/AlAs DBR pairs is plotted in Figure 2.6(a). Insert is a zoom-

in for the 10-20 pairs region. As we can see, in order to achieve reflectance above 99.5% (highly-

reflective mirror for laser cavity), 20 pairs or more of DBR are required. In our QDs-in-cavity 

structure, 25 pairs of DBR are implemented as the bottom mirror and 11 pairs of DBR are used 

as the top mirror. Less number of DBR is implemented for the top mirror so that most of the light 

can be emitted from the top. Reflectance as a function of wavelength for a 25-pair GaAs/AlAs 

DBR designed for 1μm is plotted in Figure 2.6(b). A high reflectance is achieved between 

960nm and 1030nm.  

 

When two DBR mirrors are put together with a cavity in between, a cavity mode is 

created in the middle of the high reflectance band. The wavelength at this mode can be coupled 

out of the cavity. If we put QDs inside of the cavity, only the PL aligned with the cavity mode 

 
Figure 2.6. (a) Reflectance for different number of GaAs/AlAs DBR pairs. (b) Wavelength-

dependent reflectance for 25 GaAs/AlAs DBR pairs designed for 1μm. 
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can be coupled out. Thus, the cavity acts as a filter which can help us to isolate SQD. Figure 

2.7(a) shows the simulation and experimental results of the reflectance of a QDs-in-cavity 

sample (SF078). The experimental result is normalized to its maximum value. The sharp notch at 

1066nm with a width of 2.5nm on the simulation curve is the cavity mode. On the experimental 

curve, this notch has a width of 5.8nm, wider and shallower than simulation due to the sample 

quality. In Figure 2.7(b), PL of sample SF078 at RT (black) and 10K (red) is presented. We can 

see that the PL’s position and width match with the cavity notch. At 10K, the PL shift to the 

short wavelength side for 17nm. This provides information about direction and amount that the 

cavity notch shifts when the temperature is at 10K since the instrument cannot directly measure 

reflectance at low temperature.    

 

 

 
Figure 2.7. (a) Simulation (magenta) and experimental (black) results of the reflectance of 

sample SF078. (b) Experimental reflectance (black) of sample SF078 and photoluminescence 

of the same sample at RT (black) and 10K (red). 
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3 Photoluminescence of Ensemble Quantum Dots 

3.1 Sample Morphology and PL Characterization 

In this chapter, we will discuss PL behavior of ensemble InAs/GaAs QDs under 1hυ and 

2hυ excitation. The EQDs sample used in this chapter is the high QDs density area of SF094. 

Sample SF094 is grown with 1.7ML InAs at 0.022ML/s, manipulator was tilted downwards by 

5°. AFM image of this sample at five different positions along the indium flux is shown in 

Figure 3.1: (a) position 2 (p2), (c) position 6 (p6), (e) position 7 (p7), (g) position 8 (p8), and (i) 

position 5 (p5). QDs density for each position is: p2 -- 220/μm2, p6 -- 100/μm2, p7 -- 28/μm2, p8 

-- 8/μm2 respectively. At p5, the indium coverage is below the critical thickness, therefore almost 

no QD is formed. The QDs have a lens shape in general, with a diameter 30±10nm and a height 

below 5nm. Since the height of QDs is much smaller than its diameter, quantum confinement 

effect is much stronger in the vertical direction than in lateral. Thus, the height plays a more 

significant role in determining the QD’s energy level, which will be reflected in the QD’s PL 

spectrum. Therefore we focus more on the distribution of QDs height other than diameter when 

anticipating their PL. The QDs height histogram of each position is shown to the right of their 

corresponding AFM image in Figure 3.1.  
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Figure 3.1. 1×1μm2 AFM image of SF094 at different positions (left panel) and their 

corresponding QDs height histograms (right panel). (a) p2, (c) p6, (e) p7, (g) p8, (i) p5. 
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Photoluminescence characterization is done with an excitation source of 532nm at a 

power of 32mW/cm2 from a frequency-doubled neodymium-doped yttrium aluminum garnet 

(Nd: YAG) laser. The sample was kept at 10K using a closed-cycle helium optical cryostat. In 

Figure 3.2, PL of different locations (labeled L5-L13) along the indium flux gradient on sample 

SF094 is shown. At L5 and L6, only WL PL is observed. This indicates that at these locations 

the InAs coverage is below the InAs QDs critical thickness, therefore, no QD is formed. Starting 

from L7, we can see QDs emitting below 1.4eV. From L7 to L8, the QDs PL becomes much 

more distinguishable but still low in intensity. Meanwhile, the WL PL still presents. This 

 

Figure 3.1 (Cont.). 1×1μm2 AFM 

image of SF094 at different 

positions (left panel) and their 

corresponding QDs height 

histograms (right panel). (a) p2, (c) 

p6, (e) p7, (g) p8, (i) p5. 
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indicates that between L7 and L8 is the low QDs density region. From L5 to L8, the WL PL 

center shifts from 1.433eV to 1.419eV due to thickness increases and broadens from 11.5meV to 

13.5meV due to increase in thickness fluctuation. After L8, QDs emission becomes strong and 

the WL PL intensity drops, indicating there are more QDs and carriers now have more low 

energy states to fill first. The QDs PL has a single broad Gaussian shape, which echoes well with 

our AFM observation in QDs height distribution. The QDs PL first red shifted from 1.258eV at 

L8 to 1.226eV at L10. This is because as the InAs coverage increase, the QDs get bigger. But as 

the InAs coverage keeps increasing, competition for space between QDs starts, therefore, smaller 

QDs are formed on L11, L12, and L13. PLs from these three locations stay around 1.241eV with 

a full width at half maximum (FWHM) about 77meV. This implies that the formation of QDs 

reaches an equilibrium and any excess indium is not consumed.   

 

 
Figure 3.2. Photoluminescence spectra of sample SF094 with gradient QDs at 9 different 

locations (L5-L13) on sample along the indium flux gradient. 
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3.2 One-photon Excited Power Dependent PL of EQDs 

In this section, we will show the power dependent PL study of EQDs with 1hυ excitation. 

The experiment was conducted with a Horiba LabRAM HR800 system equipped with a He-Ne 

laser, a 0.75m spectrometer, and a thermoelectrically cooled Si-CCD. The detailed apparatus can 

be found in Appendix D. The laser has a maximum power I10~6mW. In the notation of the laser 

power, the first subscript “1” indicates 1hυ excitation, for 2hυ excitation it would be “2”. And 

the second subscript “0” indicates the maximum power. The samples were cooled to 77K in a 

continuous flow cryostat using liquid nitrogen. The excitation power was varied by a set of 

neutral density optical filters. Since the excitation energy is higher than the GaAs bandgap, the 

light will be absorbed by the GaAs matrix and carriers (electrons and holes) will be generated in 

GaAs. At low excitation power, these carriers will quickly fall into the QDs ground states which 

have lower energy levels compare to GaAs bandedge. Then they will recombine radiatively 

(emitting photons) or non-radiatively (not emitting photons). As power increases, carriers would 

fill up the QDs ground states and start to fill their excited states. If the power keeps increasing, 

carriers would start to fill higher energy levels like the WL states or even the GaAs bandedge.  

Normalized power dependent PL of EQDs with 1hυ excitation is shown in Figure 3.3. Each 

spectrum is vertically shifted by 1 for clarity. At low excitation power, only the QDs PL is 

observed. At 1×10-4% power, the PL centers around 1.238eV and has a FWHM about 60.7meV. 

As power increases, the QDs PL broadens and shows a blue shift. At 0.1% power, it centers 

around 1.252eV and the FWHM increases to 73.2meV. This implies that 1hυ excitation 

generated carriers have filled up the QDs ground states and start to fill the excited state. The 

excited states emission are not well resolved in this process, we attribute this to the large 

variation in the QDs size on this sample. At 1% power, WL emission at 1.431eV and GaAs 
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bandedge emission at 1.51eV start to show. These two peaks become more distinct at 5% and 10% 

power.  

 

Then let us look at the QDs PL integrated intensity as a function of excitation power 

fraction (I1/I10). A representative data of the PL collected from one spot on the EQDs region is 

plotted in log-log scale in Figure 3.4(a). As we can see the relation can be well fitted with 

function 𝑃𝐿 ~ 𝐼𝑠 represented by the red straight line. When the power is below 10% of I10, the 

slope is very close to unity. And when the power goes beyond 10% of I10, the slope is less than 

 
Figure 3.3 Normalized 1hυ excited PL spectra of EQDs with varying excitation power. 100% 

power equals to I10 ~ 6mW. 
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one due to carrier saturation in QDs.  This linear relationship between excitation power and the 

QDs integrated intensity is explained with the equation model described in Section 2.3. We 

examined multiple spots and the power law indexes of them are shown in Figure 3.4(b). The 

unity index can be repeated quite well.  

 

 

3.3 Two-photon Excited Power Dependent PL of EQDs 

In this section, we will show the power dependent PL study of EQDs with 2hυ excitation. 

The experiment setup that we used for 2hυ excited PL is the same as 1hυ excited PL mentioned 

in the previous section apart from the excitation source. For 2hυ excitation, we used an external 

infrared 100fs linearly polarized pulse laser with 250kHz repetition rate. It is generated from an 

optical parametric amplifier which uses the output of another optical amplifier (seeded with 

another 800nm pulse laser with 80MHz repetition) as the pump light. Appropriate optical filters 

were put in the excitation path to make sure that there is no excitation above GaAs bandgap.  The 

 
Figure 3.4. (a) Excitation power dependent integrated PL intensity of EQDs with 1hυ 

excitation. Red line is the power law fitting: 𝑃𝐿 = 𝑎 ∙ 𝐼𝑠 with power index s = 1.07.  

(b) Power law indexes of multiple EQDs samples. Error bars indicate the standard error of 

power law fitting. 
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energy range that we used for 2hυ excitation is from 0.60eV to 0.77eV, corresponding to the 2hυ 

energy range between QDs ground states and the GaAs bandedge. Details of this excitation 

source system and the 2hυ excitation laser spectra can be found in Appendix E.  

Now that the photons from the excitation source have energy lower than half of the GaAs 

bandgap, in theory, 1hυ or even 2hυ has a very low probability to be absorbed by the GaAs. 

However, 2hυ energy is higher than the QDs ground states, so there is the possibility that 

electrons in QDs can absorb two photons at the same time and get excited from VB to CB of the 

QDs. Then followed by the relaxation process, we would observe PL from QDs. If this happens, 

we would expect the PL intensity of QDs to have a square relationship with the excitation power. 

Because now the electron density and excitation power relationship can be derived as: 

 
𝑑𝑛2

𝑑𝑡
= 𝑔′𝐼 ∙ 𝑔′𝐼 − 𝑛2𝛾2

𝑟 − 𝑛2𝛾2
𝑛𝑟 − 𝑛2𝛾21  ⟹ 𝑛2 ~ 𝐼2. (3.1) 

With 2hυ, excitons are created in the QD itself. Therefore, during recombination process, exciton 

recombination dominates again and PL intensity will be linear with electron density, which has a 

square relationship with the excitation power.  

We performed excitation power dependent PL measurement at various excitation 

energies. The excitation power dependent evolution of PL spectra with these excitations are very 

similar. Here we only present the PL spectra of EQDs with 0.622eV excitation in Figure 3.5. The 

spectra are normalized to the maximum of QDs peak. At low power, we observed only QDs PL. 

It centers at 1.245eV and has a FWHM of 67meV. Very close to the QDs PL with 1hυ excitation 

at 0.06μW (0.001% in Figure 3.3). As power increases, WL PL and GaAs bandgap emission start 

to arise even when the 2hυ excitation energies are below the WL or GaAs bandgap.  

The WL PL and GaAs bandedge emission are unexpected since the excitation is only half 

of the QDs ground state energy. We suspected that the WL and barrier PL were from up-



32 

 

conversion via QDs states. Up-conversion in InAs QDs and SQD with continuous wave laser 

was previously reported by Paskov et al. [23] and Kammerer et al. [24]. Paskov et al. observed 

barrier PL when the excitation energy is resonant with the QDs excited states or the WL states. 

This up-converted PL disappeared when the excitation went below the QDs ground states energy. 

The authors attribute this up-conversion to two-step TPA through the QDs state. Kammerer et al. 

observed up-converted SQD and WL PL when the excitation energy is below their transition 

energies. They attribute this to two-step TPA through a band tail of WL formed by the WL 

roughness. In order to confirm our suspicion that the WL and barrier PL are from up-conversion 

via QDs states, we performed 2hυ excitation on another two samples: one is the area where there 

is only WL (no QD is formed) of SF094, the other is a S.I. GaAs substrate (the same material we 

grew all our samples on). It can help us to investigate the role of QDs by comparing the PL 

behavior of QDs area and WL area. The role of WL would be revealed by comparing the PL 

behavior of WL area and the GaAs substrate. Results of these two samples are discussed in the 

next section.  

QDs PL integrated intensity in Figure 3.5 as a function of excitation power fraction (I2/I20) 

is presented in Figure 3.6(a). The relation can again be fitted with 𝑃𝐿~𝐼𝑠, and the s value is 2.19. 

The slopes are close to 2 as we expected for TPA in QDs. The power law indexes with other 2hυ 

excitation energies are shown in Figure 3.6(b). Energy between 1.2eV to 1.3eV corresponds to 

the QDs ground transition, and 1.43eV corresponds to WL transition. As we can see the index is 

close to 2 for both cases.   
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Figure 3.5. Normalized 2hυ excited PL spectra of EQDs with 0.622eV excitation. 

 
Figure 3.6. (a) Excitation power dependent integrated PL intensity of EQDs with 0.622eV 

excitation. Red line is the power law fitting: 𝑃𝐿 = 𝑎 ∙ 𝐼𝑠 with power index s = 2.19. (b) Power 

law index of multiple EQDs samples at various 2hυ excitation energies. 
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3.4 Two-photon Excited Power Dependent PL of WL and GaAs 

Before we study the PL behavior of WL and GaAs substrate with 2hυ excitation, let’s 

review their PL behavior with 1hυ excitation. In the end of Section 2.3, we conclude based on 

our rate equation model that with 1hυ excitation, 𝑃𝐿𝐺𝑎𝐴𝑠~𝐼2, 𝑃𝐿𝑊𝐿~𝐼𝑠, where 1 < 𝑠 < 2. This is 

confirmed with the results of their 1hυ excitation power dependent PL as shown in Figure 3.7. 

Figure 3.7(a) is a representative data of the integrated PL intensity as a function of excitation 

power fraction (I1/I10). As we can see, the integrated GaAs PL has a quadratic dependent with the 

1hυ excitation intensity, while the integrated WL PL has a power dependent between linear and 

quadratic. Multiple spots on the WL only region and the GaAs substrate were investigated and 

the power indexes of them are presented in Figure 3.7(b). An index of 2 for GaAs and between 1 

and 2 for WL is quite repeatable.   

 

With 2hυ excitation energy of 1.244eV, below WL and GaAs bandgap, the normalized 

PL spectra of WL only area on SF094 and a piece of GaAs substrate at different excitation power 

 
Figure 3.7. (a) One-photon excitation power dependent integrated PL intensity of WL and 

GaAs substrate. Straight line is the power law fitting: 𝑃𝐿 = 𝑎 ∙ 𝐼𝑠 with power index s = 1.72 

for WL and 2.02 for GaAs substrate. (b) Power law indexes of multiple WL samples and 

GaAs substrate samples. Error bars present the standard error of power law fitting. 
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are shown in Figure 3.8(a) and (b). The WL spectra are normalized to the WL peak, while the 

GaAs spectra are normalized to the GaAs peak. On both samples, the peak at 1.244eV is the 

second harmonic generation of the excitation from the bulk GaAs. This peak moves as the 

excitation energy moves and it always present at twice of the excitation energy. On the WL 

sample, the WL peak first starts to show at low excitation power, then GaAs bandgap starts to 

emit as the power increases. The GaAs peak is lower than the WL peak at the beginning but it 

grows faster than the WL peak and surpasses the WL peak after 74% I20. This observation of the 

WL and GaAs emission on the no QDs region indicate that the 2hυ excited WL and GaAs 

emission are not, or not fully, from a process involving QDs state. On the GaAs substrate, the 

bandgap emission is also 

observed even with 2hυ 

excitation energy of 1.244eV. 

And its intensity is in the same 

order of magnitude as the 

GaAs peak from the WL only 

region. This implies that, in 

our samples, the WL is not 

playing the major role in the 

GaAs emission.  

The power law fitting 

of the WL peak and the GaAs 

peak from the GaAs substrate 

are presented in Figure 3.9(a). 

 
Figure 3.8.Two-photon excited PL spectra of (a) WL only 

area of SF094 and (b) GaAs substrate with 2hυ excitation 

energy of 1.244eV. 
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The power index for WL peak is about 3.87 and that for GaAs peak is about 4.92. We performed 

excitation power dependent study with various 2hυ energies. The power law exponents with 

these excitations are presented in Figure 3.9(b). As we can see, the WL power index falls 

between 3 and 5, more than twice of its 1hυ excited PL power index (between 1 and 2). The 

GaAs power index, falling between 4 and 6, is also more than twice of its 1hυ excited PL power 

index (which is 2). This indicates there is multiple-photon (more than two) involved in the 

absorption process of the WL only region and the GaAs substrate. 

 

Up-converted PL of S.I. GaAs was reported before by Johnson et al. [65] and Quagliano 

and Nather [66]. In Johnson et al. ’s study, they observed up-converted GaAs PL with 1.39eV 

continuous-wave laser excitation. They attributed this upconversion to a two-step excitation 

through the deep level – defect formed electron-level 2 – as indicated by their PLE study, in 

which a continuously increasing GaAs PL was observed from 1.35eV to 1.50eV. Quagliano and 

Nather observed GaAs bandgap emission with 1.17eV continuous-wave laser excitation. This 

 
Figure 3.9. (a) Excitation power dependent integrated PL intensity of WL and GaAs substrate 

with 1.244eV excitation. Straight line is the power law fitting: 𝑃𝐿 = 𝑎 ∙ 𝐼𝑠 with power index s 

= 3.87 for WL and 4.92 for GaAs. (b) Power law index of WL and GaAs at various 2hυ 

excitation energies. 
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up-conversion is explained by two-step TPA in which defects formed deep centers serve as the 

intermediate level. In contrast to our results, the up-converted GaAs PL in their research has a 

linear dependence with the 1.17eV excitation. They explained this linear behavior by saturation 

of one of the two transitions involved in the up-conversion. In their photoluminescence 

excitation (PLE) study, a gradually increased GaAs PL was observed when the excitation energy 

increased from 0.8eV to 1.25eV. In addition to these two research, Sturge [67] investigate the 

absorption of high-resistivity GaAs in the range of 0.6 to 2.75eV. He found that absorption 

below the GaAs bandedge varies substantially from sample to sample, and is presumably due to 

impurities. Based on these discoveries and our power law index, we can conclude that the 2hυ 

excited GaAs emission in our case is from three-photon absorption through deep levels formed 

by defects. 

 

3.5 Two-photon PLE of EQDs 

In Section 3.3, we leant that the EQDs have a quadratic relationship with the 2hυ 

excitation power. This tells us that there is 2hυ process involved in the absorption. But whether it 

is direct TPA or indirect TPA though some intermediate levels we don’t know. To further 

distinguish this two process, we performed PLE measurement with 2hυ excitation. PLE is a 

useful tool to elucidate absorption channels. In a PLE measurement, a fixed emission energy is 

monitored while the excitation energy is scanned. Peaks in a PLE spectrum often represent the 

absorption lines of the sample. In our 2hυ PLE measurement of the EQDs sample, the integrated 

PL of QDs within the range of 1.20eV to 1.30eV is monitored while the 2hυ excitation energy is 

scanned from 1.22eV to 1.53eV, corresponding to 0.610eV to 0.765eV 1hυ energy. If the TPA is 

through some intermediate levels, when the excitation energy is in resonance with it there should 
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be an enhancement in the EQDs PL. On the other hand, if the TPA is direct TPA in QDs, there 

will be enhancement when the 2hυ excitation energy is in resonance with the QDs transition 

energies.  

 

Figure 3.10 shows the EQDs emission as a function of 2hυ excitation energy as black 

squares, the black line is for eye guidance. Normalized QDs PL with 1hυ excitation at low 

(0.01%I10) / high (I10) power is also shown in the figure as green/red curve for comparison. The 

low power 1hυ excited PL reveals the ground states distribution of the QDs, and the high power 

one illustrates the distribution of excited states of QDs as well as the WL states and GaAs 

bandedge. The WL and GaAs peaks are magnified by 50 (marked by a red arrow) to make them 

easier to be seen. As we can see from the graph, starting from the low energy side, the PLE 

spectrum represents quite well the energy distribution of the ground state of the QDs ensemble. 

This indicates that there is 2hυ absorption into the QDs ground state. When the 2hυ excitation 

 
Figure 3.10. Integrated QDs PL as a function of 2hυ excitation energy. 

 



39 

 

energy is between 1.30eV and 1.43eV, there are two rises on the PLE curve around 1.32eV and 

1.39eV. We attribute these to 2hυ absorption in the first and second excited state of QDs. 

Although the excited states of these QDs are not resolved in the 1hυ PL characterization due to 

the wide size distribution of the QD ensemble, we can estimate their positions by published 

values and our similar sample, like SF077. For SF077 (Figure 2.3(b)), the ground transition is 

located at 1.10eV and the energy difference between each excited state is about 60meV. As for 

SF094, the ground transition is at 1.24eV, higher than those of SF077, indicating smaller QDs. 

Therefore, their excited state would have a bigger energy difference than SF077. An energy 

difference between 30 to 70meV has been reported for In(As)Ga QDs [56], [57]. So the 

assumption that the energy difference between the states of SF094 is about 70meV is reasonable, 

and the enhancement of the PLE signal at 1.32eV and 1.39eV can be assigned to 2hυ absorption 

in the excited states of the QDs. When the excitation crosses the WL state at 1.43eV, the PLE 

signal climbs again, demonstrating 2hυ absorption in the WL. Therefore, with this PLE result, 

we can tell that direct TPA is the main absorption mechanism in our QDs 2hυ excited PL.   
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4 Photoluminescence of Single Quantum Dot 

4.1 Sample Morphology and PL Characterization 

In this chapter, we will discuss PL 

behavior of a single InAs/GaAs QD under 

1hυ and 2hυ excitation. The sample used in 

this chapter is the low QDs density area of 

SF094 (p8 in Figure 3.1). The density of 

QD is below 108cm-2, which makes it easier 

to optically isolate a SQD. Figure 4.1 shows 

the TEM image of a typical uncapped self-

assembled InAs SQD on GaAs. It has a lens 

shape with a height of 6.0nm and base 

diameter of 32.1nm.  

PL characterization is done with Horiba LabRAM HR800 system and He-Ne laser. The 

sample was kept at 5K in a cryostat with liquid Helium flow. Figure 4.2 shows the spectrum of a 

SQD. We can see this SQD has three energy shells: s-shell (ground state) at 1.30eV, p-shell (1st 

excited state) at 1.35eV and d-shell (2nd excited state) at 1.40eV. The s, p, d denotation is in 

analogy to atomic physics. There are two main reasons that we assign these three emissions as 

the three shells from a SQD instead of from three QDs. Firstly, the three emissions are from the 

same physical location on the sample. Considering the low QD density (1μm-2), the probability 

of three QDs located at one spot within 0.5μm resolution is low. Secondly, the energy separation 

between these three emissions is about 50meV which agrees with the reported value [56], [57]. 

 
Figure 4.1. TEM image of a single InAs/GaAs 

QD. 
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These QD energy shells can hold an increasing number of carriers according to the Pauli 

exclusion principle. In a QD with perfect symmetry and without considering the Coulomb 

interactions between carriers, energy levels within one shell are degenerate. The ground state is 

two-fold spin degenerate and can hold two electron-hole pairs. The 1st excited state is doubly 

degenerate and can hold up to four electron-hole pairs. The 2nd excited state is six-fold 

degenerate and can hold up to six electron-hole pairs. But in reality, the degeneracy is removed 

by multicarrier interactions, and the energy levels are further split up by the asymmetry of the 

QD as well as the electron-electron, hole-hole, and electron-hole exchange interaction. Therefore, 

multiple emission peaks from each shell are observed. Identification of each of these peaks 

requires analysis from different measurements including excitation power dependent PL, bias 

dependent PL [68], polarized PLE [69] and magneto-PL [57].  

 

 

Figure 4.2. PL spectrum of a SQD at 5K. 
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4.2 One-photon Excited Power Dependent PL of SQD 

In this section, we will show the power dependent PL study of a SQD with 1hυ 

excitation. The experiment was performed with Horiba LabRAM HR800 system and He-Ne 

laser. The sample was cooled to 5K in a continuous flow cryostat using liquid helium.  

  

Power dependent PL of SQD with 1hυ excitation is shown in Figure 4.3. The intensity is 

normalized to the peak at 1.3024eV (labeled as X of s-shell in the figure). Here we only show the 

 
Figure 4.3. Normalized 1hυ excited PL spectra of SQD with varying excitation power. 100% 

power equals to I10 ~ 6mW. 
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evolution of s-shell and p-shell peaks since the d-shell only appeared at high power. We pick 

four highest peaks for further analysis: 1.3008eV, 1.3024eV, 1.3493eV and 1.3512eV. They are 

identified as s-shell neutral exciton (X) and charged exciton (X*) transition, p-shell neutral 

exciton (X) and charged exciton (X*) transition respectively. The identification process will be 

discussed below.  

 

With non-resonant excitation, a QD captures electrons and holes separately and may be 

populated with an uneven number of electrons and holes. At low excitation power, fewer carriers 

are created therefore the X line of s-shell should show first as it requires the minimum number of 

carriers (one electron and one hole). As power increases, X* of s-shell would show second. Its 

 
Figure 4.4. Excitation power dependent integrated PL intensity of four SQD peaks with 1hυ 

excitation. Straight line is the power law fitting: 𝑃𝐿 = 𝑎 ∙ 𝐼𝑠 with power index s = 0.95 for s-

shell X, 1.22 for s-shell X*, 1.10 for p-shell X, and 1.26 for p-shell X*. 
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energy will be a few meV from the X line, on either the higher or the lower side [70], as the extra 

carrier (electron or hole) shifted its energy through additional Coulomb interactions. If the QD is 

populated with more carriers, XX (neutral biexciton) transition would show up next. After this, 

carriers will start to fill the P-shell. Similarly, the X line of P-shell will appear first, followed by 

X* line. Apart from this appearance order, the relationship between PL intensity and excitation 

power can help us to distinguish XX from X and X* since XX intensity has a square dependence 

on excitation power while X and X* increases linearly with excitation power [56], [71], [72]. 

The intensity v.s. excitation power relation of the four highest peaks in Figure 4.3 is plotted in 

Figure 4.4. Straight lines are the power law fitting. The points above 1E-4 I1/I10 are excluded 

from the fitting since there may be saturation in the PL intensity at high excitation power. As we 

can see all four peaks is linearly dependent with excitation power, indicating they are either X or 

X*. We assign the 1.3008eV peak as s-shell X* since its intensity is lower than the 1.3024eV 

peak at low excitation power, but higher at high power. Because at high power, more carriers are 

generated, and it is more likely to form X*. The 1.3024eV is then assigned as s-shell X peak. 

Same reason, the 1.3493eV peak is identified as P-shell X* and the 1.3512eV peak is identified 

as p-shell X.   

 

4.3 One-photon Excited Temperature Dependent PL of SQD 

Temperature dependent PL of the same SQD is presented in Figure 4.5. Intensity is 

normalized to s-shell X or X* peak, whichever is higher. As we can see, all the emission lines 

show broadening and redshift as temperature increases. We will discuss in detail the FWHM and 

peak center as a function of the temperature of the four peaks that we identified in the previous 

section.  
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At 10K, the peaks show a Lorentzian profile with a FWHM of about 150μeV, limited by 

the instrument resolution. As temperature increases, a broad background emission band appears 

on both sides of all the peaks. This background is due to acoustic phonon scattering [73]. Figure 

4.6(a) displays the temperature dependent FWHM of the X and X* peaks of s-shell and p-shell. 

The solid line is the fitting function [74]: 

 𝜔 = 𝜔0 + 𝑎𝑇 + 𝑏/(exp(
𝐸𝐿𝑂

𝑘𝑇
) − 1)  . (4.1) 

 
Figure 4.5. Normalized temperature dependent SQD PL with 1hυ excitation. 
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The term 𝜔0 is the temperature-independent broadening due to scattering by impurities and 

imperfections. The second term 𝑎𝑇 represents the acoustic phonon broadening, which is linearly 

dependent on temperature. The last term 𝑏/(exp(
𝐸𝐿𝑂

𝑘𝑇
) − 1) is the optical phonon broadening and 

it is proportional to the Bose function for the LO-phonon occupation number. Table 4.1 lists the 

fitting parameters for each peak. When 𝑇 <

50K, the PL broadens slowly mainly due to 

acoustic phonon scattering; when 𝑇 > 50K, fast 

PL broadening is observed because of optical 

phonon scattering.  

Table 4.1. Fitting parameters for each peak 

plotted in Figure 4.6 (a). 

Fitting function: 𝜔 = 𝜔0 + 𝑎𝑇 +

𝑏/(exp(
𝐸𝐿𝑂

𝑘𝑇
) − 1) 

 𝜔0(meV) 𝑎(μeV/K) 𝑏(meV) 

s, X 0.11 

1.00 

35 

s, X* 0.07 7 

p, X 0.12 19 

p, X* 0.10 7 

 

 
Figure 4.6. (a) FWHM and (b) peak center of the X and X* peaks in S-shall and P-shell as a 

function of temperature. Solid lines are fitting functions:  

(a) 𝜔 = 𝜔0 + 𝑎𝑇 + 𝑏/(exp(
𝐸𝐿𝑂

𝑘𝑇
) − 1); (b) 𝐸 = 𝐸0 − 𝛼𝑇2/(𝑇 + 𝛽). The error bars in (a) 

indicated standard error of fitting each peak with a Lorentzian function. The error bars in (b) 

is in the order of 10-6, thus too small to see.  
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Figure 4.6(b) displays the temperature 

dependent peak center of the X and X* peaks of 

s-shell and p-shell. The temperature-dependent 

energy shift is believed to arise from two 

mechanisms: volume dilatation and electron-

lattice interaction. The first one is nonlinear with 

𝑇 at low temperature and linear with 𝑇 at high temperature. The second one is the major 

contribution to the energy shift and it is linearly-dependent with temperature when 𝑇 ≫ 𝜃, and 

quadratically-dependent with temperature when 𝑇 ≪ 𝜃, where 𝜃 is the Debye temperature. The 

peak energy for our four peaks can be well fitted to Varshni Law [75]: 

 𝐸 = 𝐸0 −
𝛼𝑇2

𝑇 + 𝛽
   , (4.2) 

where 𝐸0 is the energy at 0K, 𝛼 and 𝛽 are constants. For InAs material, we take 𝛽 = 271𝐾 [76]. 

Table 4.2 lists the fitting results for each peak.  

 

4.4 Two-photon Excited PL of SQD 

In this section, we will show the 2hυ excited PL of the SQD discussed in the previous 

two sections. The experiment setup is the same as the one used for 2hυ excitation of EQDs 

described in Section3.3. But the sample temperature was kept at 5K. For SQD PL study, we 

suppose to use the 1200g/mm grating in the spectrometer so that the linewidth of the SQD’s PL 

can be resolved. But we could not get any signal beyond the noise with this grating. With 

150g/mm grating, which has a higher efficiency, the SQD PL became detectable. But we lost the 

linewidth information.  

Table 4.2. Fitting parameters for each 

peak position as a function of 

temperature. 

Varshni Law: 𝐸 = 𝐸0 − 𝛼𝑇2/(𝑇 + 𝛽), 

 𝛽 = 271𝐾. 

 𝐸0(eV) 𝛼 (μeV/K) Adj.R^2 

s, X 1.3029 426.76 0.9955 

s, X* 1.3014 424.10 0.9960 

p, X 1.3517 422.66 0.9959 

p, X* 1.3497 423.36 0.9920 
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Based on the previous result of 2hυ excited EQDs, we know that the QDs PL presents 

with 2hυ excitation ranging from QDs ground state all the way up to barrier bandedge. 

Therefore, after locating a SQD with 1hυ excitation, we start with 2hυ excitation resonate with 

the WL state and scan the 2hυ excitation all the way to the SQD’s ground state. The PL result is 

shown in Figure 4.7. The legend denotes the micrometer reading of the wavelength tuning crystal 

of the OPA. PL with 1hυ excitation is plotted at the bottom for comparison. As we can see, when 

2hυ excitation is higher than the SQD’s excited state (from M6p25 to M5p95), both the SQD’s 

ground state and excited state emission can be clearly observed. From M5p80 to M5p50, when 

the 2hυ excitation energy comes across with the SQD’s excited state, the ground state emission is 

still clearly seen whereas the excited state emission becomes indistinguishable because of the 

SHG peak of the excitation. Similarly, as the excitation move to the SQD’s ground state (M5p35 

and M5p30), the SHG peak overlaps with the SQD’s PL, making the features of the SQD’s PL 

 
Figure 4.7. SQD spectra with various 2hυ excitation energies at 5K. 
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indistinct. In our attempt of excitation power dependent and temperature dependent study 

discussed below, we used 2hυ excitation energy resonates with the SQD’s excited state. 

Therefore we resonantly excite the SQD and we are still able to monitor the PL from the ground 

state transition.  

In our attempt of excitation power dependent study, the ground state transition can only 

be observed within a very small change of excitation power. Figure 4.8 shows the SQD PL 

spectra at 0.35I20 and 0.07I20. At lower power, the PL signal immerses into the noise while at 

higher power it submerges into the tail of the SHG peak. Therefore, our experimental setup is 

limited for power dependent study of SQD with 2hυ excitation.  

 

In our attempt of temperature dependent SQD PL study, we are able to monitor the 

ground state emission’s position change as a function of the temperature. Figure 4.9 shows the 

spectra of the SQD PL with 2hυ excitation at different temperatures. The ground transition can 

 
Figure 4.8. SQD PL with 2hυ excitation at two powers. PL with 1hυ 

excitation is plotted for comparison. 
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be seen in the shaded area. Figure 4.9(b) plots the ground transition peak position as a function 

of temperature for both 1hυ and 2hυ excitation. The solid line is the fitting function by Varshni 

Law ( Eq.(4.2) ) for 2hυ excited peak with fitting parameters: 𝐸0 = 1.3027eV, 𝛽 = 271K, 𝛼 =

425.46meV. The peak center by 2hυ excitation coincides with the one by 1hυ excitation, and it 

follows the Varshni Law well, confirming its identity as SQD PL. Linewidth information, as 

mentioned before, is limited by the low-resolution grating we used.  

 

 
Figure 4.9. Two-photon excited SQD PL at various temperatures. The bottom red curve is 

1hυ excited SQD PL at 10K, plotted for comparison.  
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Figure 4.10. Ground transition (gray area in Figure 4.9) peak position as a function of 

temperature. Solid line is the fitting function by Varshni Law as in Eq.(4.2). 
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5 Photoluminescence of Single Quantum Dot in Micro-Cavity 

5.1 Sample Morphology, Reflectance and PL Characterization 

SF096 is the sample used for QDs-in-cavity study. It consists of 25.5 pairs of AlAs/GaAs 

DBR on the bottom, 11 pairs DBR on the top and one-wavelength GaAs cavity in between with 

one layer of InAs QDs in the middle of the cavity. A TEM image of the structure is shown in 

Figure 5.1. Details about the transmission electron microscope can be found in Appendix C. The 

image is taken under dark-field mode, in which material with less nuclear mass will appear 

darker. So in Figure 5.1(a), the dark stripes are AlAs and light stripes are GaAs. The brightest 

spots in Figure 5.1(b) are InAs QDs.   

  

Room temperature reflectance simulation (with normal incidence) and experimental 

result are shown in Figure 5.2. The experimental result is normalized to its maximum value. As 

we can see, the experimental result repeats the main feature of the simulated data pretty well. 

The whole spectrum shifted to the shorter wavelength compare to simulation. This indicates the 

 
Figure 5.1. (a) TEM image of QDs-in-cavity sample. (b) Zoom in image of the cavity. 
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actual layer thickness is less than the designed one. The cavity notch, which is shifted as well, is 

less sharp than the simulation result. We attribute this to the quality of the DBR mirrors.   

 

PL was measured on different positions on the two pieces of cleaved sample at 10K. The 

excitation wavelength was 532nm and the intensity was about 1.21W/cm2. Figure 5.3 shows the 

PL result at three positions: P1, P2, and P3. Positions on the sample are displayed in the insert of 

Figure 5.3. No emission from QDs was observed as we scan the sample from P6 to P5. The QDs 

emission started to show as we moved closer to P4. Based on the result of SF094, which has the 

same QDs recipe as SF096, we could tell that the QDs density should get higher and higher as go 

from P4 to P1. The shift of the emission peaks is due to the shift of the cavity notch as discussed 

above. The FWHM of the emission, around 5nm, agrees with the width of the cavity notch too. 

The strong peak at 820nm is GaAs bandedge emission, which is not blocked by the DBR.  

 
Figure 5.2. Simulated and measured reflectance spectrum of SF096. 
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5.2 One-photon Excited Power Dependent PL of SQD-in-cavity 

In this section, we will show the power dependent PL study of a SQD-in-cavity with 1hυ 

excitation. The experiment was performed with Horiba LabRAM HR800 system and He-Ne 

laser. The sample was kept at 10K with liquid helium.  

To locate a SQD in sample SF096, we monitor the PL from the cavity notch while 

moving the sample along the direction of the QDs density change. From the temperature 

dependent study of SQD discussed in Section4.3, we know that the FWHM of a SQD PL is 

between 0.1meV and 0.2meV at 10K. Therefore, we would consider a SQD is pinpointed when 

we observe a PL peak with a FWHM within this range.  

 
Figure 5.3. PL from different positions on SF096. Insert shows the rough 

positions on the sample. Dashed line is the quarter-inch wafer and solid line is 

where the sample was cleaved. 
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Figure 5.4 presents the PL spectra of a SQD-in-cavity at various excitation powers. Each 

spectrum is normalized to its maximum. At 0.0032%I10, a SQD peak at 1.2725eV is observed. 

As power increases, the SQD peak becomes more distinct. There are some other peaks, for 

example, the 1.2744eV peak and the 1.2691eV peak, can be seen within this excitation range. 

These peaks may come from other transitions of the same SQD. Below 3.2%I10, the 1.2725eV 

peak is sitting on top of a board background emission, which we attribute to the acoustic phonon 

scattering [73]. When the excitation is higher than 3.2%I10, the broad background becomes 

 
Figure 5.4. Normalized PL spectra of SQD-in-cavity at different 1hυ excitation powers. 

100% power equals to I10 ~ 6mW. 
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remarkable and its shape differs from the acoustic phonon broadening of a SQD without a cavity. 

We assign this shape change to the cavity notch effect. The notch has a shape itself, when the 

excitation power is low, the PL signal is low and its shape is not affected by the notch. At high 

excitation power, the PL signal becomes strong but it is limited by the notch shape. Therefore, 

the PL at high excitation power deforms from its own shape which is presented at low excitation 

power.  

 

The integrated intensity as a function of the excitation power fraction of the 1.2725eV 

peak is plotted in Figure 5.5. The red straight line is the power law fitting function with a power 

law index s = 1.12. The highest three points are excluded from the fitting since the notch effect 

starts to play an important role in the PL shape and intensity. A power law index closed to one 

indicates that, at low excitation power, the cavity effect on the SQD PL intensity is linear respect 

to excitation power. This is not surprising, or contradict to the Purcell effect [77]. Although the 

 
Figure 5.5. Excitation power dependent integrated PL intensity of a SQD-in-cavity at 10K.   
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spontaneous emission rate of the SQD is modified by the cavity, each point in the excitation 

power dependent intensity figure would be shifted by the same ratio, resulting in no change in 

the power law fitting.  

 

5.3 One-photon Excited Temperature Dependent PL of SQD-in-cavity 

In this section, 

we will show the 1hυ 

excited temperature 

dependent PL of a 

SQD-in-cavity from 

sample SF096. As we 

will see, not only the 

SQD’s emission shifts 

with temperature, the 

cavity transmission 

notch also varies with 

temperature. So the 

spectrum we get is a 

superposition of these 

two changes.  

 
Figure 5.6. Normalized 1hυ excited temperature dependent PL of a 

SQD-in-cavity. 
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Normalized PL spectra at 

various temperatures are shown in 

Figure 5.6. At 10K, we can observe two 

peaks at 1.2688eV and 1.2700eV. We 

will label these two peaks as p1 and p2. 

They could be originated from one 

SQD or two different SQDs. At 

temperature increases, p1 and p2 shift 

to lower energy. They shift out of the 

transmission notch and cannot be observed 

anymore after 40K. Meanwhile, another 

peak at 1.2727eV starts to show at 30K. 

We label this peak as p3. It gradually 

redshifts into the notch and becomes 

strong at 50K and 60K. After 80K, it also 

moved out of the notch and can no longer be observed. The peak position as a function of the 

temperature of p1, p2, and p3 is plotted in Figure 5.7. The solid line is the fitting function by 

Varshni Law (Eq.(4.2)) with the fitting parameters presented in Table 5.1. As we can see, the 

peak position still follows Varshni Law quite well. The cavity notch also redshifts as temperature 

increases. This is due to the lattice expansion which shifts the transmission wavelength to a 

longer wavelength. But it has a smaller shift comparing with the SQD’s emission.  

Table 5.1. Fitting parameters for each peak 

position as a function of temperature. 

Varshni Law: 𝐸 = 𝐸0 − 𝛼𝑇2/(𝑇 + 𝛽), 

 𝛽 = 271𝐾. 

 𝐸0(eV) 𝛼 (μeV/K) Adj.R^2 

p1 1.2702 301.49 0.9753 

p2 1.2690 299.47 0.9764 

p3 1.2741 417.88 0.9976 

 

 
Figure 5.7. Varshni Law fit of the center position 

of p1, p2, and p3. 
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5.4 Two-photon Excited PL of SQD-in-cavity 

In this section, we will show the 2hυ excited PL of a SQD-in-cavity from sample SF096. 

The experiment setup is the same as the one used for 2hυ excitation of EQDs described in 

Section3.3. But the sample temperature was kept at 10K. The 2hυ excitation energy we used here 

is about 1.41eV. This energy was chosen such that it is below the GaAs bandgap and above the 

QD ground state transition.  

Figure 5.8 presents the Normalized PL spectra of a SQD-in-cavity at various 2hυ 

excitation powers. Normalized PL spectra of the same SQD with 1hυ excitation are also plotted 

for comparison. With 2hυ excitation, we were only able to get the PL signal with 100%I20 and 

50%I20 power. The signal is below the noise with 32%I20 even with a 300 seconds acquisition 

time. From the figure we can see, this SQD has two strong peaks at 1.2706eV and 1.2710eV 

under 1hυ excitation. There are also some distinct satellite peaks between 1.2720eV and 

1.2740eV. Under 2hυ excitation, the 1.2706eV peak is still the most prominent one, to the right 

of which the 1.2710eV peak is also discernible but not as strong as it is under 1hυ excitation. As 

for the satellite peaks, the 1.272eV, the 1.273eV, and the 1.274eV peak are observable above the 

noise level. Therefore, we successfully excite the SQD-in-cavity with 2hυ excitation, but a power 

dependent study was limited by the maximum laser power we could generate.     
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Figure 5.8. Normalized PL of SQD-in-cavity at various 2hυ and 1hυ excitation powers. 
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6 Conclusion and Outlook 

In this dissertation, the PL behavior of InAs/GaAs QD samples was investigated under 

1hυ and 2hυ excitation. Particularly, we examined the excitation power dependent PL of EQD 

and SQD, as well as SQD in a micro-cavity with 1hυ excitation. With 2hυ excitation, energy 

near half of the QDs ground state transition to half of the GaAs matrix bandgap was used to 

investigate the TPA in QDs. All the samples were grown by MBE and the morphology of these 

samples was characterized by AFM and TEM. A model was developed to explain the excitation 

power dependent PL intensity.  

For EQD, a power law with power index of one was found for ground state transition 

with 1hυ excitation. Excitation energies at half of the QDs ground transition, 1st excited states 

transition, and the WL states transition are used to study the 2hυ excitation power dependent PL. 

A quadratic relationship between the integrated intensity and the excitation power indicates there 

is 2hυ process happening in the QDs system. PLE from half of the EQD’s ground state transition 

to half of the GaAs matrix bandgap was performed, the result of which then confirms that there 

is direct 2hυ absorption in the QDs and WL when the 2hυ excitation energy is resonant with their 

levels. This serves as the first evidence of direct TPA induced PL of InAs QDs.  

At SQD level, we identified a SQD with s, p, and d shells. The PL behavior of the X peak 

and X* peak of s and p shells with 1hυ and 2hυ excitation at various temperatures was discussed. 

With 1hυ excitation, the intensity of the X peak and X* peak of s and p shells all grow almost 

linearly with the excitation power at 5K. As temperature increases, the peaks redshift and 

broaden. The peak position as a function of temperature is described by Varshni Law [75]. The 

broadening of the PL peaks with increasing temperature can be explained by phonon broadening 

and photon broadening. With 2hυ excitation, we were able to observe SQD ground state 
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transition with excitation energy resonant with the SQD’s excited state. This is the first evidence 

of 2hυ excited PL of a single InAs QD with near-bandgap excitation. However, the attempt at 

power dependent PL with 2hυ excitation was not successful since we could only distinguish the 

SQD PL within a very small excitation power range. 

For SQD-in-cavity sample, we investigated its PL behavior at various excitation powers 

and various temperatures with 1hυ excitation. The linear relationship between the PL intensity 

and the excitation power at 10K reveals that the cavity effect on the SQD’s PL is linear. As 

temperature increases, both the QD’s PL and the cavity mode redshift. And the QD’s PL shift 

more than the cavity mode. The PL peak position as a function of temperature still follows 

Varshni Law. With 2hυ excitation, we successfully observed SQD PL emitted from a cavity. But 

the SQD PL could not be observed when the excitation power is below half of the full power. So 

we could not do power dependent study with 2hυ excitation.    

The prospective work may place emphasis on the QD-in-cavity sample. One of its 

applications is in the optical computing field. It has been demonstrated that a SQD in a micro-

post cavity can serve as an efficient single photon source [34], [78], and an optical Kerr gate 

switch [79], [80]. Fabrication of such a micro-post sample after MBE growth employs electron 

beam lithography and dry etching [81]. Study of the TPA of such a micro-post sample will reveal 

more about its nonlinear optical property and may shine light on more possible applications. 

Another interesting direction is to utilize QDs-in-cavity as a reflective optical limiter 

[45]. A typical absorptive optical limiter employs a nonlinear material which is transparent at 

low-intensity light and turns opaque at high-intensity light. The nonlinear material will absorb 

most of the high-intensity light which makes it easy to be damaged. On the other hand, we can 

put a nonlinear material between two DBRs to make a reflective optical limiter. When the light 



63 

 

intensity is low, it will transmit through the cavity mode. When the intensity becomes high, the 

nonlinear property of the material kicks in, destroying the cavity mode, turning the top DBR into 

a highly reflective mirror. To achieve such a sample, we need to add an etch-stopper structure 

[80] (for example, AlAs/Al0.3Ga0.7As 5nm/232nm) during the MBE growth for removing the 

substrate. Then the cavity can be lifted off and we can test its transmission.      
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Appendix 

A. Molecular Beam Epitaxy 

A typical MBE growth chamber is shown in Figure A.1 [A1]. Each part in the figure will 

be briefly introduced below. An effusion cell is a crucible, usually made of pyrolytic boron 

nitride for low gas evolution and good chemical stability even at high temperature, with 

filaments around and thermocouple attached. High purity source material placed inside of the 

crucible evaporates when the crucible is heated up. The flux of the material can be finely 

controlled by changing the crucible temperature. Each cell has its own mechanical shutter in 

front to realize abrupt modulation of flux. Reflection high-energy electron diffraction (RHEED) 

gun shoots high-energy electron beam onto the substrate at a very shallow angle, and the 

 
Figure A.1. Schematic diagram of a typical MBE growth chamber (top view) [A1]. 
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RHEED fluorescent screen collects the reflected electron beam which forms a diffractive pattern 

after interacts with the substrate surface. This gives us the growth dynamics in-situ and helps us 

to monitor the growth. The wafer manipulator can be turned and fixed at certain position to 

control the substrate holder to face certain directions. While loading and un-loading the substrate, 

we turn the manipulator to the “load position” (substrate holder facing the introduction chamber), 

so that an arm can come through the gate valve and grab the substrate. After loading the substrate, 

we will turn the manipulator to the “growth position” so that the substrate is facing the effusion 

cells. An ion gauge is also attached to the manipulator to measure flux at the substrate surface 

from each cell when the manipulator is turned to the “gauge position”. Cryoshrouds are equipped 

all around the MBE chamber and are usually filled with high grade liquid nitrogen before and 

during the growth. They act as cold traps for background residual vapor to ensure an ultra-high 

 
Figure A.2. Photo of Riber 32P MBE (taken by author). 
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vacuum (UHV) environment inside of the chamber in addition to a multi-stage pumping system. 

This is important because the atomic or molecular beams from the source materials need to reach 

the substrate surface efficiently without collisions. UHV is also a precondition for low impurity 

crystal growth. The MBE growth chamber usually connects to an introduction (preparation) 

chamber and a load-lock. The load-lock is regularly vented for loading and unloading. The 

introduction chamber is for degas wafers before it enters the growth chamber.  

The MBE we used in this project is a Riber 32P system. A picture of the system is shown 

in Figure A.2. It is equipped with one arsenic cell, two gallium cells, one indium cell, one 

aluminum cell, one silicone cell and one beryllium cell. The silicone cell and beryllium cell are 

for doping purpose, which is not used in this project.  

 

[A1] M. Henini, Molecular Beam Epitaxy: From Research to Mass Production, 1st ed. Elsevier 

Science, 2012 
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B. AFM Characterization 

The morphology of QDs are investigated with AFM first. AFM is a type of scanning 

probe microscopy, in which a mechanical probe is used to scan the sample surface and gather 

information, e.g. the atomic force between the probe and sample, about the surface morphology 

with a vertical resolution less than 1nm. Invented by G.Binning in the 1980s [B1], AFM has 

been widely utilized in different disciplines, including semiconductor technology, molecular 

biology and so on.  

The QDs samples are characterized with AFM under tapping mode. Figure B.1 shows the 

schematic of the basic AFM working principal under tapping mode. Before engaging with the 

sample surface, the cantilever and tip is driven at or near its resonant frequency by a 

piezoelectric crystal. This causes the cantilever and tip to oscillate with certain amplitude. A 

laser beam is reflected by the cantilever and then collected by a split photodiode detector 

 
Figure B.1. Basic AFM tapping mode working principal. 
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consisting of two closed spaced photodiodes. When the cantilever and tip is not engaged with the 

sample surface, the laser signal is oscillating evenly between the two photodiodes, resulting in 

both photodiodes collecting same amount of signal. The cantilever is then moved towards the 

sample surface until the tip starts to tap the surface. Due to this contact with surface, oscillation 

amplitude of the cantilever is reduced. This change in amplitude deflects the laser beam, 

resulting in different signal collected by the two photodiodes. This difference is then sent 

through a proportional-integral-derivative (PID) feedback loop, which control the vertical 

position of the cantilever to maintain constant oscillation amplitude. During a lateral scan, this 

vertical position is collected as sample surface features.  

The AFM we used in this project is Veeco Dimension V under ambient conditions as 

shown in Figure B.2. 

 

 
Figure B.2. Photo of Veeco Dimension V AFM (taken by author). 
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All samples are characterized with AFM after growth to see the morphology of QDs. 

Figure B.3(a) shows the AFM image of sample SF044 with 2.0 MLs deposition of InAs at a rate 

of 0.075ML/s and no manipulator tile. From this AFM image we can tell that the QDs are 

uniformly distributed on the surface and the density is about 100μm-2. But size of the QDs is not 

uniform. Cross-section of some QDs, shown in Figure B.3(b), shows the profile of those QDs: 

the QDs have a lens shape in general; the big QDs (blue line) are about 40nm in diameter and 

7nm in height; the small QDs (red line) are about 25nm in diameter and about 3nm in height; 

there are also QDs with size in between (green line). Histogram of the height and diameter of the 

QDs are shown in Figure B.3(c). Since the height of QDs is much smaller than its diameter, 

quantum confinement effect is much stronger in the vertical direction than in lateral. Thus, the 

height plays a more significant role in determining the QD’s energy level, which will be reflected 

in the QD’s PL energy. Therefore we focus more on the distribution of QDs height other than 

 
 

 

 

Figure B.3. (a) AFM image of SF044 

and (b) cross-section of QDs 

structure. (c) Histogram of height and 

diameter of QDs in (a). 
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diameter when anticipating their PL. From the height histogram shown in Figure B.3(c), we can 

see it is a bi-distribution centered at 3nm and 5nm. This results in a non-Gaussian PL as we will 

see later on.  

 With the same deposition amount and rate, we tilted the manipulator by 5° to grow 

sample SF046. Because of the tilted manipulator, we observed a gradient density of QDs 

formation. AFM image of this sample at three different positions along the indium flux is shown 

 
Figure B.4. AFM image of SF046 at (a) p5, (b) p4, (c) p3. (d) Height histogram of QDs 

at these three positions. 
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in Figure B.4: (a) position 5 (p5), (b) position 4 (p4) and (c) position 3 (p3). QDs density for 

each position is: p5 – 19/μm2, p4 – 77/μm2, and p3 – 146/μm2 respectively. Figure B.4(d) shows 

the height histogram of QDs at these three positions. At p5, the low density region, QDs have a 

bi-size distribution with small dots around 2nm in height and big dots around 7nm in height. The 

density of QD smaller than 5nm and bigger than 5nm are both about 9/μm2. At p4, the medium 

density region, much more small dots with height between 2nm and 3nm are formed. 93% of the 

QDs have height smaller than 5nm, while the rest has a quite uniform distribution ranging from 

5nm to 8nm. At p3, the high density region, 64% of the QDs have height bigger than 3.5nm and 

they have a Gaussian distribution centered at 5.1nm. The rest has a quite uniform distribution 

from 1.5nm to 3.5nm. With this sample we learnt that the density of QDs can be controlled over 

one order of magnitude by tilting the manipulator for 5°. But the lowest density achieved with 

this sample is still too high for single QD PL. We then grew samples with less indium deposition 

amount as well as lower deposition rate to achieve lower QDs density.  

 

[B1] G. Binnig and C. F. Quate, “Atomic Force Microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 

930–933, 1986. 
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C. TEM Characterization 

Transmission electron microscope (TEM) was first demonstrated by Ernst Ruska and 

Max Knoll in 1931. Using a beam of electrons as its illumination source, TEM can achieve a 

significantly higher resolution than light microscope. Continuous development and refinement of 

the design and construction has made TEM a 

very popular technique in many disciplines, 

including material science, geology, biology, 

and medical science.  

The TEM we used is FEI Titan high 

resolution TEM. Figure C.1 shows its 

simplified schematics. Electrons come out of 

a field emission gun with high energy (80-

300keV). This electron beam goes through a 

series of electro-magnetic lenses before it 

reaches the specimen. Condenser lens 1 

controls the crossover point of the beam 

before condenser lens 2. The strength of 

condenser lens 1 determines the probe size in 

scanning TEM mode. The combination of 

condenser lens 2 and its aperture affects the 

intensity of the beam and the size of the 

illumination area. The objective lens creates 

image of the specimen after the electron 
 

Figure C.1. Simplified schematics of TEM. 
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beam goes through it. Intermediate lens is used to switch between imaging mode and diffraction 

mode. In diffraction mode, we can view the reciprocal lattice of a crystal specimen and rotate the 

specimen to certain angle. This is important if we want to get high resolution image since the 

atoms need to align along the beam axis so that the image of each atom column does not interfere 

with each other. Projector lens 

magnifies the image and project 

it on the phosphor screen. A 

picture of the Titan TEM is 

shown in Figure C.2. 

The specimen for TEM 

measurement needs to be 

extremely thin for the electron 

beam to go through. The region 

of view is typically less than 

100nm thick. So a piece of 

crystal sample needs to be 

mechanically polished and then 

ion milled to have some thin 

areas for investigation. The 

diameter of the sample needs to 

be less than 3mm to fit into the sample holder. A solid material specimen can also be cut and 

polished by focused ion beam in a scanning electron microscope environment.      

  

 
Figure C.2. Photo of Titan TEM (taken by author). 
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D. PL & PLE Measurement Setup 

Photoluminescence is light emission from a material after photoexcitation. Figure D.1 

presents the schematics of the Horiba LabRAM HR800 system that we used for our PL and PLE 

measurement. The system has two input options: a He-Ne laser comes with the system, and 

another aperture for any external light source. These two excitation beams are switched by a flip 

mirror. The excitation beam then goes through a neutral density filter wheel, consisting of six 

neutral density filters: OD(optical density)0.3, OD0.6, OD1, OD2, OD3, OD4. Optical density is 

the value of the logarithm with base 10 of the power transmission factor: 

 OD = −log10

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
.  

Therefore, the excitation power can be varied by inserting different neutral density filter in the 

beam path. The excitation beam then reflected by a couple of mirrors and a notch filter at the 

laser wavelength or a beam splitter before going into the objective, which focus the excitation 

 
Figure D.1. Schematic of Horiba LabRAM HR800 system. 
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onto the sample. For below room temperature measurement, the sample is kept in a cryo-stat 

with liquid nitrogen or liquid helium flow and a heat to control the temperature. The cryo-stat is 

fixed on top of a motor stage to move in plane. Reflected laser and the PL from sample are 

collected by the same objective. They are then directed into a spectrometer and a detector. The 

spectrometer has a single diffraction grating which can be chosen from 150grooves/mm, 

3000grooves/mm, 600grooves/mm, 1200grooves/mm, 1800grooves/mm. The higher the number, 

the higher the spectral resolution but shorter detection range. In general, we used the 

150grooves/mm for EQDs PL and the 1200grooves/mm. There are three options for detectors: an 

electrical-cooled Si-CCD, a liquid nitrogen cooled InGaAs array, and a liquid nitrogen cooled 

single channel InGaAs detector. Each detector is designated for a wavelength range: Si-CCD for 

1.1μm and below, InGaAs array for 1.1-1.5μm, and single channel InGaAs for 1.5-2.2μm. A 

picture of this system is shown in Figure D.2.  

 
Figure D.2. Photo of Horiba LabRAM HR800 system (taken by author).  
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For PLE measurement, same setup is used. But instead of a fix excitation wavelength, the 

excitation laser is tuned through a wavelength range. And a fixed wavelength on the emission 

spectrum is monitored through this excitation range.  
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E. Two-photon Excitation Source System 

The schematics of the 2hυ excitation source system is shown in Figure E.1. The system 

uses a Vitesse 800-2 as a seed laser, the output of which is 100fs pulses with a repetition rate of 

80MHz at a wavelength of 800nm. The pulses go through a pulse stretcher first to have their 

peak power reduced to avoid destructing optical elements in the amplifier followed. Then the 

stretched pulses enter RegA 9050 amplifier, which uses the energy from a Verdi V-10 pump 

laser. The amplified pulses then go back to a pulse compressor to be recompressed to duration 

similar to their original. After the pulse compressor, the pulses enter an optical parametric 

amplifier (OPA) – OPA9850. It converts the 800nm input into two beams, signal and idler, the 

sum energy of which equals to the input. We define the idler beam as the beam ranging from 

1.2μm to 1.6μm, and the signal beam as the beam ranging from 1.6μm to 2.4μm. A specific 

wavelength can be chosen by meeting the phase-matching condition of the OPA crystal (barium 

borate material). At the output of this OPA, long pass filter at 1050nm is put to block the visible 

light generated in the OPA. Long pass filter at 1550nm is put to block the idler beam.  

 

 
Figure E.1.Two-photon excitation laser system. 

 

Figure E.1. Two-photon excitation laser system. 
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Figure E.2 is the spectra of the 2hυ excitation used in this research. Each spectrum corresponds 

to one OPA crystal angle. The intensity is kept at the same level by a gradient neutral density 

filter. As we can see the spectrum is in a good Gaussian shape at most of the wavelength. At 

some wavelength, the output is not that clean and have satellite peaks. The output has an average 

FWHM about 29.3meV, quite broad comparing with continuous-wave laser. Below 0.60eV, the 

output intensity of the laser becomes too small to excite the sample. Above 0.77eV, the higher 

energy side is cut off by the 1550nm long pass filter. 

 

 

  

 
Figure E.2. Spectra of the 2hυ excitation laser. 
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