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Abstract 

Bone is a composite biomaterial with a structural load-bearing function. Understanding the 

biomechanics of bone is important for characterizing factors such as age, trauma, or disease, and in 

the development of scaffolds for tissue engineering and bioinspired materials. At the nanoscale, bone 

is primarily composed of collagen protein, apatite crystals, and water. Though several studies have 

characterized nanoscale bone mechanics as the mineral content changes, the effect of water, mineral, 

and carbon nanotube (CNT) content and distribution in fibril gap and overlap regions is unexplored. 

This study used molecular dynamics to investigate the change in collagen fibril deformation 

mechanisms as a function of mineral, water, and CNT content. Collagen fibrils with 0 wt%, 20 wt%, 

and 40 wt% intrafibrillar mineralization and 0 wt%, 2 wt%, and 4 wt% hydration were studied under 

tension and compression. Non-mineralized fibrils with 43 wt% water and 5 wt%, 10 wt%, and 15 wt% 

CNTs were studied under compression.  

An increase in mineral content for hydrated fibrils was found to reduce the nonlinear stress versus 

strain behavior caused by hydration, and the Young’s modulus of non-mineralized and mineralized 

fibrils decreased as the water content increased. At low water contents, it was found in non-

mineralized fibrils that water primarily occupied voids in the gap regions, while in mineralized fibrils 

water primarily occupied voids in the overlap regions. Mineral and water content were found to affect 

the distribution of water in fibrils in tension and compression, which changed the deformation 

behavior of the gap and overlap regions. An increase in water content was found to increase the 

gap/overlap ratio by approximately 40% in non-mineralized fibrils and 16% in mineralized fibrils. For 

non-mineralized fibrils it was found that the gap/overlap ratio increased with an increase in tensile or 

compressive stress, while in mineralized fibrils the gap/overlap ratio decreased with an increase in 

stress. CNTs in non-mineralized fibril gap region voids reduced the decrease in the gap/overlap ratio 

as stress increased. CNTs increased the non-mineralized fibril elastic modulus from 0.43 GPa to 



 

 

approximately 1.74 GPa to 2.83 GPa, which was comparable to the elastic moduli of mineralized 

fibrils. 
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Chapter 1: Introduction 

1.1 Background and Literature Review 

Bone is a biological material with the primary function of providing structural and load-bearing 

support in vertebrate organisms [1]. It is important to study and determine the mechanical properties 

of bone, since its properties can change due to several factors. For example, mineral and water content 

in bone have both been found to decrease as a person gets older [2-4]. Bone’s mechanical properties 

also depend on the specific bone’s function in the body, which affects bone’s stiffness and structure. 

Genetic disorders can also have drastic effects on bone’s properties. For example, osteogenesis 

imperfecta, also known as brittle bone disease, can cause bones to break more easily [3]. Ehler’s-

Danlos syndrome is also a genetic disorder that causes joints, skin, and bones to be hyperflexible [5]. 

Some additional factors that can affect the properties of bone are a person’s nutrition, amount of 

exercise, or injury due to external force. If the mechanical and structural properties of a person’s bones 

can be measured, that information can be used by medical professionals to determine what factors 

might be affecting that person’s bone behavior if the properties of bone for different conditions are 

quantified. Understanding the structure and mechanical properties of bone is also useful for 

development of new bio-inspired materials that require a structural or load-bearing function. It has a 

specific application for the development of scaffolds for bone tissue engineering and medical implants. 

A variety of experimental and computational methods have been used to study the mechanical 

structure and behavior of bone at the microscale and nanoscale. Experimental techniques include x-

ray diffraction to determine bone structure at different conformations [6], atomic force microscopy 

and micromechanical devices to investigate bone stiffness and deformation behavior [7-9], and nuclear 

magnetic resonance spectroscopy to look at the atomic behavior of bone [10]. Computational methods 

used to study bone include molecular dynamics simulations [11-16], finite element analysis [17-20], 

and ab initio methods [21, 22], which can be used to study bone’s structure conformations, stiffness, 
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deformation behavior, and atomic behavior.  

Bone is a composite material of approximately 60% apatite mineral, 30% collagen protein, and 

10% water [10, 11, 17, 22, 23]. Bone is also hierarchical, with different structures at different size 

scales [1, 24] which can be seen in Figure 1.1.1. At the visible macroscale, bone is mainly composed 

of two types of bone structures. The first is cancellous bone, also known as trabecular bone or spongy 

bone, which is located primarily in the interior of bones and has a random and porous network structure 

that allows for the presence of fluidic marrow [25]. The other type of bone is cortical bone, also known 

as compact bone, which is mainly on the exterior shell of bone [26]. Cortical bone is denser and has a 

more unidirectionally ordered structure compared to cancellous bone, since it has a greater structural 

load-bearing function.  

At the millimeter scale, cortical bone is composed mainly of osteons with haversian canals at the 

center of individual osteons that allow for other tissues such as vascular or nervous tissue [27]. These 

haversian canals are then surrounded by multiple concentric layers known as lamella. The osteons are 

typically a few millimeters long and approximately 200 µm in diameter. Each lamella layer is made 

up of densely packed, unidirectional collagen fibers. The direction orientation of the collagen fibers 

between lamella layer differs in order to strengthen the osteon in multiple directions. The collagen 

fibers are typically around 5 µm in diameter.  

The aligned collagen fibers are structured from bundles of collagen fibrils that have a diameter of 

approximately 10-500 nm and are embedded in an extrafibrillar mineral matrix. A schematic of the 

fibril structure can be seen in Figure 1.1.2. Collagen fibrils themselves are a composite of collagen 

protein, intrafibrillar hydroxyapatite mineral, and water. The collagen fibrils have a triclinic structure 

whereby they arrange themselves in a staggered periodic conformation [28, 29]. Due to this, the 

collagen molecules form what is known as gap regions between adjacent collagen molecule ends along 

the fibril length axis. Along the fibril longitudinal axis, the staggered conformation means collagen 

molecules are not aligned in the longitudinal direction, but align themselves so that the lengths of 
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adjacent collagen molecules partially overlap, creating what are known as overlap regions. This 

staggered periodic structure is known as D-banding, where D is approximately 67 nm and is the 

combined length of the gap and overlap regions [14, 21].  

 

Figure 1.1.1 Schematic representing the hierarchical structure of compact bone. Size scale is in 

descending order from (a) macroscale bone tissue, to (b) osteons and haversian canals, to (c) lamella, 

to (d) collagen fibers, to (e) nanoscale collagen fibrils composed of collagen protein molecules (grey), 

hydroxyapatite mineral (red), and water (blue). 

 

The collagen molecules composing the fibril are primarily type 1 collagen molecules. The collagen 

molecules have a diameter of approximately 1.5 nm, and are composed of three individual left-handed 

helical peptides that come together to form a right-handed triple helical collagen molecule. The 

mineral phase of the fibrils is more brittle than the protein phase of the fibril and is primarily 

hydroxyapatite (HAP) with a chemical form of Ca10(PO4)6(OH)2. It has been shown experimentally 

that the mineral primarily begins to nucleate in the gap regions of the fibril [30, 31]. As the mineral 

continues to nucleate, mineral within the collagen molecules and in the fibril gap regions is known as 

intrafibrillar mineral, while the mineral between individual collagen fibrils is known as extrafibrillar 

mineral. Substitution of the OH group in hydroxyapatite can result in the formation of other types of 

apatite in bone, which typically occurs naturally as a person ages, and can affect the structural and 

mechanical properties of the bone [3, 10]. Water in the fibril that fills the remaining spaces in the fibril 

is known as mobile water, while water that is bonded to the collagen or hydroxyapatite is known as 

structural water [10, 16, 32, 33].  
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Figure 1.1.2 A collagen fibril visualized as a schematic. The collagen molecule end residues are 

represented in green and red to highlight the ends of the gap and overlap regions.  

 

Carbon nanotubes are currently being studied as a material to increase the strength of bone and 

scaffolds for tissue engineering [34-41]. Carbon nanotubes (CNTs) are cylindrical tubes of graphite 

with an sp2 bond structure, and are several nanometers in diameter and can be anywhere from several 

nanometers to several millimeters in length [42]. Their structure is that of conformations of benzene 

rings that can align themselves differently depending on the type of carbon nanotube structure. The 

three types of structures of carbon nanotubes are based on the vector direction rolling of the graphite 

sheet, and is represented as (n,m) integer indices based on the coefficients of the rolling direction 

vector components as shown in Figure 1.1.3, The vector b represents the tube axis, while the vectors 

a1 and a2 represent the geometry of graphene, and the vector c is given as c = na1 + ma2. “Armchair” 

carbon nanotubes have the indices (n,n). “Chiral” carbon nanotubes have the indices of (n,m) where n 

≥ 1, m ≥ 1, and n ≠ m, while “zigzag” carbon nanotubes have the indices of (n,0) [43].  

 

Figure 1.1.3 Schematic showing the chirality vectors describing carbon nanotube geometry.  
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The diameter (d) of a carbon nanotube is dependent on its indices, and the diameter of the carbon 

nanotube in nanometers is given by Equation 1.1.1 [43]: 

𝑑 = (
0.246

𝜋
) √(𝑛2 + 𝑚2 + 𝑛𝑚)   (Equation 1.1.1) 

Carbon nanotubes are typically produced by arc discharge methods, laser ablation, or chemical 

vapor deposition [42]. Carbon nanotubes may have capped or open ends, and may also come in the 

conformation of single tubes known as single-walled carbon nanotubes, or as concentric tubes known 

as multi-walled carbon nanotubes [42, 44]. The shortest carbon nanotube ever made is 

cycloparaphenylene, and is one benzene ring in length, while the smallest diameter stable carbon 

nanotube made has a diameter of about 0.4 nm [45]. Carbon nanotubes have been shown to have 

excellent thermal and electrical conductivity properties [46, 47], as well as effective bio-molecular 

adsorption properties that have given promise to carbon nanotubes use in drug delivery systems and 

for use in bio-composites [48]. Carbon nanotubes are also renowned for their remarkable stiffness, 

and have been found to have a Young’s modulus as a high as 1 TPa [44], which shows promise for 

carbon nanotubes as a stand-alone material or use in composites that require a high stiffness or 

structural integrity.  

1.2 Objectives 

The purpose of the first part of this study was to observe how the mechanical behavior and 

properties of collagen fibrils and its constituents at the nanoscale, simulated using molecular 

dynamics, change as a function of both mineral and water content due to an applied tensile or 

compressive stress, since bone water content is known to decrease due to increased mineralization 

[32, 33, 49]. This study investigated the effect of collagen fibril water content on the conformation of 

mineralized collagen fibrils. To quantify, this study looked at the how the collagen fibril water contents 

of 0 wt%, 2 wt%, and 4 wt% affect the mechanical behavior of the fibril for degrees of intrafibrillar 

mineralization of 0 wt%, 20 wt%, and 40 wt%. The reason for looking into the change in the 
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mechanical properties of bone fibrils due to simultaneous variations in mineral and water content is 

due to the fact that studies have shown that bone fibril mineral and water content can vary due to 

different factors, such as age [4]. The results of this part of the study have an impact on the 

optimization of multi-scale models of bone, and are also important for the creation of new composite 

materials inspired by bone fibril structure and mechanical behavior, such as scaffolds for tissue 

engineering, or skeletal implants or prosthetics. 

The second part of this study sought to determine the structural and mechanical behavior of 

collagen fibril-carbon nanotube composites, and if such a composite could mirror the structural and 

mechanical behavior of mineralized collagen fibrils. The results of this part of the study are important 

for the creation of new bone scaffolds for tissue engineering.   
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Chapter 2: Materials and Methods 

In this chapter, the materials and methods for the  thesis are presented. In Section 2.1, an outline 

of molecular dynamics (MD) is presented, as well as the justification for the use of MD simulations 

for this study of collagen fibrils. When utilizing MD, a specific interatomic potential must be selected 

to accurately describe the energetic interactions between atoms. In Section 2.2, the reason for choosing 

the CHARMM interatomic potential is presented, as well as a description of the CHARMM potential. 

In Section 2.3, the development of the fibril model is presented, along with assumptions made of the 

model. In Section 2.4, the methods for performing the tensile and compressive tests using MD is 

presented, as well as the methods for analyzing the mechanical behavior of the fibrils. Lastly, in 

Section 2.5 the development of the model for CNTs is presented, as well as the development of the 

inclusion of the CNT models into the fibril model. 

2.1 Molecular Dynamics 

Studying the nanoscale behavior of fibrils and the interaction between fibrils and carbon nanotubes 

can be difficult using conventional experimental techniques. One method for studying these behaviors 

is by using computational methods such as molecular dynamics. Molecular dynamics (MD) 

simulations, which were utilized in this study, have an advantage over experimental techniques by 

allowing for the study of the atomic scale conformational behavior that current experimental 

techniques may not be able to study, and also have the advantage of reducing the monetary cost and 

time for studying the mechanical properties of collagen fibrils. Computational models of molecular 

systems consist of large numbers of molecules, which results in the problem that the trajectories and 

thermodynamic properties of such systems are not easily modeled analytically. Molecular dynamics 

is a method for simulating large systems of particles through the use of numerical integration methods 

to solve the Newtonian equations of motion for the molecules using a specified interatomic potential, 

a set of ensemble conditions, and determining the molecular forces and trajectories. The ergodic 
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hypothesis states that for long periods of time, the probability that a system is in a particular microstate 

is the same for all microstates of the system. This allows for the prediction of thermodynamic 

properties of a whole system. There are, however, some limitations to MD simulations. The timescale 

of MD simulations should be comparable to the timescale of the actual physical process being 

simulated. The length of the MD simulation cannot also be too long, as its accuracy decreases as the 

length of time increases due to it being a numerical approximation. The timestep for the MD 

simulation must also be at least in the femtosecond range, as atoms are physically always vibrating at 

the femtosecond timescale and will not actually ever reach a minimum energy state. For the models 

in this investigation, the MD simulation time was approximately 6 ns for each MD simulation, with a 

timestep of 1 fs. 

2.2 CHARMM Interatomic Potential 

All the molecular dynamics models in this study were given periodic boundary conditions, which 

allowed for the modeling of larger conformations of collagen fibrils comparable to scales larger than 

that of a single short fibril. The CHARMM22 (Chemistry at HARvard Macromolecular Mechanics 

version 22) force field was used to describe the interactions between atoms in the fibril models [50]. 

This force field was selected because it has been optimized for protein MD simulations by adjusting 

parameters in order to compare MD simulations using the CHARMM22 force field to experimental 

data from techniques such as gas-phase geometries obtained from microwave and electron diffraction 

studies, vibrational spectra from gas-phase infrared and Raman spectroscopy, energy surface ab initio 

calculations, dipole moments, heats and energies of vaporization, solvation and sublimation 

properties, molecular volumes, crystal pressure and structure results from x-ray diffraction and 

spectroscopy, and mass spectrometry. The total bond energy between atoms in the CHARMM force 

field are described by Equation 2.1.1 [50]. 
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𝑈(𝑟) =  ∑ 𝐾𝑏(𝑏 − 𝑏𝑜)2 + ∑ 𝐾𝑈𝐵(𝑆 − 𝑆𝑜)2  + ∑ 𝐾𝜃(𝜃 − 𝜃𝑜)2

𝑎𝑛𝑔𝑙𝑒𝑠𝑈𝐵𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜒(1 + cos(𝑛𝜒 − 𝛿) + ∑ 𝐾𝑖𝑚𝑝(𝜑 − 𝜑𝑜)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝜀 [(
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

+
𝑞𝑖𝑞𝑗

𝜀1𝑟𝑖𝑗
                                      (Equation 2.1.1) 

For the bond term, Kb is the bond stretch force constant, and b is the bond length while bo is the 

equilibrium bond length. For the Urey-Bradley term, KUB is the Urey-Bradley force constant, and S is 

the Urey-Bradley 1,3 distance while So is the equilibrium Urey-Bradley 1,3 distance. For the angles 

term, Kθ is the bond angle force constant, and θ is the bond angle while θo is the equilibrium bond 

angle. For the dihedrals term, Kχ is the bond dihedral force constant, where χ is the bond dihedral angle 

while χo is the equilibrium bond dihedral angle. For the improper term, Kimp is the bond torsion force 

constant, and φ is the bond torsion angle while φo is the equilibrium bond torsion angle. Finally, the 

first term in the nonbonded interaction summation is the van der Waal’s interaction represented by the 

6, 12 Lennard-Jones potential where ε is the energy well depth, and rij is the distance between the two 

atoms and Rmin is the equilibrium distance between atoms for a nonbonded Lennard-Jones interaction. 

The second term in the nonbonded interaction summation is the atomic electrostatic interaction where 

qi is the partial atomic charge of the first atom, qj is the partial atomic charge of the second atom, ε1 is 

the effective dielectric constant, and rij is the distance between the two atoms. The Lennard-Jones 

interactions between different atom types for the CHARMM force field are calculated from the 

Lorentz-Berthelot combining rules, while all other cross-atom type interactions are explicitly listed in 

the CHARMM force field. 

2.3 Fibril Models of Varying Mineral and Water Content 

The model for the fibrils in this study were utilized from that determined in previous work by A. 

Gautieri et al. developed using homology modeling of type I collagen in the 3HR2 Protein Data bank 
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conformational structure [12, 28], which was determined from x-ray diffraction crystallographic 

analyses of brown rat collagen, while the collagen amino acid sequences are taken from the PubMed 

entry number NP_000079 for α1 chains and NP_000080 for the α2 chains. The unit cell for this model 

is triclinic [28, 29] with parameters of a ≈ 40.0 Å, b ≈ 27.0 Å, c ≈ 678 Å, α ≈ 89.2o, β ≈ 94.6o, and γ ≈ 

105.6o. The collagen fibrils were mineralized at the three degrees of mineralization previously 

mentioned in Section 1.2: 0 wt%, 20 wt%, and 40 wt%. These degrees of mineralization were chosen 

in order to model only intrafibrillar mineralization, which was the goal of this study, without including 

extrafibrillar mineralization. The method of mineralization for the models was performed in a previous 

study using a Monte Carlo approach that was then validated by comparison to experimental studies 

that utilized cryogenic transmission electron microscopy, and low-dose selected-area electron 

diffraction [13, 30]. While substitution of the OH group in hydroxyapatite can result in the formation 

of other types of apatite in bone, as discussed in Section 1.1, this study utilized hydroxyapatite as the 

sole mineral apatite in order to model nascent bone, whose mineral phase is primarily composed of 

hydroxyapatite.  

For each of the three degrees of mineralization, the fibrils were then hydrated with the 3-site TIP3P 

water model used by the CHARMM force field at approximately 0 wt%, 2 wt%, and 4 wt% water 

using the solvation plugin in VMD. Weight percentage was determined by multiplying the number of 

known water particles by the molecular weight of one water particle, which was determined from the 

Periodic Table of Elements, and dividing it by the total molecular weight of the fibril model. An 

amount of hydration between 0 wt% and 10 wt% water was chosen, since studies have found that 

healthy bone is composed of approximately 10 wt% water, as discussed in Section 1.1. For the 

mineralized fibril tensile and compressive tests of this study, there were then nine total models, which 

can be seen in Figure 2.2.1. Figure 2.2.1 (c) shows the fibril gap and overlap regions, as well as the 

model unit cell, whose length along the x-axis corresponds to the D-period length of 67 nm. 
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Figure 2.2.1 Collagen fibrils with varying mineral and water contents of (a) 0 wt% mineral and 0 wt% 

water, along with visualization of the unit cell (b) 0 wt% mineral and 1.2 wt% water, (c) 0 wt% mineral 

and 3.2 wt% water, (d) 20 wt% mineral and 0 wt% water, (e) 20 wt% mineral and 1.4 wt% water, (f) 

20 wt% mineral and 4.2 wt% water (g) 40 wt% mineral and 0 wt% water, (h) 40 wt% mineral and 2.2 

wt% water, (i) 40 wt% mineral and 3.3 wt% water. The grey atoms are type I collagen, apatite crystals 

are red color, and the blue color represents water molecules. Water contents are approximated as 0 

wt%, ~2 wt%, and ~4 wt%. 

 

The charmm2lammps tool was used to convert the fibril psf (protein structure file) and pdb (protein 

data bank) files into a LAMMPS data file utilizing the extended CHARMM force field. LAMMPS 

(Large-scale Atomic/Molecular Massively Parallel Simulator) is an open-source molecular dynamics 

program distributed by Sandia National Laboratories [51]. LAMMPS was chosen due to its common 
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use in the field of molecular dynamics research, its compatibility with a large number of interatomic 

potentials, such as CHARMM, and its flexibility in the functionality of the molecular dynamics 

simulation being run.  

2.4 Tensile and Compressive Tests and Analysis of Deformation Mechanisms 

Using MD as implemented in LAMMPS, a known tensile or compressive stress was applied to the 

fibril model unit cells. For the tensile tests, stresses of 1atm, 5 MPa, 8 MPa, and 20 MPa were applied 

to the models in order to study the mechanical behavior of the fibrils at low initial stresses. For the 

compressive tests, stresses of 1 atm, 20 MPa, 60 MPa, and 100 MPa, were used in order to study the 

mechanical behavior of the fibrils at higher stress states, and in order to compare the results to previous 

studies. The periodic models were equilibrated in an NPT ensemble at a temperature of 300 K. The 

models were minimized and then equilibrated for approximately six nanoseconds in order to simulate 

a quasi-static stress state, since this study did not look into the effects of the rate of applied stress on 

the mechanical behavior of collagen fibrils. Equilibration of the models was confirmed when the slope 

of the root-mean-square distance between atoms in the system approached zero for several 

nanoseconds, which was determined to be approximately six nanoseconds. The strain of the models 

was then calculated using Equation 2.3.1 where ε is the linear strain, L is the equilibrium unit cell 

length of the fibril model in the stressed state, and Lo is the equilibrium unit cell length of the fibril 

model when subject to only 1 atm of pressure in all three orthogonal directions (x, y, z). 

𝜀 =
(𝐿−𝐿𝑜)

𝐿𝑜
      (Equation 2.3.1) 

The stress was then plotted versus the strain, and a Young’s modulus for the model was determined 

by Equation 2.3.2 where E is the Young’s modulus, σ is the normal stress, and ε is the linear strain. 

𝐸 =
𝜕σ

𝜕𝜀
      (Equation 2.3.2) 
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The Young’s modulus was then plotted versus the water content for all the models. An analysis of 

the fibril models’ deformation mechanisms was done by plotting the gap/overlap ratio versus applied 

stress, where the gap/overlap ratio was the length of fibril gap region divided by the length of the fibril 

overlap region. The gap and overlap region lengths were determined by the distance between the fibril 

terminal amino acid residues, which correspond to the ends of the gap and overlap regions. A visual 

of this was shown in Figure 1.1.2. 

2.5 Collagen Fibril and Carbon Nanotube Composites 

As discussed in Section 1.1, studies have found CNTs to be a viable biocompatible constituent to 

strengthen bone scaffolds. This study looked at how CNTs of 10 nm, 20 nm, and 30 nm length in non-

mineralized collagen fibrils with 43 wt% hydration affected the conformation, deformation 

mechanism, and mechanical behavior of the fibrils at compressive stresses of 1 atm, 20 MPa, 60 MPa, 

and 100 MPa, along the fibril length. The fibril/CNT composite models were hydrated at 43 wt% in 

order to model a hydrated environment, and compare to the analysis of a fully hydrated fibril 

determined in a previous study [52]. The composites were created by first creating a CNT model using 

the nanotube builder tool in VMD. The dimensions of the CNTs were determined based on previous 

studies of CNTs. An armchair CNT was chosen for this study in order to compare to other studies of 

CNTs (cited in Chapter 3) that used armchair CNTs. Experimental studies of CNTs found they were 

able to fabricate consistently CNTs of length 20-80 nm [53], and another study of bone scaffold 

composites containing CNTs found that CNTs on the order of 20 nm length are more eliminable by 

the human body, and induce a smaller immune response than larger CNTs [54]. Consistent fabrication 

of 10 nm long CNTs has also been shown to be possible [55, 56]. For this reason, lengths of 10 nm, 

20 nm, and 30 nm was chosen for the CNTs, which also allows them to fit into the collagen fibril gap 

region more easily, which has a length of approximately 36 nm. The weight fraction of the CNTs for 

the fibril model in which they were included was calculated to be 5 wt% for the 10 nm long CNTs, 10 
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wt% for the 20 nm long CNTs, and 15 wt% for the 30 nm long CNTs. A diameter of 1 nm was chosen 

for the CNTs, in order to eliminate the effect of encapsulation of collagen fibrils into the CNT, since 

the fibrils have a diameter of approximately 1.5 nm. The CNT diameter was validated by a study that 

experimentally observed CNTs of diameter 0.85-1.3 nm in collagen and CNT bone scaffold 

composites [37]. To obtain this CNT diameter, indices of (7,7) were used based on Equation 1.1.1.  

The VMD nanotube builder creates the CNT using the CHARMM aromatic carbon (CA) atom 

type. This atom type for the CNT was validated by performing tensile and compressive tests on the 

CNT along its length axis, and comparing the Young’s modulus values to experimental results for the 

Young’s modulus of CNTs. For each test a known strain was applied to the nanotube, and for each 

strain step the stress along the CNT length outputted by LAMMPS was plotted versus the linear strain. 

For the compressive test, strain data was used up until the nanotube lost its linear structure, since the 

harmonic CHARMM potential does not model bond breaking between atoms. The slopes of the stress 

versus strain plots were used to determine a tensile and compressive Young’s modulus value of the 

CNT model and compare it to the Young’s modulus of CNTs determined by other experimental and 

computational studies cited in Chapter 3.  

The nanotubes were then placed in the gap regions of the fibril using the structure merging tool in 

VMD. The reasoning for placing the CNTs in the fibril gap region comes from previous studies whose 

scanning electron microscope analysis of collagen and CNT bone scaffold composites determined that 

CNTs arrange themselves in the spaces between collagen molecules in fibrils, and primarily in the 

fibril gap regions [37, 57]. An analysis of the mechanical behavior and deformation mechanisms of 

the fibril and CNT composites was performed using the methods outlined in Section 2.3.  
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Chapter 3: Results 

In Chapter 3, the results of the fibril tensile tests are presented in Section 3.1. In Section 3.2, the 

fibril compressive tests are presented and which differ from the results of the fibril tensile tests. In 

Section 3.3, the tensile and compressive tests of individual carbon nanotubes are presented in order to 

validate the carbon nanotube model used in this study. Lastly, Section 3.4 shows the compressive tests 

of fibril/CNT composites, and compares the mechanical behavior of the fibril/CNT composites in 

compression to the mechanical behavior of fibrils without CNTs in compression. 

3.1 Fibril Tensile Tests 

For the non-mineralized fibril model, Figure 3.1.1 (a) shows the direction of tensile load applied 

along the fibril lengths. From Figure 3.1.1 (b) it was observed that an increase in water content from 

0 wt% to ~4 wt% resulted in an approximately 300% increase in strain for an applied tensile stress of 

20 MPa. For the 20 wt% mineralization case, from Figure 3.1.1 (c) it was observed that an increase in 

water content from 0 wt% to ~4 wt% resulted in the stress vs. strain behavior becoming more 

nonlinear, although there was only a 25% increase in deformation at a tensile stress of 20 MPa. For 

the 40 wt% mineralized fibril case, the total strain was reduced compared to the 20 wt% mineralized 

fibril at the same tensile stresses. The increase in strain at a 20 MPa tensile stress for the 40 wt% 

mineralized fibril when comparing from a water content of 0 wt% to ~4 wt% was approximately 27%.  

It was observed that an increase in the intrafibrillar mineral content had the effect of increasing 

the stiffness of the fibril, while hydration caused the modulus of the fibril to decrease, as seen in Figure 

3.1.1 (b,c,d). The results also indicated that hydration caused the stress versus strain behavior of the 

fibril to become more nonlinear, which agrees with results determined by J. Samuel et al. [58]. It was 

noted, however, that the degree to which hydration reduced the modulus relative to the non-hydrated 

fibrils was decreased by the presence of HAP. The stress versus strain results for the collagen fibrils 

for a tensile stress test at varying mineral and water content are shown in Figure 3.1.1. The effect of 
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water content on collagen fibril mechanical properties was also in agreement with the results observed 

by M.R. Uhlig and R. Magerle [59], who also observed that an increase in fibril water content 

produced an increased nonlinear stress versus strain behavior. 

Figure 3.1.1 Tensile stress vs. strain of collagen fibrils. (a) The direction of tensile loading along the 

fibril lengths is shown for collagen fibrils with ~4 wt% water and three degrees of mineralization. 

Tensile stress vs. the linear strain of the fibrils is shown for models with mineral contents of (b) 0 

wt%, (c) 20 wt%, (d) 40 wt%.  

 

From Figure 3.1.2, it was observed that the Young’s modulus of the 0 wt% mineralized fibrils with 

no water was approximately 1.2 GPa. An increase in water content from 0 wt% to ~2 wt% resulted in 

an approximately 33% decrease in Young’s modulus. An increase in water content from ~2 wt% to 

~4 wt% resulted in an approximately 26% decrease in Young’s modulus. The decrease in the Young’s 

modulus followed a linear trend as the fibril water content increased. 

When the Young’s modulus of the 20 wt% mineralized fibrils with no water in Figure 3.1.2 was 

studied, it was determined to be approximately 1.3 GPa. An increase in water content from 0 wt% to 

~2 wt% resulted in an approximately 8% decrease in Young’s modulus. An increase in water content 
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from 0 wt% to ~4 wt% resulted in an approximately 15% decrease in Young’s modulus. The decrease 

in the Young’s modulus also followed a linear trend as the fibril water content increased. 

The Young’s modulus of the 40 wt% mineralized fibrils with no water was approximately 1.9 

GPa. An increase in water content from 0 wt% to ~2 wt% resulted in an approximately 10% decrease 

in Young’s modulus, as is seen in Figure 3.1.2. An increase in water content from 0 wt% to ~4 wt% 

resulted in an approximately 15% decrease in Young’s modulus. The decrease in the Young’s modulus 

followed a linear trend as the fibril water content increased. 

It was observed that the Young’s modulus of the 40 wt% mineralized fibrils was close to double 

the Young’s modulus of the non-mineralized fibrils, regardless of water content. For example, at ~2 

wt% water for the non-mineralized fibril and ~2 wt% water for the 40 wt% mineralized fibril, the 

Young’s modulus of the non-mineralized fibril in Figure 3.1.2 was 0.74 GPa which was a difference 

of about 117% compared to 1.61 GPa for the 40 wt% mineralized fibril. Also observed was a linear 

trend for the decrease in the Young’s modulus as the water content increased for all three degrees of 

fibril mineralization.  

 
Figure 3.1.2 The tensile Young’s modulus versus the fibril water content for fibrils of mineral contents 

of 0 wt%, 20 wt% and 40 wt%. 
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The result of the overall effect of hydration in reducing the Young’s modulus of collagen fibrils 

was in agreement with other studies on collagen fibrils for mineralized and non-mineralized fibrils 

[10, 12, 52]. A direct comparison of the tensile Young’s modulus values in this study from Figure 

3.1.2 agrees with the results of other studies on the mechanical properties of collagen fibrils in Table 

3.1.1. These studies used experimental and computational modeling methods to determine the 

Young’s modulus of collagen fibrils. Some experimental techniques use x-ray diffraction [6], atomic 

force microscopy (AFM) [7, 60], and microelectromechanical system (MEMS) stretching [8, 9], while 

the computational methods used molecular dynamics (MD) [12, 13], and mathematical models [22]. 

Looking at the experimental values in Table 3.1.1, there is often a significant variation in the modulus 

values for fibrils with the same mineral and water contents. This is likely due to factors that were not 

considered in the experiments in Table 3.1.1 such as the amount of mineral substitution, the amount 

of mobile versus bound water, or the presence of collagen defects, all of which will change the fibril 

modulus. This highlights the importance of the MD study in this thesis, which controlled mineral and 

water content to determine the fibril modulus without the effects of mineral substitution, bound water, 

or collagen defects. Future work should look at how the addition of these variables affect the fibril 

modulus.  

 

Table 3.1.1 Tensile Young’s moduli obtained by other studies of collagen fibrils. 

Young’s modulus (GPa) Mineral and water content Method of testing 

0.43 0% mineral – fully hydrated X-ray diff. 

0.2 to 0.8 0% mineral – fully hydrated AFM 

0.53 0% mineral – fully hydrated MEMS Stretching 

1.1 in the gap region 0% mineral – 0% water MEMS Stretching 

1.2 in the overlap region 0% mineral – 0% water MEMS Stretching 

0.3 to 1.2 0% mineral – fully hydrated MD 

1.8 to 2.25 0% mineral – 0% water MD 

0.5 to 1.1  0% mineral - 0% water MD 

1.3 to 2.7 20% mineral - 0% water MD 

1.5 to 2.8 40% mineral - 0% water MD 

2.4 32% to 61% mineral – 14% water AFM 

1.96 42% mineral – fully hydrated Mathematical Model  

2.4 ± 0.4 (46 ± 15)% mineral – 13% water AFM/SEM 
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The Young’s modulus values determined in this study were found to be in good agreement with 

the comparable values determined in other computational or experimental studies of collagen fibrils. 

The comparison of this study to the experimental modulus values in Table 3.1.1 is plotted in Figure 

3.1.3. This study also compared the modulus values obtained in this MD study to the effective tensile 

modulus of a nanocomposite determined by the analytical model developed by Gao et al. [61] in Figure 

3.1.3. The Gao model was developed to calculate the effective modulus of mineralized collagen fibrils 

based on the mineralized collagen fibril model developed by Jäger and Fratzl [62]. The formula for 

the effective modulus in the Gao model is given in Equation 3.1.1 [61]. Ê is the effective modulus, ϕ 

is the mineral volume fraction, Gcol. is the collagen shear modulus of 0.03 GPa [13], ρ is the HAP 

mineral aspect ratio of 30 [13], and EHAP is the elastic modulus of the HAP mineral of 100 GPa [13]. 

1

�̂�
=

4(1−𝜙)

𝐺𝑐𝑜𝑙.𝜙
2𝜌2 +

1

𝐸𝐻𝐴𝑃𝜙
     (Equation 3.1.1) 

At mineral volume fractions close to 0% in Figure 3.1.3, the modulus values in this study are 

higher than that determined by the Gao model. This is due to the mineral volume fraction term in 

Equation 3.1.1, which causes the effective modulus to approach zero as the mineral volume fraction 

approaches zero. At mineral volume fractions of 0%, it was found the results of this study agree most 

closely with the Gao model for fibrils with higher water content.  

At mineral volume fractions of 50% in Figure 3.1.3, the modulus values from this study are lower 

than those determined by the Gao model. This is again due to the mineral volume fraction term in 

Equation 3.1.1. The maximum value possible for ϕ is when it is equal to unity. When ϕ approaches 

unity in Equation 3.1.1, the effective modulus becomes approximately the modulus of mineral, which 

neglects the full effects of collagen protein and water on the elastic modulus of highly mineralized 

fibrils. At mineral volume fractions of 50%, it was found the results of this study most closely 
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approximate the Gao model for fibrils with no water content. The modulus values in this study also 

agree most closely with the Gao model at intermediate intrafibrillar mineral volume fractions of 30%. 

 

Figure 3.1.3 The tensile Young’s modulus versus the fibril mineral content for modulus values 

determined in this study, from values from experiment, and the Gao model. 

 

After analysis of the Young’s modulus, this study investigated the deformation behavior of the 

fibril gap and overlap regions. The red and green points in Figure 3.1.4 are the terminal amino acid 

residues at opposite ends of each individual collagen molecule in the fibril. The distance between these 

terminal residues corresponded to the gap and overlap region lengths and was measured using VMD. 

The distance measured was used to analyze the linear deformation behavior for the gap and overlap 

regions for a tensile stress applied along the fibril length. The gap/overlap length ratio was used to 

analyze how the gap and overlap regions deformed relative to one another. 
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Figure 3.1.4 Fibril gap and overlap regions visualized in a schematic. The fibril is visualized 

atomically using VMD (top), and by a schematic (bottom).  

 

The deformation behavior of the gap and overlap regions of the collagen fibril models are 

represented in Figure 3.1.5, Figure 3.1.6, and Figure 3.1.7, along with corresponding schematic 

diagrams for each model. The schematic diagrams shown in Figure 3.1.5, Figure 3.1.6, and Figure 

3.1.7 also represent their respective collagen fibrils at an applied stress of 8 MPa, in order to better 

represent the effects of hydration and mineralization on deformation of the gap and overlap regions 

due to the applied stress. The gap length/overlap length ratios for the non-hydrated models in this 

study were in agreement with those determined by Nair et al. [13]. 

For the fibril cases of 0 wt% mineralization, it was observed that an initial increase in the fibril 

water content caused the gap length to deform more relative to the overlap region, corresponding to a 

decrease in gap/overlap ratio as stress increased as seen in Figure 3.1.5. At 2 wt% hydration, the water 

occupied voids in the gap regions and caused the overlap regions to contract. As the stress increased, 

the overlap regions began to unwind from contraction, and the gap/overlap ratio decreased.  

At a hydration of 4 wt% for the non-mineralized fibril, the water still primarily occupied voids in 

the gap regions, but a slight amount of water occupied the overlap regions as well and prevented them 

from contracting. As the stress increased, the gap/overlap ratio remained approximately constant at 

1.8, as seen in Figure 3.1.5. this demonstrated that as the stress increased, the gap and overlap region 

deformation was approximately the same when compared to one another. 
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Figure 3.1.5 Gap/overlap ratio vs. tensile stress for non-mineralized fibrils (a). (b) A schematic of the 

non-mineralized fibrils under 8 MPa stress comparing the fibrils’ gap and overlap regions at different 

water contents. The fibril overlap lengths are represented by the variable o with respective subscripts, 

while the fibril gap lengths are represented by the variable g with respective subscripts. 

 

For the 20 wt% mineralized fibrils, the mineral was primarily in the gap region, and caused strain 

in the gap region to decrease by approximately 50%, even with changes in fibril water content from 0 

wt%, to ~2 wt%, to ~4 wt%. The presence of mineral also reduced the effect of hydration on the 

gap/overlap ratio, where the addition of water did not cause as large of a magnitude change in the 

gap/overlap ratio in the 20 wt % mineralized fibrils as it did in the non-mineralized fibril, which was 

observed by a comparison of the 0 wt% mineral cases in Figure 3.1.5 (a) to the 20 wt% mineral cases 

in Figure 3.1.6 (a). The hydration of the 20 wt% mineralized fibrils to ~2 wt% water caused the 
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gap/overlap ratio of the fibril to initially decrease to approximately 1.15, but then the gap/overlap ratio 

increased to approximately 1.3 once the fibril water content increased to ~4 wt%. This was due to 

mineral that primarily occupied voids in the gap regions, which resulted in the gap regions having 

fewer spaces for the water to fill than the overlap regions. Because of this, it was found that the water 

was primarily occupied voids in the overlap region when the water content was ~2 wt%. This caused 

the overlap regions to expand and deform more relative to the overlap regions of the non-hydrated 

fibril as stress increased while the deformation of the gap regions remained relatively the same when 

comparing between the 0 wt% and ~2 wt% hydrated fibrils in Figure 3.1.6 (a).  

 

Figure 3.1.6 Gap/overlap ratio vs. tensile stress for 20% mineralized fibrils (a). (b) A schematic of the 

20% mineralized fibrils shows a comparison between the fibrils’ gap and overlap regions at different 

water contents. The fibril overlap lengths are represented by the variable o with respective subscripts, 

while the fibril gap lengths are represented by the variable g with respective subscripts. 
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However, as the water content increased to ~4 wt% in Figure 3.1.6, it was found that the water 

occupied void spaces in both the gap and overlap regions, and the water became much more uniformly 

distributed throughout the fibril. This was observed from Figure 2.2.1 (e,f), where the more uniform 

distribution of water in the fibril caused the gap regions to also expand and deform more compared to 

the deformation of the gap regions of the non-hydrated fibril as more stress was applied. This caused 

an increase in the gap/overlap ratio, as seen in Figure 3.1.6 (a). 

For the 40 wt% mineralized fibril, the hydration of the fibril caused the gap/overlap ratio of the 

fibril to increase from approximately 1.3 to 1.5, as shown in Figure 3.1.7 (a). This was because the 

larger amount of mineralization caused a degree of mineralization to also occur in the overlap regions, 

although the greatest amount of mineral in the fibril remained in the gap regions. The presence of 

mineral in both the gap and overlap regions caused the water to distribute itself uniformly throughout 

the fibril into the spaces in both the gap region and the overlap region. This caused the gap regions of 

the 40 wt% mineralized fibril to deform more compared to the deformation of the gap region of the 

non-hydrated fibril of 40 wt% mineral when both experienced the same applied stress. Since the water 

caused both the overlap region and the gap regions to begin to expand and deform more, the 

gap/overlap ratio increased.  

At a water content of ~2 wt%, most of the void spaces in the fibril were already occupied by the 

water. As the water content of the 40 wt% mineralized fibril increased to ~4 wt%, the water occupied 

remaining void spaces in the fibril and the gap/overlap ratio increased as the fibril expanded, but by a 

small fraction as seen in Figure 3.1.7 (a). The reason the gap/overlap ratio increased during hydration 

was that the water caused the gap regions to expand more than overlap regions parallel to the fibril 

axis, since the mineral in the gap region prevented the gap region from expanding much perpendicular 

to the fibril length axis while the overlap regions were free to do so. This was evident when comparing 

the ~2 wt% water model to the ~4 wt% water model in Figure 3.1.7 (a), where there is a minimal 
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difference between their respective gap/overlap ratios. The small difference in the water distribution 

when comparing the ~2 wt% and ~4 wt% hydrated fibril with 40 wt% mineral was observed in Figure 

2.2.1 (h,i).  

 

Figure 3.1.7 Gap/overlap ratio vs. tensile stress for 40% mineralized fibrils (a). (b) A schematic of the 

40% mineralized fibrils shows a comparison between the fibrils’ gap and overlap regions at different 

water contents. The fibril overlap lengths are represented by the variable o with respective subscripts, 

while the fibril gap lengths are represented by the variable g with respective subscripts. 

 

It was also observed that as a higher tensile stress was applied to the fibril, the relation between 

the gap region deformation and the overlap region deformation remained approximately linear, 

regardless of the fibril water content. This can be seen in Figure 3.1.5 (a), Figure 3.1.6 (a), and Figure 

3.1.7 (a). These results agreed with J. Samuel et al. [58], who observed a linear relation in bone 

between the mineral phase strain versus the collagen phase strain, which from the observations of this 
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study correspond primarily to the fibril gap regions and the fibril overlap regions, respectively. The 

results of this study, however, allowed for the use of the fibril gap/overlap length ratio to quantify the 

changes in the linear deformation relation between the mineral and collagen phases of protein when 

the fibril mineral content and water content simultaneously varied. 

 

3.2 Fibril Compressive Tests 

The compressive tests on non-mineralized and mineralized samples were next performed. Figure 

3.2.1 (a) shows the direction of applied compressive stress along the fibril lengths for hydrated fibrils 

with mineral contents of 0 wt%, 20 wt%, and 40 wt%. From Figure 3.2.1 (b), it was found for non-

mineralized fibrils under 60 MPa compressive stress that an increase in water content from ~2 wt% to 

~4 wt% resulted in an approximately 31% increase in strain. From Figure 3.2.1 (c), it was found for 

20 wt% mineralized fibrils under 60 MPa compressive stress that an increase in water content from 

~2 wt% to ~4 wt% resulted in an approximately 9% increase in strain. Analysis of the results in Figure 

3.2.1 (d) determined for 40 wt% mineralized fibrils under 60 MPa compressive stress that an increase 

in water content from ~2 wt% to ~4 wt% resulted in an approximately 120% increase in strain.  

 
Figure 3.2.1 Compressive stress vs. strain of collagen fibrils. (a) Loading direction along the fibril 

length. Collagen is represented in gray, water in blue, and mineral in red. Stress vs. strain is shown for 

fibrils with mineral contents of (b) 0 wt%, (c) 20 wt%, and (d) 40 wt%.  
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It was observed in Figure 3.2.1 for all cases that as the fibril water content increased, the fibril 

strain increased. It was also found for all cases that as the fibril mineral content increased, the fibril 

strain decreased and the stress versus strain behavior became more linear. Analysis of fibrils in Figure 

3.2.1 with ~2 wt% water and under 60 MPa tensile stress found that the increase in fibril mineral 

content from 0 wt% to 20 wt% resulted in an approximately 67% decrease in strain. A subsequent 

increase in fibril mineral content from 20 wt% to 40 wt% resulted in an approximately 69% decrease 

in strain. 

The respective Young’s modulus values for the models in Figure 3.2.1 were determined and 

plotted in Figure 3.2.2. The compressive modulus values determined by Nair et al. [52] were also 

represented in Figure 3.2.2 for comparison. For non-mineralized fibrils, it was found that an increase 

in water content from ~2 wt% to ~4 wt% resulted in a decrease in modulus from 1.22 GPa to 0.94 

GPa, corresponding to an approximately 23% decrease in modulus. For 20 wt% mineralized fibrils, it 

was determined that an increase in water content from ~2 wt% to ~4 wt% resulted in a decrease in 

modulus from 3.3 GPa to 2.2 GPa, corresponding to an approximately 33% decrease in modulus. For 

40 wt% mineralized fibrils, it was observed that an increase in water content from ~2 wt% to ~4 wt% 

resulted in a decrease in modulus from 9.35 GPa to 5.04 GPa, corresponding to an approximately 46% 

decrease in modulus.  

Overall, it was observed that as the fibril water content increased, the modulus decreased. It was 

determined that as the fibril mineral content increased, a decrease in the fibril water content resulted 

in a larger decrease in fibril modulus. It was found that this was due to the water displaced from the 

gap regions to the overlap regions resulted in increased intermolecular sliding between overlapping 

collagen molecules in the overlap regions. 

As the fibril mineral content increased, the modulus increased. However, it was observed that, in 

compression, the presence of water reduced the degree to which mineralization increased the modulus. 
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For example, for fibrils of ~2 wt% water, an increase in mineral content from 0 wt% to 40 wt% resulted 

in an increase in modulus from 1.22 GPa to 9.35 GPa. For fibrils of ~4 wt% water, an increase in 

mineral content from 0 wt% to 40 wt% resulted in an increase in modulus from 0.94 GPa to 5.04 GPa.  

 

Figure 3.2.2 The compressive Young’s modulus versus fibril water content for fibrils with mineral 

contents of 0 wt%, 20 wt% and 40 wt%. The modulus values determined by Nair et al. [52] are also 

plotted as i, ii, and iii. 

 

A comparison of fibril compressive modulus values from Figure 3.2.2 was made to the fibril 

compressive modulus values determined in other studies in Table 3.2.1 by experimental and 

computational methods. The other studies in Table 3.2.1 of highly mineralized fibrils that are dry or 

fully hydrated were compared to the 40 wt% mineral models in Figure 3.2.2 with ~2 wt% and ~6 wt% 

water, respectively. The other studies in Table 3.2.1 of non-mineralized fibrils that are dry or fully 

hydrated were compared to the 0 wt% mineral models in Figure 3.2.2 of ~2 wt% and 43 wt% water, 

respectively. It was found that the compressive modulus values for fibrils in this study were in good 
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agreement with the compared modulus values of the other studies in Table 3.2.1. The results of this 

study also gave insight into the modulus values of partially mineralized and partially hydrated fibrils, 

which is crucial to the study of bone, since bone mineral and water content do not abruptly decrease, 

but gradually decrease with age.  

Table 3.2.1 Compressive Young’s moduli obtained by other studies of collagen fibrils. 

Young’s modulus (GPa) Mineral and water content Method of testing 

1.22 

(this study) 

0 wt% mineral, ~2 wt% water MD 

0.43 

[52] 

0 wt% mineral, 43 wt% water MD 

9.35 

(this study) 

40 wt% mineral, ~2 wt% water MD 

1.31 

[52] 

40 wt% mineral, 43 wt% water MD 

1.9 ± 0.5 

[63] 

0 wt% mineral, 0 wt% water AFM nanoindentation 

1.3 ± 0.1 

[63] 

0 wt% mineral, fully hydrated AFM nanoindentation 

1.26 ± 0.354 

[64] 

0 wt% mineral, 0 wt% water AFM nanoindentation 

0.03 ± 0.01 

[64] 

0 wt% mineral, fully hydrated AFM nanoindentation 

1.2 to 2.2 

[9] 

0 wt% mineral, 0 wt% water AFM nanoindentation 

13.87 ± 8.24 

[65] 

highly mineralized, 0 wt% water AFM nanoindentation 

0.003 ± 0.001 

[65] 

highly mineralized, fully hydrated AFM nanoindentation 

~11.4 

[66] 

highly mineralized, 0 wt% water MD 

~7.8 

[66] 

highly mineralized, fully hydrated MD 

6 to 10 

[67] 

60% mineral, slightly hydrated Synchrotron x-ray 

scattering/backscattered 

electron imaging 

 

The compressive modulus values of this study were in good agreement with values obtained in the 

other studies in Table 3.2.1. Looking at the experimental values in Table 3.2.1, there is often a 

significant variation in the compressive modulus values for fibrils with the same mineral and water 
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contents. Like experimental tensile tests of collagen fibrils, this variation in compressive modulus is 

likely due to factors that were not considered in the experiments in Table 3.2.1 such as the amount of 

mineral substitution, the amount of mobile versus bound water, or the presence of collagen defects, 

all of which will change the fibril modulus. This highlights the importance of the MD study in this 

thesis, which controlled the variables of mineral and water content to determine the fibril modulus 

without the effects of mineral substitution, bound water, or collagen defects. Future work should look 

at how the addition of these variables affect the fibril modulus.  

Analysis was also done to compare the modulus values obtained in these MD studies to the 

effective compressive modulus of a nanocomposite determined by the Gao model [68] in compression. 

The Gao model parameters and governing equation remain the same as Equation 3.1.1. It was found 

that the MD simulation results for Young’s modulus in this investigation were in good agreement with 

the Gao model for effective modulus in Figure 3.2.3.  

 

Figure 3.2.3 The compressive Young’s modulus vs. fibril mineral content. The MD simulation 

compressive modulus is plotted versus fibril mineral content for fibrils with water contents of 2 wt% 

(red) and 4 wt% (blue). 



31 

The results of the other studies in Table 3.2.1 are also plotted in Figure 3.2.3. As seen in Figure 

3.2.3, the MD simulation Young’s modulus results from this study agreed well with the Gao model 

for effective modulus for fibrils at 2 wt% and 4 wt% water, and follow a similar trend for the increase 

in modulus for an increase in mineral fraction. However, the fibrils with 4 wt% water agreed better 

with the Gao model than the fibrils with 2 wt% water. This was likely due to the collagen shear 

modulus, which should change to reflect the change in fibril water content. The MD simulation results 

follow a similar trend as the Gao model, but are slightly higher. As mentioned in Section 3.1, this is 

due to the fact that at low mineral volume fractions, the Gao model effective modulus reduces to zero, 

and does not take into account the modulus of the remaining collagen protein and water. 

After analyzing the compressive modulus values of the fibrils, this study investigated the 

deformation mechanisms of the fibrils by analyzing the fibril gap/overlap ratio. For non-mineralized 

fibrils, it was observed that at an increase in water content from ~2 wt% to ~4 wt% resulted in an 

approximately 13% increase in the gap/overlap ratio as can be seen in Figure 3.2.4 (a). This was due 

to the fact that, at low water contents, the water primarily occupied voids in the gap regions. As the 

water content increased, it resulted in an expansion of the gap region lengths while the overlap region 

lengths remained approximately the same as is represented in the schematic in Figure 3.2.4 (b). This 

corresponded to an increase in the gap/overlap ratio.  

As the fibril water content increased from ~4 wt% to 43 wt%, the water fully hydrated both the 

fibril gap regions and overlap regions. This caused the overlap regions to also expand due to the 

presence of water and the gap/overlap ratio decreased from 1.77 for ~4 wt% hydration to 1.2 for 43 

wt% hydration as seen in Figure 3.2.4 (a). It was also observed that as compressive stress was applied 

to the non-mineralized fibrils, the gap/overlap ratio decreased. This demonstrated that the gap regions 

deformed more than the overlap regions under compressive stress.  While the gap/overlap ratio 

decreased as stress increased, the decrease in the gap/overlap ratio remained approximately constant. 
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Figure 3.2.4 Gap/overlap ratio versus compressive stress for non-mineralized fibrils (a). (b) 

Schematics showing the length of the fibril gap and overlap regions under 1 atm pressure. 

 

The gap region and overlap region deformation behavior for fibrils with 20 wt% mineral is 

observed in Figure 3.2.5. At a fibril water content of ~2 wt%, it was observed that the water was 

primarily located in the overlap regions due to the presence of mineral in the gap regions. The presence 

of water in the overlap regions increased intermolecular sliding and mineral in the gap regions resisted 

compression of the gap regions. This resulted in the overlap regions deforming more than the gap 
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regions and the gap/overlap ratio increased as the compressive stress increased.  

As the fibril water content increased from ~2 wt% to ~4 wt%, the gap/overlap ratio at no applied 

stress increased by approximately 22%. This was because, at ~4 wt% water, the water distributed 

evenly throughout the whole fibril, and caused a slight expansion of the gap regions and resulted in a 

decrease in the initial gap/overlap ratio. As stress was applied to the fibril with ~4 wt% water, the 

gap/overlap ratio remained approximately constant. The results in Figure 3.2.5 were also in good 

agreement with a previous study by Nair et al., which is shown as the fibril with ~8 wt% water in 

Figure 3.2.5 [52].  

 

Figure 3.2.5 Gap/overlap ratio versus compressive stress for 20 wt% mineralized fibrils (a). (b) 

Schematics showing the deformation of the fibril gap and overlap regions. 
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As the water content increased from ~4 wt% to ~8 wt%, the gap/overlap ratio decreased in Figure 

3.2.5, since the overlap region expanded due to the increase in hydration, but the mineral in the gap 

regions resisted expansion of the gap regions. This agreed with experimental results that determined 

that high fibril hydration resulted in a compressive pre-strain of the collagen fibril mineral phase, 

which was primarily located in the gap regions for the models in this investigation [58]. This study 

also found that an increase in fibril water content increased the D-period of the fibril, which is the 

combined length of the gap and overlap region. This also agreed with the results of the previously 

mentioned experiment [58], which also observed an increase in the D-period of mineralized fibrils as 

their water content increased. However, this study was able to also investigate the change in the gap 

and overlap regions lengths. 

The gap/overlap ratio behavior under compressive stress for fibrils with 40 wt% mineral is 

presented in Figure 3.2.6. The results for this case for fibrils with ~2 wt% water and ~4 wt% water 

were in good agreement with the results from a previous study of a fibril with ~6 wt% water in [52], 

with a gap/overlap ratio at approximately 1.5. The results of that study for the fibril with ~6 wt% water 

are also shown in Figure 3.2.5 for comparison to the fibrils with ~2 wt% and ~4 wt% water in this 

study. It was observed that, even at water contents as low as ~2 wt%, the water distributed uniformly 

throughout the fibril. It was found for all degrees of hydration that as the water content increased, the 

gap/overlap ratio increased, because the water caused an expansion of the overlap regions while the 

presence of mineral in the gap regions resisted expansion of the gap regions. This was in agreement 

with previous experimental studies of mineralized collagen fibrils that observed compressive pre-

strain in the mineral phase of the fibrils [58].  

It was observed in Figure 3.2.6 that as the fibril water content increased from ~2 wt% to ~6 wt%, 

the magnitude of the slope of the gap/overlap ratio versus the applied stress increased. This was 

because an increase in the fibril water content caused a larger increase in the deformation of the 
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overlap regions than the deformation of the gap regions, since the increased water content in the 

overlap regions increased intermolecular sliding in the overlap regions, while mineral in the gap 

regions resisted the compression of the gap regions. This also agreed with previous experimental 

studies of mineralized collagen fibrils that observed an increase in the D-period length when the fibril 

water content increased [58], while this study also enabled the investigation of the change in gap and 

overlap region lengths. 

 

Figure 3.2.6 G/overlap ratio versus compressive stress for 40 wt% mineralized fibrils (a). (b) 

Schematics showing the fibril gap and overlap regions at 1 atm pressure. 

 

The tensile and compressive tests on non-mineralized and mineralized samples show the different 

deformation behavior and change in Young’s modulus as the loading changes. The next area of 

exploration was the use of CNTs as a substitute for mineral found in bone at the nanoscale to study 

the deformation behavior and quantify the mechanical properties. 
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3.3 Carbon Nanotube Tensile and Compressive Tests 

A tensile test was performed along the length of a 20 nm long CNT with a 1 nm diameter and 

modeled with the CA atom type in the CHARMM potential; it was found that Young’s modulus was 

approximately 1.051 TPa. Figure 3.3.1 (a) shows the direction of the application of the tensile load to 

the CNT, while Figure 3.3.1 (b) shows the results of the stress vs the strain of the CNT. The Young’s 

modulus of the CNT was calculated as the slope of the linear fit of the stress vs the strain. A 

comparison to the CNT tensile modulus determined by computational and experimental methods is 

shown in Table 3.3.1. The CNT tensile modulus value determined in this study were in good 

agreement with that of the studies presented in Table 3.3.1, and validated the use in this study of the 

CHARMM CA atom type to model CNTs.  

 

Figure 3.3.1 Tensile test of a carbon nanotube. The CNT is 20 nm long, and 1 nm diameter CNT (a). 

(b) the stress vs. strain for the CNT tensile test. 
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Table 3.3.1 Tensile Young’s moduli of CNTs determined by other studies.  

Study group Method Young’s Modulus (TPa) 

This study: tensile test MD: CHARMM 1.051 ± 0.01 

[69] MD: AMBER ~1 

[70] Empirical force constant model 1 

[71] Born perturbation technique 

Lattice-dynamical model 

1 

[72] Tight-binding formalism 1.24 

[73] AFM 1.31 

[74] TEM Length = 23.4 nm,  

Diameter = 1.12 nm,  

E=1.02 ± 0.2 

 

While the CNT tensile test corroborated the model of the CNT used in this study, compression 

tests on CNTs were also performed in order to determine if the compression Young’s modulus of the 

CNTs changed based on a change in CNT length, since the CNTs utilized in this study varied in length 

and were under compressive stress. Figure 3.3.2 shows the results of the compressive tests of the 10 

nm, 20 nm, and 30 nm length CNTs used in this study.  

 
Figure 3.3.2 Compressive stress versus strain of carbon nanotubes. The CNTs are 1 nm in diameter 

and of varying length. The conformation of the nanotubes before structural failure while under 

compressive stress is shown in (i, ii, iii). 
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While the weight percent of CNTs in the fibril/CNT composite models changed due to the 

difference in CNT lengths, Figure 3.3.2 shows that, at compressive stresses lower than 20 GPa, the 

Young’s modulus was approximately 610 MPa regardless of the CNT length. This modulus was 

chosen for all the CNTs used in this study, since the maximum stress applied to the fibril/CNT 

composites was 60 MPa. This also meant that investigating how a change in CNT modulus due to 

CNT length changed the mechanical behavior of the fibril/CNT composites did not have to be 

considered in this study, since the change in the CNT modulus due to a change in CNT length was 

negligible. 

 

3.4 Fibrils with CNTs Compressive Tests 

Figure 3.4.1 shows the conformation of the fibril models with CNTs. As mentioned in Section 2.4, 

the CNTs were placed into the gap region. The 10 nm long CNTs corresponded to 5 wt% of the total 

fibril, the 20 nm long CNTs corresponded to 10 wt% of the total fibril, and the 30 nm long CNTs 

corresponded to 15 wt% of the total fibril. It was observed that as the CNT concentration increased, 

the overall fibril length expands.  

 

Figure 3.4.1 Collagen fibrils with CNTs in the gap regions. Atomistic representations are shown of 

collagen fibrils with 43 wt% water and (a) 5 wt% CNTs, (b) 10 wt% CNTs, and (c) 15 wt% CNTs at 

1 atm pressure in all directions. In panel (c) an enlarged view of the unit cell is shown. 
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From Figure 3.4.2 (b), it was found for non-mineralized fibrils with 43 wt% water and under 60 

MPa compressive stress, that an increase in CNT content from 5 wt% to 15 wt% resulted in an 

approximately 43% decrease in strain. It was also observed that, while the fibrils with CNTs had a 

larger amount of water content compared to the fibrils without CNTs, the addition of CNTs to the 

fibril resulted in a decrease in fibril strain compared to the fibrils with no CNTs and low water contents 

of ~2 wt% and ~4 wt%. The maximum strain at 60 MPa stress for the fibrils with CNTs in Figure 

3.4.2 (a) was approximately 0.03, which was comparable to the maximum strain of approximately 

0.03 at 60 MPa stress for the fibrils with 20 wt% mineral in Figure 3.4.2 (c). The fibrils with 40 wt% 

mineral in Figure 3.4.2 (d) still had the lowest maximum strain, which was approximately 0.02 at 100 

MPa stress. However, it should be noted that CNTs needed to compose a low weight percent of the 

fibril in order to provide significant reinforcement in order to decrease the fibril strain. 

 

Figure 3.4.2 Compressive stress vs. strain of fibrils with CNTs (a). Also shown are fibrils with no 

CNTs and mineral contents of (b) 0 wt%, (c) 20 wt%, and (d) 40 wt%. 
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The respective Young’s modulus values for the models in Figure 3.4.2 were determined and 

plotted in Figure 3.4.3. The fibril models from Figure 3.4.1 (a,b,c) were developed by varying the 

respective water and CNT concentration of fibril models developed in a previous study by Nair et al. 

[52]. As such, the compressive modulus determined by Nair et al. [52] were also represented in Figure 

3.4.3. For non-mineralized 43 wt% hydrated fibrils, it was observed that an increase in the CNT 

concentration resulted in an increase in the fibril modulus. An increase in CNT concentration from 0 

wt% to 15 wt% resulted in an increase in modulus from 0.43 GPa to 2.83 GPa, corresponding to an 

approximately 558% increase in modulus. The modulus values for the fibril/CNT composites are 

comparable to the modulus values of the 20 wt% mineral partially hydrated fibrils ranging from 

approximately 1.4 GPa to 3 GPa.  

 

Figure 3.4.3 The compressive Young’s modulus versus fibril water content for fibrils of mineral 

contents of 0 wt%, 20 wt% and 40 wt%. Also plotted are the Young’s modulus values of non-

mineralized fibrils with 43 wt% water and different CNT concentrations of 5 wt%, 10 wt%, and 15 

wt%. The modulus values determined by Nair et al. [52] are also plotted as i, ii, and iii. 
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After analyzing the compressive modulus values of the fibrils with CNTs, investigation of the 

deformation mechanisms of the fibrils with CNTs was done by analyzing the fibril gap/overlap ratio. 

The gap/overlap ratio determined by Nair et al. [52] for non-mineralized fibrils with 43 wt% water 

was approximately 1.2. When 5 wt% of CNTs was added to the non-mineralized fibril with 43 wt% 

water, it was observed that the gap/overlap ratio increased by approximately 7%, as seen in Figure 

3.4.4 (a). This was because the presence of the CNTs in the gap regions caused the gap regions to 

expand while the overlap region lengths remained approximately the same.  

 
Figure 3.4.4 Gap/overlap ratio vs. compressive stress of non-mineralized fibrils (a). (b) Schematics 

showing the deformation of the fibril gap and overlap regions. 



42 

As the CNT concentration increased to 10 wt%, it was observed in Figure 3.4.4 that the 

gap/overlap ratio decreased back to approximately 1.2 when compared to the fibril with 5 wt% CNTs. 

This was because, while the increase in CNT concentration caused a slight expansion of the gap 

regions, the larger CNT concentration displaced water from the gap regions to the overlap regions 

which caused the overlap regions to expand. While the CNTs in the fibril with 5 wt% CNTs also 

caused displacement of water, the CNTs only took up approximately 28% of the gap region volume, 

so the displaced water remained primarily in the gap regions. The CNTs in the fibril with 10 wt% 

CNTs took up approximately 56% of the gap region volume, so the displaced water was primarily 

displaced to the overlap regions.  

As the CNT concentration increased to 15 wt%, it was observed in Figure 3.4.4 that there was an 

approximately 13% increase in the gap/overlap ratio when compared to the fibril with 10 wt% CNTs 

which was observed in Figure 3.4.4 (a). At a CNT concentration of 15 wt%, the CNTs took up 

approximately 83% of the gap region volume, which resulted in a larger expansion of the gap regions, 

even though additional water was displaced to the overlap regions and caused them to slightly expand. 

As the stress increased, the gap/overlap ratio of the fibrils with CNTs decreased for all CNT contents. 

Even though the gap regions still deformed more than the overlap regions for fibrils with CNTs under 

compressive stress, the gap regions of fibrils with CNTs deformed less than the gap regions of fibrils 

without CNTs. This was seen in Figure 3.4.4 where, as the stress increased, the decrease in gap/overlap 

ratio for the fibrils with CNTs was less than the decrease in gap/overlap ratio for the fibrils without 

CNTs. 
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Chapter 4: Conclusions 

A model of collagen fibrils with varying mineral and water content was developed and 

mechanically tested in tension and compression using molecular dynamics simulations. The 

deformation behavior of the gap/overlap regions was studied for both non-mineralized and 

mineralized samples. Finally, the possibility of using CNT’s as a substitute for minerals in the fibrils 

was studied. The following conclusions were determined from analysis of the MD simulations of 

fibrils under tension and compression. 

1. For each mineralization case in tension, the hydration of the fibrils led to the stress versus 

strain behavior having a more nonlinear trend. For the 0 wt% mineral and 20 wt% mineralized 

fibrils in compression, the stress versus strain behavior was nonlinear. An increase in the fibril 

water content caused the Young’s modulus of the non-mineralized fibril to decrease from 

approximately 1.2 GPa to 0.2 GPa in tension and from approximately 1.2 GPa to 0.43 GPa in 

compression. In highly mineralized fibrils (40 wt%), the increase in water content resulted in 

a decrease in Young’s modulus from approximately 1.9 GPa to 1.2 GPa in tension, and from 

approximately 9.4 GPa to 1.3 GPa in tension. 

2.  An increase in the mineral content caused the stiffness of the fibril to increase. At 0 wt% 

water, the tensile Young’s modulus increased from approximately 1.2 GPa to 1.9 GPa when 

the mineral content increased from 0 wt% to 40 wt%. At 2 wt% water, the compressive 

Young’s modulus increased from approximately 1.2 GPa to 9.4 GPa when the mineral content 

increased from 0 wt% to 40 wt%. 

3. The inclusion of CNTs in fibrils between 5 wt% and 15 wt% increased the compressive 

Young’s modulus of the fibrils to between 1.6 GPa to 2.8 GPa, which was comparable to the 

compressive modulus values of 1.3 GPa to 3.3 GPa for 20 wt% mineralized fibrils. 

4. For non-mineralized fibrils, as the water content increased an expansion of the gap region 
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length was observed, and the gap/overlap ratio increased by as much as 40%. As the fibril 

water content increased from 0 wt% to ~2 wt%, the water primarily occupied voids in the gap 

regions. This caused the gap regions to expand and the overlap regions to contract. At a water 

content of 43 wt%, water was distributed uniformly throughout the fibril, which caused the 

overlap regions to expand. 

5. As tensile stress was applied to the non-mineralized ~2 wt% hydrated fibril, the overlap regions 

began to expand, and the gap/overlap ratio decreased by approximately 17%.  

6. For non-mineralized fibrils with ~4 wt% water, the water primarily occupied voids in the gap 

regions, which caused the gap region to expand. Water also occupied some voids in the overlap 

regions, which eliminated contraction of the overlap regions.  

7. As tensile stress was applied to the non-mineralized fibril with ~4 wt% water, the gap regions 

deformed more than the overlap regions, and the gap/overlap ratio decreased by approximately 

23%.  

8. CNTs in non-mineralized fibrils with 43 wt% water occupied void space in the gap regions. 

The gap regions of these fibrils deformed more than the overlap regions as stress increased, 

with a decrease in gap/overlap ratio of approximately 6%. 

9. The deformation of the gap regions of 43 wt% hydrated and non-mineralized fibrils with CNTs 

was less than the deformation of the gap regions of 43 wt% hydrated and non-mineralized 

fibrils without CNTs. The decrease in gap/overlap ratio of fibrils with CNTs was 

approximately 6%, while for fibrils without CNTs was approximately 19%. 

10. The 10 nm long CNTs cause an expansion of the gap regions, but not the overlap regions. The 

20 nm long CNTs caused an expansion of the gap regions, while the water displaced from the 

gap regions caused an expansion of the overlap regions that was larger than the gap regions’ 

expansion. The 30 nm long CNTs caused an expansion of the gap regions, while the water 

displaced from the gap regions caused an expansion of the overlap regions that was larger than 
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the gap regions’ expansion. 

11. For 20 wt% mineralized fibrils with 0% water, as tensile stress was applied the gap/overlap 

ratio remained constant at approximately 1.2.  

12. For 20 wt% mineralized fibrils with ~2 wt% water, the mineral in the gap regions caused the 

water to primarily occupy voids in the overlap regions. The water in the overlap regions caused 

the overlap regions to expand slightly while the gap regions contracted slightly and the 

gap/overlap ratio decreased to approximately 1.1. In tension, the gap regions deformed more 

than the overlap regions deformed as stress increased, while in compression, the overlap 

regions deformed more than the gap regions as stress increased. 

13. For 20 wt% mineralized fibrils with ~4 wt% water, water began to also occupy some voids in 

the gap regions. This caused the gap regions to expand slightly, rather than contract, and the 

gap/overlap ratio increased to approximately 1.3. 

14. For 40 wt% mineralized fibrils, as the fibril water content increased, the water was distributed 

uniformly throughout the fibril. However, the initial increase in water content caused the gap 

regions to expand slightly more than the overlap regions, and the gap/overlap ratio increased 

by approximately 16%. 

15. As tensile or compressive stress was applied to the 40 wt% mineralized fibrils, the overlap 

regions deformed more than the gap regions as water in the overlap regions increased 

intermolecular sliding and the mineral in the gap regions resisted deformation.   
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Appendix A: Description of Research for Popular Publication 

A Computational Study of the Effects of Mineral, Water, and Carbon Nanotube Content on the 

Nanoscale Behavior of Bone 

 

Bone is a composite biomaterial that provides structure and support for the body. However, 

different conditions can reduce bone’s ability to provide this structure and support. For example, 

studies have shown that as people age the mineral content and water content of their bones decreases 

and the likelihood of their bones fracturing increases. Other factors include diseases and genetic 

conditions, such as osteoporosis and brittle bone disease which make bones more brittle and increase 

the likelihood of bone fracture. Ehler’s-Danlos syndrome is a genetic condition that causes a person’s 

skin, joints, and bones to become hyperflexible. Understanding how bone’s mechanical properties 

change is important for developing detection and treatment methods for these conditions that 

negatively affect bones structure and support ability. For example, some treatment methods include 

scaffolds for tissue engineering in wound healing, or bone implants. Understanding these properties 

at the nanoscale, a size scale that is smaller than what is visible to the human eye, is important for the 

development of early detection and treatment methods of conditions that negatively affect bone. At 

the nanoscale, bone is primarily composed of small fibers known as fibrils that are a composite of 

collagen protein, apatite mineral, and water. The collagen protein molecules align themselves in a 

staggered fashion to form what are known as “gap” and “overlap” regions, with the mineral and water 

filling the voids between the collagen molecules. 

Several studies have found that carbon nanotubes are a promising material to include in 

scaffolds for bone tissue engineering, or in bone implants. Though several studies have characterized 

nanoscale bone properties as the mineral content changes, the effect of water, mineral, and carbon 

nanotube (CNT) content and distribution in bone at the nanoscale is unexplored. This study used 
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molecular dynamics simulations to investigate how collagen fibril deformation behavior changed as 

the fibril mineral, water, and CNT content changed. Collagen fibrils with 0 wt%, 20 wt%, and 40 wt% 

mineral and 0 wt%, 2 wt%, and 4 wt% water were studied for fibrils pulled in tension or when 

compressed. Non-mineralized fibrils with 43 wt% water and 5 wt%, 10 wt%, and 15 wt% CNTs were 

also studied under compression. This study found that an increase in mineral content for hydrated 

fibrils was found to reduce the nonlinear stress versus strain behavior caused by hydration, and the 

stiffness of non-mineralized and mineralized fibrils decreased as the water content increased.  

Mineral and water content were found to affect the distribution of water in fibrils in tension and 

compression, which changed the deformation behavior of the gap and overlap regions. An increase in 

water content was found to increase the ratio of gap region length to overlap region length (gap/overlap 

ratio) by as much as 40% in non-mineralized fibrils and 16% in mineralized fibrils. For non-

mineralized fibrils it was found that the gap/overlap ratio increased as the applied stress increased, 

while in mineralized fibrils the gap/overlap ratio decreased with an increase in stress. This showed 

that the presence of mineral changes whether the gap regions or overlap regions deform more. CNTs 

in non-mineralized fibril gap region voids also reduced the deformation of the fibril gap regions. This 

meant that the CNTs also had the effect of increasing the non-mineralized fibril stiffness (elastic 

modulus) from 0.43 GPa to approximately to 2.83 GPa, which was comparable to the stiffness of 

mineralized fibrils. 

This study has shown that the interaction between mineral, water, and CNTs plays a crucial role 

in the mechanical behavior of collagen fibrils. This is important for understanding how the nanoscale 

properties of bone change when conditions affect its mineral and water content. The results of this 

study are also important for the development of bone tissue engineering scaffolds for bone implants 

or application in wound healing materials, whose properties can change based on the material mineral, 

water, or CNT content.  
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Appendix B: Executive Summary of Newly Created Intellectual Property 

The novelty in this study determined mechanical properties of collagen fibrils, which are the 

material component of bone at the nanoscale. The collagen fibrils were studied under different 

physiological conditions corresponding to fibril mineral, water, and carbon nanotube content. 

This study used established open source models of collagen fibrils validated by experiment. This 

study also used established and open source molecular dynamics methods and software to perform 

tensile and compressive tests on collagen fibrils. As such, while discovery of new results was made 

of the mechanical properties of collagen fibrils under different physiological conditions, no new 

intellectual property was created. 
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Appendix C: Potential Patent and Commercialization Aspects of Intellectual Property 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

While novel results were found in the study, no intellectual property was developed by way of 

novel collagen fibril models or by MD simulation techniques for tension or compression tests. Since 

no new intellectual property was created, there is no available patentable intellectual property from 

this study. 

C.2 Commercialization Prospects (Should Each Item be Patented) 

Not applicable 

C.3 Possible Prior Disclosure of IP 

Not applicable 
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Appendix D: Broader Impact of Research  

D.1 Applicability of Research Methods to Other Problems 

The results of this study can be used to guide the development of bio-inspired materials, scaffolds 

for tissue engineering, and bone implants. These would be scaffolds or implants whose material 

components consist of collagen protein, HAP mineral, or ultra-short CNTs. Further work could also 

expand the current fibril model to study the effects of bound water, mineral substitution, apatite crystal 

size, or other variables on the mechanical behavior of collagen fibrils. The results of this study could 

also be used to refine the model of collagen fibrils developed by Gao et al. 

D.2 Impact of Results Research on Global and U.S. Society 

As mentioned in section D.1, the results of this study could be used to develop scaffolds for tissue 

engineering, and bone implants in order to better treat bone conditions. Understanding the effect of 

mineral, water, or CNT content on the mechanical behavior of collagen fibrils is useful as a guide to 

optimize tissue scaffolds or implants made of these materials. This optimization would be making the 

scaffolds or implants more biocompatible to the tissue it is replacing by having the scaffold or implant 

mechanical properties matched as closely as possible to the mechanical properties of the tissue it is 

replacing.  

D.3 Impact of Research Results on the Environment 

Collagen fibrils are a biological material, and as such are not harmful to the human body or to the 

environment. The specific inclusion of CNTs in tissue engineering scaffolds have found that ultra-

short CNTs are safely degradable and eliminable in the human body, as referenced in Section 2.5. 
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Appendix E: Microsoft Project for MS Microelectronics-Photonics Degree Plan 

 

 

Figure A.1. Microsoft Project for Marco Fielder for the Microelectronics-Photonics Degree Plan 
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Appendix F: Identification of Software Used in Research and Thesis 

Computer #1 

Device name: MEEG – D081 

Location: NANO 112B 

Owner: University of Arkansas 

Computer #2: Personal laptop 

Device name: DESKTOP – IVN63CK 

Device owner: Marco Fielder 

Software #1: 

Name: LAMMPS (open source) 

Downloaded by: Marco Fielder 

Software #2: 

Name: Microsoft Office 2016 

Purchased by: University of Arkansas 

Software #3: 

Name: MATLAB 

Purchased by: University of Arkansas 

Software #4: 

Name: VMD (open source) 

Downloaded by: Marco Fielder 

Software #5: 

Name: EndNote 

Purchased by: Multiscale Materials Modeling Laboratory, University of Arkansas 
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Appendix G: All Publications Published, Submitted, and Planned 

 

Marco Fielder and Nair, AK., Effects of Hydration and Intrafibrillar Mineralization on the 

Mechanical Behavior of Collagen Fibrils in Tension. Biomechanics and Modeling in 

Mechanobiology (in submission) 

Marco Fielder and Nair, AK., A Computational Study of the Impact of Intrafibrillar Mineral, Water, 

and Carbon Nanotube Content on the Mechanical Behavior of Collagen Fibrils in 

Compression. (in preparation) 
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