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Abstract 

Several new smartphones are released every year. Many people upgrade to new phones, 

and their old phones are not put to any further use. In this paper, we explore the feasibility of 

using such retired smartphones and their on-board sensors to build a home security system. We 

observe that door-related events such as opening and closing have unique vibration signatures 

when compared to many types of environmental vibrational noise. These events can be captured 

by the accelerometer of a smartphone when the phone is mounted on a wall near a door. The 

rotation of a door can also be captured by the magnetometer of a smartphone when the phone is 

mounted on a door. We design machine learning and threshold-based methods to detect door 

opening events based on accelerometer and magnetometer data and build a prototype home 

security system that can detect door openings and notify the homeowner via email, SMS and 

phone calls upon break-in detection. To further augment our security system, we explore using 

the smartphone’s built-in microphone to detect door and window openings across multiple doors 

and windows simultaneously. Experiments in a residential home show that the accelerometer-

based detection can detect door open events with an accuracy higher than 98%, and 

magnetometer-based detection has 100% accuracy. By using the magnetometer method to 

automate the training phase of a neural network, we find that sound-based detection of door 

openings has an accuracy of 90% across multiple doors. 
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 1 

I.  INTRODUCTION 

A. Overview 

Mobile hardware is evolving at an extremely fast pace. Most big smartphone vendors 

produce a new smartphone every year, causing many users to upgrade to a new device every year 

or two. In particular, iPhone sales have nearly tripled in the last five years [1]. Most of these 

retired devices still function as expected save for some scratches or cracks, but are ignored until 

either recycled, sold at a fraction of the initial cost, or thrown away. This leads to the all-too-

common “smartphone graveyard”- a place where old phones collect dust indefinitely. These 

retired smartphones are almost always equipped with highly sensitive motion capture chips. 

Though less frequently mentioned, these devices are also equipped with triple-axis 

magnetometers which are used for analyzing the device’s orientation with respect to Earth’s 

Magnetic North Pole. And, of course, these phones are all equipped with microphones. 

Personal, small-scale home security systems are becoming increasingly popular. Most 

professional systems, however, cannot be installed by the end-user and come with a large upfront 

cost as well as recurring costs such as annual fees. ADT, a professional home security company, 

charges upwards of $600 annually for their most popular home security package in addition to 

installation fees which can run as high as $1,600 [2]. Though a smartphone-based home security 

system would not be a smart investment to purchase all at once, the retired phones mentioned 

earlier can be used as a home security system without purchasing any new hardware. Since most 

users are already familiar with the hardware and software of smartphone, it would be easy for 

them to set up and use a smartphone-based home security system in their homes. While several 

smartphone-based home security solutions exist, most of them use the device’s camera to 

monitor events within the camera’s field of view. These solutions have considerable drawbacks 
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such as poor lowlight performance, using large amounts (several gigabytes) of storage, and the 

inability to detect break-in related events out of its field of view. Different from existing work, 

we study the feasibility of building a home security system based on smartphone accelerometers, 

magnetometers and microphones. Specifically, we will detect door and window opening events 

using the device’s accelerometer, magnetometer, and microphone [23].  

When a door is opened or closed, some of the kinetic energy transfers into the walls 

surrounding the door. The iPhone 4’s accelerometer, with a maximum sensitivity of 1 mg/digit 

[3], has been proved to be capable of detecting keystrokes on a keyboard with an accuracy as 

high as 80% [4][24][25]. With this level of sensitivity, the six-year-old iPhone 4 is more than 

sensitive enough to detect vibrations in a wall caused by door activity. Newer phone models 

usually have as good or better sensitivity. Figure 1 shows our observation of vibrations caused by 

a door opening captured by accelerometer. This initial data was obtained by simply opening a 

door while an iPhone 6 mounted to the wall nine inches from the door recorded vibrations. It can 

be seen that door events emit distinguishable vibrational patterns. Most noticeably, when the 

device is mounted near a door in portrait orientation, door-related vibrations captured by the on-

board accelerometer are especially large along the z-axis. Figure 2 shows a graphical 

representation of how the three motion axes are related to the orientation of the device. In 

addition to the accelerometer, the magnetometer can also be used to monitor the rotation of a 

door and detect door openings. By mounting a smartphone on a door (e.g., near the hinge) and 

monitoring the change in magnetic fields passing through the device, door events can be easily 

detected. We reference Earth’s Magnetic North to determine how far the door has rotated - 

essentially using the smartphone as a compass needle while the door is the compass body. This 
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method is less likely to produce false detection of door openings under environmental noise, 

although it cannot detect other events such as window openings when mounted on the door. 

 

 

Though the accelerometer and magnetometer are very capable of detecting door open 

events, their effectiveness is closely tied to the phone’s proximity to the door. With this in mind, 

we explore the possibility of using the phone’s built-in microphone to detect the sounds of door 

openings. This approach allows us to place the phone in a more centralized location and monitor 

more than one door at a time. We use a neural network that specializes in categorizing images to 

classify spectrograms generated by the device. Figure 3 shows an example of one such 

spectrogram. Because each door has a relatively unique and distinct audio signature, we found it 

necessary to train the model on each door. 

In this thesis, we explore several methods to use a smartphone’s embedded 

accelerometer, magnetometer, and microphone to reliably detect door and window openings and 

propose a home security system (named SecureHouse) for break-in detection and notification 

Fig. 1: Raw Vibration Data for Door Open Event Fig. 2: Device Motion Axes 
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[23]. Upon event detection, the detecting smartphone can send a customizable notification to the 

homeowner via short message, email, and/or telephone call. 

B. Contributions 

 The contribution of this thesis is summarized as follows: 

1. We propose SecureHouse, a home security system based on smartphone sensors. To the 

best of our knowledge, this is the first study that detects door openings for home security 

purposes using the on-board accelerometer, magnetometer, and microphone of a 

smartphone. 

2. We propose two machine learning methods to detect door openings using accelerometer 

data and one threshold-based method to detect door openings using magnetometer data. 

We also propose a machine learning method to detect door openings using sound. 

3. We implement a prototype home security system. The system contains a mobile app 

which runs on a wall-mounted phone that can efficiently interpret sensor data and 

asynchronously dispatch notifications using its Wi-Fi connection, a 3D printed modular 

smartphone case specifically designed to capture vibrations in a wall, and a threat 

response server that sends out alerts to the homeowner in the form of text messages, 

emails, and phone calls. 

4. We evaluate the system’s effectiveness to detect door events using extensive 

experiments. 

C. Organization of This Thesis 

 The remainder of this thesis is as follows. Chapter II presents related work. Chapter III 

presents the design of our system including system architecture and detection methods.  Chapter 
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IV describes our prototype implementation. Chapter V describes our experimental methodology 

and evaluation results. Chapter VI concludes the paper. 

 

 
 

 
 Fig. 3: Spectrogram Generated on Smartphone. Amplitude is 

represented by color and ranges from red to violet. To make 
the figure easier to read, we have replaced the red hues with 

white. 
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II.  LITERATURE REVIEW 
 

Wu et al. [5] propose a scheme to detect door events using the built-in barometer found in 

some modern smartphones. The key principle behind their work is that modern heating, 

ventilation and air condition (HVAC) systems maintain a constant pressure difference between 

inside and outside. Thus, when a door is opened, a sudden and recognizable change in barometric 

pressure occurs. We conducted experiments of our own using their methods and saw very similar 

results in a three-bedroom house. Specifically, we measured the fluctuation in pressure inside a 

home when a door is opened and closed. Figure 4 shows a clear change in pressure caused by 

door movement compared to background noise shown in Figure 5. However, the system can be 

rendered ineffective if the home has an open window since the air pressure inside and outside a 

home will be the same in that case. Figure 6 shows barometer readings from a door event when 

two windows are open. We no longer see the distinguishable curve similar to Figure 4, and the 

barometer readings become close to background noise shown in Figure 5. This is especially 

relevant where a homeowner might leave a window open while she is away (e.g., a window has 

metal bars on it and thus the homeowner considers it safe to leave the window open).  

 

    

 
Fig. 4: Air Pressure Fluctuations for Door 

Event with Windows Closed 
Fig. 5: Air Pressure Fluctuations without 

Any Door Events (noise) 
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Behringer et al. [6] have designed and implemented an automobile alert system using the 

accelerometer and GPS chips of smartphones. The system is capable of interpreting multiple 

types of car-related events such as engine ignition, door closing, and car motion. However, the 

system is designed for automobiles, not for home security.  

Toyoda et al. [7] explore using neural networks to classify environmental sounds. Though 

this work is similar to a portion of our own, the team does not implement a security system based 

on the classification of sounds. Additionally, Toyoda’s work does not limit itself to the 

processing power of a mobile device. Because of the extent of the limitations of using a 

smartphone to train and evaluate the neural network, we believe our work in that particular area 

is distinct enough to justify our work. 

As to commercial products whose aim is to transform old smartphones into a security 

system, there are several published apps such as Presence, Manything, and Alfred [8][9][10]. 

These apps are among the most popular applications that use smartphones as a video-based home 

security system. These systems use simplistic video analyzation to detect motion within the 

camera’s field of view under adequate lighting conditions. While they are effective for detecting 

Fig. 6: Air Pressure Fluctuations for Door 
Event with Windows Open 
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general motion inside the home, their fundamental limitation is that a camera cannot detect 

motions out of its field of view and it requires good lighting conditions which likely are not 

available at night. Also, these systems can generate a large amount of data (more than 200GB 

[11] encoded as H.264 [12] at 1080p) each day which needs to be stored somewhere. Storing this 

data on the device itself is not practical because most mobile devices have between 16GB and 

256GB of local storage. Naturally, these systems propose a solution by storing video on the 

cloud. In particular, Manything charges a Cloud Recording fee of $5.99 per month to be able to 

view past recorded events. This additional expense combined with the limited field of view and 

lighting requirements of a camera show that new technologies are needed. 
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III.  SYSTEM DESIGN 

 
A. System Overview 

As shown in Figure 7, our system has three components: a wall-mounted smartphone, a 

response server, and the homeowner’s smartphone. The wall-mounted smartphone detects door 

opening events and dispatches a notification request to the response server. The response server 

sends out notifications to the homeowner via email, text message, and/or phone calls. Finally, the 

homeowner’s smartphone receives the notifications and alerts the homeowner.  

 

 

 

 

There are a total of six major software modules in our detection system; four in the wall-

mounted device (included in one app) and two in the cloud-based threat response server. The 

homeowner’s smartphone does not require any other apps to be installed since the notifications 

Fig.7: SecureHouse System Architecture 
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arrive as text messages, phone calls, or emails which are already supported in nearly every 

smartphone. 

For door opening detection, vibrational or magnetic field data is captured by the raw 

motion manager. This module is responsible for reading and interpreting raw acceleration and 

magnetic field data and audio samples. Thirty times per second, the manager pre-processes the 

motion sensor data and sends it to the threat detection module. This module implements a sliding 

window or acts as a data passer depending on the detection algorithm. For accelerometer-based 

detection via neural network and k-nearest neighbors (see Chapter III-B), the threat detection 

module asks the A.I. module for an interpretation based on the last 30 samples (1s) of data. For 

magnetometer-based detection (see Chapter III-C), the detection module simply performs the 

basic calculations and checks against a threshold to detect a door opening. Upon detection, the 

detection module notifies the threat response module, which decides the appropriate action to 

take based on certain conditions of the device such as whether the alarm function is turned on, 

internet connectivity, and user preference. When the alarm function is turned on and under 

normal circumstances, the threat response module will send an HTTP request to the Threat 

Response Server. The HTTP request will indicate what type of event happened and the 

homeowner’s preferred ways of notifications such as email, SMS, phone call, or a combination 

of them. In the case of Wi-Fi connectivity issues, the threat response module will play a loud 

alarm sound in an attempt to deter intruders. Under normal circumstances, the alert system will 

not play an alarm since this may panic the intruder- which could cause the intruder to become 

reckless, cause damage, and/or escape. The homeowner can disable the alarm when she is at 

home awake. She can turn on the alarm function before she goes to sleep or when she leaves 

home.  
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Our Threat Response Server is designed to run on any server capable of running Node.js 

programs. There are many such services available including free services. Our prototype system 

(see Chapter IV) is hosted by Heroku [13], a free third-party cloud application hosting platform. 

Several other free Node.js hosting solutions are available, such as IBM Bluemix [14], OpenShift 

[15], and Amazon Web Services (AWS). Incoming network requests (generated by the wall-

mounted smartphone) are handled by the server’s network request module. This module is 

simply responsible for handling and parsing incoming HTTP requests. After a network request 

has been processed, this module sends a message to the server’s notification module, which will 

send out the alert according to the HTTP request. Though it is technically possible to use a home 

computer to perform this function, using an external server has a few important advantages. 

First, a user may want to change their notification preferences or silence the alarm while away 

from home. This can be easily done with an external server. However, for this to happen with a 

server at home, the homeowner would need to set up port forwarding on their router at home. 

This process is usually a little too technical for the average homeowner, and would be a 

detriment to the ease of installation of our system. Additionally, if any data related to a break-in 

is stored on the Threat Response Server, a burglar could potentially steal the server from the 

home and destroy some key pieces of evidence. 

B. Accelerometer-Based Detection 

1. A Naive Detection Algorithm 

Before going to our proposed learning-based algorithms, we describe a naive detection 

algorithm. Being very simplistic in nature, the algorithm raises the alarm if and only if the 

vibration intensity (Vi) of each vibrational axis falls between a specific range α and β: 

 



 12 

αx < Vi(x) < βx 

αy < Vi(y) < βy 

αz < Vi(z) < βz 

 

This method does not use any sort of data queue or sliding window. It just checks every 

incoming value independently at 30Hz. The lower threshold α helps ensure that only 

significantly strong vibrations are considered - thus filtering out ambient and static noise. The 

upper threshold β helps filter stronger types of environmental noise such as the homeowner’s 

footfall. In particular, since footfall and other vibrational noise affects all axes nearly equally 

while door openings affect primarily the z-axis, the upper thresholds βx and βy are substantially 

smaller in magnitude than βz to filter such noise. This approach has several drawbacks. Since the 

thresholds are door-dependent and obtaining them takes several minutes of fine-tuning, it is 

nontrivial and annoying for the homeowner to find an effective set of lower and upper thresholds 

for each door upon installation. Moreover, it performs significantly worse than more advanced 

algorithms as to be shown later. 

2. K-Nearest Neighbors + Dynamic Time Warping 

K-nearest neighbors is a simple machine learning algorithm that classifies an unknown 

data point based on the classification of a certain number of “nearby” data points. For example, 

in 2-dimensional space, the distance between an unclassified point p and all other classified 

points is calculated. Then, we look at k points that are nearest to p and perform a majority vote. 

For our purposes, however, we are using a series of 90 points (thus, 90-dimensional space). 

These 90 data points represent any one-second window of vibrational data along three axes 

captured at 30Hz. To help keep our datasets consistent and to allow our models to be trained 
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more effectively (especially for the neural network in III-B.3), our raw accelerometer data points 

are converted to a positive value (Vi) and then normalized from -1 to 1 (through dividing the 

value by the maximum recorded value, multiplying it by 2, and then subtracting 1). Lastly, we 

decouple the different axes from time such that the new curve takes the form of:  

Vs = < x1…x30, y1…y30, z1…z30> 

We call this new curve a vibrational signature. Figure 8 is an example of a common 

vibrational signature for a door open event. We can see from this figure that the z-axis (the last 

30 samples) is most heavily affected by door open events, with almost no vibration detected in 

the y-axis (middle 30 samples). Since Euclidean and Manhattan distance do not work well for 

such high-dimensional datasets, we use dynamic time warping to measure how similar two 

vibration signatures are. Dynamic time warping is a common algorithm which excels in 

comparing the similarity between two time-series datasets. Specifically, it excels in determining 

similarities which span over different lengths of time. For us, this is especially useful for 

detecting different speeds of door openings. We set k equal to the square root of number of 

training samples. This choice has been shown by the literature to be effective and offers a more 

simplistic implementation than bootstrapping or cross validation. Since the training data needs to 

be generated by a human, the number of training curves is limited to 15-30 door events and 15 

noise events (e.g., footfall inside the home and cars driving by). Due to the high dimensionality 

of the input, the number of training curves used, and the limited processing power of the phone, 

it is not possible to poll this algorithm at 30Hz. This problem is solved by waiting for significant 

vibrational disturbances using an activation threshold. In our experiments, we found that it is 

effective to set the threshold at 0.005 m/s2. Disturbances greater than this threshold value trigger 

the analysis of a 1- second sliding window. The sliding window is essentially a queue that 
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contains only the most recent 90 samples (one second at 30Hz for three axes) of accelerometer 

data. 

 

 

3. Feedforward Neural Network 

In machine learning, artificial neural networks (ANNs) are known for the similarities they draw 

from biological brains. Instead of using neurons, an ANN uses sets of interconnected nodes. 

These nodes are separated into three main categories: input, hidden, and output. ANNs are 

generally known for their ability to generate nonlinear models based on high-dimensionality 

input data. Specifically, we use a feedforward neural network (FFNN). This means that data 

passes through the sets of nodes going in one direction only and there are no cycles allowed in 

the node graph. Figure 9 shows a graphical representation of what a generic feedforward neural 

network looks like at a high level. We choose to use an FFNN since its training phase happens 

all at once in the beginning of the program execution and because generating output from the 

model is very time-efficient. This benefit allows us to poll the FFNN at 30Hz on a resource 

limited smartphone. 

Fig. 8: Vibration Signature for Door Open Event 
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For each door, a neural network is trained using 90-dimensional input data - exactly one 

second of 3-dimensional vibration data being captured at 30Hz. Due to the input requirements 

when training and evaluating the neural network, we use a vibration signature as defined above 

for our inputs instead of raw vibration data. We find that when using 90-dimensional data, using 

60 hidden nodes (90 ∗ 2/3) as suggested by Hundley [16] works well. We use one output node 

which simply returns a float value between 0 and 1. Values closer to 0 correspond to a lower 

chance of the interpreted data being a door event, while values closer to 1 correspond to a higher 

chance of a door event. Throughout this paper, we refer to this interpretation of the output value 

as the assurance of a door opening event. For example, if the assurance of the FFNN is set to 

60%, we classify any output greater than or equal to 0.6 to be a door open event. Due to the 

prediction efficiency of this algorithm, we were able to use the same sliding window approach 

mentioned above to analyze a new vibrational signature every 0.03 seconds (30Hz). 

C. Magnetometer-Based Detection 

Figure 10 shows raw magnetometer data for a door open and close event. We see large, 

easily recognizable curves during the time the door is opening and closing. Very little jitter is 

seen in the magnetometer’s readout, and practically no amount of vibrational interference would 

Fig.9: Representation of FFNN Nodes 
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cause the readout to be significantly distorted. Though it may be possible for an attacker to use a 

strong magnet to interfere with the magnetometer, this would still alert the user because we do 

not use an upper threshold for event detection. Next, we look at a realistic threshold to trigger the 

detection. Since the data for a door event is easy to recognize, we simply use a threshold value to 

detect door events. We found that a difference of 2µT between the current value and the value 

when the door is closed worked well as a threshold to detect door events. Because Earth’s 

magnetic field may differ from location to location, this approach will need to be 

calibrated/zeroed when installed in different locations. Different from the naive vibration-

threshold method mentioned above, the homeowner does not need to fine-tune this system. He 

can simply hit an on-screen button while the door is closed to “zero” the magnetometer. 

 

 

D. Audio-Based Detection 

In this section, we will present our audio-based detection method. For this, we created two 

implementations. The first implementation used raw audio samples, was very naïve and overall 

much less effective. Our second approach involved generating a spectrogram and using that for 

Fig.10: Magnetic Field Measurements of Door Event 
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classification in a neural network. This approach worked significantly better, and we focus on 

this approach for our evaluation. 

1. Using Raw Samples 

A naïve approach to classifying sound is to feed the raw audio waveform directly into a 

neural network. Figure 11 shows an example of what raw audio samples look like when a door is 

opened. Though we can clearly see when the door is opened, there is a lot of jitter and oscillation 

in the signal. The main issue with this approach was that the lowest acceptable sample rate was 

around 8 KHz. This means when we analyze one second of audio, we have 8,000 samples to 

format and classify. Given the limited processing power of the smartphone and the relative 

inefficiency of Hundley’s neural network library, this approach turned out to be too much for the 

phone’s processor to handle. Nonetheless, we continued to lower the sample rate until the 

smartphone was able to process the signal in real-time. At 2 KHz, the phone was finally able to 

keep up with the influx of data, but the audio quality was so poor that the detection accuracy was 

reduced to less than 20%. 

 

 
Fig.11: Raw Audio Samples of Door Open Event 
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2. Using a Spectrogram 

In this approach, we convert the raw audio samples into a spectrogram using Apple’s UIKit 

framework. Generally, spectrograms are used to represent the amplitudes of many frequencies 

over time [26][27][28]. Using a spectrogram, we can see a clear, distinguishable, and unique 

signal when the door is opened. To further increase the chance of success in this approach, we 

decided to abandon Hundley’s neural network library in favor of Apple’s recently released 

CoreML  library [17]. This library is much more efficient, as it was specifically designed by 

Apple to take full advantage of the ARM architecture found in all Apple smartphones. This 

approach works by holding raw samples in a circular buffer and executing the spectrogram-

generation and classification function on the buffer four times per second. In order to create a 

spectrogram, we first performed a Fast Fourier Transform (FFT) on the raw audio samples. From 

there, we normalize, filter, and crop the results to remove the mirrored data produced by the FFT. 

Finally, we can use Apple’s UIKit to draw the spectrogram pixel by pixel. To visually represent 

amplitude, we simply mapped the amplitude to “hue” in the HSV color representation scheme, 

keeping saturation (S) and value (V) fixed at 100%. 

Perhaps one of the most beneficial aspects of this detection method is its ability to self-train 

using the magnetometer as a ground truth. During the training phase, the phone is mounted on 

the door while the magnetometer provides a reliable way to distinguish noise events from door 

events. When SecureHouse is first deployed, the user only needs to mount the device on the door 

for a short time during which the neural network is trained. Afterwards, she is free to move the 

smartphone into a more central and less obtrusive location or continue training with more and/or 

different doors.
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IV. IMPLEMENTATION 

To demonstrate the effectiveness of our solution, we implemented SecureHouse as a 

prototype system. The following section describes some of the details and choices we made in 

the implementation phase. 

A. Phone Software 

Our detection system was written in Swift 2.3, compiled and tested using Xcode 7, and 

finally deployed on an iPhone 6 and 6S. We implemented our KNN+DTW algorithm from 

scratch, while our neural network was based on Collin Hundley’s Swift AI library [16]. Because 

of the inefficacies of Swift AI, we were forced to use Apple’s CoreML library when dealing with 

microphone data. In order to capture acceleration and magnetic field data programmatically, we 

used a low-level framework called Core Motion [18]. This library allows us to read the phone’s 

acceleration and magnetic field data at a rate up to 100Hz. In order to conserve battery life and 

processing power, we chose to set 30Hz as the reading frequency. To capture sound, we used 

Apple’s AVKit. This allowed us to capture and store individual audio frames from which we 

generated a spectrogram. 

B. Smartphone Case 

Additive manufacturing enables us to fabricate a smartphone mount specifically to suit 

our needs. Figure 12 shows a computer-generated model of the phone mount in its design phase 

and an image of the actual mount in use near a door. The case features a large back plate and 

screw holes so that it can be mounted on a wall near a door. The case’s large flat back plate 

serves two purposes. The first being an easy way to attach the plate to the wall via the four screw 

holes. Second, and more importantly, because of its hardness and multiple contact points over a 
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large surface area, it is able to mitigate vibrational dampening that may happen as vibrations 

transfer from the wall to the phone. 

 

 

Though the mount is designed to be a permanent installation, the phone itself can be slid 

in and out of the mount with relative ease in the event of replacement, physical service, or 

reprogramming. We do not consider the ability to remove the phone from its mount a deficiency 

in its security system duties, as an attacker would need to already be inside the home to remove 

the phone from its mount. 

C. Notifying the Homeowner 

For simplicity and to allow a rapid development of this prototype system, our 

implementation of texting and calling uses Twilio [19], a third-party service that allows us to 

send texts and make phone calls by simply making an HTTP request. We also used an open 

source library called “nodemailer” that allows a Node.js server app to easily send emails. Figure 

13 shows examples of alerts received by a homeowner in the form of a text message, an email, 

and a phone call.  

Fig.12: Smartphone Wall Mount 
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Home automation is a growing market; many homeowners have automated lights, 

cameras, door locks, etc. Because of the rapidly growing nature of the industry, we provide a 

way to interface with many third-party systems that a user may have by providing user-

configurable web-hooks. Web-hooks allow the user to specify a URL that an HTTP request 

should be made to upon door event detection. This allows SecureHouse to be easily and 

seamlessly integrated into many types of existing services. Possible integrations could include 

anything from turning on the homeowner’s lights to playing loud music to deter intruders. If a 

service has a RESTful API, SecureHouse can interact and integrate with it. This functionality 

makes our system incredibly flexible and versatile, as there may be several unthought-of use-

cases that could make SecureHouse even more effective. 

Fig.13: Example Notifications 
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V. EVALUATION 

A. Experimental Methodology 

The accelerometer-based experiments were conducted by mounting a smartphone on 

lightly textured drywall approximately 9 inches away from the latching mechanism of an exterior 

door. During the magnetometer experiment, the phone was mounted on the door itself near the 

hinge so that the phone would rotate when the door was opened or closed. For sound-based 

experiments, the phone was placed in a central location within direct line-of-sight of two exterior 

doors. The experiments were conducted in a 3-bedroom residential home approximately 20 feet 

away from the nearest road. Three types of vibrational noise scenarios were accounted for: 

ambient noise, walking noise, and automobile noise. Ambient noise was considered dead silence 

i.e. no external movement of any sort was present during the test. Automobile noise was 

generated by an automobile driving up and down the road closest to the house. Walking noise 

included normal to heavy footfall of people in the house during the trials. For acoustic noise, we 

considered loud footfall, talking, and automobile noise. Additionally, different speeds of door 

openings were accounted for. We considered three different types of door open speeds: slow, 

normal, and fast. We used a video camera and stopwatch to record and measure how long it took 

for a door to clear the door jamb at different opening speeds. Slow door events were classified as 

any door event in which the door took more than 0.6 seconds to clear door jamb. Normal events 

took between 0.3 and 0.6 seconds. Fast door open events consisted of any door events in which 

the door took less than 0.3 seconds to clear. 

B. Detection Accuracy 

Figures 14, 15, 16, 17, 18, and 19 show the detection rates for several series of door 

openings under various conditions using various detection methods. Detection rate is defined as 
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the number of detected door openings divided by the total number of door openings. Here each 

result is the average of 50 independent tests. For the FFNN method, we ran tests with two 

different assurance values, one at 60% and one at 75%. For the microphone method, we trained 

the model organically for three weeks (i.e. the phone was mounted on the door for three weeks 

during the training phase). Figure 20 shows the overall detection rate for all tests.  

 

 

 

 

          

 

Fig.14: Vibration-based, 
Naïve Method 

Fig.15: Vibration-based, 
FFNN, 60% Assurance 

Fig.16: Vibration-based, 
FFNN, 75% Assurance 

Fig.17: Vibration-based,  
KNN + DTW 
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Among the tested algorithms, the naive threshold-based detection using accelerometer 

data performs the worst, especially when the door is opened slowly. Its overall detection rate is 

61%. The high failure rate of this system is due to our derived threshold values. Though a wider 

threshold would produce a higher detection rate, the increase in sensitivity would severely hinder 

its ability to filter false positives. The magnetometer-based detection performs the best with a 

detection rate of 100%, which is consistent with intuition since rotation of the door is significant 

when a person enters the house. The FFNN method (when assurance is set as 60%) and the 

KNN+DTW method also have a very high detection rate of 98%. The two machine learning 

methods perform similarly when the door is opened fast and when the door is opened at normal 

Fig. 20: Overall Detection Rate 

Fig.18: Magnetometer-
based, 2uT Threshold 

Fig.19: Spectrogram-based, 3-
Week Training time. 
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speed. The performance is a little lower when the door is slowly opened. For them, the different 

types of noise do not have much impact on detection rate when the door is normally or quickly 

opened, but have a little effect when the door is slowly opened.  

For audio spectrogram-based detection, we see good performance under ideal 

circumstances. We notice that walking noise affects the detection accuracy more than automobile 

noise. This is expected, as walking produces more impulse-like sounds compared to the 

continuous “humming” sounds of nearby vehicles. Figure 21 shows an example of what a door 

opening looks like when a car drives by. We can see that automobile noise is mostly filtered until 

the door opens. Figure 22 shows an example of footfall in the home while a door opens. The 

sharp “spikes” are footsteps while the large colorful area in the center is the door opening.  

   

. 

 

Table I shows the results of false detections caused by knocking on the door. For this test, 

we considered two intensities of a knock - light and heavy, and the number of knocks which 

occurred - 1 or 2+. It can be seen that the magnetometer has complete immunity to noise, while 

Fig. 21: Spectrogram of Door Opening 
While Car Passes 

Fig. 22: Spectrogram of Door Opening 
with Footfall in Background 
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KNN+DTW is only moderately affected by heavy door knocks. A single heavy door knock is the 

more likely to produce a false positive than other knocks. 

 

TABLE I: False Positives Caused by Knocking on Door 

 FFNN 
Light 

Knock 

FFNN 
Heavy 
Knock 

KNN+DTW 
Light 

Knock 

KNN+DTW 
Heavy Knock 

Magnetometer 
Light Knock 

Magnetometer 
Heavy Knock 

Spectrogram 
Light Knock 

Spectrogram 
Heavy 
Knock 

1 Knock 1/20 8/20 0/20 4/20 0/20 0/20 0/20 0/20 

2+ Knocks 0/20 5/20 0/20 1/20 0/20 0/20 0/20 0/20 

 

C. Field Tests 

In addition to the 2,700 door openings performed above, we also let the system operate in 

a residential 3-bedroom home for short-term period 24 hours and a long-term period of 7 days. 

We conducted the 24-hour long test first to quickly determine which methods are most effective 

in a real-life scenario. We then used the top performing vibration-based detection method in our 

week-long experiment. We define false positives (FP) in these tests as any event that the device 

interprets as a door opening which was not a door opening. Table II shows the number of false 

positives during the 24-hour long test. Table III shows the results for the 7-day long test. We 

took note of whether a false positive was generated while no one was home versus while the 

home was occupied by the homeowner with the help of a video camera. Though we saw many 

false positives using vibrational-based detection under our machine learning-based detection 

methods, all of them occurred while the homeowner was awake at home. We found that our 3- 

bedroom house generated a large amount of highly varied environmental noise such as playing 

aggressively with dogs, loudly stomping about, and large groups of excited people during 
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televised sporting events. Since the alarm function can be disabled during these times, those false 

positives will not cause false warnings to be dispatched to the homeowner. 

 

TABLE II: Field Tests over 24 Hours 

Detection 
Algorithm 

FP- Homeowner is 
Away 

FP- Homeowner is 
Home 

False Alerts- 
Home- owner is 

Away 

False Alerts- 
Home- owner is 

Home 
Vibrations-
Threshold 2 22 2 0 

Vibratoins-FFNN-
75% Assurance 0 9 0 0 

Vibratoins-FFNN-
60% Assurance 0 21 0 0 

Vibrations-
KNN+DTW 0 19 0 0 

Magnetometer 2µT 0 0 0 0 

Audio 
Spectrogram 0 18 0 0 

 

TABLE III: Field Tests over 7 Days 

Detection Algorithm FP- Homeowner is 
Away 

FP- Homeowner is 
Home Unnecessary Warnings 

Vibrations- FFNN 75% 
Assurance 0 53 0 

 

D. Modeling Vibration Dissipation 

In order to determine the generality of vibration-based detection, we want to estimate a 

maximum distance away from a door that a smartphone could be mounted and still be effective. 

Specifically, we are interested in finding a distance such that Vi door open(x, y, z)  ≤ Vi noise(x, y, z). 

After this distance, the vibration caused by door open is too small to be differentiated from 

background noise. 
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To answer this question, we need to figure out how fast vibration dissipates in the wall. It 

is generally known in physics that the rate of energy dissipation from a single point in space can 

be modeled by: f(k) = αe−λx [20]. Our goal is to determine a suitable value for λ and α such that 

we may generalize how fast vibrations dissipate through the walls in a home. To do this, we 

purchased several high-sensitivity accelerometers [21] and mounted them at 1 foot intervals on a 

wall next to an exterior door. Figure 24 is a picture of the experimental setup. To generate a 

consistent source of vibration, we attached a rubber ball to a string of fixed length, and used it as 

a pendulum to strike the wall. Figure 23 shows the average result of 10 tests and a best-fit line 

from which we get the α and λ. Using this dampening rate (determined by λ) and our 

measurement of vibration strength near the door for door open, we can generate a theoretical 

vibration curve for several distances away from the door. We found that after distances become 

greater than 6ft, the magnitude of door-related vibration was less than or equal to that of ambient 

noise. We acknowledge that the dissipation rate might be different for different walls, but the 

result here can still shed some light on the effective distance of vibration-based detection. 

 

 

 

Fig. 23: Model of Vibration Dissipation in 
Drywall 

Fig. 24: Experimental Setup for Modeling 
Vibration Dissipation 
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E. Door Proximity & Interference 

In modern living spaces such as apartments and duplexes, exterior doors might be placed 

in close proximity to each other. We set out to determine if doors in close proximity would have 

any noticeable effect on our detection methods. We started out by visiting a local apartment 

building and taking some measurements. We measured 24’ 9” as the horizontal distance between 

doors, and 7’ 6” as the vertical distance between doors. With the smartphone mounted on the 

wall near a door, we opened and closed next-door neighbors’ doors several times and recorded 

the vibration intensity. We did this experiment for neighbor doors on the same floor, and the 

floors above and below. We observed that neighbors’ doors had virtually no impact on the 

vibration readings. This was expected, though, as our dampening model had predicted distances 

greater than six feet would be enough to reduce the magnitude of vibrations to that of 

environmental noise. 

F. Detecting Other Motion Events 

Although the detection rate of vibration-based and audio-based detection is a little lower 

than the magnetometer-based detection, they have one distinct advantage: they can detect other 

motion events in addition to door open. To demonstrate this, we conducted tests for window 

openings. For the accelerometer test, the window is 42 inches away from the wall-mounted 

smartphone. For the microphone test, the window is about eight feet away and in direct line-of-

sight. For these tests, we trained the two types of neural networks using 15 samples of window 

openings and 15 samples of noise (8 samples of ambient noise, and 7 samples of heavy footfall). 

The assurance parameter was set to 60% and the same 1-second sliding window described above 

was used. This implementation was nearly identical to how we detected door open events using 
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the neural networks. We tested 25 window openings. The detection results are shown in Table 

IV. 92% of the window openings can be detected. 

TABLE IV: Window Opening Detection 

Detection Algorithm Detection Rate 

FFNN – 60% Assurance 23/25 

Audio Spectrogram 20/25 

 

We see that the microphone-based method performs a little worse than the accelerometer-

based method. Though the results are slightly less accurate, the microphone is capable of 

detecting window openings for multiple windows whereas the accelerometer is limited to just 

doors and windows within six feet of the phone.   

G. Cost Evaluation 

In this section, we will describe how we evaluated the cost of our system as well as the 

results compared to a few other popular smartphone applications. 

1. Processing Time 

  For feedforward neural network, the algorithm is able to analyze a curve in 

0.0011 seconds. Since we are polling this algorithm at 30Hz (0.033 seconds), our program 

spends only 3% of its runtime analyzing curves, and the remaining 97% is spent idle. The 

KNN+DTW approach needs a much higher processing time. Each analyzation takes 0.76 

seconds. This is because the DTW algorithm has high time-complexity (O(n2)), the method does 

not have a training phase, and it uses 30 curves. 
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2. Memory Usage 

  The total size of our packaged detection app is around 20MB. This is on par with 

or lower than many apps in the App Store. Our app does not write any data to disk during 

operation, so we can expect this value to remain constant during the life of the operation. For 

memory consumption, our analysis shows that the FFNN detection algorithm uses 5.8MB of 

memory on average, while the KNN+DTW detection algorithm uses 5.5MB on average. Our 

sliding window contains 90 doubles, which iOS allocates 8 bytes [22] each to. Our sliding 

window releases unused values, so we say the extra cost of the sliding window is less than 1KB. 

3. Network Usage 

  The SecureHouse detection app only uses the network when a door event is 

detected. Upon door event detection, a POST request is made to the threat response server which 

contains only an 128-bit access token and two integers representing the type of event and the 

homeowner’s notification preferences. The total size of this request is less than 350 bytes. This 

results in around 15KB of data being sent per day when the home is in use, and near 0KB of data 

being sent when the homeowner is away. 

4. Power Consumption 

  iOS does not support gathering of energy consumption in units of mW, so we 

used Xcode’s Instrument Panel to monitor energy consumption. This tool allows us to see an 

“energy usage level” on a scale of 0-20. For the FFNN, KNN+DTW, and Magnetometer 

detection methods, our app achieves a rating of 0 (best) for energy consumption. Furthermore, 

the energy-consumption tool shows that the detection methods use between 6% and 15% of the 

CPU cycles. We found that this is much lower than other types of apps. In particular, Crossy 

Road, a popular mobile game scores a 3/20 and uses between 39% and 58% of the CPU cycles. 
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While Chrome, a web browser for iOS, scores a little better with a rating of 0/20 but uses an 

average of 21% of the CPU cycles. In order to get a better feel for the power consumption of our 

detection app, we ran experiments and found that it takes more than 80 minutes to deplete an 

iPhone 6’s battery by 10% while running any of the detection algorithms. This means that, 

though the phone would need a permanent power source, the system could remain operational 

for more than 13 hours in the event of a power loss. 



 

 33 

VI. CONCLUSION & FUTURE WORK 

This paper studied the feasibility of using the accelerometer, magnetometer, and 

microphone of a smartphone to detect door openings and build a home security system. We 

developed two machine learning based detection methods using the accelerometer data, one 

detection method using magnetometer data, one detection method using the microphone, and 

developed a prototype system. Experiments showed that door openings can be accurately 

detected using accelerometer and magnetometer data, with a detection rate of 98% and higher. 

The microphone can detect door openings across multiple doors with an accuracy of 90%. 

Accelerometer and sound-based detection can also detect window openings with high accuracy. 

Smartphones containing built-in Wi-Fi connectivity are easily capable of dispatching alerts to the 

homeowner or even law enforcement. Thus, our smartphone-based home security system built 

with retired smartphones could be a viable and economical option for residential homes.  

As for future work, our system could be expanded upon in several ways. First, as it stands 

currently, if a user wishes to use the accelerometer, she must manually train the model by 

opening the door several times for each door. Compared to the magnetometer and microphone-

based approaches, this is a bit clunky. Perhaps we could gather enough data on many doors to 

create a generalized prediction model so that a potential user can skip this training process. 

Though the microphone-based detection method uses the magnetometer to train itself, three 

weeks is quite a long time for the device to spend in training mode. Again, we could potentially 

create a generalized model for this such that it can classify most door openings without extra 

training from the user. Second, since vibrations caused by door opening dissipate quickly and 

become indistinguishable from environmental noise after 6 feet, most likely a smartphone 

mounted near one exterior door can only detect the openings of this door when relying on 
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vibrational data. There are many apartments and small duplexes that only have one exterior door 

or doors near each other. For a large house with multiple exterior doors, using one smartphone 

for each door, although not totally infeasible (e.g., when there are multiple residents with 

multiple retired phones), seems too costly. In this scenario, we recommend using the audio-based 

detection method, as it can detect several doors while in a central location. In our future work, 

we will investigate a way to improve the audio-based detection method. 

Finally, we could further augment SecureHosue to incorporate even more sensors and 

detection methods. This could include the use of more passive detection methods like Bluetooth 

and Wi-Fi scanning or even using the barometer in conjunction with the other detection methods. 

Ideally, we want to create a system which can use a single device to detect, report, and deter 

break-ins regardless of any environmental variables.
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