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Abstract 

Broiler production in Arkansas was valued at over $3.6 billion in 2013 (University of 

Arkansas Division of Agriculture Cooperative Extension Service). Consequently, improvement 

in any phase of the production process can have significant economic impact and animal 

welfare implications. One area of concern for the poultry industry is thermal stress 

experienced by the birds after arrival at the processing plant and before they are taken in to be 

processed, during which time they are left to wait in holding sheds. Various cooling strategies 

exist to mitigate heat stress in holding sheds, but in most cases it is unlikely that they are 

optimal. A computational fluid dynamics (CFD) model was developed using the commercial 

package ANSYS Fluent to simulate airflow through a poultry trailer in a typical holding shed 

configuration. The CFD model was compared to experimental data gathered from a poultry 

processing plant in Northwest Arkansas. The CFD model was able to replicate general trends 

and relative magnitude of air velocity through the trailer. In addition, three different design 

alternatives were created to evaluate the usefulness of the model as a tool to improve holding 

shed cooling strategies. This research showed that CFD could be a potential method to simulate 

conditions on poultry trailers in holding sheds and test various holding shed cooling strategies. 

However, it was concluded that a more robust system of validation was necessary to prove the 

accuracy of CFD for this purpose for most applications.  
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1. Introduction 

 

During the transportation of poultry, birds can be subjected to extreme heat or cold.  

These conditions are concerning, because temperature extremes on poultry are a major cause 

of physiological stress and are the foremost cause of dead birds on arrival (DOAs) (Hoxey et 

al., 1996; Kettlewell et al. 2001). The national annual averages for DOA percentages from 

2000 to 2005 were between 0.35 and 0.37% ( Ritz e t  a l ., 2 0 0 5 ). Assuming a n  a n n u a l  US 

production of 8.5 billion broiler chickens, this accounts for a loss of about 30 million birds. 

Such losses have large economic ramifications in addition to being an animal welfare issue. 

Heat stress in particular has been recognized as a major cause of bird mortality. The 

range of conditions in which the birds are able to regulate internal body temperature is the 

thermoneutral zone. The thermoneutral zone for broilers in transit has been found to be 8 to 

18 °C (46 to 64 °F) for well-feathered broilers packed densely together, well below typical 

production and transport conditions (Webster et al., 1993). Consequently, during the summer 

months, DOA percentages can increase to over 1.0% (Hoxey et al., 1996). Even if birds 

survive, shrinkage can occur and quality of meat can still be affected by increased toughness 

(Schwartzkopf-Genswein et al., 2012). 

Commercial trailers for carrying chickens from farms to processing plant are composed 

of groups of modules and are open to the atmosphere during summer months. Transport of 

poultry to the processing plant utilizes natural ventilation. When birds arrive at the processing 

plant, trailers are parked in holding sheds, and birds are left to wait for a period of time. Data 

taken from previous studies in northwest Arkansas has shown this waiting period to range 

from 90 to 130 minutes (Liang, 2015). Holding sheds utilize ambient air and fan banks in a 

variety of arrangements for cooling. Fans placed along the sides of trailer modules force air 
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through the modules, providing a convective cooling effect on the birds. Tunnel ventilation 

systems are commonly used in poultry houses for this reason. A common goal for tunnel 

ventilation systems in poultry houses is to generate air velocity of 3.0 m/s (Dozier et al., 

2005). Research has shown that 1 m/s airflow over broiler chickens resulted in similar 

growth rates over 7 weeks to birds raised in still air that is 1°C cooler, while 2 m/s airflow will 

had the same effect as air that is 3.7 °C cooler (Huffman, 2000). The environment of a poultry 

house and that of a poultry trailer are not identical however, and packing densities are higher 

on a trailer. For ventilation of a poultry trailer, Kettlewell et al. (2000) proposed a ventilation 

rate of 3 m3/s, equivalent to 2.16 m3/hr/kg live-weight and corresponding to air velocities of 1 

m/s. 

Currently, the operation of fans and cooling protocol in poultry holding sheds is not 

supported by engineering research, and practices vary from plant to plant. For example, at one 

commercial plant in Springdale, Arkansas, cooling fans are turned on when ambient 

temperature exceeds 70° F (21.1°C); however, it is unknown whether this practice is optimal. 

The effectiveness of different fans and fan configurations under varying environmental 

conditions is not well understood. A study by Ritz et al. (2005) cited the need for future 

investigation into the number and configuration of holding shed fans, the benefit of 

evaporative cooling capabilities, and attention to trailer placement within holding sheds. 

A field based study testing various cooling scenarios would be costly and time 

consuming. Testing alternative number and position of fans and placement of poultry trailers 

may interfere with processing plant operations. Computational fluid dynamics (CFD) could 

potentially be a cost effective and more convenient way to model conditions within a poultry 

trailer positioned in a holding shed. CFD is a numerical modeling technique to solve and 
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analyze problems involving fluid flow. The use of CFD has become more popular in recent 

years due to increased computing power and ease of use. In this study, a CFD model was 

created to simulate airflow within a poultry trailer positioned within a typical holding shed. 

ANSYS Fluent 17.0 software was used for all CFD simulations. ANSYS software is used for 

a variety of engineering applications, including aerodynamics, heat transfer, and structural 

studies. Fluent is a program developed by ANSYS for solving problems involving fluid flow, 

and has been applied in numerous studies pertinent to this research (Bustamante et al., 2013; 

Gilkeson et al., 2016; Norton et al., 2013).  

For this study, adequate knowledge of the holding shed domain and accurate 

implementation of flow physics into Fluent was necessary. The following sections give a brief 

introduction to CFD software and its applications in similar studies and then outline the 

objectives of this research.  

1.1 Literature Review 

The Navier-Stokes equations are a set of partial differential equations that describe fluid 

motion. The Navier-Stokes equations account for conservation of mass (1), conservation of 

momentum (2), and conservation of energy (3). For an incompressible fluid with isothermal 

properties these are: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝑥𝑖
(𝑝𝑢𝑖) = 0  (1) 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 + 𝐹𝑖   (2)  

𝜕

𝜕𝑡
(𝜌𝑐𝑇) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑐𝑇) −

𝜕

𝜕𝑥𝑗
(

𝐾𝜕𝑇

𝜕𝑥𝑗
) = 𝑆𝑇  (3) 
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where ρ is fluid density (kg/m3); t is time (s); x, xi, xj are length components (m); ui, uj are 

velocity component (m/s); p is pressure (pa); τij is the stress tensor (pa); gi is gravitational 

acceleration (m/s2); Fi  is the external body forces in the i direction (N/m3); c is the specific heat 

(W/kg*K); T is the temperature (K); K is thermal conductivity (W/m*K); ST is the thermal source 

term (W/m3) (Bustamante et al., 2013). 

Discrete solutions for the Navier-Stokes equations are difficult to obtain. In order to 

simulate fluid flow, CFD follows a series of steps (Norton et al., 2007): 

 Creation of a model geometry 

 Discretization of model geometry into a finite number of elements (meshing) 

 Specification of cell zone conditions and boundary conditions at surface/zone interfaces 

 Transformation of partial differential equations for conservation of mass, momentum, and 

energy within each element to a system of discrete, algebraic equations 

 Iterative calculations of the conservation equations until solution convergence 

 Analysis of results and validation 

Use of CFD in agricultural engineering has become more prevalent in recent years due to 

advancements in computer technology. Simulations are now faster and more accurate than 

before, making CFD a valuable tool in a wide range of applications. The advantages of CFD are 

numerous. Chiefly, CFD enables quick testing of multiple design alternatives, making it a 

powerful, cost effective and efficient decision-making tool.  In addition, researchers can examine 

a much greater number of points within a problem domain when compared to field 

measurements (Blanes-Vidal et al., 2008). Furthermore, many CFD programs provide visual 
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representation of results, such as contours of temperature and pressure and vectors for air 

velocity.  

Due to the importance that ventilation rate and air temperature serve in the thermal 

comfort of farm animals within their environments, CFD and its capabilities are very attractive. 

Early applications of CFD modeled the indoor environment of greenhouses. Building on these 

studies, many publications have used CFD in studies of indoor conditions of swine, poultry, and 

livestock houses and carriers. In addition, CFD has been used to model polluting emissions from 

livestock houses. Several of these studies are summarized below. 

Dalley et al. (1996) attempted to use numerical modeling to characterize the thermal 

environment that chickens are exposed to during commercial transport. More specifically, 

temperature, humidity, and ventilation rate within the transport trailer were calculated. Data from 

a series of full-scale wind tunnel experiments was used to input boundary conditions in a CFD 

model. A commercial CFD model was not used; rather, a numerical model based on the 

conservation of mass and energy was developed. While not as powerful and full featured as CFD 

models that exist today, the computer model did predict temperature and relative humidity in the 

trailer over time and space, and showed sensitivity to external environmental conditions and 

wind direction. The study concluded that computer modeling could be used as a tool to estimate 

the internal environments of different trailer journeys and configurations (Dalley et al., 1996) 

Early versions of commercial CFD software were applied to greenhouse environments. 

Kacira et al. (1998) used the commercial CFD program Fluent V4 to predict ventilation for 

different configurations of inlets and outlets in a greenhouse. This early study showed the 

importance of computer power in CFD studies, as researchers were limited in the size of the 
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computational domain and calculation times were on the scale of 8 to 24 hours per simulation. 

Nonetheless, the researchers were able to identify a specific inlet configuration for ideal 

ventilation rates based on results of the model. 

Similar to research on greenhouses, later studies attempted to predict ventilation rates 

within livestock houses. A research paper by Blanes-Vidal et al. (2008) applied CFD to quantify 

ventilation rates within a poultry house to identify possible conditions dangerous to the thermal 

comfort of birds. The CFD code Fluent 6.0 was used. Boundary conditions for inlets and outlets 

were determined from on-site measurements. Four different boundary condition scenarios were 

tested. Results from the simulations were validated using air velocity and temperature 

measurements within an actual poultry house. According to the authors, simulated air results 

were “a reasonable estimation of velocities in a commercial poultry building” (Blanes-Vidal et 

al., 2008). CFD simulations over estimated mean air velocities at bird height by 0.18 m/s (0.54 

m/s for the simulation compared to 0.36 m/s from measurements) (Blanes-Vidal et al., 2008). 

The authors concluded that CFD can provide “useful information about the actual airflow in 

commercial poultry buildings” (Blanes-Vidal et al., 2008). This study did not take into account 

the presence of chickens within the model and their effect on airflow or heat production. 

A similar study by Bustamante et al. (2013) applied the CFD code Fluent to mechanically 

ventilated poultry houses. Different set ups for number of fans and inlet openings were tested. 

Results from CFD simulations were validated with a multi-sensor system. CFD results showed 

close agreement with experimental data (mean of air velocity values was 0.60 ± 0.56 m/s for 

CFD techniques and 0.64 m/s for direct measurements). 
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Many CFD programs have the ability to model species transport. Due to this capability, 

several studies have used CFD to model gaseous emissions from agricultural houses in addition 

to results for air ventilation and temperature and humidity conditions. Pawar et al. (2007) used a 

2D model in the CFD code Fluent to model the spread of virus particles from a poultry house. 

Two ventilation schemes were tested, and one was found to better limit the spread of 

contaminants downwind. However, CFD simulations in this study were not validated with 

experimental data. A study by Rong et al. (2015) used CFD to model ammonia emissions from a 

swine house. CFD also has been used to simulate gas mixing within swine houses (Stikeleather 

et al., 2012). 

More pertinent to this study, examples of the application of CFD to model airflow 

through poultry and livestock trailers do exist, though in fewer quantities than those concerned 

with poultry or livestock houses. Gilkeson et al. (2016) used the commercial CFD package 

ANSYS Fluent to simulate passive ventilation through a livestock trailer pulled by a generic 

towing vehicle. Notable in this study was the coupling of internal and external flow domains; 

that is, air flowing around the vehicle and trailer and through the trailer. Results from the 

computer simulation showed reasonable agreement to wind tunnel measurements for a 1/7th scale 

model from a previous study (Gilkeson et al., 2009). Researchers were also able to suggest 

improvements to common trailer design to facilitate better airflow through the lower portion of 

the trailer.  

A study by Hui (2013) sought to develop and validate a CFD model to quantify 

ventilation and thermal conditions on poultry trailers subjected to winter conditions in Canada. 

The study consisted of multiple parts, including the design of an actively heated and ventilated 

experimental vehicle; field testing of this experimental vehicle; development, calibration, and 
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validation of CFD models to simulate environmental conditions within experimental trailer; and 

usage of the CFD model to test different design alternatives. Notable in this study was the use of 

a porous media solution to approximate the influence of chickens on airflow through poultry 

modules. Viscous and inertial resistance coefficients were chosen based on the dimensions of 

chicken forms and volume relative to the empty space within each module (Hui, 2013).  

Concerning porous media, the benefits of using this technique are significantly reduced 

mesh size and improved calculation speed and accuracy. Wu et al. (2012) used a porous model to 

represent the animal occupied zone (AOZ) in a study for determining air exchange rates within a 

naturally ventilated dairy cattle building. Resistance coefficients for the porous media were 

found using a sub-model. The sub-model consisted of four model cows arranged within a part of 

the building. The pressure drop across the domain for numerous air velocities was then found 

and used to quantify resistance coefficients for the porous media model. 

Rong et al. (2015) used porous media to model the slatted floors of a pig house in a study 

on ammonia emissions from underground manure storage. The porous media model was not able 

to predict air speed accurately above the floor; however, results for ammonia emissions from the 

porous media model were comparable to results from a slatted floor CFD model. 

In contrast to the porous media approach, some studies have used simple geometric 

shapes to simulate the impact of animal forms on airflow, and also included models for animal 

heat and moisture production. Pawar et al. (2007) represented hens as blocks specified as walls 

in the CFD model Fluent. The walls were given a boundary condition of constant heat flux to 

model heat generated by the hens. The heat flux calculated was equal to the basal metabolic rate 

of the hens. However, in actual scenarios, heat loss from animals is dependent on the air 



9 
 

temperature, air velocity, coat thickness, and long wave and solar radiation (Turnpenny et al., 

2000). 

A study by Norton et al. (2013) showed the effectiveness of explicitly modeling cattle to 

predict the temperature and relative humidity in mechanically and naturally ventilated livestock 

transportation trailers. Cattle were modeled as half ellipsoids with varying heat and moisture 

loss based on environmental temperature (Norton et al., 2013). STAR-CCM+ software was 

used. A boundary condition of constant outward velocity represented the fans in the 

mechanically ventilated trailer, while the naturally ventilated condition used a pressure outlet 

and relied on internal buoyancy generation for air flow. Results showed that mechanically 

ventilated trailers had less homogenous conditions, a fact that could be concerning in winter 

months, when low ventilation rates could cause poor air quality in some parts of the trailer 

(Norton et al., 2013).  

Research in CFD modeling showed that proper selection of spatial dimensionality, 

namely the choice of two spatial dimensions or three, was imperative to each study. The 

selection of modeling in two dimensions or three dimensions should consider the objectives of 

the model and flow physics of the problem. The advantage of a 2D model is a highly reduced 

mesh size with much faster and greater ease of computation. The size of a 3D model requires the 

user to have access to high performance computational resources in order to perform 

simulations; a 2D model can be simulated with average computer resources. However, 2D 

models are inherently limited because they consider only a cross section of 3D model geometry, 

and geometrical symmetry as well as flow symmetry is assumed around the plane being 

modeled. Studies utilizing a 3D model have already been mentioned (Bustamante et al., 2013; 

Norton et al., 2013; Gilkeson et al., 2016). Previous studies using a 2D model include the 
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modeling of heat and mass transfer within a poultry house (Rojano et al., 2015) and the spread 

of gaseous particles from a poultry house (Pawar et al., 2007). Rojano et al. (2015) found that 

the CFD model produced acceptable results for two dissimilar cases. The research by Pawar et 

al. (2007) led the authors to make a recommendation for ventilation systems in poultry houses. 

Both studies coupled indoor and outdoor flow of poultry houses.  

1.2 Example Holding Shed Location and Details 

As previously stated, holding shed practices can vary widely from location to location. 

An example is described here in order to give the reader an idea of a possible holding shed 

configuration. At one processing plant in Springdale, AR, poultry transport trailers are brought 

into holding sheds covered by a sloping metal roof but open at the sides. On the poultry trailers 

are rows of modules in which chickens are contained. Typically, 10 or 11 rows are lined up 

going the length of the trailer, and one module is stacked on top of another, for a total of 20 or 

22 modules. The module structure is made of a galvanized steel frame with five fiberglass 

floors, dividing each module into five tiers. Chickens are loaded into the tiers of the module 

through a set of spring-loaded doors. The front, back, and opposite side consist of a metal 

latticework that does little to obstruct airflow.  

 
Figure 1.1: Modules arranged on trailer 
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Figure 1.2: Module dimensions. Four modules are shown. Red outlines show one module divided 

into five floors. 
 

Within the holding sheds at the study plant, the trucks park two wide next to a series 

of fan banks. Fans measured at the site were 1.22 m (48 in . )  in diameter. At the site, 

six fans are arranged in a row, with fan rows placed on opposite sides of the shed blowing 

air onto the adjacent trailers (figure 1.3). The fans at the site were positioned 2.24 m (88 

in.) from the ground to the bottom of the fan and 1.27 m (50 in.) horizontally from the 

trailer, at a slight downward angle. 

 
Figure 1.3: Loaded poultry trailer parked in shed at the test site 
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Figure 1.4: Filled trailer parked within holding shed at the test site 

1.3 Objectives  

The objectives for this study were as follows: 

 Development of a CFD model with the ability to predict air velocity in the internal 

environment of a fully loaded poultry trailer in a typical holding shed 

 Comparison of CFD simulation results with data collected from a poultry processing 

plant holding shed 

 Testing of alternative cooling strategies for holding sheds using the CFD model 

 Assessment of the accuracy and potential of CFD for modeling airflow conditions 

within a poultry trailer holding shed 

 Recommendations for future research 

This research was done in conjunction with a larger study undertaken by Dr. Yi Liang 

of the University of Arkansas Biological and Agricultural Engineering Department. Further 

objectives of the larger study include characterizing the thermal microenvironment on broiler 

trailers during both transport and holding shed times during three seasons of the year, and the 

development of an electronic chicken to quantify heat exchange of broiler chickens within 

poultry trailers (Luthra et al., 2018). 



13 
 

2. CFD Model Set Up 

 

2.1 Geometry and Meshing 

Despite the benefits of 2D modeling, a 3D model was chosen for this study after 

consideration of model objectives and data taken from the test site. Data collected from a typical 

poultry trailer holding shed showed that air velocity decayed in the same vertical cross section 

with increasing distance from the fan. This implies that there is airflow with velocity 

components perpendicular to this cross section, making a 2D model less valid to this study. 

Geometry editing was done using ANSYS Design Modeler Software. A simplified 

geometry was created with placement of features similar to the holding shed at the test site; only 

a subsection of the holding shed that included three stacks of two modules each and two exhaust 

fans was included. It was assumed that conditions within the four modules of interest were not 

affected by airflow from fans nor other modules not included in this subsection. In addition, a 

symmetry condition was specified at one end of the domain, splitting one of the fans in half. 

Previous CFD studies have utilized this symmetry boundary condition to reduce mesh size 

(Norton et al., 2013). The stacks of modules were separated by a distance of 0.15 m (6 in.). The 

modules were positioned 1.22 m (48 in.) from the ground. Geometry of the trailer in which the 

modules are usually placed was not included. The geometry of each module was simplified; wire 

meshing on the face of the trailers and some metal supports were not included. These parts were 

considered to have negligible effect on airflow in and around the modules and would add greatly 

to mesh size and computational time. Fans were modeled as cylinders of radius 0.61 m (24 in.) 

and thickness 0.10 m (4 in.). For default simulation, these fans were positioned 2.26 m (89 in.) 

vertically from the ground and 1.22 m (48 in.) horizontally from the face of the trailer, with the 

axis of one fan positioned in the horizontal center of one set of modules and the axis of the other 

fan positioned off-center to resemble placement at the testing site. The fans were also given a 
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downward tilt of 10°. A large enclosure surrounded modules and fans to minimize disturbance of 

airflow in and around the fan and modules. The domain was divided into sections to allow for a 

finer mesh in the area of modules and fan. Chicken forms were not explicitly modeled; rather, 

the animal occupied zone was considered porous media. Set up of the animal occupied zone is 

described in section 2.3. The total size of the domain was 8.84m x 8.79m x 21.49m. Meshing 

was completed using the ANSYS meshing utility. In areas subject to more airflow, fineness of 

the mesh was increased. Total size of the final mesh was 4,807,192 elements, consisting of both 

hexahedral and tetrahedral elements, and 1,007,722 nodes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Comparison of model geometry and trailer at the test site. Vertical plane to the 

right in model geometry has symmetry boundary condition 
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Figure 2.2: Isometric view of entire model domain 

 

 

 

 

 

 

 

 

 

2.2 Boundary Conditions and Computational Models 

Pressure outlet with 0 pa gauge pressure was specified at the faces of the domain behind 

and to the left side of modules from the perspective of the fan outlets. Pressure inlet with 0 pa 

gauge was specified at the face of the domain upwind of flow from the fans. The fans were 

modeled using the 3D fan zone within ANSYS Fluent. The 3D fan zone is a fluid cell zone 

that simulates the effect of an axial fan, accounting for swirl and radial velocities (ANSYS 

Figure 2.3: Surface mesh of entire domain and surface mesh of modules. Mesh was created finer 

near modules. 
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Fluent). The input conditions for a 3D fan zone within Fluent include a pressure jump and 

angular velocity. A typical fan used by poultry processors with diameter similar to those at 

the experimental site has an airflow rate of 21,700 ft3/min, or approximately 10.24 m3/s 

(acmefan.com). This value was converted to a pressure jump, ∆𝑃, by conservation of 

energy, where 𝐴𝑓𝑎𝑛 is the surface area of the face of the fan: 

∆𝑃 =
1

2
𝜌𝑎𝑖𝑟𝑣2 

𝑣 = 10.24 
𝑚3

𝑠
/𝐴𝑓𝑎𝑛 

𝐴𝑓𝑎𝑛 = 𝜋 ∗ (
1.22𝑚

2
)2 

𝑣 ≈ 8.78 𝑚/𝑠 

∆𝑃 =
1

2
𝜌𝑎𝑖𝑟𝑣2 =

1

2
(1.225

𝑘𝑔

𝑚3
) ∗ (8.78

𝑚

𝑠
)2 ≈ 47.2 𝑝𝑎 

For angular velocity: 

382 𝑟𝑝𝑚 ≈ 40 𝑟𝑎𝑑/𝑠 

Doors were implemented into the geometry by specifying the corresponding faces 

of each module using named selections. Chickens were modeled as porous media, with 

parameters determined from a sub-model. Likewise, the lattice of metal bars on the front 

and back faces of modules was modeled using a porous jump condition, with parameters 

also determined from a sub-model. Walls and doors of the modules were specified as walls 

with no slip boundary condition. Cell zone and boundary zone conditions are summarized 

below. 
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Cell Zone and Boundary Conditions: 

 Walls, floors, and doors: Wall, no slip 

 Domain within modules: Porous media 

o Inertial resistance (1/m) C2 = 3.14  

o Viscous resistance (1/m2 ), 1/α = 57,755  

o Porosity = 0.80  

 Metal bars on front and back faces of modules: Porous jump 

o Face permeability (m2 ), α = 1.12 x 10-6 

o Pressure jump coefficient (1/m), C2 = 14.1  

o Porous medium thickness = 0.006 m 

 Fan outlets: 3D Fan Zone 

o Constant pressure jump = 47.2 Pa 

o Operating angular velocity = 40 rad/s  

 Pressure inlet: 0 Pa gauge 

 Pressure outlets: 0 Pa gauge 
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Figure 2.4: Boundary conditions 

 
Figure 2.5: Faces highlighted were specified as "doors" with wall boundary condition. Faces 

directly opposite allowed air to move freely through. 

2.3 Modeling the Animal Occupied Zone (AOZ) 

The inclusion of explicit chicken forms within the model would lead to significant 

increases in computational time and effort due to the large number of cells required. 

Furthermore, simulation using explicit animal forms would impose unrealistic conditions on the 

model; specifically, local conditions of air velocity and temperature would be dependent on the 

arbitrary positioning of bird forms within the module. Additionally, it would be difficult to 

account for movement of birds during simulation of time. A homogenous condition, while not 

Pressure 
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Pressure 
Outlet 

Symmetry 

3D Fan 

Zone 
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completely realistic, would give more accurate information regarding general patterns of air 

velocity and temperature within the modules. For these reasons, an alternative method to account 

for the resistance to airflow and heat production caused by the presence of poultry was used; the 

area occupied by the birds, designated the animal occupied zone (AOZ), was approximated as 

porous media with resistance to airflow similar to that posed by poultry within a cage with a 

certain loading density.  

2.3.1 Porous Media Sub-model 

Numerically quantifying the air resistance of poultry was done with the aid of a sub-

model within ANSYS Fluent, as seen in Wu et al, (2012). First, it was necessary to consider the 

loading density and size of birds within the module to calculate parameters for the porous media 

zone. The loading density of 2.5 kg birds is approximately 220 birds per module. A module 

having five floors will thus contain approximately 44 birds per floor. In the model, the 

dimensions of each floor were 1.17 m (46 in.) wide and 2.44 m (96 in.) long. The loading density 

on a floor area basis then equates to  

44 𝑏𝑖𝑟𝑑𝑠
1.17𝑚 ∗ 2.44𝑚⁄ = 15.41 𝑏𝑖𝑟𝑑𝑠

𝑚2⁄ = 0.065 𝑚2

𝑏𝑖𝑟𝑑⁄  

The height of each floor is approximately 0.25 meters. It was assumed that the birds are evenly 

distributed and that no birds are stacked upon one another. Therefore, the sub-model included 

one bird occupying a volume of 0.254 meters long by 0.254 meters wide or 0.065 square meters 

with height 0.25 meters. It was observed that most birds assume a sitting position within the 

trailer. The skin surface area of a chicken can be approximated by the following equation (Aerts 

and Berckmans, 2004): 

𝐴𝑠 = 0.081𝑊0.667 

Where 𝐴𝑠 is skin surface area (m2) and W is mass (kg). For a 2.5 kg bird, this equates to  
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𝐴𝑠 ≈ 0.15𝑚2 

A single chicken was modeled having skin surface area approximately 0.15 square meters with 

the general morphology of a chicken. 

 

 

 

 

 

 

 

 

The porous media model within ANSYS Fluent requires values for flow resistance parameters. 

For simple homogenous porous media 

𝑆𝑖 = −
𝜇

𝛼
𝑣𝑖 + 𝐶2

1

2
𝜌|𝑣|𝑣𝑖 

 

where 𝑆𝑖 is the source (or sink) term for the ith momentum equation, |𝑣| is the magnitude of 

velocity, µ is the viscosity, α is the permeability, ρ is the density, and 𝐶2 is the inertial resistance 

factor.  Running the sub-model yielded the following pressure drops for the following inlet 

velocities:  

Table 2.1: Calibration data from porous media sub model 

Velocity (m/s) Pressure drop (Pa) 

1 0.72 

1.5 1.49 

2 2.51 

2.5 3.72 

3 5.17 

 

Figure 2.6: View of chicken form created for porous media sub-model, and comparison to 

an actual chicken 
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Figure 2.7: Graph of sub model calibration data with trendline 

A trendline through these points yields the following equation:  

∆𝑃 = 0.4885𝑣2 + 0.2625𝑣 

Note that a simplified version of the momentum equation can be expressed as  

∆𝑃 = 𝑆𝑖∆𝑛 

where Δn is the length of the porous media in the direction of the flow. Comparing the trendline 

equation to the above equation gives the following identities: 

0.4885 = 𝐶2

1

2
𝜌∆𝑛 

0.2625 =
𝜇

𝛼
∆𝑛 

With 𝜌 = 1.225 
𝑘𝑔

𝑚3⁄ , ∆𝑛 = 0.254 𝑚, and 𝜇 = 1.7894 𝑥 105 𝑃𝑎 ∙ 𝑠 the values for inertial and 

viscous resistance coefficients are, respectively:  

𝐶2 = 3.14 

1

𝛼
= 57,755 

y = 0.4885x2 + 0.2625x
R² = 0.9998
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In addition, the porosity of the media was considered, with bird volume taken from chicken 

volume of the sub-model:  

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑟𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 = 44 𝑏𝑖𝑟𝑑𝑠 ∗
0.00317𝑚3

1 𝑏𝑖𝑟𝑑
= 0.1395𝑚3 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝑉𝑜𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
=

(1.17𝑚 ∗ 2.44𝑚 ∗ 0.25𝑚) − 0.1395𝑚3

1.17𝑚 ∗ 2.44𝑚 ∗ 0.25𝑚
= 0.80 

These values were used for porous media zone resistance within the final model.  

In a similar method, the effect on airflow of the array of metal bars on the front and back faces of 

poultry modules was accounted for. This feature is shown in figure 2.8, along with the geometry 

of the sub model. 

 

 

 

 

 

 

Using measured values for pressure drop for five different inlet velocities tested, the following 

parameters were determined from a calibration curve of the data:  

𝐶2 = 14.1 

𝛼 = 1.12 × 10−6 

 

 

Figure 2.8: Metal bars on face of modules and sub model 
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2.4 Solution Methods 

Pressure based solver was used all simulations. The airflow within the module was 

assumed turbulent, which is common among ventilating flows (Norton et al, 2010). The 

standard k-epsilon model was used with standard wall functions as it has been applied 

numerous times in similar applications (Bustamente et al, 2013; Norton et al, 2010; Pawar et 

al, 2007). A summary of the solution methods used for simulations is given below. 

Solution Methods:  

 Pressure-Velocity Coupling:  SIMPLE 

 Gradient:  Least Squares Cell Based 

 Pressure:  Second Order 

 Momentum:  Second Order Upwind 

 Turbulent Dissipation Rate:  Second Order Upwind 

Simulations were solved using the University of Arkansas High Performance Computing 

Center (HPCC). Simulations were run in steady state condition. Typically ANSYS Fluent 

considers calculations converged when residual values of 1x10-3 for continuity, x-velocity, y-

velocity, and z-velocity, k, and epsilon are reached. However, these criteria are not always a 

good metric for convergence. Therefore, for all simulations, these convergence criteria for 

residuals were turned off, and velocity magnitudes at specific points were observed until they 

reached steady values to determine convergence. The time required for the solution to reach the 

desired level of convergence was approximately five hours and 56 minutes. 

2.5 CFD Model Sensitivity Analysis 

A sensitivity analysis was necessary to observe how changes in key model parameters 

affected simulation results. Uncertainty existed for many input parameters in the model. 
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However, examining all of the input parameters in a CFD model, including geometry and 

boundary conditions, physics models, and solution methods, would be time consuming and 

wasn’t feasible for the scope of this study. Input parameters chosen for the sensitivity analysis 

were selected because it was likely that changes to these parameters would affect solutions in 

expected ways, and they were also related to key boundary conditions. Base values for these 

parameters have been discussed in the previous section. They are identified as the “default” 

values in table 2.2. Six simulations with different values for the chosen parameters were tested: 

fan pressure jump included three separate conditions, and AOZ viscous resistance included three 

separate conditions. For each simulation, the value of one input parameter was changed, and all 

other input parameters were given “default” values. This equated to a total of six separate 

simulations, not including the default simulation. The input parameters identified for this study, 

as well as a description of each of the values tested in the sensitivity analysis, is shown in table 

2.2:  

Table 2.2: Input parameters chosen for sensitivity analysis 

Input Parameter Default Condition 1 Condition 2 Condition 3 

Fan Pressure Jump (Pa) 47.2 41.5 54.5 80.5 

AOZ Viscous Resistance 57,755 20,000 40,000 80,000 
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3. Experimental Procedure 

To ascertain typical conditions on a poultry trailer during summer months, a poultry 

trailer was equipped with sensors to determine air velocity and temperature conditions at various 

locations within the poultry modules. Sensors used were Kestrel 5000 Series Livestock 

Environmental Meters (kestrelmeters.com). The Kestrel sensors were fixed in place within 

poultry modules, and did not have the ability to orient themselves to the predominant direction of 

airflow. The logging interval was set at 5 seconds. The sensors were placed within four modules; 

both top and bottom modules located at rows five and six from the driver were equipped with 

sensors. For row five, six sensors were installed in each module; 3 sensors were installed on each 

of two floors, with one sensor on the passenger side, one in the center, and one on the driver side, 

all located along the centerline of the module. The top module for row six was equipped 

similarly, while the bottom module for row 6 contained only one floor of sensors, or three total. 

Blue bars in the figure below indicate where the sensors were installed. The location of these 

sensors is described in figure 3.1 

 
Figure 3.1: Blue bars indicate floors equipped with sensors. For each floor, three sensors were 

equipped along the centerline: one near the fan side of modules, one near the far side of 

modules, and one halfway in between the two sides.  
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The test was conducted on June 27, 2017. Weather conditions were sunny with mild wind. The 

loaded trailer was parked in the holding shed from 12:30 pm to 2:25 pm on the day of testing. 

The trailer was oriented so that the driver side was near to the fan bank.  

.  
Figure 3.3: Poultry trailer within holding shed on the day of testing 

 

 

Figure 3.2: Head on and side views of sensor placement within modules 

 

 

 

 

 

 

Row 5 
 

Row 6 
 

Fan Side Far Side Fan Side Far Side 
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4. Results and Discussion 

4.1 Data from the Test Site 

Values recorded in table 4.1 are equally weighted averages of all sensors in each region 

of the trailer specified. For example, values for “Row 5 Center” are average values for 

temperature and air velocity of the four sensors located in this region. Table 4.2 considers only 

air velocity data while all sensors are included. Table 4.1 and table 4.2 data are time averaged for 

the duration of the holding shed period.  

Table 4.1: Averaged temperature and air velocity values within trailer modules; average of 

three sensors for each region, n=1379 for each sensor 

Trailer Region 
Temperature, 

°C 

Air Velocity, 

m/s 

Row 5 Fan Side 29.1 1.3 

Row 5 Center 29.6 0.8 

Row 5 Far Side 28.8 0.7 

   

Row 6 Fan Side 28.5 1.8 

Row 6 Center 29.1 1.3 

Row 6 Far Side 28.5 1.3 

Ambient Outside Trailer 27.8  

 

Table 4.2: Average air velocity (m/s) values for all sensors within trailer modules, ± one 

standard deviation, n=1379 

Trailer Region Top Top Middle 
Bottom 

Middle 
Bottom 

Row 5 Fan Side 1.2  ± 0.6 1.4 ± 0.7 NA 1.3 ± 0.6 

Row 5 Center 0.6 ± 0.4 1.1 ± 0.6 0.6 ± 0.4 1.0 ± 0.5 

Row 5 Far Side 0.9 ± 0.4 1.0 ± 0.4 0.6 ± 0.5 0.4 ± 0.5 

     

Row 6 Fan Side 1.6 ± 0.8 2.7 ± 1.1  1 ± 0.6 

Row 6 Center 1.2 ± 1.1 1.8 ± 1.0  1 ± 0.5 

Row 6 Far Side 0.6 ± 0.6 1.3 ± 0.6  NA 

 

Although temperature within modules was not considered in the CFD model, this 

parameter is vital to the well-being of poultry; combined with the effects of humidity and air 



28 
 

velocity, it can be used to predict the effects that a certain set of environmental conditions would 

have on the internal body temperature of a broiler chicken (Tao and Xin, 2003). Furthermore, 

local temperature values are most likely correlated with local air velocities, due to the convective 

cooling effect brought about by moving air. Temperatures within the poultry trailer were 0.7-

1.8°C above ambient, with the highest temperatures recorded in the center of modules.  

Interesting to note is that local air velocity decreased from fan side to far side (moving 

down the table) with increasing distance from the fan for both rows 5 and 6. In addition, air 

velocities for row 6 were higher, most likely a cause of row 6 being in a position relative to the 

fan that would allow it to capture more air than row 5. Finally, recorded air velocities were 

highest for the top and top middle module floors. The high placement of the fans within the 

holding shed should explain this phenomenon; more of the air coming from the fans was incident 

on this area of the modules. 

Table 4.2 also shows values for standard deviation for air velocity at each location where 

data was collected. In comparison to the measured velocity values, standard deviations are 

relatively high. High standard deviations may indicate the turbulent or unsteady nature of flow. 

Additionally, point data taken within trailers may be affected by the movement of birds within 

modules; a sensor may at one moment be blocked by a chicken and unblocked at another time. 

These results suggest the difficulty of obtaining reliable data from within poultry trailers during 

study. Furthermore, the nature and relatively small amount of data collected makes it hard to 

classify conditions on poultry trailers or validate the CFD model to a high degree. Nevertheless, 

field data from the test site was useful for showing general trends and magnitudes of air 

velocities within poultry trailers positioned in a holding shed and served as some measure of 

comparison for the CFD model.  
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4.2 Simulated Data from CFD Model 

As mentioned, data from the test site was applied to compare CFD results to data from an 

actual poultry trailer holding shed. Points within the CFD model with geometrically similar 

locations to the sensors placed on the trailer modules during the experimental study were 

monitored for air velocity. Comparison of experimental and simulated results are presented 

below.  

Table 4.4: Comparison of measured point data and simulated point data for air velocity, 

row 5 

Trailer Region Measured (m/s) Simulated (m/s) 

Row 5 Fan Side (Top) 1.2 1.1 

Row 5 Center (Top) 0.6 0.8 

Row 5 Far Side (Top) 0.9 0.6 

Row 5 Fan Side (Top-middle) 1.4 1.5 

Row 5 Center (Top-middle) 1.1 1.3 

Row 5 Far Side (Top-middle) 1.0 0.8 

Row 5 Fan Side (Bottom-middle) Na 1.2 

Row 5 Center (Bottom-middle) 0.6 0.7 

Row 5 Far Side (Bottom-middle) 0.6 0.7 

Row 5 Fan Side (Bottom) 1.3 0.6 

Row 5 Center (Bottom) 1.0 0.3 

Row 5 Far Side (Bottom) 0.4 0.2 

 

Table 4.5: Comparison of measured point data and simulated point data for air velocity, 

row 6 

Trailer Region Measured (m/s) Simulated (m/s) 

Row 6 Driver Side (Top) 1.6 1.9 

Row 6 Center (Top) 1.2 0.9 

Row 6 Far Side (Top) 0.6 0.8 

Row 6 Fan Side (Top-middle) 2.7 2.3 

Row 6 Center (Top-middle) 1.8 1.2 

Row 6 Far Side (Top-middle) 1.3 1.0 

Row 6 Fan Side (Bottom) 1 1.4 

Row 6 Center (Bottom) 1 0.5 

Row 6 Far (Bottom) NA 0.4 
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Figure 4.1: Air velocity for row 5 modules, measured and simulated data. Error bars show one 

standard deviation for measured data, n = 1379 

 

 
Figure 4.2: Air velocity for row 6 modules, measured and simulated data. Error bars show one 

standard deviation for measured data, n = 1379 
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Results from the CFD model had reasonable agreement with measured field data from the 

test site. Simulated values were all within one standard deviation of experimental values but for a 

few exceptions. Most noticeable was the underestimation of air velocity through the bottom floor 

of row 5 modules. This phenomenon was also observed for the center region of the bottom floor 

of row 6 modules. In addition, for row 6, simulated air velocity at the was underestimated 

through the top middle floor at all three locations 

 CFD simulation was able to replicate general observed trends in air velocity through the 

modules. The trends observed in both experimental and simulated results included higher air 

velocity through row 6 modules; a decrease in air velocity moving from driver side to passenger 

side of the modules, with increasing distance from fans; and generally higher air velocity for the 

top and top middle floors of both row 5 and row 6 modules.  

The standard error of estimate was used in order quantify errors from the simulation 

using a single value. The standard error of estimate was used in a study by Hui et al., (2013) to 

compare CFD simulated and measured results from an experimental poultry trailer. It can be 

calculated as follows:  

𝜎𝑒𝑠𝑡 = √
∑ (𝑌𝑠𝑖𝑚 − 𝑌𝑒𝑥𝑝)2𝑛

1

𝑛
 

where 

𝜎𝑒𝑠𝑡 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

𝑌𝑠𝑖𝑚 = 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑌𝑒𝑥𝑝 = 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑟𝑜𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

Lower values of standard error of estimate indicate greater agreement with experimental data. The 

standard error of estimate for air velocity for this simulation was 0.38 m/s, which equated to 32.6% 

as a percentage of the average velocity  

Discrepancy in simulated results and recorded data could be attributed to a range of 

factors. First, there are possible measurement errors when observing air velocity at a single point 

within a trailer. As mentioned previously, relatively high values for standard deviation suggest 

large fluctuations in air velocity in both spatial and temporal dimensions. A small difference in 

location relative to the fans may result in widely different values for observed air velocity, 

especially in regions of higher velocity. This study attempted to co-locate the positions of 

sensors and points monitored in CFD simulations, but it cannot be expected that these points 

were identical with high exactness. Moreover, operations at a poultry processing plant, such as 

positioning of fans and trailers as well as fan operation parameters, are rather imprecise. For 

example, trailer position within holding sheds likely varies with successive trailers in front of the 

same fan bank. This makes comparing point data for air velocity at the poultry plant and point 

data from CFD simulation not only difficult, but less useful overall. After data assessment, 

general trends in air velocity, such as spatial variance as well as relative magnitude, were 

regarded with more confidence and thus considered more pertinent to this study.  

Furthermore, due to time constraints and the difficulty of arranging experimental studies 

at an operating poultry processing plant, only one experiment trial was completed. The single set 

of data recorded in this study is most likely insufficient to properly assess conditions on poultry 

trailers for the purpose of validating the CFD model. A greater array of sensors, as well as 

replicate trials, may be necessary to accurately characterize conditions within trailer modules 
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before the CFD model can be validated. A greater array of sensors would also reveal more 

information on general airflow patterns within poultry modules; these metrics would be more 

useful to researchers and plant operators, as previously mentioned. 

Besides measurement error due to the nature of the system, possible confounding factors 

for this study included ambient wind and the movement of poultry within modules. Ambient 

wind was not accounted for in CFD simulation due to its unpredictable and unsteady nature. 

Ambient wind may be responsible for higher values of air velocity in the bottom floor of row 5 

modules than was observed in CFD simulation. In additions, poultry were modeled as a single 

homogenous mass with certain resistance parameters. This porous media assumption may have 

led to some error in point data; it is not able to account for possible crowding of birds within 

modules. Observed point data from plant may be skewed due to this crowding or the presence of 

a bird directly in front of a sensor. However, the porous media assumption greatly simplified 

model creation and calculation while preserving the usefulness of the model to predict the 

aforementioned general trends in air flow through poultry modules.   

Geometrical simplifications of the holding shed set up may account for some error as 

well. Certain small elements on trailer modules, such as the width of support beams and even the 

unevenness of floors, as well as the poultry trailer itself, were not included in CFD simulation, 

and may indeed have significant effect on airflow. In addition, space behind modules was left 

empty in CFD simulation. At the processing plant, this space is intermittently occupied by a 

second trailer or left empty. Also present is a second row of fans, directly opposite the row 

modeled and intended to provide airflow over modules in the second trailer. It is possible, 

especially when a second trailer is not present, that airflow from this second set of fans reaches 
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the passenger side of trailer modules. This could account for higher values of observed air 

velocity for the passenger side of some modules. 

In conclusion, simulated data agreed reasonably well with experimental data, and CFD 

simulation was able to replicate some of the expected trends in airflow, such as higher air 

velocity near fans and in row 6 modules. However, due to the paucity and nature of the data, the 

CFD model may not yet be considered “validated” by some. However, it should be mentioned 

though that there is no single accepted standard in order for a CFD model to be considered 

“accurate.” Rather, the usefulness of the CFD model, as well as the degree of validation 

necessary, is contingent upon the needs of the user.  

4.3 Airflow Visualization 

 From CFD simulated data, contour plots of velocity and streamlines were created in 

ANSYS Fluent. Figure 4.3 indicates the location of contour planes in figure 4.4. Contours were 

created both parallel to the axis of the fan and perpendicular to the axis of the fan to show 

variation in air velocity with increasing distance from the fan as well as lateral variation within 

the modules. 
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Figure 4.3: Specification of rows 5 and 6 and fans 1 and 2. Vertical lines indicate location of 

planes in figure 4.4 

 

  
Figure 4.4: Contours of velocity magnitude for cross sections in middle of row 5 (A) and row 6 

(B) 

A B 

Row 5 Row 6 

Fan 2 Fan 1 
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Figure 4.5: Contours of velocity magnitude for cross sections with increasing distance from the 

fan. Plane (A) is positioned 0.025 m from the fan side of the modules within the modules; (B) is 

positioned 1.22 m from the fan side of the modules, exactly halfway in this direction; (C) is 

positioned towards the rear of the modules, 0.025 m from the far side of the modules. 

A 

B 

C 
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These results show general trends for air velocity patterns within trailer modules. Figure 

4.4 suggests the importance of module-fan alignment with respect to airflow within modules. 

First, for the cross section in row 6, airflow immediately in front of the fan shows a similar 

profile to inlet velocity from the fan. As air comes into contact with the front faces of the 

modules, a significant amount is deflected. Air that does enter the modules decreases in velocity 

as it moves toward the back of the modules, similar to trends in experimental data.  

In contrast to the plane in row 6, the cross section in row 5 experienced much less airflow 

penetration into the module due to not being in a plane in line with any point on the faces of 

either fan. Again, the trend of decreasing velocity with increasing distance from the fans is 

repeated for air in this plane. A small area with high velocity is noticed in front of the module in 

face in row 5. Most likely, this air has a large velocity component in the direction normal to the 

cross section; it can be seen that this air velocity is not transferred to the interior of the module. 

Finally, for planes in both rows 5 and 6, there was a large discrepancy of airflow between 

regions separated vertically. Again, this is most likely a function of less air going into module 

regions not aligned with the faces of fans; in this case, these were the uppermost and bottommost 

floors. Especially for the bottommost floors, air had a large downward vertical component after 

being deflected from the faces of the modules, causing less air to actually flow into the modules.  

Figure 4.5 shows lateral variation in airflow within modules. Near the front face of the 

modules experiencing airflow, there was large spatial variation corresponding to placement of 

the fan; airflow at the front face of the module seemed to have a shape similar with the shape of 

the fan. With increasing distance from the fans, lateral variation in air velocities decreased; 

within a specific floor, air velocity was rather homogenous for planes at distances midway from 

the front face of the modules and near the back of the modules. It can be assumed that not only 
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did a fraction of the air from fans enter modules, but this air was deflected as well and given 

some component of velocity not parallel to initial airflow. This may explain the relative 

homogeneity of air velocity with increasing distance from fans; with increasing distance from the 

fan, air became more dispersed and had less velocity magnitude.  

The effect of doors was minimal on local air velocities; there is nothing remarkable about 

airflow in close proximity to doors. Of final note in figure 4.5 is the relatively high velocity for 

air within the gaps between modules. It can be assumed that a large amount of air was directed 

into this space as it poses no resistance to airflow and the width of the gap is large enough that 

drag created by the surface of the doors is not significant to deter flow. This air that travels 

between modules may essentially be considered wasted; it represents an amount of energy input 

that does nothing to cool birds within modules. Furthermore, air velocity in the gap between 

modules did not decrease to the same degree with increasing distance from fans. The Venturi 

effect may contribute to this result, causing air velocity necessarily to increase with a decrease in 

area. The problem of air travelling between modules may be simple to solve; design alternative 2 

in section 4.5 explores a method to decrease the airflow through the gap between modules.  

The ability to create streamlines of air velocity is another advantage of CFD simulation 

difficult to replicate in experimental studies. Figure 4.6 gives further insight into flow patterns of 

air from the fans and through modules. As surmised previously, figure 4.6 shows a portion of the 

air from fans was deflected before entering into modules. Some of the deflected air was also 

brought back into the intakes of the fans. Additionally, air that did enter the modules was 

deflected and velocity magnitude reduced greatly.  
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Figure 4.6: Streamlines of airflow from both fans: aerial view 

Figure 4.7 isolates streamlines within modules. From figure 4.7, a large portion of air in 

row 5 modules had a diagonal component and exited through the sides of modules opposite the 

doors. Also noticeable was the area in close proximity to the doors in row 5 modules that 

received little airflow. In contrast, more airflow in row 6 modules had direction toward the back 

face of modules and was distributed more evenly throughout the modules.  

 
Figure 4.7: Aerial view of streamlines released from front face of modules, colored for velocity 
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Table 4.6: Airflow traveling through trailer modules 

 

Trailer Region 
Mass Flow Exit 

Through Back (kg/s) 

Percentage of Mass Flow 

into Domain Through 

Modules 

Row 5 Modules 1.52 13.1% 

Row 6 Modules 2.15 18.5% 

   

Mass Flow Rate 

from Fans (kg/s) 
11.61  

 

Visualization of results suggested that a large amount of air from the fans did not actually 

enter into or travel through the length of poultry modules. To quantify this amount and to judge 

the relative performance of the holding shed cooling strategy, mass flow rate from the fans as 

well as mass flow exiting the back of each row of modules was calculated. Table 4.6 shows a 

large difference in mass flow of air exiting the back faces of modules in row 5 compared to row 

6. This was previously attributed to the positioning of each row of modules relative to the two 

fans; a larger amount of air from the first fan is incident on row 6, while fan 2 is positioned off 

center from the centerline of row 5. While movement of a fan slightly off the center axis of 

modules may seem minor, these results quantify the difference. The effects of an off-center fan 

could indeed be significant; airflow rate from CFD simulation through row 6 modules was 

approximately 41.4% higher than airflow through row 5 modules. Interesting to note is that only 

13.1% and 18.5% of air mass from the fans travelled through row 5 modules and row 6 modules, 

respectively. If simulations are indeed a reasonable indication of airflow at poultry holding 

sheds, then it can be seen that a large portion of air does not travel into and through modules, and 

has no cooling effect on birds within. 
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4.4 Sensitivity Analysis Results and Standard Error of Estimate 

Results from the separate simulations in the sensitivity analysis are displayed in table 4.7. 

First, it should be mentioned that these results were not tested for significance. Variations in 

results could be due in part to calculation error.  

Table 4.7: Results from sensitivity analysis 

Simulation Description 
𝝈𝒆𝒔𝒕 

(m/s) 

Max. 

Velocity 

(m/s) 

Avg. 

Velocity 

(m/s) 

Default 

Fan Pressure = 47.2 pa, 

AOZ viscous resistance 

= 57,755 

0.38 2.3 1.0 

Fan Condition 1 Fan Pressure=41.5 pa 0.43 2.6 0.9 

Fan Condition 2 Fan Pressure=54.5 pa 0.44 3.1 1.0 

Fan Condition 3 Fan Pressure=80.5 pa 0.54 3.6 1.2 

AOZ Condition 1 
AOZ viscous 

resistance = 20,000 
0.49 3.1 1.0 

AOZ Condition 2 
AOZ viscous 

resistance = 40,000 
0.48 3.0 1.0 

AOZ Condition 3 
AOZ viscous 

resistance = 80,000 
0.45 2.6 0.9 

 

Changes in fan pressure condition led to expected changes in air velocities within poultry 

modules. In general, air velocity decreased for monitored points when fan pressure was 

decreased to 41.5 pa. Conversely, air velocity increased for nearly all monitored points when fan 

pressure was equal to 54.5 pa, and increased further when fan pressure was equal to 80.5 pa. 

Notable is that maximum air velocity actually increased when fan pressure was decreased for fan 

condition 1. This variation, measured at the fan side of the top middle floor of row 6 modules, is 

most likely due to calculation error; as mentioned, this variation may not be significant. When all 

points are considered, average velocity for fan condition 1 was 0.9 m/s compared to 1.0 m/s for 

the default simulation. 
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The lowest value of standard error of estimate was observed when fan pressure was 47.2 

pa in the default condition. However, when considering the appropriate boundary condition to 

use, air velocities at the front face of modules may be most indicative of accurate inputs for fan 

conditions. The input fan condition serves only to increase the pressure of air moving through the 

fan domain. Once air flow exits the fan outlet, its trajectory is dependent more on the 

surrounding geometry, porous media conditions within the modules, and other boundary 

conditions. Though the default fan condition resulted in the lowest standard error of estimate, a 

more thorough procedure of model calibration may improve upon methods used in the default 

simulation. While the default simulation used factory specifications from a typical fan of the 

same model and size employed at the test site, it was not confirmed that the fans used in 

experimental tests were operating at these specifications. In fact, it should be expected that fans 

in use at poultry processing plants do not operate at factory specifications; it is more likely that 

they operate at lower performances due to wear and tear. 

Separate conditions for the viscous resistance coefficient in the porous media zone were 

also tested to assess the sensitivity of the model to this parameter. Within Fluent, the porous 

media zone acts as a momentum sink for moving fluids. Decreases in resistance coefficients 

should increase the velocity of air in the porous media. In a sense, this can also be considered an 

evaluation of the accuracy of the sub-model method used to determine resistance parameters for 

the porous media zone, since the baseline parameters were chosen empirically using this method.  

Reductions in the viscous resistance coefficient in the AOZ led to expected changes in 

airflow velocity. Maximum velocity, which was observed at the fan side area of row 6 modules, 

increased from 2.3 m/s to 3.1 m/s and 3.0 m/s for AOZ condition 1 and AOZ condition 2, 

respectively. Average velocity of all points measured did not vary substantially between default 



43 
 

simulations and both AOZ condition 1 and AOZ condition 2. Conversely, average air velocity 

within modules decreased for AOZ condition 2, which had a higher viscous resistance coefficient 

than default simulations. Standard error of estimate increased for all three AOZ alternative 

conditions, lending credence to the use of the porous media sub-model to determine accurate 

resistance parameters in the porous media zone.  

4.5 CFD Simulation of Alternative Holding Shed Strategies 

An objective of this study was to develop a CFD model with the ability to test various 

holding shed cooling strategies and use the results to reliably inform decisions that poultry 

producers make in the future. Changes in cooling strategies in holding sheds could range from 

relatively simple, such as placement of modules and fans, to complex, such as a system to funnel 

air into the poultry modules. Three hypothetical design alternatives were considered. Testing 

these design alternatives served multiple purposes: it established how easy it was to adjust the 

model to various holding shed cooling strategies, it showed how the model reacted to changes in 

geometry and boundary conditions, and it identified some possible changes in holding shed 

design that could potentially improve air velocity through poultry trailers. Design alternatives 

tested in this study are described in Table 4.8. 

Table 4.8: Description of design alternatives 

Design Alternative Description 

Design Alternative 1 Decreased gap width between adjacent module rows 

Design Alternative 2 
One fan per module row set up (42 in. diameter fan, 

centrally aligned with row) 

Design Alternative 3 Enclosure to direct flow into modules 

 



44 
 

Results from design alternatives are quantified in terms of air velocities within poultry 

modules. In general, higher air speeds are desired during warm conditions. However, quantifying 

the actual effect on poultry welfare of increasing air velocity a certain degree was not considered 

in this study. Furthermore, when considering these design changes, poultry plant operators need 

to weigh the potential benefits of design changes to the capital and operating cost of these design 

changes. These factors were not considered in this study. 

4.5.1 Design Alternative 1 

Velocity contours in figure 4.5 suggested that a considerable amount of air from the 

cooling fans traveled between modules, representing a possible loss in potential air velocity and 

its concomitant cooling effect within the modules. The distance between stacks of modules was 

measured as approximately 0.15 m (6 in.). In design alternative 1, a small modification was 

made to the CFD model by moving stacks of modules nearer to each other, decreasing the spatial 

gap between them to 0.05 m (2 in.). All other model parameters, including boundary conditions 

and solution methods, were kept the same.  

 
Figure 4.8: Geometry of design alternative 1 
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Volume percentage graphs show the relative portion of volume within the module spaces 

with a certain velocity range. For example, approximately 10 % of the air volume within the 

module space had velocity 1 – 1.25 m/s, for both design alternative 1 and the baseline scenario. 

The results for the default holding shed design (termed “baseline”) are superimposed on those of 

design alternative 1 in figure 4.9. It should be mentioned that standards for acceptable airflow 

through poultry modules in a holding shed are not well defined. Bird welfare is affected by a 

combination of related factors including local air velocity, temperature, and relative humidity 

(Tao and Xin, 2003). Therefore, these results cannot be used to determine the effect that various 

design alternatives would have on bird welfare in holding sheds, and whether or not it is 

significant and worth the potential cost of the design alternative. However, higher air velocity is 

positively correlated with an increased cooling effect; all other things equal, higher velocity 

within the module space during warm conditions is desired. Figure 4.9 shows design alternative 

1 increased slightly the amount of air with velocity greater than 0.5 m/s, and decreased slightly 

the amount of air with velocity less than 0.25 m/s.  
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Figure 4.9: Volume percentage of velocity values within row 5 and 6 modules – design 

alternative 1 vs baseline scenario 

Furthermore, table 4.9 shows that row 5 and row 6 modules were not affected equally; 

row 5 modules experienced a 9.9 % increase in mass flow exit through the back face, while there 

was no noticeable difference for row 6 modules. The reason for this may be that while the gap 

space between row 5 and row 6 modules was decreased in design alternative 1, the gap space 

between row 6 modules and the symmetry plane was not. Even so, these results indicate that 

closer placement of modules is perhaps beneficial to airflow through the interior space. 

However, results in figure 4.9 and table 4.9 were not tested for significance. Also not considered 

is the effect that closer placement of modules may have on airflow through modules during 

transit of the poultry trailers from farm to processing plant.  

Table 4.9: Comparison of mass flow exit through back of poultry modules 

Trailer Region 
Mass Flow Exit 

Through Back (kg/s) 

Percent Change from Base 

Scenario 

Row 5 Modules 1.52 - 

Row 6 Modules 2.15 - 

Row 5 Modules (Alt. 1)  1.67 +9.9 % 

Row 6 Modules (Alt. 1) 2.15 0 % 

 

4.5.2 Design Alternative 2 

Results from the baseline scenario, in addition to experimental data, suggested that row 5 

modules as well as modules positioned on the bottom of each row received less airflow, most 

likely due to being misaligned with either fan axis. It was hypothesized that a holding shed 

strategy using one fan per row of modules and aligned with the center of each row of modules 

would deliver greater and more homogenous airflow. Design alternative 2 tested this 
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hypothesis. The geometry consisted of an additional fan; each fan was positioned at the center 

of one row of modules. In addition, the diameter of each fan was 1.07 m (42 in.), compared to 

1.22 m (48 in.) in the baseline scenario. The fans were also given a 90° vertical mounting angle, 

compared to the 10° downward tilt of the fans in the baseline scenario.  

 
Figure 4.10: Geometry of design alternative 2 

A volume percentage graph of velocity values shows the relative amount of air with 

velocity greater than or equal to 1.25 m/s was increased in design alternative 2. The percentage 

of air with velocity less than 0.25 m/s remained the same, while air with velocity 0.5-1.0 m/s was 

greatly reduced. Figure 4.11 accounts for all air within row 5 and row 6 modules. To see how 

airflow is distributed, it is necessary to separately examine row 5 and row 6 modules, as well as 

the top and bottom cages in each of these rows.  
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Figure 4.11: Volume percentage of velocity values within row 5 and 6 modules – design 

alternative 2 vs baseline scenario 

Figure 4.12 shows that design alternative 2 greatly increased airflow velocity in the 

bottom cage of row 5 modules, likely an effect of the lowered position of the fan. Airflow 

through the top cage of row 5 modules was also improved, however to a lesser degree, with an 

increased volume of air with velocity greater than 1.0 m/s. Relative to the baseline scenario, row 

6 modules experienced less benefit from design alternative 2. For design alternative 2, bottom 

cages on row 6 had a larger portion of air with velocity over 0.75 m/s, while top cages in row 6 

had a noticeable increase in air with velocity less than 0.25 m/s. It can be concluded that design 

alternative 2 increased homogeneity of airflow through adjacent rows of modules, but increased 

the discrepancy in sections of the poultry trailer separated vertically.  
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Figure 4.12: Comparison of volume percentage of velocity values for top and bottom cages: row 

5 modules 

 
Figure 4.13: Comparison of volume percentage of velocity values for top and bottom cages: row 

6 modules 

These results suggest that central placement of fans in a one fan per module row 

configuration is not ideal for adequate and homogenous airflow through all sections of the 

poultry trailer. However, it was apparent that each row of modules will benefit from having a fan 

of its own, as evidenced by the increased airflow in row 5 modules, and to a lesser extent row 6 

modules, relative to the baseline scenario, as shown in table 4.10. If a one fan per module row 

configuration is used, the ideal placement of this fan is most likely similar to that seen in the 

baseline scenario and at the test site, where the fan is positioned higher and with a slight 

downward tilt. An additional fan, creating a two fans per module row configuration, may also 

increase performance and could be worth testing.  
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Table 4.10: Comparison of mass flow exit through back of poultry modules 

Trailer Region 
Mass Flow Exit 

Through Back (kg/s) 

Percent Change from Base 

Scenario 

Row 5 Modules 1.52 - 

Row 6 Modules 2.15 - 

Row 5 Modules (Alt. 2)  3.08 + 102.6% 

Row 6 Modules (Alt. 2) 3.05 + 41.9% 

 

4.5.3 Design Alternative 3 

 Design alternative 3 proposed a method to channel air into the interior space of modules, 

increasing the cooling efficiency of fans. By using some form of enclosure or baffle surrounding 

the airspace between the fan and the module, air exiting the fan would be forced into the face of 

the modules. This setup would require that each row of modules have a separate fan. 

Furthermore, it cannot be expected that the output from similar fans would be the same in this 

system. The enclosure would increase the system pressure on the fan, decreasing flow rate from 

the fan. 

 A higher degree of modification to the baseline model was needed in order to test design 

alternative 3. These changes involved the geometry as well as boundary conditions. Only one 

row of modules was included in the simulation of design alternative 3, since each fan-module 

system would be isolated from the others. Otherwise the position and size of the fan used was 

similar as the fan in design alternative 2. A rectangular enclosure was made that stretched from 

the inlet face of the fan to the front face of the modules, with height equal to one row of modules. 

The space between the fan and module was thus enclosed, so airflow from the fan had no outlet 

but through the front face of modules. Figure 4.14 shows the geometry of design alternative 3.  
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Figure 4.14: Geometry of design alternative 3 

As before, one side of the module faces was designated as doors with boundary condition 

“wall.” However, it was less clear how to designate the sides of the modules opposite the doors. 

The flow through these faces is open to the atmosphere, but it is inhibited somewhat by the 

proximity of adjacent modules. Neither an open pressure outlet condition nor a sealed “wall” 

condition would be totally accurate. To compromise, a pressure outlet condition with gauge 

pressure 5 pa was used. This value was approximately equal to the average pressure observed at 

the module faces opposite to the doors in design alternative 2, which had similar geometry to 

design alternative 3. 

 Previously, a constant pressure rise for the fan had been used in all simulations. However, 

the presence of a baffle enclosure would have large effects on the system pressure, and it is 

unreasonable to assume that fan output would remain the same as previous model iterations. As 

before, the 3D fan model within ANSYS Fluent was used to model the fan zone; however, the 

pressure rise for this simulation was specified using a fan curve. By using fan curve data, Fluent 
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automatically calculates flow rate from the fan based on the pressure of the system. A fan curve 

of a typical fan used in a poultry trailer holding shed was implemented into the model.  

Design alternative 3 created a noticeable shift toward higher velocity values compared to 

the baseline scenario. The volume of air with velocity less than 0.25 m/s was reduced 

significantly, most likely corresponding to regions toward the back of the modules. In addition, 

there was a substantial increase in airflow with velocity greater than 1 m/s.  

 
Figure 4.15: Volume percentage of velocity values – design alternative 3 vs baseline scenario, 

average of row 5 and row 6 modules 
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Figure 4.16: Volume percentage of velocity values – design alternative 3 vs design alternative 2 

Compared to design alternative 2, which had similar geometry, design alternative 3 had a 

1.38 kg/s increase in air flow rate through the back of modules, or approximately 44.8%. This 

improvement can be attributed to the presence of the baffle in design alternative 3 forcing air into 

the front face of modules. However, uncertainty in the boundary condition of module faces 

opposite the doors gives less confidence to the flow rate value calculated. Future testing may be 

needed to specify this boundary condition with more confidence. Regardless, it would be 

expected that this system would improve airflow through the interior of poultry modules, and 

these results were observed in the simulation.  

Table 4.11: Comparison of mass flow exit through back of poultry modules 

Simulation 
Mass Flow Exit 

Through Back (kg/s) 
Percent Change  

Design Alternative 2 3.08 - 

Design Alternative 3 4.46 +44.8% 
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 Contours of velocity magnitude in a middle cross section elucidate some of the observed 

differences due to the addition of a baffle in design alternative 3. Airflow from the fan in design 

alternative 2 is deflected upon reaching the module faces. A large portion of the air does not 

penetrate into the modules, travelling both above and beneath them. Airflow through the bottom 

floors in design alternative 2 is also greater than airflow through the top floors.  

 
Figure 4.17: Contours of velocity magnitude for middle cross sections in design alternative 3 (A) 

and design alternative 2 (B) 

In contrast, airflow from the fan in design alternative 3 is necessarily forced into the 

module, causing increased velocity in all sections. Additionally, airflow is more homogenous in 

nature. Since the baffle encloses the space from the top and bottom as well, air reaching the top 

and bottom floors that normally has large upward or downward component and does not 

penetrate into the modules is deflected by the baffle and is forced into the interior of these 

sections. Airflow velocity is still largest for the sections positioned directly downstream from the 

fan exhaust. However, there are no sections of the module in the middle cross sections that do 

not experience increased airflow. While design alternative 3 may be most difficult to implement 

A B 
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at poultry processing plants, results suggest that it could greatly improve airflow through poultry 

modules.  

5. Conclusions and Recommendations 

In this study, a CFD model for simulating conditions within a loaded poultry trailer in a 

simple holding shed configuration was created. All aspects of model construction, including 

geometry and mesh creation, specification of model and solution parameters, and solution of the 

flow field, was done using the commercial CFD package ANSYS Fluent. In addition, 

experimental data was collected from within a poultry trailer situated in a holding shed during 

warm summer conditions. This data was used as a reference point to assess simulation results.  

 One of the initial objectives of this study was to create a validated CFD model that could 

be used to test alternative cooling strategies within holding sheds and use model results to inform 

decisions made by poultry processors. The author would be hesitant to recommend the CFD 

model for use in industry in its current form however. There are a number of areas of 

uncertainty, both in model parameters and the experimental data collection process, that are 

difficult to ignore. It is questionable whether the method of collecting point data for air velocity 

within poultry trailers is the ideal process for validation of the CFD model. Practices in poultry 

trailer holding sheds, along with data acquisition methods, are by nature imprecise; fans and 

trailer placements, as well as fan performance, are inexact. This most likely makes model 

calibration for specific settings necessary. In addition, the locations of chickens within the 

module are transient and not well defined, and can disrupt collection of air velocity data. 

Therefore, it is unreasonable to predict with much confidence the small spatial variations in 

temperature, humidity, and air velocity within poultry trailers. Rather, knowledge of the 

magnitude and spatial trends of these parameters is more relevant. A more robust series of 
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experiments, including additional sensors and replicate trials, would give researchers more 

confidence in knowledge of airflow characteristics within poultry trailer holding sheds. A scale 

model may even possibly be useful for validation of CFD model, as is seen in Gilkeson et al. 

(2009). In addition, experimental data for a variety of different holding shed configurations is of 

need to further test the CFD model’s accuracy in different settings. Further sensitivity analysis of 

the completed CFD model is also necessary, including analysis of the effect of turbulence model 

and solution methods, as well as a mesh convergence study. 

While the accuracy and the degree of validation performed in this study may not be 

acceptable for some applications, preliminary results from this study showed that CFD 

simulation has potential usefulness in future studies. Results of point data for air velocity were of 

the same magnitude as those observed in the experimental study. General spatial trends in air 

velocity data were replicated in simulations. This leads credence to the use of porous media as a 

method to model the animal occupied zone; this practice has potential application in a wide 

range of research. Furthermore, as seen in section 4.5, CFD simulations showed the ability to 

respond to certain design changes and produce results, though not verified, that seem reasonable. 

Indeed, it is this ability to efficiently test design alternatives that is one of the major attractions of 

CFD in this research field.  

Further advantages of the CFD simulations included examination of air velocity at any 

point in the model domain, both in and around poultry trailers. This facilitated the creation of 

contour plots in multiple domains, as well as streamlines to visualize airflow. This information 

could allow researchers to identify areas of high and low velocity within poultry trailers that may 

go unnoticed in experimental studies. 
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Future research involving application of CFD to poultry trailer holding sheds could build 

upon this study in a number of ways. As mentioned, most important is a more robust system of 

calibration and validation of the CFD model. Incorporating temperature and humidity into this 

model while accounting for heat and moisture production of birds is a logical addition. Modeling 

these parameters would greatly increase the usefulness of the CFD model to assess the impact of 

cooling shed strategies on bird welfare. If these parameters are implemented, and a suitable and 

more robust method for validation of the CFD model can be achieved, the CFD model could be a 

valuable tool for improving conditions for live animals within poultry trailer holding sheds. 
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