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ABSTRACT 

 

 Light is one of the primary growth-limiting factors of turfgrass. Without sufficient 

quantities of photosynthetically active radiation (PAR; 400-700 nm wavelength), turfgrass 

quality will decline and could ultimately result in plant death. PAR light can be expressed in a 

daily quantity known as the daily light integral (DLI) and has been utilized to determine 

minimum light requirements for turfgrass as well as other plants. With an estimated 25% of all 

turfgrass being maintained under some level of shaded conditions, it is imperative to define 

minimum DLI requirements of various turfgrass systems to ensure acceptable turf quality. In 

addition, it is necessary to evaluate novel methods of quantifying and assessing light conditions 

so that turfgrass managers can direct appropriate agronomic decisions. This research aims to 

determine a minimum DLI requirement of a creeping bentgrass putting green, evaluate an 

efficient quantification method of DLI requirements for multiple warm season turfgrasses in an 

established landscape, and to estimate PAR reduction with total visible light measuring devices 

under various tree species. After evaluation of creeping bentgrass putting green turfgrass quality 

and coverage under 0, 70, 80, and 90% shade for two years, a minimum DLI requirement was 

estimated to be 30 mol m-2 d-1. In a controlled research setting over two years, minimum DLI 

requirements of four warm season turf types, ‘Astro-DLM’ bermudagrass, common 

bermudagrass, ‘Cavalier’ zoysiagrass, and ‘Meyer’ zoysiagrass, were determined to be  20.4, 

25.9, 15.0, and 21.1 mol m-2 d-1, respectively. However, an efficient method to determine DLI 

requirements in an established golf course landscape was able to accurately estimate DLI 

requirements for just two of the four warm season turf types and further evaluation is needed. 

PAR reduction beneath tree shade canopies varied among tree species, but was not able to be 

estimated from visible light measurements with sufficient precision. This results of this research 



establishes minimum DLI requirements of popular turfgrass selections for turfgrass managers to 

utilize as a baseline when making agronomic decisions in shaded conditions. Additionally, 

alternate methodology is evaluated to efficiently and accurately estimate minimum DLI 

requirements.   
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Chapter I: Introduction and Literature Review 
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INTRODUCTION 

With an estimated 20-25% of all managed turfgrass grown under some level of shaded 

conditions (Beard, 1973), there is a high likelihood that most turf managers will be responsible 

for maintaining turfgrass to an acceptable level in a reduced light environment. However, most 

turfgrass species are best adapted to full sun and will not grow optimally in reduced light 

environments. If careful attention is not given to turfgrass selection and maintenance practices in 

reduced light environments, shade stress will result in a decline in overall turfgrass quality that 

could ultimately lead to plant death.  

The job performance of a turfgrass manager is primarily evaluated by the visual quality 

and condition of the turfgrass. Turfgrass managers are often tasked to maintain healthy and 

aesthetically pleasing turfgrass in sites that are not conducive to successful plant growth such as 

reduced light environments. Tree canopies, sports stadium infrastructure, buildings, and many 

other objects in the landscape can result in shaded conditions that could become a growth 

limiting factor in turfgrass systems (Glenn et al., 2012). Implementing agronomic practices such 

as lowering nitrogen fertility (Baldwin et al., 2009), raising mowing height (Glenn et al., 2013), 

and applying plant growth regulators (Qian and Engelke, 1999) reduce the negative effects on 

turfgrass quality caused by shaded conditions. However, these cultural practices may not fully 

eliminate the decline in quality of turfgrasses grown in shaded conditions and increasing light 

availability to the turfgrass may be the only solution. Therefore, determining precise light 

requirements of various turfgrass systems to avoid decline in turfgrass quality as a result of shade 

stress warrants further investigating.  
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C3 and C4 Photosynthesis 

Photosynthesis is a critical chemical reaction in plant growth that is used to supply energy 

in the form of carbohydrates to be used by the turfgrass plant for growth and development. 

Through this process, plants absorb and utilize solar energy to drive the chemical reaction of 

converting carbon dioxide from the atmosphere and water from the soil into carbohydrates 

essential for plant growth. Photosynthesis also releases oxygen back into the atmosphere. All 

photosynthetic plants utilize the chemical reactions in the Calvin cycle to convert CO2 to 

carbohydrates needed for plant growth, but the photosynthetic pathway that CO2 is initially 

assimilated inside the chloroplasts is what distinguishes cool-season turfgrasses from warm-

season turfgrasses (Fry and Huang, 2004).  

Cool-season turfgrasses only fix carbon through the Calvin cycle by way of the C3 

photosynthetic pathway. The first step in C3 photosynthesis is the reaction of CO2 with the plant 

acceptor molecule ribulose 1,5-biphosphate (RuBP) to form two molecules of 3-phosphoclyceric 

acid (3-PGA). 3-PGA is a three carbon compound that is responsible for the name of the C3 

photosynthetic pathway used in cool-season turfgrasses. Reduction of 3-PGA then takes place to 

produce a three carbon sugar generated by photochemically derived adenosine triphosphate 

(ATP) and reductant equivalent nicotinamide adenine dinucleotide phosphate (NADPH). The 

resulting carbohydrate is then available for plant growth and development. The enzyme 1,5-

biphosphate carboxylase (rubisco) that catalyzes carboxylation of RuBP to form 3-PGA can also 

act as a catalyst for the oxegenation of RuBP which results in CO2 being released and not being 

converted to carbohydrates resulting in solar energy being wasted. This process is termed 

photorespiration and becomes problematic in C3 photosynthesis when temperatures exceed 30°C 

where concentrations of CO2 are lower and O2 is higher in the current atmospheric conditions.  
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Warm-season grasses contain bundle sheath cells that are tightly arranged around 

mesophyll cells. This special leaf anatomical feature is unique to plants using the C4 

photosynthetic pathway and provides the plant with a more efficient process of fixing CO2. In the 

mesophyll cells, phosphoenolpyruvate carboxylase will aid in fixing CO2 that reacts to form 

oxaloacetate. Oxaloacetate is then converted to malate, a four carbon acid. Malate is transported 

by plasmodesmata from the mesophyll cells to the bundle sheath cells, releasing CO2 when 

malate is decarboxylated. CO2 is then fixed again by the Calvin cycle to produce carbohydrates. 

Photorespiration is minimal in C4 plants due to rubisco being saturated with CO2, deterring 

oxygenase activity (Fry and Huang, 2004). The difference in photosynthetic pathways between 

warm-season and cool-season grasses are in part responsible for differences in shade 

adaptability. The photosynthetic pathway directly effects the rate of photosynthetic efficiency for 

turfgrasses under shaded conditions.  

Warm-Season Turfgrass versus Cool-Season Turfgrass 

Even though warm-season turfgrasses are more efficient at utilizing CO2 in the Calvin cycle 

compared to cool-season turfgrasses, higher amounts of light are needed to maintain 

photosynthetic rates in the C4 pathway (Taiz and Zieger, 2015). Photosynthesis requires the 

presence of sufficient light to convert solar energy into chemical energy in the form of ATP and 

NADPH to drive the chemical reaction. An increase in available light quantity does not often 

inhibit turf photosynthesis, but a decline in the rate of photosynthesis can occur when light 

quantity is reduced in shaded environments (Fry and Huang, 2004). The maximum quantity of 

available light that turfgrasses can use for photosynthesis is termed the light saturation point 

(McCarty, 2005). Cool-season turfgrasses have a light saturation point near 50% of full sunlight 

while warm-season turfgrasses require full sunlight to reach the light saturation point (McCarty 
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2005). The minimum quantity of light necessary for the rate of photosynthesis to equal the rate 

of respiration in turfgrass plants is termed the light compensation point (Fry and Huang 2004). 

The light compensation point of cool-season grasses is considerably lower than the light 

compensation point of warm-season grasses due to higher photosynthetic rates and lower 

respiration rates in low light levels (Fry and Huang, 2004; Taiz and Zeiger, 2015). Some cool-

season turfgrass species have been reported to survive in conditions where only 5% of sunlight is 

available, but most cool-season turfgrasses require 25-35% of full sun to sustain normal growth 

depending on species and management (Beard, 1965; McBee and Holt; 1966). The difference in 

light compensation and saturation points indicate that cool-season and warm-season grass likely 

have different precise light requirements to maintain acceptable quality, but those thresholds 

have yet to be established for most turf types.   

Shade Physiology 

In both cool-season and warm-season turfgrasses, photosynthetic rates are significantly 

reduced when shaded conditions are increased (Stier and Gardner, 2008). Respiration rates are 

also reduced in shaded conditions to conserve carbohydrates. Therefore, the photosynthesis-

respiration balance is an important factor in shade adaptation. Low ratios of photosynthesis to 

respiration can result in reduced total nonstructural carbohydrate content. (Burton et al., 1959; 

Qian and Engelke, 1999; Schmidt and Blaser, 1967). Continued reduction of nonstructural 

carbohydrates in the plant due to lowered photosynthesis rates in shaded conditions can result in 

a weakened turf stand. A decline in plant vigor, recuperative potential, and turfgrass quality 

could potentially result if the turfgrass cannot acclimate to the physiological growth changes that 

occur in a reduced light environment.  
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Shade Morphology 

 Adequate levels of solar radiation promotes root development, thicker leaves, and 

increased stem diameter in turfgrass plants (Dudeck and Peacock, 1992). However, if solar 

radiation quantities are not adequate, morphological responses in plant growth can be detrimental 

in recovery of turfgrass from physical wear stresses such as mowing events or foot traffic 

(Trenholm and Carrow, 2000; Cattani and Struik, 2001). The most noticeable morphological 

change in turfgrass that is grown in a reduced light environment is the elongation of the stem 

(Holmes and Smith, 1977). Increased internode length and leaf length result in taller plant height 

and an upright growth habit that is not desired in turfgrass systems (Dudeck and Peacock, 1992; 

McBee and Holt 1966; Wilkinson et al., 1975). Normal mowing practices could scalp turfgrasses 

that exhibit stem and shoot elongation in shade. Turfgrass becomes weakened further by 

allocating energy to recover from mower scalping. In addition, there are numerous other 

morphological changes that occur in turfgrass exposed to reduced light intensities such as 

decreases in leaf thickness, stem diameter, shoot density, and rhizome/stolon growth (Peacock 

and Dudeck, 1981; McBee and Holt, 1966; Wilkinson, et al., 1975). These morphological 

changes can occur in turfgrasses 4-7 days after being exposed to a reduced light environment 

(McBee, 1969). These morphological and physiological responses of turfgrasses to shaded 

conditions will often result in weaker turf and possible turfgrass loss that indicate the need of 

precise light requirements to ensure acceptable turf quality.   

Solar Radiation and Photosynthetically Active Radiation  

Plants utilize a band of light within the electromagnetic spectrum that only accounts for 

37% of the energy that is delivered to the earth’s surface from the sun. Only 1 to 5% of that light 

is being utilized to produce chemical energy through the process of photosynthesis while 10% is 
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reflected and 10% is transmitted through the leaf (Fry and Huang 2004; Turgeon, 2005).  This 

band of light contains wavelengths of 400-700 nm and is termed photosynthetically active 

radiation (PAR) (Pearcy, 1989). Plant pigments such as chlorophyll absorb PAR at specific 

wavelengths within the 400-700 nm band. Chlorophyll a selectively absorbs light at 410, 430, 

and 660 nm and absorption by chlorophyll b occurs at 430, 455, and 640 nm. Light with 

wavelengths of 700-800 nm is not absorbed by chlorophyll, but may influence 

photomorphogensis and shade avoidance in turfgrasses (Wherley, et al., 2005). The ratio of red 

light (R; 600-700 nm) to far-red light (FR; 700-800 nm) is important in turfgrass shade 

adaptation (Holmes and Smith, 1977). The leaves of tree canopies can alter R:FR ratios due to 

reflection and absorption from the daily average of 1.15 in unobstructed light to as low as 0.36 

once light reaches the turfgrass surface (Wherley et al., 2005). The altered R:FR ratios under tree 

shade induces metabolic and physiological changes in the turfgrass plant that can result in 

undesired visual plant responses and determine turfgrass shade tolerance (Wherley et al., 2005). 

Tree canopy architecture such as leaf color, shape, quantity, etc. could impact light quality and 

quantity available to turfgrass growing in the shaded areas created by tree canopies. Research is 

needed to evaluate the possible variation in PAR and total visible light quantities available under 

different tree species canopies.  

Daily Light Integral Measurement 

 PAR light is measured in quantum radiometric units of µmol m-2 s-1 and is an 

instantaneous measurement of light energy at a specific location. The daily light integral (DLI; 

expressed as mol m-2 d-1) is a quanta measurement of PAR light at a specific site over a 24-hour 

period (Korczynski et al., 2002). DLI measurement has been utilized as an important research 

tool to evaluate flowering periods, chlorophyll content, and other plant growth processes in many 
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horticulture crops (Armitage and Carlson, 1981; Faust and Heins, 1994; Pearcy, 1989).  In 

addition, DLI measurement has been demonstrated to be an effective method in quantifying 

turfgrass light requirements. Most notably, DLI requirements have been established for various 

ultradwarf bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) cultivars 

for putting greens (Bunnell et al., 2005; Hodges et al., 2016; Miller et al, 2005) and other warm-

season (C4) turfgrass species (Zhang et al., 2017). Bunnell (2005) found that 32.6 mol m-2 d-1 is 

the necessary DLI during the months of July and August to maintain acceptable ‘TifEagle’ 

ultradwarf bermudagrass putting green quality in South Carolina. ‘FloraDwarf’ and ‘TifDwarf’, 

two ultradwarf bermudagrass cultivars used on putting greens in the southeastern United States, 

required a DLI of 38.6 mol m-2 d-1 to maintain acceptable turfgrass coverage (Miller et al., 2005). 

However, very little research has focused on DLI requirements of cool-season turfgrasses (C3) 

such as creeping bentgrass (Agrostis stolinifera L.), a popular turfgrass selection for putting 

greens. A change in mowing height has been observed to affect the daily light integral needed to 

maintain acceptable turfgrass quality (Bunnell et al., 2005b; Glenn, 2013). With each mowing 

height increase of 1 mm, DLI requirement of ‘Champion’ and ‘TifEagle’ ultradwarf 

bermudagrass decreased by 2.0 m-2 d-1 (Glenn, 2013). Other cultural practices in shaded 

environments such as application of a plant growth regulator are known to increase shade 

tolerance (Goss et al., 2002; Qian and Engleke, 1999), but effect of these practices on the DLI 

requirement have not been quantified. In addition, all studies regarding DLI requirements of 

turfgrass have been conducted in a controlled field or greenhouse trial. Further research is 

needed to investigate a method to efficiently determine DLI requirements of various turf types in 

an established landscape. 
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 Based on the limited literature on precise light requirements of various turfgrass types, 

the following objectives are proposed:  

1) Determine the minimum DLI requirement of a creeping bentgrass putting green as 

affected by shade timing and intensity, plant growth regulator, and plant foliar colorant. 

2) Develop an efficient method to determine DLI requirements of various warm-season 

turfgrasses in an established landscape. 

3) Estimate photosynthetically active radiation reduction under various tree species` shade 

canopies with total visible light measuring devices. 

A series of studies were conducted to evaluate the effect of shade on precise light requirements 

for turfgrass systems. The DLI requirements established in these studies should serve turfgrass 

managers as a benchmark for evaluating light needs for turfgrass at their own facilities.  

Furthermore, the results of this study aim to guide agronomic practices for turfgrass maintenance 

in shaded environments.  

  



10 

 

LITERATURE CITED 

Armitage, A. and W. Carlson. 1981. The effect of quantum flux density, day and night 

temperature and phosphorus and potassium status on anthocyanin and chlorophyll content 

in marigold leaves [Tagetes patula]. J. Amer. Soc. Hort. Sci. 115(6):910-914. 

Baldwin, C. M., H. Liu, L. B. McCarty, H. Luo, and J. E. Toler. 2009. Nitrogen and plant growth 

regulator influence on ‘Champion’ bermudagrass putting green under reduced sunlight. 

Agron. J. 101:75-81.  

Beard, J.B. 1965. Factors in the adaptation of turfgrasses to shade. Agron. J. 57:457-9.  

Beard, J.B., 1973. Turfgrass: science and culture. Prentice-Hall, Englewood Cliffs, N.J. 

Bunnell, B. T., L. B. McCarty, J. E. Faust, W. C. Bridges, N. C. Rajapakse, and W. C. Bridges. 

2005. Quantifying a daily light integral requirement of a 'TifEagle' bermudagrass golf 

green. Crop Sci. 45(2): 569-574. 

Bunnell, B. T., L. B. McCarty, and W. C. Bridges. 2005b. ‘TifEagle’ bermudagrass response to 

growth factors and mowing height when grown at various hours of sunlight. Crop Sci. 

45:575-581.  

Burton, G.W. 1959. The influence of light reduction upon the production, persistence and 

chemical composition of Coastal Bermudagrass, Cynodon dactylon. Agron. J. 51(9):537-

42.  

Cattani, D.J. and P.C. Struik. 2001. Tillering, internode development, and dry matter partitioning 

in creeping bentgrass. Crop Sci. 41(1):111-118.  

Dudeck, A.E. and C.H. Peacock. 1992. Shade and turfgrass culture. Agronomy (32):269-284.  

Faust, J.E. and R.D. Heins. 1992. Modeling inflorescence development of african violets. 

Hortscience 27:692.  

Fry, J. and B. Huang 2004. Applied Turfgrass Science and Physiology. J. Wiley. Hoboken, NJ. 

Goss, R.M., J.H. Baird, S.L. Kelm, and R.N. Calhoun. 2002. Trinexapac-ethyl and nitrogen 

effects on creeping bentgrass grown under reduced light conditions. Crop Sci. 42(2):472.  

Glenn, B., J. Kruse, and J. B. Unruh. 2012. Daily light integral requirements for twelve warm-

season turfgrasses. Int. Ann. Meet. p. 72111. 

Glenn, B., J. Kruse, and J. B. Unruh. 2013. Effect of shade duration on three warm-season 

turfgrasses. Int. Ann. Meet. p. 80695. 



11 

 

Hodges, B.P., C.M. Baldwin, B. Stewart, M. Tomaso-Peterson, J.D. McCurdy, E.K. Blythe, and 

H.W. Philley. 2016. Quantifying a daily light integral for establishment of warm-season 

cultivars on putting greens. Crop Sci. 56:2818-2826.  

Holmes, M.G. and H. Smith. 1977. The function of phytochrome in the natural environment. 1. 

Characterization of daylight for studies in photomorphogenesis and photoperiodism. 

Photochem. Photobiol. 25(6):533-538.  

Korczynski, P.C., J. Logan, and J.E. Faust. 2002. Mapping monthly distribution of daily light 

integrals across the contiguous United States. HortTechnology 12(1):12-16.  

McBee, G. G., and E. C. Holt. 1966. Shade tolerance studies on bermudagrass and other 

turfgrasses. Agron. J. 58(5):523-525.  

McCarty, L.B., 2005. Best golf course management practices: construction, watering, fertilizing, 

cultural practices, and pest management strategies to maintain golf course turf with 

minimal environmental impact. 3rd ed. Prentice Hall, Upper Saddle River, NJ. 

Miller, G. L., J. T. Edenfield, and R. T. Nagata. 2005. Growth parameters of floradwarf and 

tifdwarf bermudagrasses exposed to various light regimes. Int. Turfgrass Soc. Res. 

J. 10(2):p. 879-884.  

Peacock, C. and A. Dudeck. 1981. The effects of shade on morphological and physiological 

parameters of St. Augustinegrass cultivars. Intl. Turfgrass Soc Res. J. 4: 493-500. 

Pearcy, R.W. 1989. Radiation and light measurements. Chapman and Hall Ltd, London; UK.  

Stier, J. C. and D. S. Gardner. 2008. Shade stress and management. In: M. Pessarakli, editor, 

Handbook of turfgrass management and physiology. CRC Press, Boca Raton, FL, pp. 

447-471. 

Qian, Y.L. and M.C. Engelke. 1999. Influence of trinexapac-ethyl on diamond zoysiagrass in a 

shade environment. Crop Sci. 39(1):202-208.  

Schmidt, R.E. and R.E. Blaser. 1967. Effect of temperature, light, and nitrogen on growth and 

metabolism of "Cohansey" bentgrass Agrostis palustris Huds. Crop Sci. 7:447-451.  

Taiz, L. and E. Zeiger. 2015. Plant physiology and development. Sinauer Associates, Inc., 

Publishers, Sunderland, Massachusetts. 

Trenholm, L.E. and R.N. Carrow. 2000. Mechanisms of wear tolerance in seashore paspalum and 

bermudagrass. Crop Sci. 40(5):1350.  

Turgeon, A J. Turfgrass Management. Upper Saddle River, N.J: Prentice Hall, 2005. Print. 



12 

 

Wherley, B. G., D. S. Gardner, and J. D. Metzger. 2005. Tall fescue photomorphogenesis as 

influenced by changes in the spectral composition and light intensity. Crop Sci. 45(2):p. 

562-568. 

Wilkinson, J.F., J.B. Beard, and J.V. Krans. 1975. Photosynthetic-respiratory responses of 

'Merion' Kentucky bluegrass and 'Pennlawn' red fescue at reduced light intensities. Crop 

Sci. 15(2):165-168.  

Zhang, J., B. Glenn, J. B. Unruh, J. Kruse, K. Kenworthy, J. Erickson, D. Rowland, and L. 

Trenholm. 2017. Comparative performance and daily light integral requirements of 

warm-season turfgrasses in different seasons. Crop Sci. 57:2273-2282.  

 

 

  



13 

 

Chapter II: 

Determining the Minimum Daily Light Integral Requirement of a Creeping Bentgrass 

Putting Green as Affected by Shade Timing and Intensity, Plant Growth Regulator, and 

Plant Foliar Colorant 
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ABSTRACT 

Turfgrass quality can be limited by the availability of photosynthetically active radiation 

delivered to the turf surface. The cumulative photosynthetically active radiation for one day at a 

given site is termed the daily light integral (DLI) and has been demonstrated as an effective 

measurement for quantifying light requirements in various turfgrass systems. However, the 

minimum DLI necessary to maintain acceptable quality on a creeping bentgrass (Agrostis 

stolonifera L.) putting green has yet to be determined. In addition, the impact of shade timing 

and intensity in combination with the effects of growth regulator Primo Maxx (trinexapac-ethyl) 

and Turf Screen plant colorant on DLI requirements need further investigating. The objective of 

this research was to determine the DLI requirement of a creeping bentgrass putting green by 

evaluating the effects of shade intensity and timing as well as the influence of Primo Maxx and 

Turf Screen on turfgrass quality in reduced light environments. Four shade intensity treatments 

(0%, 70%, 80% and 90% reduction of full irradiance) were applied to the turf during morning 

hours (sunrise to solar noon) or afternoon hours (solar noon to sunset) to observe differences in 

turf quality from May through October 2016 and 2017. Evaluations of visual turf quality ratings, 

turf coverage, and clipping yield were performed every two weeks during the trial. After two 

years of data collection, the minimum DLI requirement to maintain acceptable turfgrass quality 

for a 'Tyee' creeping bentgrass green was estimated to be 30 mol m-2 d-1. While effective in 

improving turf quality on late summer rating dates, Primo Maxx and Turf Screen did not 

significantly reduce the minimum DLI requirement of creeping bentgrass. 
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INTRODUCTION 

Creeping Bentgrass 

Creeping bentgrass (Agrostis stolonifera L.) can produce an exceptional putting green 

surface under the proper growing conditions. The ability to withstand low mowing heights, very 

fine leaf texture, and dense turfgrass canopy make creeping bentgrass a popular turfgrass 

selection for putting greens (Fry and Huang, 2004). As a cool-season grass, creeping bentgrass 

has optimal shoot growth at ambient temperature between 16 and 24 °C and root growth between 

10 and 18 °C (Fry and Huang, 2004).  Temperate and sub-arctic climate zones throughout the 

United States typically sustain these optimal growing conditions for extended periods of time in 

the spring and fall months and result in creeping bentgrass being a popular turfgrass selection for 

putting green use (Christians and Engelke, 1994). Despite being marginally adapted to the 

climate conditions, creeping bentgrass is still a popular turfgrass selection for putting greens in 

the transition zone and southern United States where persistent above-optimal temperatures for 

growth during the summer months can result in heat stress. The perceived superior putting 

surface quality of creeping bentgrass is often the deciding factor of putting green turfgrass 

selection in these regions compared to bermudagrass that is more adapted to the climate 

(Christians and Engelke 1994; McCarty, 2005).  

Creeping Bentgrass Shade Tolerance 

 Extensive work has investigated the various physiological and morphological effects of 

cool-season turfgrasses grown in shade, but there is limited research on overall shade limitations 

and precise light requirements to maintain acceptable quality of creeping bentgrass putting 

greens in reduced light environments. Creeping bentgrass grows best in full sunlight but can also 
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acclimate well when grown in partial shade environments (Beard, 1973). Cool-season grasses 

such as creeping bentgrass reach light saturation, the light level where net photosynthesis is zero 

or where the photosynthesis rate equals the respiration rate (Danneberger, 1993), at nearly half of 

full sunlight (McCarty, 2005). Positive net photosynthesis is required to ensure plant survival 

(Wilkinson et al., 1975). Tree canopies and other structures in the landscape that surround 

putting greens often result in reduced light environments where reaching the light compensation 

point can prove to be difficult.  

Bell and Danneberger (1999) found that creeping bentgrass produced unacceptable 

turfgrass quality when grown under 80% - 100% persistent shade levels and mowed at putting 

green height. However, if the same shade levels were cast upon the turf for 6 or fewer hours, 

creeping bentgrass maintained the same overall quality as if grown under full sun. There were no 

differences in turf quality if shade was applied to the turf during morning or afternoon hours 

(Bell and Danneberger, 1999). It is worth noting that the trial conducted by Bell and 

Danneberger (1999) took place in Columbus, Ohio (39.96° N, 82.99°W; USDA Plant Hardiness 

Zone 6a) where growing conditions tend to be less stressful on creeping bentgrass compared to 

the higher summer temperatures of Fayetteville, Arkansas (36°06' N, 94°10' W; USDA Plant 

Hardiness Zone 7a) in the transition zone where the following studies were conducted. Anecdotal 

evidence reported from golf course superintendents and other turfgrass managers has 

consistently indicated that morning sun is more essential for turfgrass growth compared to 

afternoon sun (Bell and Danneberger, 1999). These reports seem valid due to morning 

temperatures being better optimized for efficient photosynthesis compared to afternoon (Bell and 

Danneberger, 1999). However, there is little research to substantiate these claims and additional 

studies are needed to confirm the effects of shade timing on creeping bentgrass putting greens. In 
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addition, there is no published work quantifying the amount of light necessary to maintain 

acceptable turf quality on creeping bentgrass putting greens.  

Daily Light Integral 

As previously presented, most studies regarding light requirements of creeping bentgrass 

focus on quantifying the percent reduction of full sun or duration of shade that results in 

unacceptable turf quality (Bell and Danneberger, 1999; Goss et al., 2002). In a golf course 

setting, shade is rarely constant, instead fluctuating throughout the day, and can be difficult for 

turfgrass managers to quantify. Instead of quantifying shade, the DLI is a measurement that 

quantifies the total amount of photosynthetically active radiation delivered to the surface over an 

entire day (Korczynski et al., 2002). The DLI has been utilized by researchers to develop 

minimum DLI requirements for various turfgrasses to maintain acceptable quality. Most notably, 

DLI requirements have been established for various ultradwarf bermudagrass (Cynodon dactylon 

(L.) Pers. x C. transvaalensis Burtt-Davy) cultivars for putting greens (Bunnell et al., 2005; 

Hodges et al., 2016; Miller et al, 2005). Bunnell (2005) reported that 32.6 mol m-2 d-1 was the 

DLI necessary during the months of July and August to maintain acceptable quality of a 

‘TifEagle’ ultradwarf bermudagrass putting green in South Carolina. ‘FloraDwarf’ and 

‘TifDwarf’, two ultradwarf bermudagrass cultivars used on putting greens in the southeastern 

United States, require a DLI of 38.6 mol m-2 d-1 to maintain acceptable turfgrass coverage (Miller 

et al., 2005). However, very little research has focused on DLI requirements of cool-season 

turfgrass species such as creeping bentgrass. To fill this gap in the scientific literature, this study 

aims to determine a minimum daily light integral requirement needed for creeping bentgrass 

putting greens through evaluating turfgrass under various shade intensity and timing regimes. 
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Trinexapac-ethyl 

Undesirable shade avoidance mechanism of turfgrasses in reduced light environments are 

increased shoot growth and elongation requiring frequent mowing that could result in a lowered 

stand density and overall visual quality (Qian and Engelke, 1999). Increased turfgrass shoot 

elongation and leaf succulence grown in shade is due to an increase in the gibberellic acid (GA) 

biosynthesis of GA1 to GA20 (Tan and Qian, 2003; Adams et al., 1992). The plant growth 

regulator trinexapac-ethyl (Primo Maxx) effectively suppresses unwanted shoot elongation by 

inhibiting GA biosynthesis of GA1 to GA20 in turfgrasses (Adams et al., 1992). As a result, 

trinexapac-ethyl enhances turfgrass quality and shade tolerance by decreasing shoot elongation 

(Baldwin et al., 2009). Monthly or bi-monthly applications of Primo Maxx when conditions 

favor turfgrass growth have significantly increased turfgrass quality in reduced light 

environments (Qian and Engelke, 1999; Steinke and Stier, 2003). In addition to suppressing 

shoot elongation, trinexapac-ethyl also can improve turfgrass density, color, and quantity of 

stored carbohydrates (Goss et al., 2002; Steinke and Stier, 2003; Qian and Engelke, 1999).  

Trinexapac-ethyl applied to creeping bentgrass grown under 80% shade increased turfgrass cover 

up to 33% and tiller production up to 52% (Goss et al., 2002). Total carbohydrate levels, 

especially fructose concentration, were increased up to 20% in the shoots of creeping bentgrass 

treated with Primo Maxx. Higher concentrations of carbohydrates in the shoots indicate 

conservation/reallocation of carbohydrates to areas of more favorable growth under reduced light 

conditions (Goss et al., 2002). The direct cause of darker green color in turfgrass treated with 

trinexapac-ethyl is not confirmed in the literature, but previous research has resulted in possible 

explanations. Turfgrass treated with trinexapac-ethyl increased quantity and density of 

chlorophyll in leaf tissue and allowed for higher light harvesting in the photosynthesis process 
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that could have resulted in improved turfgrass color (Heckman et al., 2001). Trinexapac-ethyl 

also could have maintained or enhanced turfgrass color by minimizing removal of plant tissue 

nitrogen during mowing events, the most limiting nutrient of turfgrass color (Christians et al., 

1979; Kreuser and Soldat, 2012).  The primary means of improving cool-season turfgrass shade 

tolerance is reducing leaf elongation through proper application of trinexapac-ethyl that can 

improve turfgrass density, color, and carbohydrate storage in shaded environments (Ervin et al., 

2004). There is a need to quantify how the effects of trinexapac-ethyl applied to turfgrass in 

shaded environments may affect the critical DLI requirement of creeping bentgrass putting 

greens.  

Turf Screen 

Applying foliar colorants to putting green turfgrass is becoming an increasingly popular 

practice among golf course superintendents (Liu et al., 2007). Colorants enhance green color and 

visual quality of turfgrass by minimizing or masking turf stress symptoms (Ervin et al., 2004; 

Kreuser and Rossi, 2014). Colorant applications are being implemented by turfgrass managers to 

provide a viable alternative to overseeding warm-season turfgrasses, masking turfgrass shoot 

imperfections, spray pattern indicators, and enhancing spring green-up (McCarty et al., 2013; Liu 

et al., 2007). Product manufacturers have suggested that colorants such as Turf Screen (zinc 

oxide + titanium oxide + green dye) can reduce summer heat stress, increase photosynthetic 

efficiency, and decrease canopy temperature for cool-season turfgrasses during summer months 

by blocking turfgrass absorption of UVB (280-320 nm) radiation. Previous research has 

confirmed that colorants possess the capability to block UVB radiation that can cause oxidative 

stress and turfgrass injury (Ervin et al., 2004), but will also reduce the quantity of available PAR 

light (McCarty et al., 2013). McCarty et al. (2013) and Kreuser (unpublished data, 2016) 
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demonstrated that colorants increase surface temperature, do not increase photosynthetic 

efficiency, and provide no reduction in summer heat stress of cool-season turfgrasses. Obear et 

al. (2017) reported improved turfgrass color when applied with Turf Screen and attributed the 

increase to green dye in product formulation instead of improvement of turf quality. Colorants 

applied to creeping bentgrass under 70% shade had significantly reduced year-end rooting depth 

compared to turfgrass exposed to full sun conditions, suggesting that colorants could enhance 

shade stress problems (Kreuser, unpublished data, 2016). There is a need to quantify how a 

colorant applied to turfgrass in shaded conditions may affect the critical DLI requirement for 

creeping bentgrass putting greens.  

Objectives 

To advance the current understanding of precise light requirements and shade tolerance 

of creeping bentgrass putting greens the following research objectives of this study were 

established: 1) determine a daily light integral requirement of a creeping bentgrass putting green, 

2) evaluate turf quality differences between morning and afternoon shade with varying levels of 

shade intensity, and 3) evaluate the effects that plant growth regulators and plant colorants may 

have on creeping bentgrass shade tolerance. 
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 MATERIALS AND METHODS 

Experimental Area 

This study was conducted during the growing seasons of 2016 and 2017 on a ‘Tyee’ 

creeping bentgrass (Agrostis stolonifera L.) putting green at the University of Arkansas 

Agricultural Research and Extension Center in Fayetteville, AR (36°06' N, 94°10' W). The Year 

1 study was conducted from 1 May to 31 October 2016 and Year 2 from 3 May to 31 October 

2017. The 18.3 m x 18.3 m experimental area was established from seed in the fall of 2013 and 

originally constructed with a soil profile and soil physical properties consistent with United 

States Golf Association recommendations (USGA, 1993). Mowing was performed 6 days per 

week at a 3.1 mm height of cut. Experimental area was fertilized every two weeks during the trial 

period at a rate of 12.2 kg N ha-1 with rotating applications of urea (46-0-0 N-P-K) and water 

soluble complete fertilizer (28-5-18 N-P-K). Overhead irrigation was applied as necessary to 

prevent drought symptoms.  

Plots with significant turf loss after Year 1 were renovated to mimic a golf course 

management scenario and to capture the cumulative effect of shade over multiple growing 

seasons. To prepare a seedbed on the existing putting surface, renovated plots received solid tine 

aerification in one direction and vertical mowing at a 0.64 cm depth below putting surface in 

three directions on 24 February 2017. Plot were then seeded with ‘Tyee’ creeping bentgrass at a 

rate 97.7 kg ha-1 using a drop spreader (24” Variable Rate Drop Spreader, Gandy Company, 

Owatonna, MN) on 24 February and 30 March 2017. Seeds were topdressed with sand consistent 

to USGA specifications (USGA, 1993) and lightly raked to provide adequate seed to soil contact. 

Plots were fertilized immediately after seeding at a rate of 24.4 kg N ha-1 with an organic-based 

fertilizer (6-4-0 N-P-K). Translucent germination blankets (International Greenhouse Company, 
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model #GR-DTB, Danville, IL) were installed after seeding and fertilization practices and 

removed once germination was complete. Overhead irrigation was scheduled to ensure sufficient 

moisture for germination and seedling development.  

Three individual shade structures were modeled after a shade application system 

previously implemented at the University of Arkansas Agricultural Research and Extension 

Center (Trappe et al., 2011). The structures were constructed using 6.4 cm diameter steel pipe 

and measured 7.3 x 4.8 m, acting as shade timing whole plots (Fig.2.1). Each individual shade 

structure was divided into 1.8 x 4.8 m strips containing the four shade treatments that represented 

strip plots within the shade timing whole plots. The shade cloth was custom ordered to fit inside 

each section on the structures and the reinforced edges of the cloth had grommets installed every 

60 cm. The shade cloths were tightly affixed to the structure using ultraviolet-resistant cable zip 

ties and wire cabling was installed under the cloth to prevent sagging of the cloth. The shade 

structures were supported 35 cm above the turf canopy by 6 wheels spaced evenly on the exterior 

steel pipes of the structure to allow for transportation. Quantum light sensors (LightScout 

Quantum Light Sensor, Spectrum Technologies, Aurora, IL) that measured photosynthetically 

active radiation (400-700 nm) were attached in a fixed placement under each shade cloth on two 

of the three shade structures. 

Treatments 

Four shade intensities, 0%, 70%, 80% and 90% reduction of full sun irradiance, were 

applied during either the morning or afternoon hours daily. Morning hours were deemed to be 

sunrise to solar noon and afternoon hours from solar noon to sunset. Shade structures were 

manually transported to apply shade treatments to turf within one hour of sunrise and solar noon. 
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The four shade intensities were applied with neutral density, polyfiber black shade cloth 

(International Greenhouse Company, model # SC-BL70, SC-BL80, SC-BL90, Danville, IL).  

Four spray application treatment strips measuring 7.3 x 1.8 m were applied to the 

turfgrass canopy across each shade intensity strip within shade timing treatments. The four spray 

application treatments included: Primo Maxx (trinexapac-ethyl) at 0.028 kg ha-1 applied every 14 

days, Turf Screen (titanium oxide + zinc oxide, green dye) at 3.2 kg ha-1 applied every 7 days, a 

combined application of Primo Maxx at 0.028 kg ha-1 applied every 14 days + Turf Screen at 3.2 

kg ha-1 applied every 7 days, and a non-treated control. Spray applications were made with a CO2 

pressurized boom sprayer calibrated to a spray volume of 57.5 L ha-1. 

Evaluations 

Daily and 30-year average ambient temperature data was collected from the National 

Weather Service (hhtp://weather.gov) station at Drake Field Airport in Fayetteville, AR during 

the trial period. 

Daily light integrals (mol m-2 d-1) were calculated by summing PAR measurements 

recorded in a 4-channel datalogger (WatchDog 1000 Series Micro Station, Spectrum 

Technologies, Aurora, IL) connected with quantum light sensors. Quantum light sensors were 

programmed to record the quantity of PAR photons (μmol m-2 s-1) present under each shade 

intensity level at fifteen minute intervals. Removal of shade structures to allow for plot 

maintenance was treated as full sun conditions as was accounted for in DLI calculations. Daily 

light integrals were calculated for each shade treatment and timing as monthly and seasonal 

averages.  
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Visual turfgrass quality ratings were taken every two weeks during the study. Visual 

turfgrass quality ratings were based on evaluation of turfgrass coverage, color, density, and 

uniformity using a 1 to 9 scale with 1 representing dead turf and 9 representing dark green, 

healthy turf according to National Turfgrass Evaluation Program evaluation guidelines (Morris 

and Shearman, 1998). Any turfgrass quality rating below 7 was deemed unacceptable.  

Digital images of each plot were recorded every two weeks to evaluate turfgrass 

coverage. Images (1200 x 1600 pixel resolution) were taken using a Canon Powershot G1X 14 

Megapixel digital camera (Canon USA Inc., Melville, NY) placed inside of a portable, enclosed 

light box that provided a consistent artificial light source to improve objectivity in image data 

(Karcher and Richardson, 2013). Digital image analysis was used to evaluate percent turfgrass 

coverage in each captured image using the Turf Analyzer software program (Turf Analyzer, 

http://turfanalyzer.com) (Karcher et al, 2017). Healthy turfgrass was identified by selecting 

pixels with a hue of 45 to 140 and a saturation of 10 to 100. Selected pixels were divided by the 

number of total pixels of each image to determine turfgrass coverage expressed as a percent. 

Turfgrass coverage below 90% was deemed unacceptable. 

Clipping yields for each treatment were collected every 14 days using a walk-behind 

greens mower (Eclipse 2 122F, Jacobsen, Charlotte, NC) set to a mowing height of 3.1 mm. 

Clipping yield collection occurred after daily mowing was suspended for a minimum of 3 days to 

allow sufficient turfgrass growth for accurate collection. Collected clippings were dried at 70° C 

for 72 hours and then weighed to determine dry weight.  
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Statistical Design and Analysis 

This study was designed as a randomized complete block design with treatments in a 2 x 

4 x 2 x 2 split-strip plot design with three replications. Shade timing (morning or afternoon 

shade) whole plots were stripped by four shade intensity factors of 0, 70, 80, and 90% shade, and 

stripped by spray application factors of Primo Maxx (trinexapac-ethyl) growth regulator or none 

and Turf Screen plant colorant or none. Data were analyzed using the PROC MIXED procedure 

of SAS (version 9.3; SAS Institute Inc., Cary, NC).  Treatment means for significant main effects 

and interactions were separated using Fisher's protected Least Significant Difference (LSD) test. 

An alpha value of 0.05 was used to determine statistical significance.  

Minimum DLI requirements for each treatment were determined using nonlinear 

regression analysis in Graph Pad Prism software program (GraphPad Software Inc., La Jolla, 

CA). For regression analysis, a 3-parameter sigmoidal curve was fitted to the data collected from 

each treatment to obtain a critical DLI value at which a turf quality rating of 7 or 90% turf 

coverage would be expected for a creeping bentgrass putting green. The following 3-parameter 

sigmoidal function was used:   

𝑦 =  𝐶 +  
𝐷 − 𝐶

1 + 𝑒[(𝐼50−𝑥)∗𝑏]
 

where C is the lower limit, D is the upper limit, b equals the slope, and I50 equals the DLI that 

elicits a 50% response in turf quality. A sum of squares reduction test was used to determine if a 

single model with shared parameter estimates should be used for all treatments to estimate a 

critical DLI value or if separate models with treatment specific parameter estimates were 

necessary. 
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RESULTS AND DISCUSSION 

Weather Data 

The average monthly air temperature varied between both years of this trial and 

potentially influenced the effects of shade on turfgrass quality, coverage, and clipping yield. In 

2016, five of the six months during the trial resulted in average monthly temperatures greater 

than the 30-year average (Fig 2.2). Comparatively, only three months had above average air 

temperatures in 2017 (Fig 2.2). August, usually the warmest month of the year and most stressful 

on creeping bentgrass during the summer, resulted in an average monthly temperature 1.9 °C 

lower than the 30-year average in 2017 (Fig 2.2). The consecutive trend of above-average 

temperatures in 2016 as opposed to the fluctuating air temperature patterns in 2017 are possible 

confounding factors of turfgrass decline under shaded conditions observed in this trial. 

Daily Light Integrals 

 Average DLI for non-shaded conditions from May through October during the 2016 and 

2017 trials were 45.0 and 46.0 mol m-2 d-1, respectively (Table 2.1). Morning shade had an 

increase of 0.7, 2.8, and 1.8 mol m-2 d-1 to reach the turfgrass surface under shade intensities of 

70, 80, and 90% shade, respectively, in 2017 compared to 2016. Afternoon shade had an increase 

of 0.9, 1.2, and 0.3 mol m-2 d-1 under shade intensities of 70, 80, and 90% shade, respectively, to 

reach the turfgrass from 2016 to 2017. DLI quantities were higher in plots receiving morning 

shade compared to afternoon shade intensities of 70, 80, and 90% shade levels by 1.8, 1.6, 1.7 

mol m-2 d-1 in 2016 and 2.7, 3.2, and 3.2 mol m-2 d-1 in 2017.    

Turfgrass Quality 

Visual turfgrass quality of creeping bentgrass was affected by shade intensity and timing, 

as well as chemical spray applications of Primo Maxx and Turf Screen throughout the trial 
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(Table 2.2). Although several significant effects were present (P < 0.05), only the highest order 

interaction containing each treatment effect will be discussed.  In 2016, a significant (P < 0.05) 

three-way interaction of shade intensity and shade timing main effects by evaluation date was 

observed (Table 2.2). In addition, there were significant two-way interactions of separate main 

effects of Primo Maxx and Turf Screen by evaluation date in 2016.  

For each evaluation date in 2016, there were significant differences among shade 

intensity x shade timing treatments (P < 0.05). During the month of May, the full sun treatment 

was significantly lower in turfgrass quality compared to all treatments (Fig. 2.3). This result can 

be attributed to the black neutral density shade cloth absorbing solar radiation and creating a 

warmer microclimate under the shade treatments. The warmer microclimate encouraged more 

turfgrass growth under shade treatments compared to full sun conditions that were suboptimal 

temperatures for turf growth at this early period of the growing season. However, once ambient 

temperatures became stressful on turfgrass growth later during the trial period, the reduction in 

solar radiation under shade cloths resulted in a cooling effect compared to the full sun treatment. 

Beginning in June, full sun turfgrass quality remained above minimal acceptability (rating score 

>7) and maintained significantly greater turfgrass quality compared to all other shade treatments 

by at least 0.6 rating units throughout the remainder of the 2016 trial period (Fig. 2.3).  

Regardless of shade timing, turfgrass quality under shade intensities of 70, 80, and 90% shade 

had dropped below acceptable quality by 9 August. Both timings at 70% shade intensity resulted 

in acceptable quality on 14 and 30 September rating dates, but only the 80% morning shade 

treatment rose above the threshold for minimum acceptability. On July 7, turfgrass quality under 

90% afternoon shade was significantly lower compared to 90% morning shade and this trend 

continued for the duration of the trial. Morning 80% shade maintained significantly higher 
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turfgrass quality above afternoon shade through the duration of the trial beginning on 9 August 

evaluation date. In addition, 70% morning shade resulted in significantly increased turfgrass 

quality compared to 70% afternoon shade during the stressful environmental conditions on 9 and 

18 August evaluation dates.  

Significant interactions of Primo Maxx by evaluation date and Turf Screen by evaluation 

date were observed in 2016 on turfgrass quality (Table 2.2). Across all shade timing and shade 

intensity treatments, the effects of Turf Screen and Primo Maxx applications each increased 

turfgrass quality compared to the untreated control on select rating dates during 2016 (Fig. 2.4). 

Turfgrass treated with Turf Screen had increased turfgrass quality compared to the untreated 

control on 7 July. Both Primo Maxx and Turf Screen increased turfgrass quality compared to the 

untreated control on 14 and 30 September. Furthermore, turfgrass quality was increased to above 

minimal acceptable levels for turf treated with Primo Maxx and Turf Screen on those evaluation 

dates.  

In 2017, no treatment interactions were observed and only the main treatment effects of 

shade intensity, Primo Maxx, and Turf Screen were significant (P < 0.05) (Table 2.2). Shade 

intensity treatment resulted in a significant main effect in 2017 (Fig. 2.4). Compared to full sun 

treatments, turfgrass quality of 70 and 80% shade intensity treatments tended to have slightly 

lowered turfgrass quality, but were not statistically different (Fig. 2.5). However, 90% shade 

resulted in significantly lower quality compared to all other shade intensity treatments by at least 

1 rating unit (Fig. 2.5). The effect of 90% shade also dropped turfgrass quality below minimum 

acceptability while all other shade intensity treatments remained above the minimum 

acceptability threshold (Fig. 2.5). 
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The separate treatment main effects of Primo Maxx and Turf Screen applications on 

turfgrass quality were significant in 2017 (Table 2.2). It is important to note that all treatments 

resulted in acceptable quality scores (Fig. 2.6). Across all shade timings, shade intensities and 

evaluation dates, applications of Primo Maxx and Turf Screen improved turfgrass quality 

compared to the untreated control (Fig. 2.6). This slight significant increase in turfgrass quality 

demonstrates the ability of Primo Maxx or Turf Screen to increase visual turfgrass quality during 

the summer months on creeping bentgrass putting greens. 

Similar to other findings on creeping bentgrass shade tolerance, turfgrass quality 

continued to decline under increasing levels of shade intensity in this study (Bell and 

Danneberger 1999; Goss et al. 2002).  However, afternoon shade resulted in lower turfgrass 

quality compared to morning shade, a result that had not been observed previously on creeping 

bentgrass. While Bell and Danneberger did not observe differences between morning and 

afternoon shade on creeping bentgrass, Bunnell et al. (2005) reported that afternoon shade was 

more detrimental to turfgrass quality on a ‘TifEagle’ bermudagrass putting green. The amplified 

effect of afternoon shade on turf quality decline was attributed to a 2 mol m-2 d-1 reduction in 

DLI during afternoon hours compared to morning hours. (Bunnell et al., 2005). This reduction in 

DLI in the afternoon was also observed in the present study and is presumed to be why creeping 

bentgrass turf quality decline was greater in afternoon shade.   

Primo Maxx was observed to improve turfgrass quality under various shade intensity and 

timing regimes. This observation is concurrent with other studies evaluating the use of Primo 

Maxx to increase turfgrass quality and shade tolerance (Baldwin et al., 2009; Qian and Engelke, 

1999; Steinke and Stier, 2003). However, this is the first study to observe Turf Screen improving 

turfgrass quality during environmentally stressful growing conditions in summer months. This 
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was an unexpected finding due to previous research demonstrating the use of colorants such as 

Turf Screen to be detrimental to turfgrass photosynthetic processes (McCarty et al., 2013). It is 

important to note that Obear et al. (2017) reported that the green dye in the product formulation 

of Turf Screen increased visual turfgrass color ratings and masked turfgrass stress symptoms. 

That conclusion could be an explanation as to why visual quality was increased compared to the 

untreated control in this study. These observations indicate that applications of Primo Maxx or 

Turf Screen are capable of significantly improving visual turfgrass quality during stressful 

growing conditions of late summer months.  

Average turfgrass quality was plotted against average DLI for each shade timing and 

intensity treatment to estimate a DLI requirement to maintain acceptable turfgrass quality. 

Nonlinear regression analysis indicated that model parameters were significantly different (P < 

0.05) among chemical spray treatments, therefore separate models were developed for the 

untreated control, Primo Maxx, Turf Screen, and Primo Maxx + Turf Screen treatments. 

According to the models for 2016, estimated minimum DLI requirement of 30.5 mol m-2 d-1 was 

determined for a creeping bentgrass putting green with no Primo Maxx or Turf Screen chemical 

spray treatment (Fig. 2.7). Estimated minimum DLI requirements when chemical spray 

treatments of Primo Maxx, Turf Screen, and Primo Maxx + Turf Screen were applied to creeping 

bentgrass were 30.4, 29.4, and 29.2mol m-2 d-1, respectively (Fig. 2.7). During 2017, minimum 

DLI requirements of creeping bentgrass were estimated to be 29.1, 28.2, 29.2, and 28.1 mol m-2 

d-1 for the untreated control, chemical spray treatments of Primo Maxx, Turf Screen, and Primo 

Maxx + Turf Screen, respectively (Fig. 2.8).  

While Primo Maxx and Turf Screen applications were able to increase turfgrass quality 

during specific time periods throughout the study, those applications were not able to 
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significantly lower the creeping bentgrass minimum DLI requirement (Fig. 2.7 and 2.8). Results 

from this study estimate a minimum of 30.5 and 29.1 mol m-2 d-1 were required to maintain 

acceptable turfgrass quality of a creeping bentgrass putting green in 2016 and 2017, respectively. 

It is important to note that even though the intensity of turfgrass quality decline varied between 

years, the estimated DLI requirements remained very similar. The minimum DLI requirement of 

30 mol m-2 d-1 determined over a two-year period in this study is lower than the 32.6 mol m-2 d-1 

DLI requirement that Bunnell et al. (2005) established to maintain acceptable turfgrass quality of 

a ‘TifEagle’ ultradwarf bermudagrass green. The difference in the two DLI requirements can be 

attributed to the relatively increased shade tolerance that creeping bentgrass has over 

bermudagrass (Fry and Huang, 2004). The variation in shade tolerance can be linked to the light 

saturation point of cool-season turfgrass being near 50% of full sun, while warm-season 

turfgrasses require close to full sun conditions (McCarty, 2005). Therefore, as is the case in this 

comparison, a cool-season turfgrass like creeping bentgrass would be expected to have a lower 

minimum DLI requirement than that of warm-season turfgrass like ultra-dwarf bermudagrass if 

managed similarly.   

Turfgrass Coverage 

 Turfgrass coverage of creeping bentgrass was affected by shade intensity, shade timing, 

and chemical spray treatments of Primo Maxx and Turf Screen (Table 2.2). In 2016 and 2017, 

there was a significant three-way treatment interaction of shade intensity, shade timing, and 

evaluation date. Additionally in 2016, there was a significant four-way interaction of Primo 

Maxx, Turf Screen, shade timing, and evaluation date.  

 A significant three-way interaction of shade intensity and shade timing by evaluation date 

was observed on turfgrass coverage of creeping bentgrass in both years (Table 2.2). During 2016 
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and 2017, creeping bentgrass under 0% shade (full sun) had the highest turfgrass coverage 

among all shade treatment combinations for each evaluation date (Fig. 2.9 and 2.10). In 2016, 70 

and 80% shade treatments applied in morning or afternoon were not significantly different from 

each other except for one evaluation date in October (Fig. 2.9). Both shade timings of 90% shade 

produced significantly lower turfgrass quality compared to 0, 70, and 80% shade on 9 September 

and continued throughout the remainder of the trial (Fig. 2.9). Under 90% shade, morning shade 

treatments resulted in significantly greater turfgrass coverage compared to afternoon shade from 

8 September through the remainder of the trial (Fig. 2.9). Similarly, morning shade resulted in 

greater turfgrass coverage compared to afternoon shade under 80% shade intensity on 20 

October 2016. There were no significant differences in turfgrass coverage between morning and 

afternoon timings of 70% shade (Fig. 2.9).  

In 2017, there were no significant differences in creeping bentgrass turfgrass coverage 

between full sun treatments and both shade timings of 70% and 80% shade on any evaluation 

date (Fig. 2.10). Morning and afternoon shade timing treatments of 90% shade were significantly 

lower than all other shade treatments on the first rating date of 2017 (Fig. 2.10). Turf coverage 

under 90% shade was lower than other shade treatments on the first rating date due to not being 

completely filled in from reestablishment practices after turfgrass loss in the first year of the trial. 

After the initial rating date, afternoon timing of 90% shade was the only treatment with 

significantly lower turfgrass coverage compared to the full sun treatment and this trend remained 

for the duration of the trial (Fig. 2.10). After turfgrass loss in the first year of the trial and 

subsequent reestablishment practices, the young turfgrass stand was not able to achieve 

acceptable turf coverage under the low light conditions associated with 90% afternoon shade.  
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 Previous research has demonstrated similar decreases in turfgrass coverage under 

increasing shade intensities (Goss et al., 2002; Qian and Engelke, 1999). In agreement, this study 

observed that creeping bentgrass coverage decreased when increasing intensities of 70, 80, and 

90% shade were applied in 2016. A decrease in DLI quantities delivered to the turfgrass under 

increasing shade can explain the observed turfgrass decline under various shade intensities. 

However, in 2017, this trend was only observed under increasing shade intensity from 80 to 90% 

shade on select evaluation dates.  The disparity in turf quality between 80 and 90% shade can be 

attributed to incomplete reestablishment of turfgrass under 90% shade during the second year of 

the trial more so than a matter of differences in DLI. The increase in DLI under each shade 

treatment in 2017 over 2016 could have led to lack of turf coverage separation between shade 

intensity treatments. This study is the first report of afternoon shade timing resulting in lower 

turfgrass coverage compared to morning sun. This observation was most pronounced under 90% 

shade intensity for a majority of the trial, but did occur under 70 and 80% shade on select 

evaluation dates. The decrease in turfgrass coverage between shade timings can be attributed to 

the differences in DLI reduction under afternoon shade compared to morning shade. 

During both years of this study, analysis of variance indicated a significant (P < 0.05) 

four-way treatment interaction of shade timing, Primo Maxx application, and Turf Screen 

application by evaluation date (Table 2.2). In 2016, turfgrass coverage under morning shade was 

relatively similar among all spray treatment combinations until 10 October 2016 evaluation date 

(Fig. 2.11). Under morning shade, the combination spray treatment of Primo Maxx + Turf Screen 

had greater turfgrass coverage by at least 6.4% compared to the untreated control on two late 

season evaluation dates in October (Fig. 2.11). There was greater discrepancy among treatment 

applications of Primo Maxx, Turf Screen, and the untreated control on turfgrass coverage when 
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turfgrass was shaded in the afternoon compared to the morning. Under afternoon shade, all 

chemical spray treatments of Primo Maxx or Turf Screen resulted in significantly greater 

turfgrass coverage compared to the untreated control on 18 August, 22 and 30 September, and 10 

October 2016 evaluations dates (Fig. 2.11). Applications of Primo Maxx to creeping bentgrass 

maintained significantly greater turfgrass coverage by at least 7.1% compared to all other spray 

treatments and the untreated control on the final two evaluation dates (Fig. 2.11).  

During 2017, a significant interaction of shade timing, Primo Maxx, and Turf Screen was 

observed on the 28 August evaluation date. No significant differences existed between chemical 

spray treatments of Primo Maxx and Turf Screen compared to the untreated control under 

morning shade. Under afternoon shade, however, chemical application treatments of Primo 

Maxx, Turf Screen, and Primo Maxx + Turf Screen significantly improved turfgrass coverage 

compared to the untreated control (Fig. 2.12).  

Turfgrass coverage was improved under shaded conditions on evaluation dates 

throughout the trial when treated with regular spray applications of Primo Maxx. Previous 

research (Baldwin et al., 2009; Goss et al., 2002; Qian and Engelke, 1999) also reported 

increased coverage when Primo Maxx was applied to shaded turfgrass. No previous research has 

investigated the effects of Turf Screen turfgrass colorant on turfgrass coverage. This study 

revealed no significant benefit of applying Turf Screen to improve turfgrass coverage in shaded 

conditions instead of Primo Maxx. While there were no differences under morning shade, this is 

the first report of Primo Maxx or Turf Screen applications improving turfgrass coverage under 

afternoon shade.    

Average turfgrass coverage was plotted against average DLI for each shade timing and 

intensity treatment to quantify a DLI requirement to maintain minimal acceptable turfgrass 
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coverage quantity of 90%. Nonlinear regression analysis indicated that model parameters were 

significantly different (P < 0.05) among chemical spray treatments, therefore separate models 

were developed for the untreated control, Primo Maxx, Turf Screen, and Primo Maxx + Turf 

Screen treatments. According to the model for 2016, estimated minimum DLI requirement of 

27.9 mol m-2 d-1 was determined for a creeping bentgrass putting green with no Primo Maxx or 

Turf Screen chemical spray treatment (Fig. 2.13). Estimated minimum DLI requirements of 

creeping bentgrass applied with chemical spray treatments of Primo Maxx, Turf Screen, and 

Primo Maxx + Turf Screen were 28.0, 27.8, and 27.4 mol m-2 d-1, respectively (Fig. 2.13). 

During 2017, minimum DLI requirements of creeping bentgrass was estimated to be 27.9 mol m-

2 d-1 when no Primo Maxx or Turf Screen treatments were applied. Minimum DLI requirements 

of Turf Screen and Primo Maxx + Turf Screen were estimated to be 28.4, and 28.9 mol m-2 d-1, 

respectively (Fig. 2.14). No minimum DLI requirement was estimated for the spray application 

of Primo Maxx due to the average turfgrass coverage of all shade treatments and Primo Maxx 

combinations never dropping below 90%. Therefore, it can be assumed that a DLI greater than 

25.1 mol m-2 d-1 would result in acceptable turfgrass coverage if treated with Primo Maxx in 

2017. 

Estimated DLI requirements of creeping bentgrass for acceptable turfgrass coverage were 

slightly lower than the DLI requirements determined from turfgrass quality. Turf coverage DLI 

requirements ranged 0.8 to 2.6 mol m-2 d-1 lower than turfgrass quality DLI requirements. This 

difference in minimum DLI is due to turfgrass coverage evaluations measuring strictly percent 

turfgrass coverage while turf quality ratings were evaluated based on coverage, color, density, 

and coverage. The inclusion of additional parameters under evaluation (i.e. color and uniformity) 
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for turf quality ratings could have led to a higher DLI requirement than evaluation on turf 

coverage alone.   

Clipping Yield 

Clipping yields were affected by shade timing, shade intensity, and applications of Primo 

Maxx and Turf Screen during 2016 and 2017 (Table 2.2). In both years, there was a significant 

three-way interaction of shade intensity, shade timing, and evaluation date (Table 2.2).  

 A significant three-way interaction of shade intensity and shade timing by evaluation date 

was observed on clipping yield in 2016 and 2017 (Table 2.2). The first three evaluation dates of 

2016 resulted in no differences in clipping yield between shade intensity and timing treatments 

compared to full sun (Fig. 2.15). All shade treatments resulted in lower clipping yield on three of 

the final four evaluation dates in 2016 compared to full sun treatment (Fig. 2.15). Clipping yields 

of both 90% shade timings were significantly lower than 70 and 80% shade treatments on one 

evaluation date in early September (Fig. 2.15). Morning shade treatments resulted in 51, 72, and 

80% greater clipping yields compared to afternoon treatments of 70, 80 and 90% shade, 

respectively, on 8 August 2016 evaluation date (Fig. 2.15).  

On 6 June 2017, turfgrass under afternoon shade had increased clipping yield compared 

to turfgrass under morning shade for all shade intensity treatments (Fig. 2.16). Clipping yields in 

full sun were significantly greater than other shade treatments on 21 August (Fig. 2.16).  

 Turfgrass under shaded conditions has been observed to have increased clipping yields 

compared to turfgrass in full sun (Baldwin et al., 2009) due to increased gibberellic acid 

synthesis and subsequent shoot elongation (Tan and Qian, 2003). However, turfgrass density and 

percent cover will decline over time as turfgrass is continuously exposed to shaded conditions 
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(Goss et al., 2002; Stienke and Stier 2003). These previous findings are similar to the 

observations in the present study of higher clipping yields of turfgrass under shade on early 

season evaluation dates compared to full sun. However as turf coverage and density declines 

under shaded conditions on subsequent evaluation dates, clipping yield of turfgrass under shade 

becomes lower than turf in full sun.  

 In 2016, analysis of variance indicated a significant two-way interaction of Primo Maxx 

spray application and evaluation date (Table 2.2). On the first two evaluation dates of 2016, 

Primo Maxx lowered clipping yield compared to the untreated control by 14 and 6%, 

respectively, across all shade intensity and timing treatments (Fig. 2.17). For all subsequent 

evaluation dates, Primo Maxx did not significantly lower clipping yield compared to the 

untreated control (Fig. 2.17).  

 In 2017, a significant four-way interaction of shade timing, Primo Maxx application, Turf 

Screen application, and evaluation date was observed (Table 2.2). Under both shade timings, 

there were no statistical differences in clipping yield between Turf Screen and untreated control 

treatments (Fig. 2.18). Similarly, there were no significant differences observed between 

applications of Primo Maxx and Primo Maxx + Turf Screen on clipping yield (Fig. 2.18). 

However, Primo Maxx and Primo Maxx + Turf Screen reduced clipping yield compared to Turf 

Screen and the untreated control on 2  and 3 evaluation dates under morning and afternoon shade 

treatments, respectively (Fig. 2.18).  

 This is the first report on the effect of Turf Screen turfgrass colorant on creeping 

bentgrass clipping yield response. No physiological differences were observed between Turf 

Screen and the untreated control in terms of turfgrass clipping collection throughout the study. 

As was the case in this study, Primo Maxx has been previously demonstrated to reduce clipping 
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yield compared to the untreated control under shaded conditions (Baldwin et al., 2009; Bunnell 

et al., 2005b). A combination of Primo Maxx and Turf Screen produced similar results compared 

to the Primo Maxx application alone. This finding suggests that a tank mix of the two products 

could both limit shoot growth via the growth regulator and maintain color via the green dye 

contained in Turf Screen plant colorant.  
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CONCLUSIONS 

This is the first study to estimate a minimum DLI requirement for a creeping bentgrass 

putting green. ‘Tyee’ creeping bentgrass managed as a putting green required a minimum DLI 

quantity of 30 mol m-2 d-1 to maintain acceptable turfgrass quality throughout this study. 

Furthermore, this is the first report to evaluate the role of Primo Maxx plant growth regulator and 

Turf Screen turfgrass colorant in determining a minimum DLI requirement. Although Primo 

Maxx and Turf Screen were able to slightly improve turfgrass quality on certain evaluation dates 

during the trial, regular applications of the growth regulator and turfgrass colorant were not able 

to lower the minimum DLI requirement. This research provides a baseline for quantifying 

minimum DLI requirements of cool-season putting green turfgrass species. Further investigation 

is needed to determine minimum DLI requirements of other creeping bentgrass putting green 

varieties. Additional research on the effects of different putting green cultural practices, such as 

reduced nitrogen fertilization and alternative mowing heights, would be beneficial.  

Daily light integral quantities delivered to the turfgrass surface were observed to be 

higher during the morning hours compared to the afternoon. As a result, afternoon shade caused 

a greater decline in turfgrass quality of creeping compared to morning shade. This is the first 

report of afternoon shade being more detrimental to creeping bentgrass health, but a similar 

finding was observed by Bunnell et al. (2005) on a ‘TifEagle’ bermudagrass putting green. This 

study did not seek to explain the diurnal differences between morning and afternoon DLI 

quantities and is a topic for further research.    
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Table 2.1. Average daily light integrals of four shade intensities (0, 70, 80, and 90% shade) 

during morning (sunrise to solar noon) and afternoon (solar noon to sunset) shade timings from 

May-October in Fayetteville, AR during 2016 and 2017. Average daily light integrals are 

followed by ± to indicate standard errors for each shade treatment. 

Shade treatment 

Daily light integral  

2016 2017 

 ——————(mol m-2 d-1) —————— 

None 45.0 ± 1.1 46.0 ± 1.2 

70% Morning 29.9 ± 0.8 31.6 ± 0.9 

70% Afternoon 28.1 ± 0.7 28.9 ± 0.8 

80% Morning 28.0 ± 0.7 30.8 ± 0.9 

80% Afternoon 26.4 ± 0.7 27.6 ± 0.8 

90% Morning 26.5 ±0.7 28.3 ± 0.8 

90% Afternoon 24.8 ± 0.7 25.1 ± 0.8 
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Table 2.2. Analysis of variance (ANOVA) table of turf quality rating, turf coverage, and clipping yield evaluation main effects and 

interactions on a ‘Tyee’ creeping bentgrass putting green in 2016 and 2017. P-values in bold are highest order significant (P < 0.05) 

treatments interactions that warrant further discussion. 

 Turfgrass quality Turfgrass coverage Clipping yield 

Effect 2016 2017 2016 2017 2016 2017 

 ——————————————(P-value)—————————————— 

Block 0.353 0.821 0.602 0.61 0.321 0.452 

Shade 0.001 0.001 0.001 0.006 0.001 0.130 

Timing 0.285 0.649 0.246 0.205 0.927 0.160 

Shade x Timing 0.048 0.665 0.165 0.063 0.054 0.282 

Primo Maxx 0.039 0.017 0.003 0.634 0.630 0.001 

Shade x Primo Maxx 0.010 0.227 0.001 0.940 0.271 0.112 

Timing x Primo Maxx 1.000 0.642 0.311 0.836 0.690 0.148 

Shade x Timing x Primo Maxx 0.366 0.999 0.049 0.994 0.687 0.001 

Turf Screen 0.008 0.048 0.028 0.812 0.779 0.181 

Shade x Turf Screen 0.248 0.520 0.0012 0.200 0.953 0.188 

Timing x Turf Screen 0.594 0.396 0.348 0.319 0.778 0.718 

Shade x Timing x Turf Screen 0.762 0.338 0.300 0.234 0.221 0.694 

Primo Maxx x Turf Screen 0.659 0.728 0.323 0.749 0.207 0.741 

Shade x Primo Maxx x Turf Screen 0.293 0.236 0.693 0.988 0.653 0.703 

Timing x Primo Maxx x Turf Screen 0.316 0.841 0.180 0.623 0.565 0.293 

Shade x Timing x Primo Maxx x Turf Screen 0.083 0.983 0.003 0.932 0.198 0.171 

Date 0.001 0.001 0.001 0.001 0.001 0.001 

Shade x Date 0.001 0.090 0.00 0.001 0.001 0.001 

Timing x Date 0.001 0.431 0.001 0.075 0.001 0.001 

Shade x Timing x Date 0.001 0.618 0.001 0.050 0.001 0.001 

Primo Maxx x Date 0.042 0.522 0.001 0.001 0.001 0.001 

Shade x Primo Maxx x Date 0.993 0.775 0.001 0.022 0.864 0.138 

Timing x Primo Maxx x Date 0.881 0.733 0.161 0.097 0.473 0.001 

Shade x Timing x Primo Maxx x Date 0.999 0.739 0.576 0.999 0.394 0.757 

Turf Screen x Date 0.001 0.349 0.001 0.001 0.562 0.002 

Shade x Turf Screen x Date 0.391 0.714 0.026 0.101 0.932 0.839 

Timing x Turf Screen x Date 0.175 0.462 0.438 0.172 0.807 0.433 

Shade x Timing x Turf Screen x Date 0.998 0.878 0.998 0.790 0.074 0.811 

Primo Maxx x Turf Screen x Date 0.786 0.794 0.673 0.011 0.807 0.503 

Shade x Primo Maxx x Turf Screen x Date 0.999 0.798 1.000 0.979 0.979 0.887 

Timing x Primo Maxx x Turf Screen x Date 0.625 0.646 0.007 0.001 0.630 0.038 

Shade x Timing x Primo Maxx x Turf Screen x Date 0.999 0.713 0.490 0.119 0.783 0.630 

4
4
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Figure 2.1. Transportable shade structure system utilized to apply various shade intensities and 

shade timings. 
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Figure 2.2. Average air temperature (°C) deviation from the 30-year average air temperature for 

each month of the study in 2016 and 2017.   
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Figure 2.3. Visual turfgrass quality ratings (1-9 scale, 7 = minimum acceptability) of creeping 

bentgrass as affected by shade intensity and shade timing by evaluation date in 2016. Red line at 

turfgrass quality rating of 7 indicates a visual reference of minimum acceptability. LSD bar 

indicates least significant difference value to make treatment comparisons within evaluation 

dates. 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16

Tu
rf

gr
as

s 
q

u
ai

lt
y 

Full Sun 70% AM Shade 70% PM Shade 80% AM Shade

80% PM Shade 90% AM Shade 90% PM Shade

LSD = 0.49



48 

 

 

Figure 2.4. Visual turfgrass quality ratings (1-9 scale, 7 = minimum acceptability) of creeping 

bentgrass as affected by chemical spray treatments of Primo Maxx and Turf Screen by evaluation 

date in 2016. Red line at turfgrass quality rating of 7 indicates a visual reference of minimum 

acceptability. LSD bar indicates least significant difference value to make treatment comparisons 

within evaluation dates. (* = date when applications of Primo Maxx or Turf Screen significantly 

increased turfgrass quality over the untreated control) 
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Figure 2.5. Visual turfgrass quality ratings (1-9 scale, 7 = minimum acceptability) of creeping 

bentgrass as affected by the significant main effects of the four shade intensity levels (0, 70, 80, 

90% shade) averaged across all shade timings and evaluation dates during 2017. Red line at 

turfgrass quality rating of 7 indicates a visual reference of minimum acceptability. Bars that 

share a letter are not significantly different using Fisher’s protected LSD at α = 0.05. 
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Figure 2.6. Visual turfgrass quality ratings (1-9 scale, 7 = minimum acceptability) of creeping 

bentgrass as affected by the significant main effects of Primo Maxx and Turf Screen chemical 

treatments averaged across all shade timings, shade treatments, and evaluation dates during 

2017. Red line at turfgrass quality rating of 7 indicates a visual reference of minimum 

acceptability. Bars that share a letter are not significantly different using Fisher’s protected LSD 

at α = 0.05. 
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Figure 2.7. Nonlinear regression analysis of turfgrass quality response of creeping bentgrass to 

daily light integrals for each shade intensity and shade treatment by chemical spray treatment 

during 2016. Red line indicates minimal acceptable quality rating of 7. Dashed line represents 

estimated DLI requirement to achieve acceptable quality rating. ± represents 95% confidence 

intervals of estimated DLI requirement. 
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Figure 2.8. Nonlinear regression analysis of turfgrass quality response of creeping bentgrass to 

daily light integrals for each shade intensity and shade treatment by chemical spray treatment 

during 2017. Red line indicates minimal acceptable quality rating of 7. Dashed line represents 

estimated DLI requirement to achieve acceptable quality rating. ± represents 95% confidence 

intervals of estimated DLI requirement. 
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Figure 2.9. Turfgrass coverage of creeping bentgrass, expressed as a percent of turfgrass 

coverage in area under evaluation, as affected by shade timing and shade intensity treatments by 

evaluation date in 2016. LSD bar indicates least significant difference value to make treatment 

comparisons within evaluation dates. 
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Figure 2.10. Turfgrass coverage of creeping bentgrass, expressed as a percent of turfgrass 

coverage in area under evaluation, as affected by shade timing and shade intensity treatments by 

evaluation date in 2017. LSD bar indicates least significant difference value to make treatment 

comparisons within evaluation dates. 
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Figure 2.11. Turfgrass coverage, expressed as a percent, of creeping bentgrass as affected by  

morning and afternoon shade and chemical spray treatment of Primo Maxx and Turf Screen by 

evaluation date in 2016. LSD bar indicates least significant difference value to make treatment 

comparisons within evaluation dates.  
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Figure 2.12. Turfgrass coverage of creeping bentgrass expressed as a percent of turfgrass under 

area of evaluation as affected by shade timing and chemical spray treatment on 28 August 2017. 

Means followed by the same letter are not significantly different using Fisher’s protected LSD at 

α = 0.05. 
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Figure 2.13. Nonlinear regression analysis of creeping bentgrass turfgrass coverage response to 

daily light integrals for each shade intensity and shade treatment by chemical spray treatment 

during 2016. Red line indicates minimal acceptable turf coverage of 90%. Dashed line represents 

estimated DLI requirement to achieve acceptable coverage. ± represents 95% confidence 

intervals of estimated DLI requirement. 
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Figure 2.14. Nonlinear regression analysis of creeping bentgrass turfgrass coverage response to 

daily light integrals for each shade intensity and shade treatment by chemical spray treatment 

during 2017. Red line indicates minimal acceptable turf coverage of 90%. Dashed line represents 

estimated DLI requirement to achieve acceptable coverage. ± represents 95% confidence 

intervals of estimated DLI requirement. 
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Figure 2.15. Turfgrass clipping yield of creeping bentgrass as affected by shade intensity and 

shade timing by evaluation date in 2016. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates. 
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Figure 2.16. Clipping yield response of creeping bentgrass as affected by spray applications of 

Primo Maxx by evaluation date in 2016. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates. * = date when applications of Primo Maxx 

and the untreated control resulted in a significant difference in clipping yield.  
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Figure 2. 17. Turfgrass clipping yield of creeping bentgrass as affected by shade intensity and 

shade timing by evaluation date in 2017. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates. 
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Figure 2. 18. Turfgrass clipping yield of creeping bentgrass as affected by morning and afternoon 

shade treatments and chemical spray treatment combinations of Primo Maxx and Turf Screen by 

evaluation date in 2017. LSD bar indicates least significant difference value to make treatment 

comparisons within evaluation dates. 
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Chapter III: 

 Investigating an Efficient Method to Determine Daily Light Integral Requirements 

of Various Warm-season Turfgrasses in an Established Landscape 
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ABSTRACT 

Determining daily light integral (DLI) requirements for various turfgrass systems has 

been an effective method for quantifying the daily amount of photosynthetically active radiation 

(PAR) necessary to maintain acceptable quality turfgrass in a controlled research setting. 

However, shaded areas in the existing landscape often vary in quantity and duration of PAR 

available to turfgrasses. The objective of this research was to evaluate an efficient method to 

determine DLI requirements in an existing landscape. Two zoysiagrasses, ‘Cavalier’ (Z. japonica 

Steud.) and ‘Meyer’ (Z. matrella [L.] Merr.), and two bermudagrasses, common bermudagrass 

(Cynodon dactylon [L.] Pers.) and ‘Astro-DLM’ hybrid bermudagrass (C. dactylon [L.] Pers. x 

C. transvaalensis Burtt-Davy), were selected for evaluation in this study. In areas where shade 

was limiting turfgrass growth at local golf courses, quantum sensors measuring PAR were 

installed along a line transect at the following positions: 1) full turfgrass coverage, 2) slight 

turfgrass decline, 3) extensive turfgrass decline, and 4) complete turfgrass failure to calculate the 

DLI at each position for 6 days in 2017. Each turfgrass type was also established under 22, 40, 

60 , and 90% shade in a controlled research setting for two seasons from August to October 2016 

and May to October 2017. Turfgrass quality and coverage evaluations were made in both 

settings. Estimated minimum DLI requirements for ‘Astro-DLM’ bermudagrass, common 

bermudagrass, ‘Cavalier’ zoysiagrass, and ‘Meyer’ zoysiagrass were 20.4, 25.9, 15.0, and 21.1 

mol m-2 d-1 in the controlled research setting. The methodology utilized in the golf course setting 

was able to accurately estimate the minimum DLI of ‘Astro-DLM’ bermudagrass and ‘Meyer’ 

zoysiagrass compared to thresholds established in the controlled research setting, but not the 

other two turf types. A misrepresentation of the actual DLI at each site during the six day 
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evaluation period as well as differing shaded microclimate characteristics could explain the 

differences in the minimum DLI requirements for the other three turfgrass types.     
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INTRODUCTION 

Trees are an integral component of many golf courses due to the aesthetic benefits 

provided in the landscape as well as the design and playability of the course. Most reduced light 

environments on golf courses are a direct result of tree shade, but can also be present in the form 

of shade from topography, landscape plants, buildings, and other structures. Reduced light 

environments can limit turfgrass growth and health due to lack of available photosynthetically 

active radiation (Bell and Danneberger, 2000). 

 Warm-season turfgrasses (C4) are the main selection for use on golf course fairway and 

tee area settings in the transition zone and throughout the southeast United States. These 

turfgrasses are generally better adapted to higher temperatures and other plant stresses associated 

with the summer months in the transition zone (Turgeon, 2005). One drawback of implementing 

warm-season turfgrasses on golf course tees and fairways is their relatively lower shade 

adaptability compared to that of cool-season turfgrasses. Warm-season turfgrasses do not 

perform optimally in shaded conditions and can develop physiological and morphological 

changes that lead to a weakened turfgrass stand (Dudeck and Peacock, 1992; Taiz and Zieger, 

2015). The light compensation point of cool-season grasses is nearly half that of warm-season 

grasses due to higher photosynthetic and lower respiration rates of cool-season turfgrasses in 

reduced light environments and often results in better relative shade adaptation (Fry and Huang, 

2004; Taiz and Zeiger, 2015). While cool-season and warm-season grasses have similar 

physiological and morphological responses to shade, these responses have been reported to be 

more severe in warm-season turfgrasses compared to cool-season turfgrasses grown under the 

same shaded conditions (Kephart et al., 1992). 
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Three of the most common warm-season turfgrasses used on golf course fairways and tee 

areas in warm climates are various cultivars of bermudagrass (Cynodon spp.), hybrid 

bermudagrass ([Cynodon dactylon (L.)Pers. X C. transvaalensis Burtt-Davy), and zoysiagrass 

(Zoysia spp.). Some hybrid bermudagrasses are more shade tolerant than common 

bermudagrasses, but shade tolerance is cultivar specific and based on genetic diversity (Baldwin 

et al., 2009). The shade tolerance of zoysiagrass is also species and cultivar specific. Cultivars 

within Zoyisa matrella and Zoysia japonica vary in shade adaptability (Sladek et al., 2009; 

Trappe et al., 2011; Wherley et al., 2011). In addition to heat and drought tolerance, many 

bermudagrass and zoysiagrass cultivars can tolerate low mowing heights and produce a 

consistent leaf blade canopy desired of golf courses in the transition zone and southern United 

States. Very few studies have compared the shade tolerance differences between bermudagrass 

and zoysiagrass cultivars. Bunnell (2005b) found that Zoysia japonica cultivar ‘Meyer’ 

maintained higher visual quality and total nonstructural carbohydrates under continual shade 

compared to ‘Tifsport’ and ‘Tifway’ hybrid bermudagrass cultivars. In a study comparing 

multiple cultivars of each species, Trappe et al. (2011) found that, as a species, hybrid 

bermudagrass had lower percentage of turfgrass coverage under 49% continual shade compared 

to common bermudagrass and zoysiagrass. Additional research is needed to evaluate the shade 

tolerance of bermudagrass and zoysiagrass cultivars in a research setting to improve site specific 

turfgrass selection. 

Precise light requirements of various warm season turfgrass cultivars have been 

effectively evaluated by estimating minimum daily light integral (DLI) requirements to maintain 

acceptable turf quality (Bunnell et al., 2005b; Miller et al., 2005; Zhang et al., 2017). The DLI 

measurement is defined as the cumulative sum of photosynthetically active radiation received 
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over an entire day (Korczynski et al., 2002). A common bermudagrass cultivar know for shade 

tolerance, ‘Celebration’, was reported to have a DLI requirement of 20.2 mol m-2 d-1 (Zhang et 

al., 2017). In a greenhouse study, hybrid bermudagrass cultivars ‘Tifway’ and ‘TifGrand’ 

required DLI quantities of 21.4 and 20.9 mol m-2 d-1 (Zhang et al. 2017), while cultivars 

‘TifEagle’, ‘TiDwarf’, and ‘FloraDwarf’ needed 32.6, 38.6, and 38.6 mol m-2 d-1 , respectively, 

to maintain acceptable quality in a putting green field study (Bunnell et al, 2005; Miller et al., 

2005). ‘Palisades’ Zoysia japonica and ‘Taccoa Green’ Zoysia matrella had established DLI 

requirements of 10.9 and 10.5 mol m-2 d-1 during summer months in a greenhouse trial (Zhang et 

al., 2017). While DLI requirements have been established for some warm-season turfgrasses in a 

controlled research setting, there is no established methodology to determine a minimum DLI 

requirement of turfgrasses in an existing landscape on a golf course.  

Research Objectives 

To determine light requirements of additional turf types and evaluate DLI measurement 

in existing landscapes, the following research objectives were established: 1) estimate the 

minimum DLI requirements of four warm season turfgrasses in a controlled research setting, 2) 

evaluate methodology to estimate minimum DLI requirements of turfgrasses in an established 

golf course landscapes, 3)  and compare DLI requirements estimated from the two previous 

objectives to determine accuracy of each methodology. 
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MATERIALS AND METHODS 

Controlled Research Setting 

Experimental Area 

This study was conducted during the summer of 2016 and 2017 on four warm-season 

turfgrass types: common bermudagrass (Cynodon dactylon (L.) Pers.), ‘Astro-DLM’ hybrid 

bermudagrass (Cynodon dactylon (L.)Pers. X C. transvaalensis Burtt-Davy), ‘Meyer’ 

zoysiagrass (Zoysia japonica Steud.), and ‘Cavalier’ zoysiagrass (Zoysia matrella (L.) Merr.). 

The study was conducted at the University of Arkansas Agricultural Research and Extension 

Center in Fayetteville, AR (36°06' N, 94°10' W). The Year 1 study was conducted from 30 July 

to 31 October 2016 and Year 2 from 3 May to 31 October 2017. Turfgrass cultivars were 

established from cup cutter plugs (Lever Action Hole Cutter, Par Aide, Lino Lakes, MN) 

extracted from golf courses in the Northwest Arkansas region and planted in June 2016 into a 

21.3 m x 21.3 m bare ground experimental area. Whole plots measuring 6.4 m x 2.2 m of each 

turf type were divided into subplots of 1.6 x 2.2 m. Each subplot contained two plugs of the 

individual turf type and was established for four weeks under full sun in a Captina silt loam soil 

(Typic Fragiudalt). Mowing was performed three times weekly at 12.7 mm height of cut. All 

plots were fertilized with urea (46-0-0 N-P-K) at 24 kg N ha-1 twice per season. Irrigation was 

applied only when visible symptoms of drought stress occurred.  

Four shade intensities, 22, 40, 60, and 90% reduction of full irradiance, were applied 

above the turfgrass canopy on 30 July 2016 with structures modeled after a previous shade 

application system used at the University of Arkansas Agricultural Research and Extension 

Center (Trappe et al., 2011). The dimensions of each shade structure were 6.4 x 8.6 m and were 

constructed using 6.4 cm diameter steel pipe. Each structure was divided into 1.6 m x 8.6 m strip 
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plots across the four turf cultivars containing the four shade treatments (Fig. 3.1). The various 

shade cloths (Bulk Shade Cloth, International Greenhouse Co., Danville IL) were custom 

ordered to fit inside each section on the structures and the reinforced edges of the cloth had 

grommets installed every 60 cm. The shade cloths were tightly affixed to the structure using 

ultraviolet-resistant cable zip ties and wire cabling was installed every 2 m under the cloth to 

prevent sagging of the cloth. The shade structures were supported 35 cm above the ground by six 

wheels that allowed transportation for plot maintenance and data collection.  

Evaluations 

Quantum light sensors (Light Scout Quantum Light Sensor, Spectrum Technologies, 

Aurora, IL) measuring photosynthetically active radiation (PAR) were mounted under each of 

the shade cloth treatments and connected to a 4-channel datalogger (Watchdog 1000 Series 

Micro Station, Spectrum Technologies, Aurora, IL) on two of three shade structures. The 

quantum light sensors recorded PAR on 15 minute intervals for the duration of the study. The 

PAR light measurements were summed to calculate the DLI under each shade treatment for 

monthly and seasonal averages. 

Visual turfgrass quality ratings were based on evaluation of turfgrass coverage, color, 

density, and uniformity using a 1 to 9 scale with 1 representing dead turf and 9 representing dark 

green, healthy turf according to National Turfgrass Evaluation Program evaluation guidelines 

(Morris and Shearman, 1998). Any turfgrass quality rating below 6 was deemed unacceptable. 

Visual turfgrass quality ratings were taken every two weeks during the study. 

Digital images of each plug were recorded every two weeks to evaluate turfgrass 

coverage. Images (1200 x 1600 pixel resolution) were taken using a Canon Powershot G1X 14 
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Megapixel digital camera (Canon USA Inc., Melville, NY) placed inside of a portable, enclosed 

light box that provided a consistent artificial light source to improve objectivity in image data 

(Karcher and Richardson, 2013). Digital image analysis was used to evaluate percent turfgrass 

coverage in each captured image using the Turf Analyzer software program (Turf Analyzer, 

http://turfanalyzer.com) (Karcher et al, 2017). Due to complications with color threshold 

settings, pixels representing healthy turfgrass were selected by manually tracing the outline of 

each turfgrass plug and filling in with a solid color that Turf Analyzer was set to select. Selected 

pixels were divided by the number of total pixels of each image to determine turfgrass coverage 

expressed as a percent. 

Statistical Design and Analysis 

 This designed study was a randomized complete block design with treatments factors in a 

4 x 4 split-strip plot design with three replications. This design evaluated four turfgrass types 

under four levels of shade intensity. Data were analyzed using the PROC MIXED procedure of 

SAS (version 9.3; SAS Institute Inc., Cary, NC).  Treatment means for significant main effects 

and interactions were separated using Fisher's protected Least Significant Difference (LSD) test. 

An alpha value of 0.05 were used to determine statistical significance.  

Minimum DLI requirements for each turf type were determined using linear regression 

analysis in the Graph Pad Prism software program (GraphPad Software Inc., La Jolla, CA). For 

regression analysis, a 3-parameter sigmoidal curve was fitted to the data collected from each 

treatment to obtain a critical DLI value at which a turf quality rating of 6 or 80% turf coverage 

would be expected for each turfgrass type.  
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The following 3-parameter sigmoidal function was used:   

𝑦 =  𝐶 +  
𝐷 − 𝐶

1 + 𝑒[(𝐼50−𝑥)∗𝑏]
 

 

where C is the lower limit, D is the upper limit, b equals the slope, and I50 equals the DLI that 

elicits a 50% response in turf quality. A sum of squares reduction test was used to determine if a 

single model with shared parameter estimates should be used for all turf types to estimate a 

critical DLI value or if separate models specific parameter estimates was necessary for each 

turfgrass type.  

Golf Course Setting  

Experimental Area 

This study was conducted during the summer of 2017 on four warm-season turfgrass 

types mowed at a fairway height of cut at three golf courses located in the Northwest Arkansas 

Region (Table 3.1). Two individual sites for each turf type that displayed visual decline in 

turfgrass quality where a lack of available light was presumed to be the limiting factor in 

turfgrass growth and quality were selected for evaluation at each golf course. At four points on a 

line transect established perpendicular to the line of shade stress/damage, quantum light sensors 

(LightScout Quantum Light Sensor, Spectrum Technologies, Aurora, IL) were installed to 

measure PAR. An individual sensor was placed in the following positions along the line transect: 

1) area of full turfgrass coverage, 2) slight turfgrass decline, 3), extensive turfgrass decline, and 

4) complete turfgrass failure (Fig. 3.2). Quantum light sensors connected to a 4-channel 

datalogger (WatchDog 1000 Series Micro Station, Spectrum Technologies, Aurora, IL) 

measured and recorded PAR (μmol m-2 s-1) on 15 minute intervals. 
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Evaluations 

DLI at each quantum sensor positioning along the line transect were calculated by 

summing the PAR measurements for each day during a 6 day period in July-August 2017. 

Turfgrass visual quality ratings and coverage evaluations were recorded as previously described. 

Statistical Design and Analysis 

Estimated season-long DLI values at each location was calculated by multiplying the 

percent reduction of full irradiance at each sensor location over the 6 day evaluation period by 

the full sun DLI recorded for each day during May-October of 2016 and 2017 at the University 

of Arkansas Agricultural Research and Extension Center in Fayetteville, AR. Minimum DLI 

requirements for turfgrass types at each evaluation site were determined using nonlinear 

regression analysis as previously described. 
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RESULTS AND DISCUSSION 

 

Daily Light Integral 

 The two year combined DLI average that was delivered to the turfgrass under 22, 40, 60, 

and 90% shade was 33.4, 24.1, 15.3, and 2.6 mol m-2 d-1, respectively (Table 3.2). Average DLI 

under shade treatments varied between 2016 and 2017 trials from 0.9 to 4.6 mol m-2 d-1 

depending on shade intensity (Table 3.2). It is important to note that a possible source of the 

variance in DLI between years is due to the duration of each trial (August-October 2016 and 

May-October 2017) in addition to implied variability in full sun environmental conditions from 

one year to the next. Interestingly, the August-October time period during the 2017 trial was 

almost identical to what was observed in 2016, with an average increase of 0.5 mol m-2 d-1 across 

all shade treatments in 2017 (data not shown). Although there was no turfgrass subjected to a 

non-shaded treatment in this study, full sun DLI was recorded for the duration of the trial and 

reported for reference.  

Turfgrass Quality 

The visual quality of the evaluated turf types was affected by shade intensity treatments 

in 2016 and 2017 (Table 3.3). During both years of this study, analysis of variance indicated a 

significant (P < 0.05) three-way interaction between turfgrass type, shade intensity treatment, 

and evaluation date (Table 3.3).    

Each turfgrass type varied in turfgrass quality response to continuous 22, 40, 60, or 90% 

shade during 2016 and 2017. Both of the bermudagrass turf types, ‘Astro-DLM’ bermudagrass 

and common bermudagrass, maintained acceptable quality (rating score > 6) under 22% shade 

for the entirety of the trial (Fig. 3.3). Under 40% shade, ‘Astro-DLM’ bermudagrass and 

common bermudagrass resulted in unacceptable turf quality on five and twelve evaluation dates 
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during the two-year study, respectively (Fig. 3.3). Both bermudagrass turf types produced 

unacceptable turfgrass quality under 60% shade for all evaluation dates except for one where 

‘Astro-DLM’ resulted in acceptable turf quality in June 2017 (Fig. 3.3). Turf quality of both 

bermudagrasses was unacceptable under 90% shade for the entire trial period (Fig. 3.3). Under 

60% shade, ‘Astro-DLM’ bermudagrass turf quality was significantly greater than under 90% 

shade for the entire trial, but only on select evaluation dates for common bermudagrass (Fig. 

3.3). 

Similar to the bermudagrass turf types, both zoysiagrasses, ‘Cavalier’ and ‘Meyer’, 

maintained acceptable turfgrass quality for the entirety of the trial under 22% shade (Fig. 3.4). 

‘Cavalier’ zoysiagrass had acceptable quality under 40% shade throughout both years of the trial, 

but ‘Meyer’ zoysiagrass had unacceptable quality throughout 2017 (Fig. 3.4). Under 60% shade, 

‘Cavalier’ zoysiagrass turf quality never declined below acceptable quality in 2016 (Fig. 3.4). 

However in 2017, ‘Cavalier’ zoysiagrass had unacceptable turfgrass quality for all but three 

evaluation dates (Fig. 3.4). ‘Meyer’ zoysiagrass declined to unacceptable quality under 60% 

shade on 7 September 2016 and only recovered to minimum acceptable quality on one 

subsequent evaluation date for the remainder of the trial (Fig. 3.4). Under 90% shade, both 

zoysiagrasses resulted in unacceptable turf quality on the second evaluation date and declined 

rapidly until plant death (Fig. 3.4).  

All four warm-season turfgrasses remained above acceptable turfgrass quality under 22% 

shade (Fig. 3.5). There were no significant differences in turf quality among ‘Cavalier’ 

zoysiagrass, ‘Meyer’ zoysiagrass, and ‘Astro-DLM’ bermudagrass except on three evaluation 

dates where ‘Meyer’ zoysiagrass had significantly lower turf quality (Fig. 3.5). Common 

bermudagrass resulted in significantly lower turfgrass quality compared to other turf types on six 
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of 20 evaluation dates under 22% shade (Fig. 3.5). Under 40% shade, common bermudagrass 

had lower quality than all turf types for a majority of evaluation dates in 2016, but recovered in 

2017 (Fig. 3.5). This recovery could be explained by an increase in photosynthetic processes of 

common bermudagrass as a result of the greater average DLI quantities delivered to the turfgrass 

in 2017. ‘Meyer’ zoysiagrass dropped below acceptable quality under 40% shade and resulted in 

significantly lower quality than all other turf types on five of ten evaluation dates in 2017 (Fig. 

3.5). Under 60% shade, both zoysiagrasses had significantly better quality than the two 

bermudagrasses for all but the final two evaluation dates during 2016 (Fig. 3.5). In 2017, only 

‘Cavalier’ zoysiagrass had acceptable turfgrass quality under 60% shade (Fig. 3.5). In addition, 

‘Cavalier’ zoysiagrass had significantly better turfgrass quality than the other three turfgrasses 

beginning on 26 June 2017 evaluation date through the remainder of the trial (Fig. 3.5). Under 

90% shade, the quality of all four turfgrasses declined below an acceptable level on the second 

evaluation date and continued to decline for the remainder of the trial (Fig. 3.5). 

 The results of this study support the necessity of multi-year trials when screening for 

shade tolerance. During the second year of the trial, turfgrass quality continued to decline among 

turf types under various intensities of continuous shade. Turf quality of ‘Cavalier’ zoysiagrass 

even improved under shade during year two of this study. The study indicates that there exists a 

cumulative effect of shade on turfgrass quality and shade tolerance should be quantified by 

observing the cumulative effect of shade on turf quality over multiple years of evaluation. 

This study is the first evaluation on the shade tolerance of ‘Astro-DLM’ bermudagrass 

compared to common bermudagrass. The improved shade tolerance of other hybrid 

bermudagrasses such as ‘Astro-DLM’ over other common bermudagrass cultivars has been 

observed, but is variable based on genetic diversity (Baldwin et al., 2009). Bermudagrass shade 
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tolerance has been demonstrated to be cultivar specific more so than by species. In a screening of 

42 common and hybrid bermudagrass cultivars, Baldwin et al. (2009) reported that ‘Celebration’ 

common bermudagrass had the greatest shade tolerance while ‘Arizona Common’ common 

bermudagrass was the most shade intolerant. 

 Similar to other studies on zoysiagrass shade tolerance, a Zoysia matrella turf type 

(‘Cavalier’) was observed to maintain higher turfgrass quality under dense shade (> 40%) 

compared to a Zoysia japonica turfgrass (‘Meyer’) (Sladek et al.,2009; Wherley et al., 2011). 

However, shade tolerance of zoysiagrasses are not exclusively species dependent, but also vary 

by cultivar. Trappe et al. (2011) reported that ‘El Toro’ and ‘Palisades’ cultivars of Zoysia 

japonica had shade tolerance equivalent to ‘Cavalier’ Zoysia matrella. The increased shade 

tolerance of ‘Cavalier’ zoysiagrass over ‘Meyer’ are in agreement with the direct comparison of 

the two turf types in a three-year study under 89% tree shade (Wherley et al., 2011).  

Average turfgrass quality under each shade intensity level was plotted against two year 

average DLI under each shade intensity to quantify a DLI requirement to maintain acceptable 

turfgrass quality for each evaluated turfgrass. A turfgrass quality rating score of 9 was assumed 

for turfgrass in non-shaded conditions and was included in the analysis. Nonlinear regression 

analysis indicated that model parameters were significantly different (P < 0.05) among turf 

types, therefore separate models were developed for ‘Astro-DLM’ bermudagrass, common 

bermudagrass, ‘Cavalier’ zoysiagrass, and ‘Meyer’ zoysiagrass. Individual prediction models for 

the two bermudagrasses estimated a minimum DLI requirement of 20.1 mol m-2 d-1 for ‘Astro-

DLM’ bermudagrass and 25.9 mol m-2 d-1 for common bermudagrass (Fig. 3.6). For the 

zoysiagrasses, minimum DLI requirements were estimated to be 15.0 mol m-2 d-1 for ‘Cavalier’ 

zoysiagrass and 21.1 mol m-2 d-1 for ‘Meyer’ zoysiagrass (Fig. 3.6). 
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The DLI of 21.1 mol m-2 d-1 determined in this study for ‘Meyer’ zoysiagrass is higher 

than the previous estimation of 12.7 mol m-2 d-1 when mowed at 16 mm (Bunnell et al., 2005b). 

The continued decline of ‘Meyer’ zoysiagrass during the second year of this trial contributed to 

an increased DLI requirement compared to previous reports. Additionally, the increased DLI 

requirement observed in this study could be attributed to trial duration. Bunnell et al. (2005b) 

evaluated ‘Meyer’ zoysiagrass quality after applying shade for two months during the summer. 

The cumulative effect of shade on turfgrass quality after extended duration of shade in this study 

(August-October 2016 and May-October 2017) could have resulted in an increased DLI 

requirement of ‘Meyer’. This is the first report of DLI requirements for ‘Cavalier’ zoysiagrass, 

‘Astro-DLM’ bermudagrass, and a common bermudagrass. The increased turfgrass quality in 

heavy shade (40 and 60% shade) of ‘Cavalier’ zoysiagrass resulted in a lower DLI requirement 

of 15.0 mol m-2 d-1 compared to ‘Meyer’ at 21.1 mol m-2 d-1. Similarly, the improved shade 

tolerance of ‘Astro-DLM’ bermudagrass led to a lower DLI requirement of 20.1 mol m-2 d-1 over 

common bermudagrass at 25.9 mol m-2 d-1. These DLI requirements support the notion from 

previous reports that zoysiagrasses are not always more shade tolerant than bermudagrasses, but 

that shade tolerance of turfgrass types is dependent on cultivar (Baldwin et al., 2009; Trappe et 

al., 2011). The range of DLI requirements for bermudagrasses evaluated in this study are similar 

to those observed in a greenhouse study where two hybrid bermudagrasses (‘Tifway’ and 

‘TifGrand’) and one common bermudagrass (‘Celebration’) required a DLI of 21.4, 20.9, and 

20.2 mol m-2 d-1, respectively (Zhang et al., 2017).  

Turfgrass Coverage 

Turfgrass coverage of the four turfgrass types were affected by shade intensity treatments 

in 2016 and 2017 (Table 3.3). During both years of this study, analysis of variance indicated a 
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significant (P < 0.05) three-way interaction between turfgrass type, shade intensity treatment, 

and evaluation date (Table 3.3).    

Results from turfgrass coverage evaluation were similar to those observed for turf 

quality. Each evaluated turfgrass varied in turfgrass coverage response to continuous 22, 40, 60, 

90% shade during 2016 and 2017. For ‘Astro-DLM’ bermudagrass, there were no significant 

differences between 22 and 40% shade (Fig. 3.7). Significant turfgrass quality differences 

between 22 and 40% shade treatments for common bermudagrass were observed beginning on 

30 September 2016 (Fig. 3.7). This significant separation in turfgrass quality was observed for 

the remaining evaluation dates during the trial. After the first five evaluation dates, both 

bermudagrasses possessed significantly lower turfgrass coverage under 60% shade than turfgrass 

under 22 and 40% shade (Fig. 3.7). Similarly, after two evaluation dates, turfgrass coverage of 

both bermudagrasses under 90% shade was significantly lower than turfgrass under 60% shade 

and were dead by the end of 2016 (Fig. 3.7).  

A significant separation in turfgrass coverage as a result of shade intensity did not occur 

until September 2016 for both zoysiagrasses (Fig. 3.8). Under 22% shade, ‘Cavalier’ zoysiagrass 

had significantly greater turfgrass coverage than all other shade intensity treatments beginning on 

30 September 2016 through 13 July 2017 when the turfgrass under 40% shade approached 100% 

cover (Fig. 3.8). ‘Meyer’ zoysiagrass under 22% shade maintained significantly greater turfgrass 

coverage over all other shade intensity treatment from 30 September 2016 through the remainder 

of the trial (Fig. 3.8). There were no statistical differences between zoysiagrass under 40 and 

60% shade until 13 July and 31 July 2017 for ‘Cavalier’ and ‘Meyer’ zoysiagrass, respectively 

(Fig. 3.8).  Turfgrass quality under 90% shade was significantly lower than under 60% shade on 
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30 September and 7 October 2016 for ‘Cavalier’ and ‘Meyer’ zoysiagrass, respectively, after 

which they approached 0% coverage (Fig. 3.8).  

Lateral growth rate of each evaluated turfgrass varied in term of turf coverage under each 

shade intensity level. It is important to note that due to the difference in spreading habits between 

zoysiagrass and bermudagrass turf types, turf coverage in this trial should be viewed more as a 

growth rate evaluation over time than an overall turf health evaluation. In general, the 

bermudagrasses spread rapidly during establishment whereas lateral growth of the zoysiagrasses 

were slower before shade was applied (Fig. 3.9). Under 22% shade, both bermudagrasses 

reached 90% turfgrass coverage in less than two months after shade was applied (Fig. 3.9). Both 

zoysiagrasses did not reach 90% coverage until late summer of 2017 (Fig. 3.9). Under 22% 

shade, there were no significant differences in turfgrass coverage between turf types of 

bermudagrass. Zoysiagrass turf types were statistically different only on one evaluation date 

under 22% shade (Fig. 3.9). No significant difference between bermudagrasses occurred under 

40% shade until after two months into the trial (Fig. 3.9). At that time, common bermudagrass 

coverage declined significantly compared to ‘Astro-DLM’ bermudagrass and continued until 14 

June 2017 when common bermudagrass began to regain coverage similar to ‘Astro-DLM’ 

bermudagrass. The initial rapid growth of both bermudagrasses under 40% shade in 2016 and 

then subsequent decline of common bermudagrass in 2017 indicate the importance of prolonged 

shade trials over multiple years.  Significant differences between zoysiagrasses under 40% shade 

did not occur until the first evaluation date in 2017 (Fig. 3.9). Beginning in 2017, ‘Cavalier’ 

zoysiagrass spread more quickly than ‘Meyer’ under 40% shade. ‘Cavalier’ was able to achieve 

above 90% coverage by the end of the trial while ‘Meyer’ never reached above 60% turf 

coverage under 40% shade. Under 60% shade, turfgrass coverage of both bermudagrasses 
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declined throughout the trial period. ‘Astro-DLM’ bermudagrass maintained greater turf 

coverage under 60% shade compared to common bermudagrass for all but two evaluation dates 

during the trial (Fig. 3.9). Both zoysiagrasses continued to grow laterally under 60% shade, but 

not as quickly compared to the 40% shade treatment. Beginning on 13 July 2017 and continuing 

through the remainder of the trial, ‘Cavalier’ zoysiagrass had greater turf coverage over all other 

turfgrasses (Fig. 3.9). Under 90% shade, all turfgrasses died. There were no differences in 

decline among zoysiagrasses, but common bermudagrass declined faster than ‘Astro-DLM’ 

bermudagrass under 90% shade (Fig. 3.9).  

Final turfgrass coverage percentage under each shade intensity level was plotted against 

two year average DLI under each shade intensity to quantify a DLI requirement to maintain 

acceptable turfgrass coverage (> 80%) for each evaluated turfgrass. A turfgrass coverage of 

100% was assumed for turfgrass in non-shaded conditions and was included in the analysis. 

Nonlinear regression analysis indicated that model parameters were significantly different (P < 

0.05) among turf types, therefore separate models were developed for ‘Astro-DLM’ 

bermudagrass, common bermudagrass, ‘Cavalier’ zoysiagrass, and ‘Meyer’ zoysiagrass. A turf 

coverage of 100% was assumed for turfgrass not under shaded conditions and was included in 

the analysis. Individual prediction models for the two bermudagrasses estimated a minimum DLI 

requirement of 19.4 mol m-2 d-1 for ‘Astro-DLM’ bermudagrass and 24.6 mol m-2 d-1 for common 

bermudagrass (Fig. 3.10). For the zoysiagrasses, minimum DLI requirements were estimated to 

be 15.8 mol m-2 d-1 for ‘Cavalier’ zoysiagrass and 29.5 mol m-2 d-1 for ‘Meyer’ zoysiagrass (Fig. 

3.10). 

Turfgrass coverage has previously been used to determine DLI requirements of warm-

season putting green species and cultivar establishment from sprigs (Hodges et al., 2016). This is 
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the first study to determine a minimum DLI requirement based off of turfgrass coverage from a 

circular 15.2 cm diameter plug. Evaluation of turfgrass coverage for DLI requirement estimation 

provides objective data to confirm the DLI estimations determined from visual turfgrass quality 

ratings. The DLI requirements from turfgrass coverage varied slightly in range of 0.9 to 8.4 mol 

m-2 d-1 compared to those obtained via turfgrass quality. This discrepancy was expected due to 

the turfgrass quality rating system evaluating not only turfgrass cover, but also turfgrass color, 

uniformity, and density.   

DLI values recorded at multiple golf courses where shade was a limiting factor of 

turfgrass growth varied among courses and individual sites at each course (Table 3.4). The 

reduction of PAR light at each individual site was variable due to differences in tree shade 

density and shade duration based off of tree positioning in relation to the evaluated turfgrass. 

Percent reduction of full sun DLI at each position during the 6 day evaluation period in 2017 

(Table 3.4) was utilized to estimate average seasonal DLI from August-October 2016 and May-

October 2017 at each golf course site (Table 3.5). 

Estimated average DLI at each of the four positions was plotted against turfgrass quality 

at the individual sites to predict the minimum DLI requirement to maintain acceptable quality 

(rating score > 6) of the four evaluated turfgrasses. Nonlinear regression analysis indicated that 

model parameters were significantly different (P < 0.05) among turf types and individual sites, 

therefore separate models were developed each turf type and evaluation site. A turfgrass quality 

rating score of 9 was assumed for turfgrass in non-shaded conditions and was included in the 

analysis. The estimated minimum DLI requirement for ‘Astro-DLM’ bermudagrass at the two 

individual sites were 20.6 and 19.3 mol m-2 d-1 (Fig. 3.11). The DLI requirement of common 

bermudagrass was estimated to be 7.4 and 8.2 mol m-2 d-1 at each respective site (Fig. 3.12). 
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‘Cavalier’ zoysiagrass was estimated to require a DLI of 18.6 and 26.3 mol m-2 d-1 to maintain 

acceptable quality at the two individual sites (Fig. 3.13). Only one golf course site of ‘Meyer’ 

zoysiagrass was included in this analysis due to shade not being the limiting factor of turfgrass 

decline in one of the evaluation sites. The minimum DLI for ‘Meyer’ zoysiagrass was estimated 

to be 22.5 mol m-2 d-1 based off of the one site included in this data set (Fig. 3.14).  

Minimum DLI requirements established in the research setting varied among turf types to 

accurately represent minimum DLI requirements in the established landscape. Relatively small 

differences existed from the DLI estimated in the standardized research stetting to the estimated 

DLI at the golf course for ‘Astro-DLM’ bermudagrass and ‘Meyer’ zoysiagrass (Table 3.6). 

However, relatively large differences were observed for common bermudagrass and ‘Cavalier’ 

zoysiagrass between the estimated DLI from the research setting and the golf course setting 

(Table 3.6).  

Minimum DLI requirements for each evaluated turfgrass were also estimated based off of 

turfgrass coverage. Turfgrass coverage was plotted against estimated average DLI at each of the 

four sensors positions at the individual sites for each turfgrass to estimate the minimum DLI 

necessary to maintain acceptable turfgrass coverage (> 80 %). Turfgrass coverage of 100% was 

assumed for turfgrass in non-shaded conditions and was included in the analysis. Independent 

models were determined to be necessary for each respective site through nonlinear regression 

analysis. The minimum DLI requirement of ‘Astro-DLM’ bermudagrass at the two individual 

sites were estimated to be 20.8 mol m-2 d-1 (Fig. 3.15) Common bermudagrass was estimated to 

require a minimum DLI of 7.5 and 8.3 to maintain acceptable turfgrass coverage (Fig. 3.16). The 

DLI necessary for ‘Cavalier’ zoysiagrass to produce acceptable turf coverage was estimated at 

17.6 and 23.6 mol m-2 d-1 at the two respective sites (Fig. 3.17). Based off the turfgrass coverage 
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at one site, the estimated DLI requirement for ‘Meyer’ zoysiagrass was estimated to be 26.3 mol 

m-2 d-1 (Fig. 3.18). 

The comparison of the DLI requirement determined in the research setting to accurately 

represent the golf course setting DLI requirement in an established landscape based off turfgrass 

coverage was similar to the previous comparison utilizing turfgrass quality ratings. ‘Astro-DLM’ 

bermudagrass and ‘Meyer’ zoysiagrass differed slightly in comparison of the research setting 

minimum DLI and golf course setting minimum DLI by 1.3 and 3.2 mol m-2 d-1, respectively 

(Table 3.7). However, the accuracy comparison for common bermudagrass and ‘Cavalier’ 

zoysiagrass varied by 17.1 and 7.8 mol m-2 d-1, respectively (Table 3.7).  

 This is the first study to evaluate a method to estimate the minimum DLI requirement of a 

turfgrass in the established landscape. The four evaluated warm-season turfgrasses varied in 

turfgrass quality and coverage response under continual 22, 40, 60, or 90% shade during 2016 

and 2017 in a research setting. Minimum DLI requirements of ‘Astro-DLM’ bermudagrass, 

common bermudagrass, ‘Cavalier’ zoysiagrass, and ‘Meyer’ zoysiagrass to maintain acceptable 

turfgrass quality in a research setting were determined to be 20.4, 25.9, 15.0, and 21.1 mol m-2 d-

1, respectively. These DLI requirements were an accurate representation of the minimum DLI 

requirement observed in an existing golf course landscape for ‘Astro-DLM’ bermudagrass and 

‘Meyer’ zoysiagrass. However, the DLI requirement determined in the research setting was not 

able to accurately represent what the minimum DLI requirement was observed to be in an 

existing landscape for common bermudagrass and ‘Cavalier’ zoysiagrass. This misrepresentation 

could be explained due to the narrow time span that DLI measurements were collected in the golf 

course setting. The shaded conditions at the individual sites during the six days may not have 

been an accurate depiction of shade over the two year period. Furthermore, the effects on turf 
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quality and coverage of long time shade present in the golf course setting may not able to be 

captured during the two year time span of this trial. Unique properties of shaded microclimates at 

individual evaluation sites such as restricted air movement, increased relative humidity, and 

extended dew periods (Dudeck and Peacock, 1992) could have resulted in further turf quality and 

coverage decline that was not observed in the standardized research setting. In addition, 

individual site characteristics (cultural practices, tree root competition, water/soil interaction, 

etc.) at each golf course could have impacted turf quality and resulted in DLI requirement 

differences compared to the standardized research setting. However in the standardized research 

setting, shade was the only known limiting factor on turfgrass quality. Therefore, the DLI 

requirement estimated in the standardized research setting is the more reliable baseline when 

evaluating light requirements in an existing landscape.    
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CONCLUSIONS 

 The minimum DLI requirements established in a research setting should serve as a 

baseline for turfgrass managers when evaluating DLI needs for turfgrass at their facilities. While 

the methods presented in this research were able to accurately estimate the minimum DLI 

requirement of ‘Astro-DLM’ bermudagrass and ‘Meyer’ zoysiagrass in an established landscape, 

further evaluation and validation of this methodology is necessary to efficiently estimate DLI 

requirements in situ for all turfgrass types.  In addition, determination of DLI requirements of 

other turfgrass types and the effect that cultural practices (fertilization, irrigation, plant growth 

regulators, etc.) can impact those requirements would prove beneficial. It is imperative that 

future DLI requirement research be conducted over multiple years in a controlled setting to 

capture the cumulative effect of shade on turf health and establish reliable estimates.  
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Table 3.1. Location sites of four turfgrass types under evaluation when estimating a minimum 

DLI requirement in an existing landscape. 

 

  

Turfgrass Scientific Name Golf Course Location 

‘Astro-DLM’ 

bermudagrass 

Cynodon dactylon (L.)Pers. X 

C. transvaalensis Burtt-Davy Shadow Valley Golf Club Rogers, AR 

Common 

bermudagrass Cynodon dactylon (L.) Pers. Bella Vista Golf Club Bella Vista, AR 

‘Cavalier’ 

zoysiagrass Zoysia matrella (L.) Merr. Blessings Golf Club Johnson, AR 

‘Meyer’ 

zoysiagrass Zoysia japonica Steud. Shadow Valley Golf Club Rogers, AR 
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Table 3.2. Average daily light integrals (mol m-2 d-1) under four shade intensities (22, 40, 60, and 

90% shade) from August-October 2016 and May-October 2017 in Fayetteville, AR. 

 

 

 

 

 

  

 Daily Light Integral 

Shade Intensity 2016 2017 2-Year Average 

 ———————— (mol m-2 d-1) ———————— 

Full Sun* 41.4 46.0 44.4 

22% Shade 31.6 34.4 33.4 

40% Shade 21.5 25.4 24.1 

60% Shade 13.8 16.1 15.3 

90% Shade 2.0 2.9 2.6 
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Table 3.3. Analysis of variance (ANOVA) table of turfgrass quality rating and turfgrass coverage 

evaluations of four warm-season turfgrasses under four shade intensity regimes   at the Arkansas 

Agricultural Research and Extension Center in Fayetteville, AR in 2016 and 2017. P-values in 

bold are highest order significant (P < 0.05) treatment interactions that warrant further 

discussion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Turfgrass quality Turfgrass coverage 

Effect 2016 2017 2016 2017 

 ———————————(P-value)—————————— 

Block 0.056 0.500 0.533 0.536 

Shade 0.001 0.001 0.001 0.001 

Turf Type 0.001 0.001 0.001 0.001 

Shade x Turf Type 0.001 0.001 0.001 0.003 

Date 0.001 0.001 0.001 0.001 

Shade x Date 0.001 0.001 0.001 0.001 

Turf Type x Date 0.005 0.001 0.001 0.001 

Shade x Turf Type x Date 0.001 0.029 0.001 0.001 
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Table 3.4. Average daily light integrals (DLI) for 6 consecutive days in June-August 2017 in a 

golf course site at four different positions along a line transect where shade was assumed to be 

limiting quality and growth of the evaluated turfgrass. Positions along the line transect were as 

followed: 1) full turfgrass coverage, 2) slight turfgrass decline 3) extensive turfgrass decline, and 

4) complete turfgrass failure. Percent reduction of full sun is included in parentheses. * Full Sun 

DLI was recorded at the Arkansas Agricultural Research and Extension Center, Fayetteville, AR. 

 

  

  Daily Light Integral  

Turfgrass Site 

No. 

Full 

Sun* 

Position 1 Position 2 Position 3 Position 4 

  ——————————( mol m-2 d-1 )—————————— 

‘Astro-DLM’ 

bermudagrass 

1 51.7 24.6 (52%) 24.4 (53%) 23.7 (54%) 20.2 (61%) 

2 43.3 23.8 (45%) 21.9 (49%) 17.2 (60%) 7.2 (83%) 
       

Common 

bermudagrass 

1 58.8 24.0 (59%) 20.2 (66%) 9.7 (84%) 7.6 (87%) 

2 58.8 31.8 (45%) 11.2 (81%) 10.6 (82%) 6.0 (90%) 
       

‘Cavalier’ 

zoysiagrass 

1 57.1 26.6 (53%) 24.6 (57%) 22.1 (61%) 20.2 (65%) 

2 57.1 38.7 (32%) 35.4 (38%) 33.8 (41%) 9.9 (83%) 
       

‘Meyer’ 

zoysiagrass 

1 51.7 27.0 (48%) 24.4 (53%) 23.6 (54%) 7.7 (85%) 

2 43.3 28.0 (35%) 26.1 (40%) 23.1 (47%) 23.7 (45%) 
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Table 3.5. Estimated average daily light integrals (DLI) for August-October 2016 and May-

October 2017 in a golf course site at four different positions along a line transect where shade 

was assumed to be limiting quality and growth of the evaluated turfgrass. Positions along the line 

transect were as followed: 1) full turfgrass coverage, 2) slight turfgrass decline 3) extensive 

turfgrass decline, and 4) complete turfgrass failure. * Full Sun DLI was recorded at the Arkansas 

Agricultural Research and Extension Center, Fayetteville, AR 

 

 

 

  

  Estimated Average Daily Light Integral 

Turfgrass Site No. Full Sun* Position 1 Position 2 Position 3 Position 4 

  —————————— (mol m-2 d-1)—————————— 

‘Astro-DLM’ 

bermudagrass 

1 44.4 21.1 21.0 20.4 17.3 

2 44.4 24.4 22.5 17.6 7.4 
       

Common 

bermudagrass 

1 44.4 18.1 15.3 7.3 5.7 

2 44.4 24.0 8.5 8.0 4.5 
       

‘Cavalier’ 

zoysiagrass 

1 44.4 20.7 19.1 17.2 15.7 

2 44.4 30.1 27.5 26.3 7.7 
       

‘Meyer’ 

zoysiagrass 

1 44.4 23.2 21.0 20.3 6.6 

2 44.4 28.7 26.8 23.7 24.3 
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Table 3.6. Estimated minimum daily light integral required to maintain acceptable turfgrass 

quality (rating score > 6) quality of four warm-season turfgrass cultivars in a standardized 

research setting evaluated under various shade intensities as well as in an established turfgrass 

setting at two individual locations on a golf course. 

 

 

 

 

 

 

 

 

 

  

 Estimated Minimum Daily Light Integral 

Turfgrass Research Setting Golf Course Site 1 Golf Course Site 2 

 —————————— (mol m-2 d-1)—————————— 

‘Astro-DLM’ 

bermudagrass 
20.4 ± 0.8 20.6 ± 0.1 19.3 ± 3.9 

Common bermudagrass 25.9 ± 2.1 7.4  ± 1.2 8.2 ± 0.4 

‘Cavalier’ zoysiagrass 15.0 ± 3.3 18.6 ± 1.7 26.3 ± 0.6 

‘Meyer’ zoysiagrass 21.1 ± 5.2 ---- 22.5 ± 4.0 
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Table 3.7. Estimated minimum daily light integral required to maintain acceptable turfgrass 

coverage (> 80%) quality of four warm-season turfgrass cultivars in a standardized research 

setting evaluated under various shade intensities as well as in an established turfgrass setting at 

two individual locations on a golf course.  

  

 
Estimated Minimum Daily Light Integral 

Turfgrass 

Research 

Setting 

Golf Course 

Site 1 

Golf Course 

Site 2 

 ———————(mol m-2 d-1)——————— 

‘Astro-DLM’ bermudagrass 19.5 ± 1.1 20.8 ± 0.4 20.8 ± 6.2 

Common bermudagrass 24.6 ± 0.2 7.5 ± 0.8 8.3 ± 1.0 

‘Cavalier’ zoysiagrass 15.9 ± 1.4 17.6 ± 0.1 23.7 ± 5.11 

‘Meyer’ zoysiagrass 29.5 ± 7.5 ---- 26.3 ± 5.5 
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Figure 3.1. Shade structure system utilized to apply various shade intensities to four turfgrass 

types. 
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Figure 3.2. Quantum light sensors placed along a line transect perpendicular to shade damage in 

the following positions: 1) area of full turfgrass coverage, 2) slight turfgrass decline, 3), 

extensive turfgrass decline, and 4) complete turfgrass failure. 

 

  



98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Visual turfgrass quality ratings (1-9 scale, 6 = minimum acceptability) of ‘Astro-

DLM’ bermudagrass (top) and common bermudagrass (bottom) as affected by shade intensity 

from August-October 2016 and May-August 2017. LSD bar indicates least significant difference 

value to make treatment comparisons within evaluation dates. 
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Figure 3.4. Visual turfgrass quality ratings (1-9 scale, 6 = minimum acceptability) of ‘Cavalier’ 

zoysiagrass (top) and ‘Meyer’ zoysiagrass (bottom) as affected by shade intensity from August-

October 2016 and May-August 2017. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates.
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Figure. 3.5. Turfgrass quality of four warm-season turfgrasses under shade intensities of 22% (top left), 40% (top right), 60% (bottom 

left), and 90% (bottom right) shade in August-October 2016 and May-October 2017. LSD bar indicates least significant difference 

value to make treatment comparisons within evaluation dates.  
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Figure 3.6. Nonlinear regression analysis of average turfgrass quality response of four warm-season turfgrass cultivars to average 

daily light integrals observed under 22, 40, 60, and 90% shade treatments in 2016 and 2017. Red line indicates minimal acceptability 

rating of 6. Dashed line represents estimated DLI requirement to achieve acceptable quality rating. ± represents 95% confidence 

intervals of estimated DLI requirement.   
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Figure 3.7. Turfgrass coverage, expressed as a percent, of ‘Astro-DLM’ bermudagrass (top) and 

common bermudagrass (bottom) as affected by shade intensity treatments during 30 June -

October 2016 and May-October 2017. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates.  
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Figure 3.8. Turfgrass coverage, expressed as a percent, of ‘Astro-DLM’ bermudagrass (top) and 

common bermudagrass (bottom) as affected by shade intensity treatments during 30 June -

October 2016 and May-October 2017. LSD bar indicates least significant difference value to 

make treatment comparisons within evaluation dates. 

Tu
rf

gr
as

s 
co

ve
ra

ge
 (

%
) 

0

10

20

30

40

50

60

70

80

90

100
'Cavalier' Zoysiagrass

LSD = 9.5

0

10

20

30

40

50

60

70

80

90

100

Jun-16 Aug-16 Sep-16 Sep-16 Oct-16 May-17 Jul-17 Sep-17 Oct-17

'Meyer' Zoysiagrass

22% Shade 40% Shade 60% Shade 90% Shade



104 

 

  
 

 

  

 

 

 

 

 

 

 

  

Figure. 3.9. Visual turfgrass quality ratings (1-9 scale, 6 = minimum acceptability) of four warm-season turfgrasses under shade 

intensities of 22% (top left), 40% (top right), 60% (bottom left), and 90% (bottom right) shade in 30 June-October 2016 and May-

October 2017. LSD bar indicates least significant difference value to make treatment comparisons within evaluation dates.    
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Figure 3.10. Nonlinear regression analysis of final turfgrass cover response of four warm-season turfgrass cultivars to average daily 

light integrals observed under 22, 40, 60, and 90% shade intensity treatment in 2016 and 2017.  Red line indicates minimal acceptable 

turfgrass coverage of 80%. Dashed line represents estimated DLI requirement to achieve acceptable coverage. ± represents 95% 

confidence intervals of estimated DLI requirement.    
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Figure 3.11. Nonlinear regression analysis of turfgrass quality response to estimated season long daily light integrals of ‘Astro-DLM’ 

bermudagrass from August-October 2016 and May-August 2017 at two individual sites at Shadow Valley Golf Club in Rogers, AR. 

Red line indicates minimal acceptable turfgrass quality rating of 6. Dashed line represents estimated DLI requirement to achieve 

acceptable quality rating. ± represents 95% confidence intervals of estimated DLI requirement.   
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Figure 3.12. Nonlinear regression analysis of turfgrass quality response to estimated season long daily light integrals of common 

bermudagrass from August-October 2016 and May-August 2017 at two individual sites at Bella Vista Golf Club in Bella Vista, AR. 

Red line indicates minimal acceptable turfgrass quality rating of 6. Dashed line represents estimated DLI requirement to achieve 

acceptable quality rating. ± represents 95% confidence intervals of estimated DLI requirement.  
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Figure 3.13. Nonlinear regression analysis of turfgrass quality response to estimated season long daily light integrals of ‘Cavalier’ 

zoysiagrass from August-October 2016 and May-August 2017 at two individual sites at Blessings Golf Club in Johnson, AR. Red 

line indicates minimal acceptable turfgrass quality rating of 6. Dashed line represents estimated DLI requirement to achieve 

acceptable quality rating. ± represents 95% confidence intervals of estimated DLI requirement.  
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Figure 3.14. Nonlinear regression analysis of turfgrass quality response to estimated season long 

daily light integrals of ‘Meyer’ zoysiagrass from August-October 2016 and May-August 2017 at 

an individual site at Shadow Valley Golf Club in Rogers, AR. Red line indicates minimal 

acceptable turfgrass quality rating of 6. Dashed line represents estimated DLI requirement to 

achieve acceptable quality rating. ± represents 95% confidence intervals of estimated DLI 

requirement.  
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Figure 3.15. Nonlinear regression analysis of turfgrass coverage response to estimated season long daily light integrals of ‘Astro-

DLM’ bermudagrass from August-October 2016 and May-August 2017 at two individual sites at Shadow Valley Golf Club in 

Rogers, AR. Red line indicates minimal acceptable turf coverage of 80%. Dashed line represents estimated DLI requirement to 

achieve acceptable coverage. ± represents 95% confidence intervals of estimated DLI requirement.  
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Figure 3.16. Nonlinear regression analysis of turfgrass coverage response to estimated season long daily light integrals of common 

bermudagrass from August-October 2016 and May-August 2017 at two individual sites at Bella Vista Golf Club in Bella Vista, AR. 

Red line indicates minimal acceptable turf coverage of 80%. Dashed line represents estimated DLI requirement to achieve acceptable 

coverage. ± represents 95% confidence intervals of estimated DLI requirement. 
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Figure 3.17. Nonlinear regression analysis of turfgrass coverage response to estimated season long daily light integrals of ‘Cavalier’ 

zoysiagrass from August-October 2016 and May-August 2017 at two individual sites at Blessings Golf Club in Johnson, AR. Red 

line indicates minimal acceptable turf coverage of 80%. Dashed line represents estimated DLI requirement to achieve acceptable 

coverage. ± represents 95% confidence intervals of estimated DLI requirement. 
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Figure 3.18. Nonlinear regression analysis of turfgrass coverage response to estimated season 

long daily light integrals of ‘Meyer’ zoysiagrass from August-October 2016 and May-August 

2017 at an individual sites at Shadow Valley Golf Club in Rogers, AR. Red line indicates 

minimal acceptable turf coverage of 80%. Dashed line represents estimated DLI requirement to 

achieve acceptable coverage. ± represents 95% confidence intervals of estimated DLI 

requirement. 
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Chapter IV: 

Estimating Photosynthetically Active Radiation Reduction under Various Tree Shade 

Canopies with Photometric Light Measuring Devices 
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ABSTRACT 

Photosynthetically active radiation (PAR), the 400-700 nm band of light in 

electromagnetic spectrum that turfgrasses use for photosynthesis, is reduced under tree canopies. 

The quantity of PAR that is allowed through the canopy to the turfgrass surface can vary by tree 

species due to leaf and branch architecture.  If not enough PAR is received, turfgrass can begin 

to show signs of shade stress such as stem elongation and thinning of the turf that could result in 

plant death. Turfgrass managers who wish to evaluate PAR light availability at their property 

have been advised to utilize quantum light meters to accurately measure PAR. These meters may 

be out of the range of affordability for some turfgrass practitioners. Devices that measure visible 

light in photometric units of footcandles or lux are still in use for some turfgrass managers and 

could be a viable alternative to diagnosing PAR light needs. This objective of this study was to 

evaluate the effectiveness of photometric light meters to estimate PAR reduction under shade of 

six tree species. The six tree species were American sycamore (Platanus occidentalis L.), bald 

cypress (Taxodium distichum [L.] Rich.), lacebark elm (Ulmnus parvifolia Jacq.), littleleaf linden 

(Tilia cordata Mill.), shortleaf pine (Pinus echinata Mill.), and water oak (Quercus nigra L.). 

Light measurements were taken under each tree species in 0.61 m increments from the base of 

tree to edge of shade canopy with a PAR quantum light meter, a general purpose footcandle/lux 

meter, and a light meter phone application utilizing the camera on an iPhone 5. Results indicate 

that average PAR reduction ranged from 76 to 90% of full sun PAR depending on tree species. 

Individual models were necessary for each total light measuring device to estimate PAR for each 

tree species. The explained variation in the models ranged widely from 2 to 99%. Accuracy of 

estimating PAR using total light meters is device and species specific. Quantum light meters still 

provide the best option to accurately assess light needs for turfgrass managers.  
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INTRODUCTION 

Due to the fundamental role of light energy in plant systems, accurate light measurement 

is of critical importance. Light is frequently quantified by the amount of visible radiation 

delivered during a sunny day. Among commercial plant growers, visible radiation is often 

measured in photometric units such as lumens and footcandles that quantify light based on a 

scale of brightness similar to that perceived by the human eye (Korczynski et al, 2012; Shibbles, 

1976). Lumens and footcandles are quantities of visible light measurement that are closely 

related. A lumen delivered to a square foot area is termed a lux and a footcandle is equivalent to 

10.76 lux (Meyer-Arendt, 1968).  

Early plant science studies utilized these photometric measurements and their use has 

continued to persist in current plant science despite evidence proving its inadequacy compared to 

newer measurement methods (McCree, 1972). Photometric units measure total visible light 

without the consideration of the specialized wavelengths of light absorbed by plants for 

photosynthesis (McCree, 1972). Plants utilize radiation within the 400-700 nm bandwidth of the 

electromagnetic spectrum for photosynthesis and is termed photosynthetically active radiation 

(PAR). Therefore, academic plant studies now report PAR as a quantum radiometric unit 

delivered to the plant (Tibbitts et al., 2000). Quantum radiometric units describe the number of 

photons within the 400-700 nm bandwidth delivered to the plant surface per second and reported 

as µmol m-2 s-1. Quantum sensors that measure PAR have been developed to aid researchers and 

growers to accurately quantify light as it pertains to photosynthesis. 

 For turfgrass managers, specifically, the quantum light sensor has become an important 

instrument in evaluating light availability to turfgrass in shaded environments beneath tree 

canopies and other impediments in the landscape. Tree leaves can absorb or reflect a significant 
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amount of PAR that would otherwise be available to the turfgrass plant and possibly produce a 

less dense and weaker turfgrass stand (Wherley et al., 2005). The change in spectral light quality 

of red: far red wavelength ratios under tree shade has been well documented (Bell and 

Danneberger, 2000; Grant, 1997; Wherley et al. 2005), but limited information exists 

documenting the variation in PAR reduction among tree species and more research is warranted. 

Bell and Danneberger (2000) found that no differences existed in PAR reduction among 

deciduous and conifer trees, but only two deciduous tree and one conifer tree were evaluated. 

There is information available discussing quality effects of specific turfgrass species grown 

under an individual tree species (Bell et al., 2011; Okeyo et al., 2009; Peterson et al., 2012; 

Wherley et al., 2011), but no work exists evaluating turf performance under multiple tree species. 

Additionally, quantum light sensors may be outside the range of affordability or photometric 

light quantification is still the preferred method for some turfgrass managers. There is a need to 

evaluate alternative methods of PAR measurement in turfgrass landscapes such as photometric 

light meters that measure total visible light (footcandles and lux) as well as total light 

measurement apps on smart phones or other mobile devices. 

Research Objectives 

The research objectives of this study are to 1) evaluate the reduction in PAR and total 

visible light under various tree species shade canopies, 2) determine a method to predict PAR 

values from photometric measurements, and 3) to develop equations for predicting PAR values 

using photometric light meters based on tree species. 
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MATERIALS AND METHODS 

Experimental Area 

This study was conducted in the summers of 2016 and 2017 on six deciduous and 

evergreen trees species on the University of Arkansas Campus, Fayetteville, AR and the 

University of Arkansas Agricultural Research and Extension Center in Fayetteville, AR (36°06' 

N, 94°10' W). Six tree species were selected for evaluation in this study: American sycamore 

(Platanus occidentalis L.), bald cypress (Taxodium distichum [L.] Rich.), lacebark elm (Ulmnus 

parvifolia Jacq.), littleleaf linden (Tilia cordata Mill.), shortleaf pine (Pinus echinata Mill.), and 

water oak (Quercus nigra L.). 

Evaluations 

Five devices were used to measure solar radiation quantities in various units of light 

under the canopy of each tree species (Table 4.1). Units of light measurement recorded were 

either PAR photons, footcandles, or lux. These devices included: a quantum light sensor 

(LightScout Quantum Light Meter, Spectrum Technologies, Aurora, IL), a 1-meter line quantum 

sensor (Model: LI-191R, LI-COR Biosciences, Lincoln, NE)  a footcandle light sensor 

(LightScout Foot-candle Light Meter, Spectrum Technologies, Aurora, IL), a general purpose 

light meter (Model: Extech 401025, FLIR Commercial Systems Inc., Nahua, NH), and the “Light 

Meter” application (Developer: Elena Polyanskaya) available in the Apple App Store on iPhone 

5s that uses the front facing camera to measure solar radiation. 

 PAR photons (μmol) were measured with the quantum light sensor and the line quantum 

sensor. Footcandles were measured with the footcandle light sensor, the general purpose light 

meter, and the “Light Meter” application. Lux were measured using the general purpose light 

meter and the “Light Meter” application (Table 4.1).  
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Three replicates of each tree species were evaluated for solar radiation measurements. 

Individual trees of each species were mature specimens and similar in height, trunk diameter, and 

canopy density. Solar radiation measurement under tree canopies was evaluated with each device 

in 0.61 m increments from the base of the tree to the edge of the shade canopy. One additional 

measurement was taken 0.61 m past the edge of each shade canopy to evaluate percent reduction 

at each tree for subsequent light reduction calculations. Measurements were made uniformly, 

taken on the north side of each specimen perpendicularly to the trunk to standardize shade 

casting. Measurements were made at the ground surface underneath each tree replicate. All 

evaluations were made within 1 month of the summer solstice (20 June) during both years of the 

study and within 2 hours of solar noon. 

The Spectrum LightScout Quantum Light meter is a popular choice among turfgrass 

managers to quantify PAR light at their properties. To evaluate the effectiveness of other light 

measuring devices to accurately predict PAR light, it is imperative to ensure the accuracy of the 

Spectrum meter in quantifying PAR light. Data were obtained using the LI-COR 1-m line 

quantum sensor, factory calibrated and assumed to accurately quantify PAR, and compared to 

data collected from the Spectrum meter to determine accuracy.  

Statistical Design and Analysis 

Data were analyzed using PROC ANOVA of SAS (version 9.3; SAS Institute Inc., Cary, 

NC) to determine tree species effect on PAR reduction.  Treatment means were separated using 

Fisher's protected Least Significant Difference (LSD) test. An alpha value of 0.05 was used to 

determine statistical significance. To assess the PAR measurement accuracy of the Spectrum 

quantum light meter, regression analysis was performed utilizing PROC REG to define the linear 

relationship with measurements obtained with the calibrated LI-COR line quantum light meter. 
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Correlation of measurements from each device to the Spectrum PAR light meter were 

determined with PROC CORR to develop Pearson correlation coefficients for each tree species. 

Analysis of covariance using PROC GLM was used to test if tree species was a significant effect 

in the model to warrant separate models for each device and tree species to predict PAR. 

Separate models for each device and tree species were developed from linear regression analysis 

with PROC REG. 
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RESULTS AND DISCUSSION 

PAR Reduction in Shade 

Average reduction in PAR significantly varied (P < 0.05) among the six evaluated tree 

species. Bald cypress, little leaf, linden, and American sycamore had the greatest PAR reduction, 

near 90% (Fig. 4.1). Lacebark elm and shortleaf pine had significantly lower PAR reductions of 

76 and 77%, respectively (Fig. 4.1). Water oak did not have significant differences in PAR 

reduction compared to the other evaluated tree species. These differences in PAR reduction can 

be attributed to the differences in leaf texture and density allowing variable amounts of PAR 

light to reach the ground beneath the canopy.  The lone evergreen species in this trial, shortleaf 

pine, differed in average PAR reduction compared to three of the five evaluated deciduous trees. 

This report is contrary to previous observations reporting no differences in PAR reduction 

between deciduous and conifer tree species (Bell and Danneberger, 2000). Bell and Danneberger 

(2000) observed PAR reduction over an entire 24-hour period while this study was a single 

measurement at one time point. In addition, the previous study evaluated only three tree species 

in comparison to the six species evaluated in this trial. The larger sample size provided additional 

species comparison that possibly resulted in greater disparity in PAR reduction among tree 

species. 

Spectrum PAR Meter Accuracy 

Comparison of measurements from the Spectrum Quantum LightScout meter and the LI-

COR 1-meter quantum light meter indicated significant (P < 0.05) correlation between the two 

meters. A Pearson correlation coefficient of 0.84 across all evaluated tree shade species 

represents a significant linear relationship between the Spectrum and LI-COR meters. To assess 
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accuracy of the Spectrum meter, a model to predict PAR light from the Spectrum meter from 

measurements using a calibrated LI-COR meter was developed through linear regression 

analysis. According to the model, the intercept of 25.15 and slope of 0.51 indicate that 

measurements from the LI-COR meter would result in lower measurements if using the 

Spectrum meter (Fig. 4.2). The model was able to explain 72% of the variation in measurements 

between the two meters (Fig. 4.2). It is important to note that the model includes observations 

from all evaluated tree species. The differences in leaf density and texture could be an 

unexplained source of variation within the model. Additionally, measurements with each device 

were not taken at the exact same time, and shifting tree limbs could cause shade levels to change. 

Further, the LI-COR meter averaged readings across four sensors placed along the 1-m length of 

the meter and could have varied in light detection due to the Spectrum meter obtaining a single 

reading from one sensor. In addition, variation between the two meters becomes greater when 

PAR light totals exceed greater than 500 µmol (Fig. 4.2). These observations greater than 500 

µmol are representative of measurements taken near the edge of the shade canopy and in non-

shaded conditions. Despite the variation within the model, the following data were obtained 

under the assumption that the Spectrum meter was accurately measuring PAR light under various 

tree species shade canopies.  

Correlation of Light Meters to PAR 

 Across all tree species, the Spectrum meter measuring footcandles had the greatest 

Pearson correlation value to PAR light measurements from the Spectrum meter and the “Light 

Meter” phone application measuring lux had the lowest (Table 4.2). This high correlation of the 

Spectrum meter measuring footcandles was expected due to the footcandle and PAR light 

sensors being present on the same device. By using the same device, measurements of PAR and 
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footcandles were obtained in identical time and space. Correlation of readings from each light 

measuring device to PAR light measurements also varied by tree species (Table 4.2). All devices 

resulted in significant Pearson correlation coefficients for each tree species, except shortleaf 

pine. The “Light Meter” phone application correlation coefficients of 0.14 for footcandles and 

0.12 for lux on shortleaf pine indicate that measurements using the application were not able to 

significantly correlate with PAR light measurements (Table 3.2). The irregular shade patterns of 

shortleaf pine and flecking of radiation through the canopy between evaluations could have 

resulted in this discrepancy.  

Estimating PAR with Light Meters 

Analysis of covariance indicated that separate models to predict PAR light were 

necessary (P <0.05) for each light measuring device and tree species. Explained variation in the 

individual PAR prediction models ranged widely from 2 to 99% (Fig. 4.3-7). The wide range of 

explained variation resulted in inconsistent degrees of accuracy based off of 95% prediction 

limits for each tree species and light measuring device (Fig. 4.3-7). For example, the Spectrum 

footcandle meter was able to predict PAR light within ~10 µmol for littleleaf linden, but could 

only predict PAR for lacebark elm within ~450 µmol (Fig. 4.5). These results indicate that 

accuracy of PAR light estimation from total visible light measuring devices is limited to certain 

tree species that have developed models with sufficient degrees of explained variation as defined 

by the end user.  
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CONCLUSIONS 

 Based on the complexity and inconsistency of predictive models for each tree species, 

using a photometric meter quantifying visible light to estimate PAR results in a tedious process 

based on the methodology utilized in this study. Continual measurement of light quantities over 

time instead of single measurements in time that was used in this study has the potential improve 

model accuracy. Additional testing on other tree species and light meters would also be 

recommended to improve accuracy. The results of this study indicate that if turfgrass managers 

wish to perform onsite PAR evaluations, investment in a PAR quantum light meter is 

worthwhile.  
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Table 4.1. Light measuring devices utilized to quantify PAR and total visible light reduction 

under tree shade canopies. 

  

  

Meter Model Units Measured 

Quantum light meter 

LightScout Quantum and Footcandle 

Light Meter PAR, footcandles 

1-m line quantum line sensor LI-COR Line Quantum Meter PAR 

General purpose light meter Extech Footcandle/Lux Light Meter Footcandles, lux 

Light meter phone application “Light Meter” Phone Application Footcandles, lux 
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Table 4.2. Pearson correlations coefficients of PAR light measurements from a Spectrum 

LightScout quantum light meter under six tree species to three total light measuring devices: 

Spectrum Light Scout footcandle meter (footcandles), general purpose light meter (footcandles 

and lux), and “Light Meter” phone application (footcandles and lux). * indicates correlation 

significance (P < 0.05) with the Spectrum LightScout quantum light meter.   

  

 Pearson Correlation Coefficients – PAR Light 

 Light Meter 

(footcandles) 

Phone App. 

(footcandles) 

Spectrum 

(footcandles) 

Light Meter 

(lux) 

Phone               

App.         

(lux) 

All species 0.76* 0.71* 0.94* 0.79* 0.63* 

American sycamore 0.84* 0.50* 0.99* 0.94* 0.58* 

Bald cypress 0.61* 0.75* 0.89* 0.89* 0.60* 

Lacebark elm 0.80* 0.62* 0.65* 0.87* 0.46* 

Littleleaf linden 0.47* 0.66* 0.99* 0.74* 0.76* 

Shortleaf pine 0.69* 0.14 0.98* 0.66* 0.12 

Water oak 0.75* 0.70* 0.97* 0.89* 0.60* 
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Figure 4.1. Average PAR reduction under canopies of six tree species for one date in 2016 and 

2017 within one month of the summer equinox. Bars that share a letter are not significantly 

different using Fisher’s protected LSD at α = 0.05. 
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Figure 4.2. Linear regression model to evaluate accuracy of a Spectrum LightScout quantum 

light meter to measure PAR light compared to measurements obtained from LI-COR 1-m line 

quantum light meter under shade canopies of six tree species. Dashed lines represent 95% 

prediction intervals. 
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Figure 4.3. Linear regression models for a general purpose light meter measuring visible light 

footcandles to predict PAR light measurements from a Spectrum LightScout quantum light meter 

for six tree species. Dashed lines represent 95% prediction intervals. 
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Figure 4.4. Linear regression models for the “Light Meter” phone application measuring visible 

light in footcandles to predict PAR light measurements from a Spectrum LightScout quantum 

light meter for six tree species. Dashed lines represent 95% prediction intervals. 
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Figure 4.5. Linear regression models for the Spectrum Light Scout measuring visible light in 

footcandles to predict PAR light measurements from a Spectrum LightScout quantum light meter 

for six tree species. Dashed lines represent 95% prediction intervals. 
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Figure 4.6. Linear regression models for the “Light Meter” phone application measuring visible 

light in lux to predict PAR light measurements from a Spectrum LightScout quantum light meter 

for six tree species. Dashed lines represent 95% prediction intervals. 
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Figure 4.7. Linear regression models for a general purpose light meter measuring visible light in 

lux to predict PAR light measurements from a Spectrum LightScout quantum light meter for six 

tree species. Dashed lines represent 95% prediction intervals. 
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CONCLUSIONS 

Maintaining acceptable quality and coverage of turfgrasses grown in shaded 

environments remains an important component of the responsibilities of turfgrass practitioners. 

These studies aim to lend a more thorough understanding to the effect of shade on turfgrass 

systems and necessary light quantities to sustain growth. In order to guide agronomic decisions 

for shaded turfgrass, studies were designed to determine precise light requirements of common 

turfgrasses found on golf courses in the transition zone. A two year field study was established to 

determine the minimum daily light integral to maintain acceptable creeping bentgrass putting 

greens by evaluating the effect of various shade intensities, shade timings, and chemical 

applications on turf quality. Turfgrass managers who manage creeping bentgrass putting greens 

can utilize the daily light integral requirement developed in this study as a baseline for assessing 

light conditions at their respective facilities and altering cultural practices to ensure optimal 

growth conditions for turf under shade.   

Contributing to the growing scientific literature on precise light needs of warm-season 

turfgrass types, a second two-year field study determined the minimum DLI requirements of four 

warm-season turfgrasses. In addition to establishing these minimum DLI requirements, a method 

for efficient determination of minimum DLI thresholds in an established landscape was 

investigated. The method was successful at accurately estimating the critical DLI requirement of 

two of the four turf types based on DLI requirements obtained in a controlled research setting. 

Modification of this method to improve accuracy will be beneficial to turfgrass managers who 

wish to perform site specific analysis of light needs.  

To further encourage the adoption of daily light integral measurements among turfgrass 

managers, affordable total light meters were evaluated for their effectiveness to estimate 
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photosynthetically active radiation (PAR) beneath various tree canopies. After evaluation, the 

PAR quantum light meter remains the standard for assessing PAR available to turfgrass under 

tree canopies.  

Collectively, these studies have provided important scientific information regarding the 

effect of shade on turfgrass systems and quantifying precise light requirements to maintain 

acceptable quality. These studies have brought forth additional research questions worth 

investigating regarding turfgrass shade tolerance. Improving upon these studies among turfgrass 

researchers is encouraged to more effectively and accurately determine light requirements of 

turfgrass.  
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