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ABSTRACT 

Our works aim to provide an insight into how aortic valve interstitial cells (VICs) respond to 

pathological shape and mechanical stimulation as well as the potential signaling pathway that 

mediates these responses, using a multiscale approach. A single cell model was developed to 

investigate the effect of altered shape on valve cell function as valve cells were reported to 

significantly deform during the cardiac cycle. Single VICs were controlled to take on features 

with different width-to-length aspect ratios that corresponded to the steady-state shapes adopted 

by VICs when stretched to 0%, 10% and 20%, respectively. It appeared that single VIC 

reorganized their cytoskeleton and increased cellular activities, including contractility, 

metabolism, proliferation and pathological activation, in response to shape alterations. This study 

provided a fundamental understanding of VIC behavior at single cell level. In order to further 

examine valve cell pathophysiology, a more physiologically-relevant 3-dimensional (3D) 

stretchable model was developed to better simulate natural heart valve environment. We 

developed and characterized a collagen-based scaffold for dynamic culture of heart VICs. This 

3D scaffold was porous, biocompatible and mechanically robust. For this reason, it was utilized 

as a culture model for the subsequent cell signaling study where the role of fibroblast growth 

factor on valve cell biology was examined in the presence of mechanical stretching stimulation. 

Stretch magnitudes of 10% and 20% were used to mimic healthy and pathological conditions, 

respectively. We reported that the Akt/mTOR pathway was up-regulated at elevated 20% stretch 

which was associated with increased cell proliferation/metabolism. Treatment with fibroblast 

growth factor 1/ fibroblast growth factor 2 (FGF1/FGF2) significantly altered cellular responses 

such that they aided in cell proliferation at 10% stretch while reduced cell proliferation at 20% 

stretch. FGF1/FGF2 treatment was also able to reduce expression of activated markers in 

pathologically stretched cells, suggesting that FGF1/FGF2 signaling might be a potential target 



 

 
 

for drug therapies for heart valve treatment. Overall, this project provided a specific picture of 

how heart valve cells responded to pathological stimulations at multiscale levels and the 

involvement of FGF-receptor signaling. It is hoped that the knowledge gained from these studies 

could help to identify therapeutic targets for valvular disease treatment. 
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CHAPTER 1 

Introduction 
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1. THE HEART 

1.1. The heart (Figure 1.1) 

The human heart is roughly the size of a large closed fist that functions as the key organ in the 

circulatory system. It is the powerful muscle inside the chest that propels blood around the body 

as the heart beats. This blood carries oxygen and nutrients to every cell of the body while taking 

away carbon dioxide and waste products. There are four chambers that make up the heart: two 

upper chambers and two lower ones. The two upper chambers are the atria that are smaller and 

have thinner, less muscular walls than the ventricles. The two lower chambers are the ventricles 

that are larger and the stronger pumping chambers that propel blood out of the heart. A muscular 

wall called the septum divides the left and right sides of the heart. To prevent blood from flowing 

backwards into the heart, there is a system of one-way valves present in the heart. The 

atrioventricular valves which are between the atria and ventricles prevent backflow of the blood 

into the atria when the ventricle contracts.  The atrioventricular on the right side of the heart is 

called the triscuspid valve while the one on the left side is called the mitral valve or the bicuspid 

valve. The semilunar valves include the pulmonary valve, located at the entrance to the 

pulmonary artery, and the aortic valve, located at the base of the aorta.  The pulmonary valve 

opens to allow blood to be pumped from the heart to the lungs where it gets oxygenated and 

closes to prevent the backflow of blood from the pulmonary trunk into the right ventricle. 

Similarly, the aortic valve opens when the left ventricle squeezes to pump out blood into the 

aorta and closes to keep blood from going backward into the left ventricle. While the 

atrioventricular valves are attached to the chordae tendineae, the semilunar valves do not have 

chordea tendineae to hold them in place. Instead they are cup shaped and use the blood‟s 

pressure to open or close (Hinton and Yutzey 2011). The aortic valve will be the primary focus 

of this dissertation. 
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Figure 1.1: The heart and heart valves anatomy (adapted from 

http://thingscardiologistsnevertellyou.blogspot.com/2010/05/know-your-heart-structure-of-heart-

and.html). 

1.2. The Cardiac Cycle (Figure 1.2, 1.3) 

The main function of the heart is to drive blood flow throughout the body. It acts as a pump 

using a series of contraction (systole) and relaxation (diastole) cycles of the heart muscle which 

occurs in a periodic pattern. During one heartbeat, 3 phases of the cardiac cycle take place: 

ventricular diastole/atrial systole, ventricular systole/atrial diastole and ventricular diastole/atrial 

diastole. In the first phase, both ventricles relax simultaneously while the left and right atria are 

filled with blood from the lungs and the circulation, respectively. Ventricular relaxation results in 

lower pressure in each ventricle compared to atrium above. The atria contract and pump blood 

into the ventricles through opened atrioventricular valves. The semilunar valves stay closed to 

keep blood from flowing retrograde into the heart. In phase 2, both atria relax after contraction 

while the ventricles contract simultaneously. The pressure of the ventricles forces the 

atrioventricular valves to close and the semilunar valves to open. Blood is simultaneously 

pumped into the lungs via the pulmonary artery and into the systemic circulation via the aorta. At 

the end of the ventricular contraction phase, both ventricles and atria enter phase 3 of the cardiac 

cycle. When the blood pressure in the ventricles falls below the aortic and pulmonary artery 
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pressures, the semilunar valves close to prevent the backflow of the blood. The atria are refilled 

as they relax and the cycle repeats (Fukuta and Little 2008). 

The heart is able to beat in its regular rhythm through a unique electrical conduction system 

which includes the sinoatrial node, atrioventricular node, bundle of His, bundle branches, and 

Purkinje fibers. The sinoatrial node – the pacemaker of the heart, sends out an electrical signal 

through the walls of the atria causing them to contract. The signal travels down the 

atrioventricular node, through the bundle of His, down the bundle branches, and through the 

Purkinje fibers, causing the ventricles to contract (Christoffels and Moorman 2009; van Weerd 

and Christoffels 2016). The activity of these electrical impulses can be recorded and seen in the 

form of electrocardiogram (EKG or ECG). Hence, information from an electrocardiogram can be 

used to monitor the electrical activity in the heart. 

Figure 1.2: Summary of events of the cardiac cycle (adapted from 

https://pmgbiology.com/2015/02/17/cardiac-cycle-and-the-human-heart-a-understanding-for-

igcse-biology/) 
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Figure 1.3: The relationship among pressure, volume and the ECG during the cardiac cycle 

(copied from https://thoracickey.com/physiology-and-pathophysiology/) 

 

2. THE AORTIC HEART VALVE 

As mentioned earlier, the heart has four valves: the tricuspid, pulmonary, mitral and aortic 

valves. They act like one-way gates, keeping the blood moving in the right direction. Heart valve 

disease occurs if one or more of the valves do not work properly. Such pathology can develop 

before birth (i.e. congenital heart valve disease), or can be acquired later in life. Congenital valve 

disease often affects the aortic or pulmonary valves, impairing proper formation of the tissue. 

They may have the wrong size or shape, or have leaflets that are not attached to the annulus 

correctly. Acquired or degenerative heart valve disease occurs in valves that were once normal 

and usually occurs in  the aortic or mitral valves (Maganti et al. 2010). 

Since our research focuses on the aortic valve only, the remaining sections will mainly provide 

background on aortic valve structure, its resident cells and an overview of aortic valve disease. 
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2.1. Aortic valve structure and function 

The aortic valve (AV), lies at the junction between the aorta and the left ventricle, and is one of 

the main valves on the left side of the heart. It opens and closes more than 100,000 times per day 

to control blood flow between the heart and the body. The AV has three equal sized leaflets, or 

cusps: the left coronary cusp, the right coronary cusp, and the non-coronary cusp (Figure 1.4A) 

(Charitos and Sievers 2013). Each cusp is a few hundred microns thick and has 3 readily 

identifiable layers: the fibrosa, the spongiosa and the ventricularis (Figure 1.4B). Each layer has 

a distinct extracellular matrix composition and organization that confers unique mechanical and 

functional properties for the valves, allowing them to withstand the hemodynamic environment 

in the heart. In particular, the fibrosa layer, on the aortic surface, is the principle load-bearing 

layer due to the presence of circumferentially oriented Type I collagen fibers. The central layer, 

the spongiosa, is rich in glycoaminoglycans (GAGs) which aids in cushioning and lubrication 

between the top and the bottom layers. The ventricularis, on the ventricular side, is the thinnest 

of the 3 layers and contains radially aligned and elastic elastin fibers which extend and recoil as 

valves open and close (Wang, Leinwand, and Anseth 2014; Hinton and Yutzey 2011; Merryman 

and Schoen 2013).  

 

 

 

  

Figure 1.4: Porcine aortic valve (A), Movat‟s pentachrome histochemical staining of a porcine 

valve cusps, showing 3 distinct layers and composition of the ECM (B) ((Parvin Nejad et al. 

2016)). 
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2.2. Cell populations in the aortic valve  

Cardiac valves are composed of valvular endothelial cells (VECs) that cover the surfaces of the 

cusps and valvular interstitial cells (VICs) dispersed throughout the leaflets. They play an 

important role in maintaining normal valve architecture as well as physiological tissue 

homeostasis (Liu, Joag, and Gotlieb 2007). 

2.2.1. Valvular Endothelial Cells 

VECs line the surfaces of both sides of the valve leaflets and act as an interface between the cusp 

and the blood. VECs have been isolated and cultured in vitro. They appear cobblestone shaped in 

in vitro culture and express endothelial markers such as PECAM1, Von Willebrand Factor, and 

negative expression of α-smooth muscle actin (Gould and Butcher 2010).  

Valve endothelial cells play an important role in regulating valve mechanics and function. 

Valvular leaflet degeneration and many valvular diseases have been traced to endothelial 

dysfunction and denudation (Leask, Jain, and Butany 2003). VECs align perpendicular to fluid 

flow in vitro and this alignment is mediated by the reorganization of focal adhesions within the 

cell via calpain- and Rho kinase signaling pathways (Butcher et al. 2004). Interestingly, VECs on 

each side of the valve appear to have different gene expression profiles as well as mechanical 

properties. Indeed, it was found that aortic valve disease is side-dependent, wherein AV 

calcification occurs more frequently in the fibrosa layer while the ventricularis side is more 

prone to inflammation. This side-dependency may also be due to the different local 

hemodynamic conditions on either side (Holliday et al. 2011). 

Due to the close proximity between VEC and VICs, there exist mutual interactions in the form of 

paracrine signaling between these cells that regulate their phenotypes and functional behavior. 

Multiple co-culture models show that VICs can inhibit VEC endothelial-to-mesenchymal 
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transformation and VEC osteogenesis (Hjortnaes et al. 2015), while VECs appear to have a 

protective effect on VIC phenotype and function (Gould et al. 2014). VEC presence caused a 

decrease in VIC proliferation and stimulated VICs to undergo differentiation to a more quiescent 

phenotype (Butcher and Nerem 2006). Hence, being able to capture and study the reciprocal 

interactions between VEC-VIC in vitro will give useful insights into what really happens to these 

valve cells in vivo. The challenges with these studies come down to designing the experimental 

model that can mimic the in vivo cellular architecture of the aortic valve. Existing models are 

either direct co-culture, hydrogel-based or use transwell culture with complete lack of 

mechanical force stimulation (Richards et al. 2013; Gould et al. 2014; Tseng et al. 2014).  

It has become increasingly evident that the VECs play a critical role in the pathogenesis of 

valvular heart disease. Continued research on VECs is crucial to our understanding of valvular 

heart disease and may elucidate novel treatment and prevention strategies for calcific aortic valve 

disease (CAVD) (Butcher and Nerem 2007). 

2.2.2. Valvular Interstitial Cells 

VICs are a dynamic and plastic cell population within the aortic valve that displays many unique 

characteristics, and provides structural integrity as well as mechanical durability for the valve. 

VIC isolation and culture in vitro have been well-established. Phenotypically, VIC population 

exhibits mixed characteristics of myofibroblast, fibroblast, and smooth muscle like cells (Taylor 

et al. 2003).   

In the healthy valve, VICs are considered to be in a quiescent state. They are thought to maintain 

physiological valve structure and function although the exact homeostatic mechanisms are not 

known. Quiescent VICs are also hard to maintain in culture. Many lines of evidence suggest that 

VICs become activated when grown on tissue culture plastic and after several passages (Liu, 
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Joag, and Gotlieb 2007). Recently, addition of fibroblast growth factor 2 (FGF2) into cell culture 

media demonstrated promising outcomes in term of preserving the quiescent state of VICs in 

vitro (Latif et al. 2015; Porras et al. 2017). In injured or diseased valves, quiescent VICs are 

triggered to become activated VICs with prominent phenotypic characteristics of myofibroblast, 

including increased contractility, prominent stress fibers, ECM remodeling, proliferation, and 

migration. Activation of VICs is necessary as part of the natural repair process. However, if this 

process becomes dysregulated, activated cells would persist with proliferation and remodeling, 

leading to fibrosis, inflammation, and calcification (Liu, Joag, and Gotlieb 2007). Calcification 

restricts the motion of the leaflets, causing sclerosis and ultimately, stenosis (Merryman and 

Schoen 2013). During the pathogenesis of valve calcification, activated VICs undergo a 

phenotype transition to become osteoblast-like bone forming cells. Their presence has been well-

described in calcified aortic valves (Leopold 2012; Rajamannan et al. 2011). It is worth noting 

that VICs do not normally promote calcification in culture. Addition of organic phosphates, bone 

morphogenetic proteins (BMPs) and/or transforming growth factor-β (TGF-β) has often been 

needed to induce osteogenic differentiation in vitro (Liu, Joag, and Gotlieb 2007).  

VIC activation serves as an indicator of the early wound repair process and is associated with 

changes in the normal heart valve environment. Hence, understanding the regulation of VIC 

activation and the associated cellular responses is critical to understanding the pathobiology of 

heart valve diseases. In vitro studies have revealed several signaling mediators that promote VIC 

activation. Among them, the TGF-β signaling pathway is well-documented for its ability to 

activate VICs (Cushing, Liao, and Anseth 2005; Liu and Gotlieb 2008). TGF-β is secreted by 

numerous cell types including VICs. It presence is found in mitral valve prolapse and calcific 

aortic stenosis. Addition of TGF-β1 to cultured VICs effectively triggers VIC‟s differentiation 
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into active myofibroblasts, manifested by increasing α-SMA expression, promotion of stress 

fiber formation and contraction capacity (Walker et al. 2004). VICs are also sensitive to substrate 

stiffness and become activated if cultured on stiff substrates (about 2.5kPa) in 2D culture 

(Quinlan and Billiar 2012). Interestingly, it was also reported that human aortic VICs 

differentiated to an osteoblast-like cells with much higher alkaline phosphatase (ALP) activity 

and osteocalcin when they were cultured on low stiffness substrate (about 1kPa) (Duan et al. 

2016). Although it is not very clear what stiffness value is considered to be pathogenic, it is 

worth noting that matrix stiffness alone is not sufficient to trigger valvulopathogenesis but works 

together with other factors to regulate VIC differentiation and calcification (Yip et al. 2009). 

Undoubtedly, mechanical forces belong to one of many factors that induce valve pathology.  

The aortic valve is exposed to both hemodynamic forces and structural leaflet deformation as it 

opens and closes with every heartbeat. As a result, its resident cells, VICs in particular, 

continuously modulate their phenotypes and function to actively remodel cytoskeletal and ECM 

necessary for normal tissue homeostasis in this dynamic environment. Various in vitro models 

have set out to study how mechanical forces alter cellular function that could lead to valve 

pathology. The most common model is the use of native valve leaflets in ex vivo culture. It has 

been observed that when excised valve leaflets were subjected to 15% pathological 

circumferential cyclic tension and TGF-β treatment, VICs significantly increased activated 

marker, α-SMA expression and collagen biosynthesis after 2 weeks experiment (Merryman et al. 

2007). In the same context, combination of stretch, TGF-β and osteogenic medium successfully 

induced these valve cusps to become calcified (Balachandran et al. 2010). Interestingly, it 

appeared that combined hemodynamic forces acted to maintain the quiescent phenotype of VICs 

and prevented expression of the activated contractile phenotype. It was observed that the increase 
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in α-SMA expression caused by elevated stretch was suppressed by the application of cyclic 

pressure while pressure alone significantly increased biosynthetic activity of valve leaflets but 

did not affect the expression of α-SMA (Thayer et al. 2011; Xing, Warnock, et al. 2004). 

Although using whole valve leaflets to study the mechanobiological characteristics of valve cells 

provides a good model that represents the in vivo cell-ECM milieu, observations are typically 

confined to the tissue-level. More importantly, tissue-level studies cannot help to tease out the 

role of the various cellular components in the valve. Therefore, in order to get a big picture of 

valve mechanodynamics, there is a need to have more sophisticated experimental models that 

better characterize the valve at the cellular level. 

2.3. Aortic Valve Disease 

2.3.1. Valve Disease Etiology 

Aortic valve disease occurs when the aortic valve does not function properly, and may be a 

condition present at birth or acquired over one‟s lifetime. The most common congenital aortic 

valve abnormality is called a bicuspid aortic valve that occurs when the valve has only two 

leaflets that are fused together instead of three. This prevents the valve from opening or closing 

completely (van der Wall 2015).  

Acquired heart valve disease includes problems that develop with valves that were once normal. 

Acquired disease can be the result of an infection, such as infective endocarditis and rheumatic 

fever. It can also be caused by changes in the valve structure, such as stretching or tearing of the 

chordae tendineae or papillary muscles, fibro-calcific degeneration or dilatation of the valve 

annulus. Often the cause of acquired valve disease is unknown. Both congenital and acquired 

heart valve disease can cause stenosis or regurgitation (Maganti et al. 2010). 

Aortic Valve Stenosis (Figure 1.5) 
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In the case of stenosis, the flaps (cusps) of the aortic valve may become thickened and stiff, or 

they may fuse together, causing narrowing of the aortic valve opening. The narrowed valve is not 

able to open fully, which reduces or blocks blood flow from the heart into the aorta and the rest 

of the body. The most common cause of acquired aortic stenosis is calcific degeneration, 

characterized by a slowly progressive, asymptomatic period that can last decades (Freeman, 

Crittenden, and Otto 2004). Recent studies have showed an association of aortic stenosis with 

atherosclerotic risk factors, suggesting that rather than a degenerative process alone, aortic 

stenosis is an active process akin to vascular atherosclerosis (Freeman, Crittenden, and Otto 

2004). 

Aortic Valve Regurgitation 

In the case of regurgitation, the aortic valve does not coapt properly, causing blood to flow 

retrograde into the left ventricle. The leakage may prevent the heart from efficiently pumping 

blood to the rest of the body. As a result, the heart has to work harder to compensate for the 

reduced forward blood flow. This gradually reduces its ability to pump blood and can lead to 

heart failure (Maganti et al. 2010).  

 

 

 

 

 

 

Figure 1.5: Illustration of mild diseased aortic valve (left) and severely stenotic aortic valve 

(right) (the arrow pointed to prominent lipocalcific changes on aortic side of the valve cusps) 

(Freeman and Otto 2005).  
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2.3.2. Treatment Options for Valvular Heart Disease 

Treatment for aortic valve disease depends on the type and severity of the pathology. If one 

experiences mild or no symptoms, lifestyle changes and medications can help to relieve the 

symptoms and reduce further risk of complications. However, diseased valves will never be 

restored to their prior function and condition without surgical intervention. Furthermore, there 

are currently no medications that are FDA-approved to prevent valve disease progression or treat 

calcified valves, rendering valve replacement as the most common and virtually the only clinical 

therapy for valve diseases (Maganti et al. 2010; Shipton and Wahba 2001). 

The two most commonly used valve replacements are mechanical valves and bioprosthetic 

valves. Although mechanical valves offer better fluid mechanics and enhanced durability, the 

risk of infections and thromboembolic complications after implantation is unavoidable due to the 

presence of foreign materials which are materials from mechanical valves. As a result, patients 

have to take anticoagulant medication for the entire life. Bioprosthetic valves, on the other hand, 

are derived from human or animal tissues that are safe to implant and do not require long-term 

anticoagulant therapy. However, the process of handling of biological tissue can significantly 

cause structural deterioration and calcification that affect the durability of these heart valve 

bioprosthetics. This is especially unfavorable for young patients who may need multiple 

surgeries over the course of their lifetimes. Clearly, an ideal valve substitute has yet to be 

developed (Zhang et al. 2015; Elhmidi et al. 2013; Godino, Pavon, and Colombo 2013). 

2.3.3. Aortic valve mechanics and disease 

Physiologically, the aortic valve lives in a harsh and dynamic mechanical environment. It is 

exposed to pressure, shear stress, bending stress and strain during each cardiac cycle (Figure 
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1.6). Alteration in any of these major mechanical forces has been showed to associate with aortic 

valve disease (Arjunon et al. 2013; Sacks, David Merryman, and Schmidt 2009).  

Pressure: Under physiological conditions, the closed valve experienced a transvalvular pressure 

gradient of 80-120 mmHg (Balachandran, Sucosky, and Yoganathan 2011). The pressure 

generates tensile stress on the leaflets which is endured by the lamina fibrosa layer due to the 

presence of enrich load-bearing collagen fibers. The change in mean pressure gradient is one of 

the criteria used to categorize the severity of aortic stenosis. Particularly, mild stenosis has mean 

pressure gradient lower than 20 mmHg while that of severe stenosis is higher than 40 mmHg 

(Otto 2006). The effects of dynamic pressure as isolated pressure or combination of pressure and 

other mechanical forces on aortic valve mechanobiology have been investigated in vitro. 

Increase in pressure alone caused increase in expression of ECM proteins (including collagen, 

sGAG and MMP-2,9) and inflammation markers (VCAM-1, pentraxin-3, TNF-α and IL-6) while 

decreased the α-SMA expression.  This decrease in α-SMA expression appeared more significant 

at elevated stretch compared to at physiological 10% stretch. In addition, without pressure, α-

SMA expression significantly increased at increasing stretch, while application of pressure 

seemed to suppress the effect of cyclic stretch on cell phenotype (Xing, He, et al. 2004; Xing, 

Warnock, et al. 2004; Thayer et al. 2011). Although these studies have clearly showed the 

mechanobiological effects of transvalvular pressure in valve cell activation and disease initiation, 

its exact mechanism is still unclear. 

Shear stress: The aortic valve leaflets experience shear stress when blood flows in and out the 

heart during a cardiac cycle. Both sides of the AV are exposed to different fluid shear stress 

(FSS) due to the different flow environments, which is unidirectional and pulsatile on the 

ventricularis and bidirectional and oscillatory on the fibrosa (Sun, Rajamannan, and Sucosky 
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2013). Physiologic FSS contributes to valvular homeostasis by regulating valvular biosynthetic 

activity and endothelial alignment (Platt et al. 2006; Weston and Yoganathan 2001; Butcher et al. 

2004; Deck 1986). In contrast, FSS abnormalities have been shown to promote endothelial 

activation and leaflet inflammation, two precursors events to calcific aortic valve disease 

(Sucosky et al. 2009). 

When it comes to the effect of FSS on aortic valve biology, most studies mainly focus on the 

valvular endothelial cells because these cells line up the valve surface and in direct contact with 

the flow. Emerging evidence points to the role of valvular endothelial cells to mediate FSS- 

mediated responses in aortic VICs (Butcher and Nerem 2006; Mahler et al. 2014). Thus co-

culture model in the presence of mechanical forces would be necessary to understand complex 

biomechanical relationships between cells that interact in vivo.  

Bending stress: As the aortic valve opens and closes during the course of the cardiac cycle, the 

valve leaflets undergo cyclic reversal of their curvature in the circumferential direction that gives 

rise to bending stresses. Valve cells may experience compressive and/or tensile stress during 

bending, depending on their position within the leaflet (Balachandran, Sucosky, and Yoganathan 

2011).  Bending also causes deformation in the ventricularis and fibrosa layers which could be 

minimized by the presence of middle spongiosa layer with lubricated characteristic. Several in 

vivo studies reported AV leaflet strains to be approximately 10 and 40% in the circumferential 

and radial directions, respectively.  This anisotropic characteristic may be because the collagen 

in the circumferential direction provides greater tensile strength than that in the radial direction 

(Arjunon et al. 2013). Ex vivo results showed comparable measurement in which porcine aortic 

valve leaflet had strain of about 11% in the circumferential direction and about 28% in the radial 

direction (Yap et al. 2010). Measurement of bending strain and stress during valve operation of 
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polyurethane trileaflet heart valves showed maximum strain of 14.5% and stress of 1.22 MPa 

during the opening phase while that of closing phase were 8.3% and 0.71 MPa, respectively 

(Corden, David, and Fisher 1995). These values were used as the reference for physiological and 

pathophysiological conditions of the valve mechanic environment. Although there are various 

strain magnitudes that have been used in in vitro studies, it has been established that non-

physiological strain is associated with pathological conditions in AV leaflets with regard to 

inflammation, activation, remodeling and calcification (Smith, Metzler, and Warnock 2010; 

Metzler et al. 2008). Cells under pathological (15% and 20%) stretch significantly increased 

proliferation, apoptosis and MMPs activity, indicating the disruption in normal homeostasis and 

ECM remodeling (Balachandran et al. 2009). 15% pathological level of stretch has also been 

showed to induce AV calcification in the BMP-dependent manner. In particular, osteogenic and 

calcification responses (ALP activity, Runx2 expression, and calcium levels) were reduced in the 

presence of BMP antagonist noggin.  Interestingly, pro-inflammatory protein expression of 

VECs were increased at 20% biaxial cyclic strains compared to 10% while application of cyclic 

strain appeared to inhibit the expression of pro-inflammatory genes in aortic VIC (Balachandran 

et al. 2010). 

As evident now, the aortic valve is subjected to multiple mechanical stimuli during the cardiac 

cycle naturally. Although studies of AV in the presence of isolated mechanical stimuli will help 

in understanding how each of them plays a role in regulating AV biology and pathology, it does 

not represent the true native in vivo state and does not provide insights into the interplay of each 

stimulus in regulating AV health. Thus being able to develop an experimental model that could 

incorporate and control all of these stimuli would be critical not only to the study of AV biology 
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but also to the development of tissue-engineered AV. However, this task is difficult to achieve 

due to the complexity of valve anatomy.  

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Schematic of multiple mechanical forces experienced by the aortic valve during a 

cardiac cycle (Balachandran, Sucosky, and Yoganathan 2011). 

 

3. OVERVIEW OF THE PATHOPHYSIOLOGICAL ROLES OF FIBROBLAST 

GROWTH FACTOR SIGNALING IN THE HEART 

Due to the many existing challenges in treating valvular heart disease effectively, over the last 

several years, researchers have focused on the molecular signaling that regulates valve cell 

response to pathological conditions, with the ultimate goal to identify a therapeutic target to 

prevent or treat heart valve disease. In the context of this dissertation, the focus is on the role of 

fibroblast growth factor 1 and fibroblast growth factor 2 (FGF1/FGF2) signaling. 

The FGF family is comprised of secreted proteins that signal to receptor tyrosine kinases and 

intracellular non-signaling proteins that serve as cofactors for voltage gated sodium channels and 

other molecules. Secreted FGFs are expressed in nearly all tissues and they serve essential roles 
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in the earliest stages of embryonic development, during organogenesis, and in the adult, where 

they function as homeostatic factors that are important for tissue maintenance, repair, 

regeneration, and metabolism (Ornitz and Itoh 2015).  

Within the large FGF family of proteins, FGF2 is the most well-studied in the context of the 

heart and heart valves. FGF2 is one of the most predominantly expressed FGFs in the heart. It is 

a paracrine FGF molecule that mediates biological responses by binding to and activating 

FGFRs. Pharmacologic and in vitro studies suggest that FGF2 has protective effects on the heart 

(Detillieux, Cattini, and Kardami 2004; House et al. 2015). In VICs, it has been demonstrated 

that FGF2 not only inhibits TGF-β-mediated myofibroblast activation but that it also prevents 

calcified nodule formation and matrix contraction. These pathological VIC phenotypes are both 

characteristic of end-stage valvular disease, suggesting that the maintenance of FGF2-mediated 

signaling pathways is integral for the prevention deleterious fibrosis in heart. Treatment with 

FGF2 was able to repress myofibrolast activation in porcine VICs (Cushing et al. 2008). FGF2 

also appears to promote VIC wound repair in vitro through activation of Akt and/or TGF-β 

signaling pathway (Han and Gotlieb 2011, 2012). Because of these positive effects FGF2 has on 

valve cells, it has been supplemented to cell culture media as a way to maintain and to 

dedifferentiate the VICs back to a quiescent, fibrolastic phenotype with phenotypic and 

functional characteristics ascribed to cells in the intact valve (Latif et al. 2015). 

Other FGFs such as FGF1, FGF16, FGF21, FGF23 all play roles in cardiac remodeling but their 

pathophysiological role in the context of heart valve disease is not well-studied (Itoh and Ohta 

2013). Because both FGF1 and FGF2 belong to the FGF1 subfamily and FGF1 has been 

demonstrated to be able to improve cardiac functional recovery and enhance cell survival after 

ischemia and reperfusion (Palmen et al. 2004; Garbayo et al. 2016), it would be significantly 
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meaningful for heart valve field to investigate and elucidate the pathophysiological role of FGF1 

in valve cells in comparison with FGF2.  

There have been numerous studies in other fields that suggested the involvement of Akt as a 

mediator of FGF signaling in many biological processes (Forough et al. 2005; Priore, Dailey, and 

Basilico 2006; Mavila et al. 2012; Brewer, Mazot, and Soriano 2016). PI3K/AKT/mTOR 

pathway is an important pathway in regulating the cell cycle and is directly associated with cell 

survival, proliferation, metabolism, angiogenesis, among other biological processes (Ersahin, 

Tuncbag, and Cetin-Atalay 2015). Taken into account that VICs displayed increased 

proliferation, metabolism and ECM remodeling upon activation, we postulated that there might 

be a link between FGF1/FGF2 and Akt pathway that contributed to the way VICs responded to 

external stimulation.  
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1. RATIONAL FOR DISSERTATION RESEARCH 

In order to identify candidate therapeutic treatment targets for valvular heart disease, it is 

important to understand how resident cells in the valve behave in physiological versus 

pathological environment and a possible signaling pathway that regulates these responses. As 

mentioned earlier, many previous studies were performed either on excised leaflets (tissue scale) 

or on cell models (cell scale) that lack appropriate mechanical stimulation or appropriate 

extracellular matrix cues. Hence, in this dissertation project, a multiscale approach is used to 

study VIC behavior at both the single cell and the 3D cell-ECM level in the presence of 

mechanical stimulation. It is hoped that the information gained from this study together with 

information from other models published in the literature will give us a more complete picture of 

VIC pathophysiological behavior, and potential signaling pathways that could be targeted for 

therapeutic benefit.  

2. HYPOTHESIS AND SPECIFIC AIMS 

The overall hypothesis of this dissertation is that VICs become more prone to pathological 

activation and dramatically alter their cellular activities, such as proliferation and metabolism in 

response to abnormal mechanical stimulation, including abnormal shape and stretch. 

Additionally, it is postulated that the Akt/mTOR pathway plays a role in FGF1/FGF2-mediated 

cellular responses to abnormal mechanical stimulation.  
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Figure 2.1: Schematic summarized all 3 aims in the project. 

The above hypothesis is tested via the following specific aims: 

In aim 1, the role of abnormal cell shape on VIC biological response was studied at the single 

cell level. Single VICs were controlled to adopt the in vivo cell shapes that were observed when 

AV leaflets were stretched at normal and pathological magnitudes. Inhibitor of actin filaments 

was added to further tease out the role of cytoskeletal architecture on shape-mediated cellular 

responses. In order to see how single VICs responded to different shapes, we examined their 

actin cytoskeletal and nuclear structure using Phalloidin and DAPI staining. Cell contractility 

and metabolism were studied via traction force microscopy and redox imaging technique. Cell 

proliferation and differentiation potentials were assessed through the expression of proliferation 

marker Ki67 and activated marker of VIC, α-Smooth muscle actin. We found that upon 

experiencing pathological shape, VICs started to re-organize and align their actin filaments along 

the longitudinal direction of the cells. Cell nuclei were also deformed as a function of altered 

shape. VICs significantly increased contractility, metabolism and proliferation. They also 

expressed higher level of activated marker of VICs, suggesting they were more prone to 

activation.  
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To extend the findings from aim 1 to a larger scale 3D VIC model, in aim 2, we developed a 

stretchable hydrogel scaffold that contained major natural ECMs found within heart valves to 

serve as a 3D model for culture of VICs in the presence of physiological and pathological cyclic 

stretching. Matrigel and Collagen I were mixed at different concentration ratios and a thorough 

characterization process was performed. For physical characterization, we used scanning electron 

microscope to examine hydrogel structure and instron tester to assess hydrogel mechanical 

properties. For biocompatibility, VICs were cultured into these hydrogels. Live/Dead assay and 

MTT assay were performed to evaluable cell proliferation and viability. Western blot was used 

to detect expression of common phenotypic markers of VICs to confirm the biocompatibility of 

matrigel. Finally, these hydrogels were subjected to cyclic stretching for 48 hours and their sizes 

were measured every 24 hours to examine their mechanical strength. We found that all the mixed 

matrigel-collagen hydrogel was scaffold with enhanced mechanical stiffness compared to 

collagen-only hydrogel. The presence of matrigel improved hydrogel mechanical properties 

while collagen was essential for VIC‟s growth as demonstrated in Live/dead and MTT assays. 

Since matrigel was not a naturally occurring matrix compound found in heart valves, we verified 

that its presence did not induce valve cell pathological activation compared to collagen-only 

hydrogels. Importantly, mixed matrigel-collagen hydrogel was able to maintain its structural 

integrity over the course of 48 hours under cyclic stretching conditions. Taken together, this 

composite scaffold appeared to have potential for use in culturing heart valve cells in the 

presence of cyclic stretch. 

Aim 3 focused on studying the role of FGF1/2 in regulating VIC response to normal and 

pathological mechanical stimulation with regard to Akt/mTOR pathway using the 3D model 

developed in aim 2. FGFR1 inhibitor was used to tease out the role of FGF1 versus FGF2. 
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Encapsulated cells were subjected to 10% and 20% cyclic stretch in the presence/absence of 

FGF1/FGF2 and FGFR1 inhibitor. First, the involvement of Akt/mTOR pathway was tested 

using western blot. Cells were stretched at 10% and 20% and lysed at different time points to 

detect phosphorylation of Akt/mTOR. Then western blot was used to determine FGFR1 inhibitor 

dosage. Next the effect of FGF1/2 on stretch-mediated cellular response via Akt/mTOR pathway 

was tested by the treatment of FGFR1 inhibitor, FGF1/FGF2 to the stretched VICs. All samples 

were lysed and western blot was performed. Cell metabolism, proliferation and differentiation 

potentials were all examined using redox imaging and western blot technique. We reported that 

Akt/mTOR phosphorylation was up-regulated in pathological stretch compared to 10% 

physiological stretch. This upregulation was correlated with increased metabolism, proliferation 

and expression of activated markers observed in cells under 20% stretch. Addition of 

FGF1/FGF2 appeared to reverse all of these responses in 20% stretched cells, suggesting 

possible protective role of FGF1/FGF2 on valve cells. At 10% stretch we reported opposite 

observations. FGF1/FGF2 aided in cell metabolism and proliferation while did not seem to 

modulate their phenotype. Treatment with FGFR1 inhibitor mitigated all above-mentioned 

cellular responses. Overall, these data clearly highlighted the possible drug-based therapeutic 

potential of FGF1/FGF2.  

 

 

 

 

 

 

 

 

 

 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lam, N. T., T. J. Muldoon, K. P. Quinn, N. Rajaram, and K. Balachandran. 2016. Valve 

interstitial cell contractile strength and metabolic state are dependent on its shape. Integr Biol 

(Camb) 8 (10):1079-1089. 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 

 

 

 

 

 

 

 

 

CHAPTER 3 

Valve interstitial cell contractile strength and metabolic state are dependent on its shape 
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ABSTRACT 

The role of valvular interstitial cell (VIC) architecture in regulating cardiac valve function and 

pathology is not well understood. VICs are known to be more elongated in a hypertensive 

environment compared to those in a normotensive environment. We have previously reported 

that valve tissues cultured under hypertensive conditions are prone to acute pathological 

alterations in cell phenotype and contractility. We therefore aimed to rigorously study the 

relationship between VIC shape, contractile output and other functional indicators of VIC 

pathology. We developed an in vitro model to engineer VICs to take on the same shapes as those 

seen in normal and hypertensive conditions. VICs with longer cellular and nuclear shapes, as 

seen in hypertensive conditions, had greater contractile response to endothelin-1 that correlated 

with increased anisotropy of the actin architecture. These elongated VICs also demonstrated 

altered cell metabolism through a decreased optical redox ratio, which coincided with increased 

cellular proliferation. In the presence of actin polymerization inhibitor, however, these functional 

responses were significantly reduced, suggesting the important role of cytoskeletal actin 

organization in regulating cellular responses to abnormal shape. Overall, these results 

demonstrate the relationship between cell shape, cytoskeletal and nuclear organization, with 

functional output including contractility, metabolism, and proliferation.  
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1. INTRODUCTION 

Valvular heart disease accounts for approximately 3% of all cardiovascular pathologies and is 

associated with abnormal valve structure and function (Maganti et al. 2010).  In vivo, the valves 

maintain their integrity and functionality by a complex interaction between the valve cusps, cells, 

their relative structures and the surrounding hemodynamic and mechanical environment 

(Balachandran, Sucosky, and Yoganathan 2011; Gould et al. 2013). Significant prior work has 

focused on the role of the mechanical environment in potentiating cellular alterations and 

subsequent progression toward disease (Balachandran et al. 2009, 2010; Warnock et al. 2006; 

Merryman et al. 2006; Yip et al. 2009). However, the role of cellular shape and architecture in 

regulating the overall balance between health and disease in the context of the valve is not well 

understood.  

The cells and nuclei of the valve interstitial cells (VICs) within aortic valve cusps respond very 

rapidly to mechanical stimuli by dynamic elongation and deformation. For instance, VIC nuclear 

width-to-length aspect ratio (AR) almost instantaneously increased from 1:2 to 1:5 when 

transvalvular pressure was increased from 0 to 90 mmHg (Huang, Liao, and Sacks 2007). This 

elongation was correlated with significant alterations in collagen fiber architecture (Huang, Liao, 

and Sacks 2007). Similarly, cell and nuclear ARs significantly increased from 1:5 to 1:7 and 1:6 

to 1:9, respectively, when aortic leaflet tissues were subjected to increasing strains from 10 to 20 

% (Sacks, David Merryman, and Schmidt 2009). These aforementioned strains represented a 

transition from normotension to hypertension (Yap et al. 2010). Furthermore, transition from the 

systolic tension-free state to fully-closed diastolic tension resulted in a 1.5-fold increase in 

nuclear elongation of the VICs within the mitral valve (Lee, Carruthers, et al. 2015). These 
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observations thus suggest the possibility for a role for altered VIC shape and architecture in 

directly modulating cellular biology and function.  

Although studies on the role of cell shape in modulating VIC behavior are few in number, there 

are several reports in the literature on the effects of constraining cell shape in influencing 

function and biology in other cell types. The AR of ventricular myocytes decreased from 1:7 to 

1:5 during concentric hypertrophy, while it increased up to 1:11 in eccentric hypertrophy 

(McCain and Parker 2011). These alterations impaired cytoskeletal contractility and were 

therefore associated with heart failure (McCain and Parker 2011).  Human mesenchymal stem 

cells differentiated into chondrocytes when they were cultured on micropatterned substrates and 

exposed to TGF-β, while they became smooth muscle cells if they were unpatterned and exposed 

to TGF-β (Gao, McBeath, and Chen 2010; Kilian et al. 2010). Additionally, the orientation of 

smooth muscle cell F-actin as well as nuclear elongation and chromatin density was found to be 

significantly altered as cell AR increased (Harkness et al. 2015). Elongated smooth muscle cells 

also showed higher contractile strength in relation to its basal tone after stimulation with ET-1 

(Thakar et al. 2009; Alford et al. 2011; Win et al. 2014). These studies clearly demonstrated that 

changes in cell shape can potentiate functional changes. 

We hypothesized that by engineering the shape of single VICs to acquire the AR of cells seen in 

normal and pathological conditions, we could induce changes in cell architecture, subsequently 

potentiating acute alterations in cell function, specifically cell contractility, metabolism, 

proliferation and activation. Our hypothesis was rigorously tested using an engineered single 

VIC model with cells forced to adopt shape of 1:3, 1:5 and 1:7 aspect ratios with the surface area 

of the patterns maintained constant. We demonstrate that these aspect ratios correspond to the 

steady-state shapes adopted by VICs when cyclically strained to 0%, 10% and 20%, respectively. 
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Cytochalasin D, an inhibitor of actin polymerization, was used to study the causal relationship 

between changes in cell shape and changes in intracellular structure/function. Cytoskeletal and 

nuclear architecture were quantified and correlated with contraction measured via traction force 

microscopy, metabolic cofactor autofluorescence imaging, immunostaining and western blotting 

for detection of cellular proliferation and activation. We report here that cell shape significantly 

influenced cytoskeletal and nuclear architecture. Elongated cells generated greater active traction 

stresses, suggesting a greater capacity for mobility. These elongated cells also had a lower redox 

ratio, higher expression of activation marker α-SMA and proliferation markers Ki-67. These 

responses were significantly decreased with the addition of cytochalasin D. These results 

suggested that altered actin cytoskeletal architecture as a result of altered cell shape caused 

significant changes in cell function. These cells appeared more primed for increased contractility, 

proliferation and pathological activation. 

2. MATERIALS AND METHODS 

2.1. Valve interstitial cell isolation 

 Fresh porcine hearts (3-6 months old) were obtained from Cockrum's Custom Meat Processing 

(Rudy, AR) and transported to our laboratory in cold Dulbecco‟s Phosphate Buffered Saline 

(dPBS; ThermoFisher, Waltham MA) supplemented with 1% antibiotic/antimycotic solution. 

Hearts were immediately dissected aseptically to reveal the aortic valve leaflets. Left, right and 

non-coronary leaflets were pooled and washed 2 times in Hank‟s Balanced Salt Solution (HBSS; 

ThermoFisher). Cells were isolated using collagenase digestion as described in previous 

protocols (Butcher and Nerem 2004; Gould and Butcher 2010). Briefly, valve endothelial cells 

(VECs) were removed by incubating the leaflets in collagenase solution (60U/ml) for 30 minutes 

and discarding the digestate. Valve interstitial cells (VICs) were then isolated by incubation the 
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leaflets in collagenase solution (60U/ml) at 37°C for 2 hours with frequent agitation. The 

digestate was spun down in centrifuge at 250g for 5 minutes at 4°C and resuspended and 

cultured in Dulbecco‟s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), 50U/mL penicillin, 50U/mL streptomycin, and 10mM HEPES (all ThermoFisher). 

Fresh DMEM was exchanged every two to three days. Cells from passages 2-7 were used in all 

subsequent experiments. 

2.2. Parameters for single cell model 

2.2.1. Surface area of spreading and thickness of valve interstitial cell in vitro 

We first measured the natural area of spreading of valve interstitial cells (VICs) in sparse in vitro 

culture conditions on different substrates, to determine the surface area of spreading of VICs as a 

function of substrate stiffness. These results were then used to design rectangular templates for 

subsequent soft lithography and microcontact printing experiments. Briefly, VICs were sparsely 

seeded onto collagen gels, polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning, Midland 

MI) coated coverslip and tissue culture plastic at a density of 3000 cells/cm
2
. After 24 and 48 

hours, phase contrast images of at least 50 single VICs per substrate were captured using a 

regular phase contrast microscope. Surface area of spreading of the VICs was then computed 

using Image J software (National Institutes of Health, Bethesda MD). Unconfined compressive 

stiffnesses of the seeding substrates were measured using an Instron 5944 uniaxial apparatus 

(Instron Corp, Norwood MA) using standard testing protocols (Badrossamay et al. 2014). 

2.2.2. Verification of valve interstitial cell aspect ratio as a function of imposed mechanical 

strain 

 As we mentioned previously, we chose three width-to-length aspect ratios (ARs; 1:3, 1:5, 1:7) 

for the current study based on previously published data on cell shape in normotensive and 
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hypertensive strain and pressure conditions (Huang, Liao, and Sacks 2007; Sacks, David 

Merryman, and Schmidt 2009). In order to independently confirm this, we seeded VICs at a 

confluent density within chambers on a stretchable polydimethylsiloxane (PDMS) membrane 

imposed external cyclical strain at 0%, 10% and 20% for 48 hours (Balachandran et al. 2011). 

Phase contrast images of cells were taken using an upright microscope and the cellular AR was 

measured by manual tracing using ImageJ software.  

2.2.3. Determination of optimum culture conditions to maintain single cell culture 

 VICs in suspension are significantly smaller in projected area than adhered cells (142.6±3.26μm 

vs. 944.59±3.26μm based on our measurements, n>50, p<0.05; Figure 3.1 D). There is therefore 

a high possibility that more than one cell can adhere onto a rectangular fibronectin feature during 

initial seeding. In addition, cells can also divide while on a rectangular feature. Our first 

objective was therefore to determine the optimum culture conditions that would result in the 

highest yield of single cells on the coverslip, both on first seeding and over the course of the 24 

to 48 hour experiment. We hypothesized that (I) feature surface area; (II) cell seeding density 

and (III) FBS concentration would have the highest effects on single cell yield, and tested these 

factors as follows.  

(I) Effect of feature surface area. As mentioned earlier, cells are significantly smaller in 

suspension than when adhered. We therefore first tested single cell yield on a range of island 

surface areas based on the spread of VICs on PDMS. We hypothesized that the larger the surface 

area, the lower the single cell yield as a larger number of cells might fall on larger fibronectin 

features. Briefly, based on the surface area of spread of VICs (Figure 3.1 A), cells were seeded 

on 1500, 1700, 1900 and 2000µm
2
 features. After 48 hours, cells were fixed with 4% 

paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield PA) and fluorescently stained 
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with 4',6-diamidino-2-phenylindole (DAPI; Life Technologies, ThermoFisher, Waltham MA). 

Images were then obtained at more than 20 image fields of the coverslips. Percentage of single 

cells was quantified by dividing the number of counted single cells by the total number of cells 

in that specific image field.  

(II) Effect of seeding density. As mentioned earlier, each substrate coverslip had approximately 

12,500 single cell island features. We thus hypothesized that the closer the seeding density was 

to this number of features, the higher the yield of single cells. We further postulated that a 

seeding number lower than the total number of features would increase the chance of single cell 

islands on the coverslip. We therefore tested seeding densities from 5,000 – 15,000 cells per 

coverslip (corresponding to approximately 500 - 1500 cells/cm
2
 seeding density). After 48 hours, 

cells were fixed with 4% PFA and fluorescently stained with DAPI and quantified as before.  

(III) Effect of FBS concentration. As increasing FBS concentration has a strong proliferative 

effect on cells (Shodell and Rubin 1970), we hypothesized that lowering the concentration of 

FBS during the course of culture would prevent VICs from dividing while on a rectangle. Three 

concentrations of FBS (0%, 2% and 10%) were tested by exchanging the culture media at 4 

hours and 24 hours after seeding. All other components of the media remained unchanged. After 

48 hours, cells were fixed with 4% PFA and fluorescently stained with DAPI and quantified as 

before.  

2.3. Photolithography 

 Photolithographic transparency masks were designed in AutoCAD (Autodesk Inc., San Rafael 

CA) and fabricated by CAD/Art Services Inc. (Bandon, OR). The design of the masks for the 

single cell studies consisted of rectangular features of constant surface area spaced 50μm apart, 

with variable width-to-length aspect ratios (1:3 [23.80 x 71.41μm]; 1:5 [18.43 x 92.19μm]; 1:7 
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[15.58 x 109.09μm] in rectangular grids. These aspect ratios represented the AR of cells that 

underwent 0% (undeformed), 10% (normal physiological stretch), and 20% (elevated) stretch, 

respectively (Sacks, David Merryman, and Schmidt 2009). Each grid contained 12,500 single 

cell features. Silicon wafers (Wafer World, West Palm Beach FL) were then spin coated with Su-

8 2005 negative photoresist (MicroChem Corp, Westborough MA) and exposed to ultraviolet 

light through the photomask and developed using standard photolithography protocols (Kane et 

al. 1999; Qin, Xia, and Whitesides 2010). Silicon wafers were then subsequently silanized with 

tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane (United Chemical Corp, Filmore CA) 

overnight in a vacuum dessicator.  

2.4. Microcontact printing and cell culture 

 Polydimethylsiloxane (PDMS; Dow Corning, Midland MI) was poured over the above silicon 

wafer and allowed to cure for 3 hours at 70°C. PDMS stamps with the desired features were then 

cut out. 50μg/mL Fibronectin (Corning, Corning NY) was incubated on the PDMS stamps with 

aforementioned microscale raised rectangular features for 1 hour at room temperature and blown 

dry gently. The stamp was then placed in contact with Ultraviolet-Ozone treated PDMS-coated 

coverslips for 5 minutes, thereby transferring the pattern. Coverslips were then blocked for 10 

minutes with 1% Pluronics F-127 (Sigma) to prevent non-specific cell binding onto the PDMS 

substrate. The coverslips were washed three times with dPBS and VICs were seeded at 1000 

cells per cm
2
 coverslip area and cultured at 37°C, 5% CO2. For samples that were treated with 

cytochalasin D, 0.1µM of the drug was added to the cell 24 hours before terminating for sample 

processing. 
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2.5. Fluorescent staining of actin and nucleus 

After 48 hours of culture, cells were fixed with 4% paraformaldehyde (PFA), permeabilized 

using 0.5% Triton X-100 and stained for F-actin using Alexa Fluor 488 phalloidin (1:100; 

ThermoFisher) and for nuclei using 25µg/mL 4',6-diamidino-2-phenylindole (DAPI; 

ThermoFisher) for 1 hour at room temperature. Samples were then mounted onto a glass slide 

using Prolong Gold mounting medium (ThermoFisher), allowed to dry overnight and imaged 

using a Nikon Ti epifluorescence microscope.  

2.6. Analysis of actin and nuclear architecture 

 Actin alignment was quantified using a custom-written MATLAB script, and reported using the 

Orientation parameter (OP), where an OP of 1 indicated perfect anisotropy and an OP of zero 

indicated isotropy of the actin filaments (Balachandran et al. 2011). To characterize the 3D 

nuclear size and morphology, image volumes of DAPI-stained samples were acquired using a 

commercial multiphoton microscope (Ultima Investigator, Bruker Corp.) with a water immersion 

20X objective (1.0 NA).  The two-photon excitation wavelength was 755nm, and emission was 

collected by a non-descanned detector with a 460(±20) nm bandpass emission filter.  Digital 

voxel resolution was 0.5µm in the axial and lateral resolution. Laser power and detector gain 

were initially optimized to prevent photobleaching and pixel saturation and remained consistent 

throughout the experiment.  Using MATLAB, an intensity threshold of 250 was applied to the 

13-bit intensity images to produce a nuclear mask from each image volume.  Individual nuclei 

were identified based on pixel connectivity, and nuclear volume as well as average intensity 

within each nucleus were computed.  Finally, a maximum intensity z-projection of the image 

volume was obtained and the aspect ratio was computed from the major and minor axes of an 

ellipse fit to each nucleus using the regionprops.m function.   



 

43 

2.7. Traction force microscopy and analysis 

  VICs were seeded on 9kPa polyacrylamide gels for traction force microscopy (TFM) using 

methods published by others (Versaevel, Grevesse, and Gabriele 2012; Versaevel et al. 2014). 

Polyacrylamide gels were prepared by mixing 40% acrylamide and 2% bis-acrylamide stock 

solutions with 2% v/v N-hydroxyethylacrylamide and 4% v/v Alexa Fluore 488-conjugated 

fluorescent beads (0.2µm fluorospheres, ThermoFisher) in 50mM HEPES. This mixture was 

sonicated for 20 minutes, followed by the addition of ammonium persulfate and 

tetramethylethylenediamine (TEMED) to allow polymerization. 15µL of this mixture was 

pipetted onto silane-activated 35mm coverslips (Versaevel et al. 2014). A clean 18mm coverslip 

was put on top of the droplet to create a flat gel. This gel-coverslip was UV-O treated for 10 

minutes before microcontact printing and cell seeding was performed as outlined earlier. 

Samples treated with cytochalasin D were cultured as mentioned earlier. At the end of the culture 

period, the sample was transferred to a heated imaging chamber (Warner Instruments, Hamden 

CT) and incubated in Tyrode‟s buffer (Sigma). Fluorescent images of the beads immediately 

beneath the patterned cells were recorded using the previously mentioned two-photon 

microscope with a 960nm excitation wavelength and a 525nm/45nm emission filter. The change 

in the position of the fluorescent beads was quantified using a MATLAB script using an 

algorithm described by others (Versaevel, Grevesse, and Gabriele 2012; Ye et al. 2014; Butler et 

al. 2002). Cell contractility was quantified by VIC response to 50nM ET-1 (Sigma) after 5 

minutes. VIC basal tone was quantified by VIC response to a 100µM saturating dose of the rho-

activated kinase inhibitor and vasodilator HA-1077 after 5 minutes. Tractions were calculated 

from the displacement field using a Fourier Transform method with mechanical properties of the 

gel assumed to be known (Young‟s Modulus = 9kPa; Poisson‟s ratio = 0.5) (Butler et al. 2002). 
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As the traction stresses are mostly confined to the ends of the cell, each cell was then 

longitudinally divided into five equal sections and the mean traction stresses within the sections 

at the ends of the cell were calculated and reported.  

2.8. Two-photon redox imaging 

 For redox imaging, VIC samples were placed in a heated imaging chamber as before and 

imaged using a custom-built resonant-scanning multiphoton microscopy platform with a 40X, 

0.8 NA water immersion objective (Nikon, Japan) and a MaiTai ultrafast Ti:Sapphire tunable 

laser source (Spectra-Physics, Santa Clara CA). The laser excitation source was tuned to 755nm 

(NADH fluorescence) or 860nm (FAD fluorescence) and images were acquired via non-

descanned detectors with 460nm/40nm (NADH) or 525nm/45nm (FAD) bandpass filters, 

respectively. Laser power was kept constant at 30mW at the sample plane and photomultiplier 

tube (PMT) gain was fixed at 90%. Images of a cuvette filled with 4ng/mL Rhodamine B 

(Sigma) were acquired via a 607nm/70nm bandpass filter, under identical conditions for both 

NADH and FAD acquisitions, to account for possible day-to-day variation in laser intensity. 

Images were analyzed using a custom MATLAB script and redox ratio was calculated using the 

following equation on a per pixel basis (Skala and Ramanujam 2010): 

][][

][
ratioRedox 

FADNADH

FAD


  

[FAD] represents intensity of the FAD image normalized by the corresponding rhodamine 

intensity. [NADH] represents intensity of the NADH image normalized by the corresponding 

rhodamine intensity.  

2.9. Immunofluorescence and western blotting for proliferation/activation markers 

 For Ki-67 immunostaining, cells were fixed and permeabilized with 4% PFA and 0.5% Triton-

X100 for 10 minutes. An equal mixture of 5% bovine serum albumin (BSA; Sigma) and goat 
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serum (Abcam, Cambridge United Kingdom) were used to block non-specific binding for 2 

hours at room temperature. The cells were then incubated with Ki-67 antibody (Abcam) at a 

dilution of 1:500 and kept at 4°C overnight. Alexa Fluor 488-conjugated goat-anti-rabbit 

antibody (1:200; ThermoFisher) and 50µg/mL DAPI were applied to the cells and incubated for 

1 hour before mounting the coverslips onto a glass slide using Prolong Gold antifade reagent for 

imaging.  

For western blotting, cells were lysed with urea lysis buffer (Balachandran et al. 2011). Cell 

lysate was centrifuged at 10,000 rpm at 4°C and the supernatant was collected and quantified by 

BCA assay. 10μg of total protein was loaded onto each well of a 4-15% polyacrylamide gel (Bio-

Rad, Hercules CA) and separated by electrophoresis at 150V. Proteins were then transferred to a 

polyvinyldifluoride (PVDF, EMD Millipore, Billerica MA) membrane, blocked in blocking 

buffer (Li-Cor, Lincoln NE) for 2 hours before probing with rabbit total ERK1/2 antibody (Cell 

Signaling Technology, Danvers MA; 1:50) and mouse phosphorylated ERK1/2 (Cell Signaling 

Technology; 1:500), rabbit anti-α-SMA (Abcam, 1:200), mouse anti-vimentin (Abcam, 1:1000), 

mouse anti-SM-MHC (Millipore, 1:20) or mouse β-actin (Abcam, 1:500). The membranes were 

kept at 4°C overnight. Appropriate secondary antibodies (Li-Cor; 1:15,000) were subsequently 

added to the membranes and incubated for 1 hour with gentle shaking, followed by washing with 

dPBS and distilled-deionized water. Membranes were then scanned using a Licor Odyssey 

scanner. Protein expression was quantified by obtaining the band intensity for the α-SMA protein 

and normalizing it with the intensity obtained for β-actin protein. 

2.10. Statistical Analysis 

All data were first analyzed for normality using the Anderson–Darling method. All normally 

distributed data were subsequently analyzed by one- or two-way ANOVA followed by Holm-
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Sidak multiple pairwise comparisons. Data not normally distributed were analyzed using Mann-

Whitney non-parametric methods. Unless otherwise specified, a p-value of less than 0.05 was 

used to indicate statistical significance. Data was plotted as mean with standard error bars. All 

results were from a sample size of at least 4 or more separate experiments. 

3. RESULTS 

3.1. Verification of single cell model 

With regard to cell spreading area, we recorded an average cell spreading areas of single VIC 

ranged from 600-1800um
2
 after 48 hours culture as a function of substrate stiffness (Figure 3.1 

A). Specifically, VIC surface area measurements were consistently about 1700μm
2
 for a wide 

range of substrate moduli from 10kPa to 1MPa, 48 hours after seeding (Figure 3.1 A). VIC 

thickness was statistically similar for the three aspect ratios (Figure 3.1 B). Additionally, AR 

measurement from our monolayer stretching experiment further supported the notion that our 

chosen three ARs (1:3, 1:5, 1:7) were a reasonable representation of cells under 0%, 10% and 

20% cyclic strain, respectively. In order to achieve high yield of single cell, the following 

parameters also mattered: surface area of features, seeding density and the amount of FBS in 

culture media. Particularly, our results indicated that single cell yield was significantly higher for 

1500, 1700 and 1900μm
2
 patterns compared to 2000μm

2
 patterns (Figure 3.2 A). Within these 

three surface areas, 1700μm
2
 patterns tended to reliably yield the largest numbers of single cells. 

We thus proceeded to use a pattern surface area of 1700μm
2
 for all subsequent experiments. 

Seeding densities from 500 to 1000 cells/cm
2 

consistently produced approximately 80% of single 

cell yield. We observed that the number of multiple cells per feature increased if we increased 

the seeding density as seen in the density of 1200-1500 cells/cm
2
. Therefore, we used a seeding 

density of 1000 cells/cm
2
 for the remaining experiments reported in this paper (Figure 3.2 B). 
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Our results indicated that low FBS-containing media produced high number of single cells 

(Figure 3.2 C-E). The best culture condition was to feed cells with 0% FBS-containing medium 

for the first 4 hours. This condition was postulated to restrict cells to attach solely to fibronectin 

patterns. After 4 hours, 2% FBS-containing medium was exchanged to both remove non-adhered 

cells and provide enough nutrients for cells to grow. 24 hours later, cells were fed with 0% FBS-

containing medium for growth arrest. From this point, we kept using 1700 μm
2
 patterns as well 

as the seeding density of 1000 cells/cm
2
. Taken together, we consistently obtained an average of 

80% single cells per coverslip. This result was especially significant as it was currently the only 

study that reported the specific yield of single cells and the methodology to achieve it. Other 

studies on single cells in vitro either did not report the exact number of single cell that they 

achieved or reported very low numbers of approximately smaller than 10% (Ye et al. 2014; 

McCain et al. 2012; Cheng, Komvopoulos, and Li 2011). 
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Figure 3.1: (A) Variation of VIC spreading area as a function of substrate stiffness measured 

after 24 and 48 hours post-seeding of cells. (B) VIC cell thickness data. (C) VIC AR measured 

on cyclically stretched cells. (D) Projected area of cells in suspension and adherent cells, 

*p<0.05. 
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Figure 3.2: Factors affected single cell yield. (A) Percentage of single cells as a function of 

patterned fibronectin surface area. (B) Percentage of single cells at different seeding densities. 

(C-E) Percentage of single cells as a function of FBS percentage in media grouped according to 

concentration at seeding, n>50 individual cells, * p<0.05. 

 

3.2. Engineering valve interstitial cell shape 

Previous studies revealed that cells adopt different spreading areas depending on the stiffness of 

the underlying substrate (Yeung et al. 2005; Chaudhuri et al. 2015). We therefore first quantified 

the average spreading area of isolated VICs on polydimethylsiloxane (PDMS) coated coverslips 

(Figure 3.3 A), and show that the cell spreading area had a mean of 1700μm
2
. Reports in the 

literature have indicated that VICs can adopt a wide variety of morphological shapes (Liu and 

Gotlieb 2007), but are typically confined to aspect ratios (AR) of 1:3 to 1:7 depending on the 

magnitude of cyclic hemodynamic pressure (Sacks, David Merryman, and Schmidt 2009). We 

validated this same range of ARs in an in vitro VIC monolayer cyclic strain model (Figure 3.3 C) 

and selected width-to-length ARs of 1:3 (23.8 x 71.4 μm), 1:5 (18.4 x 92.2 μm) and 1:7 (15.58 x 
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109.09 µm), representing the mechanical strain experienced during static, healthy and 

hypertensive hemodynamic conditions, respectively (Sacks, David Merryman, and Schmidt 

2009). Fibronectin was microcontact printed on PDMS-coated coverslips at these same aspect 

ratios and VICs were seeded at 1000 cells per cm
2
 coverslip area. Cells self-assembled and 

assumed the rectangular shape of these three aspect ratios (Figure 3.3 A-C).  

Figure 3.3: Single-cell culture model. (A) Photomasks of single-cell grid arrays with differing 

width-length aspect ratios, scale bar = 100μm, (B) Schematic depicting microcontact printing 

protocol. (C) Single cell culture images, scale bar = 100µm. 

 

3.3. Actin and nuclear architecture and orientation varied as a function of cellular shape 

Previous studies have reported that cellular structure was altered due to changes in the external 

mechanical boundary conditions (Balachandran et al. 2011; Ye et al. 2014). We therefore 

evaluated whether altered VIC shape resulted in changes in cytoskeletal and nuclear architecture. 

Phalloidin staining of F-actin, showed that the filaments became more prominent and aligned 

along the longitudinal direction of the cell as AR increased (Figure 3.4 A). Quantification of 

actin alignment using a previously developed technique (Balachandran et al. 2011) revealed that 

alignment to be statistically higher (p<0.05) at an AR of 1:7 compared to 1:5 and 1:3 (Figure 3.4 
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C). In the presence of cytochalasin D, cells did not exhibit prominent actin stress fibers (Figure 

3.4 A). Cells treated with cytochalasin D at 1:7 had significantly (p<0.05) more aligned actin 

filaments compared to 1:3 and 1:5 cells. Overall, the actin orientation parameter was 

significantly reduced (p<0.05) when the cells were treated with cytochalasin D.  

The actin cytoskeleton is thought to be stress-sensitive, allowing the cytoskeleton to detect 

extrinsic mechanical stimuli and dynamically remodel itself to accommodate the mechanical 

load (McCain and Parker 2011; Versaevel, Grevesse, and Gabriele 2012). It has been suggested 

that extracellular forces are transmitted to the cell nucleus via the cytoskeleton causing 

substantial deformation in the nucleus which could contribute to changes in chromatin structure 

and later on transcriptional regulation (Dahl, Ribeiro, and Lammerding 2008; Versaevel, 

Grevesse, and Gabriele 2012). Nuclear staining using DAPI (Figure 3.4 B) indeed did indicate 

significantly increased nuclear elongation (p<0.05) with increasing cellular AR (Figure 3.4 D). 

VIC nuclear ARs ranged from 1.7 to 2.2 for cell AR from 1:3 to 1:7, suggesting that the nucleus 

did not elongate to the same extent as the cell, probably due its higher mechanical rigidity (Lee, 

Adams, et al. 2015). Analysis of nuclear 3D volume (Figure 3.4 E) showed that as cell AR 

increased, 3D volume was not significantly altered, suggesting that actin cytoskeletal modulation 

of nuclear AR occurred without any alteration of the nuclear volume. Average intensity of 

chromatin was also analyzed from DAPI stained images and revealed significant higher 

chromatin intensity in the presence of cytochalasin D (p < 0.05) (Figure 3.4 F).  
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Figure 3.4: Actin orientation and nuclear morphology analysis of single cells. (A) Single VICs 

fluorescently stained with Phalloidin (white) and DAPI (blue), scale bar = 10µm. (B) Higher 

magnification DAPI images utilized for nuclear morphology analysis, scale bar = 5µm. (C) Actin 

orientation parameter data. (D) Nuclear aspect ratio data. (E) Nuclear 3D volume data. (F) 

Nuclear chromatin density data, * p<0.05; # p<0.05 with respect to 1:3. 
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3.4. Elongated VICs generated greater contractile traction  

Cells generate tractions on their underlying substrate, that are thought to control cell shape and 

maintain cellular homeostasis, regulating diverse processes such as motility, differentiation and 

proliferation (DuFort, Paszek, and Weaver 2011; Oakes et al. 2014; Parsons, Horwitz, and 

Schwartz 2010). As elongated VICs were typically found in higher and elevated mechanical 

stress environments (Sacks, David Merryman, and Schmidt 2009), we hypothesized that VIC 

elongation would induce a greater capacity for contractile stress generation, that would be 

dependent on actin organization. This hypothesis was tested via traction force microscopy 

(TFM), wherein VICs with varying ARs, without and with cytochalasin D, were seeded on 

polyacrylamide substrates doped with fluorescent beads. Samples were first imaged prior to 

stimulation and sequentially stimulated with 50nM of the vasoconstrictor endothelin-1 (ET-1) 

and a saturating dose of 100μM of the vasodilator HA-1077 for 5 minutes each. Samples were 

imaged after each treatment, and traction stresses were calculated from the bead displacement 

images using the unstimulated image as the reference state (Ye et al. 2014). As expected, the 

highest VIC contractile (Figure 3.5 B) and relaxation (Figure 3.5 C) tractions were primarily 

localized to the longitudinal ends of the cells (Figure 3.5 A). VIC contractile strength, as 

computed by the traction stress applied by the cell on its substrate due to ET-1, significantly 

increased with increasing cellular elongation (Figure 3.5 B). Basal tone, as quantified from the 

response to HA-1077, was low at 1:3 AR and significantly higher at 1:5 AR (Figure 3.5 C). 

However there was no significant difference in basal tone between 1:5 and 1:7 ARs. When the 

actin filaments were disrupted with cytochalasin D, significantly reduced contractility and basal 

tone were observed (p<0.05) (Figure 3.5 B-C). Taken as a whole, these results suggested that 

higher alignment and prominence of F-actin stress fibers potentiated by cellular elongation 
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increased the ability of the VICs to generate an active contraction and maintain its basal cellular 

tone. 

Figure 3.5: Traction force microscopy data. Representative constrained traction stress color 

maps representing (A) peak contractile stress generation due to ET-1 and peak relaxation due to 

HA-1077, scale bar = 10µm. (B) Mean contractile traction due to ET-1. (C) Mean relaxation 

traction/basal tone due to HA-1077, * p<0.05; # p<0.05 with respect to 1:3. 

 

3.5. Elongated VICs exhibited reduced metabolic redox ratio  

Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are 

coenzymes and electron carriers associated with metabolism in all eukaryotic cells. Many studies 

have demonstrated the potential of using the endogenous fluorescence of NADH and FAD as an 

indicator of cell metabolism (Georgakoudi and Quinn 2012).
 
We evaluated whether  an optical 
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redox ratio of FAD/(NADH+FAD) fluorescence was altered as a function of cellular AR 

elongation and whether the presence of an intact actin cytoskeleton affected these responses. To 

address this question, we collected NADH and FAD fluorescence images and computed optical 

redox ratios from cells in each of the three (1:3, 1:5 and 1:7) ARs without and with cytochalasin 

D (Figure 3.6 A-C).  

Our results show that as VIC AR increased, there was a significant decrease (p<0.05) in redox 

ratio (Figure 3.6 B). In the presence of cytochalasin D, redox ratio was significantly higher than 

VICs without cytochalasin D, and there was no significant difference as a function of cellular AR 

(p<0.05). A decrease in the optical redox ratio was observed in mesenchymal stem cells 

undergoing osteogenic differentiation (Quinn et al. 2013).  Additionally, decreased redox ratios 

have been observed upon an increase in the proliferation of keratinocytes (Quinn et al. 2016).  In 

the context of the current study, our results thus suggest the possibilities that (I) Elongated VICs 

with prominent actin fibers were more likely to be at the onset of the pathologic de-

differentiation process, or that (II) elongated VICs are more proliferative, or both. 
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Figure 3.6: Redox imaging of single cell (A) Representative FAD and NADH fluorescence 

images, scale bar = 10µm. (B) Representative color maps of VIC optical redox ratios, scale bar = 

10µm. (C) Mean redox ratio data for all VICs, * p<0.05; # p<0.05 with respect to 1:3. 

 

3.6. Elongated cells exhibited higher proliferation capability and were prone to 

pathological activation 

We considered the hypothesis that VICs with longer ARs and lower redox ratios had a higher 

cell proliferation and activation potential. First, VICs at the three ARs (1:3, 1:5, 1:7) were 

analyzed using a known indicator of cellular proliferation. Ki-67 expression, as determined via 

immunostaining (Figure 3.8 A) and semi-quantitation (Figure 3.8 B), significantly increased as 

cell AR increased. Additionally, ERK-1/2 phosphorylation was also increased as cell AR 

increased (Figure 3.7).  Addition of cytochalasin D significantly reduced the expression of Ki67 

in all cases although higher expression was still found at increased ARs. Ki-67 is a nuclear 

protein that is associated with cell proliferation and these results suggested that VICs possess 

higher proliferation capability with increasing elongation only if the actin cytoskeleton was 

intact.  
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Next, we performed western blotting to detect the expression of VIC phenotype markers α-

smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC) and vimentin. α-

SMA is a cytoskeletal isoform of actin which is usually found in activated VICs, SM-MHC is a 

smooth muscle-specific marker, and vimentin is typically an indicator of quiescent, non-

activated VICs (Rabkin et al. 2002). Additionally, α-SMA-positive activated cells typically 

display features of myofibroblasts such as increased contraction and prominent stress fibers 

(Balachandran et al. 2011). As expected, cells at the longest ARs had significantly increased α-

SMA expression while adding cytochalasin D reduced its expression (Figure 3.8 C-D). This 

particular reduction was statistically significant only at the 1:7 aspect ratio (Figure 3.8 D). There 

was no significant difference in expression of SM-MHC and vimentin (Figure 3.8 C). Overall, 

these results suggested that VIC elongation potentiated stronger proliferative responses than 

differentiation ones. VICs did demonstrate moderately increased activated myofibroblast 

phenotype at the highest level of cell elongation, and these responses were more pronounced in 

the presence of actin cytoskeletal stress fibers. 
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Figure 3.7: (A) Representative western blot scan for ERK1/2 phosphorylation analysis. (B) 

Densitometric analysis of ERK1/2 phosphorylation western blots,* p<0.05. 
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Figure 3.8: Immunofluorescent and western blotting data showing the proliferation and 

pathological activation of VICs. (A) Representative immunofluorescently stained VICs for Ki-67 

(white), scale bar = 10µm. (B) Semi-quantitation of Ki-67 immunostains. (C) Representative 

western blot scan for VIC phenotype markers. (D) Densitometric analysis of α-SMA western 

blots, * p<0.05; # p<0.05 with respect to 1:3. 

 

4. DISCUSSION 

We show in this work that altered actin cytoskeletal organization due to elongated VIC shape 

was an important factor in regulating VIC acute contractile function, metabolism, proliferation 

and phenotypic activation. While several other methods exist wherein cellular shape and 

structure could be modulated while maintaining cell-cell contact (Chaterji et al. 2014; Alford et 

al. 2011; Win et al. 2014), our single cell model represents the smallest functional unit of the 

VIC and thus an important first step in understanding the role of VIC shape on its biology and 

function. Shorter and wider VICs generated less contractile stress and were at a less biosynthetic 

and proliferative state, while elongated narrower VICs had greater contractile stress generation, 

more biosynthesis, increased proliferation and α-SMA activation, correlating with greater 
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organization of the actin cytoskeleton. Our results suggest that VICs in a higher pressure 

environment in vivo, which are more elongated with typical ARs of 1:7 (Sacks, David 

Merryman, and Schmidt 2009; Huang, Liao, and Sacks 2007), have a greater potential for 

increased cellular activity, proliferation and myofibroblast differentiation.  

Since the actin cytoskeletal, was responsible for maintaining the cell shape and mechanical 

resistance to deformation, any change in cell shape was expected to change the actin 

organization and subsequent modulation of nuclear shape (Vishavkarma et al. 2014).  Our results 

supported the notion that as the VIC elongated, cytoskeletal actin and cell nuclear significantly 

altered their organization and shape, respectively. Specifically, actin filaments became more 

prominent with increased anisotropy, while cell nuclei elongated and increased 2D area and AR, 

while conserving nuclear volume. Others have demonstrated that forces transduced to altered cell 

architecture could result in significant nuclear deformations (Guilak, Tedrow, and Burgkart 

2000; Guilak 1995). The primary mediator for these structural alterations is thought to be the 

actin filament (Maniotis, Chen, and Ingber 1997). Previous work had demonstrated that vascular 

smooth muscle cells (vSMC) became more elongated and expressed higher α-SMA as well as 

more aligned stress fibers on engineered nanogrooves compared to unpatterned substrates 

(Chaterji et al. 2014). This altered F-actin cytoskeleton remodeling was known to significantly 

affect vSMC proliferation and migration ability (Kim et al. 2008). The increase in alignment and 

organization of actin that we observed in elongated VICs was thus thought to allow for 

generation of extra tension that might be needed for a functional response or migration (Oakes et 

al. 2014). The causal relationship between cell shape, actin and nuclear shape was demonstrated 

when the addition of cytochalasin D to the single cell culture significantly mitigated changes in 

actin and nuclear structure. Our TFM results further supported our above-mentioned conclusion 
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as elongated 1:7 AR cells which had more prominent actin filaments, generated greater 

contractile response to ET-1. It should be noted that the increased contractile strength did not 

result in a significant change in the basal tone of the 1:7 AR cells compared to the 1:5 cells, 

suggesting that the basal tension in these elongated cells was not increased as a result of shape 

elongation, but its active contractility was. When the actin filament network was disrupted, cells 

were no longer able to potently respond to ET-1 as well as HA1077. 

The decrease in the optical redox ratio has been used previously to monitor precancerous 

transformations (Skala et al. 2007; Varone et al. 2014), cell proliferation during wound healing 

(Quinn et al. 2016), and as an early indicator of cellular differentiation in mesenchymal stem 

cells (Quinn et al. 2013). Our results show that the redox ratio can serve as an indicator of VIC 

proliferation and to a lesser extent, phenotypic activation. Redox ratio was significantly lowered 

in the 1:7 AR cells, which were also contractile and proliferative. Hence, an overall decrease in 

redox ratio could also be an indicator of increased macro molecule synthesis for proliferation 

(Quinn et al. 2013). The clear correlation between reduced redox ratio and increased contractility 

and proliferative potential in elongated VICs suggests that the redox ratio might be an early 

indicator of dysfunction in the VIC, and merits future study. 

We also observed altered Ki-67 and α-SMA protein expression as a result of the altered actin 

architecture potentiated by VIC shape change. A number of studies have reported that large scale 

changes in cell shape increased force transduction and affected nuclear chromatin condensation 

and subsequent gene expression (Versaevel, Grevesse, and Gabriele 2012; Zink, Fischer, and 

Nickerson 2004). We observed similar responses in our current work. Chromatin density was 

statistically similar for all ARs. In the presence of actin inhibitor, chromatin density was 

significantly increased. A recent report on cancer cells did report highest levels of chromatin 
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density in cells undergoing normal growth, while activated cancer cells showed lower levels of 

chromatin density (Oh, Gertych, and Tajbakhsh 2013). This same study reported that senescent 

cells, where there was no proliferation, had the lowest levels of chromatin density (Oh, Gertych, 

and Tajbakhsh 2013). Our results thus possibly suggest that elongated cells with more aligned 

actin filaments were likely to experience pathological activation (i.e the cell differentiation 

process in which quiescent VIC exhibited features of myofibroblast). This notion was further 

supported by our western blot which showed the increased expression of α-SMA marker as ARs 

increased. When the cytoskeleton was disrupted, its expression was reduced. Overall, our results 

underlined the potential role of the cytoskeleton, and the actin network in particular, in acting as 

an „antenna‟ for the VIC mechanobiological response - receiving external signals, processing and 

transducing downstream signals to the cell nucleus to exert appropriate responses. 

The following limitations are to be noted. We have subjected a single VIC to different width-to-

length ARs to study the correlation between cell elongation and its function. Our model does not 

recapitulate cell-cell contact, or the three-dimensional environment that exists within the valve 

interstitial milieu. However, as mentioned previously, being able to comprehend VIC behavior at 

its fundamental, functional, single-cell unit is an important first step toward understanding valve 

physiology as well as pathology. Our model also does not directly apply mechanical forces onto 

the VICs. However, we demonstrate (Figure 3.1) that the ARs employed in our study (1:3, 1:5, 

1:7) are a reasonable approximation of the steady-state shape achieved by VICs that are 

cyclically stretched to 0%, 10% and 20%, respectively.  

In summary, we demonstrate the strong correlation between VIC shape and its contractile and 

metabolic function. VIC shape change could be thus seen as an indication of potential changes in 
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the cell activity and vice versa.  We also propose the possibility of using redox ratio as one of the 

tools for early detection of the pathological state of VICs. 

5. CONCLUSIONS 

In this study, we reported a development of a single cell model to study how valve cells 

responded to alteration in cell shape. Single valve interstitial cells were engineered to adopt 

varying width-to-length ratios and their contractility as well as metabolic activity were 

quantified. We observed an increase in contractile strength and decrease in metabolic redox ratio 

as cells became more elongated and their actin architecture became more aligned. These results 

suggested that valve interstitial cells modulated their contractile and metabolic function 

depending on their shape and arrangement of cytoskeletal elements. 

These promising results motivated us to explore further valve interstitial cell pathophysiology in 

a more complex model. Based on current limitations of the single cell model, we set out our next 

aim to develop a 3D cell culture platform where mechanical force was present. We hoped that 

the 3D model would be a better representative of in vivo condition and gave us more insight into 

the influence of microenvironment signaling on valve cell functional behavior. 

 

 

 

 

 

 

 

 

 

 

 



 

64 

REFERENCES 

 

Alford, P. W., A. P. Nesmith, J. N. Seywerd, A. Grosberg, and K. K. Parker. 2011. Vascular 

smooth muscle contractility depends on cell shape. Integr Biol (Camb) 3 (11):1063-70. 

Badrossamay, M. R., K. Balachandran, A. K. Capulli, H. M. Golecki, A. Agarwal, J. A. Goss, H. 

Kim, K. Shin, and K. K. Parker. 2014. Engineering hybrid polymer-protein super-aligned 

nanofibers via rotary jet spinning. Biomaterials 35 (10):3188-97. 

Balachandran, K., P. W. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, E. Aikawa, 

R. A. Levine, and K. K. Parker. 2011. Cyclic strain induces dual-mode endothelial-mesenchymal 

transformation of the cardiac valve. Proceedings of the National Academy of Sciences of the 

United States of America 108 (50):19943-8. 

Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. 2009. Elevated cyclic stretch alters 

matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. 

American journal of physiology. Heart and circulatory physiology 296 (3):H756-64. 

Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. 2010. Elevated cyclic stretch 

induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol 

177 (1):49-57. 

Balachandran, K., P. Sucosky, and A. P. Yoganathan. 2011. Hemodynamics and 

mechanobiology of aortic valve inflammation and calcification. Int J Inflam 2011:263870. 

Butcher, J. T., and R. M. Nerem. 2004. Porcine aortic valve interstitial cells in three-dimensional 

culture: comparison of phenotype with aortic smooth muscle cells. The Journal of heart valve 

disease 13 (3):478-85; discussion 485-6. 

Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. 2002. Traction fields, 

moments, and strain energy that cells exert on their surroundings. American journal of 

physiology. Cell physiology 282 (3):C595-605. 

Chaterji, S., P. Kim, S. H. Choe, J. H. Tsui, C. H. Lam, D. S. Ho, A. B. Baker, and D. H. Kim. 

2014. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell 

function. Tissue engineering. Part A 20 (15-16):2115-26. 



 

65 

Chaudhuri, O., L. Gu, M. Darnell, D. Klumpers, S. A. Bencherif, J. C. Weaver, N. Huebsch, and 

D. J. Mooney. 2015. Substrate stress relaxation regulates cell spreading. Nat Commun 6:6364. 

Cheng, Q., K. Komvopoulos, and S. Li. 2011. Surface chemical patterning for long-term single-

cell culture. Journal of biomedical materials research. Part A 96 (3):507-12. 

Dahl, K. N., A. J. Ribeiro, and J. Lammerding. 2008. Nuclear shape, mechanics, and 

mechanotransduction. Circulation research 102 (11):1307-18. 

DuFort, C. C., M. J. Paszek, and V. M. Weaver. 2011. Balancing forces: architectural control of 

mechanotransduction. Nat Rev Mol Cell Biol 12 (5):308-19. 

Gao, L., R. McBeath, and C. S. Chen. 2010. Stem cell shape regulates a chondrogenic versus 

myogenic fate through Rac1 and N-cadherin. Stem cells 28 (3):564-72. 

Georgakoudi, I., and K. P. Quinn. 2012. Optical imaging using endogenous contrast to assess 

metabolic state. Annual review of biomedical engineering 14:351-67. 

Gould, R. A., and J. T. Butcher. 2010. Isolation of valvular endothelial cells. Journal of 

visualized experiments : JoVE (46). 

Gould, S. T., S. Srigunapalan, C. A. Simmons, and K. S. Anseth. 2013. Hemodynamic and 

cellular response feedback in calcific aortic valve disease. Circulation research 113 (2):186-97. 

Guilak, F. 1995. Compression-induced changes in the shape and volume of the chondrocyte 

nucleus. J Biomech 28 (12):1529-41. 

Guilak, F., J. R. Tedrow, and R. Burgkart. 2000. Viscoelastic properties of the cell nucleus. 

Biochemical and biophysical research communications 269 (3):781-6. 

Harkness, T., J. D. McNulty, R. Prestil, S. K. Seymour, T. Klann, M. Murrell, R. S. Ashton, and 

K. Saha. 2015. High-content imaging with micropatterned multiwell plates reveals influence of 

cell geometry and cytoskeleton on chromatin dynamics. Biotechnology journal 10 (10):1555-67. 

Huang, H. Y., J. Liao, and M. S. Sacks. 2007. In-situ deformation of the aortic valve interstitial 

cell nucleus under diastolic loading. J Biomech Eng 129 (6):880-89. 



 

66 

Kane, R. S., S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides. 1999. Patterning 

proteins and cells using soft lithography. Biomaterials 20 (23-24):2363-76. 

Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. 2010. Geometric cues for directing the 

differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of 

the United States of America 107 (11):4872-7. 

Kim, H. R., C. Gallant, P. C. Leavis, S. J. Gunst, and K. G. Morgan. 2008. Cytoskeletal 

remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus 

dependent. American journal of physiology. Cell physiology 295 (3):C768-78. 

Lee, C. H., C. A. Carruthers, S. Ayoub, R. C. Gorman, J. H. Gorman, 3rd, and M. S. Sacks. 

2015. Quantification and simulation of layer-specific mitral valve interstitial cells deformation 

under physiological loading. Journal of theoretical biology 373:26-39. 

Lee, H., W. J. Adams, P. W. Alford, M. L. McCain, A. W. Feinberg, S. P. Sheehy, J. A. Goss, 

and K. K. Parker. 2015. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac 

myocytes. Experimental biology and medicine. 

Liu, A. C., and A. I. Gotlieb. 2007. Characterization of cell motility in single heart valve 

interstitial cells in vitro. Histol Histopathol 22 (8):873-82. 

Maganti, K., V. H. Rigolin, M. E. Sarano, and R. O. Bonow. 2010. Valvular heart disease: 

diagnosis and management. Mayo Clin Proc 85 (5):483-500. 

Maniotis, A. J., C. S. Chen, and D. E. Ingber. 1997. Demonstration of mechanical connections 

between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. 

Proceedings of the National Academy of Sciences of the United States of America 94 (3):849-54. 

McCain, M. L., T. Desplantez, N. A. Geisse, B. Rothen-Rutishauser, H. Oberer, K. K. Parker, 

and A. G. Kleber. 2012. Cell-to-cell coupling in engineered pairs of rat ventricular 

cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical 

conductance. American journal of physiology. Heart and circulatory physiology 302 (2):H443-

50. 

McCain, M. L., and K. K. Parker. 2011. Mechanotransduction: the role of mechanical stress, 

myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462 (1):89-104. 



 

67 

Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. 

Sacks. 2006. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: 

implications for collagen biosynthesis. American journal of physiology. Heart and circulatory 

physiology 290 (1):H224-31. 

Oakes, P. W., S. Banerjee, M. C. Marchetti, and M. L. Gardel. 2014. Geometry regulates traction 

stresses in adherent cells. Biophysical journal 107 (4):825-33. 

Oh, J. H., A. Gertych, and J. Tajbakhsh. 2013. Nuclear DNA methylation and chromatin 

condensation phenotypes are distinct between normally proliferating/aging, rapidly 

growing/immortal, and senescent cells. Oncotarget 4 (3):474-93. 

Parsons, J. T., A. R. Horwitz, and M. A. Schwartz. 2010. Cell adhesion: integrating cytoskeletal 

dynamics and cellular tension. Nat Rev Mol Cell Biol 11 (9):633-43. 

Qin, D., Y. Xia, and G. M. Whitesides. 2010. Soft lithography for micro- and nanoscale 

patterning. Nat Protoc 5 (3):491-502. 

Quinn, K. P., E. C. Leal, A. Tellechea, A. Kafanas, M. E. Auster, A. Veves, and I. Georgakoudi. 

2016. Diabetic Wounds Exhibit Distinct Microstructural and Metabolic Heterogeneity through 

Label-Free Multiphoton Microscopy. J Invest Dermatol 136 (1):342-4. 

Quinn, K. P., G. V. Sridharan, R. S. Hayden, D. L. Kaplan, K. Lee, and I. Georgakoudi. 2013. 

Quantitative metabolic imaging using endogenous fluorescence to detect stem cell 

differentiation. Scientific reports 3:3432. 

Rabkin, E., S. P. Hoerstrup, M. Aikawa, J. E. Mayer, Jr., and F. J. Schoen. 2002. Evolution of 

cell phenotype and extracellular matrix in tissue-engineered heart valves during in-vitro 

maturation and in-vivo remodeling. The Journal of heart valve disease 11 (3):308-14; discussion 

314. 

Sacks, M. S., W. David Merryman, and D. E. Schmidt. 2009. On the biomechanics of heart valve 

function. J Biomech 42 (12):1804-24. 

Shodell, M., and H. Rubin. 1970. Studies on the nature of serum stimulation of proliferation in 

cell culture. In vitro 6 (1):66-74. 

Skala, M. C., K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, 

and N. Ramanujam. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, 



 

68 

fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the 

National Academy of Sciences of the United States of America 104 (49):19494-9. 

Skala, M., and N. Ramanujam. 2010. Multiphoton redox ratio imaging for metabolic monitoring 

in vivo. Methods in molecular biology 594:155-62. 

Thakar, R. G., Q. Cheng, S. Patel, J. Chu, M. Nasir, D. Liepmann, K. Komvopoulos, and S. Li. 

2009. Cell-shape regulation of smooth muscle cell proliferation. Biophysical journal 96 

(8):3423-32. 

Varone, A., J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, 

K. Lee, K. Munger, and I. Georgakoudi. 2014. Endogenous two-photon fluorescence imaging 

elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in 

precancerous epithelial tissues. Cancer research 74 (11):3067-75. 

Versaevel, M., T. Grevesse, and S. Gabriele. 2012. Spatial coordination between cell and nuclear 

shape within micropatterned endothelial cells. Nat Commun 3:671. 

Versaevel, M., T. Grevesse, M. Riaz, J. Lantoine, and S. Gabriele. 2014. Micropatterning 

hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli. 

Methods in cell biology 121:33-48. 

Vishavkarma, R., S. Raghavan, C. Kuyyamudi, A. Majumder, J. Dhawan, and P. A. Pullarkat. 

2014. Role of actin filaments in correlating nuclear shape and cell spreading. PLoS One 9 

(9):e107895. 

Warnock, J. N., S. C. Burgess, A. Shack, and A. P. Yoganathan. 2006. Differential immediate-

early gene responses to elevated pressure in porcine aortic valve interstitial cells. The Journal of 

heart valve disease 15 (1):34-41; discussion 42. 

Win, Z., G. D. Vrla, K. E. Steucke, E. N. Sevcik, E. S. Hald, and P. W. Alford. 2014. Smooth 

muscle architecture within cell-dense vascular tissues influences functional contractility. Integr 

Biol (Camb) 6 (12):1201-10. 

Yap, C. H., H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. 2010. 

Dynamic deformation characteristics of porcine aortic valve leaflet under normal and 

hypertensive conditions. American journal of physiology. Heart and circulatory physiology 298 

(2):H395-405. 



 

69 

Ye, G. J., Y. Aratyn-Schaus, A. P. Nesmith, F. S. Pasqualini, P. W. Alford, and K. K. Parker. 

2014. The contractile strength of vascular smooth muscle myocytes is shape dependent. Integr 

Biol (Camb) 6 (2):152-63. 

Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. 

Weaver, and P. A. Janmey. 2005. Effects of substrate stiffness on cell morphology, cytoskeletal 

structure, and adhesion. Cell motility and the cytoskeleton 60 (1):24-34. 

Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. 2009. Calcification by Valve Interstitial 

Cells Is Regulated by the Stiffness of the Extracellular Matrix. Arterioscler Thromb Vasc Biol. 

Zink, D., A. H. Fischer, and J. A. Nickerson. 2004. Nuclear structure in cancer cells. Nat Rev 

Cancer 4 (9):677-87. 

 

 



 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lam, N. T., H. Lam, N. M. Sturdivant, and K. Balachandran. 2017. Fabrication of a matrigel-

collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Biomed 

Mater 12 (4):045013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 
 

Fabrication of a matrigel-collagen semi-interpenetrating scaffold for use in dynamic valve 

interstitial cell culture 
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ABSTRACT 

The previous study provides us with valuable information regarding heart valve cell behavior in 

response to abnormal alteration in shape at single cell level. The results encourage us to look 

further into the underlying mechanism that regulates these responses. In order to do that, we need 

to have a culture model that is more closely mimic the natural heart valve environment because 

virtually the study of heart valve homeostatic and disease mechanisms are limited by the 

challenges in simulating the in vivo milieu, where valve cells are surrounded by the extracellular 

matrix in a three dimensional environment and experience multiple dynamic mechanical forces. 

Type I collagen is typically the most common three dimensional matrix used to culture valve 

cells in vitro. Unfortunately, this material has poor mechanical behavior due to an inherent 

propensity to compact significantly, unlike native valve leaflets. We hypothesized that 

incorporation of matrigel, which contains other heart valve-relevant matrix components such as 

type IV collagen and sulfated proteoglycans, to type I collagen would provide an appropriate 

physiological milieu for in vitro valve interstitial cell culture. Different semi-interpenetrating 

mixtures of collagen type I and matrigel were prepared and a thorough characterization of their 

physical, mechanical and biocompatibility properties was performed. We observed that the 

matrigel-collagen hydrogel was porous and degradable with tunable swelling behavior. 

Incorporation of matrigel not only enhanced the mechanical behavior of the composite hydrogel 

but also presented the cultured valve interstitial cells with a more enriched extracellular matrix 

network for in vitro culture.  We showed that cells cultured in the composite hydrogel had 

comparable viability, proliferation and cell phenotype as compared with those in a collagen only 

gel. Importantly, the composite hydrogel also was amenable to in vitro cyclic stretching culture 

for 48 hours. Overall, we report here the potential use of the matrigel-collagen hydrogel as a 
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three dimensional scaffold for the dynamic mechanical culture of valve interstitial cells in vitro 

as well as a possible culture platform for signaling study. 
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1. INTRODUCTION 

Valvular heart disease (VHD) affects approximately 3% of the population, with surgical 

replacement as the only viable treatment option (Rajamannan et al. 2011). For years, researchers 

have focused on deciphering the specific molecular mechanisms for VHD pathogenesis and 

progression in vitro, in order to find a better, non-surgical treatment. Most early in vitro studies 

were carried out in a traditional two-dimensional (2D) cell culture platform that did not 

effectively mimic the complex hemodynamic in vivo environment (Osman et al. 2006; Fisher, 

Chen, and Merryman 2013; Hjortnaes et al. 2015; Jian et al. 2002). Recently, three-dimensional 

(3D) scaffolds have come to the fore as being superior to the 2D format by providing a more 

physiological framework to support cell growth, and presenting the cells with similar 

physiochemical profiles as the native valve extracellular matrix (ECM) (Zhang et al. 2015; 

Geckil et al. 2010). Type I collagen-based hydrogels are one of the most common scaffolds that 

have been used for culturing heart valve cells, especially valve interstitial cells (VICs) as this 

isoform of collagen is the most prevalent and also acts as the load-bearing ECM protein in native 

heart valves (Butcher and Nerem 2004; Gupta et al. 2007). However, a disadvantage of type I 

collagen gels is its propensity to significantly compact in vitro. Other natural hydrogels such as 

hyaluronic acid, gelatin, alginate have also been widely used in many applications, either alone 

or in combination with other materials (Masters et al. 2005; Duan et al. 2013). The concern 

associated with natural hydrogels is that while they show good bioactivity, they are mechanically 

weak (Zhu and Marchant 2011). Synthetic hydrogels, in contrast, show tunable mechanical 

performances and have more reproducible physical and chemical properties. However, their 

biocompatibility and potential cytotoxicity are a major concern. In fact, only few of them have 

been approved by the FDA for clinical applications, such as poly(ethylene glycol) (PEG), 
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polylactic acid (PLA)  and poly(lactic-co-glycolic acid) (PLGA) (Lam and Wu 2012; Zhang et 

al. 2015; Young, Poole-Warren, and Martens 2012; Shin, Nichol, and Khademhosseini 2011). 

Indeed, the ideal 3D scaffolding material for the in vitro culture of heart valve cells as well as the 

in vitro study of valve mechanobiology is still open to debate in the field. 

In the context of understanding valve biology and pathology in vitro, it is of utmost importance 

to incorporate mechanical stimulation in the cell culture system to better simulate the in vivo 

hemodynamic milieu of the heart valves. Heart valves, specifically the aortic valve, experience 

multiple types of mechanical forces (i.e. shear stress, pressure, tensile stretch) during a cardiac 

cycle (Balachandran, Sucosky, and Yoganathan 2011). There have been several efforts toward 

applying one to two forces in vitro to study relevant cellular responses (Balachandran et al. 2009, 

2010; Balachandran, Alford, et al. 2011; Thayer et al. 2011; Xing et al. 2004; Sacks, David 

Merryman, and Schmidt 2009). It should be noted that most of those experiments were done at 

the tissue level on the ex vivo leaflet explants, but not at the cellular scale, simply because of the 

lack of an appropriate 3D culture model that could sustain the cyclic mechanical stimulation. 

Accordingly, our goal for this study was to create a collagen-based hydrogel scaffold that could 

serve as a 3D matrix for regular VIC culture and be amenable to dynamic mechanical 

stimulation. 

We hypothesized that addition of matrigel, thus supplementing the matrix with valve-relevant 

ECM components, such as laminin, proteoglycan and collagen type IV, would enhance the 

overall mechanical performance of the scaffold without affecting cell viability and health. It is 

worth noting that a similar matrigel-collagen semi-interpenetrating hydrogel has been studied by 

others for different cell types. For instance, when collagen was mixed with matrigel and cultured 

with cardiac myocytes, it was observed that the “engineered heart tissue” displayed functional 
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and morphological properties of differentiated heart muscle (Zimmermann, Schneiderbanger, et 

al. 2002; Zimmermann, Melnychenko, and Eschenhagen 2004). This construct was also 

implanted into syngeneic rats and showed positive outcomes which included vascularization and 

acquisition of a highly differentiated cardiac phenotype 14 days after transplantation 

(Zimmermann, Didie, et al. 2002). Mixture of matrigel and collagen was also used to 

successfully culture cardiomyocyte progenitor cells, without mitigating their viability and 

proliferation while promoting cell differentiation and ECM remodeling capacity compared to 2D 

culture (van Marion et al. 2015). Similarly, this hydrogel was also reported to promote survival 

and morphology of Schwann cells in vitro (Dewitt et al. 2009). Despite these precedent studies, 

the potential use of the matrigel-collagen hydrogel has not yet been thoroughly investigated in 

the heart valve field. Matrigel alone has been used for valve interstitial cell-valve endothelial cell 

(VEC) co-culture model, but in the absence of mechanical stimulation (Arevalos et al. 2016). 

Our results demonstrated that VICs cultured in a matrigel-collagen semi-interpenetrating 

hydrogel had comparable viability, proliferation and cell phenotype as compared with those 

cultured in a pure collagen gel. Importantly, the composite hydrogel was amenable to in vitro 

cyclic stretching culture for 48 hours, without spontaneous gel compaction. It is hoped that this 

composite scaffolding material will have potential applications for the study of valve cell 

mechanobiology. 

2. MATERIALS AND METHODS 

2.1. Fabrication of the matrigel-collagen hydrogel 

Rat tail collagen type I and reduced growth factor matrigel were both purchased from Corning, 

NY. Collagen was diluted in phosphate-buffered saline (PBS) to appropriate final concentrations 

and neutralized with 1M sodium hydroxide (NaOH). The collagen-only and matrigel-only 
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hydrogels served as the controls. Collagen type I is the main constituent of the heart valve ECM 

and is commonly used as an in vitro 3D matrix for culturing heart valve cells at the concentration 

of 1-2mg/ml (Gould et al. 2012; Kamel et al. 2014; Sapp et al. 2015). Hence, we chose 1mg/ml 

and 2mg/ml working concentrations of collagen to use as the controls. Four different semi-

interpenetrating combinations of matrigel and collagen (M-C) were made by incorporating of 

80%, 65%, 55% and 45% matrigel by volume to the collagen solutions at concentration of 0.5 

mg/ml, 1 mg/ml, 1.5 mg/ml and 2 mg/ml, respectively, and mixing gently via pipetting. During 

the preparation process, all reagents were kept on ice. The hydrogels were then allowed to 

polymerize at 37°C for at least 30 minutes.  A total of seven samples were made and denoted as 

in table 4.1. 

Table 4.1: Summary of the samples used in the study 

 

 

 

 

2.2. Characterization of the matrigel-collagen hydrogel 

2.2.1. Scanning electron microscopy (SEM) 

After the hydrogels (Table 4.1) were prepared as described above, they were first processed for 

SEM imaging to analyze their morphology and structure. The gels were fixed with 

glutaraldehyde for 3 hours at 4°C followed by dehydration via a series of ethanol exchanges 

(50%, 75%, 90% and 100%). These samples were left overnight in hexamethyldisilazane 

(HMDS) to ensure complete dehydration. Dry hydrogels were sputtered coated with gold for 2 

minutes and imaged with a FEI
 
Nova Nanolab 200 Dual-Beam (FEI, OR) at magnification of 

 Matrigel Collagen  

1 mg/ml 

Collagen  

2 mg/ml 

M-C 

0.5 mg/ml 

M-C  

1mg/ml 

M-C      

 1.5 mg/ml 

M-C         

2 mg/ml 

Matrigel (v/v) 100%  None None 80%  65%  55%  45%  

Collagen None 1mg/ml 2mg/ml 0.5mg/ml 1mg/ml 1.5mg/ml 2mg/ml 

NaOH None Yes Yes Yes Yes Yes Yes 
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10,000X. At least 10 fields were taken per sample and ImageJ was used to measure the pore 

diameter. Cross-sectional SEM images were also taken to visualize the distribution of the pores 

throughout the scaffold structure. 

2.2.2. Swelling and degradation studies 

For the swelling assay, the hydrogel samples (Table 4.1) were prepared as described previously 

and then lyophilized overnight using a Freezone 4.5 system (Labconco, MO). The gels were 

weighed one by one and the dry weight of each gel was noted as W0. They were then transferred 

to 1.5ml microcentrifuge tubes, and immersed in 1X PBS and stored at 37°C. At 1, 6, 12, 24 and 

48 hour time points, the PBS solution was carefully removed; the gels were weighed again and 

the wet weights were noted as W1. The swelling ratio for each sample was calculated as in 

equation 1: 

                           
     

  
     

 For the degradation study, the hydrogels (Table 4.1) were prepared and weighed right after 

gelation, without the lyophilization step. Initial wet weight of each sample was noted as W0. 

1mg/ml lysozyme (Worthington, NJ) was dissolved in 1X PBS before adding to the samples and 

keeping at 37°C to mimic in vivo enzymatic degradation (Tan, Rubin, and Marra 2010; Babu et 

al. 2011). At 1, 2, 5, 7, 14, 21, and 28 days, the lysozyme solution was removed carefully; the 

gels were weighed and the final wet weights were noted as W1. Degradation ratio for each 

sample was calculated as in equation 2: 

                                 
  

  
     

2.2.3. Mechanical testing  

An Instron™ 5900 Series (Canton, MA) mechanical tester was used to measure the mechanical 

properties of seven samples. Gels with a 13 mm diameter and 2-3 mm height were tested in 
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unconfined compression. The gel was compressed at a rate of 1 mm/min and the test was ended 

once the gel was compressed to 1/10 of its original height. The compressive extension and the 

compressive load were recorded every 0.05 seconds. Using a custom MATLAB code, the slope 

of the stress versus strain curve was calculated between each time point and the average slope 

was reported as the Young‟s modulus. 

2.3. Biocompatibility of the matrigel-collagen hydrogel  

2.3.1. Cell isolation and culture 

Valve interstitial cells (VICs) were isolated and cultured as described elsewhere (Butcher and 

Nerem 2004; Lam et al. 2016; Tandon et al. 2016). Briefly, porcine hearts obtained from local 

abattoir (Cockrum‟s Custom Meat Processing and Taxidermy, AR) were dissected aseptically 

and the aortic valve leaflets were collected. 1mg/ml collagenase solution (Worthington, NJ) was 

added to the leaflets for 3 hours at 37°C with frequent agitation. Cold 10% fetal bovine serum 

(FBS)-containing Dulbecco‟s Modified Eagle Medium (DMEM) was added to quench enzymatic 

activity. The solution was allowed to flow through the cell strainer (Corning, NY) to remove any 

remained tissue debris before centrifuging for 5 minutes at 4°C. The cell pellet was resuspended 

in the cell culture media, plated in a flask in a 37°C incubator. Fresh media was changed every 3 

days. Cells from passage 1-7 were used in all subsequent experiments. 

2.3.2. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

For the cell proliferation assessment, VICs were trypsinized and mixed with the ice-cold 

hydrogel solutions. All samples (Table 4.1) had equal amounts of starting cells (10
6 

cells). The 

gel constructs were allowed to polymerize for 30 minutes in a 37°C incubator. Cell culture media 

was then added on top of the gels and the constructs kept in culture for a subsequent 48 hours. 

After culture, samples were rinsed twice with PBS before 5mg/ml MTT reagent (Life 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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technologies, CA) was added onto the hydrogels and incubated at 37°C for 4 hours. DMEM only 

samples served as the blank/negative control. The positive control was VICs cultured in regular 

2D cell culture plastic.  After 4 hours, MTT solution was carefully removed and dimethyl 

sulfoxide (DMSO) was added for 15 minutes to solubilize the formazan – the end-product of the 

MTT reduction due to intracellular enzyme activity.  Solutions on top of the gels were 

transferred to a 96 well-plate and the absorbance was read at 570nm. These absorbance values 

were used to directly assess cell proliferation. 

2.3.3.  Live/dead assay 

The hydrogels encapsulated with cells were prepared as described above. Live/Dead assay kit 

reagents (Life technologies, CA) were thawed at room temperature and mixed with 1X PBS to 

obtain the working concentrations of 10µM Calcein AM and 10µM Ethidium-1. This mixture 

was added to the hydrogel samples and incubated in the dark at room temperature for 45 

minutes. Live cells interacted with Calcein AM dye and stained green while dead cells interacted 

with Ethidium-1 dye and stained red. Labeled cells were visualized under an epifluorescent 

microscope. At least 10 fields per channel were imaged per sample at the same intensity and 

acquisition integration time. Based on visual inspection, a threshold was defined for each 

channel and kept consistent through samples. Live and dead cells were manually counted in 

every image and the percentage of live cells was calculated as the number of live cells over the 

total number of cells (i.e. live and dead cells) in that image field. 

2.4. ECM remodeling and differentiation potential of VIC in matrigel-collagen hydrogels 

To be used as a 3D substrate for in vitro cell culture, it was important to ensure that the 

scaffolding material of this composite hydrogel did not detrimentally alter the normal 
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homeostatic behavior of the cell as in other standard in vitro culture techniques. To evaluate this, 

we performed two sets of experiments as described below: 

2.4.1. MMP-2 and -9 proteolytic activity 

VICs were cultured in the composite and control hydrogels for 2 days before their proteolytic 

activities were detected via gelatin zymography.  Cells were lysed with RIPA buffer (Santa Cruz 

Biotechnology, CA), followed by protein collection and quantification via a bicinchoninic acid 

(BCA) assay (Life technologies, CA). Cell lysate was mixed with 4X Laemmli sample buffer. 

10% of resolving gel and 4% of stacking gel were prepared as described elsewhere 

(Balachandran et al. 2009). Equal amounts of lysate were loaded to each lane and electrophoresis 

was run for 3 hours at 4
0
C, 80V under non-reducing conditions. The gels were then washed 

sequentially in 2.5% triton X-100 and development buffer (50mM Tris-HCl, pH 7.5, 200mM 

NaCl, 5mM CaCl2), followed by an overnight incubation at 37
0
C. The next day, samples were 

stained with 0.5% Coomassie brilliant blue for 2 hours and destained until the bands were 

resolved. Visualization of the proteolytic activity appeared as white bands over a dark 

background. Intensity of the bands was quantified using imageJ. 

2.4.2. VIC phenotype in matrigel-collagen hydrogels 

We asked if VICs cultured in the matrigel-collagen composite hydrogel were able to maintain 

their normal phenotypic profile compared to those cultured in the collagen-only hydrogels. Cell 

lysates were prepared as for zymography but with the presence of the reducing agent - β-

mercaptoethanol. Western blotting was performed using previously published methods (Lam et 

al. 2016) to detect the expression of the following markers: α-SMA (Abcam, 1:200), calponin 

(Abcam, 1:1000), fibronectin (Abcam, 1:500) and vimentin (Abcam, 1:1500) with β-actin 

(Abcam, 1:200) as the loading control.  
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2.5. Matrigel-collagen hydrogel mechanical behavior 

2.5.1. Gel compaction study 

2.5.1.1. Compaction characteristic of native valve leaflets 

In order to study the compaction nature of native valve leaflets, we collected aortic valve leaflets 

from porcine heart as described in cell isolation section. After dissection, these valves were kept 

in DMEM medium for 2 days at 37
0
C, 5% CO2. Images were taken every 24 hours to measure 

changes in size of these leaflets.  

2.5.1.2. Hydrogel compaction study 

Since excised aortic leaflets showed no change in size for at least two days in culture (Figure 

4.10), we postulated that the addition of matrigel would reduce the spontaneous compacting 

behavior observed in collagen-only hydrogels and make the composite one to behave in a similar 

manner as native aortic valve leaflets. The hydrogels (Table 4.1) were subjected to uniaxial 

cyclic stretching and changes in gel contraction were measured over the period of 2 days. 

Specifically, a small silicone ring (diameter = 1.5 inches) was attached to a 0.01 inch elastomeric 

membrane (Specialty Manufacturing, Inc.) to create a chamber for cell culture. The two ends of 

the membrane were constrained by a set of clamps so that the whole setup could be mounted 

onto a custom-built cyclic biostretcher device (Figure 4.1 A-C).  VICs were mixed with the ice-

cold hydrogel solution and pipetted into the ring. Cell culture media were added 30 minutes after 

gelation. Uniaxial stretching was initiated to 20% strain magnitude, 1 Hz and kept running for 48 

hours. Strain on the gel was validated using marker tracking experiments (Figure 4.2).  The 

samples were imaged at 24 and 48 hours after initiation of stretching and ImageJ was used to 

track changes in gel size from these images. The chosen strain magnitude was based on prior 
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publications and represented the higher end of mechanical stimulation that valve cells might 

experience in vivo (Yap et al. 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: (A) Schematic of custom-designed culture chamber with silicone ring attached to a 

silicone membrane. The two ends of the membrane were constrained by a clamping system. One 

end was coupled to a linear actuator and would stretch, while the other end stayed stationary. ΔL 

was calculated to give a desired strain magnitude. Representative images of the culture chamber 

that was inserted onto the biostretcher, provided with (B) top view and (C) side view. 
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Figure 4.2: Representative images showing marker grid used to validate strain on Matrigel-

Collagen hydrogel.  

 

2.5.2. Changes in morphology of encapsulated VICs as the effect of cyclic stretch 

To assess acute changes in cell morphology under cyclic stretch, VICs were cultured in the 

matrigel-collagen composite gel that demonstrated the least contraction and delamination in the 

previous study, and cyclically stretch for 48 hours. The control sample was VICs cultured in the 

composite gel without cyclic mechanical stimulation. At the end of the experiment, the hydrogels 

(stretched and static) were fixed with PFA for 15 minutes before they were incubated with DAPI 

(Life technologies, 1:100) and phalloidin (Life technologies, 1:100) for 1 hour at room 

temperature. These samples were then visualized under an epifluorescent microscope with 

appropriate channels (i.e. blue channel for DAPI and green channel for phalloidin). At least 10 

fields per channel were imaged per sample. Using phalloidin staining images, actin alignment 

was analyzed with a previously published MATLAB code (Lam et al. 2016). 

We also took z-stack images of a representative sample stained with Phalloidin to look into cell 

distribution through the scaffold. 

2.6. Statistical methods 

All quantitative data were first analyzed for normality using the Anderson-Darling method. All 

normally distributed data were subsequently analyzed by one-way ANOVA followed by Holm-

Sidak multiple pairwise comparisons. A p-value of less than 0.05 was used to indicate statistical 

significance differences between samples. Data was plotted as mean with standard error bars.  

Stretched  No stretch  
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3. RESULTS 

3.1. The matrigel-collagen hydrogel was porous, degradable, with tunable swelling and 

mechanical properties 

SEM images revealed different morphologies and porosities among seven hydrogel samples 

(Figure 4.3 A-B). Specifically, the matrigel-only and all four composite hydrogels were porous 

scaffolds, with pore size between 1.13-1.57 µm (Figure 4.3 A1, A4-A7). No fiber-like structures 

were readily visible in these scaffolds. In contrast, the collagen-only samples had clearly visible 

fiber-like structures with some porosity between their fibers (Figure 4.3 A2-A3). With increasing 

concentrations of collagen in the composite hydrogels, the pores tended to become larger with 

greater diameter (1.13 -1.57 µm) compared to the matrigel-only (0.59 µm) (p=0.09). Cross-

sectional images (Figure 4.4) indicated the porosity characteristics of these scaffolds were 

consistent within the thickness of the gel structure, with highest porosity observed in the M-C 

2mg/ml samples.  

The matrigel-collagen hydrogel showed variable swelling and degradation behavior compared to 

the controls, depending on matrigel concentration. The collagen-only hydrogels (both 1mg/ml 

and 2mg/ml) showed minimal swelling (Figure 4.5 A). The matrigel-only hydrogels, on the other 

hand, gradually increased fluid uptake from the 0 to 24 hour time point, then followed by a drop 

in swelling after 48 hours. The matrigel-collagen composite hydrogels shared similar behavior 

with the matrigel-only hydrogel with slight difference in the final swelling ratio. The speed of 

swelling in these samples appeared to inversely correlate with the amount of collagen. 

Collagen-only hydrogels were enzymatically degraded to undetectable levels within the first day 

of the assay while the matrigel-only hydrogel demonstrated comparable degradation only after 

the third week (Figure 4.5 B). The matrigel-collagen composite hydrogels demonstrated variable 
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degradation depending on the amount of matrigel and collagen present in each sample. 

Particularly, the matrigel-collagen 0.5mg/ml, 1mg/ml and 1.5mg/ml samples started to degrade 

at the 5
th

 day of the experiment whereas the matrigel-collagen 2mg/ml showed an acute drop in 

weight after 24 hours and was completely degraded after 4 weeks. Similar to the swelling 

studies, the presence of matrigel appeared to significantly improve the degradation properties of 

the composite scaffold for longer durations than the collagen-only hydrogel samples. We also 

analyzed the mechanical stiffness of these hydrogel samples (Figure 4.5 C-D). The matrigel-only 

hydrogel had Young‟s modulus between that of the collagen 1mg/ml and collagen 2mg/ml 

samples. Incorporation of matrigel into collagen 1mg/ml and 2mg/ml significantly increased the 

gel mechanical stiffnesses (from 13.4 to 21.7 kPa, and 19.2 to 39.1 kPa, respectively) (p<0.05). 

Overall, all four composite hydrogels had equal to higher Young‟s moduli compared to the 

controls, suggesting that the combination of matrigel and collagen in a semi-penetrating network 

improved the mechanical strength of the overall hydrogel compared to when the components 

were separate.  
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Figure 4.3: Representative SEM images of seven samples. (A) All samples showed some levels 

of porosity but (A1) and (A4-7) were considered as porous scaffolds; (A2 and A3) were more 

fibrous , scale bar = 5µm, n=2. (B) Mean scaffold pore diameter data. 

Figure 4.4: Cross-sectional scanning electron microscopy images showed evidence of the pores 

throughout the structure of the matrigel and matrigel-collagen scaffolds, scale bar = 5µm. 
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Figure 4.5: (A) swelling ratio, (B) degradation ratio, (C) representative stress versus strain 

curves and (D) Young‟s modulus of the hydrogels,  n=5, * p<0.05. 

 

3.2. Collagen increased cell viability and proliferation  

Cell viability and proliferation were assessed across the seven hydrogel samples after two days in 

culture using Live/Dead and MTT assays. As shown in figure 4.6 A, cells tended to be more 

clustered with numerous small branches in samples that had lower amounts of collagen, 

including the matrigel, matrigel-collagen 0.5mg/ml, matrigel-collagen 1mg/ml and matrigel-

collagen 1.5mg/ml. In contrast, they were more separate, and spread-out in samples that had pure 

collagen or high concentrations of collagen, including the collagen 1mg/ml, 2 mg/ml, and 

matrigel-collagen 2mg/ml. Significantly higher cell viability was also observed in these samples 

(Figure 4.6 B, Figure 4.7, p<0.05) that was thought to be due to the fact that the VICs were 

surrounded by collagen, as it is in vivo. Consistently, the presence of collagen in the composite 

hydrogel was the determining factor for improved cell viability as VICs in samples with higher 

proportion of matrigel (i.e. matrigel-collagen 0.5mg/ml and matrigel-collagen 1mg/ml) had 

significantly lower viability than in samples with higher proportion of collagen (i.e. collagen-

A

A 

C

B

D
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only hydrogels, matrigel-collagen 2mg/ml) (Figure 4.6 B, Figure 4.7). Live/Dead results were 

further supported by the MTT assay (Figure 4.6 C). The collagen 1mg/ml sample had the highest 

level of viable metabolically active cells, even significantly higher than in the collagen 2mg/ml 

sample (p<0.05). In all other samples, incorporation of matrigel did not cause significant change 

in cell proliferation (p>0.05) although there was a clear increasing trend with increasing 

concentrations of collagen. 

Figure 4.6: (A) Representative merged Live/Dead images. Live cells appear green; dead cells 

appear red, scale bar = 100µm (B) Quantitative analysis of cell viability which was calculated as 

the number of live cells over the total number of cells. (C) Absorbance reading for MTT assay at 

570nm, corresponding to the proliferation state of VICs across samples, n=3 for Live/Dead 

assay, n=4 for MTT assay, * p<0.05. 
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Figure 4.7: Representative dead stained cells, scale bar = 100µm. 

3.3. Matrigel did not induce altered ECM remodeling activity or differentiation in VICs 

We first evaluated changes in the proteolytic activity of MMP-2 and -9 in cultured VICs as these 

enzymes play important roles in maintaining ECM homeostasis (Cox and Erler 2011). As shown 

in figure 4.7 A, pro-MMP2 and active MMP-2 were seen at 72kDa and 66kDa regions while 

triple gelatinolytic bands of MMP-9 migrated at the region of 90kDa. Whereas pro-MMP9 and 

active MMP9 were usually seen at 92kDa and 82kDa, respectively, the identity of the third band 

could be a partially glycosylated MMP9 at around 83-85kDa (Toth and Fridman 2001). Using 

imageJ, we quantified the integrative intensity of these gelatinase bands (i.e. double bands of 

MMP-2 and triple bands of MMP-9). As shown in figure 4.8 B-C, the proteolytic activity of 

MMP-2 and -9 was not altered by the matrix materials that were used in the composite hydrogel 

scaffold as no statistically significant difference was found between the samples for both MMP-2 

(p=0.8) and MMP-9 (p=0.6). 

In addition to zymography, western blotting was performed to examine the phenotypic profile of 

VICs (Figure 4.9 A-E). The expression of vimentin is commonly an indicator of a quiescent VIC 

phenotype, while the expression of fibronectin, smooth muscle actin (SMA) and calponin is 

associated with activated VICs (Liu, Joag, and Gotlieb 2007). Our western blotting reported 
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similar observations as in the zymography results. Although we observed a pretty consistent 

pattern of expression in which the four markers of interest had equal to higher level of expression 

in the collagen-only samples as compared to the matrigel-only hydrogel and their expression was 

up-regulated with increasing concentrations of collagen, we found no statistically significant 

difference in the expression profile of these phenotypic markers among the seven hydrogel 

samples (vimentin (p=0.9), α-SMA (p=0.2), calponin (p=0.7) and fibronectin (p=0.09)). 

Taken as a whole, these results suggest that cells in the matrigel-collagen composite hydrogel 

behaved similarly to those in the control samples. Incorporation of matrigel did not result in 

significant changes in cellular activity (i.e. ECM remodeling activity and differentiation 

capacity), at least over the course of 48 hours as shown in our experiment. 

Figure 4.8: (A) Gel zymogram depicting expressions of MMP-2 and MMP-9 among seven 

hydrogel samples. Quantitative analysis of band intensity for (B) MMP-2 and (C) MMP-9, n=3.  
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Figure 4.9: (A) Representative western blot images for four proteins of interest (fibronectin, 

vimentin, α-SMA and calponin) and loading control β-actin. Semi-quantitative analysis of band 

intensity for (B) fibronectin, (C) vimentin, (D) α-SMA, and (E) calponin, n=3.  

 

3.4. Matrigel enhanced mechanical performance of the composite hydrogel scaffold 

Due to the tendency of the collagen hydrogel to spontaneously compact, it is typically 

challenging to use in studies that require dynamic cyclic mechanical stimulation. Additionally, 

this behavior does not mimic that of native valve leaflets (Figure 4.10). We hypothesized that 

incorporation of matrigel, with its sulfated proteoglycan and collagen type IV content, might 

reduce substrate compaction. As shown in figure 4.11 A-B, samples with high amounts of 

matrigel, including the matrigel-only, matrigel-collagen 0.5mg/ml matrigel-collagen 1mg/ml and 

matrigel-collagen 1.5mg/ml, successfully remained intact during the course of 48 hours while the  

collagen 1mg/ml and 2 mg/ml significantly compacted after the first 24 hours. The matrigel-

collagen 2mg/ml, due to the presence of high amount of collagen, behaved similarly to the 

A B

C

D E



 

93 

collagen-only hydrogels in which they became significantly contracted at the end of the 

experimental duration. We observed that while the collagen gels initially adhered to the silicone 

chamber, they slowly detached and started to shrink when the stretch was initiated. In the case of 

the matrigel-collagen 2mg/ml, while the gels did compact, they did not lose their attachment to 

the underlying silicone membrane.  

 

 

 

 

 

Figure 4.10: Representative images showing no compaction and thus no change in size of the 

native excised aortic leaflets after 48 hours in culture (dashed lines showed how we tracked the 

leaflet size overtime). 

24hrs  48hrs  
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Figure 4.11: (A) Changes in the morphology of seven hydrogels over 48 hours and (B) 

quantification of gel compaction, n=3, * p<0.05. Dashed lines depict gel size. 

3.5. Encapsulated cells became more aligned under cyclic stretch 

We asked if the encapsulated VICs were able to sense and respond to the applied stretch from the 

matrigel-collagen scaffold. Among three composite hydrogels that did not show contraction in 

previous study, we picked the matrigel-collagen 1mg/ml to use for this specific experiment. 

DAPI and Phalloidin staining images showed that the cell cytoskeleton in the stretched sample 

became aligned with the direction of stretch while that of the control sample was oriented 

randomly (Figure 4.12 A). Analysis of actin fiber alignment using a previously published 

orientation parameter technique (Lam et al. 2016) showed significantly reduced actin alignment 

in the static sample compared to the stretched one (Figure 4.12 B). Together with the contraction 

study, these data highlight the potential of using this composite hydrogel for the 3D culture of 

VICs in vitro, in the presence of mechanical stimulation. 

A

B
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Figure 4.12: (A) Representative phalloidin and merged (with DAPI) images of encapsulated 

VICs in stretched versus static samples. (B) Analysis of actin orientation, scale bar =100µm, 

n=4, *p<0.05. 

 

4. DISCUSSION 

One of the primary principles of scaffold design for basic science studies, tissue engineering or 

regenerative medicine, is the provision of temporary structural support for cell attachment, 

migration and growth, thus facilitating the production of ECM, remodeling and eventual 

replacement of the scaffold (Zhang et al. 2015). Additionally, in the case of a dynamically 

deforming in vivo tissue such as the heart valve, the scaffold material must be able to deform in a 

similar manner. Our data suggests that a matrigel-collagen semi-penetrating hydrogel might be 

superior to collagen-only gels in these regards. In particular, rapid degradation rates as seen in 

the collagen-only hydrogels could impair the structural and mechanical properties of the 

scaffolds while the overly slow rates of swelling and degradation of pure matrigel substrates 

might inhibit cell remodeling and tissue regeneration (Nicodemus and Bryant 2008). In contrast, 

the matrigel-collagen composite hydrogel at various concentrations showed tunable swelling and 

degradation behavior. They increased water uptake in the first 24 hours and gradually degraded 

after 48 hours. Similarly, their degradation rates were in between that of the collagen and 

A B



 

96 

matrigel-only samples. These composite gels also had a porous structure which could potentially 

aid in exchanging of oxygen, nutrients and cellular metabolic wastes (Dhivya et al. 2015).  

We observed a positive correlation between porosity and compressive mechanical properties of 

the scaffold, wherein the matrigel-collagen hydrogels exhibited greater porosity and increased 

compressive Young‟s Moduli. It is possible that the higher porosity, together with the fibrous 

and hydrated characteristics of the collagen and matrigel, respectively, increased the inter-

connectivity of the scaffold network, thus providing greater compressive resistance to these 

samples via better stress distribution within the scaffold network. Similar improvements in 

mechanical properties were observed when hydrated polysaccharide networks were combined 

with fiber-based scaffolds (Roohani-Esfahani, Newman, and Zreiqat 2016). In the context of the 

cardiac valve, previous studies suggested that substrate stiffness could regulate VIC phenotype 

such that stiffer matrices would likely induce more α-SMA-positive stress fibers (Quinlan and 

Billiar 2012) or even calcification (Yip et al. 2009). The moduli across the samples in our 

experiment ranged from 13.4 to 39.1 kPa which could potentially activate VICs, based on 2D 

cell culture studies. It should however be noted, as shown by others, that the range of stiffnesses 

that induce pathogenic differentiation in VICs is significantly different in 3D culture compared 

to 2D (Yip et al. 2009).  

 Another important principle of scaffold design for cell culture is the cytocompatibility of the 

scaffold and its ability to promote interactions between cells and their local environment. The 

scaffolding material must also provide cells with specific biological cues to direct cell fate and 

physiological functions (Zhang et al. 2015). According to our MTT and Live/Dead assay, cells in 

the collagen-only hydrogels, specifically the 1mg/ml composition, displayed the highest levels of 

cell survival and proliferation. This concentration also appeared to be superior to the 2mg/ml 
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one, which could suggest that 1mg/ml of collagen gel was sufficient to produce appropriate 

matrix density and stability for VIC encapsulation, and subsequent proliferation. Overall, 

survival and proliferation increased with increasing concentrations of collagen clearly 

highlighting its importance as a scaffolding material for valve cell culture.   

Addition of matrigel enriched our composite hydrogel with various valve-relevant ECM proteins, 

specifically collagen IV, laminin and proteoglycan thus recapitulating, in part, the natural ECM 

composition found in the heart valve (Rabkin et al. 2001; Aikawa et al. 2006). Interestingly, 

while matrigel itself contained a variety of matrix proteins and growth factors, its presence did 

not seem to significantly affect cell survival and proliferation across the samples, at least during 

the course of 48 hours. In fact, our results showed that incorporation of matrigel significantly 

aided in improving the dynamic, load-bearing properties of the composite hydrogel. In particular, 

samples with high amounts of matrigel (i.e. the matrigel-only hydrogel, matrigel-collagen 

0.5mg/ml, matrigel-collagen 1mg/ml and matrigel-collagen 1.5mg/ml) successfully remained 

intact after 48 hours of uniaxial stretching, without significant compaction, mimicking a native 

excised valve leaflet (Figure 4.10). Encapsulated VICs also became significantly aligned to the 

direction of applied stretch as observed in other 3D culture systems (Farrar et al. 2016; Bono et 

al. 2016; Heher et al. 2015), while unstretched samples showed randomly oriented cells. The 

ability of these composite hydrogels to remain structurally undamaged indeed opens up the 

opportunity to utilize this 3D culture model to study valve cell mechanobiology in the future.  

Additionally, we observed that encapsulated VICs were distributed throughout the scaffold, and 

not concentrated at the surfaces (Figure 4.13). 

The commercially available matrigel that was used in our study is derived from mouse tumor 

ECM. This raises the concern of pathological signaling during cell culture. Our data, however, 
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demonstrated that matrigel did not cause any significant changes in VIC phenotype as well as the 

ECM remodeling activity over the course of 48 hours in culture compared to the controls. While 

longer term studies are needed, our results suggest the applicability of matrigel for use in acute 

VIC in vitro studies.  

Our study has the following limitations. We performed our dynamic stimulation experiments 

under uniaxial stimulation, and not biaxially as observed in vivo. However, we do subject the 

construct to 20% stretch, which is typically close to the upper limit of cyclic stretch that is 

experienced by valve tissue in vivo [20]. We also do acknowledge that our model does not 

simulate other mechanical forces such as hemodynamic pressures or flow, and that will be the 

focus of our future studies. 

Figure 4.13: Representative 3D visualization of cells in hydrogel, providing with (A) maximum 

projected top view, scale bar = 30µm, and (B) projected side view, scale bar = 500µm. Cells 

were seen to distribute throughout the scaffold. Cells at different focal planes were labeled with 

different colors. 
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5. CONCLUSIONS 

In this study, we presented a detailed characterization of a matrigel-collagen composite hydrogel 

and proposed this hydrogel as a 3D substrate for acute VIC culture in vitro. The combination of 

matrigel and collagen presented the VICs a porous, degradable and cytocompatible scaffold with 

an ECM composition that partly mimics the natural valve milieu. The composite hydrogel was 

amenable to dynamic culture as evidenced by our cyclic stretching experimental results. Further 

work should be carried out with other types of mechanical forces as well as for longer culture 

durations.  While the idea of combining matrigel and collagen has been reported in few other cell 

types, this is the first study to consider the use of this type of hydrogel for VICs. More 

importantly, we have attempted to apply mechanical force (i.e. cyclic stretch) onto this construct 

and have shown its potential in serving as a load-bearing matrix to culture heart valve cells and 

hence, as a robust platform to study heart valve cell mechanobiology. 
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CHAPTER 5 

Fibroblast growth factor 1 and fibroblast growth factor 2 in pathological stretched valve 

interstitial cells in 3D model 
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ABSTRACT 

More than five million Americans suffer from heart valve disease annually, a condition that 

worsens cardiac function and gradually leads to heart failure if appropriate treatment is not 

performed on time. Currently no medicines can cure heart valve disease, leaving surgical 

intervention as the only viable option for patients at late stages of cardiac disease. Tremendous 

efforts have focused on studying how resident cells in the valves respond to pathological 

stimulation as well as the underlying mechanisms that regulate these responses in order to 

identify potential therapeutic targets for non-surgical treatment of valvular heart disease. Cardiac 

valve cells naturally reside in a complex three-dimensional environment under varying 

hemodynamics, which is difficult to replicate in vitro. As a result, most cell signaling studies in 

the field have traditionally been conducted on two-dimensional models or in the absence of 

hemodynamic forces. In aim 2, we reported the fabrication of a hydrogel scaffold that could be 

used to culture valve cells under dynamic mechanical stimulation in a valve-mimetic 

environment. This model, therefore appeared to be suitable for VIC signaling studies as it 

provided cells a three-dimensional environment with the ability to incorporate mechanical 

stretching stimulation. Utilizing this model, in this aim, we investigated the possible role of 

FGF1/FGF2 signaling in regulating valve cell activation under physiological and pathological 

stretching conditions as well as in mediating cell proliferation and metabolism via Akt/mTOR 

pathway. FGFR1 inhibitor was used to verify the involvement of FGFs. Using this model, we 

reported that 1) FGF1/FGF2 had similar effects on regulating valve cell phenotype and cellular 

activity as was seen under stretching stimulation alone; 2) Cells increased 

proliferation/metabolism under elevated cyclic stretch via Akt/mTOR pathway; 3) FGF1/FGF2 

promoted cell proliferation at physiological conditions but mitigated it at pathological 
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conditions; and 4) FGF1/FGF2 was able to maintain cell quiescent phenotype. Overall, these 

results suggested that FGF1/2 may represent a possible therapeutic target for drug therapies for 

preventing heart valve disease progression. 
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1. INTRODUCTION 

As the heart muscle contracts and relaxes, the valves open and shut, controlling unidirectional 

flow of blood. Throughout this dynamic process, resident valve cells actively remodel and 

maintain homeostasis by the intricate signaling networks between cells and their 

microenvironment. Malfunction of valve opening/closing due to disrupted homeostasis is 

associated with impaired cardiac function and gradually result in heart valve disease (Wang, 

Leinwand, and Anseth 2014). To prevent long-term damage to the heart, surgical intervention to 

replace heart valves is a must as currently there are no drug therapies to halt disease progression. 

Approximately, 67,500 aortic valve replacement procedures are performed every year in the U.S 

(Clark et al. 2012). Consequently, researchers have sought to understand the cellular and 

molecular processes of valvular diseases, hoping that it may possibly lead to nonsurgical 

treatment. In vitro cell/tissue culture systems and biomaterials scaffolds with/without application 

of mechanical forces have advanced our understanding of valvular diseases and provided insights 

into possible intracellular signaling pathways that regulate valve cell pathophysiology (Wang, 

Leinwand, and Anseth 2014). 

In static two-dimensional (2D) culture conditions, Xu et al reported the association of serotonin 

signaling with valve disease. Specifically, treatment of sheep valve interstitial cell (VIC) with 

serotonin reportedly caused up-regulation of transforming growth factor- β1 (TGF-β1) activity 

which in turn caused increased synthesis of extracellular matrix (ECM) proteins (collagen and 

GAGs) as seen in heart valves of carcinoid syndrome patients (Jian et al. 2002; Xu et al. 2002). It 

was also reported that the serotonin-2A receptor subtype (5HTR2A) was involved in 5HT up-

regulation of active TGF-β (Xu et al. 2002). Similarly, at the tissue level, Balachandran et al 

subjected aortic valve cusps to elevated cyclic stretch and reported the up-regulation of 5HTR2A 
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and 5HTR2B expression which was associated with increased proliferation and ECM production 

in response serotonin addition (Balachandran, Bakay, et al. 2011). TGF-β signaling activated 

VICs from a quiescent fibroblastic phenotype to a contractile myofibroblast phenotype, and was 

a key regulator of wound repair by VICs (Liu and Gotlieb 2008). Using a scratch wound model, 

a study showed that VICs at the wound edge produced TGF-β, which then enhanced wound 

repair through increasing cell activation, proliferation, wound repair and formation of stress 

fibers. Earlier studies reported the presence of TGF-β within calcific stenosis cusps that mediated 

the calcification of aortic VICs in culture through mechanisms involving apoptosis (Jian et al. 

2003). Interestingly, Cushing et al reported that fibroblast growth factor 2 (FGF2) effectively 

blocked TGF-β1-mediated myofibroblast activation and also the development of pathological 

contractile and calcifying phenotypes in aortic valvular interstitial cells (Cushing et al. 2008). 

Similarly, FGF2 was found to promote VIC wound repair through the TGF-β/Smad2/3 signaling 

pathway (Han and Gotlieb 2011). Recently, the possible protective role of FGF2 on VICs has 

been tested directly in cell culture media and showed that FGF2-containing cell culture media 

was able to maintain and dedifferentiate the VICs back to a fibroblastic phenotype with 

phenotypic and functional characteristics ascribed to cells in the intact valve (Latif et al. 2015).  

While 2D models are commonly used for growing cells, VICs naturally reside in a 3D matrix 

environment. Several pioneering experiments with cells cultured in or on hydrogels comprised of 

natural ECM proteins or synthetic biomaterials investigated the effect of matrix stiffness on 

valve cell phenotype. For instance, it was reported that VICs did not form calcified nodules on 

soft poly(ethylene glycol) (PEG) hydrogels while they had increased expression of calcification 

markers when cultured on tissue culture polystyrene (Benton, Kern, and Anseth 2008). Similarly, 

VICs cultured on soft PEG hydrogel did not adopt a myofibroblast phenotype in response to 
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TGF-β1 treatment (Wang et al. 2012). Soft hydrogels were shown to be able to preserve the 

quiescent phenotype of VICs compared to stiff plastic plates through down-regulation of 

PI3K/Akt pathway (Wang et al. 2013). Although these studies have provided more information 

about the role of microenvironment signals in regulating valve cell fate, an understanding about 

how valve cells respond to these cues as well as the possible signaling pathways that mediate 

cellular responses remains vague. 

Hence, in this aim, we proposed to use a mechanically robust hydrogel scaffold to culture VICs 

in the presence of mechanical stretching conditions in order to study stretch-mediated cellular 

responses. Cells were subjected to 10% and 20% uniaxial cyclic stretch which represented 

physiological and pathological stretch conditions, respectively. We examined the activation of 

the Akt/mTOR pathway in response to stretch at different time points using western blot. We 

also supplemented stretched VICs with FGF1 and FGF2 and investigated the effect of FGFs on 

cell proliferation, metabolism and activation potential. FGFR1 inbibitor, PD166866, was also 

used to tease out the role of FGF1 versus FGF2. Our results suggested that cells up-regulated 

Akt/mTOR phosphorylation in response to elevated stretch and that this response was modulated 

in the presence of FGF1/FGF2. Akt/mTOR activation correlated with increased metabolism, 

proliferation and expression of activated phenotypic markers of cells at pathological stretch. 

Treatment with FGF1/FGF2 appeared to have protective effect on 20% stretched cells as it 

reversed all cellular responses. At physiological 10% stretch, FGF1/FGF2 seemed to have effect 

only on cell proliferation, but not cell phenotype. This study thus provides fundamental insights 

into valve cell pathophysiology under abnormal mechanical stretch and suggests the potential of 

FGF1/FGF2 as targets for drug therapies for the treatment of heart valve disease. 
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2. MATERIALS AND METHODS 

2.1.  Cell isolation and culture 

Valve interstitial cells were isolated from fresh porcine hearts obtained from local abattoir 

(Cockrum‟s Custom Meat Processing and Taxidermy, AR). The heart was transported to the 

laboratory in ice-cold, sterile PBS solution and quickly dissected in the cell culture hood. All 

three aortic valve leaflets were collected and incubated in 1mg/ml collagenase solution 

(Worthington, NJ) for up to 3 hours at 37°C with frequent agitation. After collagenase digestion, 

10% fetal bovine serum (FBS)-containing Dulbecco‟s Modified Eagle Medium (DMEM) was 

added to arrest enzymatic activity. The solution was filtered with the cell strainer 100µm pore 

size (Corning, NY) to remove any remaining tissue debris prior to centrifugation for 5 minutes at 

4°C. The resulting cell pellet was re-suspended in the regular 10% FBS-containing cell culture 

media, plated in a flask and maintained in a 37°C incubator. Fresh media was changed at least 

every 3 days. Cells from passage 1-7 were used in all experiments. 

2.2.  Immunofluorescent staining 

We were first interested in testing the effect of FGF1/FGF2 on valve cell phenotype in static 2D 

culture. Valve interstitial cells were seeded onto glass coverslips and divided into 3 groups which 

were supplemented with 3 different culture media, named as 10% FBS-containing medium, 

FGF1 medium and FGF2 medium (Peprotech, NJ). Specific reagents for these media 

formulations are listed in table 5.1. Cells were kept in culture for two weeks with frequent 

change of fresh media. At the end of second week, coverslips were fixed and stained with 

common phenotypic markers of VICs. Briefly, 4% PFA and 0.5% Triton X100 were used to fix 

and permeabilize the cells prior to 1 hour blocking in 5% BSA. Primary antibodies were added 

and incubated overnight, including α-SMA (1:200), vimentin (1:1500), calponin (1:1000), Ki67 
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(1:500) and osteopontin (1:200) (all from Abcam). The next day, appropriate secondary 

antibodies and DAPI (1:200) (to stain the nuclei) were added. These coverslips were then 

mounted onto glass slides and imaged. The sample preparation was repeated for another set of 

samples for multiphoton imaging. The image acquisition process is described in the redox 

imaging section. 

Table 5.1: List of reagents used for 3 cell culture media 

 

2.3. Immunohistochemistry of healthy and diseased human heart valve leaflets 

We next examined the presence of FGF1/FGF2 and their receptors in the healthy versus diseased 

heart valve leaflets. Four de-identified IRB-exempt paraffin-embedded sections of human aortic 

valve leaflets were obtained from the University of Arkansas for Medical Sciences tissue bank. 

Samples were divided into two categories depending on size of calcific lesions, namely (I) no 

lesion (n=3), (II) mild lesions (n=1). Sections were then immunostained using standard protocols 

against the following proteins: FGF1, FGF2, FGFR1, and FGFR2. Briefly, after 

deparaffinization and rehydration, sections were incubated in 10mM citrate buffer, pH 6 at 95°C 

for 10 minutes for antigen retrieval. The slides were then allowed to cool at room temperature for 

20 minutes, followed by rinsing twice in Dulbecco‟s Phosphate Buffered Saline (dPBS,Gibco), 5 

minutes each. Blocking was performed using either 20% goat serum or donkey serum (Life 

 FGF1 medium FGF2 medium 10% FBS-containing 

medium 

FGF1 or FGF2 50ng/ml FGF1 50ng/ml FGF2 N/A 

FBS 2% 2% 10% 

Antibiotics 1% 1% 1% 

HEPES 1% 1% 1% 

Insulin 50ng/ml 50ng/ml N/A 
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Technologies) in dPBS for 1 hour at 37°C. Slides were incubated with primary antibody solution 

anti-FGF1 (Santa Cruz Biotechnology, 1:10), anti-FGF2 (Santa Cruz Biotechnology, 1:10), anti-

FGFR1 (Abcam, 1:25), anti-FGFR2 (Abcam, 1:25) antibodies) with 2% goat/donkey serum in a 

humid chamber at room temperature for 2 hours. Following primary antibody incubation, the 

slides were washed in PBS thrice, 5 minutes each. The slides were then incubated with 1:100 

secondary antibody (Alexa Fluor 488 or Alexa Fluor 594), 2% goat/donkey serum and 4',6-

diamidino-2-phenylindole (DAPI) for 1 hour at room temperature in a humid chamber, away 

from light, followed by washing in dPBS thrice. A drop of Prolong Gold (Life Technologies) 

anti-fade mounting medium was used to coverslip the sections. Clear nail polish was used to seal 

the edges of the coverslip. Slides were then imaged using a standard epifluorescence microscope 

(Nikon Ti).  

2.4.  Pharmacological inhibition experiment 

PD166866 (Sigma) was used to block FGFR1 (Panek et al. 1998) and validate the involvement 

of FGF1/FGF2 in mediating downstream cellular responses. Western blotting and standard MTT 

assays were carried out to determine the appropriate working concentrations of this inhibitor on 

VICs. For this purpose, we first tested FGFR1 inhibition on monolayer VICs.  Cells were serum-

starved overnight before the experiment. A total of 6 different concentrations of PD166866 were 

tested: 1, 10, 50, 100, 500 and 1000nM. Cells were incubated with the inhibitor for 2 hours, 

following which, 50ng/ml of FGF1 or FGF2 was separately administrated to the cells and left for 

10 minutes before protein extraction took place using RIPA lysis buffer. Control samples 

included cells that received only FGF1 or FGF2 treatment, cells that received only inhibitor 

treatment at highest dose and cells that did not receive any treatment. BCA assay was carried out 

to determine protein concentration followed by western blot to examine the effect of FGFR1 



 

114 

inhibitor doses on Akt phosphorylation. The concentration that gave the least signal of 

phosphorylated Akt was chosen for the subsequent experiments. 

The western blotting protocol is briefly as follows. Criterion 10% polyacrylamide gels (Bio-Rad) 

were loaded with at least 10 μg of protein and subject to electrophoresis for 1 hour at 150V 

constant voltage. The gel was transferred to PVDF membranes for western blotting analysis. 

Membranes were blocked for 2 hours at room temperature with blocking buffer (LiCor), and 

probed with phosphor-Akt antibody (Cell signaling, 1:200) and β-actin (Abcam, 1:200) and 

incubated overnight at 4°C. The next day, these membranes were washed and incubated with 

appropriate secondary antibody (Licor) and imaged using a Licor Odyssey scanner. These 

membranes were stripped with Stripping buffer (Licor) and re-probed with total Akt antibody 

(Cell signaling, 1:100) prior to incubation with secondary antibody and imaged again. Signaling 

was quantified by comparing the band intensity obtained for the phosphorylated protein and 

normalizing it with the intensity obtained for total protein. β-actin was used as an additional 

loading control. 

For MTT assay, VICs were plated in a 96-well plate. All conditions were the same as in the 

western blot setup. After addition of inhibitor and ligands, cells were kept in culture for a further 

3 days to accommodate the longer timescale of proliferation. At the end of day 3, cell media was 

discarded and 5mg/ml of MTT were added to the cells and incubated for 4 hours at 37°C until 

purple crystals formed as the result of enzymatic activity in active dividing cells. MTT solution 

was removed and DMSO was added to dissolve the crystals. Absorbance measurement was then 

taken at 570nm. This absorbance reading was proportional to the proliferation capacity of the 

cells, and was normalized against blank sample which had only DMEM-phenol red free, MTT 

and DMSO.  
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Mechanical stretching experiment  

Matrigel-collagen hydrogel was used in all stretching experiments and its fabrication was 

reported in aim 2 (Lam et al. 2017). Valve interstitial cells were seeded into this hydrogel and 

allowed to grow for a day prior to the stretching experiment.  

For all subsequent cell lysates used in western blot to detect protein phosphorylation, the 

hydrogel sample was first cut in half and processed in 2 different ways for protein collection 

(Figure 5.1). One half of the sample was immediately snap-frozen after stretch termination and 

RIPA lysis buffer was added. The solution was vortexed, centrifuged and supernatant was 

collected. This lysate was used to detect the transient expression of phosphorylated proteins. The 

second half of the hydrogel construct was treated with 1mg/ml of collagenase 1 and dispase 2 for 

1 hour to degrade the hydrogel materials, thus releasing cells from the matrix. RIPA lysis buffer 

was then added to the cells for protein collection. This lysate was used to detect the stable 

expression of total protein.  

Figure 5.1: Schematic diagram showed representative images of a biostretcher device with a cell 

culture chamber (A, B) (figure was adapted from Lam et al. 2017) and 2 methods to collect cell 

lysate for phosphorylation study (C). 
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2.4.1.  Experiment to measure changes in the phosphorylation level of Akt/mTOR at 

different time points 

VICs were seeded into matrigel-collagen hydrogel and kept in culture overnight. The next day, 

these constructs were stretched uniaxially at either 10% or 20% which represented healthy and 

diseased conditions, respectively. Control samples were encapsulated VICs receiving no stretch. 

Validation of these stretch magnitudes could be found in our previous publication (Lam et al. 

2017). Five different time points were examined, namely, 10 minutes, 1 hour, 6 hours, 24 hours 

and 48 hours. Immediately after the stretching was stopped at a certain time point, samples were 

taken out of the stretcher, washed briefly with PBS and divided into half with a scalpel. One half 

was immediately snap-frozen with liquid nitrogen and lysed with RIPA lysis buffer. The 

suspension was thoroughly mixed, centrifuged and supernatant was collected and stored at -

80°C. The other half went through enzymatic treatment to disrupt the hydrogel and fully release 

the cells which were then collected after centrifugation. RIPA lysis buffer was added to the cell 

pellet and lysate was collected and stored. BCA assay were carried out to determine protein 

concentration.  

For western blots, criterion 4-15% polyacrylamide gels (Bio-Rad) were loaded with at least 20 

μg of protein and subject to electrophoresis for 1 hour at 150V constant voltage. The gel was 

transferred to PVDF membranes for western blotting analysis. Membranes were blocked for 2 

hours at room temperature with blocking buffer (LiCor), and probed with appropriate primary 

antibodies and stored overnight at 4°C. In particular, membranes that had lysates from snap-

frozen samples were probed with antibodies for phosphor-proteins, including phosphor-Akt (Cell 

signaling, 1:200), phosphor-mTOR (Abcam, 1:500) while membranes with enzyme treatment 

lysates were probed with antibodies for total proteins, including total Akt, total mTOR (Cell 
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signaling, 1:100). The next day, these membranes were washed and incubated with appropriate 

secondary antibody (Licor) and imaged using a Licor Odyssey scanner. Signaling was quantified 

by comparing the band intensity obtained for the phosphorylated protein and normalizing it with 

the intensity obtained for total protein. β-actin was used as loading control. The time point that 

yielded the strongest phosphorylation signal was then chosen for subsequent inhibition 

experiments. Although we used „different lysates‟ to run western blot, these lysates indeed came 

from the same samples and we also used β-actin as loading control to ensure that all samples 

were loaded evenly. 

2.4.2.  Experiment to study the effect of FGF1/FGF2 signaling on Akt/mTOR signaling in 

stretched valve cells 

For this experiment, a total of 13 different sample conditions were examined (Table 5.2). Cells 

were seeded as described above. After overnight culture, for samples that were treated with 

inhibitor, FGFR1 inhibitor at concentration determined by previous western blot and MTT assay 

was added to 6 samples and left for 24 hours. FGF1/FGF2 was added to the cells for 1 hour, 

followed by x hour stretching at 10% and 20% (x was determined by previous time point 

experiment). For samples that did not receive inhibitor treatment, FGF1/FGF2 was added 

directly to the cells and kept in culture for 1 hour before the stretch initiation. Protein collection 

and western blot were performed as previously described above. 
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Table 5.2: List of all conditions tested in the signaling study  

 

2.5. Optical redox imaging and Second-harmonic generation imaging  

Separate samples were prepared as described in table 5.2. For these experiments, as we were 

analyzing cell metabolism with redox imaging as in aim 1, the samples were allowed to stretch 

continuously for 24 hours before image acquisition to ensure cells have enough time to 

proliferate and actively start metabolic pathways. We were also interested in examining the 

collagen organization in these samples under the combined effects of FGFs treatment and stretch 

using simultaneous Second-harmonic generation imaging (SHG). 

Before imaging, the cell culture chamber was placed carefully in a heated chamber to keep cells 

at 37°C throughout the procedure and imaging was taken using a custom-built resonant-scanning 

multiphoton microscopy platform with a 20X, 0.8 NA water immersion objective (Nikon, Japan) 

and a MaiTai ultrafast Ti:Sapphire tunable laser source (Spectra-Physics, Santa Clara CA).  

The laser excitation source was tuned to 750nm (NADH fluorescence), 860nm (FAD 

fluorescence) and 800nm (Collagen). Laser power was kept constant throughout the experiment 

Sample types Without PD166866 With PD166866 

10% stretch 10% 10% + PD166866 

10% + FGF1 10% + PD166866 + FGF1 

10% + FGF2 10% + PD166866 + FGF2 

20% stretch 20% 20% + PD166866 

20% + FGF1 20% + PD166866 + FGF1 

20% + FGF2 20% + PD166866 + FGF2 

No stretch Control ( No inhibitor treatment) 
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and photomultiplier tube (PMT) gain was fixed at 90%. Images of a cuvette filled with 4ng/mL 

Rhodamine B (Sigma) were acquired via a 607nm/70nm bandpass filter, under identical 

conditions for both NADH and FAD acquisitions, to account for possible day-to-day variation in 

laser intensity. Images were analyzed using a custom MATLAB script and optical redox ratio 

was calculated using the following equation on a per pixel basis (Skala and Ramanujam 2010): 

                                       ][][

][
ratioRedox  

FADNADH

FAD


  

[FAD] represents intensity of the FAD image normalized by the corresponding rhodamine 

intensity. [NADH] represents intensity of the NADH image normalized by the corresponding 

rhodamine intensity. After imaging, the samples were lysed with RIPA buffer and proceeded to 

BCA and western blot to detect the expression of phenotypic markers of VICs (i.e. calponin and 

α-SMA) and expression of heat shock protein 47 (hsp47). 

2.6.  Statistical analysis 

All quantitative data were first analyzed for normality using the Anderson-Darling method. All 

normally distributed data were subsequently analyzed by one-way ANOVA followed by Holm-

Sidak multiple pairwise comparisons. A p-value of less than 0.05 was used to indicate statistical 

significance differences between samples. Data was plotted as mean with standard error bars. In 

all the experiment, a replication of at least 3 different samples was performed. 

3. RESULTS 

3.1. FGF1 and FGF2 maintained VIC quiescent phenotype while promoted cell 

proliferation at 2D scale 

FGF2 is becoming widely used in VIC cell culture media in order to maintain the cells in a 

quiescent state. In this experiment, we were interested in comparing the effect between FGF1 

versus FGF2 on cell phenotype, using 10% FBS-containing medium as control. Immunostaining 
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fluorescence showed interesting observations. It appeared that cells in FGF1 and FGF2 media 

behaved in a different way than cells in 10% FBS-containing medium (Figure 5.2 A,B). 

Particularly, VICs expressed vimentin, a known quiescent marker, at a higher level in FGF1 and 

FGF2 media than in 10% FBS-containing medium while calponin was strongly expressed when 

cells were cultured in 10% FBS-containing medium as compared to those in FGF1 and FGF2 

media. Other activated markers, α-SMA and osteopontin, were comparably expressed throughout 

the 3 media formulations. VICs also showed increased propensity for proliferation in the 

presence of FGF1 and FGF2 media as seen in Ki67 stained images. This observation was further 

supported by measurement of the optical oxidation-reduction ratio of NADH/FAD which 

correlates to the cellular metabolic activity. Redox ratio was significantly decreased in cells that 

were cultured in FGF1 and FGF2 media compared to cells that were kept in 10% FBS-containing 

medium. When comparing between FGF1 medium versus FGF2 medium, no significant 

differences were observed. 

These observations suggested the possible role of FGF1/FGF2 in modulating VIC phenotype 

such that cell proliferation was promoted, while maintaining a quiescent phenotype. Hence, we 

were interested to examine further the role of FGF1/FGF2 on VIC phenotypee in a 3D model in 

the presence of mechanical stimulation. 
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Figure 5.2: Immunofluorescent staining images for different proteins expressed when VICs were 

cultured in 3 different media, scale bar =100µm (A) and optical redox ratio, scale bar = 10µm 

(B), n=5, * p<0.05. 

 

3.2. FGF1 and FGFR1 were moderately expressed in healthy and diseased valves while 

FGF2 was strongly expressed in diseased valves 

Immunohistochemistry of human aortic valve leaflets showed expression of FGFR1 in both 

healthy and diseased valves while FGFR2 expression was low for all samples (Figure 5.3). This 

result consequently led us to a decision to target FGFR1 in the following inhibitor studies. 

Furthermore, FGF2 expression was high in healthy samples and calcific leaflets while FGF1 
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expression was high in healthy leaflets and low in diseased leaflets. This observation was 

intriguing, especially when compared to our monolayer staining data. At this point, we really 

wanted to see how FGF1/FGF2 impacted cells in a 3D model with the application of cyclic 

stretching. 

 

 

 

 

 

 

 

 

 

Figure 5.3: Immunohistochemistry staining of healthy and diseased valve leaflets, scale bar = 

50µm. 

 

3.3. The possible link between FGF1/FGF2 and Akt/mTOR pathway in stretched valve 

cells 

3.3.1. Akt/mTOR phosphorylation was up-regulated at elevated stretch 

Since monolayer VICs showed increased proliferation in FGFs-containing media, we decided to 

investigate the possible link between the FGF1/FGF2 and Akt/mTOR pathway in modulating 

VIC fate under abnormal mechanical forces. In order to do that, we first set out to determine the 

time point for detecting the phosphorylation event of Akt/mTOR in the mechanical stimulation 

experiment. VICs were cultured in 3D matrigel-collagen hydrogel and subjected to 10% and 
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20% uniaxial cyclic stretch to simulate physiological and pathological conditions, respectively. 

Unstretched samples served as controls. As showed in figure 5.4, the phosphorylation level of 

Akt/mTOR significantly increased at elevated stretch compared to normal stretch and control 

samples. The data suggested that the Akt/mTOR signaling became activated due to the effect of 

elevated cyclic stretching. Highest phosphorylation levels were seen at the 10 minute, 1 hour and 

6 hour time points after the stretch initiation and slowly reduced thereafter. Based on this 

experiment, we decided to choose the 1 hour time point for subsequent phosphorylation 

experiments.  

Figure 5.4: Representative western blot analysis of Akt/mTOR phosphorylation at different time 

points, n = 4, *p<0.05. 
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3.3.2. Opposite effect of FGF1 and FGF2 on cell proliferation at different stretch 

magnitudes 

3.3.2.1. Determination working concentration of PD166866 - an FGFR1 inhibitor 

As mentioned previously, we decided to target the FGFR1 only based on the IHC staining result 

in which only FGFR1 was expressed in valve cells together with FGF1 and FGF2. We used 

PD166866, an FGFR1 inhibitor (Panek et al. 1998), to validate the involvement of FGF1/FGF2 

in mediating cellular behavior in response to mechanical stimulation. The appropriate working 

concentration of PD166866 was determined via western blotting and MTT assay on VIC 

monolayers. As shown in the western blotting results, adding small amount of PD166866 (i.e. 

1nM and 10nM) did not seem to reduce Akt phosphorylation as compared to positive control 

which had only FGF1 or FGF2. Increased amount of PD166866 did decrease the level of 

phosphorylated Akt with highest effect seen at 1000nM. Untreated samples showed similar 

expression of phosphorylated Akt as in samples treated with the highest dose of PD166866 

(Figure 5.5 A,B). 

MTT assay further supported the previous dose determination study (Figure 5.5 C). In MTT, the 

absorbance at 570nm directly correlated to the metabolic activity of active cells and was used to 

assess cell proliferation. Addition of PD16686 significantly reduced cell proliferation capacity as 

seen in all samples that had PD166866 treatment as well as no treatment sample. Samples that 

had only FGF1 or FGF2 had significantly higher proliferation. We still did not see any difference 

between the effects of FGF1 versus FGF2 on Akt phosphorylation in this experiment.  

Based on both western blot and MTT results, we chose 1000nM of PD166866 as our working 

concentration for subsequent experiments as it effectively blocked the Akt activation 

(phosphorylation) caused by FGF1/FGF2 stimulation. 
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Figure 5.5: Representative western blot analysis of Akt phosphorylation in inhibitor study (A,B) 

and MTT assay (C), n=3, *p<0.05. 

 

3.3.2.2. Stretch-dependent and opposite effects of FGF1 and FGF2 on Akt/mTOR pathway  

To investigate the possible link between FGF-mediated cellular response under stretch 

stimulation and the Akt/mTOR pathway, we stretched the 3D cellular construct for 1 hour under 

various treatment conditions (table 5.2) and collected cell lysates for western blot analysis 

(Figure 5.6). 

In the presence of FGFR1 inhibitor, the Akt/mTOR pathway was not activated as suggested by 

low expression of phosphorylated proteins observed throughout regardless the stretch 

magnitudes. In samples that were not treated with inhibitors, several observations were made. 

Cells at elevated cyclic stretch (20%) expressed more phosphorylated Akt/mTOR than cells at 

normal cyclic stretch (10%). Interestingly, when either FGF1 or FGF2 was added, at 20% stretch 
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the phosphorylation was significantly reduced while it was increased at 10% stretch. As before, 

FGF1 and FGF2 appeared to have very similar effects on stimulation of the Akt/mTOR pathway. 

Overall, it appeared that FGF1 and FGF2 mitigated the activation of Akt/mTOR pathway of 

VICs at 20% while they did the opposite at 10%. All these effects disappeared in the presence of 

PD166866, suggesting that FGF1/FGF2 was involved in regulating the activation of Akt/mTOR 

pathway in VICs in response to stretch stimulation. 

Figure 5.6: Representative western blot analysis of Akt/mTOR phosphorylation under the effects 

of FGF1/FGF2 and cyclic stretching, n=3, *p<0.05. 

 

3.4. Activation of Akt/mTOR pathway correlated with cell metabolic activity under the 

effect of FGF1/FGF2 

Since Akt/mTOR pathway directly regulates cellular proliferation (Yu and Cui 2016), we 

hypothesized that there would be a correlation between activation of Akt/mTOR pathway with 

the proliferation capacity of VICs under different treatment conditions. We used optical redox 
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ratio as the way to evaluable cell metabolic activity as well as proliferation potential of 

encapsulated stretched cells, based on our earlier results in aim 1 and 3. 

We observed that in the presence of FGFR1 inhibitor, all treated samples exhibited increased 

redox ratios compared to 3 samples that did not receive FGFR1 inhibitor treatment (i.e. 20%, 

10% + FGF1 and 10% + FGF2). This corresponded to the samples with low phosphorylation of 

Akt/mTOR from previous western blot data. Constructs at 20% stretch had significantly 

decreased redox ratio compared to 10% stretched samples. Addition of either FGF1 or FGF2 

resulted in different response in VICs at 10% versus 20% stretch such that cells with FGF1 or 

FGF2 treatment under 10% had decreased redox ratio while cells with FGF1 or FGF2 under 20% 

had increased redox ratio. Again, we noticed that decreased optical redox ratio correlated with 

high level of phosphorylation of Akt/mTOR and increased optical redox ratio correlated with 

low level of phosphorylated Akt/mTOR. Overall, it appeared that an increase in proliferation 

caused by elevated cyclic stretch as seen in 20% sample was mitigated by the presence of FGF1 

and/or FGF2. Interestingly, it seemed to be the opposite at 10% stretch when addition of FGF1 

and/or FGF2 stimulated cell proliferation. These effects were eliminated in the presence of 

FGFR1 inhibitor (Figure 5.7). 

We also examined possible collagen organization in these conditions using SHG imaging since 

VICs were the cells that were responsible for collagen production in the valve leaflets (Figure 5.8 

A). We could not see any notable difference in the distribution of fiber alignment and intensity 

throughout the samples, which was likely due to the short culture time points investigated in this 

study. Western blot analysis of cell lysates from these samples for hsp47, the protein that was 

thought to involve in collagen maturation, also revealed little difference in the collagen 

production in cells (Figure 5.8 B). Although cells that were not treated with PD166866 and 
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experienced elevated stretch appeared to express higher level of hsp47 compared to the rest of 

the samples, we found no statistical significant difference across the samples. 
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Figure 5.7: Representative optical redox ratio analysis, n=3-5, scale bar = 50µm, *p<0.05. 
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Figure 5.8: Representative SHG images (A) and western blot analysis of hsp47 (B), n=3, scale 

bar = 50µm. 

 

3.5. Activation of Akt/mTOR pathway was coupled with changes in VIC phenotype under 

the effect of FGF1/FGF2 

The difference in effect of FGF1 or FGF2 had on VICs via Akt/mTOR pathway at different 

stretch magnitudes led us to question whether cell phenotype was also modulated. Western blot 

to detect common phenotypic markers of VICs revealed an answer (Figure 5.9). We observed 

that FGF1 and FGF2 did act to keep cells from becoming activated at elevated cyclic stretch. 

Cells at 10% stretch only and cells in 10% stretch with FGF1/FGF2 treatment had similar 

expression level of α-SMA and calponin, common activated markers of VICs, suggesting that 
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10% stretch did not actively induce cell activation and that addition of FGF1/FGF2 to cells at 

10% stretch only affected cell proliferation/metabolism but not cell phenotype. In contrast, cells 

at 20% stretch had significantly higher α-SMA and calponin compared to cells at 10% stretch 

and the presence of FGF1/FGF2 significantly reduced these expression as seen in 20% stretch 

samples with FGF1/FGF2 treatment. In the presence of FGFR1 inhibitor, all cells that 

experienced elevated stretch expressed higher amount of α-SMA and calponin, suggesting that 

FGF1 /FGF2 did take part in modulating VIC phenotype under pathological stretching condition.  

 

Figure 5.9: Representative western blot analysis of phenotypic markers of VICs (A), α-SMA (B) 

and calponin (C), n=3, *p<0.05.
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4. DISCUSSION 

The pathophysiological role of FGF family on VICs has been an ongoing study in the heart valve 

field, especially that of FGF2. Several studies had suggested the possible protective role of FGF2 

on valve cells under pathological conditions which led to few recent studies where FGF2 was 

added to cell culture media to maintain VICs in a quiescent state in vitro (Latif et al. 2015; Han 

and Gotlieb 2011; Gotlieb, Rosenthal, and Kazemian 2002; Porras et al. 2017; Han and Gotlieb 

2012). FGF1 and FGF2 belong to the FGF1 subfamily and they were both expressed in healthy 

and diseased aortic valve (Figure 5.3). It was also reported that FGF1/FGF2 expression was 

increased following myocardial infarction in rats (Zhao et al. 2011). Our immunofluorescent 

staining of VICs was in agreement with other studies, and suggested that FGF2 helped to 

maintain the quiescent phenotype of VICs as in native healthy valve (Latif et al. 2015). FGF1 

appeared to have similar quiescent effects on VICs as similar profiles of cell phenotype was seen 

in both media formulations. Overall, FGF1 and FGF2 seemed to be able to preserve quiescent 

phenotype of VICs in culture. Interestingly, FGF1 and FGF2 not only kept VICs quiescent, they 

also appeared to increase cell proliferation, compared to cells cultured in 10% FBS-containing 

medium. This data was supported by optical redox imaging where cells in FGFs media displayed 

decreased optical redox ratio which suggested higher proliferative activity compared to cells in 

10% FBS-containing medium with lower cell metabolism. Since FGF1 and FGF2 are considered 

as potent angiogenic factors and play important role in wound healing (Yun et al. 2010; 

Murakami and Simons 2008), it made sense to see that the presence of FGF in cell culture media 

promoted VIC proliferation although there was another study reported the reduction in 

proliferative capacity of VICs in FGFs media (Latif et al. 2015).  
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One of the hallmarks of VIC activation is an increase in proliferation, followed by intensive 

matrix remodeling which if not regulated, may result in pathological fibrosis, angiogenesis, 

chronic inflammation, and calcification (Liu, Joag, and Gotlieb 2007). A number of studies have 

demonstrated that the Akt/mTOR signaling cascade is associated with cardiac hypertrophy 

(Ikeda et al. 2015; Aoyagi and Matsui 2011). Akt is also involved in regulating the ability of 

oxidized low-density lipoprotein and lysophosphtydylcholine in upregulation of ECM protein 

production in human AVICs. Accumulation of ECM protein may contribute to the mechanism of 

valvular sclerosis associated with the development and progression of aortic stenosis (Cheng et 

al. 2017). PI3K/Akt signaling was reported to modulate the NF-ĸB pathway and its downstream 

target IL-6 which in turns affected the calcification process of VICs (El Husseini et al. 2014). 

This pathway, however, was not thoroughly examined in the heart valve context, especially 

under the effect of FGF1 and FGF2 in a 3D stretching model. Our data suggested that 

Akt/mTOR signaling activation-mediated FGF1/FGF2 was dependent on stretch magnitude and 

correlated with cellular optical redox ratio. Cells had higher level of phosphorylation of 

Akt/mTOR also displayed decreased optical redox ratio and vice versa. These effects were 

eliminated in the presence of FGFR1 inhibitor. Optical redox ratio recently has become widely 

used to assess the metabolic changes in cells during disease initiation and progression. Our 

previous study on single cells (aim1) reported that as cells became more elongated, the shape that 

mimicked pathological stretch, they decreased optical redox ratio which was associated with 

increased cell proliferation (Lam et al. 2016). Other studies reported a decrease in redox ratio 

was seen in cells undergoing differentiation (Quinn et al. 2013) or an increase in redox ratio after 

induction of cell death (Wang, Wei, and Guo 2009). Overall, it appeared that VICs responded to 

elevated stretch by activating Akt/mTOR pathway which increased cellular metabolic activity 
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and proliferative capacity as suggested by the reduced optical redox ratio. The treatment of FGF1 

and FGF2 for cells under 20% stretch reversed those processes in which both phosphorylation 

and proliferation were reduced. In contrast, when VICs experienced physiological 10% stretch, 

they did not activate Akt/mTOR pathway but the addition of FGF1 and FGF2 significantly 

enhanced cell proliferation. These results suggested that FGF1 and FGF2 promoted cell 

proliferation physiologically while reduced cell proliferation in elevated cyclic stretch condition. 

It is worth to mention that these acute responses were observed only in the duration of 48 hours 

since the seeding time. This short time duration possibly explains why we did not observe any 

significant changes in collagen organization as well as collagen production in our experiment. 

Future studies may need to prolong the experimental duration to further study these responses. 

VICs are known for their ability to become activated in response to pathological injury or 

abnormal hemodynamic/mechanical stretch. Activated VICs usually had increased expression of 

activated markers, α-SMA and calponin, while showing low expression of the quiescent, 

vimentin marker (Liu, Joag, and Gotlieb 2007). In our study, we observed that in treatment with 

FGF1 and FGF2, regardless the stretch magnitude, cells expressed lesser activated markers (i.e. 

10% FGF1, 20% FGF1, 10% FGF2 and 20% FGF2 samples). In the presence of FGFR1 

inhibitor, the effect of stretching became more pronounced as cells expressed more activated 

markers at elevated cyclic stretch. Additionally, VICs proliferated in 20% sample but decreased 

proliferation when treated with FGF1 and FGF2, suggesting that the presence of FGF1/FGF2 

somehow „signaled‟ the cells and reduced its proliferation propensity at least in the early phase 

of experiencing abnormal mechanical stretch. In the absence of FGF or in the presence of 

FGFR1 inhibitor, the effects of stretching became dominant as cells appeared to become 

activated and proliferated more at elevated stretch as compared to no stretch and 10% stretch.  
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Throughout the experiments, we could not detect any difference between the effect of FGF1 

versus FGF2 on VICs. It was interesting to us to notice that although FGF1/FGF2 appeared to 

have similar effects on VICs in both monolayer and 3D culture model but its expression pattern 

was different in healthy versus calcified valves. Whether this suggested that there may be a need 

for a more complex cell culture model to closely mimic natural heart valve architecture and 

environment for teasing out the role of FGF1 and FGF2, or longer culture durations, may require 

further investigation. 

With regard to western blotting experiments, we originally collected cell lysate by snap-freezing 

immediately after stretch termination and added lysis buffer directly to the frozen hydrogel. This 

method was necessary for the detection of the transient expression of phosphorylated proteins. 

However, we failed to detect expression of total proteins with this lysate. When we 

enzymatically treated the matrix for 1 hour, we were able to see total protein‟s expression but the 

transient expression of phosphorylated proteins were lost due to the long isolation procedure. As 

a result, to be able to both detect transient expression of phosphorylated proteins and stable 

expression of total protein from the same sample, we cut the hydrogel in half and processed 

separately. It is worth emphasizing that the two pieces of hydrogel came from exact same 

sample. They were only cut and processed right after stretch termination. We also used β-actin as 

loading control for every western blot, ensuring equal amount of lysates was loaded. Future 

experiments could optimize this protein isolation methodology for encapsulated cells in this 3D 

model. We also hope that in future experiments, we could extend the stretching duration to 

longer time points to further investigate the effect of FGFs on cell proliferation, metabolism and 

maybe other cellular remodeling endpoints. 
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5. CONCLUSIONS 

We report here the possible involvement of FGF-mediated signaling in valve cell responses 

under stretching conditions via Akt/mTOR pathway. In our experiment, it appeared that FGF1 

and FGF2 could modulate VIC phenotype under different mechanical stimulations. VICs 

appeared to be able to remain quiescent with high proliferative property in the presence of FGFs. 

When experiencing elevated stretch, VICs increased proliferation possibly as a way to 

compensate against extra load. When FGFs were added, cells started reducing proliferation. Cell 

proliferation also seemed to associate with the activation of Akt/mTOR pathway activation, cell 

metabolism and cell phenotype. Overall, this study provided fundamental information about how 

valve cells behave under abnormal stretch. Future studies need to investigate these phenomena at 

longer culture durations and to look into more cellular remodeling endpoints to get a more 

complete picture of what was going on with the cells when they experience abnormal stimulation 

in the context of FGF1/FGF2. 
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CHAPTER 6 

Conclusions, Limitations and Future Directions 
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1. CONCLUSIONS 

Heart disease is the leading cause of death in the U.S., accounting for more than 600,000 

American deaths each year (Kochanek et al. 2011). A population-based study reported that more 

than 13% of over 75 years suffer from some forms of valvular heart disease (VHD) (Nkomo et 

al. 2006) and 2-7% of the population in the western world of over 65 years with aortic stenosis 

(Spaccarotella, Mongiardo, and Indolfi 2011), the most common valve lesion in developed 

countries. Currently, there are no drug therapies that can cure or halt VHD progression. Without 

an aortic valve replacement, survival rates of patients with severe symptomatic aortic stenosis are 

as low as 50% at 2 years and 20% at 5 years after the onset of symptoms (Otto 2000).  

 As a result, tremendous efforts have been made to study heart valve biology and pathology in 

order to find drug therapies for VHD. Unfortunately, the complexity of heart valve architecture 

as well as the hemodynamic environment within the heart makes it extremely difficult for 

researchers to reproduce such conditions for in vitro studies. Consequently, most studies in the 

field were carried out in 2D or via use of the whole excised leaflets. Obviously, 2D culture 

model is not ideal because valve cells naturally reside in a 3D matrix environment which allows 

them to respond to biomechanical cues and exert forces through cell-cell, and cell-ECM matrix 

communication (Taylor et al. 2003). It is also impossible to apply mechanical forces onto 

currently existing 2D models. Using the whole excised leaflets, on the other hand, allows the 

application of certain mechanical forces onto the tissue while still preserving the natural 

architecture of the heart valve as well as all the cell populations and the interaction between the 

cells and the ECM (Balachandran et al. 2006; Sucosky et al. 2008; Sucosky et al. 2009; Sun, 

Chandra, and Sucosky 2012). The disadvantage of this approach is the inability to study and 

observe live cells, and the limited longer duration viability of whole tissues in an ex vivo setting. 
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It is also difficult to study cell type specific-mediated responses. A 3D scaffold appears to be a 

promising alternative not only for an in vitro culture model but also for generating living valve 

substitutes in vitro for tissue engineering application. However, the creation of a scaffold with 

similar composition, structure and mechanical properties to native leaflets is very challenging 

and requires tremendous efforts in finding appropriate biomaterials, cells and the availability of 

bioreactors for mechanical stimulation purpose (Zhang et al. 2015).  

 Overall, studies toward finding treatment therapies for heart valve disease are, in part, 

hindered by the challenges in recapitulating the dynamic structure and environment of the native 

heart valve. Our project set out to develop novel models to culture VICs in vitro and to study 

valve cell behavior under physiological and pathological conditions. In our study, VICs were 

examined both at the single cell and 3D cell levels in the presence of static and cyclic stretching 

conditions, respectively. These models are considered novel in the field and the information 

gained from these studies is expected to provide fundamental understanding of valve cell biology 

and pathology. 

 VICs are a dynamic population in the heart valve, whose primary function is to maintain 

leaflet structure and valve function (Taylor et al. 2003). VICs display different phenotypes 

depending on surrounding cellular and ECM signals. They are believed to remain quiescent in 

healthy leaflets. Upon experiencing abnormal conditions, they become activated and exhibit 

features of myofibroblasts such as increased contraction, prominent stress fiber, increased 

proliferation and ECM remodeling. These responses are considered important for wound repair 

process. However, if for some reasons, activated VICs persist with continued proliferation and 

ECM remodeling, this will detrimentally affect valve properties and physiological function 

(Wang, Leinwand, and Anseth 2014; Liu, Joag, and Gotlieb 2007).  
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 In our single cell study, when single VICs were subjected to different ARs to mimic the 

deformation seen in stretched valve leaflets, we observed structural and functional changes in 

these cells which corresponded to features of activated VICs. It appeared that as VICs became 

more elongated (the deformation that seen when cells were stretched at pathological 20%), they 

started to re-organize their cytoskeletal organization such that more stress fibers were expressed 

in the circumferential direction. These cells also significantly increased contractility, metabolism 

and proliferation in response to shape alteration. Although this single-cell model did not account 

for the role of hemodynamic mechanical forces, by just manipulating cell shape, we were able to 

study cell behavior at the smallest functional scale, the single cell. The result from this study 

encouraged us to continue looking into the signaling regulation on valvular cells using a 3D 

model that better represented the microenvironment of the natural heart valve.  

 The matrigel-collagen hydrogel scaffold is not a new model in other fields (Zimmermann, 

Melnychenko, and Eschenhagen 2004; Zimmermann et al. 2002; van Marion et al. 2015; Dewitt 

et al. 2009) but its combination is novel in the heart valve field, although independent use of 

matrigel and collagen has been previous reported (Butcher and Nerem 2004; Gupta et al. 2007; 

Arevalos et al. 2016). This 3D scaffold was thoroughly examined biologically and mechanically 

with respect to using it for culturing VIC in the presence of cyclic stretching. The mixture of 

matrigel and collagen created a porous scaffold with good bioactivity and strong mechanical 

properties that was able to sustain cyclic stretching for 48 hours in culture. Compared to existing 

3D models in the field, the matrigel-collagen scaffold could serve as another promising 

alternative to be used for in vitro study. Its application potential is immediately tested in the last 

part of our project where it is used to study the role of FGF1/FGF2 in mediating cell proliferation 

in response to elevated cyclic stretch. Using this matrigel-collagen scaffold, we were able to 
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apply uniaxial cyclic stretch onto the cells while providing cells with a rich ECM matrix 

environment. The significant finding of this study is to show the protective role of FGF1/FGF2 

on VICs at pathological stretch, in part, via the Akt/mTOR pathway and modulation of VIC 

phenotype. As shown in our experiments, VICs up-regulated Akt/mTOR in response to elevated 

cyclic stretch. This upregulation was also coupled with increased metabolism, proliferation and 

increased expression of activated markers. Upon treatment with FGF1/FGF2, these responses 

were reversed, clearly suggesting the potential application of FGF1/FGF2 as therapeutic target 

for treatment of valvular heart disease. 

2. LIMITATIONS AND FUTURE DIRECTIONS 

This study has some limitations that we would like to address. First, we only looked at acute 

responses of cells upon experiencing altered shape and/or mechanical stimulation (i.e. 24 hours 

and 48 hours). Longer duration needs to be done to further examine these responses in order to 

obtain more clinically relevant data as the valve disease progression usually takes months or 

years to develop. Second, due to technical limitations, we were only able to carry out these 

studies in the presence of solely uniaxial cyclic stretching which is not a perfect simulation of in 

vivo condition, but accepted widely in the field. However, to our knowledge, there are no 

existing models that could mimic the mechanics of the actual heart valve. Last, it is author‟s 

hope that more end-point assays could be done with regard to the signaling study to fully 

investigate the role of FGF1/FGF2 on valve cell pathophysiology. These additional experiments 

will be the focus of future directions for this project. 
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Appendix 1: Fabrication of the matrigel-collagen hydrogel 

Rat tail collagen type I and reduced growth factor matrigel were both purchased from Corning, 

NY.  

Collagen hydrogel was made by adding appropriate amount of PBS to make up a desired 

concentration. 0.1M NaOH was last added to neutralize and allow for polymerization. 

Mixed matrigel-collagen hydrogel was made as follows: 

 Calculate how much of each reagent was needed based on table 3.1. 

 Start adding the reagents together, beginning with matrigel, followed by collagen, PBS (if 

needed) and 0.1M NaOH. 

 Mixed gently to avoid bubble and incubated at 37°C for at least 30 minutes. Note that all 

the procedures were performed on ice. 

Table 3.1: Summary of the samples used in the study 

 

 

 

 

Valve interstitial cells were encapsulated into the mixed matrigel-collagen as follow: 

 Trypsinize the cells and count to obtain desired seeding density. 

 Centrifuge the solution at 500RCF for 5 minutes. Discard the supernatant. Do not disturb 

the cell pellet. Quickly proceed to next step. 

 Start adding hydrogel ingredients to the cell pellet, beginning with matrigel, followed by 

collagen, PBS (if needed) and 0.1M NaOH. 

 Gently mix by pipetting. 

 Matrigel Collagen  

1 mg/ml 

Collagen 

2 mg/ml 

M-C 

0.5 mg/ml 

M-C 

1mg/ml 

M-C      

1.5 mg/ml 

M-C         

2 mg/ml 

Matrigel 

(v/v) 

100%  None None 80%  65%  55%  45%  

Collagen None 1mg/ml 2mg/ml 0.5mg/ml 1mg/ml 1.5mg/ml 2mg/ml 

NaOH None Yes Yes Yes Yes Yes Yes 
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 Transfer the mixture onto the cell chamber (the cell chamber was UV-Ozone 

treatedduring trypsinization process). 

 Allow polymerization for at least 30 minutes. After 30 minutes, top off the hydrogel with 

cell culture media and return the chamber back to the incubator. Note that all the 

procedures were performed on ice. 
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Appendix 2: Protocol for controlling the biostretcher 

Step 1: Initiate the LinMot program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Open LinMot-Talk 

Click OK 
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Step 2: Set up desired parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control Panel Screen 

Edit desired Trig Fall position 

Edit desired homing position 

Edit desired Trig Rise position 



 

152 
 

Step 3: Initiate the stretch 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: Terminate the stretch  

 

 

 

 

 

 

 

 

 

 

 

2. Click this 

1. Click this 

Unclick to start the stretch 

Unclick to stop the stretch 



 

153 
 

Appendix 3: dilution ratio of antibody  

Antibody/Dye Vendor Dilution ratio 

Phalloidin Life Technologies 1:200 

DAPI Life Technologies 1:200 

Ki67 Abcam 1:500 

ERK1/2 Cell Signaling 1:50 

pERK1/2 Cell Signaling 1:500 

α-SMA Abcam  1:200 

Vimentin Abcam 1:1500 

SM-MHC Millipore 1:20 

β-actin Abcam 1:200 

Calponin Abcam 1:1000 

Fibronectin Abcam 1:500 

Osteopontin Abcam 1:200 

FGF1 Santa Cruz Biotechnology 1:10 

FGF2 Santa Cruz Biotechnology 1:10 

FGFR1 Abcam 1:25 

FGFR2 Abcam 1:25 

Akt Cell Signaling 1:100 

pAkt Cell Signaling 1:200 

mTOR Cell Signaling 1:100 

pmTOR Abcam 1:500 

Hsp47 Enzo Life Sciences 1:1000 
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Appendix 4: Biosafety Committee research approval 

 

 


	Multiscale investigation of the behavior of heart valve interstitial cells in response to pathological shape and mechanical stimulation
	Citation

	tmp.1527022450.pdf.AQfFk

