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Abstract  

One of the objectives of this thesis work was to investigate the cathode performance of 

lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries 

(LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of 

LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) 

sheet using graphene sheet coating on its cathode.  

The results of this work show that adding graphene powder improved the performance of 

LiCoO2 as a cathode material. With the incorporation of different weight percentages of 

graphene powder, the LiBs showed distinct changes in their charging and discharging 

characteristics. The cell with its cathode incorporated with a 0.5 wt.% graphene powder 

exhibited the highest discharge capacity at currents 0.1 C and 0.5 C, The incorporation of 1 wt.% 

graphene powder contributed the most stable performance of the cathode at currents from 0.1 C 

to 2 C. In addition, the cell with its cathode incorporated with 2 wt.% graphene powder exhibited 

a higher discharge capacity of the cathode. 

 Conversely, the cathodes coated with one graphene sheet exhibited lower discharge 

capacity than that of the pristine cathode. This can be explained by the transfer limit of lithium 

ions as the graphene sheet blocked the electrolyte immersing into cathode materials, thus only 

part of cathode materials participate in the process of lithium ion transfer.
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Chapter 1: Introduction  

 

The worldwide society development consumes countless energy, which is generally 

dependent on fossil fuels [1]. This is because the extraction and distribution of fossil fuels are 

generally relatively low cost [1]. However, many serious environmental issues are caused by 

fossil fuels combustion [2]. To find an alternative, energy storage systems are making use of the 

unique features of green energy sources, such as solar energy [3]. 

Battery storage is an effective technology for renewable energy [4]. Additionally, it is a 

common agreement that electrochemical batteries are the most reliable method [3]. Lithium ion 

batteries (LIBs) are one kind of electrochemical batteries. Since LIBs were introduced to market 

in 1991 by Sony [5], they have been widely applied in various fields.   

The components of a LIB consists of two electrodes that includes a cathode and an anode, 

one or more separators made of polymer membrane, and the electrolyte. Lithium ion batteries 

have many advantages compared with other commercial secondary batteries. The advantages of 

LIBs are an extraordinary initial voltage, a long lifespan, and a high energy density [6]. 

However, there are also several weaknesses of both cathode and anode. Currently, anodes are 

facing one or more issues, such as low storage of Li, and irreversible capacity loss [7].  

Graphene is a monolayer graphite with its carbon atoms [8]. Due to the honeycomb 

structure, several advantages of graphene including its high mechanical strength [7], good 

thermal conductivity, and great electronic mobility [9] have been explored. Its excellent 

electrical conductivity may increase storage capacity of lithium in LIBs [10] [11]. 

The SEI film is created by the reaction between active lithium metal and electrolyte [12]. 

For LIBs, the SEI layer determines the safety issue, and influences the irreversible capacity loss 

[13]. However, solid electrolyte interphase has a high resistance [14]. 
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Therefore, the incorporation of graphene is a reasonable method to imrpove the 

performance of LIBs. Additionally, impeding the formation of SEI film is another expected way 

to increase the discharge capacity. These are the objectives of this thesis research.
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Chapter 2: Introduction of Lithium Ion Batteries 

 

2.1 Energy Storage Systems 

Concerns such as environment pollution and global warming [2], lead to a strong 

encouragement to decrease the harmful effects from the process of generation and transportation 

of electric energy [15]. Energy storage systems (ESSs) are introduced to decrease the waste of 

energy to ensure a constant availability of renewable energy [15]. Energy systems can store and 

release energy by converting electrical energy to other forms of energy [15]. For energy storage 

systems, the reaction normally occurs between the electrodes and electrolyte [16].  

Yoshino [17] reports the difference among batteries, fuel cells, and capacitors that are 

three main types of ESSs. A battery usually has one or more cells with many interactions to 

contribute electricity. Fuel cell, the device where electrochemical transformation occurs, offers 

one form of fuel and an oxidant. An electrochemical capacitor saves electrical energy in its 

electrical double layers whose formation is between the electrolyte and electronic conductor 

[16].  

Winter and Brodd [16] present a more detailed comparison among these three forms of 

energy storage systems. They argue that the components of batteries, fuel cells and 

supercapacitors are similar which include one cathode, one anode, and an electrolyte. For 

batteries and fuel cells, the redox reactions are main sources to produce electrical energy. 

However, batteries and fuel cells have different locations to store and convert energy. Because 

they are a closed system, the process of storing and converting energy occurs at same place. On 

the other hand, however, fuel cells are open systems, thus their process of storing and converting 

energy occur at different compartments. In supercapacitors or electrochemical capacitors, 

“anode” and “cathode” are not proper, since energy is not generated through redox reactions.  
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Winter and Brodd [16] further reported the difference of application market among these 

three ESSs. Till now, batteries are considered as the most practical EES and have a dominating 

market evaluation, meanwhile the markets of supercapacitors are in memory protection for some 

electrical devices. However, fuel cells are in the process of developing and are still searching to 

find their best application for future market.  

 

2.2 Lithium Ion Batteries (LIBs) 

2.2.1 The Birth of LIBs 

Throughout the 1980s, the development of rechargeable batteries was being pushed by 

the energy requirements of portable electronic devices [17]. However, widely used rechargeable 

batteries, such as lead-acid batteries and nickel-metal hydride (NiMH) batteries, had severe size 

or weight disadvantages [17]. Therefore, a new form of batteries was needed at that time. 

Primary (disposable) batteries and secondary (rechargeable) batteries are different forms 

of batteries [16]. A primary battery consists of one or several connected cells, can provide 

electrical energy, and is discarded after its stored energy is exhausted. In contrast, a secondary 

battery has the ability to be recharged to its original charged capacity after its stored energy is 

exhausted.  

Winter and Brodd [16] pointed out the initial state difference between disposable 

batteries and rechargeable batteries. The initial state of primary batteries is fully charged, and 

discharging is the major reaction when the batteries are working. However, rechargeable 

batteries have normally been discharged and then need to be charged to store electrical 

energy before discharge in a secondary process.   

In the early 1980s, Akira Yoshino [17] had the idea of LIBs and then made a practical 

LIB battery in 1986. A LIB can be described as “a nonaqueous secondary battery using 
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transition-metal oxides containing lithium ion such as LiCoO2 as a positive electrode and 

carbonaceous materials as a negative electrode [17].”  

Goodenough et al. [17] firstly pointed out the usage of LiCoO2 as a cathode in 1979. In 

1982, Yazami and Touzain [18] successfully demonstrated the electrochemical intercalation in 

LIBs along with graphite as the anode material. Graphite is still a common anode materials in 

LIBs nowadays.  

In 1986, Akira Yoshino [17] successfully achieved the first safety tests on LIBs. In 1991, 

after further development, Sony introduced the first LIBs to commercial markets [5]. Akira 

Yoshino [17] listed several advantages of LIBs as follows:  

1) It has a larger energy density compared with NiCd batteries or NiMH batteries at 

same physical conditions.  

2) It has a good reduction in the size and weight that fits in portable devices.  

3) It can supply electrical energy for a cell phone with only one cell due to a 4 volts or 

more voltage.  

Notebook computers and cell phones drive the demand of the portable device market [9]. 

Fig. 2.1 indicates the market of LIBs. 

Lithium ion batteries market expands rapidly and are expected to keep increasing [17]. In 

addition, as a commonly used energy storage device, lithium ion batteries have more challenges 

caused by electric vehicles (EVs) and hybrid electric vehicles (HEVs), which have been two 

revolutionary technologies nowadays [19]. On the other hand, the huge and promising market of 

LIBs have also pushed the development in several fields, such as material research areas 

(carbonaceous materials, polymers, and ceramics), and the related areas, such as 

electrochemistry, electrical packaging, chemical materials, physical materials and surface 

chemistry [17]. 
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Fig. 2.1. The market of LIBs. 

 

2.2.2 Operation of LIBs 

A LIB battery are made of an anode, a cathode, the electrolyte, and one or more 

separators as shown in Fig. 2.2. 

Yoshino [17] introduced roles of each material in a LIB. The anode, as the negative 

electrode, is the location of the oxidation reaction and releases electrons. The positive electrode 

of a cell, cathode, is where reduction reactions occur, and receives electrons coming from the 

anode. The electrolyte contributes to the conductivity between the cathodes and anodes. 

The most popular electrolyte used in the LIBs is lithium hexafluorophosphate (LiPF6) salt 

mixed with solvent mixtures such as ethylene carbonate (EC). Dimethyl carbonate (DMC), 

diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are common linear carbonates [20]. 

The separator is an obstacle between the cathode and anode used for inhibiting a short-

circuit from occurring in a cell. Separators have several forms, such as a polymer with extremely 

small holes and inactive materials immersed in electrolyte. Note that they are designed to allow 
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ions to go through as well as be passive all the time.  

 

Fig. 2.2. The components of a LIB. 

 

Fig. 2.3 shows the process of charge and discharge in the lithium ion batteries. Lithium 

ions can drive through the cathode and anode. Typically, both the cathode and anode in a LIB 

consist of intercalation compounds and they allow Li+ to be inserted into their structures [7]. 

When the battery is being charged, Li+ extracts from cathode and intercalates into 

anode. Conversely, Li+ swim from anode to cathode when battery is being discharged.  

 

Fig. 2.3. The operation of LIBs. 
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The positive electrode half-reaction during the process of charging is [21]: 

                             

                              𝐿𝑖𝐶𝑜𝑂2  ↔  𝐿𝑖1−𝑥𝐶𝑜𝑂2  +  𝑥𝐿𝑖+ + 𝑥𝑒−                              (Equation 2.1) 

 

The negative electrode half-reaction at the same time is [21]:  

 

                                                 𝑥𝐿𝑖+  +  𝑥𝑒−  +  6𝐶 ↔  𝐿𝑖𝑥𝐶6                                  (Equation 2.2) 

where C is carbon. 

The combined overall reaction is: 

 

    𝐿𝑖𝐶𝑜𝑂2  +  𝐶 ↔  𝐿𝑖1−𝑥𝐶𝑜𝑂2  +  𝐶𝐿𝑖𝑥                   (Equation 2.3) 

 

When x is 0.5, the theoretical capacity is 372 mAh/g [21].  

Any overcharge or over-discharge would be harmful to the LIBs. Mahmood and Hou [21] 

indicated that overcharging and over-discharging or supersaturating the cathode would destroy 

the cell due to irreversible reactions as shown below [21]: 

 

                                               𝐿𝑖𝐶𝑜𝑂2  →  𝐿𝑖+  +  𝐶𝑜𝑂2  + 𝑒−                                 (Equation 2.4) 

 

    𝐿𝑖𝐶𝑜𝑂2  + 𝑒−  +  𝐿𝑖+  →  𝐿𝑖2𝑂 +  𝐶𝑜𝑂                            (Equation 2.5) 

 

2.2.3 Characteristics  

Currently, LiCoO2 is a common cathode for commercial LIBs since it has a high capacity 

and a great cyclability [22]. The major considerations for LIBs consist of energy density, power 
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density, and others [5]. As such, over-delithiation causes an around 9% volume contraction [22].  

Several advantages and disadvantages are listed below [16], [23]: 

Advantages: 

1. A higher energy density (twice higher than NiCd batteries). 

2. A high cell voltage (3.6 V). 

3. Work in harsh envrionment. 

4. It can operate in any orientation. 

5. Different sizes and shapes. 

6. Long lifetime. 

Disadvantages: 

1. A relative low energy capacity (10-3 S/cm). 

2. Several safety issues. 

 

2.3 Related Research Based on LIBs 

Many researches are investigated to strengthen the performance of LIBs in several aspects, 

such as cathode, anode, and electrolyte [3], [20], [24-30]. 

 

2.3.1 Research on Electrolytes 

The most popular electrolyte for LIBs is LiPF6 salt dissolved in EC, DMC, DEC, and 

EMC [20]. This is based on the several characteristics of such electrolyte. Lithium 

hexafluorophosphate (LiPF6) has the capability to passivate, and thus, protects aluminum (Al), 

Ethylene carbonate (EC) can provide a high ionic conductivity [20]. Ethyl methyl carbonate 

(EMC) has proven to have the best thermal compatibility with EC [24].  
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Zhang et al. [20] used LiPF6- EC-EMC as the electrolyte for a cell whose electrodes were 

spinel LiMn2O4 and graphite to determine a supreme ratio of LiPF6/EC-EMC for LIBs. As a 

result, Zhang et al. [20] demonstrated an ideal ratio of electrolyte for LIBs is 1M LiPF6 3:7 EC-

EMC. 

Much attention is currently being focused on the investigation of why some electrolytes 

have better stability and reality than the liquid organic carbonate solutions do [3]. Ionic liquid 

solution (ILs) is one of liquid organic solutions. One disadvantage of ILs is that its organic ions 

could suffer unexpected structure change [25]. Scrosati et al. [3] also indicated there is still a 

long path for ionic liquid solutions to find their applications as an electrolyte for LIBs. 

 

2.3.2 Research on Anodes 

The electrical conductivity of one layer walled CNTs is 106 S/m at 300 K and the 

conductivity of multi-layer CNTs is over 105 S/m for the same condition. Single-walled carbon 

nanotubes have reversible capacities ranging from 300 to 600 mAh/g, which are larger than those 

of graphite [29-32]. However, it is not easy to produce CNTs with a desired size or structure 

[26].  

Graphitic carbon is an anode material for many commercial LIBs. However, metals can 

be used as an alternative due to their higher capacities compared with graphite [26]. During the 

process of forming alloys, metals have the capability to store more Li+ than graphite can [26]. 

For example, one Al atom or one Sn atom can compound with two to four Li+, whereas graphite 

needs to provide six carbon atoms to insert one lithium ion [27], [28]. This advantage offers 

metal-based anodes a larger storage capacity when volume expansion occurs [28]. When the 

battery is in discharging state, Li+ are driven to the positive electrode and the metal alloys return 

to their original state by shrinking back to its initial size [26]. 
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2.3.3    Research on Cathodes 

The most common materials used as cathode materials for LIBs contain LiCoO2, 

LiFePO4, and LiMnO4 [5]. LiFePO4 and LiMnO4 have been investigated for many years [5], 

[19]. Lithium iron phosphate (LiFePO4) has a good theoretical capacity and a stable cyclability 

[33]. However, its conductivity for electrons and Li+ is low [5]. Lithium manganate (LiMnO4) is 

expected to be used as electric vehicle (EV) batteries since it requires a low cost [34] and offer a 

safer environment [35]. One of its weaknesses is its relatively low cyclability [5]. 

Lithium sulfur (Li-S) and lithium air (Li-air) batteries can provide extraordinary energy 

densities thanks to the reaction of Li+ with sulfur (S) and O2 to form Li2S and Li2O2, separately 

[21]. Mahmood and Hou [21] reported the delivery of pure oxygen is a major issue for Li-air 

batteries since air consists of different gases which are harmful for cells and can decrease its 

capacity. A lithium sulfur battery has its own limits, such as polysulfide anions transport.  
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Chapter 3: Carbonaceous Materials of LIBs 

 

3.1 Overview of Carbonaceous Materials 

Over the past several decades there has been great development in nanotechnology, 

which is fundamentally applied for the materials with sizes below 100 nm [36]. Fullerenes are  

well-known nanoscale materials that are made of carbon and exist in different forms, such as 

sphere, ellipsoid, and tube [36].  

Carbon exists in the forms of diamond, graphite, and fullerenes [37]. Graphite has a layer 

structure and its carbon atoms arrange in its hexagonal structure within one layer. Fig. 3.1 shows 

that graphite layers are stacked in the AB sequence [37].  

 

Fig. 3.1. The structure of graphite layers. 

 

The first individual graphene planes were successfully isolated by Novoselov et al. in 

2004 [38], while the graphite structure has long been known. References 39 and 40 suggest that 

graphene has huge potential to be used for electrical energy storage devices. 
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3.2 Graphene 

3.2.1 General Characteristics 

Graphene is one layer graphite and its carbon atoms arrangement forms a honeycomb 

structure [8] as shown in Fig. 3.2. Each carbon atom is a surface atom due to its honeycomb 

structure, which indicates that each graphene atom is a surface atom [6]. Graphene has the 

highest intrinsic mechanical strength, a large surface area [7], and good electronic mobility [9].  

 

Fig. 3.2. The arrangement of graphene atoms. 

 

Graphene is monolayer graphite [36-40]. Geim and Novoselov [8] questioned what are 

the least number of layers of graphene when it can be regarded as a 3D structure. Different layer 

structures reflect distinct properties of graphene due to the weak bonds among layers [8], [41].   

 

3.2.2 Graphene Preparation 

 The synthesis of graphene on a large scale has been achieved [42]. Several techniques 

such as mechanical exfoliation of oriented graphite [6], coating on the surface of SiC [43], 

conversion from graphene oxide (rGO) [44], as well as chemical vapor deposition (CVD) [45] 
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are common methods to gain graphene. The methods used for its preparation depend on the size 

and the properties of graphene layers required. Mechanical exfoliation [6] and precipitation on a 

silicon surface [43] cannot be used for large scale production. Wide-ranging graphene layers 

fabrication is possibly reached by CVD method or chemically converting from rGO [42]. The 

graphene sheets prepared from the CVD method have less resistance than those prepared from 

the solution-phase graphene oxide method. Therefore, CVD is commonly used when high quality 

graphene is desired [42]. 

 

3.3 Related Research 

3.3.1 General Overview 

 Currently, investigations of new energy sources are encouraged by increasing demand of 

electrical devices [46]. Lithium ion batteries (LIBs) have several advantages compared with 

other conventional batteries [6]. Lithium intercalation compounds are common cathode materials 

for LIBs [5], [6]. However, there are some disadvantages of these materials which limit their 

applications, such as limited lithium ions storage and large capacity loss [7]. For example, 

carbon and tin-based materials can both provide good cyclability with low original efficiency 

and high irreversible capacity loss, respectively [47].  

Due to its electrical conductivity of 10-4 S/cm, graphene has potential to be an 

extraordinarily proper component in LIB cathodes [5]. In addition, graphene may also improve 

storage capacity of Li+ for lithium ion batteries [10], [11]. Goosey [36] introduced the different 

performance of graphene when added into cathode materials. When cathode materials consisting 

of graphene are mixed properly, a conducting network is formed for electrons in LIBs. However, 

when mixed in disproportionate amounts of graphene, it can impede the transfer of lithium ions. 
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Studies [33] show that graphene, limited by its low coulombic efficiency and weak stability, 

cannot be considered as a cathode or an anode.   

Nevertheless, graphene could be considered as an excellent material when used as an 

additive to increase the conductivity for cathodes [36].  

 

3.3.2 Graphene Used in Anode Materials 

 The anode is playing an essential role in LIBs. Currently, graphite is a frequently used 

anode. Its low theoretical capacity can be one limitation that restricts its application in EVs and 

HEVs [19]. Therefore, other materials have to be examined to replace graphite.  

Non-carbon-based anodes are being researched. Nowadays, tin-based electrode, silicon-

based electrode, and transition metal based electrode are three major investigated anode 

materials for LIBs. For the case of these three anode materials, the incorporation of graphene can 

provide a good electrical conductivity and a high surface area [6]. Moreover, graphene is 

chemically and thermally stable which help to keep electrodes working in harsh environments 

[6].  

 

3.3.2-1 Tin-Based Materials 

 Tin (Sn) and its oxides, such as SnO2, are popularly investigated for the anode materials 

[6], [19]. SnO2 has a higher theoretical capacity compared with graphite [19]. However, serious 

volume variation occurs when lithiation or delithiation in process [6]. The reaction is shown 

below [6]: 

 

              𝑆𝑛 + 4.4𝐿𝑖 + +4.4𝑒−  ↔  𝐿𝑖4.4𝑆𝑛                               (Equation 3.1) 
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This reaction destroys the electrical connection with the anode [3]. Liang et al. [48] indicated 

that the interpretation of tin-based anodes was enhanced due to the incorporation of graphene.  

 

3.3.2-2 Silicon-Based Materials 

 Silicon and lithium ions can form Li4.4Si when silicon is used as an anode material [6].  

The reaction is [49]: 

    

  𝑆𝑖 + 4.4𝐿𝑖 + +4.4𝑒−  ↔  𝐿𝑖4.4𝑆𝑖                             (Equation 3.2) 

 

It has a large charge capacity and a low discharge voltage [6]. The volume of Si increases up to 

270% due to the formation of Li3.75Si during the process of discharge [6]. This weakens the 

stability of transfer [50]. The incorporation of graphene can increase the transport capability for 

both electron and lithium ions [6].  

 

3.3.2-3 Transition Metal-Based Materials 

 Transition metal oxides are probable anodes since lithium storage capacity of these 

materials is over 600 mAh/g [6], [19]. The reaction is [19]: 

 

   𝑛𝑎𝑛𝑜⎼𝑀𝑂 + 2𝐿𝑖 ↔ 𝑛𝑎𝑛𝑜⎼𝑀 +  𝐿𝑖2𝑂                   (Equation 3.3) 

 

where M = Fe, Co, or Cu. 

The volume of those materials increases during lithiation process due to the formation of 

Li2O [19]. For another example, Co3O4 has an 890 mAh/g theoretical capacity and its volume 

expands during the processes of charging and discharging [6]. Adding graphene decreases  
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volume expansion as well as restrains the detachment and collection of metal oxide [19].  

 Manganese oxide (Mn3O4) has a great theoretical capacity with a low electrical 

conductivity, which limits its actual maximum capacity [6]. Zhu et al. [6] demonstrated that the 

incorporation of graphene can provide the cathode Mn3O4 a great ratio capacity of delithiation 

~900 mAh/g. 

 

3.3.3 Graphene Used in Cathode Materials 

3.3.3-1 LiMn2O4  

 Lithium manganese oxide (LiMn2O4) as the cathode materials has many advantages 

including high electronic conductivity [19], environmental friendliness, and high abundance of 

manganese (Mn) [51]. However, its low theoretical capacity (148 mAh/g) changes during the 

cycling [19]. In addition, Mn2+ dissolves into the electrolyte, which lowers the reversible 

capacity [52].   

Bak et al. [35] reported that the incorporation of graphene sheets helps to increase the 

conductivity of bare LiMn2O4 cathode. It has been shown that LiMn2O4/graphene sheet 

composites have a good reversible capacity [6]. Zhao et al. [53] synthesized LiMn2O4/graphene 

composite enhanced both the stability of cycling and theoretical capacity. 

LiMn2O4 doped with other molecules (LiMxMN2-xO4, M = Ni, Fe, Co, etc.) has been 

recommended to restrict Mn+ dissolving in the electrolyte [19]. Prabakar et al. [54] reported that 

electrons can transfer faster after adding graphene into cathode materials to form a sandwiched 

LiNi0.5Mn1.5O4-graphene composite as a cathode.  

 

3.3.3-2 LiFePO4 

 LiFePO4 is a potential cathode since its theoretical discharge capacity is larger than that  
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of LiCoO2 and it has a low toxicity [19]. On the other hand, its capacity fades quickly under a 

high rate of charge or discharge due to its low electrical conductivity and a weak transport ability 

[6], [55]. Its electrical conductivity of 10-14 S/cm is lower than those of LiCoO2 and LiMn2O4, 

which are 10-9 S/cm and 10-6 S/cm, respectively [19].  

The incorporation of graphene could increase the conductivity of electrode [6]. In 

addition, graphene could strength the cycling stability due to its mechanical properties [6]. There 

are several methods, such as hydrothermal, solvothermal, and solid state routes, to prepare 

LiFePO4/graphene composite [6], [55].  

Su et al. [56] used graphene to replace one fourth weight percentage of carbon additive. 

The results showed that the charging transfer resistance decreased due to the increased electrical 

conductivity. 

Ding et al. [57] indicated that the initial capacity of LiFePO4 incorporated with graphene 

is 160 mAh/g at 0.2 C compared with bare LiFePO4 cathode whose capacity is 113 mAh/g [19], 

[57].  

Several papers [56], [58], [59] show that adding graphene could decrease the capacity 

fade. The capacity decreases 3% at 30th cycle at 0.1 C [56], 300th cycle at 5 C [58], and 5% at 

1000th cycle at 20 C [59]. These results demonstrate that LiFePO4/graphene composite retain the 

stability of the cathode during the process of charge and discharge. There is no further research 

to prove the exact mechanism for the great cyclability of LiFePO4/graphene composite [5]. 

However, papers [60] and [61] showed that strengthening the electronic connection among 

particles can enhance the cyclability of LiFePO4/graphene composite. 

 

3.3.3-3 Li3V2(PO4)3 

 The voltage range of this material is 3.0 – 4.3 V during the process of intercalation and  
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extraction [62]. The theoretical capacity of Li3V2(PO4)3 is 197 mAh/g [63], but it has a low 

electronic conductivity such as 240 nS/m at 25 oC [6].  

The incorporation of graphene increases its electrochemical performance [38]. Huang et 

al. [62] and Yu et al. [63] used sol-gel, solid-state, and spray-drying method to prepare 

Li3V2(PO4)3 /graphene composite.  

Lu et al. [19] and Liu et al. [64] indicate that Li3V2(PO4)3/graphene cathode has an 

increased rate capability and an enhanced stability during cycling due to the formation an 

electrical conducting network consisting of graphene. The cost is a potential issue for the 

application of graphene in the cathode materials, since incorporating with even a low weight 

ratio will cost more [19].  

 The advantages of composites of materials incorporated with graphene can be 

summarized as follows [6]. The incorporation of graphene impedes the volume expansion of 

metal electrodes when they are being charged and discharged. Moreover, the life cycle of LIBs 

has capability to be enhanced. Graphene increases the conductivity of metal electrode materials. 

Adding graphene can increase the rate performance of cathodes and anodes by controlling the 

growth of metal oxide particles. The combination of graphene increases the lithium storage 

capacity of metal oxide materials. 

 

3.4 Summary and motivation 

 LIBs play an essential part in several areas, such as portable devices including notebook 

computers, cell phones, EVs and HEVs.  

The performance of LIBs mainly relies on their anodes and cathodes. However, many 

disadvantages of the cathode and anode limit its usage. For example, the anode has a limited Li 

storage capacity, a low capability of charge and discharge rate, and poor capacity retention. For 
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the case of the cathode, the low electrical conductivity of common cathode materials needs to be 

enhanced to satisfy the desires for batteries with higher performance.  

 Graphene, as a single layer graphite with a honeycomb structure, has been considered as 

a suitable additive to LIBs since it was discovered in 2004. From above discussions, the 

performance of electrodes is enhanced by the incorporation of graphene. Moreover, adding 

graphene improves the physical and chemical properties in some aspects. However, there is little 

research on incorporating graphene into LiCoO2 as a cathode of LIBs which is the subject of this 

research work. 

 SEI film exists between electrodes and electrolyte. The formation of this layer is due to 

the reaction between the electrolyte and active lithium metal. However, the SEI film has a high 

resistance. To investigate the performance of LIBs without this high resistance, the formation of 

SEI layer should be avoided.  

 In this work, two methods were prepared to incorporate graphene into LiCoO2 electrodes. 

One was adding different weight percentages of graphene powder into cathodes to augment the 

performance of LiCoO2 as the cathode. The other one was coating a graphene sheet (6 – 8 layers) 

on the pristine electrode to impede the formation of SEI layer. 
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Chapter 4: Experiment 

 

4.1 Overview of Materials 

The materials used in this research were lithium cobalt oxide (LiCoO2) (Fig. 4.1(a)), 

super P carbon black (Fig. 4.1(b)), N- Methyl-2-pyrrolidone (NMP) (Fig. 4.1(c)), 

poly(vinylidene fluoride) (PVDF) (Fig. 4.1(d)), electrolyte, separator, and graphene including 

graphene powder and graphene sheet (6-8 layers). 

 

(a)  (b)  

(c)  (d)  

Fig. 4.1. Materials of cathode: a) lithium cobalt oxide (LiCoO2), b) super P carbon black, c)  N-

Methyl-2-pyrrolidone (NMP), and d) poly(vinylidene fluoride) (PVDF). 
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 PVDF powder was purchased from Sigma-Aldrich Co [65]. LiCoO2, carbon black, and 

NMP were purchased from Alfa Aesar Co [66]. Graphene nanopowder was purchased from 

Graphene Supermarket Co [67]. Graphene sheet (6-8 layers) was purchased from ACS Materials 

Co [68]. 

 

4.2 Roles of Materials 

4.2.1    LiCoO2 

 LiCoO2 is one major cathode material for LIBs in this research since it has a capacity of 

272 mAh/g [22] with an energy density of around 3.5 g/cc [23].  

 

4.2.2 Carbon Black 

Super P carbon black has a surface zone of 62 m2/g [69] and is used as an electronic 

conductor to improve the conductivity of LiCoO2, which was the cathode in this research. 

Dominko and his co-workers [70] reported that carbon black was essentially needed to determine 

the performance of the cathode. It must be noted that carbon black or other electrical conductors 

have to be evenly mixed in the cathode materials [71].  

The working mechanism of carbon black is shown in the Fig. 4.2. In order to avoid 

severe polarization, both lithium ions and electrons have to be inserted at the same place as 

shown in Fig 4.2(b) [71]. However, a low reversible capacity occurs if there is any part of active 

particles not contacting with electronic conductor carbon black particles (Fig 4.2(a)) because 

electrons would be reflected in the polarization [71]. For the case of LiCoO2, a low content of 

evenly dispersed carbon black can give cathodes a better performance than a high content of 

unevenly mixed carbon black [71].    
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Fig. 4.2. The mechanism of electrode a) without carbon black and b) with carbon black. 

 

 There are other applications of carbon black in batteries [72-74]. For example, carbon 

black is commonly used as cathode for Li-O2 batteries [72]. In addition, carbon black, as an 

anode active additive, has been used for LIBs [73]. Kim et al. [74] demonstrated that a high 

density of LIBs is achieved by directly coating carbon black on the cathodes.  

 

4.2.3 NMP 

NMP is commonly used to dissolve carbon-based compounds [75]. In this research, NMP 

was used for dispersing oxide material, which enhances capacitive utilization of oxide [76]. 

Moreover, a stable suspension could be achieved by NMP, an organic solvent, and 

poly(vinylidene fluoride) [77], which was the binder for cathode materials. Noting that NMP is  

toxic, the operations related to NMP had to be performed inside a fume hood for this research.  

 

4.2.4 PVDF 

Poly(vinylidene difluoride) (PVDF) is a binder to preserve the electrode, or the  
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electrode would be crumbled [78]. PVDF is a common binder for commercial LIBs due to its  

outstanding electrochemical stability and bonding strength [78]. 

 

4.2.5 Separator 

The separator is used to inhibit the contact between the cathode and anode [77]. 

Normally, nonwoven fabrics and microporous polymeric films are two main types of separators 

[79]. A less than 25 µm fabric with desired requirements is hard to be produced; microporous 

polymeric films are most widely used as a separator in commercial LIBs [77]. In this research, 

microporous polymeric films were used to separate the cathode and anode. A good separator 

should have the following properties: low ionic resistance [80], high chemical stability against 

electrolyte, and high mechanical stability [77]. In contrast, however, thicker separators can offer 

better mechanical strength during assembly, thus improving the safety of LIBs [81]. The pore 

size of a separator should be particularly minute to impede the permeation of particles, or it 

could cause a short circuit [77], [81].  

There are several copolymers of PVDF, such as poly(vinylidene fluoride-

hexafluoropropylene) (PVDF-HFP) [82] and poly(vinylidene fluoride-co-

chlorotrifluoroethylene) (PVDF-CTFE) [83] used as separators in the LIBs. There are many 

advantages of PVDF and its copolymers. For example, d33 value of poly(vinylidene fluoride-

tetrafluoroethylene (PVDF-TFE) is -38 pC/N [84]. 

 

4.2.6 Electrolyte 

 In this research, 1M LiPF6 3:7 EC–EMC was used as the electrolyte in LIBs as  

recommended [20]. There are several advantages [20]: LiPF6 can passivate and protect the Al, 

which is controlling the current; and EC-EMC has a high dielectric content to give rise to a high  
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ionic conductivity. 

 

4.3 Cathode Preparation 

4.3.1 Pristine Cathode and Cathode with Graphene Sheet 

The weight percentage of each material was 80% LiCoO2, 10% super P carbon black, and 

10% PVDF as recommended from references 82 and 85. The PVDF powder was dissolved in 

NMP to yield 6% by weight PVDF in NMP. It was reported that 6% could be the maximum 

concentration for the PVDF solution in NMP [85]. All materials were poured into a plastic tube. 

Extra NMP – double volume of PVDF liquid – was added into the same tube. Extra NMP was 

added to decrease the viscosity of composite which could be uniformly poured on the aluminum 

(Al) foil. Nitrogen was introduced into the plastic tube to remove the ambient oxygen. This was 

because oxygen would influence the mixture of electrode components. A VWR (model VM-

3000) [86] as shown in Fig. 4.3(a) was used to mix the composite inside the plastic tube for at 

least 90 minutes. A maxmium speed of 3500 revolutions per minute (rpm) was used. Above 

3500 rpm, the composite slurry would accumulate at the top of the tube and make the composite 

not uniform. This was followed by ultrasonic vibration of the composite at a frequency of 20 

kHz for two hours in a Branson 3500 ultrasonicator [87] as shown in the Fig. 4.3 (b). 

 

4.3.2 Cathode with Graphene Powder 

The graphene powder was first ultrasonically vibrated in the NMP for two hours. 

Different weight percentages (0.5 wt.%, 1 wt.%, and 2 wt.%) of graphene powder were 

transferred through droppers into three separate tubes. The weight of the graphene was calculated 

according to the percentage of molecular weights of carbon black, LiCoO2, and PVDF. Next,  

they were ultrasonicated for two hours in the Branson 3500 ultrasonicator. 
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(a) (b)  

Fig. 4.3. a) VWR mixer, b) Branson 3500 ultrasonicator.  

 

4.4 Electrode Fabrication 

4.4.1 Pristine Cathode and Electrode with Graphene Composite 

The electrode was prepared on the Al foil with the slurry of LiCoO2, graphene powder, 

carbon black, and 6% PVDF dissolved in the NMP after ultrasonication. Samples were dried at 

room temperature under vacuum overnight.  Then samples were pressed at about 20 MPa by a 

PHI manual compression press [88]. 

 

4.4.2 Cathode Coated with Graphene Sheet 

To obtain unbroken graphene sheet, copper (Cu) foil beneath the graphene sheet was 

etched away using a 0.7 mol/L iron nitrate (Fe(NO3)3) solution in deionized water (DI water) 

[24]. Tweezers were used to lightly place the Cu foil with graphene sheet on the surface of 

solution. After etching for 20 minutes, the transparent graphene sheet floated to the top of 
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solution. A dropper was used to remove the Fe(NO3)3 solution and DI water was injected slowly 

to prevent destroying the graphene sheet. After several careful DI water rinses and making sure 

there was no impurity in the water, the pristine electrode was gently slid into water, and moved 

beneath the graphene sheet. The remaining water was then removed using a dropper and the 

sample was dried overnight. The electrodes were ready after being fully dried.   

 

4.5 Button Cell Assembly 

4.5.1 Glove Box Instruction 

Button cells were assembled in the MBraun glove box [89] as shown in Fig. 4.4.  

 

 

Fig. 4.4. Mbraun glove box. 

 

To correctly operate the glove box, these steps should be followed. To move materials 

into the glove box, materials should be placed into the inlet tube on the right side of the glove 

box with a vacuum indicator as shown in Fig. 4.5 (a). The inlet door is first locked. The 

concentration of O2 and H2O should be adjusted to less than 1 part per million (ppm) using the 
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touch screen. The handle, as shown in Fig. 4.5(b), is switched to the left to exhaust the air in the 

inlet cylinder; the pressure in the inlet cylinder will become lower. Three minutes is required to 

achieve -25 in Hg vacuum. Cylinder should be refilled with nitrogen after three minutes until the 

pressure is -15 inHg inside the cylinder. The evacuating and refilling steps are repeated three 

times.  Note that, for the third time, refilling the cylinder ends when the pressure is 0 in Hg 

instead of -15 in Hg. 

 

 (a) (b)  

Fig. 4.5. The glove box: a) pressure indicator, and b) handle for pump-purging. 

 

To bring materials out from the inlet cylinder, it must first be evacuated. Materials are 

placed in the glove box through the inside door connected to inlet cylinder. This inside door 

should be securely locked before the materials are picked up or the oxygen would fill the glove 

box and pollute the environment inside.   
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4.5.2 Assembly Process 

To ensure the electrodes were completely dried without any water, all samples were  

placed into the glove box for 12 hours before assembly. The concentrations of oxygen and water 

inside glove box were under 2 parts per million. Celgard 3501 microporous membranes [90] 

were used as separators in the button cells.  

Fig. 4.6 shows the structure inside of an assembled button cell. From top to bottom, “a” is 

a wave washer, “b” is a lithium chip, “c” is a lithium foil, “d” consist of two separators, and “e” 

is the cathode.  All samples are assembled in order from bottom to top. One thing to note is that 

all these components should not touch the button cell wall or it would cause a short circuit for the 

button cell. 

 

Fig. 4.6. The structure of the CR2032 button cell. 

 

Fig. 4.7 shows two sides of button cells after being assembled. The negative side (Fig. 

4.7(a)) has a dotted textured surface while the positive terminal (Fig. 4.7(b)) has a number on the 
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surface. CR2032 type button cells have a lip that pulls over from the positive side to encase the 

negative side.  

(a)  

(b)  

Fig. 4.7. CR2032 button cells: a) negative electrode side, and b) positive electrode side. 
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4.6 Button Cell Tests 

4.6.1 Testing equipment 

A CHI660D electrochemical analyzer [91] was used to express the electrochemical 

impedance spectroscopy (EIS) measurements of cathode samples. The frequency range was 1 Hz 

- 1 MHz and the amplitude was 5 mV. A BT2000 battery tester [92] was used for full cycles of 

charging and discharging. To test the performance under different rates of charging and 

discharging, four current conditions were set. The four current conditions, 0.1 C, 0.5 C, 1 C, and 

2 C, represent the rate of charging or discharging from slow to fast. A current of 0.1 C represents 

the current that can fully charge or discharge the capacity of a cell in ten hours. 

 

4.6.2 Data Presentation of Battery Tester 

Fig. 4.8 shows a continuous and integrated process of charging and discharging for 5 

cycles under a similar condition. The blue plot presents the current while the pink plot is the 

voltage. When the value of current was positive, the button cell was being charged as its cell 

voltage was increased. A process of charging and discharging represents one cycle. There was no 

obvious change of current and voltage during five cycles, thus, this sample was still a stable 

integrated button cell after the fifth cycle.  

Table 4.1 shows the data collected from the battery tester. These parameters consist of the 

number of cycles, test time, date, current, voltage, and maximum voltage on each cycle. In 

addition, some other parameters, such as capacities and energies, are also shown in Table 4.1. 

The test current can be calculated as: 

 

                                     It = (Mcathode – MAl foil) * 80% * 140 mAh                         (Equation 4.1) 
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where It is the testing current, Mcathode is the weight of cathode sample, MAl foil is the weight of Al 

foil, 80% is the weight percentage of LiCoO2 in the cathode materials, and 140 mAh/h is the 

reversible capacity of LiCoO2. 

The unit for charge/discharge capacity is ampere-hour (Ah) shown in the Table. 4.1,  

which indicates the capacity during each cycle. In addition, the capacity depends on the mass of 

cathode. However, each cathode sample cannot have an exactly same mass. The unit of charge 

and discharge capacity is “mAh/g” in this research. Therefore, the discharge capacity would be 

independent of the different weight of each cathode sample. 

Ampere-hour can be converted to mAh/g using 

Cdis (mAh/g) = Cdis (Ah) / [(Mcathode – MAl foil) * 80%]                      (Equation 4.2) 

 

where Cdis (mAh/g) is the value of converted discharge capacity, Cdis (Ah) is the value of 

discharge capacity obtained from battery tester, Mcathode is the weight of cathode sample, MAl foil 

is the weight of Al foil, and 80% is the weight percentage of LiCoO2 in the cathode materials. 

 Table 4.1 and Fig. 4.8 represent the data of one cell of cathode sample 01081-2. The 

weight of this cathode was 4.95 mg and the weight of Al foil was 2.5 mg. Therefore, using Eq. 

4.1, the test current value was ~2.35x10-5A, which was the value of current for 1 C. 1 C stands 

for the current that can fully discharge a battery in one hour. The discharge capacity (mAh/g) of 

this sample at the first cycle was ~104.64 mAh/g using Eq. 4.2. 

 

4.6.3 Electrochemical Impedance Spectroscopy 

In this research, a CHI 660D [91] was used to exhibit the EIS measurements and to study 

the complex electrochemical resistance in the assembled button cells. The initial voltage was 3.2 

V and the range of frequency was 1 MHz - 1 Hz, as well as the amplitude was 0.005 V. 
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Fig. 4.8. The plot of current (A) (pink), voltage (V) (blue) vs test times (s) obtained from the 

battery tester. 

 

 

4.6.3-1 Impedance and Resistance 

Impedance is a complex resistance [93] and is used to describe the capability to resist 

electrical current. Electrical resistance obeys Ohm’s law: 

 

                                                                   𝑅 =
E

I
                  (Equation 4.3) 

 

where E is the voltage, and I is the current. 

In practical world, circuit elements exhibit complex properties. Therefore, impedance is 

introduced to replace resistance. Moreover, impedance is not limited by Ohm’s law mentioned 

above.  
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4.6.3-2 Impedance Data Presentation 

 EIS is a common measurement for detecting the impedance of a system [94]. Moreover,  

EIS data are commonly represented in Nyquist plots [93]. Fig. 4.10 shows a Nyquist plot. The 

expression of impedance consists of two parts: a real resistance and an imaginary impedance. 

The real resistance is shown on the X axis and the imaginary impedance is shown on the Y axis 

as shown in Fig. 4.9 [95]. Imaginary impedance consists of the capacitive and inductive 

reactance [96]. Note that the value of imaginary impedance is always negative [95]. The left part 

of a Nyquist plot represents higher frequencies while the right side represents the lower 

frequencies [97]. The vector with a length |Z| represents for the impedance, and phase angle is 

the angle between vector and real resistance axis [94]. The impedance at one frequency is one 

point shown in the Nyquist plot, but the value of frequency is not shown [95]. The charge 

transfer resistance is represented as the diameter of half circle shown in the Fig. 4.9 [93]. It was 

needed to analyze charge transfer resistance collected from Nyquist plots through EIS 

measurements in this work. 

 

4.6.3-3 Advantages  

 There are several advantages of EIS as follows [94], [96]:  

1. Several parameters can be indicated simultaneously through an EIS measurement. 

2. EIS can be used when a more precise measurement is required.   

3. EIS is extremely helpful to investigate the corrosion protection by organic coatings. 

 

Fig. 4.9. The Nyquist plot. 
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Chapter 5: Results and Discussion 

 

 Several samples for each type were successfully tested, however, only one sample for 

each condition is presented and discussed in this chapter. 

 

5.1 Sample with Pristine Cathode 

Fig. 5.1 shows the charge and discharge capacity of a typical sample with pristine 

cathode under four current situations (0.1 C, 0.5 C, 1 C, and 2 C). 

 

 

Fig. 5.1. The charge and discharge capacities of a typical pristine cathode sample. 

 

In this plot, each point was the value of capacity at only one cycle. The average values of 

charge capacity under same current were 129.77 mAh/g, 111.99 mAh/g, 104.84 mAh/g, 94.76 

mAh/g, respectively. Discharge capacities of the sample were stable under each current situation. 

The average values of discharge capacity under 0.1 C, 0.5 C, 1 C, 2 C were 86.96 mAh/g, 83.02 
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mAh/g, 65.99 mAh/g, and 31.26 mAh/g, respectively. These values are shown in Table 5.1. In 

addition, discharge capacity decreased when the current was increased. 

 

   Table 5.1. Test data of a pristine cathode from battery tester. 

   

Cycle Current (A) 

Charge Capacity 

(mAh/g) 

 

Discharge 

Capacity (mAh/g) 

Vmax On 

Cycle (V) 

 

Current 

(C) 

1 -2.248E-05 150.71 78.92 4.30V 
0.1 

2 -2.248E-05 138.51 87.92 4.30V 
0.1 

3 -2.248E-05 128.86 89.4 4.30V 
0.1 

4 -2.248E-05 126.65 89.42 4.30V 
0.1 

5 -2.248E-05 124.83 89.19 4.30V 
0.1 

6 -0.0001128 114.8 83.36 4.30V 
0.5 

7 -0.0001128 112.2 83.27 4.30V 
0.5 

8 -0.0001127 111.65 82.94 4.30V 
0.5 

9 -0.0001128 110.74 83.03 4.30V 
0.5 

10 -0.0001129 110.56 82.52 4.30V 
0.5 

11 -0.0002242 105.56 63.45 4.30V 
1 

12 -0.0002245 104.4 65.13 4.30V 
1 

13 -0.0002243 104.84 65.21 4.30V 
1 

14 -0.0002246 104.69 65.55 4.30V 
1 

15 -0.0002246 104.73 65.63 4.30V 
1 

16 -0.000449 97.32 29.91 4.30V 
2 

17 -0.000449 94.39 30.76 4.30V 
2 

18 -0.000449 94.47 31.43 4.30V 
2 

19 -0.000449 94.08 32.02 4.30V 
2 

20 -0.000449 93.57 32.18 4.30V 
2 

21 -2.248E-05 119.99 87.26 4.30V 
0.1 

22 -2.248E-05 123.91 87.71 4.30V 
0.1 

23 -2.248E-05 124.3 87.43 4.30V 
0.1 

24 -2.248E-05 124.37 86.66 4.30V 
0.1 

25 -2.248E-05 123.5 86.45 4.30V 
0.1 
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EIS measurements were used to monitor the sample every five cycles. Fig. 5.2 is the 

Nyquist plot of the typical cell with a pristine cathode. The curves at middle height in the plot 

represent the charge transfer resistance [81]. The Nyquist plot shows that the charge transfer 

resistance was stable ranging from -40 to -80 Ω at the imaginary part (Z’’ axis). Fig 5.2 shows 

that all curves tend to infinity, which indicates an increasing resistance for lithium ions transfer. 

This can be explained by the breakdown of electrolyte and the increased thickness of SEI film 

[12]. 

 

 

Fig. 5.2. Nyquist plot of a pristine cathode sample. 

 

5.2 Sample Incorporated with Graphene Powder 

5.2.1    0.5 wt.% Graphene Powder 

The charge and discharge capacity values of the cell with a cathode incorporated with 0.5 

wt% graphene powder are shown in Fig. 5.3. The average values of charge capacity under four 
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current situations were 166.34 mAh/g, 153.93 mAh/g, 135.81 mAh/g, 120.31 mAh/g, 

respectively. From Table 5.2, the average values of discharge capacity under same current 

conditions were 112.74 mAh/g, 111.97 mAh/g, 102.01 mAh/g, and 90.41 mAh/g, respectively.  

 

Fig. 5.3. Charge and discharge capacity of a typical cathode incorporated with 0.5 wt.% graphene 

powder. 

 

From the Nyquist plot shown in Fig. 5.4, charge transfer resistance became stable after 

the initial cycle. Electrolyte might not fully fill the entire button cell when the cathode sample 

was first assembled. Therefore, it was reasonable to show an odd initial curve which represents a 

high charge transfer resistance. 

Compared to the Nyquist plot of the pristine sample (Fig. 5.2), the charge transfer 

resistance did not change much after the incorporation of 0.5 wt.% graphene powder. Moreover, 

at different current conditions, the discharge capacity increased for the cell after adding 0.5 wt.% 

graphene powder into its cathode materials.  
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Table 5.2. Test data of a cathode with 0.5 wt.% graphene powder from battery tester. 

Cycle Current (A) 

 

Charge Capacity 

(mAh/g) 

Discharge Capacity 

(mAh/g) 

Vmax On Cycle 

(V) 

 

Current 

(C) 

1 -2.86E-05 174.79 102.67 4.30V 
0.1 

2 -2.86E-05 192.57 104.72 4.30V 
0.1 

3 -2.86E-05 182.75 105.92 4.30V 
0.1 

4 -2.85E-05 168.66 110.05 4.30V 
0.1 

5 -2.86E-05 161.24 111.85 4.30V 
0.1 

6 -0.000143 156.72 112.16 4.30V 
0.5 

7 -0.000143 153.39 112 4.30V 
0.5 

8 -0.000143 153.67 112.03 4.30V 
0.5 

9 -0.000143 153.21 111.88 4.30V 
0.5 

10 -0.000143 152.64 111.77 4.30V 
0.5 

11 -0.000285 139.05 101.29 4.30V 
1 

12 -0.000285 135.13 101.99 4.30V 
1 

13 -0.000285 134.89 102.19 4.30V 
1 

14 -0.000285 135.04 102.33 4.30V 
1 

15 -0.000285 134.94 102.27 4.30V 
1 

16 -0.000571 122.06 88.54 4.30V 
2 

17 -0.000571 119.63 90.37 4.30V 
2 

18 -0.000571 119.72 90.59 4.30V 
2 

19 -0.000571 119.99 91.26 4.30V 
2 

20 -0.000571 120.17 91.52 4.30V 
2 

21 -2.85E-05 161.71 111.53 4.30V 
0.1 

22 -2.85E-05 157.57 112.99 4.30V 
0.1 

23 -2.86E-05 155.17 113.19 4.30V 
0.1 

24 -2.86E-05 154.45 112.57 4.30V 
0.1 

25 -2.85E-05 154.49 113.42 4.30V 
0.1 
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Fig. 5.4. Nyquist plot of a typical cathode incorporated with 0.5 wt.% graphene powder. 

 

5.2.2 1 wt.% Graphene Powder 

 Fig. 5.5 reports the charge and discharge capacity values of a typical cathode 

incorporated with 1 wt.% graphene powder. For this sample, the average values of charge 

capacity under same currents were 116.91 mAh/g, 107.53 mAh/g, 72.64 mAh/g, 39.66 mAh/g, 

respectively. In addition, the average values of discharge capacity under different current 

conditions were 107.53 mAh/g, 109.23 mAh/g, 105.73 mAh/g, and 99.52 mAh/g, respectively, 

as given in Table 5.3.  

 

 

Fig. 5.5. Charge and discharge capacity of a typical cathode incorporated with 1 wt.% graphene 

powder.  
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Table 5.3. Test data of a cathode with 1 wt.% graphene powder from battery tester. 

Cycle Current (A) 

 

Charge Capacity 

(mAhg) 

Discharge Capacity 

(mAhg) 

Vmax On 

Cycle (V) 

 

Current 

(C) 

1 -2.63E-05 128.91 106.63 4.30V 
0.1 

2 -2.63E-05 121.18 107.04 4.30V 
0.1 

3 -2.63E-05 118.13 107.45 4.30V 
0.1 

4 -2.63E-05 116.35 108.2 4.30V 
0.1 

5 -2.64E-05 116.19 108.34 4.30V 
0.1 

6 -0.000131 111.72 109.18 4.30V 
0.5 

7 -0.000131 107.38 109.28 4.30V 
0.5 

8 -0.000131 106.57 109.11 4.30V 
0.5 

9 -0.000131 106.28 109.32 4.30V 
0.5 

10 -0.000131 105.69 109.26 4.30V 
0.5 

11 -0.000263 76.09 105.25 4.30V 
1 

12 -0.000263 71.58 105.4 4.30V 
1 

13 -0.000263 71.69 106.78 4.30V 
1 

14 -0.000263 71.96 105.61 4.30V 
1 

15 -0.000263 71.87 105.6 4.30V 
1 

16 -0.000526 56.58 98.8 4.30V 
2 

17 -0.000526 36.05 99.13 4.30V 
2 

18 -0.000526 35.52 99.17 4.30V 
2 

19 -0.000526 35.06 100.21 4.30V 
2 

20 -0.000526 35.08 100.27 4.30V 
2 

21 -2.629E-05 121.25 105.49 4.30V 
0.1 

22 -2.625E-05 113.19 103 4.30V 
0.1 

23 -2.625E-05 112.98 104.26 4.30V 
0.1 

24 -2.625E-05 110.77 105.28 4.30V 
0.1 

25 -2.632E-05 110.17 104.69 4.30V 
0.1 
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From the Nyquist plot shown in Fig. 5.6, the charge transfer resistance tends to become 

stable after the fifth cycle. Compared with the Nyquist plot of the cell with a pristine cathode 

(Fig. 5.2), the charge transfer resistance increased with the addition of 1 wt.% graphene powder. 

In addition, the discharge capacity of a cathode incorporated with 1 wt.% graphene powder was 

higher than that of the cell with a pristine cathode under different current conditions.  
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Fig. 5.6. Nyquist plot of a cathode incorporated with 1 wt.% graphene powder. 

 

5.2.3    2 wt% Graphene Powder 

Figure 5.7. shows the average values of charge and discharge capacity of a typical cell 

with its cathode incorporated with 2 wt.% of graphene powder under 0.1 C, 0.5 C, 1 C, and 2 C. 

The average values of charge capacity were 122.19 mAh/g, 104.13 mAh/g, 78.45mAh/g, 50.61 

mAh/g, respectively. The average values of discharge capacity were 98.11 mAh/g, 93.58 mAh/g,  

75.87 mAh/g, and 48.13 mAh/g, respectively, as shown in Table 5.4.  
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Table 5.4. Test data of a cathode with 2 wt.% graphene powder from battery tester. 

 

Cycle Current (A) 

 

Discharge Capacity 

(mAh/g) 

Discharge Capacity 

(mAh/g) 

Vmax On 

Cycle (V) 

 

Current 

(C) 

1 -1.905E-05 136.83 101.34 4.50 
0.1 

2 -1.905E-05 136.09 98.33 4.50 
0.1 

3 -1.905E-05 134.36 98.48 4.50 
0.1 

4 -1.905E-05 140.91 97 4.50 
0.1 

5 -1.905E-05 155.39 95.39 4.50 
0.1 

6 -9.552E-05 111.62 95.73 4.50 
0.5 

7 -9.552E-05 107.07 94.6 4.50 
0.5 

8 -9.553E-05 103.22 92.94 4.50 
0.5 

9 -9.552E-05 100.51 92.94 4.50 
0.5 

10 -9.552E-05 98.22 91.69 4.50 
0.5 

11 -0.0001905 85.33 76.08 4.50 
1 

12 -0.0001905 71.22 77.51 4.50 
1 

13 -0.0001905 80.32 75.65 4.50 
1 

14 -0.0001905 78.46 75.64 4.50 
1 

15 -0.0001904 76.91 74.46 4.50 
1 

16 -0.000381 55.25 48.81 4.50 
2 

17 -0.000381 51.17 48.99 4.50 
2 

18 -0.000381 49.85 48.32 4.50 
2 

19 -0.000381 48.82 47.64 4.50 
2 

20 -0.000381 47.97 46.89 4.50 
2 

21 -1.905E-05 93.94 95.9 4.50 
0.1 

22 -1.905E-05 110.12 97.17 4.50 
0.1 

23 -1.905E-05 106.74 95.59 4.50 
0.1 

24 -1.905E-05 105.46 94.44 4.50 
0.1 

25 -1.905E-05 102.03 92.95 4.50 
0.1 
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Fig. 5.7. Charge and discharge capacity of a cathode incorporated with 2 wt.% graphene powder. 

 

Fig. 5.8 shows a very high charge transfer resistance at the initial cycle. Each sample was 

tested immediately after it had been assembled. However, after five cycles of charge and 

discharge, the Nyquist plot (Fig. 5.9) indicates that a cell with its cathode incorporated with 2 

wt.% graphene powder had an extremely low charge transfer resistance. The charge transfer 

resistance obviously decreased after the incorporation of 2 wt.% graphene powder. The discharge 

capacity increased about 20 mAh/g after adding 2 wt.% graphene powder. 
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Fig. 5.8. Nyquist plot of a cathode incorporated with 2 wt.% graphene powder. 
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Fig. 5.9. Zoom in on Z’ = 0-200 ohm for the Nyquist plot of cathode incorporated with 2 wt.% 

graphene powder. 

 

 Fig. 5.10 shows that incorporation of graphene powder into cathode materials increases 

the discharge capacity under different current conditions. The discharge capacity of a pristine 

cathode was really low, which means the performance of the cathode was not good under high 

current conditions. However, with the incorporation of 0.5 wt.% and 1 wt% graphene powder 

into the cathode, the discharge capacity significantly improved at high current (2 C). Adding 2 

wt.% graphene powder enhanced the discharge capacity at 2 C current, even if the improvement 

was not as much as for samples with 0.5 wt.% and 1 wt.% graphene powder. When samples were 

tested at low current (0.1 C and 0.5 C), 0.5 wt% graphene powder had the most active capability 

to enhance the performance of cathodes. Samples with 1 wt.% graphene powder had the most 

stable performance ranging from 99 mAh/g to 110 mAh/g at different current conditions. At the 

mid-current, 1 C, discharge capacity of the cathode could be enhanced by adding 1 wt.% 

graphene powder.  
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Fig. 5.10. Comparison of discharge capacity among pristine cathode and cathodes with graphene 

powder. 

 

 

At low current, Fig. 5.10 indicates that the discharge capacity decreased when the weight 

percentage of graphene powder was increased. However, there was no such result shown at mid-

current, 1C. Therefore, further work could focus on the influence of weight percentage of 

graphene powder to cathode performance. In contrast, the charge transfer resistance significantly 

decreased due to the incorporation of 2 wt.% graphene powder.  

Graphene has very high electrical conductivity as mentioned in the Chapter 2 and 3. A 

very small amount of graphene can boost the conductivity of the electrodes. However, excessive 

graphene can increase the self-discharge and, thus, lower the discharge capacity. Reference 36 

reported that when mixed at an improper ratio, graphene can impede Li+ transfer. In addition, 

reference 33 pointed out that graphene is not a suitable electrode in LIBs. 

Tang et al. [98] incorporated graphene nanosheets into LiCoO2 and reported that 1 wt.%  
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is enough to build a network, which can significantly enhance the performance of the cathode. 

However, similar cycling performance was obtained for the conditions 1 wt.% and 2 wt.%. In 

this research, the performance of cathodes incorporated with 1 wt.% and 2 wt.% graphene 

powder were extremely different. Since 2 wt.% had shown less discharge capacities, there should 

be one peak value between 1 wt.% to 2 wt.%. 

 

5.3 Sample Coated with Graphene Sheet  

Fig. 5.11 shows that an increase of charge transfer resistance occurs after coating 

graphene sheet on the cathode. The odd initial curve could be explained by the unstable 

electrochemical system. However, the charge transfer resistance was still too high after the fifth 

cycle. When the cathode assembly became stable, it obtained a higher charge transfer resistance 

compared to the pristine cathode as well as other samples incorporated with graphene powder.  

The average values of discharge capacity of the sample under different currents shown in 

Fig. 5.12 are 62.55 mAh/g, 62.37 mAh/g, 56.18 mAh/g, and 46.47 mAh/g, respectively, as 

shown in Table 5.5. In addition, the average values of charge capacity were 73.11 mAh/g, 65.68 

mAh/g, 57.36 mAh/g, 45.53 mAh/g, respectively. Compared with the discharge capacity value of 

a pristine cathode (Fig. 5.1), the discharge capacity of cathode coated with graphene sheet 

decreases at different current situations as shown in Fig. 5.13. The results of high charge transfer 

resistance and lower discharge capacity can be explained by the working mechanism of a 

cathode coated with graphene sheet. Since coating graphene sheet on cathode can impede the 

formation of SEI layer, the structure inside the button cell changes.  

Wang et al. [99] indicated that graphene sheet impedes Li+ transfer. Fig. 5.14 shows the 

working mechanism of cathodes. Without graphene sheet coating, the cathode could release and 

accept Li+ through the electrolyte (Fig. 5.14 (a)). 
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Table 5.5. Test data of a cathode coated with graphene sheet from battery tester. 

Cycle Current (A) 

 

Discharge Capacity 

(mAh/g) 

Discharge Capacity 

(mAh/g) 

 Vmax On 

Cycle (V) 

 

Current 

(C) 

1 -9.537E-06 99.64 60.53 4.30V 
0.1 

2 -9.573E-06 76.91 62.73 4.30V 
0.1 

3 -9.537E-06 72.67 63.25 4.30V 
0.1 

4 -9.573E-06 71.36 63 4.30V 
0.1 

5 -9.537E-06 70.21 63.26 4.30V 
0.1 

6 -4.758 E-05 66.33 62.19 4.30V 
0.5 

7 -4.758E-05 65.58 62.53 4.30V 
0.5 

8 -4.758E-05 65.11 62.45 4.30V 
0.5 

9 -4.758 E-05 65.81 62.47 4.30V 
0.5 

10 -4.758 E-05 65.58 62.33 4.30V 
0.5 

11 -9.515E-05 58.28 55.44 4.30V 
1 

12 -9.518E-05 57.26 56.13 4.30V 
1 

13 -9.511E-05 57.38 56.48 4.30V 
1 

14 -9.515E-05 56.55 56.55 4.30V 
1 

15 -9.518E-05 57.31 56.29 4.30V 
1 

16 -0.000190 49.08 45.03 4.30V 
2 

17 -0.000190 47.41 46.3 4.30V 
2 

18 -0.000190 47.76 46.94 4.30V 
2 

19 -0.000190 47.78 47.1 4.30V 
2 

20 -0.000190 35.61 47 4.30V 
2 

21 -9.537E-06 68.48 61.58 4.30V 
0.1 

22 -9.573E-06 68.13 61.52 4.30V 
0.1 

23 -9.573E-06 67.34 61.53 4.30V 
0.1 

24 -9.644E-06 68.36 61.44 4.30V 
0.1 

25 -9.644E-06 68.1 61.25 4.30V 
0.1 
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Fig. 5.11. Nyquist plot of a cathode coated graphene sheet. 

   

 

                                    

Fig. 5.12. Charge and discharge capacity of a cathode coated with graphene sheet. 
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Fig. 5.13. Comparison of discharge capacity between a pristine cathode and cathodes coated with 

graphene sheet. 

 

 

 

 However, there are less cathode materials (black part in the Fig. 5.14 (b)) participating in 

the process of lithium ion transfer due to the graphene sheet coating, which leads to little 

electrolyte contacting with cathode materials. The cathode materials need to be completely 

immersed into the electrolyte to drive Li+ out of the cathode, so there are not many lithium ions 

going out of the cathode due to the barrier between the cathode and the electrolyte.  

In a pristine cathode, there is a SEI film that has a few hundreds of ohms of resistivity 

and can conduct Li ions. The graphene-sheet coating of high conductivity can prevent the 

formation of such SEI. However, without SEI, Li ions need to travel distances equivalent to the 

thickness of the electrodes. So replacing SEI film with graphene sheet has both pros and cons. It 

could be that at current 2 C, the pros win over the cons. This can explain why cathode has a 

higher discharge capacity compared with pristine cathode only at 2 C. 
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Fig. 5.14. The working mechanism of cathode a) without graphene sheet b) coated graphene 

sheet. 
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Chapter 6: Conclusions 

 

One major objective of this research was to test the performance of LIBs using a LiCoO2 

cathode incorporated with graphene powder. The results of this work indicate that adding 

graphene powder into the cathode increases the performance of LIBs. With the incorporation of 

different weight percentages of graphene powder, the lithium ion cells showed distinct 

improvement in its charging and discharging characteristics. The cell with 0.5 wt.% graphene 

powder added to its cathode exhibited the highest discharge capacity at currents 0.1 C and 0.5 C. 

The incorporation of 1 wt.% graphene powder contributed the most stable performance of the 

cathode at the currents from 0.1 C to 2 C. The cell with 2 wt.% graphene powder added to its 

cathode showed an enhanced discharge capacity of the cathode, however, it was less than that of 

0.5 wt.% and 1 wt.%.  

In order to test the performance of LIBs without a SEI film with a high resistance in this 

research, one graphene sheet (6-8 layers) was coated on the cathode to impede the formation of 

SEI layer. The result showed that the incorporation of graphene sheet decreased the discharge 

capacity of the cathode. In addition, the charge transfer resistance in the electrochemical system 

increased after coating a graphene film on the cathode. This result can be explained by the 

transfer limit of Li+. To avoid formation of SEI film, one graphene sheet was coated on the 

cathode. However, the graphene sheet blocked the electrolyte immersing into cathode materials, 

thus, only part of cathode materials participated in the process of lithium ion transfer. 

 

 



55 

 

Chapter 7: Improvements and Future Work 

 

7.1 Improvements 

Several improvements can be achieved for future research. The process of weighing 

chemicals can lead to different results. The chemicals were weighed inside the fume hood to 

prevent environmental effects. However, gentle vibration caused by flowing air inside the fume 

hood could increase or decrease the actual weights of chemicals. Therefore, a better weighing 

method is needed. 

To ensure consistency of results, more button cells should be assembled and tested. 

Therefore, the results would be more statistically significant. 

 

7.2 Future Work 

 The incorporation of graphene powder was shown to enhance the performance of LiCoO2 

as a cathode. Different weight percentages of graphene powder were investigated in this 

research. Future work could focus on adding higher weight percentages (>2 wt.%) of graphene 

powder into cathode materials to analyze the connection between different weight percentages of 

graphene powder added and the performance of lithium ion batteries.  
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Appendix A: Description of Research for Popular Publication 

 

How a better lithium ion battery influence human life. 

 

 Nowadays, lithium ion batteries (LIBs) are widely used for cell phones, laptops, and 

electric vehicles (EVs). They are playing essential roles in the current society. However, LIBs 

cannot satisfy the requirements from customers. For example, there are many complaints that 

cell phones need to be frequently charged in one day. Electric vehicles is another potential field 

which leads to a new future. However, electric vehicles are not a proper option for a long 

distance trip due to the low electrical capacity of their batteries. Therefore, batteries need to be 

improved and have more capacity, or it could be lighter or smaller with a given capacity. There 

is another direction, which is to find a new battery to replace the dominating lithium ion 

batteries.  

 Graphene is always an attractive topic since it was discovered. It is widely used in the 

field of LIBs, fuel cells, and supercapacitors. One of many advantages of graphene is its 

significant electrical conductivity. There are many papers reporting the applications of graphene 

into different anode and cathode materials. These papers indicate that the incorporation of 

graphene into cathode or anode materials improves the performance of batteries. However, there 

are no papers published indicating the result of LiCoO2/graphene (0.5 wt.% and 1 wt.%) 

composite as a cathode.  

In this research, graphene powder and graphene sheet were incorporated into LiCoO2 as a 

cathode. The cathode materials also included carbon black, NMP, PVDF, which are common 

electrode materials. EIS measurement can explore the electrochemical behavior of a cell. The 

charge transfer resistance could be indicated from EIS measurements. A low charge transfer 

resistance was an objective of this work. Several parameters, such as charge and discharge 
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capacity, voltage, can be obtained from full cycles of charging and discharging. A higher 

discharge capacity value was another objective in this research. 

As a result, all cells incorporated with graphene powder had increased discharge capacity. 

The cathodes incorporated with 0.5 wt.% graphene powder showed the highest discharge 

capacity at the current 0.1 C and 0.5 C. 1 C is the current that can fully charge and discharge a 

cell in one hour.  The incorporation of 1 wt.% graphene powder offers the most stable 

performance of the cell. The cells with their cathodes having 2 wt.% graphene powder added 

have an increased discharge capacity. The cathodes coated with a graphene sheet show a lower 

discharge capacity compared with pristine cathode. This can be caused by the graphene sheet 

impeding the transfer of lithium ions.
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Appendix B: Summary of Newly Created Intellectual Property  

 

The following list of new intellectual property items were created in the course of this 

research project and should be considered from both a patent and commercialization perspective. 

1. The performance of cathodes (LiCoO2: PVDF: Carbon Black = 80 wt.%: 10 

wt.%: 10 wt.%) with the incorporation of graphene powder (0.5 wt.%, 1 wt.%, 

and 2 wt.%) were tested. 

2. The performance of cathodes coated with an unbroken graphene sheet (6-8 layers) 

was tested.
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

The two items listed were considered first from the perspective of whether or not the item 

could be patented. 

1. The incorporation of graphene powder into LiCoO2 could not be patented, because there 

are already many papers reporting the incorporation of graphene powder into LiCoO2. 

2. The incorporation of graphene sheet into LiCoO2 could be patented since no one has 

previously coated an integrated graphene sheet on the surface of the cathode. 

 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

The two items listed were then considered from the perspective of whether or not the 

item should be patented. 

1. The incorporation of different weight percentages (0.5 wt.%, 1 wt.%, and 2 wt.%) 

graphene powder could not be patented, because many researchers have done the 

incorporation of graphene powder into LiCoO2. 

2. The incorporation of graphene sheet should not be commercialized because it did not 

provide an increased discharge capacity to each sample. 

 

C.3 Possible Prior Disclosure of IP 

The following item was discussed in a public forum or have published information that 

could impact the patentability of the listed IP. 

1. This research and thesis content have not been publicly unclosed.
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Appendix D: Broader Impact of Research 

 

D.1 Applicability of Research Methods to Other Problems 

 The investigations of adding graphene into electrode materials are extremely common in 

the research of lithium ion batteries. The method of incorporating graphene could be used as a 

method to add other electrode additives, such as graphene foam, or adding graphene to other 

electrode materials, such as LiFePO4. 

 

D.2 Impact of Research Results on U.S. and Global Society 

 With a higher discharge capacity, lithium ion batteries will retain its dominant 

application. Cell phones and laptops are playing essential roles in daily life. Lithium ion batteries 

with an increased capacity will allow portable devices to be used for a longer time without 

charging. Therefore, it could improve the efficiency of working and living for all humans.  

 The electric vehicle is becoming more and more popular all over the world. Companies, 

such as Tesla and Toyota, are putting much effort into the investigation of EVs. With a higher 

capacity of electrical energy, EVs can run for a longer distance with only one charge making 

their use more economically viable.  

 

D.3 Impact of Research Results on the Environment 

 Modern society consumes tons of batteries every day and countless exhausted batteries 

are discarded. With a higher discharge capacity, lithium ion batteries can be used for a longer 

time, which leads to fewer batteries discarded. Therefore, less pollution from lithium ion 

batteries will be achieved. With a longer lifespan, batteries do not need to be replaced as 

frequently.  
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 In addition, more EVs and HEVs would be used due to longer distance achievable by the 

larger electrical energy capacity. The current society consumes tremendous fossil fuel energy 

which leads to serious environmental issues such as global warming. In addition, automobile 

exhaust from combustion engines cause severe air pollution. With the use of EVs and HEVs, the 

environment will be subjected to less pollution. 
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Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Thesis Generation 

 

Computer #1: 

 Model Number: Dell Dimension 8300 

 Location: ENRC 4267 

 Owner: Prof. Simon S. Ang 

Software #1: 

 Name: CHI660D 

 Purchased by: Prof. Simon S. Ang 

Software #2:  

 Name: Battery Analyzer Program 

 Purchased by: Prof. Simon S. Ang 

 

Computer #2: 

 Model Number: Dell Inspiron 13  

 Location: 2100 N Leveret Ave Apt 130 

 Owner: Kenan Wang 

Software #1: 

 Name: Microsoft Program 

 Purchased by: Kenan Wang 

Software #2: 

 Name: OriginPro 8 

 Purchased by: Kenan Wang 
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Appendix G: All Publications Published, Submitted and Planned 

 

Planned: 

1. Kenan Wang, Huajun Zhou, and Simon Ang, “The incorporation of graphene into 

LiCoO2 as a cathode to improve the performance of LIBs,” (to be submitted to the 

Journal of Power Sources). 
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