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Abstract 

This thesis presents a comprehensive package for understanding and expanding set-based 

design quantification through the definition and demonstration of Convergent set-based design 

(SBD). Convergent SBD is a technique developed for the Engineered Resilient Systems program 

sponsored by the Department of Defense. Convergent SBD contributes a repeatable methodology 

with the goal of mathematically eliminating inefficient sets. The study of Convergent SBD led to 

the development of dominance identification criteria equations using comparison of statistical 

means. The demonstration of Convergent SBD also illustrates the effect of mission resilience in 

the tradespace and the impact mission resilience has on preference. Finally, Convergent SBD 

contributes to mathematical identification of the previously heuristic based set drivers and set 

modifiers and discusses additional decision analyst uses for this information. Presented as a 

complete thesis, Convergent SBD provides a foundational mathematical technique for 

eliminating sets and a method for converging to an efficient, affordable solution or group of 

solutions. 
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1. Introduction 

The research detailed in this thesis describes the techniques developed and demonstrated for 

the research sponsor, the Engineering Research and Development Center. The thesis begins with 

an introduction chapter which introduces the Engineered Resilient Systems (ERS) program, a 

survey of literature in key areas of investigation, and the proposed research question for this 

thesis. This is followed by a discussion of the hypothesized solution to the thesis research 

question. Then the methodology for the demonstration is described. The results of the 

demonstration are detailed in Chapter 4 and discussed along with ideas for further research in 

Chapter 5. The final chapter summarizes the concluding thoughts of the research. An appendix 

containing additional data is also attached. 

1.1. The Engineered Resilient Systems Program 

The goal of the Department of Defense (DoD) sponsored ERS program is the effective and 

efficient design and development of affordable, resilient engineered complex systems throughout 

the system lifecycle. (Sitterle, et al. 2015) These engineered resilient systems are needed as DoD 

systems “have to cope with a wide range of missions with high degrees of uncertainty and risk.” 

(Goerger, Madni and Eslinger 2014) To develop these resilient complex systems, technologies 

and techniques enabled by tradespace analysis, affordability analysis, modeling and simulation 

(M&S), and other techniques must be expanded to design a system in the face of changing 

requirements, to work in new environments, and to meet the challenges of adaptive adversaries. 

These techniques must also design a system which is useable, sustainable, modifiable, and cost-

effective. Thus, the ERS program must develop a way to design a system or system of systems 

which are resilient and affordable from the outset. (Goerger, Madni and Eslinger 2014) 
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1.1.1. Model-Based Engineering 

As a means to be “effective and efficient,” the ERS program “seeks to leverage the 

capabilities of a model-based engineering (MBE) integrated framework to look at cost, 

performance, and resilience early in the design process with the goal of improving acquisition 

decision making.” (Wade, Goerger, et al. In Review) MBE (and similarly model-based systems 

engineering (MBSE)) shifts from a sequential document-based paradigm to guiding the 

specification, design, integration, and validation of a system through modeling and simulation 

(M&S). (Estefan 2008) Recent improvements in computing capabilities have made MBE and 

MBSE realistic for complex systems. (Rinaudo, Buchanan and Barnett 2016) Through the ERS 

program use of many physics, capability, simulation, and value models, MBE and MBSE 

enables this research to help achieve the goals of the ERS program. The models, goals, and 

technology enablers of the ERS program are illustrated in Figure 1. 

 

Figure 1: Overview of the ERS Program built upon MBE and MBSE. (Holland 2015) 
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1.1.2. Analysis of Alternatives 

The “design and development” component of this research focuses the timeframe of 

investigation to “Pre-Milestone A.” (Cottam, Specking, et al. 2016) Milestone A is the first 

major approval gate for military acquisitions. (Defense Acquisition University 2017) To receive 

Milestone A approval, several requirements must be satisfied according to U.S. Code § 2366a. 

One critical requirement is “that an analysis of alternatives has been performed consistent with 

study guidance developed by the Director of Cost Assessment and Program Evaluation.” (U.S.C. 

§ 2366a) This identifies analysis of alternatives (AoA) as an area of investigative focus for the 

ERS program. 

An AoA is “an analytical comparison of the operational effectiveness, suitability, risk, and 

life cycle cost of alternatives.” (Office of Aerospace Studies 2013) As a military acquisition 

policy requirement, the DoD uses AoA to ensure multiple design alternatives have been analyzed 

prior to making acquisition investment decisions. (U.S. Office of Management and Budget 2008) 

The best practices for AoA are listed in Table 1 below, sequentially in the current document-

based paradigm. 

Table 1: Sequential Task of Document-Based AoA (Galorath Incorporated 2013) 

Step Task 

1. Procure key performance parameters. 

2. Identify affordability goals and weighted figures of merit. 

3. Gather requirements, features, and performance. 

4. Define technical baseline alternatives and assumptions. 

5. Perform technical design analysis for each alternative. 

6. Perform cost schedule analysis. 

7. Assess benefits based on figures of merit. 
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Table 1 (Cont.) 

Step Task 

8. Perform probabilistic risk analysis. 

9. Assess alternatives and select optimal alternative. 

10. Document analysis and lessons learned. 

 

The steps listed in Table 1 are sound practices; however, there are two potential drawbacks to 

this sequential procedure. This first drawback is the well-documented difficulty responding to 

changes (requirements, goals, assumptions, etc.) in earlier steps at later steps in a sequential, 

waterfall procedure. (Estefan 2008) When executed properly, this document-based process often 

involves rework and redesign. Comparing the sequential process with MBE and MBSE, we find 

these activities are accomplished through models which grow in detail over time as a unit and 

eliminate this drawback. (Estefan 2008) This concept of model growth may be seen in Figure 2. 

In addition, the models driving the major development phases of the project are themselves 

developed by basic sub-processes. These sub-processes are repeated as many times as necessary, 

implying the potential for quick response to changes. (Estefan 2008)  
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Figure 2: Generic SE Integrated Model Growth Over Time. (Estefan 2008) 

The second drawback of current AoA best practices is the lack of processes and guidelines 

for designing for resilience. (Office of Aerospace Studies 2013) To satisfy the DoD demand for 

designed resilient systems, Figure 3 illustrates the incorporation of the ERS objectives into AoA 

best practices. It should be noted the practices in Figure 3 are not as rigidly defined as in Table 1. 

While the same tasks are mentioned, the arrangement is closer to an MBE or MBSE 

interpretation. The three practices added to AoA best practices when incorporating ERS are (1) 

expand the design space and provide resilience options, (2) extend service lifetime, and (3) 

assess resilience tradeoffs. (C. Small, G. Parnell and E. Pohl, et al. 2017) These new ERS tasks 

will be assessed through techniques enabled by exploration of tradespace analysis, affordability 

analysis, and M&S. 
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Figure 3: Incorporating ERS into AoA (ERS Practices in Red) (C. Small, G. Parnell and E. Pohl, 

et al. 2017) 

Incorporating MBE and MBSE with the AoA best practices produces the integrated and 

simultaneous AoA. An integrated AoA requires interlocking decision analysis models to define 

performance parameters, goals, requirements, and benefits, physical constraint models to define 

alternatives and baseline performance, simulation models for alternative performance assessment 

and risk analysis, and cost models for life-cycle cost analysis.  (Wade, Goerger, et al. In Review) 

The status quo on many defense programs involves “three separate groups performing 

performance, cost, and risk analyses. These efforts are rarely ever integrated. The systems 

tradespace is not explicitly identified and explored.” (Parnell, Goerger and Pohl 2017) When 

implemented with MBE and MBSE, these models work together to assess problem definition 

changes, understand the effects of design changes, and explore the engineered resilient complex 
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systems tradespace with responsive insights for decision makers. (Wade, Goerger, et al. In 

Review)  

1.1.3.  An Engineered Resilient Complex System 

Resilience as a term does not have a consensus accepted definition among the design 

community. (Cottam, Engineering Resilience Systems Literature Survey 2018) The DoD 

perspective of resilience emphasizes two main areas: the success of the mission despite adversity 

and a wide array of system variants designed for use in a variety of unforeseen mission contexts. 

(Goerger, Madni and Eslinger 2014) The DoD perspective, coupled with further investigation of 

resilience led to the following definition of an engineered resilient system for the ERS program: 

A resilient engineered system is able to successfully complete its planned mission(s) in 

the face of a disruption (environmental or adversarial), and has capabilities allowing it to 

successfully complete future missions with evolving threats. (Specking, Cilli, et al. 2017) 

This definition makes clear distinction between two types of resilience: a short-term resilience 

during the mission, and a long-term resilience in the future. These types are called short-term or 

“mission resilience” and long-term or “platform resilience.” (Wade, Parnell, et al. 2018) The 

interaction between these types of resilience and the overall capability of the system may be seen 

in Figure 4. In Figure 4, note individual missions are represented by continuous green circles, 

these missions may be spaced differently, overlap, or require slightly different (within the 

scenario context) capabilities of the system, but the system will complete the mission as long as 

it retains minimum capability. Platform resilience represents the potential for enhancements of 

the system. The figure gives examples of when these enhancements may be implemented and it 

is often possible the missions that follow are beyond the original mission scope of the system. 

(Wade, Parnell, et al. 2018) In designing an engineered resilient complex system, it is important 

the short-term and long-term capabilities of the system are analyzed. 
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Figure 4: Mission and Platform Resilience Interacting with System Capability Over Time (Wade, 

Parnell, et al. 2018) 

To enable the design of resilient complex systems, resiliency must be measurable in terms of 

capability. In a complex system, the overall capability of the system must satisfy the multiple 

competing objectives required of the system. (C. Small, G. Parnell and E. Pohl, et al. 2017) In 

terms of the decision analysis models previously discussed, capability is disaggregated into 

individual performance measures and can be interpreted through the lens of weighted value to 

the design goal. There is currently a gap in literature for a mathematical paradigm to express 

long-term platform resilience in terms of capability, performance, or value for engineered 

resilient systems. (Wade, Parnell, et al. 2018) For mission resilience, the literature does propose 

a method for measurement. This method views mission resilience as an ility which influences all 

other performance measures in the presence of a disruption. (Wade, Goerger, et al. In Review) A 

visual modeling of one performance measure experiencing a disruption over time may be seen in 

Figure 5. The performance of the system must be in one of four states: full performance, no 

performance, reduced performance without recovery, or reduced performance with recovery. 

(Specking, Parnell, et al. 2017) 
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Figure 5: System Performance States With Resilience Over Time. (Henry and Ramirez-Marquez 

2012) 

Under this interpretation, resilience may be measured as the performance recovered above 

what is expected in the recovery action. (Wade, Goerger, et al. In Review) Given a disruption has 

only a chance of occurring, for calculation within a value model the expected performance must 

be considered. The equation for expected performance may be seen as the calculation of a 

mission chain in Equation 1. In Equation 1, pi represents performance level at each i performance 

state. From left to right, expected value is the product of the probability of system availability, 

Aa, the probability of mission occurrence across all missions, mam, the probability of a scenario 

given a mission, sams, the probability of mission reliability, Rmamsx, the probability of threat 

actualization, Thamsxt, the probability of each survival state (full, reduced, reduced with recovery, 

or no survival), Suamsxty, and the probability of restoration, ramsxtyz. (Specking, Parnell, et al. 

2017) 

∑ 𝑃(𝐴𝑎)

2

𝑎=1

∑ 𝑃(𝑚𝑎𝑚)

𝑀

𝑚=1

∑ 𝑃(𝑠𝑎𝑚𝑠)

𝑆

𝑠=1

∑ 𝑃(𝑅𝑚𝑎𝑚𝑠𝑥)

2

𝑥=1

∑ 𝑃(𝑇ℎ𝑎𝑚𝑠𝑥𝑡)

𝑇

𝑡=1

∑ 𝑃(𝑆𝑢𝑎𝑚𝑠𝑥𝑡𝑦)

3

𝑦=1

∑ 𝑃(𝑟𝑎𝑚𝑠𝑥𝑡𝑦𝑧)

2

𝑧=1

𝑝𝑖 

Equation 1: Expected Performance with Mission Resilience (Specking, Parnell, et al. 2017) 

When considering Equation 1, it is important to note most parameters (availability, mission, 

scenario, reliability, threat likelihood, and full survivability) are currently calculated in DoD 
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mission chains. (Specking, Parnell, et al. 2017) The addition of the resilience measurement 

requires only three additional estimations: partial survivability or likelihood of survival with 

diminished capacity (currently estimated but lumped into full survival or no survival at some 

cutoff percentage), likelihood of mid-mission restoration, and recoverability; the latter two may 

be estimated with simulation. (Specking, Parnell, et al. 2017) The ability to measure resilience 

requires all ilities that effect all the performance measures for resilience of complex systems in 

the ERS program. 

1.1.4. Trade-off Analytics Framework for Affordability 

The final and binding aspect of the ERS program purpose is the descriptor “affordable.” The 

ERS program supports the Better Buying Power (BBP) directives of the DoD. (C. Small, G. 

Parnell and E. Pohl, et al. 2017) Among the broad scope of the BBP implementation, BBP “seeks 

to achieve dominant capabilities while controlling lifecycle costs.” (US Under Secretary of 

Defense for Acquisition, Tech. and Logistics 2015) In terms directly relevant to the ERS 

program, the BBP directives seek to “achieve affordable programs,” “anticipate and plan for 

responsive and emerging threats,” and “provide clear and objective ‘best value’ definitions.” (US 

Under Secretary of Defense for Acquisition, Tech. and Logistics 2015) To achieve better buying 

power, the ERS program seeks is to understand the tradespace of complex system designs and 

identify the designs which provide the most overall weighted capability per dollar. (Parnell, 

Goerger and Pohl 2017) 

To assist in understanding the decisions and uncertainties which affect the complex system 

tradespace, the ERS program has established an integrated trade-off analytics framework. (Small, 

Parnell and Pohl 2016) The ERS program uses trade-off analytics to create a structure to achieve 

the most desirable balance among trade-offs in the complex system tradespace. (G. S. Parnell 
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2017) The latest version of this framework may be seen in Figure 6. The framework itself is 

developed using an MBE and MBSE implementation. Figure 6 is an influence diagram which 

includes “conditional notation.” (Small, Pohl, et al. 2017) Conditional notation within the nodes 

simplifies the visual complexity of the figure and is used in place of arrows when applicable. In 

addition, the framework classifies the analytics relevant to each node as descriptive, predictive, 

or prescriptive. These analytics give a decision analyst insight into “what has happened,” “what 

is going to happen,” and “what should be done” respectively. (Gartner 2018)  

 

Figure 6: MBE and MBSE Framework for Integrated Analysis of Alternatives (Wade, Parnell, et 

al. 2018) 

 A detailed description of every node and interaction in Figure 6 may be found in the 

appendix. Of key importance is the ERS program framework interpretation of affordability as 

influenced by value and cost over service life. Value is the measure of overall weighted 

capability of a system design across multiple competing objectives. (Parnell, Bresnick, et al. 

2013) Within the integrated framework, the ERS program uses Multiple Objective Decision 

Analysis (MODA) to assess value-based trade-offs. (Parnell, Goerger and Pohl 2017) MODA 

integrates the first three steps of the AoA task list in Table 1 including: identify key performance 
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parameters, identify affordability goals and weighted figures of merit, and gather requirements, 

features, and performance. MODA suits the integrated framework as the model is intended to 

allow updates to as the environment or decision makers change. (G. Parnell 2007) The MODA 

value model coupled with a life-cycle cost model provides a mechanism for assessing benefits 

based on figures of merit and assessing alternatives for affordability in resilient complex system 

design. 

1.2.Set-Based Design 

Perhaps most vital to a successful AoA is generating quality alternatives to analyze that span 

the decision space. In decision analysis there is a quote, “If you want better solutions, you need 

better alternatives.” (Parnell, Bresnick, et al. 2013) Status quo AoA falls back on traditional 

alternative generation techniques and supplies a low bar for alternatives including a minimum of 

just three: “the baseline,” “modified baseline,” and “alternatives identified in the AoA study 

guidance (for example allied systems, etc.)” (Office of Aerospace Studies 2013) No matter if 

there are three or dozen of alternatives crafted in this manner, each of these is considered to be a 

“point design” and an AoA which considers only these is called “Point-Based Design” (PBD). 

(Parnell, Goerger and Pohl 2017) 

For complex system design, an AoA using PBD may experience two disadvantages. The first 

disadvantage to PBD is rework and reanalysis. Once the alternatives are analyzed and a base case 

is accepted, changes may be made as new constraints or requirements are added or relaxed. 

Incremental changes are made which force the design to be assessed against the updated design 

and requirements changes, leading to the first disadvantage of PBD. (Liker, et al. 1996) The 

second disadvantage to PBD is even a thorough study of a complex system design with dozens of 
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unique crafted alternatives are insufficient to define the tradespace for decision makers. (Parnell, 

Goerger and Pohl 2017) 

In contrast to PBD is a technique called Set-Based Design (SBD), which many engineers and 

engineering managers are beginning to adopt. (Parnell, Goerger and Pohl 2017) In contrast to 

finding an initial solution to iterate, SBD defines sets of design values as variables. (Parnell, 

Goerger and Pohl 2017) Set are defined as a labeled section of the design space which shares at 

least one, but not all, design characteristics. (Wade, Parnell, et al. 2018) The SBD process tends 

to start with the entire design space and sets are gradually filtered as requirement are refined. 

Since sets are being filtered, new designs are rarely added to the design space. (Ward, et al. 

1995)  Because of this high-level elimination of design space, “the initial AoA performed on the 

larger set remains viable for the reduced set. This limits the probability of rework while adding 

fidelity to the remaining designs accounts for design modifications.” (Parnell, Goerger and Pohl 

2017) A visual comparison of PBD iterating towards a final solution and SBD converging 

towards a final solution in the design space may be seen in Figure 7. 

  

Figure 7: PBD with Rework Towards Final Solution in the Design Space (Left). SBD 

Converging Towards Final Solution in the Design Space (Right). (Paredis, et al. 2006) 
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SBD is currently being implemented within the ERS program and aligns with the ERS goals 

listed in the previous section, particularly with MBE and MBSE. (C. Small, G. S. Parnell, et al. 

2018) When used with M&S, SBD Pareto frontiers are found by analyzing sets’ response 

surfaces. (Whitcomb and Berry 2017) In addition, Small et al. uses heuristics with SBD to 

identify “set drivers” which are “a fundamental design decision that defines the system 

platform,” and “set modifiers” which are “a component that can be modified to perform future 

missions without redesigning the platform.” (C. Small, G. S. Parnell, et al. 2018) In the status 

quo, identification of the set drivers provides analyst insight into design decisions that allow for 

trimming of sets. (C. Small, G. S. Parnell, et al. 2018) 

The methodology for SBD in the ERS program involves the use and integration of 

performance and cost models with a Monte Carlo simulation software. (Parnell, Goerger and 

Pohl 2017) The Monte Carlo software generates a uniform random sample from each a set of 

each design variable and each alternative generated is propagated through the performance and 

cost models. The Monte Carlo software currently used by SBD in the ERS program is called 

SIPmath from Probability Management. (Savage 2017) A MODA model then calculates the 

performances for each capability using a value model to obtain the value of the alternative. 

(Parnell, Goerger and Pohl 2017) When plotted against the cost of each alternative, the 

tradespace is defined and visualized as an example of SBD in the ERS program may be seen in 

Figure 8. Figure 8 also illustrates the heuristic method of identifying set-drivers in a system of 

limited design choices and has identified engine type and wingspan as the set drivers in this 

UAV analysis. (C. Small, G. S. Parnell, et al. 2018) This implementation of SBD, hereto referred 

to as “heuristic SBD” provides insights to decision makers into the trade-offs in a design space. 
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Figure 8: Value Versus Cost Plot of a UAV ERS System Design Study Using SBD. (C. Small, 

G. S. Parnell, et al. 2018) 

1.3. Research Question 

Based on analysis of the research above, this thesis has identified two areas of opportunity in 

applying SBD to the ERS program for viability and applicability in complex DoD system 

applications. The first opportunity is to perform AoA on sets in more detail and to gather greater 

insight into set trade-offs. Heuristic SBD neatly aligns with the AoA process listed in Table 1 

and the MBE/MBSE integration of AoA can flexibly respond to requirements change. (C. Small, 

G. S. Parnell, et al. 2018) However, heuristic SBD does not leverage AoA on sets, outside of the 

heuristic identification of set-drivers and set-modifiers. While the current SBD heuristic is useful 

and the significantly expanded exploration of the design-space is shown to yield better solutions 

than status quo PBD, opportunity exists to exploit the ability of SBD to perform AoA on the 

larger set and have it hold for the reduced set; thus, decreasing rework and reanalysis in the 

design of resilient complex systems. 

The second opportunity is to identify mathematical techniques to eliminate inferior design 

areas. The heuristic of the ERS program implementation of SBD identifies set-drivers and set-
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modifiers for further exploration but does not provide any guidance for reducing the design area. 

The classical interpretation of SBD, listed above and visualized in Figure 7, converges through 

elimination of the design area either by constraints or analysis. The structured ability to eliminate 

sets and converge towards a solution by a sound mathematical foundation is key “For SBD to 

enter the mainstream as a viable alternative to PBD.” (Specking, et al. 2017) 

The identified opportunities led to the following research question: How can quantitative 

SBD be leveraged to eliminate sets by mathematical set analysis and converge towards a solution 

or group of affordable solutions using the integrated trade-off analytics framework? Any solution 

to this research question requires implementation ability within the ERS program. Finally, the 

solution will be required to show viability for a complex system and the system’s complex 

design space as will often be found in DoD projects.  

2. Convergent Set-Based Design 

The following chapter will describe and propose a solution to the research question termed 

“Convergent set-based design,” or Convergent SBD. Convergent SBD is a mathematical 

technique for set elimination and design space refinement used with MBE/MBSE. The goal of 

Convergent SBD is to establish a repeatable process for set analysis which results in converging 

towards a group of affordable solutions. 

2.1. Definition 

Convergent SBD is defined as the technique of repeatedly analyzing sets and statistically 

determining tradespace dominance to eliminate dominated design area towards efficient 

solutions. Convergent SBD is an iterative process whereby eliminating design area increases the 

fidelity and sample sizes of the remaining sets allowing for tighter statistical comparisons to 
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better identify dominated design areas. The sets analyzed maintain their definition throughout the 

iteration process. Convergent SBD may not iterate infinitely as it must terminate when no more 

eliminations are possible. A visual icon diagram of the Convergent SBD process may be seen in 

Figure 9. The first 5 sequential icons in the diagram represent the steps in traditional SBD. Any 

preference, parameter, or performance modeling changes require the Convergent SBD process to 

be reinitialized and repeated. 

 

Figure 9: Iconographic Flow Chart for the Convergent SBD Iterative Process. 

Cost and value mean comparisons are only performed on a collection of mutually exclusive 

and collectively exhaustive sets. An example of a collection of mutually exclusive and 

collectively exhaustive sets is the collection of sets seen in Figure 8 above where all alternatives 

identified in the tradespace are classified into exactly one set. Noting that Figure 8 classifies sets 

based on two fixed design characteristics, the number of sets required to create a mutually 

exclusive and collectively exhaustive collection are the number of options/intervals in a design 
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characteristic multiplied by the number of options/intervals in all design characteristics (if any) 

cross-applied. In Figure 8, the number of options of design characteristic 1 (engine type) is two; 

the number of intervals of design characteristic 2 (wingspan) is five; thus, the number of sets 

which form a mutually exclusive and collectively exhaustive collection is ten. The number of 

collections which are mutually exclusive and collectively exhaustive are the sum of all 

combinations of 1 to n-1 design characteristics [( 𝑛
𝑛−1

) + ( 𝑛
𝑛−2

) + ⋯ + (𝑛
1
)]. If we suppose the 

system design in Figure 8 has three design characteristics (Note: Figure 8 must have at least three 

design characteristics as the definition of a set requires at least one characteristic to be 

unconstrained), then we see each characteristic may be a collection (3
1
) = 3 and each pair of 

characteristics may be a collection (3
2
) = 3 which identifies six possible collections of mutually 

exclusive and collectively exhaustive sets. The ability to define and examine all possible 

mutually exclusive and collectively exhaustive set collections provides a significant amount of 

control and detail for decision analysts. 

The “Compare Cost & Value Means” step in Convergent SBD step makes cost and value 

mean comparisons using Tukey’s method and the Studentized Range Distribution. (Engineering 

Statistics Handbook 2018)  In Convergent SBD, Tukey’s method of analysis is performed 

directly on the sets. As comparisons are made on a collection of mutually exclusive and 

collectively exhaustive sets, value and cost domination directly identifies inefficient sets of the 

design space for elimination. Before domination can be identified, Tukey comparison assigns at 

least one number, starting at 0, to groups which sets fail to reject the null hypothesis of no 

statistical difference. Sets may have multiple numbers assigned, this implies the set is not 

statistically different from a set with a slightly lesser mean or a set with a slightly greater mean, 

but the greater mean set is statistically different than the lower mean set at some confidence 
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level. Because of this, sets have a lower bound grouping and an upper bound grouping. Sets are 

dominated when one of the following two criteria are true: 

a. A set provides less value than another at the same level of cost. 

b. A set provides the same level of value as another at higher cost. 

These criteria correspond with the (a) and (b) forms of Equation 2 which require the upper 

bound and lower bound groupings and restate (a) and (b) above in a more technical manner. (a) 

For sets which share a given cost lower bound, a set is dominated if the maximum value lower 

bound of all qualified sets is greater than the value upper bound of any single set. (b) For sets 

which share a given value upper bound, a set is dominated if the minimum cost upper bound of 

all qualified sets is less than the cost lower bound of any single set. 

a. 𝑀𝑎𝑥{𝐿𝑉𝐿𝐶} > 𝑈𝑉𝑘     ∀ 𝑘 ∈ 𝐿𝐶 

b. 𝑀𝑖𝑛{𝑈𝐶𝑈𝑉} < 𝐿𝐶𝑘     ∀ 𝑘 ∈ 𝑈𝑉 

Equation 2(a) and 2(b): Criteria for Identification of Dominance in Set Analysis. 

As mentioned, the iterative process of Convergent SBD terminates when no new sets are 

identified as dominated in some iteration. This must be due to one of three reasons:  

1. Only one set of each design characteristic remains. 

2. The remaining collection of sets are clearly distinct from each other at the chosen 

statistical confidence. 

3. The remaining collection of sets are completely indistinct from each other at the 

chosen statistical confidence. 

It is here the Convergent SBD process mathematically defines a set driver as a design parameter 

which demonstrates its fundamental nature to the platform by providing clear distinctions in the 

tradspace in terms of cost and value (reason 2). Reason 3 mathematically defines a set modifier 
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as a component which may be modified at will for future missions as the design does not provide 

a distinct impact on cost or value when selected at any remaining level. Using these criteria and 

the statistical methods detailed, Convergent SBD builds upon the advantages of current SBD 

heuristics and provide a repeatable and defendable mathematical process of elimination and 

refinement for decision analysts and stakeholders. 

2.2. Assumptions of Convergent SBD 

Convergent SBD shares the assumptions of current ERS SBD and Tukey’s method. The 

assumptions and modeling requirements of current ERS SBD are discussed in section 1.2. The 

assumptions of Tukey’s method include: (Engineering Statistics Handbook 2018) 

1. The observations being tested are independent within and among the groups. 

2. The groups associated with each mean in the test are normally distributed. 

3. There is equal within-group variance across the groups associated with each mean in 

the test. 

As justification for these assumptions, it is clear the current ERS SBD alternative generation 

process produces independent observations. In the instances where some second design 

characteristic may not be chosen unless another first characteristic is chosen, the collection of 

mutually exclusive and collectively exhaustive sets will always account for these by only 

considering second sets which hold to the choices of the first characteristic. The second 

assumption is theorized to hold by the central limit theorem enabled by the significantly large 

sample sizes generated when using ERS SBD. The final assumption is theorized to hold by the 

uniform generation method of ERS SBD across all unconstrained design characteristics. These 

assumptions and the ability of Convergent SBD to hold to these assumptions provides the 

mathematical foundation for the elimination of sets in the Convergent SBD technique. 
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3. Squad Enhancement Demonstration Methodology 

This chapter will describe a demonstration to test and evaluate the Convergent SBD 

technique within the ERS program. The demonstration to be described is an extension of a 

previous ERS program study. The use of the Convergent SBD technique will be shown in its 

ability to integrate with the current methods and techniques to achieve the goals of the ERS 

program. Special attention will be paid to any additional accommodations Convergent SBD 

requires. 

3.1.Squad Enhancement Background 

The original squad enhancement study from MacCalman et al. used several squad 

enhancement options to “propose an experimental design MBSE methodology that illuminates 

system design trade decisions.” (MacCalman, et al. 2015) Squad enhancement options included 

technologies which could be added to a military squad such as robots and UAVs or technologies 

which could increase capabilities of the squad such as rifle enhancements and helmet sensors. 

The squad enhancements were chosen as the initial study for the many variable relations and 

trade-offs necessary because of the mostly fixed capacity of a military squad. It is important to 

note this study was performed notionally and not directly aligned with any DoD enhancement 

programs and the content is public. It is also relevant to note this study did not explicitly consider 

resilient system performance in the evaluation and generation of alternatives. 

The data driven approach for trade-off analysis in the original study used design of 

experiments with M&S to create robust regression equations. This application of MBSE 

produced an understanding of performance trade-offs in the design space, even going so far as to 

allow for Monte Carlo alternative generation as seen in Figure 10. Each box in Figure 10 defines 

the trade-off relationship between two design variables. This is like defining the larger area in the 



22 

 

design space for SBD as shown in Figure 7 (right). However, the original study did not classify 

the design alternatives into sets. In addition, while the original study provided an arbitrary way to 

filter alternatives based on requirements, the original study did not propose a method for filtering 

solutions based on capability, performance, or value. 

 

Figure 10: Monte Carlo Alternative Generation and Filtering Mechanism in Original Squad 

Enhancement Study. (MacCalman, et al. 2015) 

As heuristics SBD as well as Convergent SBD requires a definition of the tradespace to 

evaluate sets, the original study does define the value and cost space for a handful of point-based 

alternatives. The alternatives compared in the original MODA study are completely notional and 

not correlated to the MBSE alternatives previously mentioned. In addition, the objectives in the 

value model and subsequent performance measures of the original study are also unconnected 

with the performance measures in the MBSE data above. Because of this data disconnect, some 
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notional relations from the design space to the tradespace needed to be created in this thesis. The 

notional relations will be detailed in the following section. 

3.2.Adaptations from MacCalman Study 

Several adaptations from the original study for the demonstration of Convergent SBD. The 

purpose of all adaptations being to tie the MBSE performance regression equations to the value 

model, facilitate mission resilience quantification, limit the scope of notional equations unique to 

this thesis, or perform SBD. The overall goal of the original study adaptations is to preserve and 

leverage as much of the trade-off analysis as possible within the study’s notional value and cost 

model. 

The first original study adaptations are to tie the MBSE performance regression equations to 

the value model. The first change is to choose the enhancements to evaluate. Based on the data 

provided in the original study, the enhancements selected are the addition of one or multiple 

UAV(s), rifle enhancements, body armor enhancements, and the addition of one or multiple 

robots. These are modeled as independent systems, each with a “status quo” option or allowing 

for no enhancement to any or all systems. To accommodate these systems in the tradespace, the 

value model was redefined primarily around the elimination of the communication objective 

which did not correlate with the data. The revised value model may be seen in Figure 11. The 

full value model and swing weight matrix may be seen in the appendix. For comparison, 

MacCalman’s original value model may also be found in the appendix. 
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Figure 11: Thesis Research Squad Enhancement Value Model. 

The next original study adaptations are to facilitate mission resilience quantification. Mission 

resilience quantification, as calculated in Equation 1, requires ility estimations including 

availability, reliability, survivability, and recoverability. Also required for mission resilience 

calculation are system performance in a reduced state and a reduced state with recovery. All of 

these probabilities and performances were notionally estimated for all natural performance 

measures within the thesis research value model. 

The third original study adaptation is to limit the scope of notional equations unique to this 

thesis. Because the inputs of the regression equations in the original are ratio from min to max, to 

use these equations, this research had to redefine the design parameters as ratio outputs as well. 

The research inputs may be seen below in Table 2 and the original study model inputs may be 

seen in the appendix. Again, the original study model inputs do not correlate with the original 

study MODA model. In addition, for the performances measured on discrete constructed scales 
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found in the original study MODA model, the design parameters of this research became the 

discrete choice of constructed rating. 

Table 2: Research Design Parameters 

Parameter Continuous/Discrete Range/Options 

Number of UAVs Discrete {0, 1, 2} 

UAV 1 Speed Continuous [50-200] 

UAV 1 Detection Range Continuous [1.5-2.5] 

UAV 1 Number of Missiles Discrete {0, 1, 2} 

UAV 2 Speed Continuous [50-200] 

UAV 2 Detection Range Continuous [1.5-2.5] 

UAV 2 Number of Missiles Discrete {0, 1, 2} 

Rifle Enhancement Discrete {No, Yes} ~ {0, 1} 

Rifle Enhanced Range Continuous [1-2] 

Rifle Enhanced Fire Rate Continuous [1-3] 

Rifle Enhanced Hit Prob Continuous [1-2] 

Rifle Enhanced Lat Leth Mitigate Discrete {1, 2, 3, 4, 5} 

Body Armor Enhancement Discrete {No, Yes} ~ {0, 1} 

BA Enhanced Kinetic Prot Discrete {1, 2, 3, 4, 5, 6, 7, 8, 9} 

BA Enhanced Chem-Bio Prot  Discrete {1, 2, 3, 4, 5, 6, 7, 8, 9} 

BA Enhanced IED Prot Discrete {1, 2, 3, 4, 5, 6, 7, 8} 

BA Enhanced Nuc Radiation Prot Discrete {1, 2, 3, 4, 5, 6, 7} 

Number of Robots Discrete {0, 1, 2} 

Robot 1 Speed Continuous [3-10] 

Robot 1 IED Sensor Prob Detect Continuous [1-2] 

Robot 1 Classification Range Continuous [1-2] 

Robot 2 Speed Continuous [3-10] 

Robot 2 IED Sensor Prob Detect Continuous [1-2] 

Robot 2 Classification Range Continuous [1-2] 

 

The fourth original study adaptations were to enable the use of SBD. Heuristic SBD requires 

the tradespace to be defined with MBE/MBSE. The previous adaptations and the original study 

had already defined the value-space. The last adaptation created an MBE cost model based on 

the original studies notional MODA analysis. The cost model equations were developed by 

fitting equations to the min/max costs provided by the original study. In addition, the costs were 

disaggregated into lifecycle components of research and development, unit cost, training cost, 

maintenance costs, and disposal costs. 
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3.3.Convergent Set-Based Design Implementation 

As mentioned in the previous section, the performance models of the original study were 

leveraged to explore the value-space and cost models were created to explore the cost-space. 

Quantitative SBD was implemented in the same method described in section 1.2 which involves 

the use and integration of performance and cost models with a Monte Carlo simulation software, 

SIPmath.  

Using SIPmath in Excel, a uniform random variable is assigned for each design parameter 

(see Table 2) so that the maximum amount of the design space is explored. The number of 

random numbers generated per run was set to 10,000. This is translated to 10,000 unique 

alternatives. The control panel reads each random number and interprets it as a design choice 

which is propagated through the performance and cost models. One additional requirement for 

Convergent SBD is the labeling of sets. To do this for a mutually exclusive and collectively 

exhaustive collection of each design parameter in Excel, a second “iteration control panel” was 

created consisting of two parts. The first part of the iteration control panel interprets the random 

numbers and labels them as the discrete option or specific interval (also called “bin”) 

accordingly. An image of the iteration control panel with specific labels for some alternative is 

provided in Figure 12. 
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Figure 12: Iteration Control Panel Interpreting and Labeling Random Numbers Generated by 

SIPmath. 

The second part of the iteration control panel defines the design space. As Convergent SBD 

seeks to eliminate sets and design area in each iteration, the iteration control panel is updated 

with each elimination. Both the control panel, which generates the alternatives based on the 

SIPmath random number and the labels created in Figure 12 rely on this second part of the 

iteration control panel. The iteration control panel possesses information of the number of 

intervals/options remaining, the width of the interval, the starting interval, the minimum interval 

value, and then a list of the intervals or discrete options. A sample of the second part of the 

iteration control panel may be seen in Figure 13. This second part of the iteration control panel 

allows for dynamic updating and accurate identification for the creation of alternatives and 

labeling of sets. 

Number Speed Detection Range Number of Missiles

{0, 1, 2} [50-200] [1.5-2.5] {0,1,2}

1UAV 1SBin:1 1DetDistBin:1 UAV1Miss2

(IF Num = 2)

Enhanced Range Fire Rate Probability of Hit Lateral Lethal Mitigation

{0, 1} [1-2] [1-3] [1-2] {1, 2, 3, 4, 5}

EnhRif 1RngBin:10 1FRBin:4 1HPrbBin:2 LethMit_4

Enhanced Kinetic Protection Chem-Bio Protection IED Protect

Nuclear Radiation 

Protection

{0, 1} {1, 2, …, 9} {1, 2, …, 9} {1, 2, …, 8} {1, 2, …, 7}

EnhBA KinProt_9 ChemProt_1 IEDProt_1 NucProt_1

Number Speed IED Sensor Probability Classification Range

{0, 1, 2} [3, 10] [1, 2] [1, 2]

2Rob 1RSBin:2 1IEDBin:3 1CRBin:7

(IF Num = 2) 2RSBin:3 2IEDBin:5 2CRBin:10

UAV

Rifle

Body Armor

Robot
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Figure 13: Design Area Controlled in Second Part of the Iteration Control Panel. 

To view the resulting value and cost of the 10,000 alternatives, SIPmath outputs were defined 

for total cost and total weighted value. These outputs are displayed in the SIPmath generated 

“PMTable” sheet in the Excel implementation, where each row of the table represents one 

unique alternative. To enable set analysis, an output was defined for each of the labels shown 

above in Figure 12. These outputs also are displayed in the PMTable for each of the 10,000 

alternative generated. The labels allow for each of the 10,000 alternatives to be correctly 

identified in sets by any of the 24 design parameters. A small excerpt of the PMTable may be 

seen in Figure 14. 

 

Figure 14: PMTable Outputs Excerpt with Value, Cost, and Set Labels. 

The final necessity for Convergent SBD implementation is the computerized execution of the 

elimination logic found throughout Chapter 2 and specifically in Equation 2(a) and 2(b). This 

was accomplished through the use of an Excel macro and may be viewed in the appendix. The 

Range (# of Bins) Interval Width Starting (Cont) Min (Cont)

Num UAV 3 NA Discrete NA 0UAV 1UAV 2UAV

UAV 1: Speed 10 15 1 50 1SBin:1 1SBin:2 1SBin:3

UAV 1: Detection Range 10 0.1 1 1.5 1DetDistBin:11DetDistBin:21DetDistBin:3

Intervals or List (If Discrete)

Index Value Cost NumUAVO UAV1SO UAV1DetRngO UAV1NumMissO

Values 75 68.46782 1UAV 1SBin:1 1DetDistBin:1 UAV1Miss2

1 29.35162 37.58079 1UAV 1SBin:1 1DetDistBin:1 UAV1Miss1

2 31.65611 39.6251 2UAV 1SBin:2 1DetDistBin:1 UAV1Miss0

3 43.17437 46.45773 1UAV 1SBin:2 1DetDistBin:1 UAV1Miss1

4 58.0977 65.47613 2UAV 1SBin:1 1DetDistBin:1 UAV1Miss2

5 23.3692 23.87885 0UAV

6 77.08025 77.55606 2UAV 1SBin:2 1DetDistBin:1 UAV1Miss2

7 69.5673 77.76082 2UAV 1SBin:2 1DetDistBin:2 UAV1Miss0

8 62.69677 69.13984 2UAV 1SBin:1 1DetDistBin:1 UAV1Miss2

9 29.10645 32.8403 0UAV

10 74.92815 68.46782 1UAV 1SBin:1 1DetDistBin:1 UAV1Miss2
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macro for Convergent SBD consists of three functions. The first function uses Tukey’s method 

to make comparisons and label the lower and upper similarity bounds. The second function 

implements Equation 2(a) and 2(b) and determines which sets are to be eliminated. The final 

function outputs the all comparisons and names all eliminate sets and then updates the second 

part of the iteration control panel to define the new design space. All three functions carry out 

their tasks in concert at the click of a button, ensure that the implementation of Convergent SBD 

is usable, responsive, and can get results in a timely manner. 

3.4. Application within ERS Program 

As previously mentioned, to successfully address the research question Convergent SBD 

requires implementation ability within the quantitate SBD. Convergent SBD must leverage 

MBE/MBSE, integrated with the expanded AoA, evaluate engineered resilient systems, and 

adhere to the trade-off analytics framework. The following subsections will briefly discuss the 

applicability of Convergent SBD in each of these key areas. 

3.4.1. Use of MBE/MBSE through Convergent SBD 

The implementation of Convergent SBD does leverage MBE/MBSE through the use of the 

M&S regression equations performed in the original study. The natural performance measures 

translatable from the original research are manipulated into this research including beyond line 

of sight capability, line of sight capability, and lethality. Physics models relate the performance 

tradeoffs for the remaining natural measure including, IED protection, maneuverability, and 

soldier speed. These physics and performance simulation models are integrated with the value 

and cost models mentioned previously for a complete MBE integrated package. 
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3.4.2. Integrated AoA with Convergent SBD 

As found in Chapter 1, integrated AoA requires interlocking decision analysis models to 

define performance parameters, goals, requirements, and benefits, physical constraint models to 

define alternatives and baseline performance, simulation models for alternative performance 

assessment and risk analysis, and cost models for life-cycle cost analysis. The Convergent SBD 

implementation interlocks all of these models within its Excel implementation with the notable 

exception of simulation models for risk analysis. The squad enhancement demonstration of 

Convergent SBD does all calculations deterministically. This should not imply Convergent SBD 

cannot incorporate uncertainty, but it is not implemented within this research. The lack of 

uncertainty analysis will be revisited in the discussion of Chapter 5. 

3.4.3. Engineering Resilient Systems in Convergent SBD 

The ability to design with consideration of mission resilience is incorporated into the squad 

enhancement demonstration in the natural measures which the estimation of the “ilities” were 

possible. These measures include beyond line of sight, line of sight, and maneuverability. 

Mission resilience was calculated in accordance with Equation 1. An example of the probability 

tree created by Equation 1 may be seen in Figure 15. Note the equations relating ility 

probabilities and performance capabilities at the various system states are notional. The bright 

green box in the top left of the below figure is the expected performance with resilience. 
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Figure 15: Expected Performance with Mission Resilience Calculation for the Beyond Light of 

Sight Measure. 

 

3.4.4. Trade-off Analytics of Convergent SBD 

The extent to the squad enhancement demonstration of Convergent SBD aligns with the 

trade-off analytics framework in Chapter 1 may be seen below in Figure 16. Figure 16 presents 

the trade-off analytics framework with color coding on the outline of the nodes. Nodes outlined 

in green are fully/dynamically implemented within the demonstration and nodes with orange 

outlines are partially implemented within the demonstration.  

 

Figure 16: Trade-off Analytics in the Squad Enhancement Demonstration. 
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The non-fully implemented nodes include threat assessment, missions, scenarios, response 

decisions, and service life. In each case, the nodes are not fully implemented due to a simplifying 

assumption. The squad enhancement demonstration assumes the threat assessment was 

completed and the threat actualized and implemented for mission resilience is the expected 

threat. The demonstration provides analysis given a single mission and scenario. The 

demonstration does not specify the nature of the response decisions but does calculate a response 

within the mission resilience calculations. Finally, service life is deterministically fixed and 

options/methods for expanding the service life of a given alternative are not explored within the 

squad enhancement demonstration. Despite these assumptions, the squad enhancement 

demonstration of Convergent SBD does use the ERS integrated trade-off analytics framework. 

These assumptions and potential relaxations of the assumptions will be revisited in the 

discussion of Chapter 5. 

4. Squad Enhancement Results 

The following chapter details the results of the squad enhancement demonstration of 

Convergent SBD. The chapter begins with the effect of the mission resilience calculations. The 

chapter then lists the impacts of Convergent SBD in set analysis and elimination of parts of the 

design area. For further investigation, the resulting Convergent SBD eliminations and final 

design space will be disclosed at two levels of statistical confidence in the set analysis; where 

alpha equals 0.95 and alpha equals 0.99 respectively. These results will be discussed in the 

subsequent chapter. 

4.1. Impact of Mission Resilience on the Design Space 

The initial tradespace without mission resilience calculated may be thought of as the most 

aligned results to the original study which also did not calculate resilience. The visual effect 
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mission resilience has on the tradespace may be seen in Figure 17. Figure 17 illustrates the 

tradespace without resilience, the efficient points of this tradespace (in green), and the efficient 

frontier of the tradespace with resilience (in orange). As seen in Figure 17, all of the green 

efficient points of the tradespace without resilience are dominated by the efficient frontier of the 

tradespace with resilience. 

 

Figure 17: The Tradespace without Mission Resilience 

The inclusion of mission resilience did not have an impact in any costs of the alternatives. 

The inclusion of mission resilience strictly raised the expected value of every alternative; by an 

average of 7.4 out of 100 points of value (119% of the average value). The 7.5 points of value 

average was not uniform among the alternatives. The alternatives gained a minimum of 0.3, 

maximum of 13.8, and had a standard deviation of 4.3 points gained. The variance in value 

increases led to re-ordering of the alternatives by rank of value. Of the 10,000 identical 

alternatives ranked from highest value to lowest across the two analyses, the average 

displacement was 510 ranks. 
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4.2. Impact of Convergent Set-Based Design 

The first step in Convergent SBD requires an initial run (iteration 0) of SBD. The initial run 

of SBD using MBE with 10,000 feasible alternatives generated is illustrated in Figure 18. Figure 

18 identifies 47 efficient points out of 184 sets composing 24 mutually exclusive and collectively 

exhaustive collections. All of the collections are created from each single design characteristic. 

The average value and cost of an alternative is 45.6 value score and $69.7K/200 squads. The 

design area from midpoint of value of the efficient frontier to midpoint of cost on the opposite 

end is approximately 44 value-cost units wide. 

 

Figure 18: Initial Run of Set-Based Design with All Sets. Orange Arrow Represents Tradespace 

Width 

The next iterations of Convergent SBD were performed assuming an alpha value of 0.95 in 

the Tukey’s method comparisons. The results design area statistics at each iteration are 

summarized in Table 3. 
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Table 3: Design Area Summary Statistics: Alpha = 0.95 

Iter. Feasible 

Alternatives 

# Sets # Sets 

Eliminated 

Coll-

ections 

Area 

Width 

Val 

Avg. 

Cost 

Avg. 

New 

EPs 

0 10,000 184 -- 24 44 45.6 69.7 -- 

1 10,000 149 35 24 39 50.4 62 52 

2 10,000 121 28 24 25 52.2 56.2 55 

3 10,000 111 10 24 23 52.7 53.9 54 

4 10,000 111 0 24 23 52.7 53.9 0 

 

The 4th iteration does not eliminate any sets, satisfying the requirement for iteration 

termination. The full final comparison matrices of the 111 remaining sets in 24 collections may 

be found in the appendix. Figure 19 is an excerpt of the comparison matrices which illustrates 

two collections at final convergence for reasons 2 and 3 listed in Section 2.1. The top 

comparisons between the “number of robots” design parameter shows clear statistical distinction 

in terms of cost and value and thus sets may not be eliminated. The bottom comparisons between 

the “robot 1 speed” design parameter shows perfect statistical indistinction among the sets and 

thus sets may not be eliminated. By the definition in Section 2.1, of the 24 design parameters, at 

final convergence; 14 are identified as set drivers, 9 as set modifiers, and 1 singleton collection. 

The classification of set drivers, set modifiers, and singleton collections may be found in Table 5, 

with the classifications from alpha equals 0.99 iterations. 

 

Figure 19: Comparison Matrices for Number of Robot and Robot 1 Speed. 

Characteristic/Interval Value Min Group Value Max Group Characteristic/Interval Cost Min Group Cost Max Group

0Rob 0 0 0Rob 0 0

1Rob 1 1 1Rob 1 1

2Rob 2 2 2Rob 2 2

Characteristic/Interval Value Min Group Value Max Group Characteristic/Interval Cost Min Group Cost Max Group

1RSBin:1 0 0 1RSBin:1 0 0

1RSBin:2 0 0 1RSBin:2 0 0

1RSBin:3 0 0 1RSBin:3 0 0

1RSBin:4 0 0 1RSBin:4 0 0

1RSBin:5 0 0 1RSBin:5 0 0

1RSBin:6 0 0 1RSBin:6 0 0
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Figure 20 illustrates the tradespace after the 4th and terminating iteration. All the efficient 

points after each iteration are also shown to highlight the Pareto frontier continuing to increase in 

quality. Figure 20 also plots 10,000 generated alternatives and is composed of the same sets as in 

Figure 18, but the remaining sets are refined with more alternatives within them. 

 

Figure 20: Tradespace at Final Convergence with 10,000 Alternatives, Alpha = 0.95. 

The next iterations of Convergent SBD were performed assuming an alpha value of 0.99 in 

the Tukey’s method comparisons. The results design area statistics at each iteration are 

summarized in Table 4.  
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Table 4: Design Area Summary Statistics: Alpha = 0.99 

Iter. Feasible 

Alternatives 

# Sets # Sets 

Eliminated 

Coll-

ections 

Area 

Width 

Val 

Avg. 

Cost 

Avg. 

New 

EPs 

0 10,000 184 -- 24 44 45.6 69.7 -- 

1 10,000 153 31 24 37 51.1 63.5 55 

2 10,000 133 20 24 28 51.5 58.6 63 

3 10,000 123 10 24 25 52.0 56.3 54 

4 10,000 120 3 24 22 51.9 55.5 42 

5 10,000 119 1 24 21 51.7 55.2 40 

6 10,000 119 0 24 21 51.7 55.2 0 

With alpha equal to 0.99, the 6th iteration does not eliminate any sets, satisfying the 

requirement for iteration termination. The full final comparison matrices of the 119 remaining 

sets in 24 collections may be found in the appendix. Of the 24 design parameters, at final 

convergence; 14 are identified as set drivers, 10 as set modifiers, and 0 singleton collections. The 

list of these may be seen in Table 5. 

Table 5: Classification of Set Types at Final Convergence 

Parameter Type at α = 0.95 Type at α = 0.99 

Number of UAVs Driver Driver 

UAV 1 Speed Driver Driver 

UAV 1 Detection Range Driver Driver 

UAV 1 Num Missiles Driver Driver 

UAV 2 Speed Modifier Modifier 

UAV 2 Detection Range Modifier Modifier 

UAV 2 Num Missiles Driver Driver 

Rifle Enhancement Driver Driver 

Rifle Enhanced Range Driver Modifier 

Rifle Enhanced Fire Rate Modifier Modifier 

Rifle Enhanced Hit Prob Modifier Modifier 

Rifle Enhanced Lat Leth Mitigate Driver Driver 

Body Armor Enhancement Driver Driver 

BA Enhanced Kinetic Prot Driver Driver 

BA Enhanced Chem-Bio Prot  Driver Driver 

BA Enhanced IED Prot Singleton Driver 

BA Enhanced Nuc Radiation Prot Driver Driver 

Number of Robots Driver Driver 

Robot 1 Speed Modifier Modifier 

Robot 1 IED Sensor Prob Detect Driver Driver 

Robot 1 Classification Range Modifier Modifier 
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Table 5 (Cont.) 

Parameter Type at α = 0.95 Type at α = 0.99 

Robot 2 Speed Modifier Modifier 

Robot 2 IED Sensor Prob Detect Modifier Modifier 

Robot 2 Classification Range Modifier Modifier 

Figure 21 illustrates the tradespace after the 6th and terminating iteration. Only the efficient 

points after the original run 0 and iteration 5 are shown for simplicity in showing the increase in 

quality of solutions. Figure 21 plots 10,000 generated alternatives and should be compared to the 

tradespace illustrated in Figure 18 and Figure 20. Following Figure 21, the next chapter will 

discuss the results. 

 

Figure 21: Tradespace at Final Convergence with 10,000 Alternatives, Alpha = 0.99. 

5. Squad Enhancement Discussion 

The following chapter discusses the results of SBD for insights into the research question. 

The first section discusses the demonstration using the integrated trade-off framework. The 

second section discusses the insights and effectiveness of Convergent SBD in identifying useful 
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information for stakeholders and decision makers. The third section discusses opportunities for 

future research. 

5.1.Discussion of Demonstration in ERS 

As implied by Figure 15, the squad enhancement demonstration was fully enabled by the 

integrated trade-off analytics framework, but with a few limiting assumptions. All of the limiting 

assumptions affected the ability of the demonstration to calculate and evaluate system resilience. 

From the data found in section 4.1, it is clear mission resilience had a demonstrable impact on 

the tradespace even with the limiting assumptions. Additionally, the incorporation of mission 

resilience produced important results in two key areas. This first is incorporating mission 

resilience strictly raised the expected value of the alternatives and by an average of 7.5 value 

points. This result is consistent with the conception of mission resilience as “recovery above 

expectation.” The second key finding is the significant change in alternative value rank-order. 

This implies that resilience must be a consideration in system design as it will likely change the 

preference of decision makers. 

The incorporation of mission resilience requires the successful integration of MBE/MBSE. 

With the significant adaptations of the original study, the tradespace, sets, and efficient solutions 

are able to be identified using SBD. The study modifications provide additional insights to the 

decision makers when using SBD. Through these modifications, we find this research may also 

adapt to requirements as demonstrated explicitly by the incorporation of mission resilience and 

through the use of the trade-off analytics framework. In addition, through the value and cost 

model, this research also contains the ability to adapt to preference and information changes 

which was not as easy in the original study.  
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The final discussion topic in this subsection is system complexity. While complexity is a 

subjective term, this research demonstrates the ability of the integrated trade-off analytics 

framework (and Convergent SBD) to analyze complex system designs. In particular, this 

research was able to design four independent systems working concurrently. A statistical 

summary of the complexity of this demonstration may be seen in Figure 26. In Figure 26 is the 

number of possible combinations (or alternatives) as 7.35E+19. This is an impossibly high 

number of alternatives to evaluate with PBD. The number of alternatives also implies a 

significantly complex design space. The complexity of the tradespace is determined in part by 

the number of possible alternatives, but also by the number of competing objectives. While nine 

objectives are not high for a DoD system, it creates a tradespace of non-obvious solutions and 

requires modeling, as was demonstrated, to evaluate the large numbers of alternatives. 

 

Figure 22: Trade-off Analytics Hierarchy for the Squad Enhancement Demonstration (Alpha = 

0.95 when referring to number of iterations). 
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5.2. Discussion of Convergent Set-Based Design 

The following subsections will discuss the results of the Convergent SBD methodology. This 

discussion includes set analysis, set quality, set driver/modifier, and the effect of the alpha value.  

5.2.1. Set Analysis 

To begin, it is clear the Convergent SBD methodology was able to perform analysis on sets 

rather than points. It is also clear that sets and design area were eliminated. This had the expected 

effect of reducing the design space by eliminated dominated sets. The width of the design area in 

SBD, as illustrated in Figure 18, provides a comparative measure for the density of solutions 

away from the efficient frontier. At both levels of alpha, the width of the design area was 

monotonically shrinking in each set-eliminating iteration, implying the eliminations were 

justifiable by the dominance criteria in Equation 2. Additionally, at both alpha levels, each set-

eliminating iteration resulted in newly identified efficient points. This is the result of refinement 

and increased investigation into the efficient sets as expected with Convergent SBD. Perhaps 

most notable is iteration 5 of the alpha equal 0.99 investigation which eliminated a single set and 

still identified 40 efficient points previously undiscovered. This phenomenon should not be 

surprising in such a complex design space as even the elimination of a single set reallocates 

hundreds to thousands of generated alternatives to investigate efficient sets. 

The literature concerning qualitative SBD wrote of a process which converged to a final 

solution. While Convergent SBD clearly converged to better solutions than heuristic SBD and 

PBD, the number of possible alternatives and sets are still quite large. The most likely 

opportunities to converge even further lie in the fixing of set modifiers (discussed in detail 

below) and by applying the method on higher level collections of mutually exclusive and 

collectively exhaustive sets. The results above define 24 collections, each defined by a single 
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design parameter. As mentioned in Section 2.1, collections may be defined by up to n-1 design 

parameters. This was not demonstrated due to the constraints of the elimination program in its 

Excel implementation. However, as in qualitative SBD, specific interactions of multiple design 

parameters are able to be excluded in the theory of Convergent SBD, leading to an even smaller 

and more refined design space and tradespace. It is likely, though not demonstrated, these higher 

order interaction comparisons lead to even better solutions and a tight set of solutions along the 

Pareto Frontier. 

5.2.2. Set Quality 

The next part of the Convergent SBD discussion focuses on the quality of the remaining sets 

and alternatives after iterations. With all of the iterations at alpha = 0.95 and most of the 

iterations at alpha = 0.99, the average value and cost of the 10,000 generated alternatives were 

improving. However, this average value does improve in iterations 4 and 5 of the alpha = 0.99 

analysis. Because the area width of the design space continues to shrink in the identified 

iterations, the only reason the average value will not improve in an iteration is if some high-value 

sets are eliminated. While it is difficult to identify the set responsible for this, an illustration of 

this scenario may be found in Figure 23. In Figure 23, the increased variance of set B in terms of 

value may lead to some high-value alternatives, but the average value of set B is little different 

from the average value of set A. Because of the clear increase in cost of set B over set A, set B 

meets the elimination criterion. 
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Figure 23: Illustration of Set B Elimination Scenario. 

Figure 23 presents a clear picture of a set justified for elimination, but the elimination of the 

set removes an efficient point(s). This is likely the cause of the non-improving average 

alternative found in iterations 4 and 5 of the alpha equals 0.99 analysis. This presents a challenge 

to the effectiveness of Convergent SBD as there exists a scenario in which Convergent SBD 

eliminates an efficient solution. The response to this scenario is two-part: first, the purpose of 

SBD is to perform analysis on the set level and eliminate inefficient sets, not perform analysis on 

specific points as in PBD. The second response must be to define the elimination criteria by the 

discretion of the decision maker. A decision maker may choose to accept the potential for loss of 

efficient solutions in the 95th-99th percentile extremes in favor of the clearly demonstrated 

improvements in the 95-99% design space. Or, a decision maker may choose to redefine the 

elimination criteria to protect any identified inefficient set(s) that contain efficient points. The 

latter is theoretically implementable within the demonstration by the ability of the integrated 

model to identify efficient points, correctly label them into their respective sets, and make these 

exceptions by the elimination program, though this requires future work to demonstrate the 

theory. A decision maker preferring the latter definition for elimination criteria would still work 



44 

 

with Convergent SBD but may slow iterations and result in a larger design space at final 

convergence. 

5.2.3. Set Drivers and Modifiers 

The next part of the general Convergent SBD discussion is the classification of set drivers, 

modifiers, and singleton collections. As can be seen in Table 5, both analyses were mostly 

consistent in their identifications. Both analyses identified 14 of the 24 design parameters as set 

drivers. While this may seem high, the number of set drivers identified is possibly higher due to 

the unique construction of this demonstration. Each of the four enhancements are independent 

systems, and each of the four design parameters controlling the major architectures of the 

complex overall system were identified as drivers. The remaining design parameters may be 

thought of as set drivers or set modifiers for each of their respective systems. As an example, 

“number of robots,” an independent system, is identified as a set driver. Within the robots system 

enhancement “robot 1 IED probability of detection” is identified a set driver. This implies “robot 

1 IED probability of detection” is key to understanding the value and cost of enhancing the squad 

with robots. 

As previous literature and this research confirm, identifying set drivers provides decision 

analysts with strong insights into the focus of further investigation. The usefulness of identifying 

set modifiers is not as apparent. In Convergent SBD, the identification of set modifiers could be 

a useful tool for furthering Convergent SBD analysis into efficient, driving sets. This could be 

accomplished by arbitrarily eliminating all but one design characteristics of each set modifier to 

a single set. The theory of Convergent SBD supports this arbitrary elimination of design area as 

statistically the set modifiers are indistinct and will have no statistical impact on the area, but 

greatly reduce noise variance for better comparisons of set drivers. A visual example of the 
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squad enhancement design area which adopts this idea may be seen in Figure 24. In Figure 24, 

the newly generated alternatives are plotted with the best efficient points from the final iteration 

at alpha equals 0.95 and it is clear that improvements have been found. 

 

Figure 24: Fixed Set Modifiers Example Plotted with Efficient Points at Final Convergence. 

There is a caution to be addressed before Convergent SBD may recommend using set 

modifiers in this fashion. First, at what iteration stage does an analyst eliminate set modifiers to a 

single set must be addressed. It would be most effective to perform this elimination of multiple 

sets in set modifiers immediately following the iteration they are identified. However, it is 

theoretically possible that the elimination of other sets and the increased sample sizes in the set 

modifiers would allow small distinctions to be identified. A possible example is the contrasting 

identifications of “rifle enhanced range” in Table 5 as a set driver and set modifier when alpha 

equals 0.95 and 0.99 respectively. It is possible due to the less remaining sets in the alpha equals 

0.95 analysis, more samples in the “rifle enhanced range” led to a detectable difference in terms 
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of value and cost. Thus, it would seem set modifiers must be eliminated to a single set after final 

convergence. In that case, the question of eliminating down to one set for all set modifiers at 

once or one at a time to attempt to detect differences should be addressed. This appears to be a 

rich research question as deeper investigation could reveal if set modifiers are eliminated down 

to a single set one at a time, other set modifiers could be identified as set drivers and thus each 

set modifier should be eliminated down and reset in turn, leading to a second iterative process 

built upon Convergent SBD. 

5.2.4. Effect of Alpha Value 

The comparison of alpha values set at 0.95 and 0.99 raised some questions mentioned early 

but also performed in the expected manner. Alpha set to 0.99 was more conservative than alpha 

set to 0.95, eliminating fewer sets over more iterations as expected. The final design spaces were 

comparable for both alpha values. Perhaps the most significant differences are found in the 

average alternative value and cost. Unexpected, alpha set to 0.99 was outperformed by alpha set 

to 0.95. What contributed to this is unknown without further investigation. From these analyses, 

no recommendation may be made as to the preference of the alpha value. 

5.3.Future Work 

This research has identified several areas for further investigation. The first involves the 

calculation for platform resilience. It is likely this calculation will be able to be incorporated with 

Convergent SBD. The second area is the relaxation of the assumptions made in the integrated 

trade-off analytics framework for this squad enhancement demonstration. How Convergent SBD 

and the MBE/MBSE paradigm handles multiple threats, missions, scenarios, and response 

decisions should be of great interest to the DoD. The third area adds uncertainty to the analysis. 

The Convergent SBD process inherently relies on set averages and at surface level it seems 
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uncertainty may only effect set analysis to the extent the mean and standard deviation of the set 

changes. Despite this, uncertainty analysis should provide additional insights for decision 

makers. The fourth investigative focus should be on multi-level collection comparisons to 

eliminate sets based on combined interactions. The fifth area involves the proper process to 

leverage set modifiers as discussed above. And the final area for future work is specific 

recommendation testing on alpha values to find if an alpha value performs better than another 

and in what circumstances. It is clear from these areas for future work Convergent SBD will 

continue to have areas for improvement and discovery. 

6. Conclusion 

In conclusion, this thesis has presented the background, definition, demonstration, results, 

and future research for Convergent SBD integrated in AoA. These have been presented to 

provide proper context and answers for the research question: How can quantitative SBD be 

leveraged to eliminate sets by mathematical set analysis and converge towards a solution, or 

group of affordable solutions, using the integrated trade-off analytics framework? Through the 

theory and demonstration, it is clear Convergent SBD addresses this question, provides new 

insights for decision makers, and provides opportunities for further research. 

In this thesis, Convergent SBD has been established as a mathematical technique of statistical 

set analysis and dominance identification. Convergent SBD built off the quantitative SBD 

research for the ERS program and provided a method for eliminating sets by equations proposed 

in this research. This thesis discussed the criteria for terminating the iterative process of 

Convergent SBD and mathematically defined and proposed an identification method for set 

drivers and set modifiers which had previously been determined heuristically. Finally, the 
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assumptions and justifications of Convergent SBD were defined to ensure proper mathematical 

accountability. 

To demonstrate Convergent SBD, a previous ERS MBSE study on squad enhancement 

technologies was leveraged. This original study was heavily adapted to work within the 

integrated trade-off analytics framework and these adaptations were specified. Specific steps for 

the implementation of Convergent SBD within the modified study were also listed. The 

demonstration used MBE/MBSE, performed AoA, quantified and measured mission resilience, 

and adhered to the integrated trade-off analytics framework. While the integrated trade-off 

analytics framework was implemented, several simplifying assumptions were detailed, all 

relating to resilience and not explicitly impacting the use of Convergent SBD. 

The Convergent SBD demonstration was able to be incorporated into the integrated trade-off 

analytics framework indicating that the quantification of mission resilience had a measurable 

impact on the tradespace and could change the preferences of decision makers. The 

demonstration illustrated trade-off analysis could be performed directly on the sets. Set quality 

was discussed with additional areas Convergent SBD may address in the future, including 

decision maker preference on the potential to eliminate efficient points. Set drivers and set 

modifiers were mathematically identified and this research discussed potential uses in 

Convergent SBD for the unused set modifiers. The changing alpha value had the expected effects 

of more conservative eliminations at higher alpha values but were inconclusive in 

recommendation. Finally, several areas were identified for future work including platform 

resilience, uncertainty analysis, and procedures for leveraging set modifiers among others. 

Overall, this thesis presented a comprehensive package for understanding and expanding set-

based design quantification. The research has contributed a qualitative and quantitative definition 
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of Convergent SBD with the goal of mathematically eliminating inefficient sets. The research 

contributed a demonstrably repeatable methodology to identify dominance according to 

developed elimination criteria equations. The demonstration also illustrated the effect of mission 

resilience in the tradespace and impact mission resilience has on preference. Finally, this 

research contributes a method of mathematical identification of the previously heuristic set 

drivers and set modifiers and discussed additional decision analyst uses for this information. 

Together, the research in this thesis provides a foundational mathematical technique for 

eliminating sets as qualitative SBD recommends and converging to an efficient, affordable 

solution or group of solutions. 
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8. Appendix I: Trade-off Analytics Node Description: Source (Specking, et al. 2017) 

Analytics Type Node Definition 

Descriptive 

Design Decisions, D 

System design decisions (including set drivers and set 

modifiers) made with knowledge of the requirements and 

threat assessment. 

Missions, m 

Chance node representing the missions the system is actually 

used on, this may or may not be included in the initial threat 

assessment or requirements analysis. 

Requirements, r 
Decisions stating the required minimum performance in the 

planned system environments and threats. 

Scenarios, s 

Chance node representing an uncertain scenario, which may or 

may not be in the original threat assessment or requirements 

analysis. 

System Functions, f 

Chance node determining how the system is used, it is 

influenced by the missions and scenarios the future system is 

used in. 

Threat Assessment, T 

Decision identifying the anticipated adversary or 

environmental threats the system could face in the planned 

missions and scenarios. 

Predictive 

Iities, i 

Chance nodes such as reliability, survivability, availability, 

and other ilities affecting the performance and cost of the 

system. 

Life Cycle Cost, C 
Value node depending on the design, the produceability, the 

supportability, and the response decisions.  

Modelling and 

Simulation (M&S), M 

Decisions made about which methods and techniques are used 

to model and simulate the missions and scenarios used to 

predict system performance measures, ilities, and costs. 

Performance Measures, 

p 

Chance node representing the performance measure 

predictions from modelling and simulation depending on the 

function, the ilities, and resilience response decisions. 

Response Decisions, R 

Decision node representing short-term and long-term response 

decisions informed by threats during system operation. For 

example, selecting the most appropriate sensor for a new 

threat or environment. 

Service Life, L 
Chance node affected by the performance of the system, the 

ilities, and the resilience response decisions. 

Threat, t 

Chance node representing the uncertain threat depending on 

the mission. There can be different threats to different system 

functions. In this diagram, threat is the term used for any 

adverse event (environmental or adversary) which could 

degrade any capability of the system. This may or may not be 

in the original T. 

Prescriptive 

Value, V 
Value node depending on the performance on all functions 

and the ilities. 

Affordability, A Value node comparing value versus life cycle cost. 
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9. Appendix II: Excel Elimination Macro 

Main Comparison Macro 

Sub TukeyCompare() 

Dim Ob As Integer, y As Integer, CountObs As Integer 

Dim Col As Integer, z As Integer, Cnt As Integer, x As Integer 

Dim CountV As Integer, CountC As Integer, UpBnd As Integer 

Dim MasCount As Integer, VGroups As Integer, CGroups As Integer 

Dim SetCount As Integer 

 

Dim GrandSumV As Double, GrandSumC As Double 

Dim SSUnCV As Double, SSUnCC As Double 

Dim SSTV As Double, SSTC As Double 

Dim SSTrV As Double, SSTrC As Double 

Dim SSEV As Double, SSEC As Double 

Dim MSEV As Double, MSEC As Double 

Dim TukV As Double, TukC As Double 

 

Dim Value(9999) As Double 

Dim Cost(9999) As Double 

 

Dim CompMat() As Variant 

Dim OutMatV() As Variant, OutMatC() As Variant 

Dim StuRng(20) As Double 

 

#Copy Value and Cost for All Alternatives 

For Ob = 0 To 9999 

     

    Value(Ob) = Worksheets("PMTable").Range("C4").Offset(Ob, 0).Value 

    Cost(Ob) = Worksheets("PMTable").Range("D4").Offset(Ob, 0).Value 

 

Next 

#Initialize Studentized Range at Alpha Value 

For y = 2 To 20 

     

    StuRng(y) = Worksheets("Comparisons").Range("D1").Offset(0, y).Value 

 

Next 

MasCount = 0 

SetCount = 0 

#Initialize Tukey Comparison Sub-Summations 

For Col = 0 To 23 

    GrandSumV = 0 
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    GrandSumC = 0 

    SSUnCV = 0 

    SSUnCC = 0 

    SSTrV = 0 

    SSTrC = 0 

    CountObs = 0 

 

#Make Master Comparison Matrix of Dynamic Size based on number of Sets     

ReDim CompMat(Worksheets("Iteration CP").Range(Worksheets("Iteration 

CP").Range("M2").Offset(Col, 0), Worksheets("Iteration CP").Range("M2").Offset(Col, 

0).End(xlToRight)).count, 8) 

     

#Single Set Error Check 

    If UBound(CompMat()) > 1000 Then ReDim CompMat(1, 8) 

     

    For y = 0 To UBound(CompMat()) 

     

        CompMat(y, 0) = Worksheets("Iteration CP").Range("M2").Offset(Col, y).Value 

        CompMat(y, 1) = 0 

        CompMat(y, 2) = 0# 

        CompMat(y, 3) = 0# 

        CompMat(y, 4) = 0# 

        CompMat(y, 5) = 0# 

        CompMat(y, 6) = 0 

        CompMat(y, 7) = 0 

        CompMat(y, 8) = "" 

     

    Next 

     

#Get Data for each alternative in the set 

    For Ob = 0 To 9999 

     

        For y = 0 To UBound(CompMat()) 

         

            If Worksheets("PMTable").Range("F4").Offset(Ob, Col) = CompMat(y, 0) Then 

             

                CountObs = CountObs + 1 

                GrandSumV = Value(Ob) + GrandSumV 

                GrandSumC = Cost(Ob) + GrandSumC 

                CompMat(y, 1) = 1 + CompMat(y, 1) 

                CompMat(y, 2) = Value(Ob) + CompMat(y, 2) 

                CompMat(y, 3) = Cost(Ob) + CompMat(y, 3) 
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                SSUnCV = Value(Ob) ^ 2 + SSUnCV 

                SSUnCC = Cost(Ob) ^ 2 + SSUnCC 

                Exit For 

            End If 

         

        Next 

     

    Next 

     

#Error Checking Legacy Code 

    If CompMat(UBound(CompMat()), 3) = 0 Then UpBnd = UBound(CompMat()) - 1 Else 

UpBnd = UBound(CompMat()) - 1 

     

#Calculate SSTr 

    For y = 0 To UpBnd 

        CountV = 0 

        CountC = 0 

     

        SSTrV = CompMat(y, 2) ^ 2 / CompMat(y, 1) + SSTrV 

         

        For z = 0 To UpBnd 

             

            If CompMat(y, 2) / CompMat(y, 1) > CompMat(z, 2) / CompMat(z, 1) Then 

             

                CountV = CountV + 1 

             

            End If 

            CompMat(y, 6) = CountV 

             

        Next 

         

        SSTrC = CompMat(y, 3) ^ 2 / CompMat(y, 1) + SSTrC 

         

        For z = 0 To UpBnd 

 

                If CompMat(y, 3) / CompMat(y, 1) > CompMat(z, 3) / CompMat(z, 1) Then 

                 

                    CountC = CountC + 1 

                 

                End If 

                 

                CompMat(y, 7) = CountC 
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        Next 

     

    Next 

     

    #Correct Means 

    SSTrV = SSTrV - GrandSumV ^ 2 / CountObs 

    SSTrC = SSTrC - GrandSumC ^ 2 / CountObs 

     

    SSTV = SSUnCV - GrandSumV ^ 2 / CountObs 

    SSTC = SSUnCC - GrandSumC ^ 2 / CountObs 

     

    #Calculate SSE 

    SSEV = SSTV - SSTrV 

    SSEC = SSTC - SSTrC 

     

    #Calculate MSE 

    MSEV = SSEV / (CountObs - UpBnd) 

    MSEC = SSEC / (CountObs - UpBnd) 

     

    #Calculate Tukey Comparison Value 

    ReDim OutMatV(UpBnd, 1) 

    ReDim OutMatC(UpBnd, 1) 

    For y = 0 To UpBnd 

         

#Group Lower and Upper Bounds 

        For x = 0 To UpBnd 

            If CompMat(x, 6) = y Then 

                Cnt = 0 

                For z = 0 To UpBnd 

             

                    Select Case CompMat(z, 6) 

                     

                    Case Is > y 

                         

                        If Abs(CompMat(x, 2) / CompMat(x, 1) - CompMat(z, 2) / CompMat(z, 1)) < 

StuRng(UpBnd) / 2 ^ (1 / 2) * (MSEV * (1 / CompMat(x, 1) + 1 / CompMat(z, 1))) ^ (1 / 2) 

Then 

                     

                            If OutMatV(z, 0) = "" Then OutMatV(z, 0) = y Else OutMatV(z, 1) = y 

                            OutMatV(z, 1) = y 

                            Cnt = Cnt + 1 

                             

                        End If 
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                    Case Is = y 

                         

                        If OutMatV(z, 0) = "" Then OutMatV(z, 0) = y Else OutMatV(z, 1) = y 

                        If OutMatV(z, 1) = "" Then OutMatV(z, 1) = y 

                         

                    Case Else 

                     

                    End Select 

                                     

                Next 

                Exit For 

            End If 

        Next 

        VGroups = y 

        If Cnt = UpBnd - y Then Exit For 

    Next 

     

    For y = 0 To UpBnd 

        For x = 0 To UpBnd 

            If CompMat(x, 7) = y Then 

                Cnt = 0 

                For z = 0 To UpBnd 

                     

                    Select Case CompMat(z, 7) 

                     

                    Case Is > y 

                        If Abs(CompMat(x, 3) / CompMat(x, 1) - CompMat(z, 3) / CompMat(z, 1)) < 

StuRng(UpBnd) / 2 ^ (1 / 2) * (MSEC * (1 / CompMat(x, 1) + 1 / CompMat(z, 1))) ^ (1 / 2) 

Then 

                     

                            If OutMatC(z, 0) = "" Then OutMatC(z, 0) = y Else OutMatC(z, 1) = y 

                            OutMatC(z, 1) = y 

                            Cnt = Cnt + 1 

                                     

                        End If 

                     

                    Case Is = y 

                     

                        If OutMatC(z, 0) = "" Then OutMatC(z, 0) = y Else OutMatC(z, 1) = y 

                        If OutMatC(z, 1) = "" Then OutMatC(z, 1) = y 

                                     

                    Case Else 
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                    End Select 

             

                Next 

                Exit For 

            End If 

        Next 

        CGroups = y 

        If Cnt = UpBnd - y Then Exit For 

    Next 

    If CompMat(UpBnd, 0) = "" Then CompMat(UpBnd, 0) = "Other" 

     

#Call Elimination Function to Implement Elimination Equations 

    Call Eliminations(CompMat(), OutMatV(), OutMatC(), Col, UpBnd, VGroups, CGroups) 

#Call RemoveFromCP Function to Update Iteration CP and Eliminate Design Area 

    Call RemoveFromCP(CompMat(), Col, UpBnd) 

    #Output Comparisons 

         

    Worksheets("Comparisons").Range("A3").Offset(MasCount, 0).Value = 

"Characteristic/Interval" 

    Worksheets("Comparisons").Range("B3").Offset(MasCount, 0).Value = "Value Min Group" 

    Worksheets("Comparisons").Range("C3").Offset(MasCount, 0).Value = "Value Max Group" 

    Worksheets("Comparisons").Range("E3").Offset(MasCount, 0).Value = 

"Characteristic/Interval" 

    Worksheets("Comparisons").Range("F3").Offset(MasCount, 0).Value = "Cost Min Group" 

    Worksheets("Comparisons").Range("G3").Offset(MasCount, 0).Value = "Cost Max Group" 

     

    For y = 0 To UpBnd 

         

        Worksheets("Comparisons").Range("A4").Offset(y + MasCount, 0).Value = CompMat(y, 

0) 

        Worksheets("Comparisons").Range("D4").Offset(y + MasCount, 0).Value = CompMat(y, 

8) 

        Worksheets("Comparisons").Range("E4").Offset(y + MasCount, 0).Value = CompMat(y, 0) 

         

        For z = 0 To 1 

         

            Worksheets("Comparisons").Range("B4").Offset(y + MasCount, z).Value = OutMatV(y, 

z) 

            Worksheets("Comparisons").Range("F4").Offset(y + MasCount, z).Value = OutMatC(y, 

z) 

             

        Next 
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    Next 

                    

    MasCount = MasCount + UpBnd + 4 

    SetCount = UpBnd + SetCount 

Next 

 

     

Range("ItCount").Value = Range("ItCount").Value + 1 

 

Application.Calculate 

End Sub 

 

#Elimination Logic 

Sub Eliminations(ByRef CompMat() As Variant, OutMatV() As Variant, OutMatC() As Variant, 

Col As Integer, UpBnd As Integer, VGroups As Integer, CGroups As Integer) 

 

Dim i As Integer, j As Integer, k As Integer 

 

Dim MaxValMin As Integer, MinCostMax As Integer 

Dim First As Boolean, Multiple As Boolean, Cont As Boolean 

 

#Implement Equation 2(a) 

For k = 0 To CGroups 

     

    First = True 

    Multiple = False 

    For i = 0 To UpBnd 

         

        If OutMatC(i, 0) = k Then 

             

            Select Case First 

             

            Case True 

                 

                First = False 

                MaxValMin = OutMatV(i, 0) 

             

            Case Else 

                 

                Multiple = True 

                If MaxValMin < OutMatV(i, 0) Then MaxValMin = OutMatV(i, 0) 

                 

            End Select 



61 

 

         

        End If 

    Next 

     

    If Multiple Then 

     

        For i = 0 To UpBnd 

             

            If OutMatC(i, 0) = k Then 

                 

                If MaxValMin - OutMatV(i, 1) > 0 Then 

                     

                    CompMat(i, 8) = "E" 

                 

                End If 

                                 

            End If 

        Next 

         

    End If 

     

Next 

 

#Implement Equation 2(b)      

For k = 0 To VGroups 

     

    First = True 

    Multiple = False 

    For i = 0 To UpBnd 

         

        If OutMatV(i, 1) = k Then 

             

            Select Case First 

             

            Case True 

                 

                First = False 

                MinCostMax = OutMatC(i, 1) 

             

            Case Else 

                 

                Multiple = True 

                If MinCostMax > OutMatC(i, 1) Then MinCostMax = OutMatC(i, 1) 
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            End Select 

         

        End If 

    Next 

     

    If Multiple Then 

     

        For i = 0 To UpBnd 

             

            If OutMatV(i, 1) = k Then 

                 

                If MinCostMax - OutMatC(i, 0) < 0 Then 

                     

                    CompMat(i, 8) = "E" 

                 

                End If 

                                 

            End If 

        Next 

         

    End If 

     

Next 

 

End Sub 

 

#Update And Eliminate Design Area in Iteration Control Panel 

Sub RemoveFromCP(ByRef CompMat() As Variant, Col As Integer, UpBnd As Integer) 

 

Dim y As Integer, x As Integer, count As Integer, min As Integer 

 

'If Worksheets("Iteration CP").Range("K2").Offset(Col, 0).Value = "Discrete" Then 

    count = 0 

    min = UpBnd 

    For y = 0 To UpBnd 

         

        Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 5 + y).Value = "" 

        If CompMat(y, 8) <> "E" Then 

            Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 5 + count).Value = 

CompMat(y, 0) 

            count = count + 1 

            If y < min Then min = y 
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        End If 

         

    Next 

    Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 1).Value = count 

    If Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 3).Value <> "Discrete" Then 

         

        If min > 0 Then Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 3).Value = 

min + Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 3).Value 

        Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 4).Value = 

Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 4).Value + min * 

Worksheets("Iteration CP").Range("ActCorner").Offset(Col, 2).Value 

     

    End If 

 

End Sub 
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Appendix III: Revised Value Model and Swing Weights 

Value Model 

 

 

Fundemental OBJ

Function

Sub-function

Objectives

Value Measures

x

BLOS 

capability x

Detection 

Distance 

(meters) x

Weighted 

Mobility x

Protect 

capability x

IED detect 

and protect x

Chem Bio 

protection x

Nuclear 

Radio 

protection x

Lethal 

capability x

Lethal 

mitigation 

capability

0 0 300 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1

0.25 10 500 30 2 30 2 10 2 10 2 10 2 25 0.3 10 2 25

0.5 70 800 60 3 60 3 20 3 20 3 20 3 40 0.6 40 3 50

0.7 100 1000 85 4 80 4 40 4 40 4 35 4 50 0.8 80 4 70

1.001 100 1500.001 100 5 95 5 50 5 50 5 50 5 60 1.001 100 5 100

6 100 6 60 6 60 6 60 6 80

Legend 7 70 7 70 7 70 7 100

Data 8 85 8 85 8 80

9 100 9 100 9 100

Calculation

Graph of Value Curve

Command and control the Squad

Squad achieves overmatch against enemies in complex environments

Lethality Lethal Mitigation

Note: x must be 

increasing. For 

natural scales add 

0.0001 to the 

highest x value.

Protect against kinetic and explosive threats

Maintain situational awareness
Achieve Mission EffectsProtect the SquadManeuver the Squad

Beyond LOS Line of Sight Weighted Mobility Kinetic Protection Chem Bio Protection
Nuclear Radiation 

Protection

Protect against chemical, biological and nuclear 

threats
Maximize kinetic effects Min. lateral damage

Incr. beyond line of sight 

awareness
Incr. line of sight range Incr.soldier mobility 

Protect from IEDs

0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

100

300 800 1300
0

20

40

60

80

100

1 6

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

1 2 3 4 5 6 7

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

0 1
0

20

40

60

80

100

1 2 3 4 5

0

20

40

60

80

100

1 6
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Swing Weight Matrix 

 

9.1. MacCalman Value Model 

Swing Weight Matrix

Capability Impact fi wi fi wi fi wi

Lethality 100 0.21 Weighted Mobility 70 0.15

IED Protection 65 0.14

Beyond LOS 90 0.19

Kinetic Protection 70 0.15

Chem Bio Protection 15 0.03

Detection Distance 40 0.08

Lethal Mitigation 25 0.05 Nuclear Protection 5 0.01

sum of fi 480 fi = swing weight

wi = normalized swing weight

Enhance Capability

Medium 

Impact

Minimal 

Impact

Significant 

impact

Mission Critical Enhables Capability
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9.2. MacCalman Model Inputs 
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10. Appendix III: Final Convergence Comparison Output 

10.1. Alpha = 0.95 

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

0UAV 0 0 
 

0UAV 0 0 

1UAV 1 1 
 

1UAV 1 1 

2UAV 2 2 
 

2UAV 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1SBin:1 1 1 
 

1SBin:1 0 0 

1SBin:2 0 0 
 

1SBin:2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1DetDistBin:1 0 0 
 

1DetDistBin:1 0 0 

1DetDistBin:2 1 1 
 

1DetDistBin:2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

UAV1Miss0 0 0 
 

UAV1Miss0 0 0 

UAV1Miss1 1 1 
 

UAV1Miss1 1 1 

UAV1Miss2 2 2 
 

UAV1Miss2 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2SBin:1 0 0 
 

2SBin:1 0 0 

2SBin:2 0 0 
 

2SBin:2 0 0 

2SBin:3 0 0 
 

2SBin:3 0 0 

2SBin:4 0 0 
 

2SBin:4 0 0        
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Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2DetDistBin:1 0 0 
 

2DetDistBin:1 0 0 

2DetDistBin:2 0 0 
 

2DetDistBin:2 0 0 

2DetDistBin:3 0 0 
 

2DetDistBin:3 0 0 

2DetDistBin:4 0 0 
 

2DetDistBin:4 0 0 

2DetDistBin:5 0 0 
 

2DetDistBin:5 0 0 

2DetDistBin:6 0 0 
 

2DetDistBin:6 0 0 

2DetDistBin:7 0 0 
 

2DetDistBin:7 0 0 

2DetDistBin:8 0 0 
 

2DetDistBin:8 0 0 

2DetDistBin:9 0 0 
 

2DetDistBin:9 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

UAV2Miss1 1 1 
 

UAV2Miss1 1 1 

UAV2Miss2 0 0 
 

UAV2Miss2 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NoEnhRif 0 0 
 

NoEnhRif 0 0 

EnhRif 1 1 
 

EnhRif 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1RngBin:7 0 0 
 

1RngBin:7 0 0 

1RngBin:8 0 1 
 

1RngBin:8 0 1 

1RngBin:9 0 1 
 

1RngBin:9 0 1 

1RngBin:10 1 1 
 

1RngBin:10 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1FRBin:1 0 0 
 

1FRBin:1 0 0 

1FRBin:2 0 0 
 

1FRBin:2 0 0 

1FRBin:3 0 0 
 

1FRBin:3 0 0 
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1FRBin:4 0 0 
 

1FRBin:4 0 0 

1FRBin:5 0 0 
 

1FRBin:5 0 0 

1FRBin:6 0 0 
 

1FRBin:6 0 0 

1FRBin:7 0 0 
 

1FRBin:7 0 0 

1FRBin:8 0 0 
 

1FRBin:8 0 0 

1FRBin:9 0 0 
 

1FRBin:9 0 0 

1FRBin:10 0 0 
 

1FRBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1HPrbBin:1 0 0 
 

1HPrbBin:1 0 0 

1HPrbBin:2 0 0 
 

1HPrbBin:2 0 0 

1HPrbBin:3 0 0 
 

1HPrbBin:3 0 0 

1HPrbBin:4 0 0 
 

1HPrbBin:4 0 0 

1HPrbBin:5 0 0 
 

1HPrbBin:5 0 0 

1HPrbBin:6 0 0 
 

1HPrbBin:6 0 0 

1HPrbBin:7 0 0 
 

1HPrbBin:7 0 0 

1HPrbBin:8 0 0 
 

1HPrbBin:8 0 0 

1HPrbBin:9 0 0 
 

1HPrbBin:9 0 0 

1HPrbBin:10 0 0 
 

1HPrbBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

LethMit_4 0 0 
 

LethMit_4 0 0 

LethMit_5 1 1 
 

LethMit_5 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NoEnhBA 0 0 
 

NoEnhBA 0 0 

EnhBA 1 1 
 

EnhBA 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

KinProt_8 0 0 
 

KinProt_8 0 0 
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KinProt_9 1 1 
 

KinProt_9 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

ChemProt_1 0 0 
 

ChemProt_1 0 0 

ChemProt_2 1 1 
 

ChemProt_2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

IEDProt_1 0 0 
 

IEDProt_1 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NucProt_1 1 1 
 

NucProt_1 0 0 

NucProt_2 0 0 
 

NucProt_2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

0Rob 0 0 
 

0Rob 0 0 

1Rob 1 1 
 

1Rob 1 1 

2Rob 2 2 
 

2Rob 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1RSBin:1 0 0 
 

1RSBin:1 0 0 

1RSBin:2 0 0 
 

1RSBin:2 0 0 

1RSBin:3 0 0 
 

1RSBin:3 0 0 

1RSBin:4 0 0 
 

1RSBin:4 0 0 

1RSBin:5 0 0 
 

1RSBin:5 0 0 

1RSBin:6 0 0 
 

1RSBin:6 0 0        
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Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1IEDBin:1 0 0 
 

1IEDBin:1 0 0 

1IEDBin:2 0 1 
 

1IEDBin:2 1 1 

1IEDBin:3 1 1 
 

1IEDBin:3 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1CRBin:1 0 0 
 

1CRBin:1 0 0 

1CRBin:2 0 0 
 

1CRBin:2 0 0 

1CRBin:3 0 0 
 

1CRBin:3 0 0 

1CRBin:4 0 0 
 

1CRBin:4 0 0 

1CRBin:5 0 0 
 

1CRBin:5 0 0 

1CRBin:6 0 0 
 

1CRBin:6 0 0 

1CRBin:7 0 0 
 

1CRBin:7 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2RSBin:1 0 0 
 

2RSBin:1 0 0 

2RSBin:2 0 0 
 

2RSBin:2 0 0 

2RSBin:3 0 0 
 

2RSBin:3 0 0 

2RSBin:4 0 0 
 

2RSBin:4 0 0 

2RSBin:5 0 0 
 

2RSBin:5 0 0 

2RSBin:6 0 0 
 

2RSBin:6 0 0 

2RSBin:7 0 0 
 

2RSBin:7 0 0 

2RSBin:8 0 0 
 

2RSBin:8 0 0 

2RSBin:9 0 0 
 

2RSBin:9 0 0 

2RSBin:10 0 0 
 

2RSBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2IEDBin:1 0 0 
 

2IEDBin:1 0 0 

2IEDBin:2 0 0 
 

2IEDBin:2 0 0 

2IEDBin:3 0 0 
 

2IEDBin:3 0 0 

2IEDBin:4 0 0 
 

2IEDBin:4 0 0 
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2IEDBin:5 0 0 
 

2IEDBin:5 0 0 

2IEDBin:6 0 0 
 

2IEDBin:6 0 0 

2IEDBin:7 0 0 
 

2IEDBin:7 0 0 

2IEDBin:8 0 0 
 

2IEDBin:8 0 0 

2IEDBin:9 0 0 
 

2IEDBin:9 0 0 

2IEDBin:10 0 0 
 

2IEDBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2CRBin:1 0 0 
 

2CRBin:1 0 0 

2CRBin:2 0 0 
 

2CRBin:2 0 0 

2CRBin:3 0 0 
 

2CRBin:3 0 0 

2CRBin:4 0 0 
 

2CRBin:4 0 0 

2CRBin:5 0 0 
 

2CRBin:5 0 0 

2CRBin:6 0 0 
 

2CRBin:6 0 0 

2CRBin:7 0 0 
 

2CRBin:7 0 0 

2CRBin:8 0 0 
 

2CRBin:8 0 0 

2CRBin:9 0 0 
 

2CRBin:9 0 0 

2CRBin:10 0 0 
 

2CRBin:10 0 0 

 

10.2. Alpha = 0.99 

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

0UAV 0 0 
 

0UAV 0 0 

1UAV 1 1 
 

1UAV 1 1 

2UAV 2 2 
 

2UAV 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1SBin:1 1 1 
 

1SBin:1 0 0 

1SBin:2 0 0 
 

1SBin:2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1DetDistBin:1 0 0 
 

1DetDistBin:1 0 0 
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1DetDistBin:2 1 1 
 

1DetDistBin:2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

UAV1Miss0 0 0 
 

UAV1Miss0 0 0 

UAV1Miss1 1 1 
 

UAV1Miss1 1 1 

UAV1Miss2 2 2 
 

UAV1Miss2 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2SBin:1 0 0 
 

2SBin:1 0 0 

2SBin:2 0 0 
 

2SBin:2 0 0 

2SBin:3 0 0 
 

2SBin:3 0 0 

2SBin:4 0 0 
 

2SBin:4 0 0 

2SBin:5 0 0 
 

2SBin:5 0 0 

2SBin:6 0 0 
 

2SBin:6 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2DetDistBin:1 0 0 
 

2DetDistBin:1 0 0 

2DetDistBin:2 0 0 
 

2DetDistBin:2 0 0 

2DetDistBin:3 0 0 
 

2DetDistBin:3 0 0 

2DetDistBin:4 0 0 
 

2DetDistBin:4 0 0 

2DetDistBin:5 0 0 
 

2DetDistBin:5 0 0 

2DetDistBin:6 0 0 
 

2DetDistBin:6 0 0 

2DetDistBin:7 0 0 
 

2DetDistBin:7 0 0 

2DetDistBin:8 0 0 
 

2DetDistBin:8 0 0 

2DetDistBin:9 0 0 
 

2DetDistBin:9 0 0 

2DetDistBin:10 0 0 
 

2DetDistBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

UAV2Miss1 1 1 
 

UAV2Miss1 1 1 

UAV2Miss2 0 0 
 

UAV2Miss2 0 0 
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Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NoEnhRif 0 0 
 

NoEnhRif 0 0 

EnhRif 1 1 
 

EnhRif 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1RngBin:8 0 0 
 

1RngBin:8 0 0 

1RngBin:9 0 0 
 

1RngBin:9 0 0 

1RngBin:10 0 0 
 

1RngBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1FRBin:1 0 0 
 

1FRBin:1 0 0 

1FRBin:2 0 0 
 

1FRBin:2 0 0 

1FRBin:3 0 0 
 

1FRBin:3 0 0 

1FRBin:4 0 0 
 

1FRBin:4 0 0 

1FRBin:5 0 0 
 

1FRBin:5 0 0 

1FRBin:6 0 0 
 

1FRBin:6 0 0 

1FRBin:7 0 0 
 

1FRBin:7 0 0 

1FRBin:8 0 0 
 

1FRBin:8 0 0 

1FRBin:9 0 0 
 

1FRBin:9 0 0 

1FRBin:10 0 0 
 

1FRBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1HPrbBin:1 0 0 
 

1HPrbBin:1 0 0 

1HPrbBin:2 0 0 
 

1HPrbBin:2 0 0 

1HPrbBin:3 0 0 
 

1HPrbBin:3 0 0 

1HPrbBin:4 0 0 
 

1HPrbBin:4 0 0 

1HPrbBin:5 0 0 
 

1HPrbBin:5 0 0 

1HPrbBin:6 0 0 
 

1HPrbBin:6 0 0 

1HPrbBin:7 0 0 
 

1HPrbBin:7 0 0 
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1HPrbBin:8 0 0 
 

1HPrbBin:8 0 0 

1HPrbBin:9 0 0 
 

1HPrbBin:9 0 0 

1HPrbBin:10 0 0 
 

1HPrbBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

LethMit_4 0 0 
 

LethMit_4 0 0 

LethMit_5 1 1 
 

LethMit_5 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NoEnhBA 0 0 
 

NoEnhBA 0 0 

EnhBA 1 1 
 

EnhBA 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

KinProt_7 0 0 
 

KinProt_7 0 0 

KinProt_8 0 1 
 

KinProt_8 0 1 

KinProt_9 2 2 
 

KinProt_9 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

ChemProt_1 0 0 
 

ChemProt_1 0 0 

ChemProt_2 1 1 
 

ChemProt_2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

IEDProt_1 0 0 
 

IEDProt_1 0 0 

IEDProt_2 1 1 
 

IEDProt_2 1 1        
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Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

NucProt_1 1 1 
 

NucProt_1 0 0 

NucProt_2 0 0 
 

NucProt_2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

0Rob 0 0 
 

0Rob 0 0 

1Rob 1 1 
 

1Rob 1 1 

2Rob 2 2 
 

2Rob 2 2        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1RSBin:1 0 0 
 

1RSBin:1 0 0 

1RSBin:2 0 0 
 

1RSBin:2 0 0 

1RSBin:3 0 0 
 

1RSBin:3 0 0 

1RSBin:4 0 0 
 

1RSBin:4 0 0 

1RSBin:5 0 0 
 

1RSBin:5 0 0 

1RSBin:6 0 0 
 

1RSBin:6 0 0 

1RSBin:7 0 0 
 

1RSBin:7 0 0 

1RSBin:8 0 0 
 

1RSBin:8 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1IEDBin:1 0 0 
 

1IEDBin:1 0 0 

1IEDBin:2 1 1 
 

1IEDBin:2 1 1        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

1CRBin:1 0 0 
 

1CRBin:1 0 0 

1CRBin:2 0 0 
 

1CRBin:2 0 0 

1CRBin:3 0 0 
 

1CRBin:3 0 0 

1CRBin:4 0 0 
 

1CRBin:4 0 0 

1CRBin:5 0 0 
 

1CRBin:5 0 0 
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1CRBin:6 0 0 
 

1CRBin:6 0 0 

1CRBin:7 0 0 
 

1CRBin:7 0 0 

1CRBin:8 0 0 
 

1CRBin:8 0 0 

1CRBin:9 0 0 
 

1CRBin:9 0 0 

1CRBin:10 0 0 
 

1CRBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2RSBin:1 0 0 
 

2RSBin:1 0 0 

2RSBin:2 0 0 
 

2RSBin:2 0 0 

2RSBin:3 0 0 
 

2RSBin:3 0 0 

2RSBin:4 0 0 
 

2RSBin:4 0 0 

2RSBin:5 0 0 
 

2RSBin:5 0 0 

2RSBin:6 0 0 
 

2RSBin:6 0 0 

2RSBin:7 0 0 
 

2RSBin:7 0 0 

2RSBin:8 0 0 
 

2RSBin:8 0 0 

2RSBin:9 0 0 
 

2RSBin:9 0 0 

2RSBin:10 0 0 
 

2RSBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2IEDBin:1 0 0 
 

2IEDBin:1 0 0 

2IEDBin:2 0 0 
 

2IEDBin:2 0 0 

2IEDBin:3 0 0 
 

2IEDBin:3 0 0 

2IEDBin:4 0 0 
 

2IEDBin:4 0 0 

2IEDBin:5 0 0 
 

2IEDBin:5 0 0 

2IEDBin:6 0 0 
 

2IEDBin:6 0 0 

2IEDBin:7 0 0 
 

2IEDBin:7 0 0 

2IEDBin:8 0 0 
 

2IEDBin:8 0 0 

2IEDBin:9 0 0 
 

2IEDBin:9 0 0 

2IEDBin:10 0 0 
 

2IEDBin:10 0 0        

       

Characteristic/Interval Value 

Min 

Group 

Value 

Max 

Group 

 
Characteristic/Interval Cost 

Min 

Group 

Cost 

Max 

Group 

2CRBin:1 0 0 
 

2CRBin:1 0 0 

2CRBin:2 0 0 
 

2CRBin:2 0 0 



 

78 

 

2CRBin:3 0 0 
 

2CRBin:3 0 0 

2CRBin:4 0 0 
 

2CRBin:4 0 0 

2CRBin:5 0 0 
 

2CRBin:5 0 0 

2CRBin:6 0 0 
 

2CRBin:6 0 0 

2CRBin:7 0 0 
 

2CRBin:7 0 0 

2CRBin:8 0 0 
 

2CRBin:8 0 0 

2CRBin:9 0 0 
 

2CRBin:9 0 0 

2CRBin:10 0 0 
 

2CRBin:10 0 0 
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