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ABSTRACT 

 The State of Arkansas is prone to numerous geohazards. This thesis is a twofold study of 

prominent geohazards in Arkansas: the first fold includes a novel triggerless approach for mass 

wasting susceptibility modeling applied to the Boston Mountains in NW Arkansas, and the second 

fold is a GIS-based regression modeling of the extreme weather patterns at the state level. Each 

study fold is presented in this thesis as a separate chapter embracing a published peer-reviewed 

paper. In the first paper, I have used the analytical hierarchy process to assign preliminary 

statistical weights to the most cogent variables influencing mass wasting in the central Boston 

Mountains. These most significant variables are then incorporated in Fuzzy modeling of mass 

wasting susceptibility within the 1200 km2 study area. For comparison and accuracy assessment, 

a second model has been established using a conventional weighted overlay (WO) approach. 

Results indicate that the developed novel approach is superior, with approximately 83% accuracy, 

to the traditional WO approach that has a marginal success of about 28% accuracy. Road related 

mass wasting events recorded by the Arkansas Department of Transportation have been used to 

validate both models. In the second paper, I have conducted a systematically gridded analysis of 

severe weather events, including tornadoes, derechos, and hail, during 1955-2015. The study 

examines and statistically determines the most significant explanatory variables contributing to the 

spatial patterns of severe weather events between 1955 and 2015, consequently it identifies 

severity indices for the entire state. These weather-related hazards and their associated risk will 

always abide; therefore, the best defense is employ geospatial technologies to plan for hazard 

mitigation. The mass wasting model developed in this study contributes pivotal information for 

identifying zones of high risk along roadways in NW Arkansas, which definitely can be adapted 

to avoid disastrous road failures. In addition, the weather-related severity indices determined at the 



state level can profoundly benefit state and federal agencies focused on increasing the availability 

of public and private storm shelters in previously under-represented zones of high risk. This 

undoubtedly will save lives from unavoidable catastrophic events across the entire state.  
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CHAPTER 1 
 

INTRODUCTION 

Arkansas has not had the pleasure of vast scientific exploration like other more populous 

states that reap the benefits of having numerous research institutions with large pools of scientific 

funding and plethora of state institutions examining all the scientific minutia associated within 

their state’s boundary. On one side of the coin this is extremely problematic and frustrating as a 

researcher trying to collate a body of previously published peer-reviewed research for a quality 

literature review. Much of the material available on specific problems, especially those related to 

geohazards, only exists in sparse white papers from the Arkansas Geological Survey (AGS) and 

tidbits from United States Geological Survey (USGS), the Federal Emergency Management 

Agency (FEMA), the National Weather Service (NWS) and a handful of graduate publications. 

With respect to mass wasting/mass movement and severe weather these few publications range 

from the 1950’s through present and mostly serve only as historical recording of events and 

magnitudes with quality but superficial interpretations of underlying causality. For a researcher 

choosing to focus on geohazards in Arkansas, outside of earthquakes, minimal research has been 

done and any new work will have to be conducted nearly from scratch. The other side of the coin 

is a vast field of opportunity in nearly all directions for scientific research related to Arkansas. 

Many types of geospatial software exist but possibly no geospatial software is more 

pervasive than ArcGIS. The near endless and ever improving capabilities of the spatial and 

geostatistical tools developed by the Environmental Systems Research Institute (ESRI) offer a 

profusion of opportunities to model and analyze the complexities inherit in big data sets. The 

proliferation of ArcGIS in academia as well as many private and public research institutions allows 

for provenance to be easily preserved and analytical outputs scrutinized and reproduced for 
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viability of the scientific approach used in any GIS analysis using ArcGIS. For these reasons 

ArcGIS was selected to be exclusively used in all modeling and analysis related to this research. 

MASS WASTING SUSCEPTIBILITY 

Arkansas can be roughly broken into two to eight regions depending on the amount of 

detail considered by the defining source. For this particular research seven physiographic regions 

have been defined and general descriptions are: (1) the Mississippi Alluvial Plain, a lowland 

floodplain region of unconsolidated Quaternary sediments which extends along the entire eastern 

margin of the state delineating a large regional distributary system within the Gulf Coastal Plain 

(GCP) for the largest rivers in Arkansas as well as present and paleo floodplains for the Mississippi 

River (Berry 1915; Haley 1976); (2) Crowley’s Ridge, a 250km long and 50-100m high ridge that 

extends longitudinally through the heart of the Mississippi Alluvial Plain and has been interpreted 

as a tectonically active high angle reverse fault block of unconsolidated Tertiary and Miocene 

sediments, most likely associated with the New Madrid Fault Zone and Reel Foot Rift (Guccione 

et al. 1986); (3) the South Central Plains, also referred to as the West Gulf Coastal Plain is a region 

of gentle rolling hills in the southwestern region of the (GCP) along the Texas/Louisiana borders 

comprised of Cretaceous carbonates and evaporites as well as Tertiary clays and lignite, and 

Quaternary gravels and sands (Hill 1888; Harris 1894; Dane 1929; Clardy 1979); (4) the Ouachita 

Mountains in the west central part of the state are heavily folded and deformed Paleozoic strata 

with dominant strikes running East-West (Croneis 1930; Sutherland and Manger 1979); (5) the 

Arkansas River Valley, which consists of gently to moderatle deformed Pennsylvanian strata and 

is commonly associated with the Arkansas River and I-40 corridor stretching from the Oklahoma 

state line to Little Rock (Croneis 1930; Haley 1976; Cohoon 2013); (6) the Boston Mountain 

Plateau which is slightly to moderately faulted and gently deformed region of uplifted Late-
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Paleozoic strata; and lastly (Sutherland and Manger 1977; Cohoon 2013) (7) the Ozark Highlands 

region which includes both the Salem and Ozark Plateaus which are dominantly composed of 

Mississippian and Ordovician carbonates promoting a vast karst network (Craig et al. 1979). 

Each of these regions contains unique geology and underlying geologic structure which 

juxtapose the Ouachita Mountains and deeply incised mature plateaus in the western half of the 

state to the flat fertile agricultural bottomlands of the Arkansas Delta in the east. Mass wasting 

may occur where there is sufficient relief and slope instability. This being said, the vast majority 

of mass wasting events in Arkansas occurs in the Boston Mountains and the Ozark Highlands. 

Because of this natural susceptibility for frequent mass wasting events in these regions, a study 

area was chosen within the central Boston Mountains along the Arkansas Highway 7 due to the 

frequency of events and availability of quality GIS data from AGS. 

Mass wasting events were compiled from an internal database collected by the Arkansas 

Department of Transportation (ArDOT) and through case studies conducted by AGS. A weighting 

process using Saaty’s Analytical Hierarchy Process helped statistically quantify the significance 

of geologic and physiographic attributes which were then modeled using a combination of Fuzzy 

logic and Empirical Bayesian Kriging (EBK) to create a triggerless mass wasting susceptibility 

model for the 1200 km2 study area. For comparison with the established model, a traditional 

Weighted Overlay (WO) model was developed. Results indicate that the model developed via the 

Fuzzy/EBK approach proved significantly more accurate at predicting mass wasting susceptibility 

with ~83% accuracy of predicting the observed failures versus an unanticipated marginal (~28%) 

accuracy using the conventional WO process that showed a heavy road bias. 
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SEVERE WEATHER EVENTS 

Wild variability in the local weather of Arkansas is very common. One day it can be 75°F 

and sunny with bluebird skies and then the next day it can snow. These extremely variable 

temperature swings are due toArkansas’ location in the middle of the High and Low-pressure 

ridges. High pressure coming out of the northern United States and Canada pushes down through 

the Great Plains and typically collides somewhere around Arkansas with warm moist low-pressure 

systems coming up from the Gulf of Mexico. Prevailing westerly winds end up driving storm 

fronts, which nucleate during the collision of these combative pressure systems, eastward across 

the state. Many time these storm systems spawn severe thunderstorms capable of generating hail, 

high wind events called derechos, and/or tornadoes. Many lives have been lost in Arkansas due to 

tornadoes and derechos crossing paths with people both in their homes or out in the open away 

from storm shelters.  

Previous studies conducted by FEMA or state agencies rarely goes beyond the scope of 

county analysis. In Arkansas, counties range broadly in terms of physiographic and topographic 

characteristics and that is not appropriate for the nature of the desired modeling of the extreme 

weather events. The solution applied in this research, was to fishnet the entire state in 10 x 10 km 

grids and then assign all the potential explanatory variables to an attribute table associated with 

the fishnet. Once all the datasets were standardized and associated with the fishnet, exploratory 

regression and Ordinary Least Squares regression were applied to develop the final model. 

Ultimately, a statewide severity index was created by combining all three models, which allowed 

a very high detailed statewide analysis of severe weather that had never been conducted before. 

Spatial analysis of severe weather patterns using GIS provides a means of determining major 

influencing variables in the equation that drive these storm patterns across the state. GIS-based 
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regression analysis was applied to sort the variables and pick out the most statistically robust 

explanatory variables to model statewide severity for each of the three types of severe weather 

events.  

RESEARCH CONTRIBUTIONS 

Research conducted in this thesis provides a wealth of information to several Arkansas 

state agencies such, as the Arkansas Department of Emergency Management (ADEM), the 

Governor’s Office, ArDOT, AGS, and academic intuitions that may wish to continue the 

conducted research as well as federal agencies such as FEMA, NOAA, NWS, USGS, Natural 

Resources Commission Service NRCS, and USDA.  

With respect to the mass wasting study, this research can immediately benefit ArDOT and 

allow it to strategize in an entirely new way to better plan how it can mitigate road failures. 

Currently, ArDOT is looking into soil nailing mitigation techniques by determining high risk 

sections of roads that have not failed and reinforcing these compromised areas before failure occurs 

and traffic and commerce has to be drastically altered elsewhere until the roadway is repaired. 

Also, AGS could easily scale the developed approach to work with much of the Boston Mountain 

region. Due to the nature of AGS’s GIS data being generally unavailable to the public, it is really 

the only agency that could easily continue working on this project at a larger scale as the backbone 

of this research relied heavily on the detailed 15-minute surveys conducted by AGS over the past 

decade. There is still much of the western Boston Mountains left to survey at the detailed 15-

minute quadrangle level, so a holistic model using the triggerless developed approach is still not 

presently feasible and, leaves the door open for applying this strategy in the future. A catalog of 

400+ mass wasting events has been collated for this research and can be requested for future use. 

Limitations within ArDOT’s data was brought to their attention and improvements have been made 
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on their part, to strengthen future data collection which will provide a greater depth and variability 

to future research examining time domains.  

Contributions related to severe weather analysis conducted as part of this thesis may have 

the most valuable impact on the state because this research has the potential to save lives and 

reduce injuries associated with severe weather by providing some of the highest detailed statistical 

analysis conducted for the state of Arkansas. Severity prediction can reduce the feeling of 

complacency perturbed by previous county assessment and will hopefully educate a greater 

percentage of Arkansans who live in areas prone to these severe weather patterns. This detailed 

analysis can provide the extra incentive to influence people and communities to build more storm 

shelters, overall providing the state with a greater abundance of private and public safe zones. State 

and federal grants exist that will greatly subsidize the cost of building storm shelters but 

surprisingly few Arkansans even know these options are available. Neighborhoods could come 

together and build shelters that could prevent tragedies like the April 2014 Mayflower Tornado, 

which tore through the Parkwood Meadows subdivision and ultimately claimed the lives of 16 

people that day. 

Second to preventing injuries and saving lives this research tied severe weather patterns in 

Arkansas to topography in a regional way that answered questions proposed by previous 

researchers. Patterns were observed in the weather data that appeared influenced by topography 

related to the Ouachita Mountains. Regression analysis confirmed these hypotheses and strongly 

indicated these pervasive patterns mean Arkansans will have to endure perpetual risk. Hence, the 

imperativeness for quality research as a foundation for state level hazard mitigation. 
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CHAPTER 2 

Nat Hazards https://doi.org/10.1007/s11069-018-3201-7 
 

A NOVEL TRIGGERLESS APPROACH FOR MASS WASTING SUSCEPTIBILITY 

MODELING APPLIED TO THE BOSTON MOUNTAINS OF ARKANSAS, USA 

Kyle W. Rowden and Mohamed H. Aly 
 

Received: 26 September 2017 / Accepted: 1 February 2018  
© Springer Science+Business Media B.V., part of Springer Nature 2018 
 

ABSTRACT 

This research deploys a novel mass wasting susceptibility modeling approach for cases 

where temporal information is unavailable, and circumstances are prejudiced to merit applying 

traditional susceptibility modeling strategies. Conventional models typically employ approaches 

deemed problematic for this study, e.g. biased weighted input; a “more is better” approach 

pertaining to voluminous inputs; neglecting geologic structural influence, and establishing 

temporal linkages between cause (trigger) and effect (failure) with a trigger being defined as a 

catalyst for failure, such as timed events like earthquakes or precipitation as well as physical 

changes like vegetation removal or slope disturbance. Road bias may also influence modeling 

dramatically when event data are derived from observations of road related failures, which become 

unreliable at predicting susceptibility in regions with no roads. However, a triggerless approach 

can extrapolate naturally occurring susceptibility via priori knowledge of local topography and 

structural geology factors. Two models are then created for comparison: one model has integrated 

Empirical Bayesian Kriging and fuzzy logic considering basically local topography and structural 

geology, while the second model has employed a standard implementation of a weighted overlay 

using all available (8) input data layers. Statistical comparisons show that the first model has 
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identified ~83%, compared to only ~28% for the latter model, of the 47 documented mass wasting 

events in in the selected study site. These results demonstrate that the introduced triggerless 

approach is efficiently capable of modeling mass wasting susceptibility in areas lacking temporal 

datasets, which in turn can help in mitigating future geohazards. 

Keywords Geohazard • Mass Wasting • Susceptibility Modeling • Analytical Hierarchy Process 

• Fuzzy Logic • Arkansas 

INTRODUCTION 

It is common for susceptibility models (SM) to make use of as many inputs as available, 

operating on the underlying assumption that the more inputs, the better the results (e.g. Carrara 

1983; Carrara et al 1999; Daneshevar 2014; Burns and Mickelson 2016; Kirschbaum et al. 2016). 

Traditional approaches for modeling mass wasting hazards may still achieve viable results even 

though they might ignore geologic discontinuities; however, a simple approach that considers local 

structural geology may achieve better results. Geologic discontinuities are structural 

vulnerabilities in the integrity of a planar rock surface and may include: faulting, foliations, 

jointing, and bedding plane orientation (Singhal and Gupta 2010). In fact, neglecting the influence 

of bedding dip amount (DA) and dip direction (DD) may suppress the overall success of any type 

of mass wasting susceptibility model (MWSM), as demonstrated in figure 1. Therefore, bedding 

plane attitude is being considered in this research as a significant factor influencing mass wasting 

events (MWE). 
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Fig. 1 Orientation of dipping strata can make a slope either more competent or less competent. 
Roads excavated at the down-dipping end are inherently more prone to rotational falls, block 
slides, and inevitable creep ultimately compromising the strength and integrity of the roadway with 
strike (S) and dip direction (D). 

The Boston Mountain Region (BMR) is an ideal study site for testing the introduced 

triggerless approach for mass wasting susceptibility modeling because the local geology and 

structure are relatively simple. During the Ouachita Orogeny (~270 mya) Paleozoic strata of the 

BMR was uplifted by the north-northwestern vergence of the South American Plate in relation to 

the North American Plate known as Laurentia (Kluth and Coney 1981; Arbenz 2008; Keller 2012). 

Although heavy folding occurred in the Ouachita Mountains, about 50 km to the south - the BMR 

had already been uplifted into a plateau and although the southern flank was modified along the 

MFZ, the interior geologic setting was left relatively undisturbed. Structural characteristics in the 

BMR can be summarized as a region of relatively flat lying, gently deformed, detrital 

Pennsylvanian strata, underlain by unconformable dominantly non-detrital Mississippian 

formations (Zachry 1979; Zachry and Sutherland 1984). Regional dip to the south ranges from 3° 

to 19° with an average of about 5° (Chinn and Konig 1973; Braden and Smith 2004; Cohoon 2013). 

Gentle deformation in strata stair-step away from the Pre-Cambrian basement core of the Ozark 

Dome (Arbenz 2008) occasionally produced dip inclinations >15° to the south. A laterally 

extensive fault system, known as the Mulberry Fault Zone (MFZ), delineates much of the southern 
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boundary for BMR (e.g. Zachary and Sutherland 1984; Link and Roberts 1986; Pontiff 2007) but 

faulting within the interior highlands of the BMR in proximity of the study area is sparse. It is 

worth noting that evaluation of MWE locations to proximity of faults found no direct correlation; 

therefore, local faults were not considered as an influencing factor in developing our modeling 

procedure. 

An approximately 1,200 km2 study area in BMR, with a relatively consistent geology 

avoiding complex structures on the peripheries and providing modes of anisotropic discontinuity 

such as changes in geologic formation, DD, and/or DA, has been selected for this research. This 

is crucial for our developed triggerless approach as DA and DD can be modeled through existing 

data with relative ease and structural characteristics present in the subsurface that might be 

inherently affecting regional susceptibility can be analyzed. DD intrinsically may lead to a more 

competent slope (up-dip) or a less competent slope (down-dip) when considering building a road 

on or excavating in inclined strata, as shown in figure 1. 

The aim of this paper is to develop a MWSM approach that can be applied not only to the 

specifics of Boston Mountains in Arkansas, but also to other regions, with similar geologic setting, 

experiencing mass wasting and lacking temporal datasets. Simplistic minimalist inputs applied in 

this research can definitely provide an efficient and effective solution. Research objectives are 

accomplished through a multi-faceted process involving interpolation and fuzzy modeling and the 

workflow (Fig. 2) can be broken into: (1) preparing necessary inputs including detailed MWEs, 

(2) reclassifying and converting geologic attitudes into a pseudo-structural layer (PSL), (3) 

interpolating and triggerless modeling, and (4) highlighting zones of potential failure for hazard 

mitigation. Ultimately, a statistical comparison is conducted between our new approach (model α) 

and a conventional weighted overlay (WO) (model β) to validate the efficiency of our triggerless 
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approach. Both models have particular strengths and weaknesses as explained, but results indicate 

that model α is superior to model β with regards to prediction accuracy. 

MASS WASTING INVENTORY FOR NW ARKANSAS 

All types of MWEs are considered in this research. These include, but are not limited, to 

rockfalls, rock topples, slumps, block slides, varying degrees of flows, and creep. Sporadic and 

localized case studies dealing with landslides have been conducted by the Arkansas Geologic 

Survey (AGS) (e.g. McElwaine 1966; McFarland and Stone 1981,1995; Bush and McFarland 

1984, 1992; McFarland and Hanson 2005; Howard 2008, 2009). Extensive research by Baker 

(2013) used a modified version of the Selby Numerical Model (1980) and cataloged 2,000+ 

outcrops in central Arkansas. Man-made features accounted for 77 failures as well and are 

compiled into the current MWE database.  

Perpetual road failures along numerous transportation corridors bisecting the BMR have 

resulted in restricted flow of commerce. Following Baker’s (2013) study, Arkansas Department of 

Transportation (ArDOT) maintenance crews conducted a statewide audit of failures along 

Arkansas roadways and added 321 MWEs to the database. Events recorded by ArDOT span 2013-

2016, but for unknown reasons MWEs related failure recorded around the beginning of the audit 

lack definitive dates defining the impetus for working around trigger correlated causality. An 

additional 14 MWEs, consisting of landslides or rock falls, were found from photogrammetric 

analysis and field surveys as part of the field research for this study. MWEs are mainly confined 

to Boston Mountains/Ozark Plateau and Arkansas River Valley physiographic regions with a 

minimal percentage in the Ouachita Mountains. Unconsolidated and flat lying quaternary deposits 
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Fig. 2 Flowchart for the overall process of creating the final triggerless mass wasting susceptibility 
model (MWSM). Denotation for abbreviations are: Landuse/landcover (LULC), digital elevation 
model (DEM), soil survey geographic database (SSURGO), Empirical Bayesian Kriging (EBK), 
and Analytical Hierarchy Process (AHP). 
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in the eastern Mississippi River embayment or West-Gulf coastal plain physiographic regions pose 

minor stability issues relative to roadways. For this reason, all physiographic regions outside the 

BMR are not being considered in this research. 

An unabridged mass wasting index was compiled from all available Arkansas datasets, 

totaling 423 locations (Fig. 3).  Current density of MWEs is inconsistent with historical USGS 

landslide SM produced by Radbruch-Hall et al. (1982) and later digitized by Godt (1997). This 

model falls short in addressing inherent risk, with minimal to no recent MWE occurring in areas 

designated as having the highest incidences of landslides. An overview of Godt’s product with the 

current extent of MWEs (Fig. 4) 

 

Fig. 3 Relative location of Arkansas (a) displaying distribution of mass wasting inventory (small 
triangles) across the state (b) and contained within the study area (c) 
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indicates these flagrant disparities and highlights the accuracy and unique contribution of our new 

model for NW Arkansas.  

Fig. 4 Arkansas mass wasting events (pyramids) highlighting disparity of distribution and density 
of events with the USGS landslide susceptibility map adapted from Godt (1997). 

 

DATASETS 

The backbone of this geospatial analysis relies on developing a PSL from field surveyed 

geologic attitudes of strike and dip measurements. GIS layers of Arkansas geologic attitudes and 

their attributes are presently unavailable to the public, but thankfully provisional GIS data were 

supplied by AGS to facilitate this research. These provisional GIS layers contain geologic 
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formations as digitized polygons and extensive field measurements in the attribute tables. An 

assortment of detailed (15-minute) geologic maps being bisected by Arkansas Scenic Highway 7 

are mosaicked together to cover the entire study site. Road failures related to MWEs over the past 

decade are locally well-known within the extent of the selected study area. Figure 5 shows an 

example of perpetual mass wasting problems along Arkansas Highway 7 adjacent to Round 

Mountain and immediately south of Jasper, Arkansas. 

Numerous datasets are retrieved from the Arkansas Spatial Data Infrastructure (ASDI) – 

formally GeoStor – and are listed in Table 1. Main vector data includes: (1) SSURGO soil data 

defining 1500+ variances in soil types developed by the United States Department of Agriculture 

(USDA) and the Arkansas Natural Resources Conservation Service (ANRCS). For ease in 

processing and manageability, the soil data are clipped to the study area and re-classified as either 

‘mountain’ soil types or the reciprocal ‘valley’ soil types. (2) Roads layer created by ArDOT and 

buffered into four classes of <100, 100-200, 200-300, and >300 m. (3) Geologic layers provided 

by AGS. (4) Geologic attitudes provided by AGS as vector points with associated attribute tables. 

(5) Lithology layer obtained from the United States Geological Survey (USGS). In addition, raster 

data include: (1) 1-arc second digital elevation model (DEM) developed by USGS, which is used 

to generate the slope model. (2) Landuse/landcover (LULC) created by the University of Arkansas’ 
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Fig. 5 Riprap with steep angle of repose, part of the most recent mitigation effort to a historically 
problematic failure zone along Arkansas Highway 7, looking north toward Jasper (a) and looking 
south uphill (b) with the summit of Round Mountain immediately west 
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Center for Advanced Spatial Technologies (CAST), which is classified into seven classes: barren, 

buildings, forest, grass, roads, shrub, and water.  

Table 1 Datasets used in the preliminary assessment of input variables, with abbreviations 
denoting Arkansas Geological Survey (AGS), landuse/landcover (LULC), Center for Advanced 
Spatial Technologies (CAST), Arkansas Spatial Data Infrastructure (ASDI), Arkansas Department 
of Transportation (ArDOT), soil survey geographic database (SSURGO), United States 
Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), and digital 
elevation model (DEM) 

Layer Dataset Resolution/Type Extent Source 

Geologic 
Formations 

15-Minute Quadrangle Polygons Central Arkansas AGS 

LULC Created by CAST 1-arc second (~30x30 m) Statewide ASDI (2006) 

Lithology Derived from USGS 
sources 

Digitized field maps in 
polygons 

USA USGS 
(2000) 

Roads Extracted from 
ArDOT shapefiles 

Functional Class Inventory Statewide ArDOT 

Strike/Dip 1;52,000 Geologic 
survey, 1729 points 

Vector layer 39˚15’W – 

92˚45’W 

AGS 

Soil SSURGO Vector Statewide USDA/NRC
S 

Slope  Generated from DEM 1 Arc Second (~30x30 m) Statewide USGS 

Inventory of  

Mass wasting 

events (MWE) 

(322) ArDOT 
inventory 

Points Statewide ArDOT 

(8) case studies Points Statewide AGS 

(77) case study Points Central Arkansas Baker (2013) 

(14) surveyed Points Boston 
Mountains 

In Situ 

 

METHODS 

DEFINING DIPS 

Constructing PSL begins with geologic attribute tables containing strike and DA 

measurements. Attitudes have been converted into two separate layers: (1) DD and (2) DA. 

Standard convention in the United States defines strike with adherence to the “right hand rule” 
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where strike is the azimuthal direction 90° counter-clockwise to the direction of dip, with a 

stratum’s dip being the direction in which water will flow unencumbered across a planar rock 

surface (Compton 1985). The geodatabase provided by AGS contains 783 attitudes within our 

study area.  

Through simple arithmetic, a strike azimuth can be converted to DD as follows: 

𝐷𝐷 =  𝑆𝑆 + [90],                                             (1) 

where D is the direction of dip, and S is the azimuthal direction of strike.  

Initial strike azimuthal directions >270° produce DD values beyond 360°, which are reclassified 

to respective values ranging from 1° to 89°. DD reclassified values that are represented as vector 

point data are interpolated using EBK, and then the interpolated DD are re-classified into 16 

categories combining complimentary pairs of 22.5° division. Values are grouped as (337.5°-360°) 

and (0°-22.5°) to characterize dips to the north. This process allows cardinal directions for north, 

northeast, east, southeast, south, southwest, west, and northwest to bisect the reclassified DD. 

Similarly, DA values are processed with EBK. DA values are categorized similar to dip angles 

corresponding to intensity and are defined with AGS field surveyed thresholds using intensity 

values as the following: gentle = 3.6°-7.5°, moderate = 7.6°-9.2°, intermediate = 9.3°-13.1°, and 

steep >13.1°. Later, both DD and DA layers are joined together with WO to create our PSL that is 

displayed in figure 6. Dips in the immediate vicinity of faults tend to be the steepest with 19:783 

attitudes exhibiting vertical orientation. Vertically oriented dips strongly influence nugget effects 

in kriging, a phenomenon often generated by outliers in the dataset. Kriging nugget effects are 

explained in great detail by Krivoruchko et al. (2006). 
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EMPIRICAL BAYESIAN KRIGING 

Kriging is a common interpolation method developed by Levy Gandin (1959) that 

statistically interpolates optimal predictions filling in the gaps in spatial data. Kriging interpolates 

counterfeit values with varying precision based on observation inputs (e.g. Journel 1983; Kulkarni 

1984; Omre 1987). Following Omre (1987), Bayesian kriging can be created by taking the kriging 

method and implementing a Lagrange minimization procedure. Empirical Bayesian Kriging 

(EBK) relies on exact interpolations derived from inputs based on empirical observations 

(Krivoruchko 2012), and outputs are predicted surface models where decision points run through 

empirical observation inputs that are unencumbered by the interpolated postulate. Consistency is 

guided by estimations from variogram functions, which makes the EBK method ideal for modeling 

areas containing dense data points (Omre 1987).  These strengths make EBK a choice method for 

geologic interpolation. Omre (1987) expresses EBK as: 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖 [𝛾𝛾𝑧𝑧|𝑀𝑀(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗) + 𝛾𝛾𝑀𝑀(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)] + 𝛽𝛽1 = 𝛾𝛾𝑧𝑧|𝑀𝑀(𝑋𝑋0 − 𝑋𝑋𝑗𝑗) + 𝛾𝛾𝑀𝑀(𝑋𝑋0,𝑋𝑋𝑗𝑗)],     (2)             

where j = 1,…, N,  ∑ = 1𝛼𝛼𝑖𝑖
𝑖𝑖 , and 𝛾𝛾𝑧𝑧|𝑀𝑀(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗) are the variance in estimations for unknowns 

across the difference between field values 𝑋𝑋𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑗𝑗, 𝛾𝛾𝑀𝑀(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗) is the variogram for a known  
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Fig. 6 (a) Geologic attitudes, (b) Empirical Bayesian Kriging (EBK) modeled dip amounts, (c) 
EBK modeled dip directions, and (d) Weighted overlay pseudo-structural layer created for 
triggerless modeling 
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priori evaluated across field values of 𝑋𝑋𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑗𝑗,  𝛽𝛽1is a Lagrange multiplier, and 𝑋𝑋0 is an 

independent third location. 

A lemma for when location of independent weights becomes unconstrained from 𝑋𝑋𝑜𝑜 

locations is defined by Omre (1987) as being: 

 𝛽𝛽1 = 𝐶𝐶 + [𝜎𝜎𝑀𝑀
2 (𝑋𝑋𝑜𝑜)
2

],        (3) 

where C is a constant brought into the equation, and 𝜎𝜎𝑀𝑀2  is the variance in the interpolation 

evaluated from the third location. 

CONDUCTING ANALYTICAL HIERARCHY PROCESS 

Quantitative evaluation of qualitative observations often times becomes the crux when 

working with subjectively perceived hazard scenarios (Kirschbaum et al. 2016). One common 

solution for priori observations is to implement a pairwise comparison using the analytical 

hierarchy process (AHP) matrix. A pairwise comparison matrix based on the scale shown in Table 

2 enables weighting variables, and comparisons can be assessed to a level of consistency (e.g. Aly 

et al. 2005). AHP, developed by Saaty (1977), computes the consistency ratio (CR) and use it as a 

consistency index (CI). CR serves as a critical statistical check to verify whether the pairwise 

comparisons are generated through random assignments of weights (Saaty 1977) and can be 

established as follows (e.g. Saaty and Vargas 1991):  

𝐶𝐶𝑅𝑅  =  𝐶𝐶𝐼𝐼/𝑅𝑅𝐼𝐼 ,                                                    (4) 

where RI is the resulting (consistency) index, dependent on Saaty’s (1977) matrix order. CI is the 

consistency index that is commonly expressed as:  

𝐶𝐶𝐼𝐼 =  (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛)/ (𝑛𝑛 − 1),                                 (5) 
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where the principle or largest eigenvalue calculated from the matrix is represented by 𝜆𝜆max and n 

denotes the order of the matrix. 

Table 2. Pair-wise comparison scale 

Ranking 
Hierarchy 

Importance Definition 

1 Equal Comparisons between objectives are 
essentially equal 

3 Moderate Slight favoritism between compared 
objectives 

5 Strong Strong favoritism between compared 
objectives 

7 Very strong Favoritism between compared objectives 

9 Extreme Most confident assertion of highest order 
value 

2,4,6,8 Intermediate weight  Middle point compromise between ranking 
integers 

1/9,1/7,1/5,1/3 Reciprocal values Serve as the inverse comparison juxtaposed to 
integers 

 

 Typically, any CI   ≤0.10 will suffice as a reasonably acceptable consistency level. Pairwise 

matrices generating CI’s >0.10 exhibit too much random inconsistency and require re-evaluation 

(Saaty 1977). For the initial AHP pairwise matrices determining which variables might be 

considered for the final model, all CI’s have values <0.08. Comparisons using AHP are conducted 

on the eight inputs and weights are assigned accordingly. Preliminary modeling results have 

indicated that the eight influencing factors have watered down the severity of the region, thus a 

conclusive decision has been made to discard all triggers, and hence the precipitation variables are 

not considered for further processing. Major contributing non-trigger factors have become the 
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focus of the modeling and three inputs, including the Bloyd geologic formation, slopes greater 

than gentle, and the geologic PSL, are considered for the remaining analyses. 

WEIGHTED OVERLAY ANALYSIS 

Integration of multi-criteria evaluation into GIS has been a time proven strategy for 

complicated spatial problem solving since the near inception of GIS (e.g. Keeney and Raiffa 1976; 

Nijkamp 1980; Voogd 1983; Carver 1991; Shahabi and Hashim 2015). ESRI, the creator of 

ArcGIS software used in this research, refers to weighted linear combination for multi-criteria 

modeling as a Weighted Overlay (WO) process that works on theorems developed by Voogd 

(1983) for weighting linear combinations. Superficially, WO is analogous to AHP weighting, but 

WO in ArcGIS cannot account for non-statistically viable bias that ultimately ends up influencing 

the outputs. In this research, all weights applied in any WO process are cross-checked via an AHP 

matrix to ensure acceptable CI values are present and to justify any priori weighting applied to a 

WO process. Weight applied to each factor results in the summation of a suitability or 

susceptibility output. WO is actually an easy means to facilitate AHP weighting in GIS, and 

therefore both techniques are used in concert. Eastman et al (1995) are credited with the summation 

defined as: 

𝑆𝑆 = ∑ (𝑊𝑊𝑖𝑖 ∗  𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑙𝑙 ,          (6) 

where S represents the suitability (susceptibility), Wi stands for factor I’s weight, and Xi denotes 

factor i potential rating. 

 Slope and Bloyd formation inputs are reclassified with Boolean assignment into two 

categories. Slopes: > gentle slopes = 1 and gentle slopes = 0. Bloyd formation: Bloyd Fm. = 1 and 

Non-Bloyd = 0. Coding pixel values as 1’s and 0’s denotes whether an input has any importance 
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at all (1) or no importance (0). A modified version of Eastman et al. (1995) suitability equation 

has been applied to these Boolean constraints layers: 

𝑆𝑆 = ∑ (𝑊𝑊𝑖𝑖 ∗  𝑋𝑋𝑖𝑖) ∗ ∏𝐶𝐶𝑗𝑗𝑛𝑛
𝑖𝑖=𝑙𝑙 ,            (7) 

where Π denotes the major product operator, and Cj represents the potential score constrained by 

j. Cartographic outputs for permutations involved in the PSL process are shown in Figure 6.  

FUZZY LOGIC AND MEMBERSHIP TRANSFORMATIONS 

 Calculating Euclidean distance is a critical initial step for fuzzy modeling. The Euclidean 

distance, which is the shortest distance between two points, is computed for all six chosen 

variables. All roads and mass wasting locations within the study area are selected and Euclidean 

distances are calculated. Slopes are categorized into four groups corresponding to the angle of 

slope: gentle slope (<7°), moderate slope (7.1°-15°), intermediate slope (15°-30°), and steep slope 

(>30°). Slopes greater than 7° have increased potential for failure, therefore Euclidean distance is 

calculated based on Gentle Slope (<7°), where reciprocal value represent all slopes with risk. The 

final two Euclidean distance layers were created for the Bloyd Formation and the Atoka Formation. 

These two Pennsylvanian formations are shale dominated with massive sandstone members and 

together account for a significant percentage of MWEs (Cohoon 2015). 

Discrepancies, inconsistencies, and biases are expected hindrances with SM, and thus great 

care must be taken by the analyst to mitigate output degradation (Kirschbaum et al. 2016). Fuzzy 

logic is a method for assigning a continuum of values ranging from 0 to 1, developing a 

membership where each member can be related by complement, convexity, inclusion, intersection, 

relation, union, or a plethora of other relations (Zadeh 1965). A conversion process takes place, 

often algebraically in the form of a “fuzzy membership function” (Bonham-Carter 1995). These 
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new input layers, representing possibility, can be created using either numerical data or statistical 

methods (Kirschbaum et al. 2016). In this study, AHP has been used to rank the multi-criteria 

factors and then the significant contributing non-trigger variables are fuzzy modeled. 

 Previously calculated Euclidean distances are the main inputs for the fuzzy memberships. 

Fuzzy membership transforms input data to fit within a range from 0 to 1 based on probability that 

any member might be found within a specific set. Fuzzy members not found within a specific set 

are given a value of 0. Conversely, fuzzy members falling within a specific set are assigned a range 

>0 and ≤1, where absolute certainty is defined as 1. 

Analogs for Zadeh’s (1965 and 1968), fuzzy algorithms have been applied to this study 

through ESRI’s fuzzy large and fuzzy near transformations. Fuzzy large is the optimal choice when 

the memberships approach 1, and thus it is applied to slopes > gentle. Fuzzy large is defined by 

ESRI (2016) as: 

𝜇𝜇(𝑥𝑥) =  1
1+( 𝑥𝑥𝑓𝑓2)−𝑓𝑓1

,         (8) 

where f1 represents member spread typically ranging between 1 and 10, f2 is a user-defined 

midpoint value, with ESRI’s being 0.5.  

 Fuzzy near transformation is a function where the membership ends up falling near a 

particular value where the midpoint is user-defined with a membership of 1 and the spread ends 

up decreasing to 0. Therefore, fuzzy near is the optimal function to use with our PSL and Bloyd 

formation inputs. Fuzzy near is expressed by ESRI (2016) as: 

 𝜇𝜇(𝑥𝑥) =  1
1+𝑓𝑓1∗(𝑥𝑥 𝑓𝑓2)1

,          (9) 
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where f1 represents the spread of members that typically ranging between 0.001 and 1. Like fuzzy 

large, f2 is a user-defined midpoint value for a fuzzy membership of 1.  

Fuzzy overlay is the last step in the fuzzy logic process, where all fuzzy membership 

possibility layers are combined together into one final output. Fuzzy locations with possibly values 

≥0.5 are considered susceptible to a MWE, thus fuzzy gamma overlay is applied in this case. Fuzzy 

gamma is defined by ESRI (2016) as:  

𝜇𝜇 = (1 −∏ (1 − 𝜇𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1 )𝛾𝛾  ×  (∏ 𝜇𝜇𝑖𝑖𝑛𝑛

𝑖𝑖=1 )1−𝛾𝛾,     (10) 

where µ represents pixels with high susceptibility for mass wasting, 𝜇𝜇𝑖𝑖 is any likelihood a MWE 

might occur relative to variable i, n represents the number of variables being combined, and 𝛾𝛾 

defines a parameter describing the highest or the lowest degree any input might be manifested into 

the fuzzy overlay output. 

Fuzzy gamma overlay establishes a multicriteria input relationship between possibility and 

examination of relationships without reliance on a single membership (ESRI 2016). Fuzzy gamma 

overlay is applied to the three fuzzy memberships to create the first part of the SM, and ultimately 

raster values are converted to points suitable for EBK interpolation. Raster attribute tables are built 

for models α and model β, enabling geometric interval classification of susceptibility risk into six 

risk classes. Figure 7 displays a diagrammatic workflow for all the processes and transformations 

that have been automated using ESRI’s model builder for expedience and replicability aiding 

heuristic exploration and analysis. 

NORMALIZATION 

Pixel values for each respective output are normalized providing a base for later 

quantitative comparison between our triggerless model and a conventional model. The final output 
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of each model is classified into six respective categories using geometric classification for 

distinguishing susceptibility risks as: low, low-moderate, moderate, moderate-high, high, and very 

high. Geometric interval classification serves as a compromise between quantile separation and 

natural breaks (ESRI 2016). Each class is evaluated using an adaptation of the Salciarini et.al 

(2017) approach to determine pixel value performance: 

∩,𝛼𝛼 =  (𝑇𝑇𝑐𝑐)(𝐴𝐴𝑐𝑐)
𝑅𝑅𝑎𝑎

,        (11) 

where 𝑇𝑇𝑐𝑐 delineates the total numbers of cells, 𝐴𝐴𝑐𝑐 is the relative pixel area, and 𝑅𝑅𝑎𝑎 is the grid area 

for the extent of the model and ∩ is the efficacy evaluation metric for each relative risk class pixel 

count. 

Next, an average of MWE’s per class is found where ∩𝑎𝑎 represented each class average: 

∩𝑎𝑎,𝛼𝛼 =  𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

,        (12) 

 where 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 stands for the number of MWEs occurring within each class, over the total 47 MWEs 

for the entire study area, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡.  

Final normalization is computed through the difference of equations (12) over (11) as a 

measure of specific MWE densities per class defined by 

𝜓𝜓,𝛼𝛼 =  ∩𝑎𝑎,𝛼𝛼
∩,𝛼𝛼

,                    (13) 

Each quantity for 𝑑𝑑𝑑𝑑,𝛼𝛼, ∩𝑎𝑎, and ∩,𝛼𝛼 represents the spatial distribution apparent for each 

class. The same process is used for normalization of model β. Both methods represent all MWE 

within models because all blank values in the WO method are reclassified to correspond with the 

low risk class.  



28 
 

 
Fig. 7 ArcGIS model builder diagram for the mass wasting susceptibility modeling, beginning 
with critical inputs previously determined though the Analytical Hierarchy Process of priori 
knowledge where the Bloyd Fm. is geologic formation with most influence, all slopes > gentle 
(gentle being <7.5°), and the pseudo-structural layer (referred to as PSL in text). 

 

SPATIAL AUTOCORRELATION 

Statistical comparisons between attribute values and feature locations are obtained by 

means of spatial autocorrelation (SA), utilizing Global Moran’s I. SA works on the premise of 

Tobler’s Law (1970) which states that near features are more closely related than features further 

away. Along with Moran’s I, both a p-score and a z-score are calculated as means of determining 

whether the complete spatial randomness null hypothesis can be rejected or not. Significance level 

(p-score) is a percentage of probability that clustering is related to an underlying spatial influence. 

P-score values range from 0.01 to 0.10 on the weak probability end and 0.01 to 0.01 on the strong 

confidence end. Small p-scores imply spatial patterns being observed are not from random 

processes. Z-scores are critical scores representing standard deviations and combined with 

corresponding p-scores constitute confidence. Z-scores range from <-2.58 with weak confidence 
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up to >2.58 for strong confidence. Z-scores ranging from -1.65 to 1.65 constitute represent the null 

hypothesis (Table 3). Moran’s I is computed as (ESRI 2016): 

𝐼𝐼 =  
𝑛𝑛 ∑ ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑆𝑆0  ∑ 𝑧𝑧𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
,               (14) 

where the attributes deviation of any feature i from mean (𝑥𝑥𝑖𝑖 − 𝑋𝑋) is  𝑧𝑧𝑖𝑖, total count of features is 

n, spatial weight between (𝑖𝑖, 𝑗𝑗) is 𝑊𝑊𝑖𝑖, 𝑗𝑗, and 𝑆𝑆0 is the assemblage of all spatial weights: 

𝑆𝑆0 =  ∑ ∑ 𝑊𝑊𝑖𝑖, 𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ,     (15) 

ZI-score is calculated through:  

𝑧𝑧𝐼𝐼 =  𝐼𝐼−𝐸𝐸[𝐼𝐼]
�𝑉𝑉[𝐼𝐼]

,             (16) 

where: 

𝐸𝐸[𝐼𝐼] = − 1
𝑛𝑛−1

,               (17) 

𝑉𝑉[𝐼𝐼] = 𝐸𝐸[𝐼𝐼2] − 𝐸𝐸[𝐼𝐼2],             (18) 

Attribute tables for MWE and model α now can be joined by a spatial relationship for each 

respective risk class based on distance in meters from each MWE. SA is then applied to the newly 

joined table based on ‘distance’ field permitting a determination that overall confidence between 

the relationships are not random. Autocorrelation is performed six times for the six classes at 

distances of: 1, 50, 100, 150, 200, and 250 m. As anticipated, a direct correlation between increased 

distance and increased confidence is observed.  

 

Table 3 Associated confidence intervals relative to Moran’s I for spatial autocorrelation.  
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Significance 

(p-values) 
Confidence 

Critical Value 

(z-score) 

0.01 99% <-2.58 

0.05 95% -2.88 – -1.96 

0.10 90% -1.96 – -1.65 

----- Null -1.65 – 1.65 

0.10 90% 1.65 – 1.96 

 

RESULTS AND DISCUSSIONS 

Primary inspection of model α finds distribution of risk ratings across the study area to be 

consistent with field observations, where the model’s moderate-very high risk classes match with 

in situ remarks. The opposite is true for model β because of the heavy influence of road related 

input bias. Steep valley walls and remote locations from roads that are expected to have 

considerable risk ratings are not reliably represented in model β. This is anticipated when modeling 

susceptibility using triggers like roads because they are narrow features and even buffering them 

by several hundred meters fails to enhance modeling accuracy in areas outside of the buffer zones. 

A substantial number of MWEs is identified in the lowest risk class of Model β, while MWEs 

appear well represented in the higher risk class of model α. 

Additional metrics for comparison are found by applying several distinctive quantitative 

techniques for further analysis, and the results are consolidated in Table 4. Averages of normalized 

pixel count success rates show both models are near equivalent at predicting very high risk: 4.16% 

and 6.91% for models α and β, respectively. This is unexpected considering the heavy influence 

of road bias into model β and success is hypothesized to be much higher with that model per 

average pixel count success. When risk classes moderate through very high are considered, both 
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models are comparable with average pixel success being 67.84% and 68.72% for models α and β, 

respectively. Tertiary comparison of risk classes of low and low-moderate show a likeness at 

32.16% (models α) and 31.28% (models β) normalized pixel success (Table 4). 

Table 4 Normalized pixel count comparison of model success relative to geometrically classified 
risk categories. 

Model 
 

Low Low-Mod Moderate Mod-High High Very High Total 

α 

Tc 6182 15974 21210 9432 13226 2866 68890 

Ca 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Ra 68890 68890 68890 68890 68890 68890 68890 

∩ 0.0897 0.2319 0.3079 0.1369 0.1920 0.0416 1.0000 

β 

Tc 115187 3147 29772 103132 100912 26147 378297 

Ca 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Ra 378297 378297 378297 378297 37830 378297 37830 

∩ 0.3045 0.0083 0.0787 0.2726 0.2668 0.0691 1.0000 

 

Accuracy for predicting number of MWEs within each risk class in both models is also 

analyzed. Model α has yielded only one MWE in the lowest risk class and has increased in 

accuracy in the higher risk classes.  On the other hand, 34 MWEs are found in the lowest risk class 

of model β. Model β exhibited a bi-modal pattern where MWEs are only contained in the extreme 

classes and middle risk classes show no events. With consideration of the four highest risk classes, 

model α achieves an overall 82.97% accuracy versus a 27.66% accuracy for model β. Remaining 

realizations for low and low-moderate risk classes convey that only 17.02% of MWEs are found 

in these classes of model α, which is at drastic variance with 72.34% found in these lowest risk 

classifications for model β (Table 5). 
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Table 5 Accuracy comparison of model success in predicting a mass wasting event (MWE) per 
geometrically classified risk categories. 

Model 
 

Low Low-Mod Moderate Mod-
High 

High Very 
High 

Sums 

α 

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 1 7 17 7 8 7 47 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 47 47 47 47 47 47 --- 

∩𝑎𝑎 2.13% 14.89% 36.17% 14.89% 17.02% 14.89% 100.00% 

β 

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 34 0 0 0 5 8 47 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 47 47 47 47 47 47 --- 

∩𝑎𝑎 72.34% 0.00% 0.00% 0.00% 10.64% 17.02% 100.00% 

 

An average (𝜓𝜓) of ∩ over ∩𝑎𝑎 quantifies a normalized effectiveness for each respective 

approach. Strengths equaling or surpassing 1.0 are being considered reliable. Model α delivers 

robustness across risk classes and summation of all 𝜓𝜓 values is 7.6086. Model β scores 2.3758 for 

low risk and 2.4627 for very high risk, with a summation of 𝜓𝜓 values being 5.2373 (Table 6). This 

can be thought of as relative strength comparison and the distribution strength for model α is 

juxtaposed to the inadequacies of model β (Fig. 8). A final strength check for model α, through 

SA, verifies that model α’s appointment of risk classes has a >90% confidence that random 

generation of risk classes is not occurring in its final output. SA is not performed for model β 

because this method already serves as a proxy for similarly established WO. SA determines 

likelihood that polygons in model α are not randomly assigned relative to known locations of 

MWEs. Referring to Table 3, confidence is >90% in all cases but drops to the lowest threshold for 

moderate and mod-high classes at 1 m distance, signifying the greatest potential weakness in the 

model. Table 7 arranges Moran’s I, z-scores, and p-values for spatial distance SA strength check, 

and figure 9 displays a side-by-side comparison of model α and model β. 
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Table 6 Normalization chart comparing models α and β where pixel values have been normalized 
to reflect each model respective accuracy. 

Model 
 

Low Low-
Mod 

Moderate Mod-
High 

High Very 
High 

Sums 

α 

∩ 0.0897 0.2319 0.3079 0.1369 0.1920 0.0416 1.0000 

∩𝑎𝑎 0.0213 0.1489 0.3617 0.1489 0.1702 0.1489 1.0000 

ψ 0.2371 0.6423 1.1748 1.0878 0.8866 3.5800 7.6086 

β 

∩ 0.3045 0.0083 0.0787 0.2726 0.2668 0.0691 1.0000 

∩𝑎𝑎 0.7234 0.0000 0.0000 0.0000 0.1064 0.1702 1.0000 

ψ 2.3758 0.0000 0.0000 0.0000 0.3988 2.4627 5.2373 

 

 

 

 

Fig. 8 Comparison of normalized (ψ) values for models α and β. 
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Table 7 Extracts from spatial autocorrelation conducted for model α relative to distances from 
mass wasting events (MWE). Model α has p-values of 0.10-0.01 and z-scores of >1.65 that indicate 
>90% confidence that all risk classes classified with a geometric interval classification are not by 
random chance, implying robustness and accuracy in applying a triggerless approach to 
susceptibility modeling. Model β is not considered because of inherent modeling bias in input 
weighting regarding roads and landuse/landcover. 

 
MWEs 1 7 17 7 8 7 47 

Meters 
 

Low Low-
Mod 

Moderate Mod-
high 

High Very 
High 

Averages 

1 Moran's I 1.00034 0.53645 0.46944 0.46655 0.53356 0.46699 0.57889 
 

z-score 3.40319 1.91845 1.77420 1.74930 1.98702 1.80106 2.10554 
 

p-value 0.00067 0.05505 0.07603 0.08239 0.04692 0.07169 0.05546 

50 Moran's I 0.98950 0.61923 0.36870 0.52896 0.62313 0.46441 0.59899 
 

z-score 3.38874 2.21768 1.42036 1.98868 2.32376 1.80461 2.19064 
 

p-value 0.00070 0.02658 0.15550 0.04695 0.02014 0.07114 0.05350 

100 Moran's I 1.01763 0.66250 0.35623 0.40827 0.54820 0.42440 0.56954 

 

In interpolation, quality is proportional to point distribution of knowns. Modeling in this 

research relies mainly on the 783 available geologic attitude measurements by AGS for developing 

a PSL. If the analyses were performed with less dense data distribution, the model’s quality would 

most likely degrade and conversely could stand to improve in quality with greater density and 

distribution. The same can be said for the strategy of modeling susceptibility using fuzzy logic 

when converting the output into points for EBK to fill out the gaps in the study area. It is critical 

to have quality distribution of point density. EBK is a powerful interpolation method and it has 

been shown to be critical in conclusory findings of the triggerless approach. 

The developed triggerless modeling approach has shown great promise in using a “less is 

more” technique to solve a problem with temporal limitations and the pervasive geology can be 

considered with an idealized scenario. However, the introduced approach may not be suitable for 
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applying over areas of complex geology where structural geology is heavily influenced by 

orogenic episodes, for instance. It has been argued (Wang and Strong 1996; Watts and 

Shankaranarayanan 2009; Haug et al. 2011) that limiting inputs can have negative effects on 

modeling, but necessary quality inputs always have priority. In this study, only the highest quality 

inputs with the most reliable and significant influence on causality with MWEs are used. Analysis 

of the triggerless model has identified numerous areas of historical events away from known roads 

(Fig. 9). We suggest that these areas be surveyed and monitored in the future. About 83% out of 

47 MWEs fell into moderate-very high-risk classes of our triggerless model, which is far more 

accurate than previously published model by Radbruch-Hall et. al (1982) and Godt (1997) (Fig. 

4). Certainly, the introduced triggerless approach provides good research foundation for further 

analysis in the future. 

CONCLUSIONS 

Standard practice for MWSM relies mainly on weighted trigger inputs and correlates with 

temporal commonality to predict failure. This approach works fine especially for timed events, but 

it becomes inapplicable when temporal data are unreliable or unavailable. Hurdles present in 

contemporary research methods regarding data limitations for modeling susceptibility are 

successfully overcome by creating a new PSL product of strike and dip, discarding unreliable 

triggers that weaken model’s predictive ability with extraneous bias, and fusing fuzzy logic and 

EBK for triggerless modeling. Mass wasting is a prevalent geomorphic process revolving around 

exogenic degradation. This research argues that underlying geology accentuates mass wasting 

susceptibility and therefore should not be excluded as a critical input in modeling. Our new 

triggerless approach has successfully predicted approximately 83% of documented MWEs in 

moderate-very high risk classes. The developed triggerless approach has been proven to provide a 
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new perspective to understanding inherent risk in the BMR in northwest Arkansas and can be 

duplicated for modeling mass wasting susceptibility in regions with similar geologic conditions. 

 When a road is constructed across hilly areas, the slope is compromised and most likely 

becomes a catalyst for failure. The BMR is not unlike any other plateau region, where existing 

road infrastructure is located across and along considerable sections of various slopes. Areas 

which may be more inherently prone to slope failure can be identified easily across sections of 

roads with the highest risk classes of our model and can be targeted for further in situ analysis as 

well as preventative mitigation. This is crucial for the region because previous models indicate 

that many vulnerable areas are diluted to low risk categories, conveying a false sense of safety. 

Generally speaking prior to this research, a holistic catalog of MWEs in Arkansas was not 

existing as datasets were punctuated across various departments and institutions. Currently, our 

geodatabase has over 400 MWEs for future research. 
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Fig. 9 (a) Triggerless model (α) employing Fuzzy logic and Empirical Bayesian Kriging (b) 
Conventional model (β) relying on weighted overlay of all available input layers where model β 
indicates a heavy road bias due to weighting roads as the most important factor influencing mass 
wasting events based on concurrent field observations 
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GIS-BASED REGRESSION MODELING OF THE EXTREME WEATHER PATTERNS 
IN ARKANSAS, USA 

 

Kyle W. Rowden and Mohamed H. Aly* 

ABSTRACT 

BACKGROUND 

Investigating the extreme weather patterns (EWP) in Arkansas can help policy makers and 

the Arkansas Department of Emergency Management in establishing polices and making informed 

decisions regarding hazard mitigation. Previous studies have posed a question whether local 

topography and landcover control EWP in Arkansas. Therefore, the main aim of this study is to 

characterize factors influencing EWP in a Geographic Information System (GIS) and provide a 

statistically justifiable means for improving building codes and establishing public storm shelters 

in disaster-prone areas in the State of Arkansas. The extreme weather events including tornadoes, 

derechos, and hail that have occurred during 1955-2015 are considered in this study. 

RESULTS 

Our GIS-based regression analysis provides statistically robust indications that explanatory 

variables (elevation, topographic protection, landcover, time of day, month, and mobile homes) 

strongly influence EWP in Arkansas, with the caveat that hazardous weather frequency is 

congruent to magnitude. 
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CONCLUSIONS 

Results indicate a crucial need for raising standards of building codes in high severity 

regions in Arkansas. Topography and landcover are directly influencing EWP, consequently they 

make future events a question of “when” not “where” they will reoccur. 

KEYWORDS: Extreme Weather, GIS, Regression Modeling, Risk Assessment, Arkansas 

INTRODUCTION 

Arkansas is located in the Southcentral Heartland of the United States of America (Fig. 1) 

and ranks 4th and 5th in the USA for tornado-related fatalities and injuries, respectively. From 1955 

to 2015, there have been 306 fatalities and over 4,800 injuries related to severe weather in Arkansas 

(FEMA 2008). Although no precise definition exists for what is colloquially referred to as 

“Tornado Alley”, the Federal Emergency Management Agency (FEMA) insets Arkansas in the 

center of the highest frequency region of the USA for high wind events (tornadoes and derechos), 

as shown in Figure 1. Hail, which can range in magnitude from pea-size to grapefruit size (NOAA 

2017) has been considered with these wind events. Such geoenvironmental weather-related 

hazards will continue to reoccur, thus it is fundamental to investigate their spatial and temporal 

patterns to advance understanding of their reoccurrence and to minimize human and environmental 

vulnerability. 

Spatio-temporal analysis of the extreme weather patterns (EWP) has been exhaustedly 

conducted for other states (e.g. Bosart et al. 2006; Gaffin 2012: Lewellen 2012; Lyza and Knupp 

2013); but until recently very limited analysis, focused on just storm severity of individual events 

and topography, has been conducted over Arkansas (e.g. Selvam et al. 2014; 2015; Ahmed and 

Selvam 2015a; 2015b; 2015c; Ahmed 2016). A three-dimensional overview of Arkansas’ 



44 
 

topography and weather patterns related to predominant wind directions elucidates a preference 

for these prevailing winds to funnel hazardous weather into concentrated zones along the eastern 

front of the Ouachita and Boston Mountains as well as through the Arkansas River Valley (Fig. 

2). Unfortunately, the severe weather tracks are mainly concentrated in the highest populated areas 

in Arkansas. 

 

Fig. 1 a. Light red region indicates the highest frequency of tornadoes in the United States of 
America. AR denotes the State of Arkansas. b. Physiographic provinces of Arkansas that have 
topographic and land surface features influencing severe weather patterns 

A common misconception propagates an axiom through rural communities that tornadoes do not 

occur in mountainous terrains, but this is just a myth (Lyza and Knupp 2013). Fujita (1971) first 

observed that tornadoes have a tendency to strengthen on the down-slope of their storm track. 

More researchers have followed Fujita’s footprints pursuing the relationship between topography 

and severe weather events (e.g. LaPenta et al. 2005; Bosart et al. 2006; Frame and Markowski 

2006; Markowski and Dotzek 2011; Gaffin 2012; Karstens et al. 2013; Lyza and Knupp 2013). 

Forbes et al. (1998) and Forbes (2001) provided more insightful observations: (1) widths of 

destructive swaths contract on down slopes, (2) intense swirls are most likely occurring at the base 
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of mountains or along the down slope path, (3) intensity of a tornado is likely to decrease on the 

upward slope, and (4) tornadoes are likely to weaken on a jump from one hill top to another and 

strengthen upon touching down on the adjacent hill. Lewellen (2012) elaborated on these 

observations and questioned whether topography might statistically provide zones of safety from 

severe weather. Other explanatory variables (EV) influencing damage include concentrations of 

mobile homes, often referred to as “trailer parks”. Keller and Niyogi (2013) examined the 

 

Fig. 2 Prevalent wind directions (southwesterly and westerly) and the related weather patterns. 1 
knot = 1.852 km/hr (or 1 nautical mile/hr). Arkansas Physiographic provinces are indicated as: 
Ozark Highlands (OH), Ouachita Mountains (OM), Boston Mountains (BM), Arkansas River 
Valley (ARV), Crowley’s Ridge (CR), Mississippi Alluvial Plain (MAP), and South Central Plain 
(SCP) 

phenomenon of tornado attraction to mobile home communities and determined that these 

communities do not attract strong weather events as much as these communities are constructed 

in the undesirable hinterlands that are heavily prone to severe weather patterns. 
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Severe weather will continue to strike Arkansas as well as the rest of the world. As this is 

unavoidable, then the main concern is how patterns of extreme weather can be used to promote 

effective disaster mitigation efforts. Crichton (1999) defines risk as the probability loss that may 

occur based on three components (Fig. 3): (1) hazards, (2) vulnerability, and (3) exposure. The 

specific objective of this study is to investigate spatial and temporal patterns associated with 

extreme weather phenomena (tornadoes, derechos, and hail) at the state level from 1955 to 2015 

by standardizing and constraining all documented weather events to a 10x10-km grid. Grid 

standardization provides a systematic approach to examine subsets of severity, including 

frequency and magnitude, via extrapolating statistics related to fatalities, injuries, and property 

loss. Geostatistical analysis utilizing Ordinary Least Squares (OLS) regression is powerful in 

Fig. 3 The risk hazard triangle (adapted from Chrichton 1999). Hazards pose no risk if there is not 
some amount of exposure and vulnerability 

determining the most disaster-prone areas in Arkansas, and results support initiatives to improve 

building codes in high risk areas (e.g. FEMA 2008; Safegaurd 2009). This research will definitely 

improve awareness of potential hazards related to extreme weather and will help the policy makers 

in making informed decisions with regard to public storm shelters across Arkansas. Moreover, the 
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developed GIS procedure can be replicated to investigate the spatio-temporal patterns of severe 

weather in other locations across the world. 

STUDY AREA 

Along with tornadoes, Arkansas is prone to powerful supercell thunderstorms that can 

produce large magnitude hail storms and deadlier derechos (also known as “straight-line winds” 

or “micro-bursts”), which are strong wind events with gusts exceeding 50 knots. Historically, the 

highest injury and fatality counts related to severe weather in Arkansas and the rest of USA predate 

the 1950’s when the first weather forecasting station was installed at Tinker Air Force Base in 

Oklahoma, coinciding with President Harry Truman’s signing of the Civil Defense Act (CDA) in 

1950 (Galway 1985; Bradford 1999l;2001; Coleman et al. 2011). The CDA mandated installation 

of warning sirens across the USA, which became the saving grace for countless Americans from 

severe weather strikes.  

Although the National Weather Service (NWS) issues weather forecasts, severe weather 

warnings come out of the local offices (located in Little Rock in the case of Arkansas) and the 

Storm Prediction Center (SPC) releases severe storm watches (Edwards 2017). Early detection and 

warning are important factors reducing exposure to severe weather, but still the contemporary 

technology cannot predict weather with 100% accuracy. The National Climatic Data Center 

(NCDC), part of the National Oceanic and Atmospheric Administration (NOAA), has recorded 

1,681 tornadoes from 1955 to 2015 (NCDC 2013; NOAA 2017). Figure 4 tragically shows 

fatalities and injuries suffered by Arkansas during the time frames examined in this study. 
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Fig. 4 Injuries and fatalities due to severe weather in Arkansas during 1955-2015. No fatalities 
have been attributed directly to hail. Property damage has exceeded $660 million dollars. A total 
of 132 injuries and 15 fatalities are attributed to derechos, with 27 injuries and 11 deaths just 
between 2010 and 2015. Tornadoes are the most damaging events with 291 fatalities and 4,723 
injuries along with billions of dollars in property damage during the study period. No fatalities or 
injuries occurred in years 1958 and 1963 

Arkansas has three main population centers located in unique regions across the state. 

These being the Little Rock metropolitan area that includes Little Rock, Jacksonville, Cabot, 

Benton, Maumelle, and Conway located in the geographic center of the state; northwest Arkansas 

(NWA) which includes Fayetteville, Springdale, Rodgers, and Bentonville; and lastly Jonesboro 

in northeastern Arkansas. All these regions are vital socio-economic hubs for the state and the 

USA and unfortunately are prone to the most violent episodes of hazardous weather. 

The city of Little Rock (Pulaski County) houses the State Capital along with all major state 

agency headquarters as well as large private sector corporations such as Dillard’s, a fortune 500 

company headquartered in Little Rock (Fortune 2017). Little Rock’s population is ~200,000 

people. When taking into consideration the counties adjacent to Pulaski County, there are over 

700,000 residents with even more working in this region daily (U.S. Census 2016). Central 

Arkansas is consistently hit with the highest frequency and magnitude events annually. For 
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instance, on April 27, 2014, the Mayflower Tornado touched down about 25 km northwest of Little 

Rock carving a 70-km path of destruction. This tornado remained on the ground for over 60 

minutes, reaching a maximum width of ~1 km, killed 16 lives and injured over 120 people. This 

was the second deadliest single tornadic event in Arkansas in the past 50 years.  

NWA is the second most populated area in the state with the two counties (Benton and 

Washington) having a combined total of 500,000 residents (U.S. Census 2016). The University of 

Arkansas located in Fayetteville is the largest university in the state with a current enrollment of 

~28,000 students in fall of 2017 (UA 2017). Multiple fortune 500 companies are headquartered in 

NWA, these being Walmart (#1 biggest company in the world), Tyson Foods, J.B. Hunt 

Transportation (Fortune 2017) along with the ancillary business these companies drawn in. 

Walmart, and its related U.S. distribution, is anchored in Arkansas with 6 of Arkansas’ 10 

distribution centers, supporting the billion-dollar corporation being located in NWA. Although not 

immediately in Arkansas, the May 22, 2011, EF-5 Joplin Tornado was one of the most powerful 

and deadliest tornadoes in U.S. history and was responsible for 158 fatalities, over 1,150 injuries, 

and $2.8 billion dollars’ worth of damage (Kuligowski et al. 2014). It is conceivable that a tornado 

of this magnitude could strike NWA. 

Lastly, Jonesboro, the county seat for Craighead County has a population of more than 

100,000 residents and supports the second largest university in the state; Arkansas State University 

with 25,000+ enrollments (ASU website 2017). Although this region of Arkansas doesn’t have the 

quantity of people as the aforementioned regions, Jonesboro serves as the agricultural center for 

Arkansas as well as much of the USA. Arkansas is the number-1 rice producing state in the USA 

by raising more than 50% of domestic rice. Billion dollars agriculture companies, such as Riceland 
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Foods, Inc., operate out of this region and export more than 60% of Arkansas rice (ARFB 2017) 

to the international market. 

 The Mississippi Alluvial Plain (MAP) often referred to as the Arkansas Delta is a flat 

lowland physiographic region nearly void of any topographic relief apart from Crowley’s Ridge 

just west of Jonesboro. This type of landscape is particularly favorable for agriculture but 

meanwhile it is also proper for broad sweeping weather patterns with the capability of inundating 

the region with heavily rains. For instance, a hail event occurred in May 2015 in close proximity 

to Walnut Ridge (45 km northwest of Jonesboro) produced hail up to 5 inches in diameter. Hail of 

this size is large enough to kill people and livestock, as well as destroy roofs of houses. Fortunately, 

this event missed a direct hit on Walnut Ridge and occurred across the agricultural land adjacent 

to the town. Derechos frequently strike this region accounting for 30% of all derechos in the state. 

Single microburst can cause millions of dollars in damage such as the event on May 12 of 1990 

that was responsible for $6 million dollar in property loss. Derechos’ magnitudes may exceed 100 

knots, such as the recent event on January 22, 2012. This same weather system also spawned 7 

tornadoes and blanketed the MAP region with hail up to 3 inches; emphasizing the 

interconnectedness of all three severe-weather types within a single storm. Event details and 

weather-related statistics are extracted from the GIS metadata that are publicly available through 

NOAA and NWS geodata as part of the Storm Prediction Center’s Severe GIS (SVRGIS) data 

repository. 
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METHODOLOGY 

GIS is employed to categorize and compartmentalize unique attributes from datasets into 

equal interval 10x10 km grids for the entire state. Grid analysis provides a higher level of 

specificity to weather patterns compared to the broad, low precision county level analysis 

previously conducted by multiple governmental and state agencies (e.g. FEMA 2002; 2008; 

NCDC 2013). The complete process along with the conducted regression analysis steps are 

demonstrated in the flowchart shown in figure 5 and are explained below. 

GRIDDING AND STANDARDIZING INPUT DATA 

Fishnetting allows storm tracts to be standardized into grids, supporting field summing, as 

well as later analysis of original attributes. Grid size is standardized to 10x10 km in this study.  A 

1-arc second digital elevation model (DEM) for the state is classified into ten classes using an 

interval of 82.66 m that closely mirrored a stretch classification method. These respective elevation 

attributes are then joined to the 10x10 km grid. Primary alchemy applied to this analysis revolves 

around the spatial join tool available in ArcGIS release 5.10.1 presenting two valuable options: (1) 

one-to-one, where a 1:1 ratio is maintained and the choice to sum totals is used to get sums of 

attributes for each respective cell and (2) one-to-many, which allows user selected attributes from 

a line, representing a storm track, intersecting multiple grid cell to be added. The one-to-many 

spatial join has been used in this study to model event frequencies for each respective weather 

hazard. 
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Fig. 5 Workflow for grid standardization and creating a statewide severity index 
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CREATING SEVERAL INDICES 

Initially, event frequency and magnitude vectors are converted into raster, where the cell 

values of each respective variable become a grid code output, then the frequency and magnitude 

are combined for each weather event. Later, a severity index is established for each respective 

weather event, with each component of the triad being combined into a final statewide severity 

index using this simple formula:  

SSI = TS * DS * HS         (1) 

where SSI is the statewide severity index, TS is the tornado severity, DS is the derecho severity, 

and HS is the hail severity. 

EXPLORATORY REGRESSION 

Regression analyses provide a means for exploratory data trends, offering statistical scrutiny of 

influential spatio-patterns. The exploratory regression (ER) tool in ArcGIS (5.10.1) provides a 

simplistic means for trial and error experimentation, allowing the analyst to narrow down factors 

that may be influencing the dependent variable model. ER is employed in this study as a first step 

investigation to conduct an OLS regression on the most influential variables. Explanatory variables 

(EV) considered in this analysis are found to be: trailer parks, elevation, topographic protection, 

physiographic ecological sub regions. These variables are chosen based on results from previous 

works (e.g. LaPenta et al. 2005; Bosart et al. 2006; Frame and Markowski 2006; Markowski and 

Dotzek 2011; Gaffin 2012; Karstens et al. 2013; Lyza and Knupp 2013) that show strong 

correlations between topography, elevation, land cover features, and windward aspects of 

topographic features to directly influence strength and subsequent severity of weather events. 

Several statistical properties are used to determine the strength of EV. 
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The coefficient of determination referred to as Adjusted R2 and evaluated by Steel and 

Torries (1960) as: 

 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(𝑛𝑛−𝑘𝑘)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛−1

�                (2) 

where R is the coefficient for multiple regressions, k, denotes the quantity of coefficients 

implemented in the regression, n, the number of variables, SSError, the sum for standard error and 

SSTotal is the total sum of squares. 

The statistical t-test developed by Gosset (1908) can be simplified as: 

 𝑡𝑡 =  𝑍𝑍
𝑠𝑠

=  
(𝑋𝑋�−𝜇𝜇)� 𝜎𝜎

√𝑛𝑛
�

𝑠𝑠
                (3) 

where 𝑋𝑋� is representative of the sample’s mean where the sample ranges from X1, X2,…. Xn, out of 

a size n, which follows a natural tendency of normal distribution between the variance in 𝜎𝜎2 and 

𝜇𝜇, with 𝜇𝜇 denoting mean population, and 𝜎𝜎 being the standard deviation in the population. 

Koenker (BP) statistic that is a chi-squared test for heteroscedasticity, originally developed 

by Bruesch-Pagan (1979) and later adapted to by Koenker (1981), is expressed as: 

 𝐿𝐿𝐿𝐿 = 1
2
� 𝑁𝑁
𝑛𝑛(𝑁𝑁−𝑛𝑛)� �∑ �𝑢𝑢�𝑡𝑡
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              (4) 

in which LM is a Lagrange Multiplier, N denotes the number of observations, n the sample size, 

𝑢𝑢�𝑡𝑡2 are the dependent gamma residuals, 𝜎𝜎�2is the estimated residual variance in observations. 

Akaike’s Information Criterion correction (AICc) is used to estimate relative quality for a 

given statistical model and is based on information theory and serves as a means of ranking the 

quality of multiple to models with respect to one another. AICc is based on Akaike Information 

Criterion (AIC) (Akaike 1973; 1974; 2010) and corrects for a finite sample size: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 2𝑘𝑘 (𝑘𝑘+1)
𝑛𝑛−𝑘𝑘−1

               (5) 
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with k denoting the number of parameters and n, the sample size (e.g. Burnham and Anderson 

2002; Konishi and Kitagawa 2008). 

The Jarque-Bera statistical test is used to check for data sample skewness and kurtosis 

match on a normal distribution curve through: 

 𝐽𝐽𝐽𝐽 =  𝑛𝑛−𝑘𝑘+1
6

 �𝑆𝑆2 + 1
4

(𝐶𝐶 − 3)2�              (6) 

in which S is skewness in the dataset, C is the sample’s kurtosis, n the number of observations, and 

k represents the quantity regressors (e.g. Jarque and Bera 1980; 1981; and 1987).  

The reciprocal of tolerance (also known as the maximum Variance Inflation Factor - VIF) 

(Belsley et al. 1980; Belsley 1984; O’brien 2007) can be expressed as: 

 𝑉𝑉𝑉𝑉𝑉𝑉 =  � 1
�1−𝑅𝑅𝑖𝑖

2�
�                 (7) 

where tolerance of the ith variable is 1 less, the proportion of variance which is  𝑅𝑅𝑖𝑖2 (O’brien 2007). 

The Spatial Autocorrelation (SA) essentially draws on a Global Moran’s I value based on 

Tobler’s Law (1970) to calculate p-scores and z-scores. P-scores designate probability percentages 

that range from 0.10 to <0.01 (weak), null, and 0.10 to <0.01 (strong). Z-scores represent standard 

deviations, when combined with a strong corresponding p-scores indicate robust confidence. 

Ranges for Z-scores are (weak) <-2.58 up to (strong) >2.58. Moran’s I is defined by ESRI (2016) 

as:  

 𝐼𝐼 =  
𝑛𝑛 ∑ ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑆𝑆0  ∑ 𝑧𝑧𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
,               (8) 

where deviation of an attribute’s feature, I, from mean (𝑥𝑥𝑖𝑖 − 𝑋𝑋) is  𝑧𝑧𝑖𝑖, n denotes total feature count, 

spatial weighting between (𝑖𝑖, 𝑗𝑗) becomes 𝑊𝑊𝑖𝑖, 𝑗𝑗, and lastly the amalgamation of these spatial 

weights is 𝑆𝑆0: 
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 𝑆𝑆0 =  ∑ ∑ 𝑊𝑊𝑖𝑖, 𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 ,                (9) 

ZI-scores are calculated with: 

 𝑧𝑧𝐼𝐼 =  𝐼𝐼−𝐸𝐸[𝐼𝐼]
�𝑉𝑉[𝐼𝐼]

,                       (10) 

where: 

 𝐸𝐸[𝐼𝐼] = − 1
𝑛𝑛−1

,                    (11) 

 𝑉𝑉[𝐼𝐼]𝑎𝑎 = 𝐸𝐸[𝐼𝐼2] − 𝐸𝐸[𝐼𝐼2],                     (12) 

ORDINARY LEAST SQUARES 

OLS is perhaps the most commonly used form of regression analysis in GIS. Amemiya (1985) 

defines it as: 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3 +  ⋯⋯𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 +  𝜖𝜖          (13) 

where y is the dependent variable which is the variable that is predicting or explaining the model 

and is a function of X, which are coefficients representing EVs that, together, help answer y. β are 

regression coefficients that are calculated through algorithms running in the GIS background and 

β0 is the regression intercept and represents an expected outcome for y and ε are the residual 

random error terms.  

As part of the OLS process, we run a SA utilizing Global Moran’s I, which determines the 

likeliness of randomly chosen EVs relative to their spatial distribution and impact. Other statistical 

outputs included in the final OLS include: (1) StdError and (2) RobustSE, which are errors in 

standard deviation; (3) t-statistic and (4) Robustt which are ratios between an estimated value of a 

parameter and a hypothesized value relative to standard error; (5) probability and (6) robust 

probability (Pr), which are the statistically significant coefficients (p<0.01); should initial 
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probability values possess a significant (7) Koenker statistic, then (pr) is used to determine 

significance of coefficient; (8) VIF factors (>7.5) that are indicative of redundancy; (9) Joint Wald 

statistic, which help determine model’s overall significance if Koenker value is significant; and 

finally (10) AICc and (11) R2, which are measures of model’s overall fit and performance.  

QUANTILE CLASSIFICATION 

Quantile classification is used for the symbology of all choropleth maps. Quantile is chosen as the 

appropriate means for classification because it creates classes based on equal division of units in 

each class (e.g. Cromley 1996; Brewer and Pickle 2002; Burnham and Anderson 2002; Xiao et al. 

2007, Sun at al. 2015). Quantile classification most closely represents the input data trends that are 

poorly represented using other classification methods, such as Jenks-Natural breaks, equal interval, 

standard deviation, and geometric classifications. 

RESULTS AND DISCUSSION 

Patterns with strong positive correlations are detected between the frequency of severe weather 

events and time of day, elevation, and magnitude (Tables 1-3). Primary patterns are explored in 

the preliminary determination of EV used in the exploratory regression. The three types of hazards 

showed a strong tendency to occur between 2:00 and 10:00 pm (Tables 1-3). This is a noteworthy 

observation because Arkansas becomes dark around 5:30 pm in fall and winter months, reducing 

the visual line-of-sight to nearly null and limiting rural residents visual warning detection. A 

second pattern is found at the elevation of 165 m with the highest frequency of 660 out of 1677 

tornadic events (~40%) occurred during the study period. A higher frequency of hail and derecho 

events are found to occur at the 165-m elevation. A tertiary pattern is found occurring within a 

narrow range between 200 m and 250 m. A third pattern and the strongest positive correlation is 

found between frequency and magnitude, indicating a natural tendency for these weather hazards 
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to be strong in areas of high frequency. Such areas are experiencing the highest severity and risk. 

A fourth pattern found is that the spatial distribution of these events occurs in the central part of 

Arkansas in the surrounding area of Little Rock (Figures 2 and 12). This metropolitan area has the 

highest population density, ~350,000 residents – this number approaches 500,000 during work 

days. The highest severity rankings for all weather events are centralized around Little Rock. This 

area also has the highest property and crop damage due to extreme weather events. 

Tornadoes are, by far, the most destructive and deadliest of the three weather types 

considered in this research (Fig. 4). Tornadoes have posed a serious risk for Arkansans long before 

weather data archival began in 1950. Figure 6 highlights several geospatial patterns and illuminates 

the directional tendency of tornado paths to propagate in a northeastern direction. Lineaments of 

destruction can be followed along the eastern flanks of the Ouachita and Boston Mountains (these 

physiographic features are marked in Fig. 1 and Fig. 2), with property damage totaling over $300 

million dollars in individual grid cells (Fig 6e). Crop damage is the least concern with respect to 

tornadoes. This being said, the majority of the highest magnitude EF-4 tornadoes has occurred in 

the past decade, including the April 27 of 2014 Mayflower tornado that killed 15 people and 

injured over 100 (Selvam et al. 2014). OLS analysis provides strong indications that the EV of 

month, time of day (TIME_ADJ), physiographic region (AR_ECO_ID), trailer parks, and 

topographic protection to be robust indicators in the final model, where * denotes statistical 

significant p-values in Table 1. OLS output has ±2 standard deviations of residuals from best 

prediction indicating that EVs predict ~80% of the model as determined from residual R2 value of 

0.78686. Std output shown in figure 7 displays a dominant ±1 std for over-prediction/under-

prediction of the final model. These results are reliable being within the accepted ±2 std of error.  
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Table 1 Ordinary Least Squares results for tornadoes 
 

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 
 

Intercept 2.9560 0.2807 10.5299 0.000000* 0.2917 10.1329 0.000000* -------- 

Month 0.0279 0.0059 4.7338 0.000003* 0.0058 4.8383 0.000002* 1.0391 

ADJ_TIME 0.0246 0.0035 7.0107 0.000000* 0.0031 7.8801 0.000000* 1.1056 

SUM_MAG 0.4708 0.0042 112.0444 0.000000* 0.0049 96.6009 0.000000* 1.1092 

AR_ECO_ID -0.0021 0.0002 -13.1645 0.000000* 0.0002 -11.4925 0.000000* 1.0497 

Protection 0.1328 0.0517 2.5702 0.010193* 0.0403 3.2951 0.001009* 1.0600 
 

Intercept -6.3259 0.5174 -12.2254 0.000000* 0.4869 -12.9926 0.000000* -------- 

Month -0.0274 0.0109 -2.5071 0.012203* 0.0107 -2.5624 0.010423* 1.0452 

ADJ_TIME 0.0096 0.0065 1.4702 0.141599 0.0057 1.6650 0.096012 1.1194 

Event (Sum) 1.6066 0.0145 111.0131 0.000000* 0.0173 92.6609 0.000000* 1.1401 

Elevation -0.0011 0.0004 -3.0899 0.002030* 0.0004 -3.0349 0.002434* 1.9239 

Trailer Parks -0.0411 0.0080 -5.1587 0.000001* 0.0082 -5.0265 0.000001* 1.1378 

AR_ECO_ID 0.0054 0.0004 15.1201 0.000000* 0.0004 13.6639 0.000000* 1.5146 

Protection 0.0552 0.1118 0.4935 0.621665 0.0894 0.6170 0.537257 1.4571 

   Joint 
Wald 

Jarque-
Bera 

Koenker 
(BP) 

Statistic 

AICc Adjusted 
R2 

  

   11822.594 254.1233 1002.2988 13317.7251 0.78686   

Significant p-values (p< 0.01) are denoted by *, StdError is the standard deviation error, t-statistic 
is the ratio between estimated and hypothesized values relative to StdError, probability and robust 
probability (Pr) are significant when (p<0.01), Koenker statistic determines significance of 
coefficients, and VIF is the variance inflation factor with values >7.5 are indicative of redundancy. 
Joint Wald determines overall significance if Koenker value is significant, AICc and R2 represent 
overall fit and performance 

Lyza and Knupp (2013) noted four common modes of behavior with tornadoes that can 

help explain the high magnitude and frequency in central Arkansas along with the protected zones 

in the Ouachita and Boston Mountain region immediately north of the Arkansas River Valley. 

Mode 1: where tornadic strength deteriorates on the up slopes, proved to be consistent in the 

findings of Selvam et al. (2014) with the Mayflower Tornado. Mode 2: tornado whirl pattern 
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intensifies on plateaus but weakens as the whirl moves of the plateau, potentially helping to explain 

the central Boston Mountain low severity zone. Mode 3:  tornado tracts tend to follow valleys like  

 

Fig. 6 Tornado Damage (grid cell = 10x10 km): a. Sum of all events (frequency) b. Sum of EF 
tornado magnitudes c. Fatalities (some grids approach 40 fatalities over the 60-yr study period) d. 
Injuries (many grids show 650+ injuries over the study period) e. Property damage follows the 
same path of the largest magnitude tornadic events f. Tornado severity index  

 

a hallway, once again related to the Ouachita Mountains which are systematically folded long 

linear ridges and valleys helping funnel wind driven weather patterns from west to east into Little 

Rock. Mode 4: tornadoes have a tendency to trace the edges of ridges and plateaus. That has been 

also observed by Selvam et al. (2014) in Mayflower and can explain the strong tendency of EF-3 

and EF-4 tornadoes to trend along the eastern boundary that the Ouachita Mountains makes with 

the Mississippi Embayment (refer back to Fig.1 for physiographic provinces of Arkansas). 
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Fig. 7 Ordinary Least Squares regression analysis for explanatory variables [month, time of day 
(TIME_ADJ), physiographic region (AR_ECO_ID), trailer parks] influencing frequency and 
magnitude of Tornadic Events. Grid cell = 10x10 km 

Derechos are the second most destructive hazardous weather events in Arkansas. 

Investigation of spatial patterns has identified the highest magnitude cluster in northwest Arkansas. 

This is critical because NWA has the second highest population in the state, 300,000+ residents as 

well as a large commuter group working in the metropolitan area, and the region is an economic 

hub for the USA. Property damage and crop loss may reach into $17.4 million dollars for single 

grid cells (Fig. 8). Fatalities are infrequent but do occur with these events, however injuries are 

more common (Fig. 4) due to the violent nature (50-100 knots) and the abruptness of these events, 

which just seem to come out of nowhere. OLS conducted on derecho events and magnitude (Fig. 
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9), using EVs of time, month, elevation, topographic protection, sum of magnitudes, sum of events, 

mobile home concentration, and eco-region, has produced robust and statistically significant 

(p<0.01) coefficients, except for elevation, which is not found to be a good EV for event frequency 

although patterns are observed at specific elevations previously mentioned. Outside of these tight 

elevation windows, random patterns are observed. Table 2 shows the OLS outputs for the 

regression analysis. The R2 of 0.9857 has a strong indication that the EVs chosen are sufficient at 

explaining the dependent variables. OLS shows that all explanatory inputs have VIF values below 

2, where VIF values >7.5 indicate redundancy of EVs. 

Table 2 Ordinary Least Square results for derechos 
 

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 
 

Intercept -32.346 2.3571 -13.7229 0.000000* 1.9912 -16.2441 0.000000* -------- 

Elevation 0.001 0.0016 0.6341 0.5260 0.0013 0.7589 0.4479 1.7764 

Month 0.407 0.0650 6.2605 0.000000* 0.0620 6.5668 0.000000* 1.0309 

TIME_ADJ 0.128 0.0258 4.9677 0.000001* 0.0248 5.1690 0.000001* 1.0270 

AR_ECO_ID 0.024 0.0016 15.1470 0.000000* 0.0015 15.3767 0.000000* 1.3115 

Protection 4.716 0.4971 9.4886 0.000000* 0.3091 15.2565 0.000000* 1.4236 
 

Intercept -423.667 41.0222 -10.3278 0.000000* 33.5516 -12.6273 0.000000* -------- 

Trailer Parks 2.423 0.5258 4.6078 0.000006* 0.5302 4.5697 0.000007* 1.1736 

Event (Sum) 39.873 0.1577 252.7619 0.000000* 0.1959 203.5371 0.000000* 1.1379 

Elevation -0.425 0.0281 -15.1447 0.000000* 0.0255 -16.6968 0.000000* 1.8430 

Month 4.531 1.1255 4.0255 0.000065* 1.0887 4.1618 0.000037* 1.0340 

TIME_ADJ 1.603 0.4466 3.5889 0.000348* 0.4341 3.6920 0.000237* 1.0294 

AR_ECO_ID 0.340 0.0284 11.9668 0.000000* 0.0272 12.5045 0.000000* 1.4518 

Protection 61.355 8.6204 7.1175 0.000000* 6.3061 9.7296 0.00000* 1.4340 

   Joint 
Wald 

Jarque-
Bera 

Koenker 
(BP) 

Statistic 

AICc Adjusted R2   

   409245.6 5144.80 3643.4876 74204.573 0.9857   

Results are initially derived from exploratory regression analysis of explanatory variables to 
determine variables that have had the most significant influence 
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Fig. 8 Derecho damage (grid cell = 10x10 km): a. Sum of all events b. Derecho magnitude (0-100 
knots) c. Fatalities d. Injuries e. Property damage (structures or vehicles) f. Derecho severity index 
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Fig. 9 

Ordinary Least Squares regression analysis for explanatory variables influencing frequency and 
magnitude of derechos (grid cell = 10x10 km). OLS analysis of key explanatory variables showed 
to predict 98% of weather patterns for derechos with standard deviation (std) of residuals falling 
within ± 1 std 

 

Hail is found to be the least destructive and the least problematic of the three weather types 

being considered in Arkansas. Hail is often associated with tornadoes and derechos but has 

occurred in localized incidents across the state, as shown in figure 10. A line of destruction 

amounting to $7 million dollars’ worth of crop loss and $85 million dollars in property damage 

can be traced directly east of Little Rock, Arkansas (Fig. 10e). No fatality due to hail events has 

occurred during the study period and injuries are minimal (Fig. 4). Figure 10 displays OLS results 
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for event frequency and magnitude from inputs of EVs: time, month, elevation, topographic 

protection, sum of magnitudes, sum of events, eco-region. These EVs produced statistically 

significant coefficients with p-values <0.01, implying a robust model for explanation of historical 

hail patterns. OLS outputs in Table 3 provide ancillary validation for R2 values of 0.84911, 

indicating the respective EVs chosen are sufficient at explaining ~85% of dependent variables. 

Applying EVs (time, month, elevation, topographic protection, sum of magnitudes, sum of events, 

concentration of mobile homes) to OLS regression analysis for events and magnitude (Fig. 11) 

shows that these EVs perform well at explaining most of the events but as with tornadoes and 

derechos still struggled at fully explaining the highest frequency and magnitude of events found 

in central Arkansas. This being said, even the outliers fall within ±2 stds of error. 

Our summed statewide severity product (Fig. 12) is consistent with local outputs from 

previous case studies by ADEM and FEMA (FEMA 2002) and clearly identifies various zones of 

severity across the entire state. This can help the state and other governmental agencies focus on 

the identified vulnerable spots to build public shelters and offer residential shelter grants. An 

interesting pattern of low severity found in the central Ouachita and Boston Mountains is 

consistent with topographic terrain protection theories proposed by previous researchers 

The summed severity map shows a strong correlation between high severity and major 

population centers. A similar observation has been documented by Kellner and Niyogi (2013) 

where they spatially calculated touchdown points in Indiana to find that 61% of EF0-EF5 

tornadoes touchdown within 1-3 km of urban landuse area bordering landcover classified as 

forest. Areas surrounding Little Rock in central Arkansas, which have had the highest incidence 

of tornadic and derecho activity, suffer from not only topographic terrain influence in the 
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Ouachita Mountains to the immediate west, but also a wind corridor effect through the Arkansas 

River Valley, as well as flat topography with land surface heterogeneity. 

Table 3 Ordinary Least Squares results for hail 
 

Variable Coefficient StdError t-Statistic Probability Robust_SE Robust_t Robust_Pr VIF 
 

Intercept -0.0296 0.2200 -0.1346 0.8929 0.2050 -0.1444 0.8852 -------- 

SUM_MAG 0.8729 0.0009 1023.3266 0.000000* 0.0016 561.5929 0.000000* 1.0212 

MO 0.0409 0.0076 5.3547 0.000000* 0.0078 5.2433 0.000000* 1.0241 

HAIL_TIM_2 -0.0082 0.0033 -2.4808 0.013107* 0.0033 -2.4926 0.012680* 1.0196 

ELEVATION 0.0015 0.0001 10.8536 0.000000* 0.0001 12.5462 0.000000* 1.2704 

AR_ECO_ID -0.0004 0.0002 -2.1620 0.030620* 0.0002 -2.2770 0.022785* 1.2861 
 

Intercept -0.2115 0.2501 -0.8456 0.3978 0.2248 -0.9406 0.3469 -------- 

SUM_EVENT 1.1281 0.0011 1023.3266 0.000000* 0.0021 533.7691 0.000000* 1.0215 

MO -0.0422 0.0087 -4.8542 0.000002* 0.0088 -4.7753 0.000003* 1.0244 

HAIL_TIM_2 0.0115 0.0037 3.0678 0.002173* 0.0037 3.0856 0.002049* 1.0194 

ELEVATION -0.0018 0.0002 -11.2164 0.000000* 0.0001 -12.8938 0.000000* 1.2698 

AR_ECO_ID 0.0008 0.0002 4.1671 0.000037* 0.0002 4.5625 0.000007* 1.2851 

   Joint Wald Jarque-
Bera 

Koenker 
(BP) 

Statistic 

AICc Adjusted 
R2 

  

   47365.25 2445.7748 1057.0264 190276.91 0.84911   

OLS analysis shows very low VIF values meaning low model redundancy and all explanatory 
variables prove to be statistically significant denoted by asterisk (e.g. Fujita 1979; Lapenta et al. 
2005; Bosart et al. 2006; Gaffin 2012; Lewellen 2012; Lyza and Knupp 2013). These observed 
patterns are consistent with aforementioned explanations for transitional zones of moderate 
severity as well as pockets of highest severity where topographic corridors funnel westerly 
storms along the eastern front of the Ouachita’s and the second pattern through the Arkansas 
River Valley toward Little Rock.  
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Fig. 10 Hail Damage (grid cell = 10x10 km): a. Sum of all events b. Magnitudes for hail ranging 
between 0.1 and 9.0 (pea-size to grapefruit respectively) c. Fatalities d. Injuries sustained during 
hail events e. Property losses including structures and vehicles f. Hail severity index. No fatalities 
have been directly attributed to hail during the study period, so choropleth has been omitted and 
instead crop loss has been represented instead because of the significant damage 
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Fig. 11 Ordinary Least Squares regression analysis for explanatory variables influencing hail: a. 
frequency b. OLS are dominant within 1 standard deviation (std) for explanatory variable residuals 
c. magnitude d. OLS shows low (<1) standard deviation for residuals signifying robustness of 
model prediction 
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Fig. 12 Summed statewide severity index. Pattern indicates the natural tendency of hazardous 
weather to affect the central portion of Arkansas and shows protected zones across the state. Each 
grid cell equals 10x10 km 

CONCLUSIONS 

Complacency is a deadly human tendency that overcomes residents, especially when 

weather-related disasters have not occurred in recent years. Severe weather events sometimes 

occur simultaneously during the largest and most powerful storm system such as the example of 

the January 22 of 2012 that impacted the entire Arkansas Delta. Robust and viable statistics can 

help re-enforce the imperative need for storm shelters and higher building codes to better prepare 
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for such extreme weather events. Better understanding of severe weather patterns and preferential 

tendency for storms to frequent certain cities, regions, or trajectories is the first step in mitigating 

risk by minimizing exposure and vulnerability in these highest severity regions. 

Analysis of the severe weather events from 1955-2015 reveals a very strong positive 

correlation with time of the day, in association with the three weather types under consideration. 

The extreme weather events are found to most likely occur between 2:00 and 10:00 pm local time. 

This is of vital importance because line-of-sight is reduced to near zero visibility at night, thus 

residents in most of fall and winter months must rely on National Weather Service warnings. 

Raising public awareness to the frequency and likelihood of such geoenvironmental risks 

occurring in evening hours may help bolster residents taking advantage of FEMA funding for 

building residential shelters in rural areas and community shelters in more urban settings. 

Our findings in this study provide statistically robust evidence for variables that respond to 

Lewellen’s (2012) question regarding whether it is statistically possible to prove that topography 

might influence regional weather patterns. Along with topographic influence, this study also found 

that other physiographic features such as elevation, physiographic provincial sub regions, and most 

importantly the windward protection afforded to leeward sides of physiographic features are 

statistically significant EV in predicting severe weather patterns.  

The explanatory variables of time of day, month, elevation, physiographic region 

(subclass), topographic protection, elevation, and concentration of trailer parks are not only 

effective at forecasting severe weather patterns but also have been found to be statistically robust 

through OLS regression analysis. Susceptibility models based on these variables may provide 

substantially higher precision for spatio-temporal patterns, which in turn can be used by ADEM 

and FEMA as well as other first responding agencies, and residents to better access risk beyond 
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the broad umbrella of previous county-wide assessments. The developed methodology can be 

applied to a broad spectrum of severe weather around the globe to improve hazard mitigation and 

help with preparedness for geoenvironmental disasters. 
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CHAPTER 4 

CONCLUSION 

The main objective of this research could be summed up as to whether or not GIS could be 

used to affectively address spatio-temporal patterns associated with major geohazards. Much focus 

has been conducted on earthquakes because of the pandemonium and obsession with the New 

Madrid Earthquake of 1812 and the Guy-Quitman Swarm 2010-2011 associated with a 

compromised injection well. Apart from these focal points, detailed research on severe geohazards 

had been tragically understudied in Arkansas and offering some remedy to that deficiency was the 

foremost aim of this research. Much headway was gained through this research by using ArcGIS 

to unlock, model, and statistically analyze the patterns in each respective dataset allowing high 

confidence prediction of susceptibility and severity. 

Speaking for the mass wasting research, possibly one of the biggest contributions was 

bringing attention to detail during data collection and dataset creation for the landslide team at 

ArDOT. Lack of critical information, especially temporal information associated with locations of 

failures along highways is a critical next step in doing high quality landslide susceptibility work. 

It was not apparent before this study that ArDOT include these ancillary attributes in their data 

catalogs. This problem has been remedied for the future which opens a whole new field of research 

that can be conducted on down the road.  

The mass-wasting susceptibility modeling used a novel and very effective approach to 

model and predict future areas of high risk by sifting and weighting inputs with the Analytical 

Hierarchy Process (AHP) and then going for an Occam’s Razor approach of just using the very 

most significant variables for modeling and then applying a hybridization of Fuzzy modeling and 

Empirical Bayesian Kriging to generate the final susceptibility model. Roads were entirely 
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removed from the model to minimize any bias, and the best attempts were made to reduce a priori 

weighted bias to the datasets by applying the AHP. The model was verified against the observed 

road failures by ArDOT, which constituted, by far, the largest collection of mass wasting events 

in Arkansas but only was focused around major roadways and neglected essentially the rest of all 

non-paved roadways and land. This novel approach achieved an approximately 83% accuracy, 

while a heavily biased Weighted Overlay (WO) approach, modeled susceptibility using all 

significant explanatory variables. This WO approach was wrought with multi-collinearity biased 

issues and heavily focused on roads as the root cause behind these failures only managed to predict 

~28% of failures.  

Quality scientific research and attention to detail allowed this mass wasting research to be 

published in Springer’s Journal of Natural Hazards as Rowden KW, Aly MH (2018) A novel 

triggerless approach for mass wasting susceptibility modeling applied to the Boston Mountains of 

Arkansas, USA, Natural Hazards, pp 1–21, doi:10.1007/s11069-018-3201-7. This should speak 

volumes for itself and now this research can be queried and accessed all over the world. With time, 

techniques from this novel approach will hopefully be implemented by other researchers across 

the globe and add provide solutions to regions analogous to the Boston Mountains. 

The second part of this research also employed GIS to address spatial patterns within 

complex severe weather data. The National Oceanic and Atmospheric Agency (NOAA) and their 

syndicates of the National Weather Service (NWS) and Storm Prediction Center (SPC) catalog 

and broadly analyze severe weather across the United States but little outside of individual storm 

systems is worked with. Within the state level Arkansas Department of Emergency Management 

(ADEM) and the local branches of the NWS choose to look at severe weather risk at the county 

level or as hotspot on kernel density heat maps. Both of these common approaches put Arkansans 
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at a great disadvantage of knowing their state of vulnerability at their location of residence. What 

this research successfully did was systematically fishnet the state in 10x10km grids and then assign 

severe weather events to each grid, building a sizeable attribute catalog of potential explanatory 

variables to which Exploratory Regression and Ordinary Least Squares regression techniques were 

used to whittle out the most significant explanatory variables influencing the spatial patterns 

observed in the NWS/SPC datasets. 

What these aggregate to is a unique and highly detailed analysis into weather severity at a 

very focused local level for the entire state. The products from this research, could (and should), 

be used by state entities such as FEMA and the Governor’s Office to plan for better ways to inform 

and protect Arkansans living in the path of highest risk. Federal grants and state grants exist for 

subsidize storm shelters and to my astonishment during interviews with Arkansans all across the 

state not one single person knew there is free money out there to build a storm shelter on their 

property. Yet, everyone fears tornadoes and worries about where to seek shelter during a severe 

thunderstorm capable of generating tornadoes, derechos, and large hail.  

It is my upmost hope that this part of the thesis research will be taken to heart and influence 

public opinion. In cases such as the April 2014 Mayflower Tornado which completely decimated 

a neighbor and took 16 lives, a large neighborhood shelter could have greatly changed the outcome 

of that tragic event. This is the quintessential essence of hazard mitigation. We research deeply 

into a problem and create a model that explains and accurately predicts future areas of risk so that 

the general public can educate themselves and plan for the worst and the governmental bodies in 

charge of taking the public’s best interest to heart can plan larger-scale and more costly ways of 

mitigating risk. Knowledge is power and therefore as scientists it is so important to speak scientific 

truth to power, especially in cases of governmental negligence or ignorance.  



79 
 

As with the first paper, the quality of research and attention to scientific detail lead to this 

second paper being published in Springer’s Journal of Geoenvironmental Disasters as: Rowden 

KW, Aly MH (2018) GIS-based regression modeling of the extreme weather patterns in Arkansas, 

USA, Geoenvironmental Disasters, pp 1-15, doi:10.1186/s40677-018-0098-0. This should speak 

volumes to the quality of research which has been peer-reviewed in an open-access international 

journal and hopefully lead researchers all over the world to these techniques for furthering their 

own research and mitigating risk in their areas of focus. 

GIS is a powerful system. GIS pools from all fields of science and blends these diverse 

theories and algorithms in a software package that can uniquely and effectively handle complex 

spatial and temporal problems. GIS applications proliferate through all realms of research 

institutions, private sector, and public-sector agencies and institutions. Therefore, GIS was a 

logical vehicle for exploring spatial and temporal patterns within big datasets. 
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