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Abstract 

The development of expected-distance formulas for multi-dock-door, unit-load warehouse 

configurations is the focus of the dissertation. From formulations derived, the width-to-depth 

ratios minimizing expected distances are obtained for rectangle-shaped, unit-load warehouse 

configurations. Partitioning the storage region in the warehouse into three classes, the 

performance of a multi-dock-door, unit-load warehouse is studied when storage regions can be 

either rectangle-shaped or contour-line-shaped. 

Our first contribution is the development of formulas for expected distance traveled in 

storing and retrieving unit loads in a rectangle-shaped warehouse having multiple dock doors 

along one warehouse wall and storage racks aligned perpendicular to that wall. Two formulations 

of the optimization problem of minimizing expected distance are considered: a discrete 

formulation and a continuous formulation with decision variables being the width and depth of 

the warehouse for single- and dual-command travel. Based on dock door configurations treated 

in the literature and used in practice, three scenarios are considered for the locations of dock 

doors: 1) uniformly distributed over the entire width of a wall; 2) centrally located on a wall with 

a fixed distance between adjacent dock doors; and 3) not centrally located on a wall, but with a 

specified distance between adjacent dock doors. 

Our second contribution is the investigation of the effect on the optimal width-to-depth ratio 

(shape factor) of the number and locations of dock doors located along one wall or two adjacent 

walls of the warehouse. Inserting a middle-cross-aisle in the storage area, storage racks are 

aligned either perpendicular or parallel to warehouse walls containing dock doors. As with the 

warehouse having storage racks aligned perpendicular to the warehouse wall, discrete and 



continuous formulations of the optimization problem are developed for both single- and dual-

command travel and three scenarios for dock-door locations are investigated. 

Our final contribution is the analysis of the performance of a unit-load warehouse when a 

storage region or storage regions can be either rectangle-shaped or contour-line-shaped. 

Particularly, we consider two cases for the locations of dock doors: equally spaced over an entire 

wall of the warehouse and centrally located on a wall, but with a specified distance between 

adjacent dock doors. Minimizing expected distance, the best rectangle-shaped configuration is 

determined and its expected distance is compared with the expected distance in its counterpart 

contour-line-shaped configuration. 
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Chapter 1  

Introduction 

In supply chain and logistics systems, unit-load warehouses have played a critical role for 

decades in decreasing costs and reducing response times for demands. Although unit-load 

warehouses typically have multiple dock doors for receiving and shipping, most researchers have 

based their calculations on an assumption of a single dock door located at the centerline of one 

wall of a rectangle-shaped warehouse. Relaxing the single-dock-door assumption results in more 

realism to the research. Likewise, relaxing the centrally-located-dock-door(s) assumption 

provides flexibility for the locations of dock doors when additional space is needed.  

In incorporating multiple dock doors in the design of the warehouse, designers need to 

understand the impact of having more dock doors than necessary. Not only does having more 

than the necessary number of dock doors increases equipment costs, it also increases the 

expected distance traveled in storing and retrieving unit loads. Therefore, the analytical models 

we develop for multi-dock-door, unit-load warehouses should provide beneficial insights for 

designers. 

Relaxing assumptions to produce a more accurate representation of reality can reveal new 

design opportunities. Recent studies show innovative aisle designs improve the performance of a 

rectangle-shaped, unit-load warehouse by reducing expected distance traveled. Rectangle-shaped 

warehouse design is another implicit assumption used in warehouse design. Developing formulas 

for a contour-line-shaped warehouse provides a lower bound for expected-distance calculations 

and reveals the penalty of requiring the unspoken design rule that the shape be rectangular. 

This research focuses on developing expected-distance formulations for single- and dual 

command travel in traditional unit-load warehouse designs having multiple dock doors along one 
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wall or two adjacent walls of the warehouse. Defining shape factor as the width-to-depth ratio for 

a unit-load warehouse, from the formulas derived, shape factor values minimizing expected 

distances are obtained in Chapters 2 and 3. Moreover, Chapter 3 compares the performance of 

three traditional layout designs; also, features of two of the three designs are combined to obtain 

a fourth layout design. In Chapter 4, the performances of rectangle-shaped warehouses are 

analyzed and compared with contour-line shaped warehouses considering randomized and class-

based storage policies. Computational results are provided in each chapter. In Chapter 5, research 

finding are summarized, design conclusions are drawn, recommendations for further research are 

given and suggestions are provided concerning the application of the research results in 

designing unit-load warehouses. 

In Chapter 2, single- and dual- command expected-distance formulas are developed for a 

traditional warehouse design having storage racks aligned perpendicular to the warehouse wall 

on which k dock doors are located. Based on dock door configurations treated in the literature 

and used in practice, three scenarios are considered for the locations of k dock doors: 1) dock 

doors are dispersed over an entire warehouse wall; 2) dock doors are symmetrically located 

about the centerline of a warehouse wall with a specified distance between adjacent dock doors; 

and 3) dock doors are not centrally located, but a specified distance exists between the leftmost 

wall and the nearest dock door and a fixed distance exists between adjacent dock doors. In 

developing discrete formulations for expected-distances traveled, a formulation of a nonlinear-

integer-programming optimization problem is presented. Moreover, in order to obtain closed-

form expressions facilitating sensitivity analyses and to avoid the use of a specialized software 

package, a general formulation of the nonlinear, convex-programming optimization problem is 

provided by employing expected-distance approximations. Theorems, propositions and 
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corollaries are included for continuous approximations. Optimization formulations are solved 

using specified values of parameters, and results are provided. In addition, a given set of 

parameter values are tested to examine the percentage error for continuous approximations. 

Because continuous formulations provide reliable results for both single- and dual-command 

travel, optimal shape factor values are determined for each scenario by using continuous 

approximations.  

In Chapter 3, optimization problems are considered similar to those of Chapter 2, but for 

three additional layout configurations. The first design is obtained by inserting a cross aisle in the 

“middle” of the design described in Chapter 2. Rotating the storage racks and middle-cross-aisle 

in the first design, the second design is obtained. Moreover, the optimal shape factor 

formulations for two designs including a middle-cross-aisle are provided. Investigating the effect 

on the optimal shape factor of the number and locations of dock doors located along two adjacent 

warehouse walls, the third design is introduced by combining features of the first and second 

designs. As with Chapter 2, formulations of optimization problems are developed for the same 

dock-door-location scenarios and solved for both single- and dual-command travel. Comparing 

all designs, the performances of warehouse designs are compared, based on an equal number of 

S/R locations. Allowing shipping dock doors to be located along one wall and receiving dock 

doors to be located along an adjacent wall of the warehouse, results are provided for expected 

distance and the optimal shape factor for the fourth design. Additionally, considering a mixture 

of single-command, dual-command and cross-docking travel, three scenarios are considered: 1) 

single-command focused warehouse, 2) dual-command focused warehouse and 3) cross-docking 

focused warehouse.  
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Comparisons of the performance of a rectangle-shaped, unit-load warehouse with a contour-

line-shaped unit-load warehouse under a randomized storage policy are provided in Chapter 4. 

Furthermore, dividing the unit-load warehouse into three different storage regions (ABC class-

based storage policy) and using continuous formulations from Chapter 2, expected single-

command-distance formulas are derived for each region and the best rectangle-shaped 

configuration is determined. Because contour lines determine the shape of each storage region, 

expected-distance formulas are developed for contour-line-shaped storage regions by using a 

special case of the Neyman-Pearson Lemma employed by Francis (1967). Therefore, the 

expected distance in the best rectangle-shaped configuration is compared with the expected 

distance in its counterpart contour-line-shaped configuration and the penalty of requiring the 

storage regions to be rectangle-shaped is calculated. Different skewness levels are examined by 

using Bender’s formulation (Bender, 1981) to illustrate the effect of ABC curve shapes on the 

penalty of requiring the warehouse to be rectangle-shaped. 

Chapter 5 includes a summary of the dissertation and design conclusions drawn, as well as 

suggestions regarding the use of the research results in designing unit-load warehouses. 

Recommendations for further study are also provided. 
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Chapter 2  

Contribution 1: A Paper on, “A Multi-Dock, Unit-Load Warehouse Design” 

Abstract 

Expected-distance formulations are developed for a rectangle-shaped, unit-load warehouse 

having dock doors along one warehouse wall. Based on dock-door configurations treated in the 

literature and/or used in practice, three scenarios are considered: 1) equally spaced dock doors 

spanning a wall, 2) equally spaced dock doors with a specified distance between adjacent dock 

doors, and an equal number of dock doors located on each side of the wall’s centerline, and 3) 

equally spaced dock doors with a specified distance between adjacent dock doors and the first 

dock door located a given distance to the right of the left wall. Defining shape factor as the 

warehouse width divided by its depth, the shape factor minimizing expected distance is 

determined. Single- and dual-command travel results from discrete formulations are compared 

with results from closed-form expressions using continuous approximations. The optimal shape 

factor depends on the number and locations of dock doors. When the distance between adjacent 

dock doors is a function of the warehouse’s width, previous research results are confirmed. 

However, when distances between adjacent dock doors are specified, our results differ from a 

commonly held belief the optimal shape factor is always less than or equal to 2.0. 

Keywords: Multiple dock doors, Shape factor, Unit-load, Single-command, Dual-command. 
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2.1. Introduction 

In today’s business environment, to increase profit margins, companies are reluctant to 

increase prices in order to improve service levels for their customers. Additionally, customers 

demand next-day or same-day delivery of orders placed. Therefore, companies focus on 

decreasing costs to gain competitive advantage and reduce response times in order to provide 

better service. Both conditions result in a need to reduce the time to store and retrieve products in 

warehouses. Material flow is a primary consideration in designing warehouses. 

A variety of facilities with a common identification, warehouse or distribution center, play a 

critical role in today’s supply and distribution networks by facilitating and speeding up 

movements of products between manufacturers and customers, as well as reducing costs of 

operations. The design of the network includes decisions regarding the number, sizes and 

locations of distribution centers. Due to a vast number of design alternatives and uncertainty of 

demands, designing and managing a distribution center or warehouse can be a complex task with 

multiple conflicting objectives such as minimizing operating cost and minimizing capital 

investment. Alternatively, depending on the warehouse mission, the design objective can be the 

minimization of the maximum time required to retrieve products in the warehouse or the 

maximization of the probability the time to store or retrieve a unit load is less than an aspiration 

level. 

Activities most commonly performed in a warehouse include receiving, staging, storing, 

retrieving, order picking, and shipping. Because 20-50% of total operating cost consists of 

transporting products, operating cost can be reduced by 10-30% by minimizing expected 

distance (Bartholdi and Hackman, 2014). Including storage and retrieval operations, the storage 

function is a key component of warehouses. Because much of a warehouse worker’s time is 
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spent traveling between dock doors and storage/retrieval (S/R) locations, the storage function is 

one of the most labor intensive and costly material flow activities.  

As noted in the title of the chapter, we limit our attention to the design of a facility for storing 

and retrieving unit loads of product(s): a unit-load warehouse. Specifically, we limit the storage 

of unit loads to selective single-deep pallet rack (Tompkins et al., 2010) installed perpendicular 

to the wall containing the dock door(s). Consistent with the research literature treating the design 

of unit-load warehouses, we employ the design objective of minimizing expected distance 

traveled between dock doors and storage locations. 

Francis (1967a) showed that locating a single dock door at the centerline of the wall 

containing the dock door will minimize expected distance between the dock door and uniformly 

distributed S/R locations in the rectangular storage region. Thereafter, researchers studying unit-

load warehouses having traditional layouts with storage racks installed perpendicular to a given 

warehouse wall have tended to limit their studies to having a single dock door located at the 

centerline of a warehouse wall. However, warehouses typically have multiple dock doors.  

Bassan et al. (1980) concluded dock doors should be located as near as possible to the 

centerline of the warehouse if a unit-load warehouse has multiple dock doors. Apparently, 

increasing the number of dock doors results in locating them farther from the centerline of the 

warehouse when dock doors either equally spaced over an entire wall (Scenario 1) or equally 

spaced with a specified distance between adjacent dock doors (Scenario 2); therefore, it increases 

expected distance between dock doors and S/R locations. With the objective of minimizing 

expected distance, using multiple dock doors is not a good choice. An important question arises 

as to what would be the advantage of using multiple dock doors.  
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Because the cost of installing a dock door in the wall of a warehouse when it is built is 

substantially less than the cost of adding a dock door after the warehouse is built, it is quite 

common for warehouse designers to space dock doors over an entire wall of the warehouse. 

While it might be less expensive to construct warehouses in this way, it can result in significantly 

greater travel distances if, in fact, the throughput requirements for the warehouse do not justify 

having the number of dock doors provided. Specifically, the required number of dock doors is 

determined by the time between truck arrivals, the number of trucks served over a period of time 

(day, week or season) and the average time for loading or unloading. Although having fewer 

dock doors than the required number results in decreasing expected distance traveled, it creates 

congestion; therefore, extra waiting time for S/R equipment results. However, little research has 

been performed regarding the degree to which expected distance increases when dock doors are 

added to meet the throughput requirements of the warehouse. Likewise, the impact on expected 

distance of various locations of dock doors has not been well-studied.  

From an expected-distance perspective, an optimal number of dock doors can be determined 

when dock doors are equally spaced with a specified distance between adjacent dock doors and 

the first dock door located a given distance to the right of the left wall (Scenario 3). As noted 

previously, because the number of dock doors is generally based on throughput requirements, the 

number of dock doors is a parameter, not a decision variable. (If it were a decision variable, a 

single-dock-door warehouse would be recommended, assuming throughput requirements are 

met.) 

Francis (1967a) showed, to minimize expected rectilinear distance, the width of the 

warehouse wall containing the dock doors should be twice the depth of the warehouse. 

Interestingly, warehouse designers have tended to employ a “rule of thumb” that the warehouse 
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shape factor (width-to-depth ratio) should be equal to 2.0, regardless of the number of dock 

doors located along the warehouse wall.  

Given widespread industry practice to design warehouses twice as wide as they are deep and 

to have dock doors over an entire warehouse wall, we sought to answer the following questions:  

1. What impact does warehouse shape factor have on expected distance between dock doors 

and S/R locations in a unit-load warehouse? 

2. What impact does the number of dock doors have on expected distance? 

3. What impact does the number of dock doors have on the optimal warehouse shape?  

4. What impact does the location of dock doors have on expected distance? 

5. What impact does the location of dock doors have on the optimal warehouse shape? 

To answer our questions, first, we develop a formulation of the optimization problem with 

discrete formulations by considering the number of S/R aisles and the number of S/R locations 

along one side and one level of an S/R aisle as decision variables. The formulation includes 

discrete formulas of distances between dock doors and S/R locations, as well as between S/R 

locations; travel is restricted to an orthogonal set of S/R aisles and cross-aisles. Thereafter, 

because the optimal shape factor with the discrete formulations cannot be easily determined, we 

obtain closed-form formulas by employing a continuous approximation with decision variables 

being the width and depth of the warehouse. Particularly, the warehouse is treated as a 

continuous region; expected distance is measured rectilinearly between dock doors and S/R 

locations, and the locations of S/R racks and aisles are ignored for single-command travel. 

However, a continuous approximation of the discrete formulation for travel-between distance is 

employed in expected dual-command distance formulations because continuous space formulas 

underestimate expected distance between two S/R locations when two S/R locations are in 
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different S/R aisles, resulting in an error of approximately 31.69% for a particular set of 

parameter values (given in Section 2.7).  

In storing and retrieving unit loads, single- and dual-command travel can occur. Single-

command travel occurs when S/R equipment transports a unit load from a dock door to a storage 

location and returns (empty) to the dock door or S/R equipment travels (empty) from a dock door 

to a retrieval location and transports a unit load to the dock door. Dual-command travel occurs 

when S/R equipment transports a unit load from a dock door to a storage location, travels 

(empty) to a retrieval location, and transports a unit load to the dock door. (The distance between 

storage and retrieval locations is called travel-between distance.)  

We limit our analysis to planar travel; hence, distances to S/R positions in upper levels of the 

S/R racks are not included. Therefore, in developing formulations, two dimensions of planar 

travel are considered: horizontal travel and vertical travel. Horizontal travel occurs when S/R 

equipment travels parallel to the wall containing dock doors. Vertical travel occurs when S/R 

equipment travels perpendicular to the wall containing dock doors. 

We assume dock doors are equally likely to be selected for travel to or from S/R locations 

and S/R locations are equally likely to be visited within the storage region. Expected distance for 

S/R equipment traveling along the orthogonal set of S/R aisles and cross-aisles is the sum of 

expected vertical and horizontal roundtrip-distances. Notice, because dock doors are located 

along a single wall, neither the number nor the locations of dock doors affects expected vertical 

distance or expected travel-between distance. S/R aisles are used to access S/R locations; cross-

aisles are used to move between S/R aisles. We assume S/R aisles are wide enough for 2-way 

travel to occur and for S/R equipment to access either side of the aisle in storing or retrieving a 

unit load. 
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The remainder of the chapter is organized as follows. In the subsequent section, unit-load 

warehouse design literature is reviewed. In Section 2.3, the notation employed in discrete and 

continuous formulations is provided. Removing the single-dock-door constraint, Section 2.4 

addresses three basic scenarios regarding the number and locations of dock doors. Section 2.5 

provides discrete formulations for expected distance and develops integer-programming models 

for the scenarios. In Section 2.6, expected-distance approximations are developed and closed-

form expressions for the optimal shape factor are provided. (Both single-command and dual-

command operations are considered in Sections 2.5 and 2.6). In section 2.7, the accuracy of the 

continuous approximations is tested based on a set of parameter values and the effects of the 

scenarios on expected distance and optimal shape factor are examined and compared for a 

particular set of parameter values. In Section 2.8, findings from the research are summarized, 

conclusions are drawn and recommendations for future research are provided. Finally, proofs of 

theorems, corollaries, and propositions, as well as tables of computational results, are provided in 

the Appendix. 

2.2. Literature Review 

A vast body of research exists addressing how to design a warehouse with specific 

assumptions and limitations. Earlier studies focused on two well-known warehouse types: unit-

load warehouses and order-picking warehouses. Our focus is on unit-load warehouses. 

Furthermore, we limit our review to literature treating traditional aisle structures (an orthogonal 

set of S/R aisles and cross-aisles).  

The first formulation of single-command travel for a unit-load warehouse was provided by 

Francis (1967a). He concluded a shape factor of 2.0 minimizes expected single-command 

distance when a single dock door is located at the mid-point of a wall. Subsequently, Francis 
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(1967b) provided sufficient conditions for warehouse designs having a single dock door to 

minimize expected rectilinear distance between the dock door and uniformly distributed S/R 

locations.  

Mallette and Francis (1972) extended Francis’ earlier studies to include discrete space 

formulations by treating the facility design problem as a generalized assignment problem with 

storage areas in the plane being composed of n grid squares. Francis and White (1974) employed 

contour lines to obtain warehouse designs when travel is based on rectilinear, Euclidean, 

Chebyshev, and squared-Euclidean metrics. Treating the warehouse as a continuous space, they 

developed formulations to minimize expected single-command distance and determined the 

optimal shape of the storage region. Our research extends the work of Francis and Mallette to 

include multiple dock doors and a variety of locations of the dock doors along a single wall. In 

addition, rather than allow the storage region to be contour-line shaped, we limit our attention to 

rectangle-shaped warehouses. 

Assuming unit loads are received on one side of the warehouse while shipping occurs on the 

opposite side of the warehouse, Bassan et al. (1980) considered storage racks and determined the 

best alignment of S/R aisles. They concluded a multi-dock-door, unit-load warehouse should 

have its dock doors located as near as possible to the centerline of the warehouse. However, they 

did not indicate how multiple dock doors and their locations affect the optimal shape of the 

warehouse; our research addresses both the number and locations of dock doors. 

Mayer (1961) is credited with coining the term, dual-command. He evaluated the 

performance of a single-dock-door warehouse with dual-command travel and found it increases 

output per unit time. He concluded the optimal depth of a warehouse is less than the width of the 

warehouse when dual-command travel is used. We develop both single-command and dual-
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command formulations of expected distance when multiple dock doors are included in the 

warehouse design and determine the width-to-depth ratio of the storage area that minimizes 

expected distances. 

Most studies related to dual-command travel have focused on analyzing automated storage 

and retrieval systems (AS/RS) with interleaving which combines a storage operation with a 

retrieval operation in a dual-command operation cycle. For a detailed survey of literature on 

AS/R systems with interleaving, see Malmborg and AlTassan (2000) and Roodbergen and Vis 

(2009). In contrast to the AS/RS related literature, our research does not employ Chebyshev 

distance metrics; likewise, we do not limit our research to a single dock door or input/output 

(I/O) point. 

Pohl et al. (2009) appear to be the first to analyze dual-command travel in traditional unit-

load warehouse layouts. Assuming a centrally located dock door and defining distance between 

two random points in the warehouse as travel-between (TB), they developed expected dual-

command distance formulas. They also confirmed the conclusions of Francis (1967a) and Bassan 

et al. (1980) regarding the optimal location of a single dock door with single-command travel. 

Pohl et al. (2009) acknowledged the optimal shape factor is approximately the same for both 

single- and dual-command travel for the layout in Figure 2.1 (left). Drawing on their 

recommendations for future research, the influence multiple dock doors and dock-door locations 

have on expected distance and the optimal layout is examined in this chapter. 

Considering a single shipping and a single receiving dock door, Ang et al. (2012) developed 

a robust optimization model for the storage assignment problem in a unit-load warehouse. 

Particularly, they considered a factor-based demand model in which demand of each product in 

each period depends on uncertain factors. Taking into account the variability of product flow and 
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the capacity constraints of storage classes, they obtained a storage-retrieval policy for a 

moderate-size problem under a restricted linear decision rule.  

Thomas and Meller (2014) investigated the impact on optimal shape factor of dock doors 

being uniformly distributed across an entire wall of the warehouse. They concluded the optimal 

shape factor is 1.5 when an infinite number of dock doors are located over the entire wall, but the 

optimal shape factor is 2.0 with a single centrally located dock doors. As illustrated in Figure 2.1 

(right), our research extends their work by considering a specified number of dock doors and/or 

fixed distances between adjacent dock doors. In addition, we do not require dock doors to be 

located symmetrically with respect to the centerline of the wall containing dock doors. 

Recently, a different version of the expected-distance formulation was introduced by Tutam 

and White (2015). Specifically, the number of dock doors and the distances between adjacent 

dock doors were specified. They showed the effect on expected distance of having multiple dock 

doors considering multiple scenarios for single-command travel. Without taking into account the 

width constraint, they showed the impact a limited but feasible number of dock doors has on the 

optimal shape factor. They derived expected dual-command distance formulas for Scenario 2. 

Using their expressions and introducing space and width constraints, we develop discrete 

formulation of the optimization problem and closed-form expressions for single-command travel. 

Unlike Tutam and White (2015), we develop dual-command travel formulas for all scenarios 

under space and width constraints. Moreover, among the contributions of this chapter, theorems 

and propositions are included. Therefore, our study extends those of Francis (1967a), Pohl et al. 

(2009), Thomas and Meller (2014), and Tutam and White (2015). 

In summary, the major contributions of this chapter are a) formulations for three scenarios of 

dock-door locations and single- and dual-command travel of a nonlinear discrete optimization 
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problem, and b) closed-form expressions for the optimal shape factor for continuous 

formulations. We address the five questions previously posed and show the effect on expected 

distance of shape factor, number of dock doors, and locations of dock doors for single- and dual-

command travel. 

2.3. Notation 

The notation depicted in Figure 2.1 (right) and/or employed in this chapter is defined as 

follows: 

 

Figure 2.1: Single-dock (left) and multi-dock (right) unit-load warehouses and notation 

l = the length or depth of an S/R location 

w = the width of an S/R location 

m  = number of S/R locations along one side and one level of an S/R aisle 

L = length of an S/R aisle (L = w m) 

v = half the width of a cross-aisle 

D = depth of the warehouse (D = L + 4v = w m + 4v)  

a = distance between centerlines of adjacent aisles (a = 2 (l + v)) 
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n = number of S/R aisles 

W = width of the warehouse (W = n a) 

A = the minimum total storage area required (A ≤ W D for discrete formulations,  

  A = W D for continuous formulations)  

S = shape factor (S = W / D) 

k = number of dock doors 

di  = the horizontal distance between dock door i and the left wall 

ti  = the horizontal distance between the left end of the wall containing dock doors and 

  the centerline of the back-to-back rack closest to dock door i  

  (ti = a   ROUND [di / a, 0]) 

ω = the width of a dock door 

ѱ = the clearance between adjacent dock doors 

δ = the distance between centerlines of two adjacent dock doors (i.e. ith and (i+1)th dock 

  doors) (δ = ω + ѱ) 

ϕ  = the distance between the left end of the wall and the leftmost dock door 

ci = ith constant value 

E [SC] = expected single-command distance  

E [TB] = expected travel-between distance 

E [DC] = expected dual-command distance (E [DC] = E [SC] + E [TB]) 

Superscripts D and C denote expected distance for discrete formulations and continuous 

approximations, respectively. Subscripts h and v denote expected distance for horizontal and 

vertical travel, respectively. 
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2.4. Basic Scenarios 

Allowing multiple dock doors to be located along a given wall leads to numerous scenarios 

regarding the number and locations of dock doors. We consider three scenarios (see Figure 2.2) 

based on the literature and/or existing warehouse designs. Although 3 dock doors are shown in 

Figure 2.2, our formulations are valid for both an even and an odd number of dock doors. 

In the first scenario (see Figure 2.2.a.), dock doors are equally spaced over an entire wall of 

the warehouse; the scenario is commonly treated in the research literature, but is not commonly 

incorporated in the design of unit-load warehouses. We consider the first scenario in order to 

compare the results of our research with the results of previous studies. 

In the second scenario (see Figure 2.2.b.), dock doors are located with a fixed distance 

between adjacent dock doors. In addition, dock doors are located symmetrically about the 

centerline of one wall of the warehouse; locating dock doors with a specified separation distance 

occurs commonly in practice. A motivation for Scenario 2 is that clustering dock doors in the 

center of the warehouse wall is the best location for dock doors in terms of minimizing distance 

between dock doors and S/R locations (Bassan et al., 1980). Also, using Scenario 2 “frees up” 

larger sections of space along each end of the wall for other purposes, such as providing ground 

level access to the facility, providing access for first responders, and having dock doors 

specifically used for waste removal, equipment delivery, and receipt of products from other than 

over-the-road trailers. Spreading dock doors out more than necessary increases expected distance 

between dock doors and S/R locations; it also can result in operational inefficiencies and 

duplication of equipment in loading and unloading over-the-road trailers.  

In Scenario 3 (see Figure 2.2.c.), the first dock door is located a given distance to the right of 

the left wall and a fixed distance exists between adjacent dock doors. The third scenario relaxes 
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the centrally located dock door(s) assumption and provides more flexibility for the locations of 

dock doors. The third scenario can occur when additional storage space is needed without 

requiring the addition of dock doors and an existing warehouse is expanded by extending its 

width in one direction. In addition, site topography might preclude having adequate apron and 

staging space for trucks across the entire width of the warehouse, necessitating a concentration of 

dock doors toward the end of the warehouse wall.  

Another situation that can result in Scenario 3 is the conversion to a storage facility of a 

building originally used for other purposes; the dock doors are already in place and the number is 

adequate for the throughput requirement. In such a case, our formulations can be used to 

determine the optimum shape factor for the storage area within the existing building. 

 

Figure 2.2: a) k = 3 dock doors are equally spaced along one wall of the warehouse, b) k = 3 

dock doors are centrally located on the wall with a specified distance between adjacent dock 

doors, and c) k = 3 dock doors are not centrally located along a wall with a specified distance 

between adjacent dock doors 

2.5. Discrete Formulations 

In this section, we develop discrete expected-distance formulations by measuring the distance 

between the centerline of a dock door and the centerline of an S/R location and between 

centerlines of two S/R locations. The optimal number of S/R aisles (n*) and S/R locations in 

each S/R aisle (m*) are determined. Hereafter, the location of a dock door and the location of an 
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S/R aisle refer to the locations of the centerline of a dock door and the centerline of an S/R aisle, 

respectively.  

Because the separation between adjacent dock doors and the alignment of storage aisles with 

dock doors can vary, depending on the width of S/R aisles and the distance between adjacent 

dock doors, we measure the distance from the left-end of the wall containing dock doors. Hence 

di is the horizontal distance between dock door i and the left-end of the wall. We number dock 

doors from left to right, with dock door i being the ith dock door to the right of the left-end of the 

wall. Because di differs among scenarios, different equations are used to calculate its value for 

each scenario. 

Obtaining the spacing between adjacent dock doors for Scenario 1, with k dock doors, the 

width of the warehouse is divided into (k + 1) equal-sized segments. Therefore, the distance 

between the left-end of the wall and the leftmost dock door (d1) is W / (k + 1) and the distance 

between adjacent dock doors is W / (k + 1). Hence, the distance between the left-end of the wall 

and dock door i for Scenario 1 is 

 di = W / (k + 1) + [W (i – 1)] / (k + 1) = (i W) / (k + 1). (2.1) 

Because the spacing between adjacent dock doors is a fixed distance (δ) for Scenario 2, the 

distance from the left-end of the wall to the leftmost dock door is [W – (k – 1) δ] / 2. Hence, the 

distance between the left-end of the wall and dock door i is 

 di = [W – (k – 1) δ] / 2 + (i – 1) δ. (2.2) 

Relaxing the centrally located dock-door assumption and letting the distance between the left 

end of the wall point and the leftmost dock door be ϕ for Scenario 3, the distance from the left-

end of the wall to the ith dock door is 

 di = ϕ + (i – 1) δ. (2.3) 
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Expected horizontal roundtrip-distance formulations are developed by measuring the distance 

between a dock door and the nearest S/R aisle. To obtain the distance, ti is used to measure the 

horizontal distance between the left-end of the wall and the centerline of the back-to-back rack 

closest to dock door i. Because a denotes the distance between centerlines of adjacent aisles, the 

distance between the left-end of the wall and ti is a multiple of a. Therefore, from the relationship 

between di and a, the value of ti is calculated by rounding di to the nearest multiple of a. Hence,  

ti = a   ROUND [di / a, 0]. 

As shown in Figure 2.3, in calculating the distance between a dock door and the nearest S/R 

aisle, four cases occur: a) di is smaller than ti, b) di equals ti, c) di is greater than ti, and d) |di – ti| 

equals half the distance between adjacent S/R aisles (a / 2). 

 
Figure 2.3: Cases for dock-door locations 

Proposition 2.1: There are ti / a and n – ti / a S/R aisles to the left and to the right of dock door i, 

respectively. Because the distance between dock door i and the nearest S/R aisle is a / 2 – |di – ti|, 

the distance between dock door i and S/R aisle j equals |di – (j – 1 / 2) a| for j = 1, 2, …, n. 

Proposition 2.1 applies for all cases. (Proof of Proposition 2.1 is provided in the Appendix). 

2.5.1. Single-command travel 

With each S/R location equally likely to be selected, the expected horizontal roundtrip-

distance to and from dock door i is obtained by doubling the sum of the expected distance to the 
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left and to the right of dock door i. Summing the results over all dock doors and dividing by the 

number of dock doors, the expected horizontal roundtrip-distance for k dock doors is 

  
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As noted, increasing the number of dock doors or changing the location of a dock door does 

not affect expected vertical distances. Therefore, the expected vertical roundtrip-distance is 
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Summing Equations (2.4) and (2.5), the expected single-command distance is 
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2.5.2. Dual-command travel 

To calculate expected dual-command distance, we add the expected distance between two 

random S/R locations and the expected single-command distance. Although all S/R locations in 

an S/R aisle are equally likely to be chosen, the probability of two S/R locations being either in 

the same aisle or in different aisles must be taken into account. 

When two S/R locations are in the same aisle, there is no travel in the horizontal direction. 

Visiting the same location for both storage and retrieval operations in the same trip is not 

practical. However, it is practical to store a unit load on one side of the aisle and retrieve another 

unit load on the opposite side of the aisle; likewise, it is practical to store a unit load at a 

particular level of the storage rack and retrieve a unit load from the same floor location, but a 
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different level of the storage rack. However, because we ignore travel between different levels of 

the storage rack, the latter possibility is not factored into our calculations. 

Admittedly, even by allowing a storage and a retrieval to occur at the same floor location an 

approximation continues to exist by assuming each storage location is equally likely to be 

visited. To eliminate the approximation, we do not include the occurrence of a storage and 

retrieval from the same storage location in our calculations. Therefore, with probability 1 / n, 

expected vertical distance between two S/R locations in the same aisle (sa) is 
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When two S/R locations are in different aisles, the expected horizontal travel-between 

distance is provided by Pohl et al. (2009) as a (n2 – 1) / (3n). Numbering S/R locations from the 

bottom to the top, the shortest distance between S/R locations i and j is min (i + j – 1,  

2m – i – j + 1) + 2v. The probability of traveling from one aisle to another aisle is 1 – 1 / n. 

Summing distances over all possible combinations of S/R locations, dividing by the number of 

combinations, and multiplying by the width of S/R locations; the expected vertical distance 

between two S/R locations in different aisles (da) is 
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Incorporating probabilities, combining Equations (2.7) and (2.8) and adding the expected 

horizontal travel-between, the expected travel-between distance becomes 
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Combining Equations (2.6) and (2.9), the expected dual-command distance is 
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2.5.3. Discrete optimization problem 

Based on the expected-distance formulations obtained, the following discrete model of the 

optimization problem is used to determine the number and length of S/R aisles: 

Minimize : E [SCD] or E [DCD] 

 

Subject to : n a (w m + 4v) ≥ A 

1) n a ≥ (k + 1) (ω + ѱ), 2) n a ≥ k δ  or 3) n a ≥ ϕ + (k – 0.5) δ 

n and m integers greater than zero. 

The first constraint in the optimization model assures the space requirement is met. Its pre-

determined value is given as A. Assuring the width of the warehouse allows k dock doors to be 

located on one wall of the warehouse; the constraints for the width of the warehouse in the 

optimization model are specific to a scenario. Obtaining the optimal shape factor, the 

optimization model is solved for the optimum number of S/R aisles (n*) and the optimum 

number S/R locations (m*). The resulting optimal shape factor is 

S* = (a n*) / (w m* + 4v). (2.11) 

The nonlinear-integer-programming optimization problem is implemented using Couenne 

(2006) in AMPL (2013) software package. Couenne (2006) is an open source code to solve 

Mixed-Integer Nonlinear Programming (MINLP) formulations by implementing linearization, 

bound reduction and branching methods within a branch and bound algorithm (Belotti, 2009; 

Belotti et al. 2009). Computational results from Couenne (2006) are provided in Section 2.7. The 
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optimality of solutions is tested either by using Mathematica (2015) software package or by 

enumerating in Microsoft Excel (2013). 

2.6. Continuous Approximations 

To eliminate the need for specialized software to solve the optimization model and to 

facilitate sensitivity analyses, we develop closed-form expressions of expected distances and 

optimal shape factors by employing continuous approximations. The continuous approximations 

presented in this section provide useful insights regarding the design of multi-dock-door, unit-

load warehouses. For single-command travel, the interior of the warehouse is treated as a 

continuous region by ignoring storage racks, S/R aisles and cross-aisles by assuming S/R 

locations are uniformly distributed over a rectangular storage region. For dual-command travel, a 

result from the discrete formulation is used to approximate expected travel-between distance.  

2.6.1. Single-command travel 

To illustrate the procedure used to calculate expected distance with continuous 

approximation, let a single dock door be located on the centerline of a warehouse wall having 

width W. From Tutam and White (2015), expected single-command distance for a centrally 

located dock door is 

 E [SCC] ≈ W / 2 + D. (2.12) 

Axiom 2.1: Expressing expected single-command distance as a function of the warehouse’s 

width, taking the first derivative with respect to the warehouse’s width, setting it equal to zero, 

and solving for the warehouse’s width, stationary points are obtained for expected single-

command distance. If a single stationary point exists, taking the second derivative of expected 

single-command distance and finding the second derivative is greater than zero for all values of 
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the warehouse’s width establishes expected single-command distance is a convex function of the 

warehouse’s width and the stationary point is the optimal width of the warehouse.  

Lemma 2.1: When expected single-command distance is expressed as E [SCC] ≈ c1 W + c2 W
 – 1 

+ c3, then expected single-command distance is a convex function of W with stationary point  

W ≈ (c2 / c1)
 1/2. 

Corollary 2.1: Expected single-command distance for a single centrally located dock door is a 

convex function of the warehouse’s width with stationary point W ≈ (2 A) 1/2 and corresponding 

shape factor S ≈ 2.0 (The same result was obtained by Francis (1967a)). 

When k dock doors are equally spaced over an entire wall of the warehouse, the expected 

horizontal roundtrip-distance to the left of dock door i is i W / (k + 1) and to the right of dock 

door i is [(k + 1 – i) W] / (k + 1). The probabilities of traveling to the left and right of dock door i 

are i / (k+1) and (k + 1 – i) / (k+1), respectively. As before, the expected vertical roundtrip-

distance is D. Therefore, expected single-command distance for k dock doors is 
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When k dock doors are located centrally along one wall of the warehouse with a specified 

distance (δ) between adjacent dock doors, the expected horizontal roundtrip-distance to the left 

of dock door i is {W – [k – (2i – 1)] δ} / 2 and to the right of dock door i is  

{W + [k – (2i – 1)] δ} / 2; also, the probability of traveling to the left of dock door i is  

{W – [k – (2i – 1)] δ} / 2W and the probability of traveling to the right of dock door i is  

{W + [k – (2i – 1)] δ} / 2W. Therefore, the expected single-command distance is 
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When k dock doors are not centrally located on the wall containing dock doors, a fixed 

distance of δ exists between adjacent dock doors, and the leftmost dock door is located a distance 

of ϕ from the left-end of the wall, the expected horizontal roundtrip-distance to the left of dock 

door i is [ϕ + (i – 1) δ] and the probability of traveling to the left of dock door i is  

[ϕ + (i – 1) δ] / W; also, the expected horizontal roundtrip-distance to the right of dock door i is 

[W – ϕ – (i – 1) δ] and the probability of traveling to the right of dock door i is  

[W – ϕ – (i – 1) δ] / W. Therefore, the expected single-command distance for k dock doors is 

 

   

   
  

2 2

1

2 2 2

1 11

6 6 1 2 3 1
2 1 .

3

k
C

i

i W i
E SC D

k W W

k k k
W k D

W

   

  
 



                  
  

    
     


 (2.15) 

Corollary 2.2: For k dock doors, expected single-command distance for Scenarios 1, 2 and 3 is a 

convex function of the width of the warehouse with stationary points W ≈ [3A(k+1) / (2k+1)]1/2, 

W ≈ [2A + [δ 2 (k 2 – 1)] / 3]1/2 and W ≈ {[3A + 6ϕ 2 + 6ϕ δ (k – 1) + (2k 2 – 3k + 1) δ 2] / 3}1/2 and 

corresponding shape factors of S ≈ 3(k+1) / (2k+1), S ≈ 2 + [δ 2 (k 2 – 1)] / 3A and  

S ≈ 1 + [6ϕ 2 + 6ϕ δ (k – 1) + (2k 2 – 3k + 1) δ 2] / 3A, respectively. 

For Scenario 1, taking the limit of S as k approaches infinity yields an optimal shape factor of 

1.5. The same result is obtained by Thomas and Meller (2014) with a uniformly distributed dock-

door assumption. Although having an infinite number of dock doors is impractical, the result 

provides a lower bound for the optimal shape factor under a uniformly distributed dock-door 

assumption. Thomas and Meller (2014) only considered the cases of a single dock door and an 
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infinite number of dock doors. Our formulation holds for any number of dock doors and provides 

the exact optimal shape factor values when the number of dock doors and/or the spacing between 

adjacent dock doors are/is specified. 

With a continuous approximation, we must also include the following width constraints for 

Scenarios 1, 2, and 3: W ≥ (k + 1) (ω + ѱ), W ≥ k δ, and W ≥ ϕ + (k – 0.5) δ. Because expected 

distance is a convex function of warehouse width, if the unconstrained optimal width violates the 

constraint, then the width (and corresponding shape factor) will be determined by the width 

constraint. 

Proposition 2.2: For Scenario 1, S*SC ≈ 3(k+1) / (2k+1) if S ≥ [(k + 1) 2 (ω + ѱ) 2] / A; otherwise,  

S*SC ≈ [(k + 1) 2 (ω + ѱ) 2] / A. For Scenario 2, S*SC ≈ 2 + [δ 2 (k 2 – 1)] / 3A if S ≥ k 2 δ 2 / A; 

otherwise, S*SC ≈ k 2 δ 2 / A. For Scenario 3, S*SC ≈ 1 + [6ϕ 2 + 6ϕδ (k – 1) + (2k 2 – 3k + 1) δ 2] / 

3A if S ≥ [ϕ + (k – 0.5) δ] 2 / A; otherwise, S*SC ≈ [ϕ + (k – 0.5) δ] 2 / A. 

2.6.2. Dual-command travel 

From Figure 2.4, rectilinear distance between two S/R locations in different S/R aisles 

underestimates travel-between distance. To facilitate calculations in obtaining the optimal shape 

factor for dual-command travel, we introduce a new approximation for expected travel-between 

distance and modify Equation (2.9) in the previous section. 

 

Figure 2.4: Rectilinear (solid) and actual (dashed) distances between two S/R locations 
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Specifically, (m2 – 1) / (2m – 1) and (2m2 + 1) / m in Equation (2.9) are replaced with 0.5 m 

and 2m, respectively. The resulting approximation for expected travel-between distance is 
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Although arrived at in a different way, by letting w m equal L, Equation (2.16) is identical to 

the expected travel-between distance formula in Pohl et al. (2009). To obtain expected dual-

command distance, Equation (2.16) is combined with the appropriate expected single-command 

distance equation. 

Combining Equations (2.12) and (2.16), expected dual-command distance for a single-dock, 

unit-load warehouse is  
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Axiom 2.2: Expressing expected dual-command distance as a function of the warehouse’s width 

and taking the first derivative with respect to the warehouse’s width, a cubic equation is 

obtained. For reasonable parameter values (the necessary condition for each scenario is provided 

in the proof of Corollary 2.4), the discriminant of the cubic equation is greater than zero. 

Therefore, the cubic equation has three distinct real roots, but there exist no rational roots 

because the cubic equation is irreducible polynomial (from Galois Theory). Solving an 

irreducible cubic equation requires taking the roots of complex quantities. Therefore, reducing 

the cubic equation to depressed form, setting the depressed cubic equation equal to zero and 

solving for the warehouse’s width, the viable root can be obtained using Viète's trigonometric 

solution (Nickalls, 2006). The viable root is the first root because results with the second and 
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third roots are infeasible (the value of expected distance is negative for the second root and the 

width of the warehouse is zero for the third root). Taking the second derivative of expected dual-

command distance with respect to the warehouse’s width and finding the second derivative is 

greater than zero for all reasonable values of the warehouse’s width establishes expected dual-

command distance is a convex function of the warehouse’s width and the viable root is the 

optimal width of the warehouse. 

Lemma 2.2: Expressing expected dual-command distance as E [DC] ≈ (c1 W
 3 + c2 W

 2 + c3 W  

+ c4) / (c5 W
 2), expected dual-command distance is a convex function of the warehouse’s width 

with stationary point W ≈ 2 (c3 / 3c1)
 1/2 cos {arccos [c4 c1

 1/2 (3 / c3)
 3/2] / 3}. 

Corollary 2.3: Expected dual-command distance for a centrally located dock door is a convex 

function of the warehouse’s width with stationary point W ≈ 2 (c3 / 3c1)
 1/2 cos {arccos [c4 c1

 1/2  

(3 / c3)
 3/2] / 3} and corresponding shape factor S ≈ 4c3 (cos {arccos [c4 c1

 1/2 (3 / c3)
 3/2] / 3}) 2  

/ (3A c1) where c1 = 5, c3 = 10A – 2a 2 – 4av and c4 = – 2 a A. 

Combining Equation (2.16) with Equations (2.13), (2.14) and (2.15), expected dual-

command distance for the various scenarios is obtained as follows  
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Corollary 2.4: For k dock doors, expected dual-command distance for Scenarios 1, 2 and 3 is a 

convex function of the width of the warehouse with stationary points W ≈ 2 (c3 / 3c1)
 1/2  

cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3}3})2 / (3A c1) and corresponding shape factors of  

S ≈ 4c3 (cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3})2 / (3A c1) where c1 = (3k + 2), c3 = (k + 1) (5A – a 2 

– 2a v) and c4 = – (1 + k) a A for Scenario 1; c1 = 5, c3 = 10A – 2a 2 – 4a v + δ 2 (k 2 – 1) and  

c4 = – 2a A for Scenario 2; and c1 = 4, c3 = 5A – a 2 – 2a v + 6ϕ 2 + 6ϕ δ (k – 1)  

+ (2k 2 – 3k + 1) δ 2 and c4 = – a A for Scenario 3. 

As with single-command travel, the width (and corresponding shape factor) will be 

determined by the width constraint when the unconstrained optimal width violates the constraint. 

Proposition 2.3: When the width constraint is satisfied, the optimal shape factor is S*DC ≈ 4c3 

(cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3}) 2 / (3A c1) where c1 = (2 + 3k), c3 = (1 + k) (5A – a 2 – 2a v) 

and c4 = - (1 + k) a A for Scenario 1; c1 = 5, c3 = 10A – 2a 2 – 4a v + δ 2 (k 2 – 1) and c4 = – 2a A 

for Scenario 2; and c1 = 4, c3 = 5A – a 2 – 2a v + 6ϕ 2 + 6ϕ δ (k – 1) + (2k 2 – 3k + 1) δ 2 and  

c4 = – a A for Scenario 3. Otherwise, the optimal shape factor for each scenario is  

S*DC ≈ (k + 1) 2 δ 2 / A, S*DC ≈ k 2 δ 2 / A and S*DC ≈ [ϕ + (k – 0.5) δ] 2 / A, respectively. 

Proposition 2.4: For Scenario 1, a balanced warehouse (expected horizontal roundtrip-distance 

equals expected vertical roundtrip-distance) exists for single-and dual-command travel when a 

warehouse is optimally configured and its width is equal to or greater than (k + 1) (ω + ѱ). For 

Scenario 2, a warehouse is an unbalanced warehouse (expected horizontal roundtrip-distance is 

greater than expected vertical roundtrip-distance) for single- and dual-command travel when the 

warehouse is configured optimally. For Scenario 3, depending on the number of dock doors, the 

expected horizontal roundtrip-distance can be less than or greater than the expected vertical 
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roundtrip-distance for single- and dual-command travel when the warehouse is optimally 

configured. 

2.7. Computational Results 

In this section, we provide results for both discrete formulations and continuous 

approximations by using specified values for the parameters in the formulations. The 

computational results for both single-command and dual-command travel are tabulated and 

provided for each scenario in the Appendix. All calculations are conducted on a PC with Intel i7-

4600M 2.90GHz processor and 16 GB of memory. For the stated parameter values, the 

computational time is less than ten seconds for any number of dock doors. In addition, in the 

section, we address the accuracy of the continuous approximations for each scenario. Examining 

the percentage error for continuous approximations ({|E [SCDiscrete] – E [SCContinuous]|  

/ E [SCDiscrete]}   100 or {|E [DCDiscrete] – E [DCContinuous]| / E [DCDiscrete]}   100), the following 

set of parameter values are tested. (The most common set of values are chosen based on data 

obtained after visiting several unit-load warehouses.) 

 A  =  150,000, 250,000 and 350,000 ft2, 

 k = 1, 16, 31, 46 and 61 dock doors, 

 v  =  5 and 6 ft, 

 w  =  3 and 4 ft, 

 l  =  3 and 4 ft, 

 ω = 9 ft and ѱ = 1, 2 and 3 ft (δ = 10, 11 and 12 ft), 

 ϕ = 10, 20, 30, 40 and 50 ft. 
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As illustrated in Table 2.1, the minimum, maximum and average approximation errors for 

single-command travel with Scenario 1 are 0.00%, 1.28%, and 0.23%, respectively. Similarly, 

the minimum, maximum and average approximation errors for dual-command travel are 0.01%, 

1.24% and 0.20%, respectively. Based on the computational results for Scenario 2, using a 

continuous approximation for single-command travel, the percentage error varies from 0.00% to 

0.60%, with an average value of 0.14%. The percentage error for dual-command travel varies 

from 0.00% to 0.65%, with an average value of 0.16%.  

Table 2.1: The percentage errors of continuous approximations for scenarios 

 E [SC] E [DC] 

 Minimum Maximum Average Minimum Maximum Average 

Scenario 1 0.00% 1.28% 0.23% 0.01% 1.24% 0.20% 

Scenario 2 0.00% 0.60% 0.14% 0.00% 0.65% 0.16% 

Scenario 3 0.00% 0.57% 0.15% 0.00% 0.60% 0.17% 

 

From the computational results for Scenario 3, the percentage error resulting from the use of 

the continuous approximation ranges from 0.00% to 0.57% for single-command travel, with an 

average value of 0.15%. For dual-command travel, the percentage error ranges from 0.00% to 

0.60%, with an average value of 0.17%. Therefore, the continuous approximation appears to 

provide reliable results for both single- and dual-command travel. 

Solving the optimization model, the optimum number of aisles (n*) and the optimum number 

of S/R locations in each S/R aisle (m*) are determined, such that the optimal shape factor is 

obtained for a warehouse having k equally spaced dock doors over an entire wall. Moreover, the 

optimal width (W*) and the optimal depth (D*) of the warehouse are approximated for single- 
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and dual-command travel by using closed-form expression given in Sections 2.6.1 and 2.6.2 for 

single- and dual-command expressions, respectively. Ranging the number of dock doors from 1 

to 60 for Scenario 1 and from 1 to 75 for Scenarios 2 and 3, we employ the following parameter 

values: w = 4 ft, l = 4 ft, v = 6 ft, a = 2 (l + v) = 20 ft, ω = 9 ft, ѱ = 3 ft, δ = ω + ѱ = 12 ft, ϕ = 30 

ft, and A = 250,000 ft2. For ease of computation, the continuous approximation is used to 

produce shape-factor-figures in the following sub-sections for each scenario, unless stated 

otherwise.  

2.7.1. Single-command travel 

For the stated parameter values, Figure 2.5 illustrates the impact of the number of dock doors 

on expected distance (left) and the optimal shape factor (right) for single-command travel for the 

three scenarios. Increasing the number of dock doors increases expected single-command 

distance for Scenarios 1 and 2 because dock doors are located farther from the centerline of the 

warehouse. Unlike Scenarios 1 and 2, expected single-command distance may increase or 

decrease for Scenario 3 as the number of dock doors increases. When the width of the warehouse 

is governed by the width constraint, expected single-command distance is approximately the 

same for all scenarios. 

To understand why, with Scenario 3, expected single-command distance decreases and, then, 

increases as the number of dock doors increase, recall dock doors are not centrally located and a 

fixed distance of ϕ exists between the leftmost dock door and the left wall. Therefore, increasing 

the number of dock doors results in dock doors, initially, being located nearer the centerline of 

the warehouse. Then, dock doors are being located farther from the centerline of the warehouse. 

For the stated parameter values, increasing the number of dock doors increases expected distance 

when there exist more than 37 dock doors for single-command travel. If the first dock door is 
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located on the right side of the warehouse’s wall (ϕ > W / 2), increasing the number of dock 

doors will increase the expected single-command distance for any value of k. 

For Scenario 1, increasing the number of dock doors decreases the optimal shape factor for 

single-command travel when the width constraint is not violated (ω + ѱ ≥ 12 ft). As noted 

previously, the lower bound for the optimal shape factor is 1.5. For Scenario 2, increasing the 

number of dock doors increases the optimal shape factor and the optimal shape factor is equal to 

or greater than 2.0 for any value of k. Likewise, increasing the number of dock doors increases 

the optimal shape factor for Scenario 3 and the optimal shape factor is greater than 1.0 for any 

value of k. When the width constrained is violated, increasing the number of dock doors will 

increase the optimal shape factor for all scenarios. 

Among the scenarios, which performs best? From Figure 2.5, with the exception of a single-

dock-door warehouse, Scenario 2 performs better than either Scenario 1 or Scenario 3. However, 

the relative ranking of Scenarios 1 and 3 changes as the number of dock doors increases. In 

comparing Scenarios 1 and 3, when the number of dock doors is small, with Scenario 3 they are 

clustered toward the end of the wall; whereas, with Scenario 1 they are distributed across the 

wall and symmetrically around the centerline of the wall. Thus, for a small number of dock 

doors, Scenario 1 outperforms Scenario 3.  

             

Figure 2.5: E [SC] (left) and S*SC (right) comparison of scenarios 



36 

When the width constraint is satisfied, the warehouse for Scenario 2 is wider than the 

warehouses for Scenario 1 and 3. For a small number of dock doors, the width of the warehouse 

with Scenario 1 is greater than the width of the warehouse with Scenario 3. For a large number 

of dock doors, the warehouse with Scenario 3 becomes wider. When the width constraint is 

violated, the warehouse with Scenario 3 becomes the widest warehouse because of the fixed 

distance from the left wall. 

For Scenario 2, the requirement for adjacent dock doors to be δ feet apart results in the 

optimal shape factor increasing with an increasing number of dock doors. Hence, the warehouse 

is wider and shallower than occurs with Scenario 1. For the warehouse to be balanced the depth 

of the warehouse must increase and the width must decrease, resulting in an increase in expected 

distance. However, a relatively small increase occurs. Specifically, the maximum percentage 

difference in expected single-command distance is 0.04%. As shown in Figure 2.6 (left), when 

the width constraint is violated, the warehouse is forced to be an unbalanced warehouse because 

of the width constraint.  

For Scenario 3, the optimally configured warehouse can be (and most likely is) unbalanced 

regarding horizontal and vertical roundtrip-distances. Specifically, for a small number of dock 

doors, vertical roundtrip-distance is greater than horizontal roundtrip-distance; however, for a 

large number of dock doors, horizontal roundtrip-distance is greater than vertical roundtrip-

distance. The maximum percentage difference in the expected distance for single-command 

travel is 0.02%. As illustrated in Figure 2.6 (left), a relatively small expected-distance penalty 

results from forcing the warehouse to be balanced for single-command travel. 



37 

             

Figure 2.6: Comparison of balanced and unbalanced warehouses for single-command travel with 

Scenario 2 (left) and Scenario 3 (right) 

As illustrated in Figure 2.7 (right), forcing a warehouse to be balanced can result in a shape 

factor significantly different than the optimal shape factor with Scenarios 2 and 3. The width 

constraint for the balanced warehouse is active when the number of dock doors exceeds 51 and 

49 for Scenarios 2 and 3, respectively. When the number of dock doors is greater than 38, the 

horizontal distance becomes greater than the vertical distance. Therefore, the warehouse is forced 

to be narrower; hence, the horizontal distance and the shape factor decrease. 

 

          

Figure 2.7: Shape factor comparison of balanced and unbalanced warehouses for single-

command travel with Scenario 2 (left) and Scenario 3 (right) 

Figure 2.8 examines the effect of δ on the expected single-command distance for Scenario 2 

(left) and Scenario 3 (right). As anticipated, for Scenario 2, increasing the distance between 
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adjacent dock doors increases expected distance because dock doors are located farther from the 

centerline of the warehouse. As the number of dock doors increases, the impact of δ on the 

expected distance increases significantly. Unlike Scenario 2, as the distance between adjacent 

dock doors increases, expected distance either increases or decreases depending on the number 

of dock doors and the offset distance from the left wall for Scenario 3. With the stated parameter 

values, increasing the value of δ decreases expected distance for a small number of dock doors; 

whereas, expected distance increases as the distance between adjacent dock doors increases for a 

large number of dock doors. 

             

Figure 2.8: The effect of δ on E [SC] for Scenario 2 (left) and Scenario 3 (right) 

As illustrated in Figure 2.9, increasing the distance between adjacent dock doors increases 

the optimal shape factor for both Scenario 2 (left) and Scenario 3 (right). As the value of δ 

increases, the warehouse is forced to be wider. Furthermore, larger δ values cause the width 

constraint to be violated for smaller values of k.  
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Figure 2.9: The effect of δ on the optimal shape factor for single-command travel with Scenario 

2 (left) and Scenario 3 (right) 

2.7.2. Dual-command travel  

Figure 2.10 illustrates the impact of the number of dock doors on the expected distance (left) 

and the optimal shape factor (right) for dual-command travel with three scenarios. As with 

single-command travel, increasing the number of dock doors increases expected dual-command 

distance for Scenarios 1 and 2. However, increasing the number of dock doors may increase or 

decrease expected dual-command distance for Scenario 3.  

             

Figure 2.10: E [DC] (left) and S*DC (right) comparison of scenarios 

With the stated parameter values, expected dual-command distance increases when k > 38. If 

the offset distance is greater than the half-width of the warehouse, the first dock door is located 

on the right side of the warehouse’s wall (ϕ > W / 2); hence, increasing the number of dock doors 
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always results in increasing the expected dual-command distance. For all scenarios, the optimal 

shape factor for travel-between is 1.94 for a number of dock doors satisfying the width constraint 

because the number and locations of dock doors do not affect expected travel-between distance. 

If the width constraint is violated, the optimal shape factor is governed by the width constraint; 

hence, increasing the number of dock doors increases the width of the warehouse for all 

scenarios and increases the optimal shape factor for dual-command travel and travel-between. 

When the width constraint is not violated, the optimal shape factor for dual-command travel 

decreases as the number of dock doors increases. The minimum value of the optimal shape factor 

is determined by the parameter values for dual-command travel (the minimum optimal shape 

factor value is 1.65 with the stated parameter values). For Scenario 2, increasing the number of 

dock doors increases the optimal shape factor. The optimal shape factor is less than 2.0 for a 

small number of dock doors (a minimum value of 1.97 with the stated parameter values); 

whereas, it is greater than 2.00 for a medium or a large number of dock doors (k ≥ 15). For 

Scenario 3, increasing the number of dock doors increases the optimal shape factor. The optimal 

shape factor is greater than 1.0 for any value of k (a minimum value of 1.24 with the stated 

parameters). 

Comparing the expected dual-command distance performances of scenarios, the same 

conclusions hold for all scenarios. Therefore, the optimal shape factor results for dual-command 

travel are compared to those for single-command travel instead of repeating the same 

conclusions from the previous subsection. For Scenario 1, except for the single-dock-door case, 

the optimal shape factor for dual-command travel is greater than the corresponding optimal 

shape factor for single-command travel. Notice, for the single-dock-door case, the optimal shape 

factor for travel-between is less than the optimal shape factor for single- and dual-command 
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travel. In contrast to Scenario 1 (except for the single-dock-door case), with Scenario 2, the 

optimal shape factor for single-command travel is greater than the corresponding optimal shape 

factor for dual-command travel regardless of the value of k, because the optimal shape factor for 

travel-between is smaller than the optimal shape factor value for single-command travel. For 

Scenario 3, depending on the number of dock doors and the offset distance from the left wall, the 

optimal shape factor for single-command travel could be less than or greater than the 

corresponding optimal shape factor for dual-command travel. 

To obtain a balanced warehouse when performing dual-command operations with Scenario 

2, the width of the warehouse must decrease because the horizontal distance is greater than the 

vertical distance for any number of dock doors. By doing so, a relatively small increase occurs in 

expected dual-command travel and the maximum percentage difference is 0.02%. As with 

single-command travel, vertical roundtrip-distance is greater than horizontal roundtrip-distance 

for a small number of dock doors; whereas, horizontal roundtrip-distance is greater than vertical 

roundtrip-distance for a large number of dock doors. Forcing the warehouse to be balanced with 

Scenario 3 results in a maximum percentage difference of 0.01% in the expected distance for 

dual-command travel. From Figures 2.6 and 2.11, a relatively small expected-distance penalty 

results from forcing the warehouse to be balanced for either single-command travel or dual-

command travel with Scenarios 2 and 3. Therefore, for practical purposes, designing a balanced 

warehouse is a reasonable design goal. 
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Figure 2.11: Comparison of balanced and unbalanced warehouses for dual-command travel with 

Scenario 2 (left) and Scenario 3 (right) 

Figure 2.12 compares the optimal shape factor results with the shape factor results for a 

balanced warehouse. The shape factor of a warehouse forced to be balanced is significantly 

different from the optimal shape factor for both Scenarios 2 and 3. The width constraint for the 

balanced warehouse is active when the number of dock doors exceeds 53 and 51 for Scenarios 2 

and 3, respectively.  

             

Figure 2.12: Shape factor comparison of balanced and unbalanced warehouses for dual-

command travel with Scenario 2 (left) and Scenario 3 (right) 

As with single-command travel, Figure 2.13 illustrates the effect of δ on the expected dual-

command distance for Scenarios 2 (left) and 3 (right). Expected dual-command distance 

increases when the distance between adjacent dock doors increases for Scenario 2; whereas, it 

may increase or decrease for Scenario 3 depending on the number of dock doors and/or the offset 
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distance from the left wall. The impact of δ on the expected distance increases significantly as 

the number of dock doors increases, 

       

Figure 2.13: The effect of δ on E [DC] for Scenario 2 (left) and Scenario 3 (right) 

As shown in Figure 2.14, increasing the distance between adjacent dock doors increases the 

optimal shape factor for both Scenarios 2 (left) and 3 (right). As the value of δ increases, the 

warehouse is forced to be wider and the width constraint is violated for smaller values of k.  

       

Figure 2.14: The effect of δ on the optimal shape factor for dual-command travel with Scenario 

2 (left) and Scenario 3 (right) 

Because the optimal shape factor for single-command travel with a large number of dock 

doors is greater than that for dual-command travel, the width constraint is active for dual-

command travel with fewer dock doors. 
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2.8. Summary, Conclusions and Recommendations 

Although warehouses typically have multiple dock doors for receiving and shipping, 

previous research on traditional layouts of unit-load warehouses focused primarily on a single, 

centrally located dock door. Because the number and locations of dock doors significantly affect 

expected distance, we extended previous studies by considering multiple dock doors and 

different dock-door locations for a unit-load warehouse having storage racks aligned 

perpendicular to the wall containing dock doors. 

Discrete formulations of the optimization problem were employed to determine the optimum 

number of S/R aisles and S/R locations for single- and dual-command travel. Similarly, 

continuous formulations were employed to determine the optimal width and depth of the 

warehouse. The optimal shape factor was determined for both single- and dual-command travel.  

For both single- and dual-command travel, increasing the number of dock doors will 

always increase expected distance when dock doors are centrally located; however, 

expected distance may increase or decrease depending the number of dock doors when 

they are non-centrally located. 

Because spacing dock doors over an entire wall of the warehouse when it is built is less 

expensive than adding dock doors after the warehouse is built, designers tend to install dock 

doors over an entire wall of the warehouse. Our results proved having too many dock doors can 

inhibit throughput when throughput is defined as the reciprocal of expected distance. However, 

having fewer dock doors than the required number creates congestion and results in additional 

idleness of S/R equipment. If an existing warehouse is occupied by a new tenant and the number 

of dock doors exceeds the number required to meet the throughput requirement, our research 
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results can be used to determine which dock doors to close and how to configure the storage 

region within the facility. 

Dock doors should be located as near as possible to the centerline of the warehouse.  

Locating dock doors farther from the centerline of the warehouse increases the expected 

horizontal distance between dock doors and S/R locations. Therefore, when designing a new 

warehouse, once the number of dock doors required has been determined, they should be 

centrally located along a wall; when occupying an existing warehouse having more dock doors 

than needed, dock doors located farthest from the centerline of the warehouse wall should be 

closed. 

The optimal shape factor depends on the number and locations of dock doors. When dock 

doors are spread over an entire wall of the warehouse, the distance between adjacent 

dock doors is a function of the warehouse’s width; the optimal shape factor is between 

1.5 and 2.0. However, when dock doors are distributed about the centerline of a 

warehouse wall and distances between adjacent dock doors are specified, the optimal 

shape factor is equal to or greater than 2.0. When dock doors are clustered toward the 

end of a wall, the optimal shape factor can be less than 1.5, between 1.5 and 2.0, or 

greater than 2.0, depending on the number of dock doors and the distance from the 

leftmost end of the wall and the nearest dock door. 

After determining the required number of dock doors, the optimal shape can be determined 

for any number and any location of dock doors over an entire of the warehouse wall by using the 

formulations developed. More importantly, closed-form expression will eliminate the 

requirement of using a specialized software package or generating an extensive set of tables to 
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determine the optimal shape. With the closed-form expressions, the penalty for a non-optimal 

design can be calculated easily and sensitivity analyses can be performed quickly.  

Configuring a warehouse optimally results in a balanced warehouse when dock doors 

are equally distributed over an entire warehouse wall; whereas, it results in an 

unbalanced warehouse when the distance between adjacent dock doors is specified.  

Forcing a warehouse to be balanced can result in a significantly different shape factor than 

for an optimally designed warehouse. However, the difference in expected distance for an 

optimally designed warehouse and a balanced warehouse is relatively small for both single- and 

dual-command travel. Therefore, for practical purposes, designing a balanced warehouse is a 

reasonable design goal. 

Our research showed a rule of thumb among warehouse designers of the warehouse width 

being twice the warehouse depth does not hold for multiple dock doors. However, designing a 

warehouse having a width-to-depth ratio greater than 2.0 results in a relatively small expected-

distance penalty. We concluded, the rule of thumb performs very well even when multiple dock 

doors are installed along one of the warehouse walls. 

Insofar as future research is concerned, other layout configurations having multiple dock 

doors can be considered. Likewise, because we assumed a random storage policy, consideration 

of class-based and turnover-based storage policies would be welcome. Finally, having unequal 

probabilities of dock usage appears to be a subject worthy of future research. 
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Appendix 

Proof of Proposition 2.1 

Case 1: when di is smaller than ti, the closest S/R aisle to dock door i is located to the left of 

dock door i. Therefore, the distance between dock door i and the nearest S/R aisle is a / 2 – ti  

+ di. Because there are ti / a S/R aisles to the left of dock door i, the distance between dock door i 

and S/R aisle j located to the left of dock door i equals (ti / a – j) a + a / 2 – ti + di  

= di – (j – 1 / 2) a for j = 1, 2, …, ti / a. Similarly, the distance between dock door i and the 

nearest S/R aisle located to the right of dock door i equals a / 2 + ti – di. Because there are  

n – ti / a S/R aisles to the right of dock door i, the distance between dock door i and S/R aisle j 

located to the right of dock door i equals (j – ti / a – 1) a + a / 2 + ti – di = (j – 1 / 2) a – di for  

j = ti / a + 1, ti / a +2, …, n.  Therefore, the distance between dock door i and the S/R aisle j 

equals |di – (j – 1 / 2) a| for j = 1, 2, …, n.  

Case 2: dock door i coincides with a back-to-back rack location. Therefore, in traveling to the 

S/R aisle nearest dock door i, the distances to the right and to the left of dock door i are identical 

and equal one half of the distance between two adjacent S/R aisles (a / 2). As before, there are  

n – ti / a and ti / a S/R aisles to the right and to the left of dock door i, respectively. Therefore, the 

equations given for Case 1 are valid, because ti – di equals zero. 

Case 3: when di is greater than ti, the closest S/R aisle to dock door i is located to the right of 

dock door i. Even though the closest S/R aisle is located to the right of dock door i; the distance 

between dock door i and the nearest S/R aisle located to the right of dock door i still equals a / 2 

+ ti – di, and the distance between dock door i and the nearest S/R aisle located to the left of dock 

door i still equals a / 2 – ti + di. Again, there exist ti / a S/R aisles to the left of dock door i and  
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n – ti / a aisles to the right of dock door i. Therefore, the equations given for Case 1 apply for 

Case 3. 

Case 4: the absolute value of di minus ti equals one-half the distance between two adjacent S/R 

aisles; movement does not exist in the parallel direction to reach the closest S/R aisle to dock 

door i because dock door i coincides with an S/R aisle. Therefore, equations derived for Case 1 

apply for Case 4 with the absolute difference between di and ti equaling a / 2. 

Proof of Lemma 2.1 

Suppose expected distance is expressed as 

 E [SC] ≈ c1 W + c2 W
 – 1 + c3 (A.1) 

Taking the first derivative of Equation (A.1) with respect to the warehouse’s width 

 ∂ E [SC] / ∂ W ≈ c1 + c2 W
 – 2 (A.2) 

Setting Equation (A.2) equal to zero and solving for the warehouse’s width, the stationary 

point is W ≈ (c2 / c1)
 1/2. 

Taking the second derivative of Equation (A.1) with respect to the warehouse’s width gives 

 ∂ 2 E [SC] / ∂ W 2 ≈ 2c2 W
 – 3, (A.3) 

which is greater than zero for values of c2 greater than zero. Because c2 is greater than zero, 

Equation (A.3) is positive for all values of W. Therefore, expected single-command roundtrip-

distance is a convex function of the warehouse’s width and the stationary point, W ≈ (c2 / c1)
 1/2, 

is the optimal width. 

Proof of Corollary 2.1 

From Equation 2.12, the expected single-command distance for a single-dock-door is 

 E [SC] ≈ W / 2 + A / W. (A.4) 
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Therefore, from Lemma 2.1, E [SC] is a convex function of W with stationary point  

W ≈ (2 A) 1/2.By definition, S = W / D and A = W D. Therefore, S = W 2 / A. Hence, the shape 

factor for the optimal warehouse width is S ≈ 2.0. 

Proof of Corollary 2.2 

Equations (2.13), (2.14), and (2.15) have the form 

 E [SC] ≈ c1 W + c2 W
 – 1 + c3 (A.5) 

Therefore, from Lemma 2.1 they are convex functions of W (c2 is greater than zero for all 

scenarios) with stationary points W ≈ [3A (k + 1) / (2k + 1)] 1/2, W ≈ [2A + [δ 2 (k 2 – 1)] / 3] 1/2 and 

W ≈ {[3A + 6ϕ 2 + 6ϕ δ (k – 1) + (2k 2 – 3k + 1) δ 2] / 3} 1/2, respectively. Therefore, the shape 

factors for the optimal warehouse widths are S ≈ 3(k+1) / (2k+1), S ≈ 2 + [δ 2 (k 2 – 1)] / 3A and  

S ≈ 1 + [6ϕ 2 + 6ϕ δ (k – 1) + (2k 2 – 3k + 1) δ 2] / 3A, respectively.  

Proof of Proposition 2.2 

When S ≥ [(k + 1) 2 (ω + ѱ) 2] / A, the warehouse width constraint is satisfied. From Lemma 

2.1, c1 = (2k + 1) / [3 (k + 1)] and c2 = A and c2 = 0. Because expected roundtrip-distance is a 

convex function of W (from Corollary 2.1), the stationary point 

 S*SC ≈ c2 / (c1 A) ≈ 3(k+1) / (2k+1) is the optimal shape factor. When S < [(k + 1) 2 (ω + ѱ) 2] / A, 

the width constraint is violated. Therefore, the optimum shape factor is determined by the width 

constraint: S*SC ≈ [(k + 1) 2 (ω + ѱ) 2] / A. 

The proof provided for Scenario 1 can be applied for Scenarios 2 and 3. 

Proof of Lemma 2.2 

Suppose expected distance is expressed as 

 E [DC] ≈ (c1 W
 3 + c2 W

 2 + c3 W + c4) / (c5 W
 2) (A.6) 
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Taking the first derivative of Equation (A.6) with respect to the warehouse’s width 

 ∂ E [DC] / ∂ W ≈ (c1 W
 3 – c3 W – 2c4) / (c5 W

 3) (A.7) 

Equation (A.7) is an irreducible polynomial. Therefore, depressing the cubic equation and 

using Viète's trigonometric solution, the stationary point is W ≈ 2 (c3 / 3c1)
 1/2 cos { 

arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3}. 

Taking the second derivative of Equation (A.6) with respect to the warehouse’s width gives 

 ∂ 2 E [DC] / ∂ W 2 ≈ (2c3 W + 6c4) / (c5 W
 4) (A.8) 

Evaluating Equation (A.8) yields a value greater than zero for reasonable parameter values 

(necessary conditions are provided in the proofs of Corollaries 2.3 and 2.4). Therefore, expected 

roundtrip-distance is a convex function of the warehouse’s width and the stationary point,  

W ≈ 2 (c3 / 3c1)
 1/2 cos {arccos [c4 c1

 1/2 (3 / c3)
 3/2] / 3}, is the optimal width. 

Proof of Corollary 2.3 

From Equation 2.17, the expected dual-command distance for a single dock door is 

  
 3 2 2

2

5 4 10 2 4 2

6

W vW A a av W aA
E DC

W

    
  (A.9) 

Therefore, from Lemma 2.2, E [DC] is a convex function of W with stationary point  

W ≈ 2 (c3 / 3c1)
 1/2 cos {arccos [c4 c1

 1/2 (3 / c3)
 3/2] / 3} where c1 = 5, c3 = 10A – 2a 2 – 4av and  

c4 = – 2 a A. By definition, S = W / D and A = W D. Therefore, S = W 2 / A. Hence, the shape 

factor for the optimal warehouse width is S ≈ 4c3 (cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3}) 2 / (3A c1) 

where c1 = 5, c3 = 10 A – 2 a 2 – 4 a v and c4 = – 2 a A. 

Taking the second derivative of Equation (A.9) with respect to the width of the warehouse 

gives 

 ∂ 2 E [DC] / ∂ W 2 ≈ (10A W – 2a 2 W – 4a v W – 6a A) / (3W 4) (A.10) 
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Evaluating (A.10) yields a value which is greater than zero for all W > (3a A) / (5A – a2  

– 2a v) with reasonable parameter values (e.g., 10A W – 2a 2 W – 4a v W – 6a A > 0 for all  

W > 12.0062 ft when A = 250,000 ft2, a =20 ft and v = 6 ft). 

Proof of Corollary 2.4 

Equations (2.18), (2.19) and (2.20) have the form 

 E [DC] ≈ (c1 W
 3 + c2 W

 2 + c3 W + c4) / (c5 W
 2) (A.11) 

Therefore, from Lemma 2.2 they are convex functions of W with stationary points  

W ≈ 2 (c3 / 3c1)
 1/2 cos {arccos [c4 c1

 1/2 (3 / c3)
 3/2] / 3}3})2 / (3A c1) where c1 = (2 + 3k),  

c3 = (1 + k) (5A – a 2 – 2a v) and c4 = – (1 + k) a A for Scenario 1; c1 = 5, c3 = 10A – 2a 2 – 4a v  

+ δ 2 (k 2 – 1) and c4 = – 2a A for Scenario 2; and c1 = 4, c3 = 5A – a 2 – 2a v + 6ϕ 2 + 6ϕ δ (k – 1) 

+ (2k 2 – 3k + 1) δ 2 and c4 = – a A for Scenario 3. 

The second derivatives of Equations (2.18), (2.19) and (2.20) with respect to the warehouse 

width are 

Scenario 1:  (10A W – 2a 2 W – 4a v W – 6a A) / (3W 4) 

Scenario 2:  [10A W – 2a 2 W – 4a v W – 6a A + (k2 – 1) δ 2 W] / (3W 4) 

Scenario 3:  [10A W – 2a 2 W – 4a v W – 6a A + 2(2k 2 – 3k + 1) δ 2 W + 12ϕ δ (k – 1) W  

 + 12ϕ 2 W) / (3W 4) 

Finding the second derivative is greater than zero, the necessary condition for each scenario 

is 

Scenario 1:  W > (3a A) / (5A – a2 – 2a v).  

(e.g. 10A W – 2a 2 W – 4a v W – 6a A > 0 for all W > 12.0062 ft when A = 250,000 ft2, a =20 ft 

and v = 6 ft) 

Scenario 2:  W > (6a A) / [10A – 2a 2 – 4a v + (k2 – 1) δ 2] 
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(e.g. 10A W – 2a 2 W – 4a v W – 6a A + 2(2k 2 – 3k + 1) δ 2 W + 12ϕ δ (k – 1) W+ 12ϕ 2 W > 0 for 

all W > 12.01 ft when A = 250,000 ft2, a =20 ft, v = 6 ft, δ = 12 ft and k = 1). Increasing the value 

k decreases the lower bound for W. 

Scenario 3:  W > (3a A) / [5A – a 2 – 2a v + (2k 2 – 3k + 1) δ 2 + 6ϕ δ (k – 1) + 6ϕ 2] 

(e.g. 10A W – 2a 2 W – 4a v W – 6a A + (k2 – 1) δ 2 W > 0 for all W > 11.96 ft when A = 250,000 

ft2, a =20 ft, v = 6 ft, δ = 12 ft, ϕ = 30 ft and k = 1). Increasing the value k decreases the lower 

bound for W. 

Proof of Proposition 2.3 

Using Lemma 2.2 and Corollary 2.3, the proof of Proposition 2.2 can be applied to 

Proposition 2.3. 

Proof of Proposition 2.4 

When dock doors are equally spaced along the wall containing dock doors, the expected 

single-command distance (Equation (2.14)) for k dock doors is given by 

 E [SC] ≈ [(2k + 1) W] / [3(k + 1)] + D. (A.12) 

Using the relationship between a given area (A = W* D*) and the optimal shape factor  

(S* = W* / D*), the width and depth of an optimally designed warehouse as functions of shape 

factor and a given area are ** SAW   and ** SAD  , respectively. Rewriting Equation 

(A.12) as a function of the optimal shape factor and a given area, the expected roundtrip single-

command distance for Scenario 1 is 

 E [SC] ≈ [(2k + 1) *SA ] / [3(k + 1)] + *SA . (A.13) 

Substituting the optimal shape factor expression for Scenario 1, S*SC ≈ 3(k+1) / (2k+1), into 

Equation (A.13), the minimum expected single-command distance is  

{[A (2k + 1)] / [3 (k + 1)]} 1/2 + {[A (2k + 1)] / [3 (k + 1)]} 1/2. Therefore, the expected horizontal 
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roundtrip-distance equals the expected vertical roundtrip-distance when  

S ≥ [(k + 1) 2 (ω + ѱ) 2] / A. 

Following similar steps, we can show the expected horizontal distance also equals the 

expected vertical distance for dual-command travel. 

Using the appropriate Equations, the proof for Scenario 1 can be applied to Scenarios 2  

and 3. 
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Table 2.2: Discrete formulation results for SC with Scenario 1 

k E*[SC] n* m* W* D* A S*SC 

1 708.00 34 86 680 368 250240 1.85 

2 745.65 34 86 680 368 250240 1.85 

3 764.47 34 86 680 368 250240 1.85 

4 775.87 31 95 620 404 250480 1.53 

5 782.75 31 95 620 404 250480 1.53 

6 787.69 31 95 620 404 250480 1.53 

7 791.37 31 95 620 404 250480 1.53 

8 794.25 31 95 620 404 250480 1.53 

9 796.54 31 95 620 404 250480 1.53 

10 798.43 31 95 620 404 250480 1.53 

11 799.99 31 95 620 404 250480 1.53 

12 801.32 31 95 620 404 250480 1.53 

13 802.45 31 95 620 404 250480 1.53 

14 803.44 31 95 620 404 250480 1.53 

15 804.30 31 95 620 404 250480 1.53 

16 805.06 31 95 620 404 250480 1.53 

17 805.74 31 95 620 404 250480 1.53 

18 806.34 31 95 620 404 250480 1.53 

19 806.89 31 95 620 404 250480 1.53 

20 807.38 31 95 620 404 250480 1.53 

21 807.83 31 95 620 404 250480 1.53 

22 808.24 31 95 620 404 250480 1.53 

23 808.61 31 95 620 404 250480 1.53 

24 808.95 31 95 620 404 250480 1.53 

25 809.27 31 95 620 404 250480 1.53 

26 809.57 31 95 620 404 250480 1.53 

27 809.84 31 95 620 404 250480 1.53 

28 810.10 31 95 620 404 250480 1.53 

29 810.33 31 95 620 404 250480 1.53 

30 810.67 31 95 620 404 250480 1.53 

31 810.76 31 95 620 404 250480 1.53 

32 810.96 31 95 620 404 250480 1.53 

33 811.14 31 95 620 404 250480 1.53 

34 811.32 31 95 620 404 250480 1.53 

35 811.48 31 95 620 404 250480 1.53 

36 811.64 31 95 620 404 250480 1.53 

37 811.78 31 95 620 404 250480 1.53 

38 811.92 31 95 620 404 250480 1.53 

39 812.06 31 95 620 404 250480 1.53 

40 812.18 31 95 620 404 250480 1.53 

41 812.30 31 95 620 404 250480 1.53 

42 812.42 31 95 620 404 250480 1.53 

43 812.53 31 95 620 404 250480 1.53 

44 812.63 31 95 620 404 250480 1.53 

45 812.73 31 95 620 404 250480 1.53 
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Table 2.2: Discrete formulation results for SC with Scenario 1 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 812.83 31 95 620 404 250480 1.53 

47 812.92 31 95 620 404 250480 1.53 

48 813.01 31 95 620 404 250480 1.53 

49 813.09 31 95 620 404 250480 1.53 

50 813.17 31 95 620 404 250480 1.53 

51 814.46 32 92 640 392 250880 1.63 

52 814.54 32 92 640 392 250880 1.63 

53 815.82 33 89 660 380 250800 1.74 

54 815.90 33 89 660 380 250800 1.74 

55 817.19 34 86 680 368 250240 1.85 

56 822.48 35 84 700 360 252000 1.94 

57 822.55 35 84 700 360 252000 1.94 

58 823.84 36 81 720 348 250560 2.07 

59 823.91 36 81 720 348 250560 2.07 

60 829.20 37 79 740 340 251600 2.18 
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Table 2.3: Discrete formulation results for DC with Scenario 1 

k E*[DC] n* m* W* D* A S*DC 

1 1172.11 34 86 680 368 250240 1.85 

2 1209.76 34 86 680 368 250240 1.85 

3 1228.58 34 86 680 368 250240 1.85 

4 1240.00 34 86 680 368 250240 1.85 

5 1247.56 34 86 680 368 250240 1.85 

6 1252.95 34 86 680 368 250240 1.85 

7 1256.99 34 86 680 368 250240 1.85 

8 1260.15 34 86 680 368 250240 1.85 

9 1262.67 34 86 680 368 250240 1.85 

10 1264.73 34 86 680 368 250240 1.85 

11 1266.44 34 86 680 368 250240 1.85 

12 1267.90 34 86 680 368 250240 1.85 

13 1269.15 34 86 680 368 250240 1.85 

14 1270.23 34 86 680 368 250240 1.85 

15 1271.17 34 86 680 368 250240 1.85 

16 1272.11 34 86 680 368 250240 1.85 

17 1272.75 34 86 680 368 250240 1.85 

18 1273.41 34 86 680 368 250240 1.85 

19 1274.01 34 86 680 368 250240 1.85 

20 1274.55 34 86 680 368 250240 1.85 

21 1275.04 34 86 680 368 250240 1.85 

22 1275.49 34 86 680 368 250240 1.85 

23 1275.90 34 86 680 368 250240 1.85 

24 1276.28 34 86 680 368 250240 1.85 

25 1276.62 31 95 620 404 250480 1.53 

26 1276.91 31 95 620 404 250480 1.53 

27 1277.19 31 95 620 404 250480 1.53 

28 1277.44 31 95 620 404 250480 1.53 

29 1277.68 31 95 620 404 250480 1.53 

30 1277.96 32 92 640 392 250880 1.63 

31 1278.11 31 95 620 404 250480 1.53 

32 1278.31 31 95 620 404 250480 1.53 

33 1278.49 31 95 620 404 250480 1.53 

34 1278.66 31 95 620 404 250480 1.53 

35 1278.83 31 95 620 404 250480 1.53 

36 1278.98 31 95 620 404 250480 1.53 

37 1279.13 31 95 620 404 250480 1.53 

38 1279.27 31 95 620 404 250480 1.53 

39 1279.40 31 95 620 404 250480 1.53 

40 1279.53 31 95 620 404 250480 1.53 

41 1279.65 31 95 620 404 250480 1.53 

42 1279.76 31 95 620 404 250480 1.53 

43 1279.87 31 95 620 404 250480 1.53 

44 1279.98 31 95 620 404 250480 1.53 

45 1280.08 31 95 620 404 250480 1.53 
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Table 2.3: Discrete formulation results for DC with Scenario 1 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1280.17 31 95 620 404 250480 1.53 

47 1280.26 31 95 620 404 250480 1.53 

48 1280.35 31 95 620 404 250480 1.53 

49 1280.44 31 95 620 404 250480 1.53 

50 1280.52 31 95 620 404 250480 1.53 

51 1280.74 32 92 640 392 250880 1.63 

52 1280.82 32 92 640 392 250880 1.63 

53 1281.03 33 89 660 380 250800 1.74 

54 1281.11 33 89 660 380 250800 1.74 

55 1281.30 34 86 680 368 250240 1.85 

56 1288.11 35 84 700 360 252000 1.94 

57 1288.18 35 84 700 360 252000 1.94 

58 1288.35 36 81 720 348 250560 2.07 

59 1288.43 36 81 720 348 250560 2.07 

60 1295.21 37 79 740 340 251600 2.18 
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Table 2.4: Continuous approximation results for SC with Scenario 1 

k E*[SC] n* m* W* D* A S*SC 

1 707.11 35.36 82.39 707.11 353.55 250000 2.00 

2 745.36 33.54 87.17 670.82 372.68 250000 1.80 

3 763.76 32.73 89.47 654.65 381.88 250000 1.71 

4 774.60 32.27 90.82 645.50 387.30 250000 1.67 

5 781.74 31.98 91.72 639.60 390.87 250000 1.64 

6 786.80 31.77 92.35 635.49 393.40 250000 1.62 

7 790.57 31.62 92.82 632.46 395.28 250000 1.60 

8 793.49 31.51 93.19 630.13 396.75 250000 1.59 

9 795.82 31.41 93.48 628.28 397.91 250000 1.58 

10 797.72 31.34 93.72 626.78 398.86 250000 1.57 

11 799.31 31.28 93.91 625.54 399.65 250000 1.57 

12 800.64 31.22 94.08 624.50 400.32 250000 1.56 

13 801.78 31.18 94.22 623.61 400.89 250000 1.56 

14 802.77 31.14 94.35 622.84 401.39 250000 1.55 

15 803.64 31.11 94.45 622.17 401.82 250000 1.55 

16 804.40 31.08 94.55 621.58 402.20 250000 1.55 

17 805.08 31.05 94.63 621.06 402.54 250000 1.54 

18 805.68 31.03 94.71 620.59 402.84 250000 1.54 

19 806.23 31.01 94.78 620.17 403.11 250000 1.54 

20 806.72 30.99 94.84 619.80 403.36 250000 1.54 

21 807.16 30.97 94.90 619.45 403.58 250000 1.53 

22 807.57 30.96 94.95 619.14 403.79 250000 1.53 

23 807.95 30.94 94.99 618.85 403.97 250000 1.53 

24 808.29 30.93 95.04 618.59 404.15 250000 1.53 

25 808.61 30.92 95.08 618.35 404.30 250000 1.53 

26 808.90 30.91 95.11 618.12 404.45 250000 1.53 

27 809.17 30.90 95.15 617.91 404.59 250000 1.53 

28 809.43 30.89 95.18 617.72 404.71 250000 1.53 

29 809.66 30.88 95.21 617.54 404.83 250000 1.53 

30 809.89 30.87 95.24 617.37 404.94 250000 1.52 

31 810.09 30.86 95.26 617.21 405.05 250000 1.52 

32 810.29 30.85 95.29 617.07 405.14 250000 1.52 

33 810.47 30.85 95.31 616.93 405.24 250000 1.52 

34 810.64 30.84 95.33 616.79 405.32 250000 1.52 

35 810.81 30.83 95.35 616.67 405.40 250000 1.52 

36 810.96 30.83 95.37 616.55 405.48 250000 1.52 

37 811.11 30.82 95.39 616.44 405.55 250000 1.52 

38 811.25 30.82 95.41 616.34 405.62 250000 1.52 

39 811.38 30.81 95.42 616.24 405.69 250000 1.52 

40 811.50 30.81 95.44 616.14 405.75 250000 1.52 

41 811.62 30.80 95.45 616.05 405.81 250000 1.52 

42 811.74 30.80 95.47 615.96 405.87 250000 1.52 

43 811.84 30.79 95.48 615.88 405.92 250000 1.52 

44 811.95 30.79 95.49 615.80 405.97 250000 1.52 

45 812.05 30.79 95.51 615.73 406.02 250000 1.52 
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Table 2.4: Continuous approximation results for SC with Scenario 1 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 812.14 30.78 95.52 615.66 406.07 250000 1.52 

47 812.23 30.78 95.53 615.59 406.12 250000 1.52 

48 812.32 30.78 95.54 615.52 406.16 250000 1.52 

49 812.40 30.77 95.55 615.46 406.20 250000 1.52 

50 812.48 30.77 95.56 615.40 406.24 250000 1.51 

51 812.64 31.20 94.16 624.00 400.64 250000 1.56 

52 813.08 31.80 92.27 636.00 393.08 250000 1.62 

53 813.80 32.40 90.45 648.00 385.80 250000 1.68 

54 814.79 33.00 88.70 660.00 378.79 250000 1.74 

55 816.02 33.60 87.01 672.00 372.02 250000 1.81 

56 817.50 34.20 85.37 684.00 365.50 250000 1.87 

57 819.20 34.80 83.80 696.00 359.20 250000 1.94 

58 821.11 35.40 82.28 708.00 353.11 250000 2.01 

59 823.22 36.00 80.81 720.00 347.22 250000 2.07 

60 825.53 36.60 79.38 732.00 341.53 250000 2.14 
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Table 2.5: Continuous approximation results for DC with Scenario 1 

k E*[DC] n* m* W* D* A S*DC 

1 1170.86 35.14 82.92 702.89 355.67 250000 1.98 

2 1209.27 34.02 85.85 680.44 367.41 250000 1.85 

3 1228.03 33.50 87.29 669.99 373.14 250000 1.80 

4 1239.14 33.20 88.13 663.94 376.54 250000 1.76 

5 1246.50 33.00 88.70 660.00 378.79 250000 1.74 

6 1251.72 32.86 89.10 657.23 380.38 250000 1.73 

7 1255.63 32.76 89.39 655.17 381.58 250000 1.72 

8 1258.66 32.68 89.63 653.59 382.51 250000 1.71 

9 1261.08 32.62 89.81 652.32 383.24 250000 1.70 

10 1263.05 32.56 89.96 651.30 383.85 250000 1.70 

11 1264.70 32.52 90.09 650.45 384.35 250000 1.69 

12 1266.09 32.49 90.19 649.73 384.78 250000 1.69 

13 1267.28 32.46 90.28 649.12 385.14 250000 1.69 

14 1268.31 32.43 90.36 648.58 385.45 250000 1.68 

15 1269.21 32.41 90.43 648.12 385.73 250000 1.68 

16 1270.00 32.39 90.49 647.71 385.97 250000 1.68 

17 1270.71 32.37 90.55 647.35 386.19 250000 1.68 

18 1271.34 32.35 90.60 647.03 386.38 250000 1.67 

19 1271.90 32.34 90.64 646.74 386.56 250000 1.67 

20 1272.42 32.32 90.68 646.48 386.71 250000 1.67 

21 1272.88 32.31 90.71 646.24 386.85 250000 1.67 

22 1273.31 32.30 90.75 646.02 386.98 250000 1.67 

23 1273.70 32.29 90.78 645.82 387.10 250000 1.67 

24 1274.06 32.28 90.80 645.64 387.21 250000 1.67 

25 1274.39 32.27 90.83 645.47 387.32 250000 1.67 

26 1274.69 32.27 90.85 645.31 387.41 250000 1.67 

27 1274.98 32.26 90.87 645.17 387.50 250000 1.66 

28 1275.24 32.25 90.89 645.03 387.58 250000 1.66 

29 1275.49 32.25 90.91 644.91 387.65 250000 1.66 

30 1275.72 32.24 90.93 644.79 387.72 250000 1.66 

31 1275.94 32.23 90.95 644.68 387.79 250000 1.66 

32 1276.14 32.23 90.96 644.58 387.85 250000 1.66 

33 1276.33 32.22 90.98 644.48 387.91 250000 1.66 

34 1276.51 32.22 90.99 644.39 387.97 250000 1.66 

35 1276.68 32.22 91.00 644.30 388.02 250000 1.66 

36 1276.85 32.21 91.02 644.22 388.07 250000 1.66 

37 1277.00 32.21 91.03 644.14 388.11 250000 1.66 

38 1277.14 32.20 91.04 644.07 388.16 250000 1.66 

39 1277.28 32.20 91.05 644.00 388.20 250000 1.66 

40 1277.41 32.20 91.06 643.93 388.24 250000 1.66 

41 1277.54 32.19 91.07 643.87 388.28 250000 1.66 

42 1277.66 32.19 91.08 643.81 388.31 250000 1.66 

43 1277.77 32.19 91.09 643.75 388.35 250000 1.66 

44 1277.88 32.18 91.10 643.70 388.38 250000 1.66 

45 1277.98 32.18 91.10 643.64 388.41 250000 1.66 
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Table 2.5: Continuous approximation results for DC with Scenario 1 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1278.08 32.18 91.11 643.59 388.44 250000 1.66 

47 1278.18 32.18 91.12 643.54 388.47 250000 1.66 

48 1278.27 32.17 91.13 643.50 388.50 250000 1.66 

49 1278.35 32.17 91.13 643.45 388.53 250000 1.66 

50 1278.44 32.17 91.14 643.41 388.55 250000 1.66 

51 1278.52 32.17 91.14 643.37 388.58 250000 1.66 

52 1278.60 32.17 91.15 643.33 388.60 250000 1.66 

53 1278.71 32.40 90.45 648.00 385.80 250000 1.68 

54 1279.16 33.00 88.70 660.00 378.79 250000 1.74 

55 1280.03 33.60 87.01 672.00 372.02 250000 1.81 

56 1281.29 34.20 85.37 684.00 365.50 250000 1.87 

57 1282.91 34.80 83.80 696.00 359.20 250000 1.94 

58 1284.89 35.40 82.28 708.00 353.11 250000 2.01 

59 1287.19 36.00 80.81 720.00 347.22 250000 2.07 

60 1289.81 36.60 79.38 732.00 341.53 250000 2.14 
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Table 2.6: Discrete formulation results for SC with Scenario 2 

k E*[SC] n* m* W* D* A S*SC 

1 708.00 34 86 680 368 250240 1.85 

2 708.00 34 86 680 368 250240 1.85 

3 708.15 36 81 720 348 250560 2.07 

4 708.44 36 81 720 348 250560 2.07 

5 708.71 36 81 720 348 250560 2.07 

6 709.04 36 81 720 348 250560 2.07 

7 709.52 36 81 720 348 250560 2.07 

8 710.00 36 81 720 348 250560 2.07 

9 710.57 36 81 720 348 250560 2.07 

10 711.20 36 81 720 348 250560 2.07 

11 711.92 36 81 720 348 250560 2.07 

12 712.67 36 81 720 348 250560 2.07 

13 713.50 36 81 720 348 250560 2.07 

14 714.41 36 81 720 348 250560 2.07 

15 715.38 36 81 720 348 250560 2.07 

16 716.39 36 81 720 348 250560 2.07 

17 717.52 36 81 720 348 250560 2.07 

18 718.67 36 81 720 348 250560 2.07 

19 719.91 36 81 720 348 250560 2.07 

20 721.20 36 81 720 348 250560 2.07 

21 722.58 36 81 720 348 250560 2.07 

22 724.00 36 81 720 348 250560 2.07 

23 725.51 36 81 720 348 250560 2.07 

24 727.07 36 81 720 348 250560 2.07 

25 728.71 36 81 720 348 250560 2.07 

26 730.39 36 81 720 348 250560 2.07 

27 732.18 36 81 720 348 250560 2.07 

28 734.00 36 81 720 348 250560 2.07 

29 735.91 36 81 720 348 250560 2.07 

30 737.87 36 81 720 348 250560 2.07 

31 739.91 36 81 720 348 250560 2.07 

32 742.00 36 81 720 348 250560 2.07 

33 744.18 36 81 720 348 250560 2.07 

34 746.41 36 81 720 348 250560 2.07 

35 748.71 36 81 720 348 250560 2.07 

36 751.06 36 81 720 348 250560 2.07 

37 753.51 36 81 720 348 250560 2.07 

38 756.00 36 81 720 348 250560 2.07 

39 758.58 36 81 720 348 250560 2.07 

40 761.20 36 81 720 348 250560 2.07 

41 763.91 36 81 720 348 250560 2.07 

42 766.67 36 81 720 348 250560 2.07 

43 769.51 36 81 720 348 250560 2.07 

44 772.40 36 81 720 348 250560 2.07 

45 775.38 36 81 720 348 250560 2.07 
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Table 2.6: Discrete formulation results for SC with Scenario 2 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 778.40 36 81 720 348 250560 2.07 

47 781.51 36 81 720 348 250560 2.07 

48 784.60 37 79 740 340 251600 2.18 

49 787.70 38 77 760 332 252320 2.29 

50 790.81 39 75 780 324 252720 2.41 

51 793.90 39 75 780 324 252720 2.41 

52 797.00 40 73 800 316 252800 2.53 

53 800.10 41 71 820 308 252560 2.66 

54 803.20 42 69 840 300 252000 2.80 

55 806.31 43 67 860 292 251120 2.95 

56 809.42 43 67 860 292 251120 2.95 

57 812.56 43 67 860 292 251120 2.95 

58 815.78 43 67 860 292 251120 2.95 

59 819.04 43 67 860 292 251120 2.95 

60 822.36 43 67 860 292 251120 2.95 

61 825.73 43 67 860 292 251120 2.95 

62 829.17 43 67 860 292 251120 2.95 

63 832.65 43 67 860 292 251120 2.95 

64 836.20 43 67 860 292 251120 2.95 

65 839.80 43 67 860 292 251120 2.95 

66 843.46 43 67 860 292 251120 2.95 

67 847.16 43 67 860 292 251120 2.95 

68 850.94 43 67 860 292 251120 2.95 

69 854.76 43 67 860 292 251120 2.95 

70 858.64 43 67 860 292 251120 2.95 

71 862.57 43 67 860 292 251120 2.95 

72 867.13 46 62 920 272 250240 3.38 

73 870.92 46 62 920 272 250240 3.38 

74 874.75 46 62 920 272 250240 3.38 

75 878.64 46 62 920 272 250240 3.38 
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Table 2.7: Discrete formulation results for DC with Scenario 2 

k E*[DC] n* m* W* D* A S*DC 

1 1172.11 34 86 680 368 250240 1.85 

2 1172.11 34 86 680 368 250240 1.85 

3 1172.27 34 86 680 368 250240 1.85 

4 1172.58 34 86 680 368 250240 1.85 

5 1172.87 34 86 680 368 250240 1.85 

6 1173.21 34 86 680 368 250240 1.85 

7 1173.73 34 86 680 368 250240 1.85 

8 1174.23 34 86 680 368 250240 1.85 

9 1174.83 34 86 680 368 250240 1.85 

10 1175.50 34 86 680 368 250240 1.85 

11 1176.26 34 86 680 368 250240 1.85 

12 1177.05 34 86 680 368 250240 1.85 

13 1177.94 34 86 680 368 250240 1.85 

14 1178.90 34 86 680 368 250240 1.85 

15 1179.89 36 81 720 348 250560 2.07 

16 1180.90 36 81 720 348 250560 2.07 

17 1182.03 36 81 720 348 250560 2.07 

18 1183.18 36 81 720 348 250560 2.07 

19 1184.42 36 81 720 348 250560 2.07 

20 1185.72 36 81 720 348 250560 2.07 

21 1187.10 36 81 720 348 250560 2.07 

22 1188.52 36 81 720 348 250560 2.07 

23 1190.02 36 81 720 348 250560 2.07 

24 1191.59 36 81 720 348 250560 2.07 

25 1193.23 36 81 720 348 250560 2.07 

26 1194.91 36 81 720 348 250560 2.07 

27 1196.70 36 81 720 348 250560 2.07 

28 1198.52 36 81 720 348 250560 2.07 

29 1200.42 36 81 720 348 250560 2.07 

30 1202.38 36 81 720 348 250560 2.07 

31 1204.43 36 81 720 348 250560 2.07 

32 1206.52 36 81 720 348 250560 2.07 

33 1208.69 36 81 720 348 250560 2.07 

34 1210.92 36 81 720 348 250560 2.07 

35 1213.23 36 81 720 348 250560 2.07 

36 1215.58 36 81 720 348 250560 2.07 

37 1218.03 36 81 720 348 250560 2.07 

38 1220.52 36 81 720 348 250560 2.07 

39 1223.09 36 81 720 348 250560 2.07 

40 1225.72 36 81 720 348 250560 2.07 

41 1228.43 36 81 720 348 250560 2.07 

42 1231.18 36 81 720 348 250560 2.07 

43 1234.02 36 81 720 348 250560 2.07 

44 1236.92 36 81 720 348 250560 2.07 

45 1239.89 36 81 720 348 250560 2.07 



67 

Table 2.7: Discrete formulation results for DC with Scenario 2 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1242.91 36 81 720 348 250560 2.07 

47 1246.03 36 81 720 348 250560 2.07 

48 1249.18 36 81 720 348 250560 2.07 

49 1252.42 36 81 720 348 250560 2.07 

50 1255.72 36 81 720 348 250560 2.07 

51 1259.10 36 81 720 348 250560 2.07 

52 1262.52 36 81 720 348 250560 2.07 

53 1266.03 36 81 720 348 250560 2.07 

54 1269.59 36 81 720 348 250560 2.07 

55 1273.23 36 81 720 348 250560 2.07 

56 1276.91 36 81 720 348 250560 2.07 

57 1280.69 36 81 720 348 250560 2.07 

58 1284.52 36 81 720 348 250560 2.07 

59 1288.43 36 81 720 348 250560 2.07 

60 1292.38 36 81 720 348 250560 2.07 

61 1296.56 37 79 740 340 251600 2.18 

62 1300.77 38 77 760 332 252320 2.29 

63 1304.73 38 77 760 332 252320 2.29 

64 1308.91 39 75 780 324 252720 2.41 

65 1312.87 39 75 780 324 252720 2.41 

66 1317.03 40 73 800 316 252800 2.53 

67 1321.20 41 71 820 308 252560 2.66 

68 1325.16 41 71 820 308 252560 2.66 

69 1329.32 42 69 840 300 252000 2.80 

70 1333.29 42 69 840 300 252000 2.80 

71 1337.42 43 67 860 292 251120 2.95 

72 1348.22 44 66 880 288 253440 3.06 

73 1352.18 44 66 880 288 253440 3.06 

74 1356.32 45 64 900 280 252000 3.21 

75 1360.28 45 64 900 280 252000 3.21 

 

  



68 

Table 2.8: Continuous approximation results for SC with Scenario 2 

k E*[SC] n* m* W* D* A S*SC 

1 707.11 35.36 82.39 707.11 353.55 250000 2.00 

2 707.21 35.36 82.38 707.21 353.50 250000 2.00 

3 707.38 35.37 82.35 707.38 353.42 250000 2.00 

4 707.62 35.38 82.32 707.62 353.30 250000 2.00 

5 707.92 35.40 82.29 707.92 353.15 250000 2.00 

6 708.29 35.41 82.24 708.29 352.96 250000 2.01 

7 708.73 35.44 82.19 708.73 352.74 250000 2.01 

8 709.24 35.46 82.12 709.24 352.49 250000 2.01 

9 709.82 35.49 82.05 709.82 352.20 250000 2.02 

10 710.46 35.52 81.97 710.46 351.89 250000 2.02 

11 711.17 35.56 81.88 711.17 351.53 250000 2.02 

12 711.94 35.60 81.79 711.94 351.15 250000 2.03 

13 712.79 35.64 81.68 712.79 350.74 250000 2.03 

14 713.69 35.68 81.57 713.69 350.29 250000 2.04 

15 714.67 35.73 81.45 714.67 349.81 250000 2.04 

16 715.71 35.79 81.33 715.71 349.30 250000 2.05 

17 716.82 35.84 81.19 716.82 348.76 250000 2.06 

18 717.99 35.90 81.05 717.99 348.20 250000 2.06 

19 719.22 35.96 80.90 719.22 347.60 250000 2.07 

20 720.52 36.03 80.74 720.52 346.97 250000 2.08 

21 721.89 36.09 80.58 721.89 346.31 250000 2.08 

22 723.31 36.17 80.41 723.31 345.63 250000 2.09 

23 724.81 36.24 80.23 724.81 344.92 250000 2.10 

24 726.36 36.32 80.05 726.36 344.18 250000 2.11 

25 727.98 36.40 79.85 727.98 343.42 250000 2.12 

26 729.66 36.48 79.66 729.66 342.63 250000 2.13 

27 731.40 36.57 79.45 731.40 341.81 250000 2.14 

28 733.20 36.66 79.24 733.20 340.97 250000 2.15 

29 735.06 36.75 79.03 735.06 340.11 250000 2.16 

30 736.99 36.85 78.80 736.99 339.22 250000 2.17 

31 738.97 36.95 78.58 738.97 338.31 250000 2.18 

32 741.02 37.05 78.34 741.02 337.37 250000 2.20 

33 743.12 37.16 78.11 743.12 336.42 250000 2.21 

34 745.28 37.26 77.86 745.28 335.45 250000 2.22 

35 747.50 37.37 77.61 747.50 334.45 250000 2.24 

36 749.77 37.49 77.36 749.77 333.43 250000 2.25 

37 752.11 37.61 77.10 752.11 332.40 250000 2.26 

38 754.50 37.72 76.84 754.50 331.35 250000 2.28 

39 756.94 37.85 76.57 756.94 330.28 250000 2.29 

40 759.44 37.97 76.30 759.44 329.19 250000 2.31 

41 762.00 38.10 76.02 762.00 328.09 250000 2.32 

42 764.61 38.23 75.74 764.61 326.97 250000 2.34 

43 767.27 38.36 75.46 767.27 325.83 250000 2.35 

44 769.99 38.50 75.17 769.99 324.68 250000 2.37 

45 772.76 38.64 74.88 772.76 323.52 250000 2.39 
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Table 2.8: Continuous approximation results for SC with Scenario 2 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 775.58 38.78 74.59 775.58 322.34 250000 2.41 

47 778.45 38.92 74.29 778.45 321.15 250000 2.42 

48 781.37 39.07 73.99 781.37 319.95 250000 2.44 

49 784.35 39.22 73.68 784.35 318.74 250000 2.46 

50 787.37 39.37 73.38 787.37 317.51 250000 2.48 

51 790.44 39.52 73.07 790.44 316.28 250000 2.50 

52 793.56 39.68 72.76 793.56 315.03 250000 2.52 

53 796.73 39.84 72.45 796.73 313.78 250000 2.54 

54 799.95 40.00 72.13 799.95 312.52 250000 2.56 

55 803.21 40.16 71.81 803.21 311.25 250000 2.58 

56 806.52 40.33 71.49 806.52 309.97 250000 2.60 

57 809.88 40.49 71.17 809.88 308.69 250000 2.62 

58 813.28 40.66 70.85 813.28 307.40 250000 2.65 

59 816.73 40.84 70.53 816.73 306.10 250000 2.67 

60 820.21 41.01 70.20 820.21 304.80 250000 2.69 

61 823.75 41.19 69.87 823.75 303.49 250000 2.71 

62 827.32 41.37 69.54 827.32 302.18 250000 2.74 

63 830.94 41.55 69.22 830.94 300.86 250000 2.76 

64 834.60 41.73 68.89 834.60 299.54 250000 2.79 

65 838.30 41.92 68.56 838.30 298.22 250000 2.81 

66 842.05 42.10 68.22 842.05 296.90 250000 2.84 

67 845.83 42.29 67.89 845.83 295.57 250000 2.86 

68 849.65 42.48 67.56 849.65 294.24 250000 2.89 

69 853.51 42.68 67.23 853.51 292.91 250000 2.91 

70 857.41 42.87 66.89 857.41 291.58 250000 2.94 

71 861.35 43.07 66.56 861.35 290.24 250000 2.97 

72 865.32 43.27 66.23 865.32 288.91 250000 3.00 

73 869.36 43.80 65.35 876.00 285.39 250000 3.07 

74 873.50 44.40 64.38 888.00 281.53 250000 3.15 

75 877.75 45.00 63.44 900.00 277.78 250000 3.24 
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Table 2.9: Continuous approximation results for DC with Scenario 2 

k E*[DC] n* m* W* D* A S*DC 

1 1170.86 35.14 82.92 702.89 355.67 250000 1.98 

2 1170.96 35.15 82.91 702.95 355.64 250000 1.98 

3 1171.13 35.15 82.90 703.05 355.59 250000 1.98 

4 1171.37 35.16 82.88 703.20 355.52 250000 1.98 

5 1171.67 35.17 82.86 703.38 355.42 250000 1.98 

6 1172.05 35.18 82.83 703.61 355.31 250000 1.98 

7 1172.49 35.19 82.79 703.88 355.18 250000 1.98 

8 1173.00 35.21 82.75 704.19 355.02 250000 1.98 

9 1173.58 35.23 82.71 704.54 354.84 250000 1.99 

10 1174.23 35.25 82.66 704.93 354.65 250000 1.99 

11 1174.95 35.27 82.61 705.36 354.43 250000 1.99 

12 1175.73 35.29 82.55 705.83 354.19 250000 1.99 

13 1176.58 35.32 82.48 706.34 353.94 250000 2.00 

14 1177.49 35.34 82.41 706.90 353.66 250000 2.00 

15 1178.48 35.37 82.34 707.49 353.36 250000 2.00 

16 1179.53 35.41 82.26 708.12 353.05 250000 2.01 

17 1180.65 35.44 82.18 708.80 352.71 250000 2.01 

18 1181.83 35.48 82.09 709.51 352.35 250000 2.01 

19 1183.08 35.51 81.99 710.27 351.98 250000 2.02 

20 1184.40 35.55 81.90 711.06 351.59 250000 2.02 

21 1185.78 35.59 81.79 711.90 351.17 250000 2.03 

22 1187.23 35.64 81.69 712.77 350.74 250000 2.03 

23 1188.75 35.68 81.57 713.68 350.29 250000 2.04 

24 1190.33 35.73 81.46 714.64 349.83 250000 2.04 

25 1191.97 35.78 81.34 715.63 349.34 250000 2.05 

26 1193.68 35.83 81.21 716.66 348.84 250000 2.05 

27 1195.45 35.89 81.08 717.73 348.32 250000 2.06 

28 1197.29 35.94 80.95 718.84 347.78 250000 2.07 

29 1199.19 36.00 80.81 719.99 347.23 250000 2.07 

30 1201.16 36.06 80.66 721.17 346.66 250000 2.08 

31 1203.19 36.12 80.52 722.40 346.07 250000 2.09 

32 1205.28 36.18 80.37 723.66 345.47 250000 2.09 

33 1207.43 36.25 80.21 724.96 344.85 250000 2.10 

34 1209.65 36.31 80.05 726.29 344.21 250000 2.11 

35 1211.92 36.38 79.89 727.67 343.56 250000 2.12 

36 1214.26 36.45 79.72 729.08 342.90 250000 2.13 

37 1216.66 36.53 79.55 730.53 342.22 250000 2.13 

38 1219.13 36.60 79.38 732.01 341.53 250000 2.14 

39 1221.65 36.68 79.20 733.53 340.82 250000 2.15 

40 1224.23 36.75 79.02 735.09 340.10 250000 2.16 

41 1226.87 36.83 78.84 736.68 339.36 250000 2.17 

42 1229.57 36.92 78.65 738.31 338.61 250000 2.18 

43 1232.33 37.00 78.46 739.97 337.85 250000 2.19 

44 1235.15 37.08 78.27 741.67 337.08 250000 2.20 

45 1238.03 37.17 78.07 743.41 336.29 250000 2.21 
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Table 2.9: Continuous approximation results for DC with Scenario 2 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1240.96 37.26 77.87 745.18 335.49 250000 2.22 

47 1243.95 37.35 77.67 746.98 334.68 250000 2.23 

48 1247.00 37.44 77.46 748.82 333.86 250000 2.24 

49 1250.11 37.53 77.26 750.69 333.03 250000 2.25 

50 1253.27 37.63 77.05 752.60 332.18 250000 2.27 

51 1256.49 37.73 76.83 754.53 331.33 250000 2.28 

52 1259.76 37.83 76.62 756.51 330.47 250000 2.29 

53 1263.08 37.93 76.40 758.51 329.59 250000 2.30 

54 1266.47 38.03 76.18 760.55 328.71 250000 2.31 

55 1269.90 38.13 75.95 762.62 327.82 250000 2.33 

56 1273.39 38.24 75.73 764.72 326.92 250000 2.34 

57 1276.93 38.34 75.50 766.86 326.01 250000 2.35 

58 1280.52 38.45 75.27 769.02 325.09 250000 2.37 

59 1284.17 38.56 75.04 771.22 324.16 250000 2.38 

60 1287.87 38.67 74.81 773.45 323.23 250000 2.39 

61 1291.62 38.79 74.57 775.71 322.29 250000 2.41 

62 1295.42 38.90 74.33 778.00 321.34 250000 2.42 

63 1299.27 39.02 74.10 780.32 320.38 250000 2.44 

64 1303.17 39.13 73.86 782.67 319.42 250000 2.45 

65 1307.12 39.25 73.61 785.05 318.45 250000 2.47 

66 1311.14 39.60 72.91 792.00 315.66 250000 2.51 

67 1315.37 40.20 71.74 804.00 310.95 250000 2.59 

68 1319.83 40.80 70.59 816.00 306.37 250000 2.66 

69 1324.50 41.40 69.48 828.00 301.93 250000 2.74 

70 1329.39 42.00 68.40 840.00 297.62 250000 2.82 

71 1334.47 42.60 67.36 852.00 293.43 250000 2.90 

72 1339.75 43.20 66.34 864.00 289.35 250000 2.99 

73 1345.20 43.80 65.35 876.00 285.39 250000 3.07 

74 1350.84 44.40 64.38 888.00 281.53 250000 3.15 

75 1356.64 45.00 63.44 900.00 277.78 250000 3.24 
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Table 2.10: Discrete formulation results for SC with Scenario 3 

k E*[SC] n* m* W* D* A S*SC 

1 943.20 25 119 500 500 250000 1.00 

2 933.12 25 119 500 500 250000 1.00 

3 923.25 25 119 500 500 250000 1.00 

4 913.76 25 119 500 500 250000 1.00 

5 904.67 25 119 500 500 250000 1.00 

6 895.89 25 119 500 500 250000 1.00 

7 887.57 25 119 500 500 250000 1.00 

8 879.60 25 119 500 500 250000 1.00 

9 872.02 25 119 500 500 250000 1.00 

10 864.83 25 119 500 500 250000 1.00 

11 857.99 25 119 500 500 250000 1.00 

12 851.57 25 119 500 500 250000 1.00 

13 845.53 25 119 500 500 250000 1.00 

14 839.72 27 110 540 464 250560 1.16 

15 833.96 27 110 540 464 250560 1.16 

16 828.52 27 110 540 464 250560 1.16 

17 823.46 27 110 540 464 250560 1.16 

18 818.75 27 110 540 464 250560 1.16 

19 814.39 27 110 540 464 250560 1.16 

20 810.40 27 110 540 464 250560 1.16 

21 806.74 27 110 540 464 250560 1.16 

22 803.46 27 110 540 464 250560 1.16 

23 800.22 29 102 580 432 250560 1.34 

24 796.99 29 102 580 432 250560 1.34 

25 794.10 29 102 580 432 250560 1.34 

26 791.52 29 102 580 432 250560 1.34 

27 789.29 29 102 580 432 250560 1.34 

28 787.39 29 102 580 432 250560 1.34 

29 785.82 29 102 580 432 250560 1.34 

30 784.58 29 102 580 432 250560 1.34 

31 783.30 31 95 620 404 250480 1.53 

32 781.98 31 95 620 404 250480 1.53 

33 780.98 31 95 620 404 250480 1.53 

34 780.28 31 95 620 404 250480 1.53 

35 779.90 31 95 620 404 250480 1.53 

36 779.81 31 95 620 404 250480 1.53 

37 780.05 31 95 620 404 250480 1.53 

38 780.45 32 92 640 392 250880 1.63 

39 780.87 33 89 660 380 250800 1.74 

40 781.24 33 89 660 380 250800 1.74 

41 781.60 34 86 680 368 250240 1.85 

42 782.16 34 86 680 368 250240 1.85 

43 783.01 34 86 680 368 250240 1.85 

44 784.14 34 86 680 368 250240 1.85 

45 785.55 34 86 680 368 250240 1.85 
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Table 2.10: Discrete formulation results for SC with Scenario 3 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 787.24 34 86 680 368 250240 1.85 

47 789.22 34 86 680 368 250240 1.85 

48 791.06 36 81 720 348 250560 2.07 

49 792.80 36 81 720 348 250560 2.07 

50 794.80 36 81 720 348 250560 2.07 

51 797.06 36 81 720 348 250560 2.07 

52 799.60 36 81 720 348 250560 2.07 

53 802.40 36 81 720 348 250560 2.07 

54 805.47 36 81 720 348 250560 2.07 

55 808.67 37 79 740 340 251600 2.18 

56 811.85 37 79 740 340 251600 2.18 

57 814.99 38 77 760 332 252320 2.29 

58 818.21 39 75 780 324 252720 2.41 

59 821.35 39 75 780 324 252720 2.41 

60 824.52 40 73 800 316 252800 2.53 

61 827.76 40 73 800 316 252800 2.53 

62 830.87 41 71 820 308 252560 2.66 

63 834.06 42 69 840 300 252000 2.80 

64 837.26 42 69 840 300 252000 2.80 

65 840.39 43 67 860 292 251120 2.95 

66 843.68 43 67 860 292 251120 2.95 

67 847.20 43 67 860 292 251120 2.95 

68 850.94 43 67 860 292 251120 2.95 

69 854.90 43 67 860 292 251120 2.95 

70 860.28 46 62 920 272 250240 3.38 

71 863.62 46 62 920 272 250240 3.38 

72 867.16 46 62 920 272 250240 3.38 

73 870.92 46 62 920 272 250240 3.38 

74 874.89 46 62 920 272 250240 3.38 

75 881.55 47 61 940 268 251920 3.51 
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Table 2.11: Discrete formulation results for DC with Scenario 3 

k E*[DC] n* m* W* D* A S*DC 

1 1426.21 27 110 540 464 250560 1.16 

2 1415.99 27 110 540 464 250560 1.16 

3 1405.96 27 110 540 464 250560 1.16 

4 1396.28 27 110 540 464 250560 1.16 

5 1386.96 29 102 580 432 250560 1.34 

6 1377.74 29 102 580 432 250560 1.34 

7 1368.90 29 102 580 432 250560 1.34 

8 1360.38 29 102 580 432 250560 1.34 

9 1352.19 29 102 580 432 250560 1.34 

10 1344.34 29 102 580 432 250560 1.34 

11 1336.79 29 102 580 432 250560 1.34 

12 1329.60 29 102 580 432 250560 1.34 

13 1322.73 29 102 580 432 250560 1.34 

14 1316.19 29 102 580 432 250560 1.34 

15 1309.99 29 102 580 432 250560 1.34 

16 1304.10 29 102 580 432 250560 1.34 

17 1298.57 29 102 580 432 250560 1.34 

18 1293.35 29 102 580 432 250560 1.34 

19 1288.47 29 102 580 432 250560 1.34 

20 1283.92 29 102 580 432 250560 1.34 

21 1279.69 29 102 580 432 250560 1.34 

22 1275.81 29 102 580 432 250560 1.34 

23 1272.25 29 102 580 432 250560 1.34 

24 1268.53 31 95 620 404 250480 1.53 

25 1265.05 31 95 620 404 250480 1.53 

26 1261.87 31 95 620 404 250480 1.53 

27 1259.01 31 95 620 404 250480 1.53 

28 1256.45 31 95 620 404 250480 1.53 

29 1254.21 31 95 620 404 250480 1.53 

30 1252.28 31 95 620 404 250480 1.53 

31 1250.64 31 95 620 404 250480 1.53 

32 1249.33 31 95 620 404 250480 1.53 

33 1248.32 31 95 620 404 250480 1.53 

34 1247.63 31 95 620 404 250480 1.53 

35 1247.18 32 92 640 392 250880 1.63 

36 1246.73 33 89 660 380 250800 1.74 

37 1246.22 33 89 660 380 250800 1.74 

38 1245.71 34 86 680 368 250240 1.85 

39 1245.43 34 86 680 368 250240 1.85 

40 1245.43 34 86 680 368 250240 1.85 

41 1245.71 34 86 680 368 250240 1.85 

42 1246.28 34 86 680 368 250240 1.85 

43 1247.12 34 86 680 368 250240 1.85 

44 1248.25 34 86 680 368 250240 1.85 

45 1249.67 34 86 680 368 250240 1.85 
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Table 2.11: Discrete formulation results for DC with Scenario 3 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1251.36 34 86 680 368 250240 1.85 

47 1253.33 34 86 680 368 250240 1.85 

48 1255.58 36 81 720 348 250560 2.07 

49 1257.31 36 81 720 348 250560 2.07 

50 1259.32 36 81 720 348 250560 2.07 

51 1261.58 36 81 720 348 250560 2.07 

52 1264.11 36 81 720 348 250560 2.07 

53 1266.91 36 81 720 348 250560 2.07 

54 1269.98 36 81 720 348 250560 2.07 

55 1273.32 36 81 720 348 250560 2.07 

56 1276.91 36 81 720 348 250560 2.07 

57 1280.78 36 81 720 348 250560 2.07 

58 1284.91 36 81 720 348 250560 2.07 

59 1288.96 37 79 740 340 251600 2.18 

60 1293.11 38 77 760 332 252320 2.29 

61 1297.15 38 77 760 332 252320 2.29 

62 1301.24 39 75 780 324 252720 2.41 

63 1305.36 39 75 780 324 252720 2.41 

64 1309.39 40 73 800 316 252800 2.53 

65 1313.52 41 71 820 308 252560 2.66 

66 1317.55 41 71 820 308 252560 2.66 

67 1321.63 42 69 840 300 252000 2.80 

68 1325.74 42 69 840 300 252000 2.80 

69 1329.76 43 67 860 292 251120 2.95 

70 1340.51 44 66 880 288 253440 3.06 

71 1344.54 44 66 880 288 253440 3.06 

72 1348.60 45 64 900 280 252000 3.21 

73 1352.71 45 64 900 280 252000 3.21 

74 1356.72 46 62 920 272 250240 3.38 

75 1367.46 47 61 940 268 251920 3.51 
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Table 2.12: Continuous approximation results for SC with Scenario 3 

k E*[SC] n* m* W* D* A S*SC 

1 943.59 25.09 118.55 501.80 498.21 250000 1.01 

2 933.31 25.13 118.34 502.66 497.36 250000 1.01 

3 923.41 25.19 118.08 503.71 496.32 250000 1.01 

4 913.89 25.25 117.78 504.94 495.10 250000 1.02 

5 904.73 25.32 117.43 506.37 493.71 250000 1.03 

6 895.95 25.40 117.04 507.98 492.15 250000 1.03 

7 887.54 25.49 116.60 509.77 490.42 250000 1.04 

8 879.48 25.59 116.13 511.74 488.53 250000 1.05 

9 871.79 25.69 115.62 513.89 486.48 250000 1.06 

10 864.45 25.81 115.07 516.22 484.29 250000 1.07 

11 857.46 25.94 114.49 518.73 481.95 250000 1.08 

12 850.81 26.07 113.87 521.41 479.47 250000 1.09 

13 844.50 26.21 113.22 524.25 476.87 250000 1.10 

14 838.53 26.36 112.54 527.26 474.15 250000 1.11 

15 832.88 26.52 111.83 530.44 471.31 250000 1.13 

16 827.56 26.69 111.09 533.78 468.36 250000 1.14 

17 822.55 26.86 110.33 537.27 465.31 250000 1.15 

18 817.85 27.05 109.54 540.93 462.17 250000 1.17 

19 813.45 27.24 108.74 544.73 458.95 250000 1.19 

20 809.36 27.43 107.91 548.68 455.64 250000 1.20 

21 805.55 27.64 107.07 552.77 452.26 250000 1.22 

22 802.03 27.85 106.21 557.01 448.82 250000 1.24 

23 798.78 28.07 105.33 561.39 445.32 250000 1.26 

24 795.81 28.30 104.44 565.90 441.77 250000 1.28 

25 793.10 28.53 103.54 570.55 438.17 250000 1.30 

26 790.65 28.77 102.63 575.33 434.54 250000 1.32 

27 788.46 29.01 101.72 580.23 430.87 250000 1.35 

28 786.50 29.26 100.79 585.25 427.17 250000 1.37 

29 784.79 29.52 99.86 590.40 423.44 250000 1.39 

30 783.32 29.78 98.93 595.66 419.70 250000 1.42 

31 782.06 30.05 97.99 601.03 415.95 250000 1.44 

32 781.04 30.33 97.05 606.52 412.19 250000 1.47 

33 780.22 30.61 96.11 612.11 408.42 250000 1.50 

34 779.62 30.89 95.16 617.81 404.66 250000 1.53 

35 779.22 31.18 94.22 623.61 400.89 250000 1.56 

36 779.02 31.48 93.28 629.51 397.14 250000 1.59 

37 779.01 31.78 92.35 635.50 393.39 250000 1.62 

38 779.18 32.08 91.41 641.59 389.66 250000 1.65 

39 779.54 32.39 90.48 647.77 385.94 250000 1.68 

40 780.08 32.70 89.56 654.04 382.24 250000 1.71 

41 780.79 33.02 88.64 660.39 378.56 250000 1.74 

42 781.66 33.34 87.73 666.83 374.91 250000 1.78 

43 782.70 33.67 86.82 673.35 371.28 250000 1.81 

44 783.89 34.00 85.92 679.95 367.68 250000 1.85 

45 785.24 34.33 85.03 686.62 364.10 250000 1.89 
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Table 2.12: Continuous approximation results for SC with Scenario 3 (Cont.) 

k E*[SC] n* m* W* D* A S*SC 

46 786.74 34.67 84.14 693.37 360.56 250000 1.92 

47 788.38 35.01 83.26 700.19 357.05 250000 1.96 

48 790.16 35.35 82.39 707.08 353.57 250000 2.00 

49 792.07 35.70 81.53 714.04 350.12 250000 2.04 

50 794.12 36.05 80.68 721.06 346.71 250000 2.08 

51 796.30 36.41 79.83 728.15 343.34 250000 2.12 

52 798.60 36.76 79.00 735.30 340.00 250000 2.16 

53 801.02 37.13 78.17 742.51 336.70 250000 2.21 

54 803.56 37.49 77.36 749.78 333.43 250000 2.25 

55 806.21 37.86 76.55 757.11 330.21 250000 2.29 

56 808.97 38.22 75.75 764.49 327.02 250000 2.34 

57 811.84 38.60 74.97 771.92 323.87 250000 2.38 

58 814.82 38.97 74.19 779.41 320.76 250000 2.43 

59 817.90 39.35 73.42 786.95 317.68 250000 2.48 

60 821.07 39.73 72.66 794.54 314.65 250000 2.53 

61 824.34 40.11 71.91 802.17 311.65 250000 2.57 

62 827.71 40.49 71.17 809.85 308.70 250000 2.62 

63 831.16 40.88 70.44 817.58 305.78 250000 2.67 

64 834.71 41.27 69.73 825.35 302.90 250000 2.72 

65 838.33 41.66 69.01 833.17 300.06 250000 2.78 

66 842.05 42.05 68.31 841.02 297.26 250000 2.83 

67 845.84 42.45 67.62 848.92 294.49 250000 2.88 

68 849.71 42.84 66.94 856.85 291.76 250000 2.94 

69 853.66 43.24 66.27 864.83 289.07 250000 2.99 

70 857.68 43.64 65.61 872.84 286.42 250000 3.05 

71 861.77 44.04 64.95 880.89 283.81 250000 3.10 

72 865.94 44.45 64.31 888.97 281.22 250000 3.16 

73 870.18 45.00 63.44 900.00 277.78 250000 3.24 

74 874.52 45.60 62.53 912.00 274.12 250000 3.33 

75 878.95 46.20 61.64 924.00 270.56 250000 3.42 
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Table 2.13: Continuous approximation results for DC with Scenario 3 

k E*[DC] n* m* W* D* A S*DC 

1 1424.20 27.80 106.40 556.05 449.60 250000 1.24 

2 1413.75 27.83 106.28 556.64 449.12 250000 1.24 

3 1403.65 27.87 106.14 557.35 448.55 250000 1.24 

4 1393.88 27.91 105.97 558.20 447.87 250000 1.25 

5 1384.46 27.96 105.77 559.17 447.09 250000 1.25 

6 1375.38 28.01 105.55 560.27 446.21 250000 1.26 

7 1366.63 28.08 105.31 561.50 445.23 250000 1.26 

8 1358.21 28.14 105.04 562.86 444.16 250000 1.27 

9 1350.13 28.22 104.75 564.34 443.00 250000 1.27 

10 1342.38 28.30 104.44 565.94 441.74 250000 1.28 

11 1334.95 28.38 104.10 567.67 440.40 250000 1.29 

12 1327.85 28.48 103.74 569.52 438.97 250000 1.30 

13 1321.06 28.57 103.36 571.49 437.46 250000 1.31 

14 1314.60 28.68 102.97 573.57 435.86 250000 1.32 

15 1308.44 28.79 102.55 575.78 434.19 250000 1.33 

16 1302.60 28.91 102.11 578.11 432.45 250000 1.34 

17 1297.06 29.03 101.66 580.54 430.63 250000 1.35 

18 1291.83 29.15 101.19 583.10 428.74 250000 1.36 

19 1286.89 29.29 100.70 585.76 426.79 250000 1.37 

20 1282.25 29.43 100.20 588.54 424.78 250000 1.39 

21 1277.90 29.57 99.68 591.42 422.71 250000 1.40 

22 1273.83 29.72 99.14 594.42 420.58 250000 1.41 

23 1270.05 29.88 98.60 597.52 418.40 250000 1.43 

24 1266.54 30.04 98.04 600.72 416.17 250000 1.44 

25 1263.30 30.20 97.47 604.03 413.89 250000 1.46 

26 1260.34 30.37 96.89 607.43 411.57 250000 1.48 

27 1257.63 30.55 96.30 610.94 409.21 250000 1.49 

28 1255.19 30.73 95.70 614.54 406.81 250000 1.51 

29 1253.00 30.91 95.09 618.24 404.37 250000 1.53 

30 1251.07 31.10 94.48 622.03 401.91 250000 1.55 

31 1249.37 31.30 93.85 625.92 399.41 250000 1.57 

32 1247.92 31.49 93.22 629.90 396.89 250000 1.59 

33 1246.71 31.70 92.59 633.96 394.35 250000 1.61 

34 1245.73 31.91 91.95 638.11 391.78 250000 1.63 

35 1244.97 32.12 91.30 642.35 389.20 250000 1.65 

36 1244.44 32.33 90.65 646.67 386.60 250000 1.67 

37 1244.13 32.55 90.00 651.07 383.98 250000 1.70 

38 1244.03 32.78 89.34 655.56 381.35 250000 1.72 

39 1244.15 33.01 88.68 660.12 378.72 250000 1.74 

40 1244.46 33.24 88.02 664.76 376.08 250000 1.77 

41 1244.98 33.47 87.36 669.47 373.43 250000 1.79 

42 1245.70 33.71 86.69 674.26 370.78 250000 1.82 

43 1246.61 33.96 86.03 679.12 368.12 250000 1.84 

44 1247.71 34.20 85.37 684.06 365.47 250000 1.87 

45 1248.99 34.45 84.70 689.06 362.82 250000 1.90 
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Table 2.13: Continuous approximation results for DC with Scenario 3 (Cont.) 

k E*[DC] n* m* W* D* A S*DC 

46 1250.46 34.71 84.04 694.12 360.17 250000 1.93 

47 1252.10 34.96 83.38 699.26 357.52 250000 1.96 

48 1253.91 35.22 82.72 704.46 354.88 250000 1.99 

49 1255.90 35.49 82.06 709.72 352.25 250000 2.01 

50 1258.05 35.75 81.41 715.05 349.63 250000 2.05 

51 1260.36 36.02 80.75 720.43 347.01 250000 2.08 

52 1262.83 36.29 80.10 725.87 344.41 250000 2.11 

53 1265.45 36.57 79.46 731.38 341.82 250000 2.14 

54 1268.23 36.85 78.81 736.94 339.24 250000 2.17 

55 1271.15 37.13 78.17 742.55 336.68 250000 2.21 

56 1274.22 37.41 77.53 748.22 334.13 250000 2.24 

57 1277.43 37.70 76.90 753.94 331.59 250000 2.27 

58 1280.78 37.99 76.27 759.71 329.07 250000 2.31 

59 1284.26 38.28 75.64 765.53 326.57 250000 2.34 

60 1287.88 38.57 75.02 771.40 324.08 250000 2.38 

61 1291.62 38.87 74.40 777.32 321.62 250000 2.42 

62 1295.50 39.16 73.79 783.29 319.17 250000 2.45 

63 1299.49 39.47 73.18 789.31 316.73 250000 2.49 

64 1303.60 39.77 72.58 795.36 314.32 250000 2.53 

65 1307.85 40.20 71.74 804.00 310.95 250000 2.59 

66 1312.30 40.80 70.59 816.00 306.37 250000 2.66 

67 1316.97 41.40 69.48 828.00 301.93 250000 2.74 

68 1321.84 42.00 68.40 840.00 297.62 250000 2.82 

69 1326.92 42.60 67.36 852.00 293.43 250000 2.90 

70 1332.19 43.20 66.34 864.00 289.35 250000 2.99 

71 1337.64 43.80 65.35 876.00 285.39 250000 3.07 

72 1343.27 44.40 64.38 888.00 281.53 250000 3.15 

73 1349.07 45.00 63.44 900.00 277.78 250000 3.24 

74 1355.03 45.60 62.53 912.00 274.12 250000 3.33 

75 1361.14 46.20 61.64 924.00 270.56 250000 3.42 
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Chapter 3  

Contribution 2: A Working Paper on, “Multi-Dock Unit-Load Warehouse Designs with a 

Cross-Aisle” 

Abstract 

Defining shape factor as the width-to-depth ratio of a rectangle-shaped warehouse, we 

determine the shape factor that minimizes expected distance traveled in a unit load warehouse 

with a cross-aisle. We investigate the effect on the optimal shape factor of the number and 

locations of multiple dock doors located along one wall or two adjacent warehouse walls. 

Storage/retrieval aisles, aligned perpendicular to the wall containing k1 dock doors or/and 

parallel to the warehouse wall on which k2 dock doors are located, include a cross-aisle centrally 

located in the storage area. Both single- and dual-command travel are considered. Because of the 

importance of how dock doors are located along one or two adjacent walls, three scenarios for 

the locations of dock doors are investigated: 1) equally-spaced dock doors over an entire 

warehouse wall; 2) a specified distance between adjacent dock doors located symmetrically 

about the mid-point of a warehouse wall; and 3) a specified distance between adjacent dock 

doors, with the leftmost dock door located a specified distance from the leftmost storage/retrieval 

location.  

Keywords: Multiple dock doors, Shape factor, Cross-aisle, Single-Command, Dual-command. 
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3.1. Introduction 

In traditional warehouse layout configurations, a single, centrally located dock door along 

one wall is often assumed. Then, all subsequent calculations or comparisons of configurations 

are made based on this assumption. Pohl et al. (2009) examined single-dock-door versions of 

three traditional layout configurations (called Layouts A, B and C). Recognizing warehouses 

typically have multiple dock doors for receiving and shipping, Tutam and White (in press) 

developed discrete and continuous multi-dock-door formulations of the optimization problem for 

a unit-load warehouse having storage racks aligned perpendicular to the wall containing dock 

doors (Layout A). By inserting a cross aisle in the “middle” of the storage area of Layout A, 

Layout B is obtained (see Figure 3.1.a). By rotating the storage racks and cross aisle in Layout 

B, Layout C is obtained (see Figure 3.1.b). By combining features of Layouts B and C, we obtain 

Layout D (see Figure 3.1.c). 

 

Figure 3.1: Warehouse S/R aisle configurations  

Incorporating the nomenclature of Pohl et al. (2009) and using the procedure developed by 

Tutam and White (in press), we examine multi-dock-door versions of Layouts B, C and D. 
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Therefore, designing three multi-dock-door unit-load warehouses (Layouts B, C and D) to 

minimize expected distance for single- and dual-command travel is the focus of the chapter. 

Layout B is composed of several storage/retrieval (S/R) aisles aligned perpendicular to the 

wall containing dock doors, with a cross-aisle located in the middle of the warehouse (middle-

cross-aisle). A motivation for Layout B is the middle-cross-aisle decreases expected distance 

significantly when dual-command travel occurs, because movement between S/R aisles is more 

efficient when performed in the middle of the warehouse (Pohl et al., 2009).  

The design for Layout C differs from that considered by Pohl et al. (2009) by removing 

storage/retrieval (S/R) locations along the wall containing dock doors. They noted expected dual-

command travel with Layout C is less than that for Layout A when both warehouses have similar 

shapes. We examine the impact on expected distance for both single- and dual-command travel 

and show Layout C has disadvantages in a multi-dock-door unit-load warehouse when compared 

with Layout A.  

A motivation for Layout D is to separate shipping and receiving dock doors by locating them 

on adjacent walls. Unit loads enter the warehouse along one wall and depart along an adjacent 

wall. After unit loads are received, they can be stored and then retrieved for shipping. 

Alternatively, unit loads can enter along one wall and be delivered directly to shipping dock 

doors (cross-docking). 

As in Chapter 2, discrete and continuous formulations of the optimization problem are 

developed for both single- and dual-command travel and three scenarios for dock-door-locations 

are investigated. With single-command travel, either S/R equipment transports a unit load from a 

dock door to an S/R location, places the unit-load in a storage location and returns (empty) to the 

dock door or S/R equipment travels (empty) from a dock door to a retrieval location, retrieves a 
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unit load and transports the unit-load to the dock door. With dual-command travel, S/R 

equipment transports a unit load from a dock door to a storage location, stores the unit-load, 

travels (empty) to a retrieval location, retrieves a unit load and transports the unit-load to the 

dock door. With dual-command travel, the empty travel from a storage location to a retrieval 

location is called travel-between. 

Warehouse shape factor is an important design parameter because the shape of the warehouse 

directly affects the number and length of S/R aisles. Because of the single-dock-door assumption 

in earlier studies, the research literature did not address the impact of the number and location of 

dock doors on the optimal shape factor. To the best of our knowledge, Tutam and White (in 

press) are the first to determine the relation between the optimal shape factor and the number and 

locations of dock doors, albeit their study is limited to Layout A. Therefore, an objective of this 

research is the determination of the optimal shape factor for three common warehouse 

configurations (Layouts B, C and D) involving different scenarios for the number of dock doors, 

the spacing between adjacent dock doors and the locations of dock doors along the warehouse 

wall(s). 

In general, we make the following assumptions when developing expected-distance 

expressions: 

 Travel is limited to the floor of the warehouse. Vertical travel to access S/R locations 

above floor-level is ignored. 

 S/R aisles have the same width and are wide enough for two-way travel, such that S/R 

equipment can access S/R locations on both sides of an aisle. 

 S/R equipment travels at a constant velocity. 

 Storage and retrieval times are ignored because they do not affect distance. 
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Two dimensions of planar travel are of interest. The first dimension, horizontal travel, is 

performed by S/R equipment traveling parallel to the “bottom wall” along which either k1 or k2 

dock doors are located. The second dimension, vertical travel, is performed by S/R equipment 

traveling perpendicular to the “bottom wall”. Because the number and locations of dock doors do 

not affect vertical roundtrip-distances (Tutam and White, in press), we focus on horizontal 

roundtrip-distance for Layouts B and C. 

In this chapter, we employ detailed discrete formulations to obtain values for expected 

distances in the warehouse. Specifically, Layout A formulations by Tutam and White (in press) 

are modified to account for additional travel created by the middle-cross-aisle and a new 

constraint is employed to require an equal number of storage locations on each side of the 

middle-cross-aisle. Because the S/R equipment follows the shortest path between dock-door-

locations and storage locations or between S/R locations, discrete distance expressions for 

Layout C are developed by employing a similar approach. 

As noted in Tutam and White (in press), optimal shape factor calculations require solutions 

of nonlinear, integer programming problems when using discrete formulations. Consequently, 

we develop very accurate continuous approximations in determining the optimal shape factor for 

the various warehouse configurations considered. 

The three scenarios in Tutam and White (in press) are considered: 1) dock doors are 

uniformly dispersed along the entire width of the wall(s), 2) dock doors are centrally dispersed 

with a specified distance between adjacent dock doors, and 3) the leftmost dock door is located 

to the right of the leftmost storage location with a specified offset distance and a fixed distance 

between adjacent dock doors. For all cases, the optimal shape factor depends on the number and 
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locations of dock doors; further, the optimal shape factor can differ significantly for the 

scenarios. 

The remainder of the chapter is organized as follows. First, we review the literature of 

traditional unit-load warehouse layouts for both single- and dual-command travel in Section 3.2. 

Section 3.3 introduces the notation used throughout the chapter. Sections 3.4 and 3.5 include 

discrete and continuous expected-distance formulations for both single and dual-command travel 

in Layouts B and C, respectively. Section 3.6 provides a comparison of traditional warehouse 

designs with an equal number of S/R locations. In Section 3.7, we introduce Layout D by 

combining features of Layouts B and C, and present discrete and continuous expected-distance 

formulations for both single- and dual-command operations. Finally, Section 3.8 summarizes the 

results of the chapter and provides suggestions for future research.  

3.2. Literature Review 

A wide range of topics related to the warehouse design problem are addressed in the research 

literature. Reviewing the literature of warehouse design optimization, Ashayeri and Gelders 

(1985) proposed a two-step warehouse design approach: first analytical models are considered to 

reduce alternative design configurations, then simulation models are used to provide a general 

solution procedure. A review paper by Cormier and Gunn (1992) addresses the literature 

associated with the optimization of warehouse design and operations; they concluded warehouse 

design is a strategic decision and has a significant impact on profitability of facilities. Review 

papers by Rouwenhorst et al. (2000), de Koster et al. (2007), Gu et al. (2007 and 2010) and 

Karásek (2013) provide an overview of research on designing and controlling warehousing 

systems. An extensive identification of warehouse related literature can be found in Roodbergen 

(2007) including books, Ph.D. theses and scientific articles.  
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Francis (1967a) studied the problem of rectangle-shaped warehouse design to minimize total 

cost of traveling between S/R locations and a single-dock-door location. He concluded the 

optimal warehouse shape for the warehouse is twice as wide as it is deep; from this result, the 

optimal warehouse shape factor is widely accepted as 2:1 for Layout A with single-command 

travel. (Bassan et al., 1980; Pohl et al., 2009). 

Thomas and Meller (2014) concluded warehouse shape factor is sensitive to the number of 

dock doors. Removing the assumption of a single dock door and the fixed distance between 

adjacent dock doors, when dock doors are equally likely to be used and random storage is used, 

they proved the optimal one-sided warehouse shape factor approaches 1.5:1 as the number of 

dock doors approaches infinity.  

Tutam and White (in press) provided early formulations of single- and dual-command travel 

for a variety of dock-door locations in a multi-dock-door, unit-load, rectangle-shaped warehouse 

having storage racks aligned perpendicular to the wall containing dock doors (Layout A). They 

developed discrete and continuous formulations. After demonstrating the accuracy of their 

continuous approximations, they used a continuous approximation to determine the optimal 

shape factor for Layout A. Confirming previous research results, they showed the optimal shape 

factor is between 1.5 and 2.0 when the distance between adjacent dock doors is a function of the 

warehouse’s width. However, their results showed the optimal shape factor is greater than 2.0 

when the distance between adjacent dock doors is specified.  

Tutam and White (2016) developed expected-distance formulations for Layouts B, C and D 

with a limited but feasible number of dock doors when the distance between adjacent dock doors 

is specified. Their results indicated the optimal shape factor for Layout B with single-command 

travel can be greater than 2.00. Based on computational results, they asserted the optimal shape 
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factor for Layout C is less than 2.00 without proving their assertion. They concluded the optimal 

shape factor for Layout D ranges from 1.00 to greater than 2.00 depending on the combination of 

single- and dual-command operations. Our research extends their results by considering general 

formulation of discrete and continuous versions of the optimization problem. Including 

theorems, propositions and corollaries for continuous approximations, we compare the 

performance of Layouts A, B and C. Considering a mixture of single-command, dual-command 

and cross-docking travel, we provide the results for expected distance and the optimal shape 

factor for Layout D.  

Bassan et al. (1980) provided cost models for Layouts A and C taking into account the costs 

for material handling, warehouse space and warehouse perimeters. They developed expressions 

for optimal design parameters such as the optimal number of S/R aisles and the optimal number 

of S/R locations in each S/R aisle. Comparing the alignment of S/R aisles (parallel versus 

perpendicular to the bottom wall on which dock doors are located), they concluded operating 

cost is significantly impacted by the alignment of S/R aisles. They also analyzed optimal 

locations of dock doors and concluded all dock doors should be located as near as possible to the 

center of a warehouse wall. Extending their studies and using their expressions for optimal 

design parameters, Rosenblatt and Roll (1984) proposed a twelve-step simulation-based 

procedure to find the optimal warehouse design considering costs associated with the warehouse 

area and storage policies. 

Two early papers by Mayer (1961) and Malmborg and Krishnakumar (1987) considered 

dual-command travel for Layout A. Pohl et al. (2009) were the first to model the expected 

single- and dual-command travel in Layouts A, B and C under the assumption of a centrally 

located dock door. They determined the optimal number of aisles minimizing single- and dual-
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command travel in the three layouts; they also noted expected travel-between distance is not a 

function of a dock door’s location. 

Inserting a middle-cross-aisle in Layout A, expected distance can be significantly decreased 

for multiple picks (Roodbergen and de Koster, 2001). Pohl et al. (2009) confirmed the 

conclusion of Roodbergen and de Koster (2001) and acknowledged establishing a middle-cross-

aisle is only useful for travel between S/R locations. Inserting a middle-cross-aisle (Layout B) 

increases the expected distance for single-command travel, while decreasing the expected 

distance for dual-command travel. They also showed the optimal placement for the middle-cross-

aisle is between the center of the warehouse and the top-cross-aisle of the warehouse. Distinct 

from earlier studies, Vaughan and Petersen (1999) and Roodbergen et al. (2008) examined the 

effects of additional cross-aisles in a warehouse; they concluded having sufficient cross-aisles 

may result in smaller travel distances because of efficient travel routing options. 

3.3. Notation 

The notation in Figure 3.1 is defined as follows: 

a = distance between centerlines of adjacent aisles 

ci = ith constant value 

n = number of S/R aisles 

w = the width of an S/R location 

m  = number of S/R locations along one side and one level of an S/R aisle, which is even 

  (Mod [m, 2] = 0) 

L = length of S/R aisles (L = wm) 

v = half the width of a cross-aisle 

W = width of the warehouse (W = a n in Layout B, W = L + 6v in Layout C,  
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  and W = a n + 0.5a + v in Layout D) 

D = depth of the warehouse (D = L + 6v in Layouts B and D, and D = a n + 0.5a + v 

  in Layout C) 

A = total warehouse area (A = W D)  

S = shape factor (S = W / D) 

kj = number of dock doors located on the wall of side j (j = 1, 2) of the warehouse 

ωj = the width of a dock door located on the wall of side j (j = 1, 2) of the warehouse 

δj = the distance between centerlines of two adjacent dock doors located on the wall of  

  side j (j = 1, 2) of the warehouse (i.e. ith and (i+1)th dock doors) (δj > ωj) 

ϕj  = the distance between the wall of side j (j = 1, 2) and the leftmost storage location 

di  = the distance between the “leftmost storage location” and the centerline of the ith  

  dock door 

ti  = the distance between the back-to-back rack location closest to dock door i and the 

  leftmost storage location (Round [di, a] for Layout B and Round [di, w] for Layout C) 

E [SC] =  expected single-command distance 

E [TB] = expected travel-between distance 

E [DC] = expected dual-command distance (E [DC] = E [SC] + E [TB]) 

E [MC]= expected mixed-command distance  

3.4. Layout B 

Pohl et al. (2009) defined Layout B as a layout design with a middle-cross-aisle of width 2v, 

located halfway between the top-cross-aisle and bottom-cross-aisle. As shown in Figure 3.1.a, 

S/R aisles continue to be perpendicular to the wall containing dock doors. Extending the work of 
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Tutam and White (2016 and in press), in this section, we develop a multi-dock-door formulation 

of expected distance for Layout B. 

3.4.1. Discrete Formulations 

Single-command travel 

Inserting a middle-cross-aisle does not affect horizontal roundtrip-distance. Hence, using 

Equation 2.2 in Chapter 2, the expected horizontal roundtrip-distance (E[SCh]) for k1 dock door 

is  

    
1

1 11

2
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k n

h i

i j

E SC d j a
n k  
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With additional travel because of the middle-cross-aisle, the expected vertical roundtrip-

distance (E[SCv]) becomes  
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Summing Equations 3.1 and 3.2, expected single-command travel for Layout B is 
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Dual-command travel 

Determining the expected dual-command travel, the expected travel-between distance is 

added to the expected single-command travel. The expected horizontal travel-between distance is 

identical to the expected horizontal travel-between distance in Layout A provided by Pohl et al. 

(2009), E [TBh] = a (n2 – 1) / 3n. Although all S/R locations are equally likely to be chosen, there 

exist four possibilities for two  S/R locations: 1) both S/R locations are in the same aisle and on 
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the same side of the middle-cross-aisle, denoted ss; 2) both S/R locations are in the same aisle, 

but on different sides of the middle-cross-aisle, denoted sd; 3) S/R locations are in different 

aisles, but on the same side of the middle-cross-aisle, denoted ds; and 4) S/R locations are in 

different aisles and on different sides of the middle-cross-aisle, denoted dd. 

When both S/R locations are in the same aisle and on the same side of the middle-cross-aisle 

or both S/R locations are in the same aisle but on different sides of the middle-cross-aisle, there 

is no travel in the parallel direction.  

The expected vertical distance between two S/R locations in the same aisle and on the same 

side of the middle-cross-aisle is 
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and the expected vertical distance between two S/R locations in the same aisle but on different 

sides of the middle-cross-aisle is 
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Therefore, if two S/R locations are in the same aisle (sa), the expected vertical travel-

between-distance is 
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The expected vertical distance between two S/R locations in different aisles but on the same 

side of the middle-cross-aisle is 
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and the expected vertical distance between two S/R locations in different aisles and different 

sides of the middle-cross-aisle is 

      
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When two S/R locations are in different aisles (da), the expected vertical distance for travel-

between is  
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The probability of two S/R locations being in the same aisle is 1 / n and the probability of 

two S/R locations being in different aisles is 1–1 / n. Combining Equations (3.6) and (3.9), 

incorporating probabilities and adding the expected horizontal distance for travel-between, the 

expected distance for travel-between is 
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  (3.10) 

To obtain the expected distance for dual-command travel, we add the expected distance 

between two random S/R locations and the expected single-command travel. Thus, combining 

Equations (3.3) and (3.10), the expected-distance formulation for dual-command travel is 

 

   

 
 

   

1

1 11

2 2 2

2
1 2

1 5 4 11
1 2 .

3 12 3

k n

i

i j

E DC d j a D
n k

w m w m a n
v n v

n m m n

 

   

    
       

    



  (3.11) 



94 

Discrete optimization problem 

Adding the constraint, Mod [m, 2] = 0, to Formulation 1 in Chapter 2, we determine the 

number and length of S/R aisles for Layout B for each expected-distance formulation. The 

additional constraint assures there are an even number of S/R locations on each side of the cross 

aisle. As with Chapter 2, Couenne (2006) in AMPL (2013) is used to implement the nonlinear-

integer-programming optimization problem for the same scenarios (see Section 2.4 for 

scenarios). Computational results are provided in Section 3.8. 

As before, using discrete formulations are tedious and time-consuming, as well as requiring 

the use of a specialized software. To obtain useful insights regarding the design of multi-dock-

door, unit-load warehouses having a middle-cross-aisle, we employ continuous approximations.  

3.4.2. Continuous Approximations 

Single-command travel 

Continuous approximations of single-command travel for Layout B are almost identical to 

those developed in Chapter 2 for Layout A. The only difference is vertical travel where D = wm 

+ 6v for Layout B; whereas, D = wm + 4v for Layout A. Hereafter, identifying formulas 

developed by using a continuous approximation, we use an approximate sign (≈) in the 

equations. The expected single-command travel expressions for Layout B, based on the three 

scenarios, are 

Scenario 1:  
 

 
1

1

2 1
6

3 1

k W
E SC wm v

k


  


, (3.12) 

Scenario 2:  
2 2

1 1( 1)
6

2 6

kW
E SC wm v

W

 
    , (3.13) 
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Scenario 3:  
   

 
2 2 2

1 1 1 1 1 1 1

1 1 1

6 6 1 2 3 1
2 1 .
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k k k
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 

    
         (3.14) 

Adding the constant term (2v) does not change the corollaries, propositions and theorems 

included in Chapter 2. However, including a constraint for an even number of S/R locations 

produces different results than obtained in Chapter 2. 

Dual-command travel 

To develop a continuous approximation for travel-between distance, (m2 – 1) / m is replaced 

with m in Equation (3.6) and (5m2 + 4) / m is replaced with 5m in Equation (3.9). The resulting 

approximation for expected travel-between distance is  

  
 

n
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1
][
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Although obtained using a different approach, Equation (3.15) is identical to that obtained by 

Pohl, et al. (2009). 

Combining Equation (3.15) with Equations (3.12), (3.13) and (3.14), the following expected-

distance expressions for dual-command travel are obtained: 

Scenario 1:  
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 

2

1 1

1

3 2 117 1 1

12 2 3 1

n k kn n
E DC D v a

n n n k

       
              

, (3.16) 
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As with single-command travel, the corollaries, propositions and theorems included in 

Chapter 2 apply for Layout B. However, changing the travel-between expression and adding the 

even number of storage spaces constraint will produce different results than obtained in Chapter 

2. 

3.4.3. Optimal Shape Factor 

Single-command travel 

By including the space required for the middle-cross-aisle in the area of the warehouse, the 

optimal shape factor formulas for single-command travel for Layout B are identical to those 

developed in Chapter 2. Therefore, the optimal shape factor for Layout B is obtained using 

Lemma 2.1 and Corollary 2.2 in Chapter 2. Modifying the results in Chapter 2 by incorporating 

changes in notation, we obtain the following: 

Proposition 3.1: With Scenario 1, S*SC ≈ 3(k1+1) / (2k1+1) if S ≥ [(k1 + 1) 2 δ1
 2] / A.  

Otherwise, S*SC ≈ [(k1 + 1) 2 δ1
 2] / A. 

Proposition 3.2: With Scenario 2, S*SC ≈ 2 + [δ1
 2 (k1

 2 – 1)] / 3A if S ≥ k1
 2 δ1

 2 / A. 

Otherwise, S*SC ≈ k1
 2 δ1

 2 / A. 

Proposition 3.3: With Scenario 3, S*SC ≈ 1 + [6ϕ1
 2 + 6ϕ1δ1 (k1 – 1) + (2k1

 2 – 3 k1 + 1) δ1
 2] / 3A 

if S ≥ [ϕ1 + (k1 – 0.5) δ1]
 2 / A. Otherwise, S*SC ≈ [ϕ1 + (k – 0.5) δ1]

 2 / A. 

Dual-command travel 

Because the travel-between expression for Layout B is different than that for Layout A, 

Lemma 2.2 and Corollary 2.4 are used to obtain the optimal shape factor, resulting in the 

following: 
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Proposition 3.4: With Scenario 1, S*DC ≈ 4c3 (cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3}) 2 / (3A c1) if  

S ≥ [(k1 + 1) 2 δ1
 2] / A where c1 = 4 (2 + 3k1), c3 = (1 + k1) (17A – 4a 2 – 8a v) and  

c4 = – (1 + k1) a A. Otherwise, S*DC ≈ [(k1 + 1) 2 δ 2] / A. 

Proposition 3.5: With Scenario 2, S*DC ≈ 4c3 (cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3})2 / (3A c1) if 

S ≥ k1
 2 δ1

 2 / A where c1 = 10, c3 = 17A – 4a 2 – 8a v + 2δ1
 2 (k1

 2 – 1) and c4 = – a A. Otherwise,  

S*DC ≈ k1
 2 δ1

 2 / A. 

Proposition 3.6: With Scenario 3, S*DC ≈ 4c3 (cos {arccos [c4 c1
 1/2 (3 / c3)

 3/2] / 3})2 / (3A c1) if 

S ≥ [ϕ1 + (k1 – 0.5) δ1]
 2 / A where c1 = 16, c3 = 17A – 4a 2 – 8a v + 24ϕ1

 2 + 24ϕ1 δ1 (k1 – 1)  

+ 4 (2k1
 2 – 3k1 + 1) δ1

 2 and c4 = – a A. Otherwise, S*DC ≈ [ϕ1 + (k1 – 0.5) δ1]
 2 / A. 

3.4.4. Computational Results 

As with Chapter 2, this section provides results for both discrete formulations and continuous 

approximations by using the following specified values for the parameters w = 4 ft, v = 6 ft,  

a = 20 ft, δ1 = 12 ft, ϕ1 = 30 ft, A = 250,000 ft2, k1 ranging from 1 to 60 for Scenario 1 and from 1 

to 75 for Scenarios 2 and 3. Adjusting space and width constraints for Layout B, Formulations 1 

and 2 are solved by using Couenne (2006) in AMPL (2013). Mathematica (2015) is used to 

produce figures based on the continuous approximation results.  

As seen in Figure 3.2, with Scenario 1, increasing the number of dock doors decreases the 

optimal shape factor for both single- and dual-command travel if the width constraint is satisfied  

(δ1 ≥ 12 ft). Otherwise, increasing the number of dock door increases the width of the warehouse 

and increases the optimal shape factor. The optimal shape factor for travel-between is 1.22 when 

the width constraint is not violated. As expected, the optimal shape factor for single-command 

travel is greater than the corresponding optimal shape factor for dual-command travel. When the 

width constraint is satisfied, the optimal shape factor for single-command travel is greater than 
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the corresponding optimal shape factor for both travel-between and dual-command travel. 

Similarly, the optimal shape factor for dual-command travel is greater than the optimal shape 

factor for travel-between. Therefore, for the same number of dock doors, the width constraint 

comes into play at k1 = 51 for single-command travel, at k1 = 49 for dual-command travel and at 

k1 = 46 for travel-between.  

 

Figure 3.2: Optimal shape factor for k1 dock doors with Scenario 1 

As shown in Figure 3.3, with Scenario 2, increasing the number of dock doors increases the 

optimal shape factor for any value of k1. The optimal shape factor for single-command travel is 

greater than 2.0. As before for Scenario 1, the optimal shape factor for single-command travel is 

greater than the corresponding optimal shape factor for dual-command travel and travel-between 

with any number of dock doors. Therefore, the layout configuration for single-command travel is 

wider than the corresponding layout configurations for travel-between and dual-command travel. 

Notice the optimal shape factor patterns change at k1 = 73 for single-command travel, at k1 = 61 

for dual-command travel and at k1 = 47 for travel-between. 
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From Figure 3.4, with Scenario 3, increasing the number of dock doors increases the optimal 

shape factor. The optimal shape factor for both single- and dual-command travel is greater than 

1.0. The optimal shape factor for single-command travel can be less than or greater than the 

corresponding optimal shape factor for dual-command travel, depending on the number of dock 

doors. When dock doors are clustered on the left side of the warehouse (for a small number of 

dock doors), the optimal shape factor is slightly greater than 1.0. 

 

Figure 3.3: Optimal shape factor for k1 dock doors with Scenario 2 

Because the optimal shape factor for travel-between is 1.22 regardless the number of dock 

doors, the optimal shape factor for dual-command travel is greater than the corresponding 

optimal shape factor for single-command travel. Increasing the number of dock doors increases 

the optimal shape factor for single-command travel, but it does not affect the optimal shape 

factor for travel-between. Therefore, the optimal shape factor for dual-command travel is 

affected less by the number of dock doors. For a large number of dock doors, the warehouse with 

single-command travel is wider than the warehouse with dual-command travel. Because the 

width constraint comes into play for a large number of dock doors, the optimal shape factor 
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patterns change at k1 = 73 for single-command travel, at k1 = 53 for dual-command travel and at 

k1 = 45 for travel-between. 

 

Figure 3.4: Optimal shape factor for k1 dock doors with Scenario 3 

3.5. Layout C 

Layout C is similar to Layout B, except the S/R aisles are parallel to the wall containing the 

dock doors. As noted, our Layout C differs from Layout C considered by Pohl et al. (2009); we 

include an additional S/R aisle along the wall containing the dock doors. As shown in Figure 3.1, 

the additional S/R aisle has storage positions on only one side of the aisle. In determining 

expected distance, the S/R equipment follows the shortest path between dock-door locations and 

storage locations. As with travel-between, using a continuous formulation is not realistic; it 

under-estimates the exact distance traveled, because S/R locations can be obstacles for vertical 

travel to the wall containing dock doors.  

Because dock doors are located symmetrically about the middle-cross-aisle, in developing 

formulas for expected distances for Scenarios 1 and 2, we only consider dock doors located on 



101 

the left half of the warehouse. Therefore, with Scenarios 1 and 2, unlike Layouts A and B, we 

must consider whether the number of dock doors is odd or even for Layout C. In the case of 

Scenario 3, we divide the warehouse wall with the dock doors into four regions and determine 

the number of dock doors located in each region. Then, we calculate total distance for dock doors 

located in each region. Summing total distances for each region and dividing by the number of 

dock doors, we obtain expected distance for Scenario 3. Calculation details are provided in the 

following sections. 

3.5.1. Discrete Formulations 

Single-command travel 

In developing discrete expressions, we apply an approach similar to that used in Chapter 2 

for Layout A. An initial point (the leftmost storage location) is used to measure the horizontal 

distance between dock doors and storage locations. Based on the initial point, we measure the 

distance between the centerline of a dock door and the centerline of the storage location nearest 

to the dock door. Hereafter, locations of a dock door and a storage position refer to the locations 

of the centerline of a dock door and a storage position. As defined, di and ti are used to obtain a 

distance, depending on the dock-door location. Dock doors and storage locations are numbered 

sequentially from left to the right. To round numbers to the nearest even integer value when 

using Couenne (2006) in AMPL (2013), we add a constraint and introduce a new variable.  

There are four cases for dock-door locations, as shown in Figure 3.5: 1) the nearest back-to-

back storage location is to the left of the dock door, 2) a back-to-back storage location coincides 

with a dock-door location, 3) the nearest back-to-back storage location is to the right of the dock-

door location and 4) a storage location coincides with a dock-door location. 
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Figure 3.5: Cases for dock-door locations 

Proposition 3.1: For a one-sided S/R aisle, there are ti / w S/R locations to the left of dock door 

i, m / 2 – ti / w S/R locations to the right of dock door i on the left side of the warehouse and m / 

2 S/R locations to the right of dock door i on the right side of the warehouse. The distance 

between dock door i and S/R aisle j located to the left of dock door i equals di – j w + w / 2 for j = 

1, 2, …, ti / w (see storage locations 1 thru 5 in Figure 3.6). The distance between dock door i 

and S/R aisle j to the right of dock door i on the left of the warehouse equals j w – di – w / 2 for j 

= ti / w + 1, ti / w + 2,…, m / 2 (see storage locations 6 thru 8 in Figure 3.6). The distance 

between dock door i and S/R aisle j to the right of dock door i on the right of the warehouse 

equals j w – di – w / 2 + 2v for j = m / 2 +1, m / 2 +2, …, m (see storage locations 9 thru 16 in 

Figure 3.6). For two-sided S/R aisles, first, the shortest path between dock door i and storage 

location j is determined. There are m / 2 – ti / w S/R locations visited by traveling to the left of 

dock door i,  ti / w S/R locations visited by traveling to the right of dock door i on the left side of 

the warehouse, and m / 2 S/R locations visited by traveling to the right of dock door i on the right 

side of the warehouse. The shortest-path distance between dock door i and S/R aisle j visited by 

traveling to the left of dock door i equals di + j w – w / 2 + 2v for j = 1, 2, …, m /2 – ti / w. (see 

storage locations 1 thru 3 in Figure 3.6). The shortest-path distance between dock door i and S/R 

aisle j visited by traveling to the right of dock door i on the left of the warehouse equals m w – di 

– j w+ w / 2 + 2v for j = m / 2 – ti / w + 1, m / 2 – ti / w + 2, …, m / 2 (see storage locations 4 thru 
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8 in Figure 3.6). The shortest-path distance between dock door i and S/R aisle j visited by 

traveling to the right of dock door i on the right of the warehouse equals j w – di – w / 2 + 2v for  

j = m / 2 + 1, m / 2 + 2,…, m (see storage locations 9 thru 16 in Figure 3.6). 

 

Figure 3.6: Storage locations 

Proposition 3.1 applies for all cases (Proof of Proposition 3.1 is provided in Appendix). 

Scenarios 1 and 2 

Probabilities of traveling to the one- and two-sided aisles are 1 / (2n + 1) and 2 / (2n + 1), 

respectively. Summing the expected distance to the left and right (both sides) of dock door i and 

doubling the results, the expected distance for dock door i is obtained. Summing the results for 

dock doors located on the left side, and dividing by the number of dock doors located on the left 

side, the expected horizontal roundtrip-distance with an even number of dock doors is 
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Equation (3.19) reduces to 
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Because increasing the number of dock doors does not affect expected vertical roundtrip-

distance, the expected vertical roundtrip-distance is  
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Summing Equations (3.20) and (3.21), the expected roundtrip-distance for single-command 

travel for Layout C with an even number of dock doors is 
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In case of an odd number of dock doors, the middle dock door is located on the centerline of 

the warehouse for both Scenarios 1 and 2. Adjusting Equation (3.22) for (k2 – 1) dock doors, 

adding the distance for centrally located dock door (w m / 2 + 2v) and dividing the resulting 

equation by the total number of dock doors, the expected roundtrip-distance for single-command 

travel for Layout C with an odd number of dock doors is 
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Notice di = i (w m + 2v) / (k2 + 1) and di = [w m + 2v – δ2 (k2 + 1)] / 2 + δ2 (i – 1) for 

Scenarios 1 and 2, respectively. 

Scenario 3 

Because dock doors are no longer located symmetrically about the middle-cross-aisle for 

Scenario 3, first, the number and locations of dock doors must be determined. Depending on the 

locations of dock doors, four different expressions are developed using Proposition 3.1. 

Proposition 3.2: If a dock door is located in Region 1 (R1, see docks 1, 2 and 3 in Figure 3.7), 

then the expected horizontal roundtrip-distance for dock door i is w m + 2v (4n +1) / (2n + 1) – 

2di / (2n + 1) + {ti (4n – 2) [ti – 2di]} / [w m (2n + 1)]. When a dock door is located in Region 2 

(R1, see dock door 4 in Figure 3.7), the expected horizontal-roundtrip distance for dock door i is 

{4v (4n +1) + w m (6n + 1) – 8n di} / {2 (2n + 1)}. When a dock door is located in Region 3 (R3, 

see dock door 5 in Figure 3.7), the expected horizontal roundtrip-distance for dock door i is {4v – 

w m (2n – 1) + 8n di} / {2 (2n + 1)}. When a dock door is located in Region 4 (R4, see dock door 

6 in Figure 3.7), the expected horizontal roundtrip-distance for dock door i is {(2n – 1) [8v (di – 

v) + 2ti (ti – 2di) – w2 m2]} / [w m (2n + 1)] + [2di (4n – 1) – 2v (4n – 3)] / (2n + 1). Regardless of 

the location of dock door i the expected vertical roundtrip-distance is [2n a (n + 1)] / (2n + 1)  

+ 2v. 
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Figure 3.7: Locations of dock doors 

Using Proposition 3.2 and determining the locations of dock doors (di = ϕ2 + δ2 (i – 1)), the 

following conditional expression is developed 

If 
2kd ≤ w m / 2 
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If w m / 2 + v ˂ 
2kd ≤ w m / 2 + 2v 
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If w m / 2 + 2v ˂ 
2kd  
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Travel-between 

As with Layout B, we consider horizontal and vertical travel separately in developing travel-

between formulas for Layout C. Because there are two types of S/R aisles (one- and two-sided 

aisles), four travel types can occur: 1) traveling between two locations in the one-sided S/R aisle, 

denoted oo; 2) traveling between a location in the one-sided S/R aisle to another location in a 

two-sided S/R aisle, denoted ot; 3) traveling between two locations in two-sided S/R aisles on 

the same side of the middle-cross-aisle, denoted ts; and 4) traveling between two locations in 

two-sided S/R aisles on different sides of the middle-cross-aisle, denoted td. Because there exist 

n two-sided S/R aisles and a single one-sided S/R aisle, there are (2n + 1) 2 ways to travel 

between S/R aisles. 

The probability of traveling between two locations in the one-sided aisle is 1 / (2n + 1) 2. 

From Equation (3.6), the expected horizontal distance for oo is   
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The probability of traveling between a location in a one-sided S/R aisle and another location 

in a two-sided S/R aisle is 4n / (2n + 1) 2. From Equation (3.9), the expected horizontal distance 

for ot is  

  
 

 2

2

5 44
2 .

122 1
ot

w mn
E TB v

mn

 
  

   

 (3.29) 

The probability of traveling between two locations in two-sided S/R aisles on the same side 

of the middle-cross-aisle is 4n / (2n + 1) 2. Therefore, from Equation (3.6), the expected 

horizontal distance for ts is 
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From Equation (3.9), with the probability of traveling between two locations in two-sided 

S/R aisles and on the different side of the middle-cross-aisle, [4n (n – 1)] / (2n + 1) 2, the 

expected horizontal distance for td is 
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Summing Equations (3.28-3.31) and reducing the resulting equation, the expected horizontal 

travel-between distance (E[TBh]) for Layout C is 
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When two locations are on the same S/R aisle, there is no vertical travel. The expected 

vertical travel between a location in the one-sided S/R aisle to another location in two-sided S/R 
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aisles is a (n + 1) / 2 and the expected vertical travel between two locations in two-sided S/R 

aisles and on different sides of the middle-cross-aisle is a (n + 1) / 3.Therefore, the expected 

vertical travel-between distance for Layout C is 
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Combining Equations (3.32) and (3.33) and reducing the resulting equation, the expected 

travel-between distance for Layout C is 
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Dual-command travel 

The expected distance for dual-command travel is the sum of expected distances for single-

command travel and travel-between. Because expected-distance expressions for single-command 

travel and travel-between are provided in Section 3.5.2, the interested reader can refer to those 

sections to obtain the formulas for dual-command travel. Specifically, obtaining dual-command 

expressions for Scenarios 1 and 2, Equations (3.22), (3.23) and (3.32) are modified by including 

the corresponding equation for the parameter di. Because there are four equations (3.24-3.27), for 

Scenario 3, Equation (3.32) is added to the appropriate equation, depending on the locations of 

dock doors. 

3.5.2. Continuous Approximations 

In this section, expected-distance formulations are developed for Layout C using continuous 

approximations. Specifically, the number of S/R aisles is discrete; whereas, the number of S/R 

locations in each aisle is assumed to be continuous. Because the expected horizontal roundtrip-
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distance from a dock door to S/R locations in the one-sided aisle includes small numbers 

compared to the numbers for two-sided aisles, we ignore S/R locations in the one-sided aisle. As 

with Layout B, an approximate sign (≈) is used for continuous formulations.  

Single-command travel 

For simplicity, the expected horizontal roundtrip-distances for different cases are 

summarized in Table 3.1, as well as the probabilities of traveling to corresponding direction. 

Those summarized expressions are used in the following two subsections in order to obtain 

expected-distance expressions. 

Scenarios 1 and 2 

Because we only consider dock doors located on the left half of the warehouse for Scenarios 

1 and 2, equations for R1 in Table 3.1 are used to develop expected horizontal roundtrip 

expressions. 

Table 3.1: Horizontal roundtrip-distances and probabilities from dock door i to a two-sided aisle 

Dock-door 

Location 

Aisle 

Type 

Travel 

Direction 

Warehouse 

Side 
Distance Probability 

R1 

Two-sided Left Left (L + 2di + 8v) / 2 (L – 2di) / 2L 

Two-sided Right Left L – di + 4v  di / L 

Two-sided Right Right (3L – 4di + 8v) / 2 1 / 2 

R2 Two-sided Right Left (Right) (3L – 4di + 8v) / 2 1 / 2 (1 / 2) 

R3 Two-sided Left Left (Right) (4di – L) / 2 1 / 2 (1 / 2) 

R4 

Two-sided Left Left (4di – L) / 2 1 / 2 

Two-sided Left Right di + 2v (L – di + 2v) / L 

Two-sided Right Right (3L – 2di + 12v) / 2 (2di – L – 4v) / 2L 
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Multiplying distance by the probability and summing the results, the expected distance for 

dock door i is obtained. 

Summing the results for dock doors located on the left side, dividing by the number of dock 

doors, and adding vertical distance, the expected single-command travel with an even number of 

dock doors is 
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As with the discrete formulation, the middle dock door is located on the centerline of the 

warehouse for both Scenarios 1 and 2 if the number of dock doors is odd. Adjusting Equation 

(3.35) for (k2 – 1) dock doors, adding the distance for the middle dock door (L / 2 + 2v) and 

dividing by the total number of dock doors, the expected single-command travel with an odd 

number of dock doors is 
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Notice di = i (L + 2v) / (k2 + 1) and di = [L + 2v – δ2 (k2 + 1)] / 2 + δ2 (i – 1) for Scenarios 1 

and 2, respectively. 

Scenario 3 

The number and locations of dock doors are calculated, based on the first dock door being 

located a given distance from the leftmost storage location and with a fixed distance between 

adjacent dock doors. Using Table 3.1 and determining the locations of dock doors  

(di = ϕ2 + δ2 (i – 1)), the following conditional expressions are developed 
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If 
2kd ≤ L / 2 
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If L / 2 ˂ 
2kd ≤ L / 2 + v 
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If L / 2 + v ˂ 
2kd ≤ L / 2 + 2v 
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If L / 2 + 2v ˂ 
2kd  
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Travel-between 

Because the one-sided aisle is ignored in approximating horizontal distance, the expected 

horizontal travel-between distance is similar to Equation (3.15) for Layout B. Using Equation 

(3.33) to calculate the expected vertical travel-between distance, the expected travel-between 

distance for Layout C with the continuous approximation is 
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As with the discrete formulations, the interested reader can obtain dual-command expressions 

for Scenarios 1 and 2 by summing Equation (3.35) (3.36) and (3.41) for an even (odd) number of 

dock doors. A conditional expression for Scenario 3 with dual-command travel can be obtained 

by summing Equation (3.41) and the appropriate equation (Equations 3.37-3.40), depending on 

the locations of dock doors. 

Although expected single- or dual-command travel can be transformed into a convenient 

closed-from expression, deriving the optimal shape factor in closed-form is not analytically 

tractable because closed-form expressions for expected distance with respect to the width (depth) 

of the warehouse and the given area are quite complicated. Therefore, optimal shape factor 

values are obtained by employing optimization software to solve the optimization problems.  

3.5.3. Computational Results 

Our computational results are based on parameter values employed previously. In addition, 

the following parameter values are used: δ2 = 12 ft, ϕ2 = 30 ft, k2 varying from 1 – 60 for 

Scenario 1 and from 1 – 75 for Scenarios 2 and 3. As with Layout B, optimum solutions are 

obtained by using Couenne (2006) in AMPL (2013). Notice the space constraint for Layout C is 

(a n+0.5a + v) (w m + 6v) ≥ A; also, the width constraints for Scenarios 1-3 are w m + 2v ≥ (k2 + 

1) δ2, w m + 2v ≥ k2 δ2 and w m + 2v ≥ ϕ2 + (k2 – 0.5) δ2. Optimal shape factor results depicted in 

figures are based on continuous approximation results. 

Figure 3.8 compares the results of Formulations 1 and 2 for single- and dual-command travel 

with Scenario 1. Continuous approximation underestimates the expected distance (except k2 = 56 

and k2 = 59 for single-command travel and k2 = 56 for dual-command travel). When the width 
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constraint is satisfied, the average percentage errors of continuous approximations are 0.34% and 

0.69% for single- and dual-command travel, respectively. Because of integer values for the 

variables in discrete formulations, the average percentage errors increase when the width 

constraint is violated (0.43% and 0.92% for single- and dual-command, respectively). 

             

Figure 3.8: Comparison of expected-distance results of Formulations 1 and 2 with Scenario 1 

Having two dock doors increases expected distance 24% and 14% for single- and dual 

command, respectively. This occurs because dock doors are located farther apart. Because the 

location of the middle dock door coincides with the centerline of the warehouse, having an odd 

number of dock doors dampens the expected distance for small values of k2. When the number of 

dock doors is large, increasing the number of dock doors increases expected distance for single- 

and dual-command travel. 

As seen in Figure 3.9, the optimal shape factor for travel-between is 0.81 when the width 

constraint is not violated. For any given number of dock doors, the optimal shape factor for dual-

command operations is less than the corresponding optimal shape factor for single-command 

travel. For a small number of dock doors, the optimal shape factor fluctuates depending on the 

number of dock doors being either odd or even. For a large number of dock doors, increasing the 

number of dock doors slightly decreases the optimal shape factor for both single- and dual-

command travel when the width constraint is satisfied. Otherwise, as stated previously, the width 
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constraint governs the optimal shape factor; hence, increasing the number of dock doors 

increases the optimal shape factor.  

 

Figure 3.9: Optimal shape factor for k2 dock doors with Scenario 1 

Figure 3.10 compares the optimal shape factor values for discrete formulations and 

continuous approximations. Although, the same insights can be drawn using either discrete 

formulations or continuous approximations, optimal shape factor values are noticeably different 

because of the constraints for the required area and an even number of storage locations. 

             

Figure 3.10: Comparison of optimal shape factor results of Formulations 1 and 2 
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From Figure 3.11, increasing the number of dock doors increases the expected distance for 

single- and dual-command travel when the distance between adjacent dock doors is specified. 

Because the one-sided aisle is ignored, a continuous approximation overestimates or 

underestimates the expected distance, depending on the number of dock doors. If the width 

constraint is satisfied, the average percentage errors for single- and dual-command travel are 

0.17% and 0.07%, respectively. Otherwise, the percentage error is 0.23% for both single- and 

dual-command travel. 

             

Figure 3.11: Comparison of expected-distance results of Formulations 1 and 2 with Scenario 2 

As illustrated in Figure 3.12, increasing the number of dock doors decreases the optimal 

shape factor when the width constraint is satisfied; otherwise, the width constraint forces the 

warehouse to be wider. Regardless of the number of dock doors, as with Scenario 1, the optimal 

shape factor for travel between is 0.81. The warehouse optimized for single-command travel is 

wider than the warehouse optimized for dual-command travel.  

Comparisons of the optimal shape factors for single- and dual-command travel are provided 

in Figure 3.13. Although the constraints for the required area and an even number of S/R 

locations results in different optimal shape factor values for discrete formulations, the same 

insights can be drawn using continuous approximations. From the computational results for 

Scenario 3, the percentage errors for single-and dual command travel are 0.12% and 0.19%, 
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respectively, when the width constraint is satisfied. If the width constraint is violated, the 

average percentage errors are 0.17% and 0.25% for single- and dual-command travel, 

respectively. Recalling Figure 3.7, when dock doors are located in Region 1, increasing the 

number of dock doors decreases expected distance for both single- and dual-command travel.  

 

Figure 3.12: Optimal shape factor for k2 dock doors with Scenario 2 

Locating dock doors in Regions 2-4 dampens the decrement on expected distance (after 17-

26 and 17-28 dock doors for single- and dual command travel, respectively). After locating dock 

doors in Region 4 (6 and 8 dock doors for single- and dual-command travel, respectively), 

increasing the number of dock doors increases expected single- and dual-command distance. 
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Figure 3.13: Comparison of optimal shape factor results of Formulations 1 and 2 

As illustrated in Figure 3.14, expected distance with discrete formulation fluctuates when the 

width constraint is violated because of the constraints for space and an even number of S/R 

locations. A continuous approximation appears to provide reliable results for both single- and 

dual-command travel. 

             

Figure 3.14: Comparison of expected-distance results of Formulations 1 and 2 with Scenario 3 

From Figure 3.15, increasing the number of dock doors decreases the optimal shape factor 

when dock doors are located in Region 1 (after 17 dock doors for both single- and dual-

command travel). When dock doors are located in Regions 2-4, increasing the number of dock 

doors increases the optimal shape factor for single- and dual command travel. 

Notice the optimal shape factor fluctuates after 17 dock doors in Figure 3.15 because 

increasing the number of dock doors changes the number of dock doors located in each region. 
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The optimized warehouse with single-command travel is wider than the optimized warehouse 

with dual-command travel because travel-between dampens the optimal shape factor for dual-

command travel. 

 

Figure 3.15: Optimal shape factor for k2 dock doors with Scenario 3 

In contrast to Scenarios 1 and 2, a continuous approximation appears to provide reliable 

values of the optimal shape factor for single- and dual-command travel. From Figure 3.16, the 

same insights can be drawn using either discrete formulations or continuous approximations. 

 

             

Figure 3.16: Comparison of optimal shape factor results of Formulations 1 and 2 
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3.6. Comparison of Traditional Warehouses 

In this section, we compare traditional layout configurations by employing continuous 

approximations of expected distance. We continue to use the same parameter values as in 

previous sections for Layouts B and C. Retaining a consistent comparison, we used formulations 

given in Chapter 2 to provide results for Layout A. Comparing configurations with the same 

number of S/R locations; we remove the space constraint from the optimization models and 

employ a constraint on the number of S/R locations. The S/R location constraint assures each 

configuration has the same number of S/R locations; it is 2m n = 6,000 for Layouts A and B and 

m (2n + 0.5) = 6,000 for Layout C (A ≥ 250,000 ft2). 

3.6.1. Scenario 1 

For single-command travel, Layout A outperforms Layouts B and C as illustrated in Figure 

3.17 (except for the single-dock-door case for Layout C). The expected distance for Layouts A 

and C are approximately the same when a single dock door is located on the centerline of the 

warehouse. Because of middle-cross aisle travel for S/R locations above the middle-cross aisle, 

Layout B has the greatest expected-distance value. In contrast to single-command travel, Layout 

B always outperforms Layouts A and C for dual-command travel. Although Layout C performs 

well for a single dock door, its expected distance is greater than those for Layouts A and B for 

both single- and dual-command travel. When the width constraint governs the shape of the 

warehouse, the expected dual-command distance for Layouts B and C increase dramatically as 

the number of dock doors increases because of travel-between distance. The expected distance 

for all configurations increases with an increasing number of dock doors. 
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Figure 3.17: Expected-distance comparison of traditional configurations with Scenario 1 

When a dock door is centrally located, the optimally designed Layout C is wider than the 

optimally designed Layouts A and B. Notice this result is different from that obtained by Pohl et 

al. (2009) because the S/R locations along the wall containing k2 dock doors are removed. From 

Figure 3.18, an optimally configured Layout A is always wider and shorter than an optimally 

configured Layout B for both single-and dual-command travel. Increasing the number of dock 

doors decreases optimal shape factor values for Layouts A and B when the width constraint is 

satisfied.  

          

Figure 3.18: Optimal shape factor comparison of traditional configurations with Scenario 1 

3.6.2. Scenario 2 

When dock doors are located with a specified distance between adjacent dock doors, 

increasing the number of dock doors increases dramatically expected distance for Layout C (see 

Figure 3.19). Except for the single-dock-door case, Layout A outperforms Layouts B and C with 
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single-command travel. Layout B always performs better than Layouts A and C for dual-

command travel. With a small number of dock doors, Layout C dominates Layout A; whereas, 

Layout A outperforms Layout C when the number of dock doors is large or when the width 

constraint is violated. As with Scenario 1, increasing the number of dock doors always increases 

expected distance for all configurations. 

             

Figure 3.19: Expected-distance comparison of traditional configurations with Scenario 2 

As illustrated in Figure 3.20, increasing the number of dock doors increases the optimal 

shape factor for Layouts A and B; whereas, the optimal shape factor decreases with an increasing 

number of dock doors for Layout C when the width constraint is satisfied. However, an 

optimally configured Layout A is wider and smaller than optimally configured Layouts B and C 

for dual-command travel. 

             

Figure 3.20: Optimal shape factor comparison of traditional configurations with Scenario 2 
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3.6.3. Scenario 3 

In contrast to Scenarios 1 and 2, increasing the number of dock doors decreases the expected 

distance for a small number of dock doors (see Figure 3.21). Layout A always outperforms 

Layouts B and C for single-command travel; whereas, Layout B always performs better than 

Layouts A and C for dual-command travel. For dual-command travel, the performances of 

Layouts A and C are the same when dock doors are located close to the centerline of the 

warehouse. 

             

Figure 3.21: Expected-distance comparison of traditional configurations with Scenario 3 

Increasing the number of dock doors always increases the optimal shape factor for Layouts A 

and B; whereas, the optimal shape factor may increase or decrease for Layout C (see Figure 

3.22). Having a large number of dock doors results in the optimal shape factor fluctuating for 

Layout C because of dock doors being located on different sides of the warehouse. 

             

Figure 3.22: Optimal shape factor comparison of traditional configurations with Scenario 3 
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3.7. Layout D 

Locating shipping and receiving dock doors on adjacent walls, we allow unit loads to be 

received from k1 dock doors located along one wall and to be shipped from k2 dock doors located 

on an adjacent wall. We consider a mixture of single-command, dual-command and cross-

docking travel. We let pi denote the probability of travel type i occurring, where i = 1 for single-

command and i = 2 for dual-command. Therefore, the probability of cross-docking travel is 1 – 

p1 – p2. 

The aisle configuration of Layout D is identical to that of Layout C. However, Layout D 

differs from Layout B by including an additional one-sided aisle and a half cross-aisle to locate 

k2 dock doors. Therefore, in developing formulas for expected distance, we adjust equations in 

Section 3.4 according to the new configuration, we use equations given in Section 3.5 by 

changing the parameter di, and we develop formulations for cross-docking travel. 

We assume the number of storage operations is equal to the number of retrieval operations 

because, in the long run, the number of unit loads received equals the number of unit loads 

shipped. In performing single-command operations, two types of moves occur: transporting a 

unit-load from a receiving dock door to a storage location (E [SCB]) and transporting a unit-load 

from a retrieval location to a shipping dock door (E [SCC]). Based on the aforementioned 

assumption, the expected single-command for a unit-load is (E [SCB] + E [SCC]) / 2. In dual-

command operations, S/R equipment transports a unit-load from receiving to storage (E [SCB] / 

2), travels empty from the storage location to the retrieval location (E [TBC]), transports a unit-

load to shipping (E [SCC] / 2), and travels empty from shipping to receiving (E [CD] / 2). Cross-

docking operations include two moves: transporting a unit-load from receiving to shipping and 
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traveling empty from shipping to receiving (E [CD]). Therefore, the overall expected distance 

traveled for a unit-load is  
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Reducing Equation (3.42), we obtain 
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3.7.1. Discrete Formulations 

In the new configuration, there are n two-sided aisles and a single one-sided aisle. Because 

inserting a one-sided aisle does not affect vertical roundtrip-distance for Layout B, we only 

adjust horizontal roundtrip-distance. The distance between dock door i and the one-sided aisle 

equals  

n a + a / 2 – di. Notice the probabilities of traveling to a one-sided and a two-sided aisle are  

1 / (2n + 1) and 2 / (2n + 1), respectively. Adjusting Equation (3.1) for the new aisle 

configuration, the expected horizontal roundtrip-distance (E[SCh]) for the adjusted Layout B with 

k1 dock door is 
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Notice we choose the bottom right corner as the initial point. Therefore, d1i denotes the 

distance between the centerline of the ith dock door located on the wall containing k1 dock doors 

and the wall containing k2 dock doors. Substituting di = W – d1i in Equation (3.44) and adding the 

expected vertical distance, the expected single-command travel for the adjusted Layout B 

becomes 
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where t1i = Round [W – d1i, a]. Note that d1i = [W (k1 – i + 1)] / (k1 + 1) for Scenario1,  

d1i = [W + (k1 – 1) δ1] / 2 – (i – 1) δ1 for Scenario 2 and d1i = ϕ1 + (k1 – i) δ1 for Scenario 3. 

To avoid confusion of dock-door locations for receiving and shipping, we change parameter 

di to d2j for shipping dock doors (similarly, ti is changed to t2j). Modifying Equations (3.22) and  

(3.23) for an even and an odd number of dock doors, respectively, we can obtain formulations 

for shipping dock doors with Scenarios 1 and 2. A conditional expression for Scenario 3 can be 

obtained by using d2j instead of di in Equations (3.24-3.27) for shipping dock doors (similarly, t2j 

instead of ti). 

The distance between the ith dock door located on the wall containing k1 dock doors and the 

jth dock door located on the wall containing k2 dock doors is ϕ1 + (k1 – i) δ1 + ϕ2 + (j – 1) δ2. 

Notice dock doors are numbered in ascending order from left to right or from bottom to top. 

Summing the distance between all pairs of dock doors, multiplying by two and dividing by the 

number of pairs, the expected cross-docking roundtrip-distance is 
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3.7.2. Continuous Approximations 

Equations in Section 3.4.2 (Section 3.5.2) are used to develop continuous formulations for 

receiving (shipping) dock doors because the locations of S/R racks and aisles are ignored in 

calculating expected single-command distance. Specifically, Equations (3.12-3.14) are used to 

obtain formulations for receiving dock doors depending on the scenarios. However, for Scenarios 

1 and 2, Equations (3.35) and (3.36) are used to develop expected-distance expressions for 
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shipping dock doors with an even and an odd number of dock doors, respectively. In addition, 

the appropriate equation (Equations 3.37-3.40) is used for Scenario 3 depending on the locations 

of dock doors and Equation (3.46) holds for the calculations of expected cross-docking distance. 

The formulations for each scenario are provided in Appendix B. 

3.7.3. Computational Results 

In previous sections, we presented results for single-command and dual-command travel 

individually. Locating shipping dock doors along one wall and receiving dock doors along an 

adjacent wall of the warehouse, we provide the results for expected distance and the optimal 

shape factor considering a mixture of single-command, dual-command and cross-docking travel. 

In doing so, we consider three scenarios: 1) the warehouse is more focused on single-command 

operations (p1 = 0.6 and p2 = 0.2), 2) the warehouse is more focused on dual-command 

operations (p1 = 0.2 and p2 = 0.6) and 3) the warehouse is more focused on cross-docking 

operations (p1 = 0.2 and p2 = 0.2). 

As before, Couenne (2006) in AMPL (2013) is used to obtain computational results based on 

parameter values employed previously. The space constraint for Layout D is (a n+0.5a + v) (w m 

+ 6v) ≥ A. However, the width constraints are w m + 2v ≥ (k2 + 1) δ2 and a n + w ≥ (k1 + 1) δ1 for 

Scenario 1; w m + 2v ≥ k2 δ2 and a n + w ≥ k1 δ1 for Scenario 2; and w m + 2v ≥ ϕ2 + (k2 – 0.5) δ2 

and a n+0.5a + v ≥ ϕ1 + (k1 – 0.5) δ1 for Scenario 3. Assuming ϕ1 ≥ 2v for Scenario 3, we enforce 

a minimum separation between the closest shipping and receiving dock doors. Expected distance 

and optimal shape factor tables provided in the following sections are based on continuous 

approximations. 
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Scenario 1 

The first observation from Table 3.2 is that increasing the number of receiving dock doors 

will always increase the expected distance traveled regardless of the focus of the warehouse. 

Conversely, increasing the number of shipping dock doors alternately increases and decreases 

the expected distance when the width constraint is satisfied because the midmost dock door with 

an odd number of dock doors coincides with the middle-cross-aisle (e.g. increasing the shipping 

dock doors from 1 to 2 increases expected distance from 1425.1 ft to 1516.3 ft for a single-

command focused warehouse; whereas, increasing the shipping dock doors from 2 to 3 decreases 

expected distance from 1516.3 ft to 1507.5). Locating an odd number of dock doors dampens 

expected distance because the midmost dock door coincides with the middle-cross-aisle. 

However, because shipping dock doors are aligned parallel to S/R locations, increasing the 

number of shipping dock doors has a greater impact on expected distance than does increasing 

the number of receiving dock doors.  

Due to the space constraint and the constraint on the distance between adjacent dock doors 

(δ1 ≥ 12 ft and δ2 ≥ 12 ft), a limited number of dock doors can be located along the adjacent 

walls. The maximum number of receiving and shipping dock doors is a function of the storage 

area and width constraints; for example, based on the parameters used throughout the chapter 

locating 41 shipping and 41 receiving dock doors simultaneously is infeasible.  

Examining the percentage error due to the use of continuous approximations for the 

parameter values employed, the average percentage error in expected distance is approximately 

0.45%.  
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Table 3.2: Expected-distance values for Scenario 1 
p

1
 =

 0
.6

 a
n
d

 p
2
 =

 0
.2

 

    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (
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g
) 

1 1425.1 1516.3 1507.5 1523.4 1519.9 1528.3 1531.2 1532.1 1546.4 

2 1443.9 1536.4 1527.4 1543.5 1540.0 1548.6 1551.5 1552.4 1564.2 

3 1453.2 1546.3 1537.3 1553.5 1549.9 1558.6 1561.5 1562.4 1573.1 

4 1458.7 1552.2 1543.2 1559.5 1555.9 1564.6 1567.5 1568.4 1578.5 

5 1462.4 1556.2 1547.1 1563.4 1559.8 1568.5 1571.5 1572.4 1582.0 

11 1471.6 1566.0 1556.8 1573.3 1569.7 1578.4 1581.4 1582.3 1590.9 

21 1475.7 1570.4 1561.2 1577.7 1574.1 1582.9 1585.8 1586.8 1595.0 

31 1477.3 1572.1 1562.9 1579.4 1575.8 1584.6 1587.5 1588.5 1596.5 

41 1481.1 1572.9 1563.8 1580.3 1576.6 1585.4 1588.4 1589.3 inf. 

            

p
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n
d
 p

2
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d
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ck
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rs

 (
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g
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1 1478.6 1543.7 1537.4 1548.8 1546.3 1552.4 1554.5 1555.1 1567.1 

2 1492.2 1558.0 1551.5 1563.1 1560.6 1566.7 1568.8 1569.5 1579.8 

3 1498.9 1565.0 1558.6 1570.2 1567.6 1573.8 1575.9 1576.6 1586.1 

4 1503.0 1569.3 1562.8 1574.4 1571.9 1578.1 1580.2 1580.9 1589.9 

5 1505.6 1572.1 1565.6 1577.3 1574.7 1580.9 1583.0 1583.7 1592.5 

11 1512.3 1579.1 1572.5 1584.3 1581.7 1588.0 1590.1 1590.7 1598.8 

21 1515.3 1582.2 1575.7 1587.5 1584.9 1591.1 1593.2 1593.9 1601.7 

31 1516.5 1583.4 1576.9 1588.7 1586.1 1592.3 1594.4 1595.1 1602.8 

41 1518.5 1584.0 1577.5 1589.3 1586.7 1593.0 1595.1 1595.8 inf. 
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 
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 d
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ck

 d
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o

rs
 (
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g
) 

1 1237.9 1277.6 1273.7 1280.8 1279.2 1283.0 1284.2 1284.6 1291.1 

2 1246.0 1286.0 1282.1 1289.2 1287.6 1291.4 1292.6 1293.1 1298.7 

3 1250.1 1290.2 1286.2 1293.3 1291.8 1295.6 1296.8 1297.3 1302.6 

4 1252.5 1292.7 1288.7 1295.8 1294.3 1298.1 1299.3 1299.8 1304.8 

5 1254.1 1294.3 1290.4 1297.5 1295.9 1299.7 1301.0 1301.4 1306.4 

11 1258.1 1298.5 1294.5 1301.6 1300.1 1303.9 1305.2 1305.6 1310.2 

21 1259.9 1300.3 1296.4 1303.5 1301.9 1305.8 1307.0 1307.5 1311.9 

31 1260.5 1301.0 1297.1 1304.2 1302.6 1306.5 1307.8 1308.2 1312.6 

41 1262.1 1301.5 1297.6 1304.6 1303.1 1306.9 1308.1 1308.6 inf. 
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Comparing results for different focused warehouses, notice the expected distance for a 

single-command focused warehouse is less than that for the corresponding dual-command 

focused warehouse because returning S/R equipment to the receiving dock-door locations in 

dual-command operations results in traveling an additional distance (equivalent to the one-way 

cross-docking distance); the additional distance is greater than the distance reduced by 

performing a dual-command operation. 

However, as the number of dock doors increases, the difference in expected distance between 

the single-command focused warehouse and the dual-command focused warehouse decreases. 

As expected, a cross-docking focused warehouse outperforms warehouses more focused on 

either single-command operations or dual-command operations. 

Table 3.3 provides the optimal shape factor values for the three ratios of p1 and p2. When the 

width constraint is satisfied, increasing the number of shipping dock doors may increase or 

decrease the optimal shape factor depending on the number of shipping dock doors being either 

odd or even. In contrast to receiving dock doors, the optimal shape factor decreases as the 

number of receiving dock doors increases. When the width constraint is violated, the optimal 

shape factor is governed by the width constraint. Relative to the wall containing the most dock 

doors, as the number of dock doors increases, the relative width of the warehouse increases in 

order to have enough room to locate all dock doors. Specifically, although the optimal shape 

factor decreases for an increasing number of receiving dock doors, it increases when the width 

constraint comes into play.  
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Table 3.3: Optimal shape factor values for Scenario 1 
p

1
 =

 0
.6

 a
n
d

 p
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
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iv
in

g
) 

1 1.011 1.148 1.134 1.159 1.153 1.167 1.171 1.173 0.897 

2 0.984 1.117 1.104 1.128 1.123 1.135 1.140 1.141 0.897 

3 0.971 1.103 1.089 1.113 1.108 1.120 1.125 1.126 0.897 

4 0.963 1.094 1.081 1.104 1.099 1.112 1.116 1.117 0.897 

5 0.958 1.088 1.075 1.099 1.093 1.106 1.110 1.111 0.897 

11 0.946 1.074 1.061 1.084 1.079 1.092 1.096 1.097 0.897 

21 0.940 1.068 1.055 1.078 1.073 1.085 1.089 1.091 0.897 

31 0.938 1.066 1.053 1.076 1.071 1.083 1.087 1.088 0.897 

41 1.065 1.065 1.065 1.075 1.069 1.082 1.086 1.087 Inf. 
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 
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 d
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ck

 d
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g
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1 1.031 1.127 1.118 1.135 1.131 1.140 1.143 1.144 0.897 

2 1.012 1.106 1.097 1.114 1.110 1.119 1.122 1.123 0.897 

3 1.002 1.096 1.086 1.103 1.099 1.108 1.111 1.112 0.897 

4 0.997 1.090 1.080 1.097 1.093 1.102 1.105 1.106 0.897 

5 0.993 1.086 1.076 1.093 1.089 1.098 1.101 1.102 0.897 

11 0.984 1.076 1.067 1.083 1.079 1.088 1.091 1.092 0.897 

21 0.980 1.071 1.062 1.079 1.075 1.084 1.087 1.088 0.897 

31 0.979 1.070 1.060 1.077 1.073 1.082 1.085 1.086 0.897 

41 1.065 1.069 1.065 1.076 1.072 1.081 1.084 1.085 Inf. 
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 
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 d
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ck

 d
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g
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1 1.012 1.081 1.074 1.086 1.084 1.090 1.093 1.093 0.897 

2 0.999 1.066 1.060 1.072 1.069 1.076 1.078 1.078 0.897 

3 0.992 1.059 1.052 1.065 1.062 1.068 1.071 1.071 0.897 

4 0.988 1.055 1.048 1.060 1.058 1.064 1.066 1.067 0.897 

5 0.985 1.052 1.045 1.057 1.055 1.061 1.063 1.064 0.897 

11 0.979 1.045 1.039 1.050 1.048 1.054 1.056 1.057 0.897 

21 0.976 1.042 1.035 1.047 1.045 1.051 1.053 1.054 0.897 

31 0.975 1.041 1.034 1.046 1.043 1.050 1.052 1.053 0.897 

41 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 Inf. 
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Scenario 2 

In contrast to Scenario 1, increasing the number of dock doors will always increase expected 

distance regardless of warehouse type because dock-door locations are specified. As expected, 

expected distances for Scenario 2 are smaller than for Scenario 1 because dock doors are 

clustered around the centerlines of walls. Further, increasing the number of dock doors from 1 to 

6 with Scenario 1 results in a significantly greater increase in expected distance than occurs with 

Scenario 2. Thereafter, increasing the number of dock doors from 6 to 11 results in a smaller 

increase in expected distance with Scenario 1 than occurs with Scenario 2 (12.88). This occurs 

because increasing the number of dock doors with Scenario 2 results in decreasing the distance 

between adjacent dock doors and resulting in innermost dock doors being located closer to the 

centerlines of walls. 

As with Scenario 1, the single-command focused warehouse outperforms the dual-command 

focused warehouse, because the expected distance to return S/R equipment to receiving dock 

doors diminishes the improvement inherent in dual-command operations. Further, increasing the 

number of dock doors decreases the difference in expected distance between the single-command 

focused warehouse and the dual-command focused warehouse. (The average percentage error 

resulting from continuous approximations is 0.38%.)  

As with Scenario 1, locating 41 shipping and 41 receiving dock doors simultaneously is 

infeasible because of the space constraint and the constraint on the distance between adjacent 

dock doors. As with Scenario 1, the cross-docking focused warehouse performs the best among 

the warehouses considered.  
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Table 3.4: Expected-distance values for Scenario 2 
p
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
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1 1425.1 1433.5 1436.2 1441.6 1444.8 1467.6 1499.1 1523.0 1543.5 

2 1425.2 1433.6 1436.3 1441.7 1444.9 1467.7 1499.2 1523.1 1543.6 

3 1425.3 1433.7 1436.5 1441.9 1445.1 1467.9 1499.4 1523.3 1543.8 

4 1425.6 1434.0 1436.7 1442.2 1445.3 1468.1 1499.7 1523.5 1544.1 

5 1425.9 1434.3 1437.0 1442.5 1445.6 1468.4 1500.0 1523.8 1544.4 

11 1429.2 1437.6 1440.3 1445.8 1448.9 1471.7 1503.2 1527.1 1547.8 

21 1440.2 1448.6 1451.3 1456.7 1459.9 1482.7 1514.1 1537.8 1559.3 

31 1457.8 1466.2 1468.9 1474.4 1477.5 1500.3 1531.5 1554.9 1577.9 

41 1481.9 1490.3 1493.0 1498.4 1501.6 1524.2 1555.3 1578.4 inf. 
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    k2 dock doors (shipping) 
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1 1478.6 1484.6 1486.5 1490.4 1492.7 1508.9 1531.4 1548.4 1564.1 

2 1478.7 1484.7 1486.6 1490.5 1492.7 1509.0 1531.5 1548.5 1564.2 

3 1478.8 1484.8 1486.7 1490.6 1492.9 1509.1 1531.6 1548.6 1564.3 

4 1478.9 1484.9 1486.9 1490.8 1493.0 1509.3 1531.8 1548.8 1564.5 

5 1479.2 1485.2 1487.1 1491.0 1493.3 1509.5 1532.0 1549.0 1564.7 

11 1481.5 1487.5 1489.5 1493.3 1495.6 1511.9 1534.3 1551.3 1567.2 

21 1489.3 1495.3 1497.2 1501.1 1503.4 1519.6 1542.0 1558.9 1575.4 

31 1501.8 1507.8 1509.8 1513.7 1515.9 1532.1 1554.5 1571.2 1588.7 

41 1519.0 1525.0 1526.9 1530.8 1533.1 1549.3 1571.5 1588.1 inf. 
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    k2 dock doors (shipping) 
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1 1237.9 1241.5 1242.7 1245.0 1246.4 1256.2 1269.7 1280.0 1289.2 

2 1238.0 1241.6 1242.8 1245.1 1246.4 1256.2 1269.7 1280.0 1289.2 

3 1238.1 1241.7 1242.8 1245.2 1246.5 1256.3 1269.8 1280.1 1289.3 

4 1238.2 1241.8 1242.9 1245.3 1246.6 1256.4 1269.9 1280.2 1289.4 

5 1238.3 1241.9 1243.1 1245.4 1246.7 1256.5 1270.1 1280.4 1289.5 

11 1239.7 1243.3 1244.5 1246.8 1248.2 1257.9 1271.5 1281.8 1291.0 

21 1244.4 1248.0 1249.2 1251.5 1252.9 1262.6 1276.2 1286.4 1295.9 

31 1252.0 1255.6 1256.8 1259.1 1260.5 1270.3 1283.7 1293.9 1303.9 

41 1262.5 1266.1 1267.3 1269.6 1271.0 1280.7 1294.1 1304.3 inf. 
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As illustrated in Table 3.5, increasing the number of dock doors increases the optimal shape 

factor when the width constraint is satisfied. In contrast to Scenario 1, the optimal shape factor 

increases as the number of shipping dock doors increases. Based on observations regarding 

Layout B, this is an expected result. As before, when it is violated, the width constraint 

determines the value of the optimal shape factor. For a large number of dock doors (k1 ≥ 26 and 

k2 ≥ 26), the single-command focused warehouse is wider than the dual-command focused 

warehouse because of the additional travel to return S/R equipment to the dock-door locations. 

Table 3.5: Optimal shape factor values for Scenario 2  

p
1
 =

 0
.6

 a
n
d
 p

2
 =

 0
.2

 

    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o
rs

 (
re

ce
iv

in
g
) 

1 1.011 1.011 1.011 1.011 1.011 1.016 1.032 1.062 0.939 

2 1.011 1.011 1.011 1.011 1.011 1.016 1.032 1.062 0.939 

3 1.011 1.011 1.011 1.011 1.012 1.016 1.033 1.062 0.939 

4 1.011 1.011 1.011 1.012 1.012 1.016 1.033 1.062 0.939 

5 1.012 1.012 1.012 1.012 1.012 1.017 1.033 1.063 0.939 

11 1.017 1.017 1.017 1.017 1.017 1.022 1.038 1.068 0.939 

21 1.033 1.033 1.033 1.033 1.033 1.038 1.055 1.085 0.939 

31 1.059 1.059 1.059 1.059 1.060 1.064 1.082 1.113 0.939 

41 1.095 1.095 1.095 1.096 1.096 1.101 1.119 1.151 Inf. 

            

p
1
 =

 0
.2

 a
n
d

 p
2
 =

 0
.6

 

    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
ce

iv
in

g
) 

1 1.031 1.031 1.031 1.032 1.032 1.035 1.047 1.067 0.939 

2 1.031 1.031 1.032 1.032 1.032 1.035 1.047 1.067 0.939 

3 1.032 1.032 1.032 1.032 1.032 1.035 1.047 1.068 0.939 

4 1.032 1.032 1.032 1.032 1.032 1.035 1.047 1.068 0.939 

5 1.032 1.032 1.032 1.032 1.033 1.036 1.048 1.068 0.939 

11 1.036 1.036 1.036 1.036 1.036 1.039 1.051 1.072 0.939 

21 1.047 1.047 1.047 1.047 1.047 1.051 1.062 1.083 0.939 

31 1.065 1.065 1.065 1.065 1.066 1.069 1.081 1.102 0.939 

41 1.091 1.091 1.091 1.091 1.091 1.094 1.107 1.129 Inf. 
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Table 3.5: Optimal shape factor values for Scenario 2 (Cont.) 
p

1
 =

 0
.2

 a
n
d

 p
2
 =

 0
.2

 

    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
ce

iv
in

g
) 

1 1.012 1.012 1.012 1.013 1.013 1.015 1.023 1.037 0.939 

2 1.012 1.012 1.013 1.013 1.013 1.015 1.023 1.037 0.939 

3 1.013 1.013 1.013 1.013 1.013 1.015 1.023 1.037 0.939 

4 1.013 1.013 1.013 1.013 1.013 1.015 1.023 1.038 0.939 

5 1.013 1.013 1.013 1.013 1.013 1.016 1.024 1.038 0.939 

11 1.015 1.015 1.015 1.016 1.016 1.018 1.026 1.040 0.939 

21 1.024 1.024 1.024 1.024 1.024 1.026 1.034 1.049 0.939 

31 1.037 1.037 1.037 1.037 1.037 1.039 1.048 1.062 0.939 

41 1.055 1.055 1.055 1.055 1.055 1.057 1.066 1.081 Inf. 

Scenario 3 

In contrast to Scenarios 1 and 2, the expected distance for the dual-command focused 

warehouse is smaller than the single-command focused warehouse because the two sets of dock 

doors are located closer together (see Table 3.6). The additional travel of S/R equipment 

returning to receiving dock-door locations is less with Scenario 3 than with Scenario 1 or 2. 

Compared to a single-command focused warehouse, the minimum, maximum and average 

percentage savings for a cross-docking focused warehouse are 19.1%, 91.3% and 35.0%, 

respectively. Similarly, compared to a more dual-command focused warehouse, the minimum, 

maximum and average percentage savings for a cross-docking forced warehouse are 20.1%, 

64.8% and 30.6%, respectively. 
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Table 3.6: Expected-distance values for Scenario 3 
p

1
 =

 0
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n
d

 p
2
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 0
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
ce

iv
in

g
) 

1 1466.3 1474.8 1475.7 1468.8 1465.5 1479.0 1501.0 1527.0 1553.6 

2 1451.2 1459.6 1460.4 1453.4 1450.5 1464.4 1486.8 1512.8 1539.3 

3 1442.9 1451.1 1451.8 1444.4 1442.3 1456.9 1479.9 1506.1 1532.6 

4 1441.0 1449.1 1449.4 1441.7 1440.8 1456.6 1480.0 1506.5 1533.4 

5 1445.3 1453.2 1453.2 1444.9 1446.0 1462.8 1486.9 1513.5 1541.8 

11 1455.5 1463.2 1462.7 1453.7 1457.0 1475.2 1500.2 1526.9 1557.6 

21 1471.2 1478.5 1477.5 1468.4 1473.9 1493.7 1519.2 1546.0 1581.0 

31 1491.9 1498.9 1497.3 1488.5 1496.3 1517.3 1543.5 1570.6 1611.8 

41 1517.2 1523.9 1521.7 1513.1 1523.5 1546.2 1572.8 1601.9 inf. 
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o
rs

 (
re

ce
iv

in
g
) 

1 1263.4 1286.5 1304.1 1316.2 1331.5 1359.1 1392.8 1428.8 1464.9 

2 1269.7 1292.7 1310.3 1322.2 1337.8 1365.8 1399.6 1435.6 1471.9 

3 1280.7 1303.7 1321.2 1332.9 1349.1 1377.5 1411.5 1447.6 1484.3 

4 1296.4 1319.2 1336.5 1348.0 1365.1 1394.1 1428.4 1464.5 1502.0 

5 1316.5 1339.2 1356.3 1367.4 1385.7 1415.3 1450.1 1486.3 1525.1 

11 1340.8 1363.4 1380.2 1390.9 1410.5 1441.1 1476.2 1512.5 1553.5 

21 1369.1 1391.5 1407.9 1418.6 1439.7 1471.1 1506.7 1542.9 1587.4 

31 1401.1 1423.3 1439.4 1450.2 1472.8 1505.0 1540.9 1577.6 1626.6 

41 1436.5 1458.5 1474.2 1485.1 1509.3 1542.7 1578.8 1617.0 inf. 

            

p
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 0
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
ce
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in

g
) 

1 766.4 804.3 839.0 870.3 903.3 943.6 987.5 1033.0 1078.6 

2 794.2 832.1 866.7 897.9 931.1 971.5 1015.7 1061.2 1106.8 

3 824.9 862.7 897.2 928.3 961.8 1002.6 1046.9 1092.5 1138.2 

4 858.3 896.1 930.5 961.4 995.5 1036.7 1081.1 1126.8 1172.9 

5 894.4 932.1 966.4 997.1 1031.9 1073.6 1118.3 1164.0 1210.7 

11 933.1 970.6 1004.7 1035.2 1070.9 1113.1 1158.1 1203.9 1251.8 

21 974.0 1011.5 1045.4 1075.7 1112.4 1155.2 1200.5 1246.2 1296.1 

31 1017.2 1054.6 1088.2 1118.7 1156.3 1199.6 1245.1 1291.1 1343.6 

41 1062.4 1099.6 1133.0 1163.6 1202.2 1246.2 1291.9 1338.7 inf. 
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For a single-command focused warehouse, increasing the number of dock doors decreases 

expected distance because increasing the number of dock doors results in locating dock doors 

closer to the centerlines of walls. However, increasing the number of dock doors increases 

expected distance for a dual-command focused warehouse because the additional travel to return 

S/R equipment to the receiving dock-door locations increases with an increasing number of dock 

doors. 

Table 3.7 contains the optimal shape factor values for Scenario 3 with three ratios of p1 and 

p2. Therefore, shipping dock doors force the warehouse to be wider. Thereafter, increasing the 

number of dock doors decreases the optimal shape factor for a large number of dock doors 

because some shipping dock doors are located above the middle-cross aisle and the warehouse 

tends to be narrower. For a large number of receiving dock doors (k1 ≥ 31) and a small number of 

shipping dock doors (k2 ≤ 18), the single-command focused warehouse is narrower than the dual-

command focused warehouse.  

Moreover, for a small number of receiving and shipping dock doors (k1 ≤ 31 and k1 ≤ 21), the 

single-command focused warehouse is narrower than the dual-command focused warehouse and 

the expected distance for a single-command focused warehouse is larger than that for a cross-

dock dooring focused warehouse.  
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Table 3.7: Optimal shape factor values for Scenario 3  
p

1
 =

 0
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d

 p
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o

rs
 (

re
ce
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g
) 

1 1.018 1.032 1.059 1.100 0.996 0.912 0.857 0.846 0.856 

2 1.031 1.045 1.072 1.113 1.011 0.927 0.857 0.857 0.857 

3 1.053 1.068 1.096 1.138 1.033 0.939 0.884 0.859 0.857 

4 1.086 1.101 1.129 1.173 1.033 0.949 0.927 0.907 0.857 

5 1.128 1.144 1.173 1.218 1.068 1.000 0.942 0.939 0.857 

11 1.179 1.196 1.227 1.268 1.127 1.033 1.010 1.006 0.857 

21 1.240 1.258 1.291 1.275 1.145 1.092 1.050 1.057 0.857 

31 1.311 1.330 1.365 1.351 1.225 1.141 1.141 1.085 0.857 

41 1.391 1.411 1.449 1.417 1.268 1.231 1.209 1.085 Inf. 

            

p
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck

 d
o
o
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 (
re
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g
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1 1.045 1.058 1.081 1.117 1.029 0.939 0.900 0.881 0.857 

2 1.056 1.069 1.093 1.129 1.033 0.939 0.914 0.897 0.857 

3 1.076 1.089 1.113 1.150 1.033 0.957 0.939 0.924 0.857 

4 1.104 1.117 1.143 1.181 1.050 0.991 0.941 0.939 0.857 

5 1.140 1.155 1.181 1.220 1.091 1.033 0.988 0.982 0.857 

11 1.186 1.200 1.227 1.268 1.141 1.049 1.033 1.033 0.857 

21 1.239 1.255 1.283 1.269 1.157 1.112 1.079 1.085 0.857 

31 1.301 1.317 1.347 1.335 1.225 1.148 1.141 1.085 0.857 

41 1.371 1.388 1.420 1.410 1.268 1.230 1.212 1.085 Inf. 

            

p
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    k2 dock doors (shipping) 

  1 2 3 4 5 11 21 31 41 

k 1
 d

o
ck
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o
o
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 (
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g
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1 1.030 1.044 1.069 1.108 1.011 0.933 0.867 0.857 0.857 

2 1.042 1.056 1.081 1.121 1.025 0.939 0.882 0.859 0.857 

3 1.063 1.077 1.104 1.144 1.033 0.939 0.910 0.889 0.857 

4 1.094 1.108 1.135 1.177 1.034 0.968 0.939 0.933 0.857 

5 1.133 1.149 1.176 1.219 1.079 1.015 0.963 0.954 0.857 

11 1.182 1.198 1.227 1.268 1.133 1.033 1.026 1.024 0.857 

21 1.240 1.257 1.287 1.273 1.150 1.101 1.063 1.071 0.857 

31 1.307 1.324 1.357 1.344 1.225 1.141 1.141 1.085 0.857 

41 1.382 1.401 1.436 1.417 1.268 1.231 1.211 1.085 Inf. 
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3.8. Conclusion 

The expected distance traveled in a warehouse is impacted by the layout configuration, the 

arrangement of S/R locations, S/R aisles and cross-aisles, and the number and locations of dock 

doors. Extending previous studies by considering multiple dock doors, we analyzed three unit-

load warehouses (Layouts B, C and D) with a middle-cross aisle for single- and dual-command 

travel. Defining shape factor as the width-to-depth ratio of a warehouse, we presented optimal 

shape factor results for different locations and number of dock doors along either one wall or two 

adjacent walls. Modifying formulations proposed by Tutam and White (in press) for Layout A, 

discrete and continuous formulations of the optimization problem were developed for the 

aforementioned configurations. 

For Layout B, the following insights were obtained from the research: 

 When the width constraint is satisfied, increasing the number of dock doors decreases the 

optimal shape factor for both single- and dual-command travel with Scenario 1; whereas 

increasing the number of dock doors increases the optimal shape factor for any value of 

k1 with Scenarios 2 and 3. Otherwise, increasing the number of dock door increases the 

width of the warehouse and increases the optimal shape factor for all scenarios. 

 The optimal shape factor for single-command travel is greater than the corresponding 

optimal shape factor for dual-command travel with any number of dock doors for 

Scenarios 1 and 2; whereas, for Scenario 3, the optimal shape factor for single-command 

travel can be less than or greater than the corresponding optimal shape factor for dual-

command travel, depending on the number of dock doors.  

 For Scenario 3, the optimal shape factor is slightly greater than 1.0 for a small number of 

dock doors.  
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For Layout C, our research yielded the following insights: 

 For Scenario 1,  

 having two dock doors increases expected distance dramatically for single- and 

dual command because dock doors are located farther apart; 

 having an odd number of dock doors dampens the expected distance for small 

values of k2 because the location of the middle dock door coincides with the 

centerline of the warehouse; 

 for a small number of dock doors, the optimal shape factor fluctuates depending 

on the number of dock doors being either odd or even; and 

 for a large number of dock doors, increasing the number of dock doors increases 

expected distance for single- and dual-command travel. 

 For Scenario 2, increasing the number of dock doors decreases the optimal shape factor 

when the width constraint is satisfied. 

 For Scenario 3, increasing the number of dock doors decreases the optimal shape factor 

when dock doors are located in Region 1; whereas, increasing the number of dock doors 

increases the optimal shape factor for single- and dual command travel when dock doors 

are located in Regions 2-4.  

 For Scenarios 2 and 3, the optimized warehouse for single-command travel is wider than 

the warehouse optimized for dual-command travel because travel-between dampens the 

optimal shape factor for dual-command travel. 

Comparing Layout configurations, the following insights were obtained: 

 For Scenario 1,  
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 Layout A outperforms Layouts B and C for single-command travel (except for the 

single-dock-door case, Layouts A and C are approximately the same when a 

single dock door is present);  

 In contrast to single-command travel, Layout B always outperforms Layouts A 

and C for dual-command travel; and 

 When a dock door is centrally located, an optimally designed Layout C is wider 

than optimally designed Layouts A and B. Notice this result differs from that 

obtained by Pohl et al. (2009) because the S/R locations along the wall containing 

k2 dock doors are removed.  

 For Scenario 2,  

 when the width constraint is satisfied, an optimally configured Layout A is wider 

and shorter than optimally configured Layouts B and C for dual-command travel; 

 increasing the number of dock doors decreases optimal shape factor values for 

Layouts A and B when the width constraint is satisfied;  

 increasing the number of dock doors increases dramatically expected distance for 

Layout C;  

 except for the single-dock-door case, Layout A outperforms Layouts B and C 

with single-command travel;  

 Layout B always performs better than Layouts A and C for dual-command travel;  

 with a small number of dock doors, Layout C dominates Layout A for Scenario 2; 

whereas, Layout A outperforms Layout C when the number of dock doors is large 

or when the width constraint is violated; and 
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 when the width constraint is satisfied, increasing the number of dock doors 

increases the optimal shape factor for Layouts A and B; whereas, the optimal 

shape factor decreases with an increasing number of dock doors for Layout C. 

 For Scenarios 1 and 2, expected distance for all configurations increases with an 

increasing number of dock doors. 

 For Scenario 3,  

 increasing the number of dock doors decreases the expected distance for a small 

number of dock doors;  

 Layout A always outperforms Layouts B and C for single-command travel; 

whereas, Layout B always performs better than Layouts A and C for dual-

command travel;  

 for dual-command travel, the performances of Layouts A and C are the same 

when dock doors are located close to the centerline of the warehouse; 

 increasing the number of dock doors always increases the optimal shape factor for 

Layouts A and B; whereas, the optimal shape factor may increase or decrease for 

Layout C; and 

 having a large number of dock doors results in the optimal shape factor 

fluctuating for Layout C because of dock doors being located on different sides of 

the centerline of the wall. 

Observations from Layout D: 

 For Scenario 1,  

 increasing the number of receiving dock doors will always increase the expected 

distance regardless of the focus of the warehouse;  
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 increasing the number of shipping dock doors alternately increases (even number 

of dock doors) and decreases (odd number of dock doors) the expected distance 

when the width constraint is satisfied, because the midmost dock door with an odd 

number of dock doors coincides with the middle-cross-aisle; 

 increasing the number of shipping dock doors has a greater impact on expected 

distance than does increasing the number of receiving dock doors because 

shipping dock doors are aligned parallel to S/R locations; 

 increasing the number of shipping dock doors may increase or decrease the 

optimal shape factor depending on the number of shipping dock doors being odd 

or even; and 

 the optimal shape factor decreases for an increasing number of receiving dock 

doors until the width constraint comes into play. 

 For Scenario 2,  

 increasing the number of dock doors will always increase expected distance 

regardless of warehouse type because dock-door locations are specified; 

 expected distances are smaller than that with Scenario 1 because dock doors are 

clustered around the centerlines of walls; and 

 increasing the number of shipping or receiving dock doors increases the optimal 

shape factor when the width constraint is satisfied.  

 For Scenarios 1 and 2, the expected distance for a single-command focused warehouse is 

less than that for the corresponding dual-command focused warehouse because returning 

S/R equipment to the receiving dock-door locations results in traveling an additional 

distance greater than the distance reduced by performing a dual-command operation.  
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 For Scenario 3, 

 the expected distance for the dual-command focused warehouse is smaller than 

the single-command focused warehouse because the two sets of dock doors are 

located closer together; 

 the expected distance for the dual-command focused warehouse is less than that 

for the single-command focused warehouse because travel-between distance plus 

the additional travel of S/R equipment returning to receiving dock-door locations 

is less than one-half of the single-command travel; 

 for a single-command focused warehouse, increasing the number of dock doors 

decreases expected distance because increasing the number of dock doors results 

in locating dock doors closer to the centerlines of walls; 

 increasing the number of dock doors increases expected distance for a dual-

command focused warehouse because the additional travel to return S/R 

equipment to the receiving dock-door locations increases with an increasing 

number of dock doors; and  

 increasing the number of dock doors decreases the optimal shape factor for a large 

number of dock doors because some shipping dock doors are located above the 

middle-cross aisle and the warehouse tends to be narrower. 

Our research can be extended by considering class-based and turnover-based storage policies. 

Other opportunities for further research include considering unequal flows across the dock doors 

and different ratios of operations for warehouse types. 
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Appendix 

Proof of Proposition 3.1 

Case 1: When the nearest back-to-back storage location is to the right of the dock door, the 

distance between dock door i and the nearest storage location to the left and right of dock door i 

are di – ti + w / 2 and ti – di + w / 2, respectively. 

One-sided S/R aisle: Because there are ti / w storage locations to the left of dock door i, the 

distance between dock door i and storage location j located to the left of dock door i is (di – ti) +  

(ti / w – j) w + w / 2 = di – j w + w / 2 for j = 1, 2, …, ti / w (see storage locations 1 thru 5 in 

Figure 3.6). If storage locations are to the right of dock door i, we consider storage locations 

being located on either the left or the right sides of the warehouse. In the former, there are m /2  

– ti / w storage locations to the right of dock door i. Therefore, the distance between dock door i 

and storage location j located to the right of dock door i (storage locations are on the left side of 

the warehouse) is ti – di + (j – ti / w – 1) w + w / 2 = j w – di – w / 2 for j = ti / w + 1, ti / w + 2,…, 

m / 2 (see storage locations 6 thru 8 in Figure 3.6). In the latter, there are m / 2 storage locations 

to the right of dock door i. Therefore, the distance between dock door i and storage location j 

located to the right of dock door i (storage locations are on the right side of the warehouse) is  

ti – di + (j – ti / w – 1) w + w / 2 + 2v = j w – di – w / 2 +2v for j = m / 2 +1, m / 2 +2,…, m (see 

storage locations 9 thru 16 in Figure 3.6). 

Two-sided S/R aisle: First, the shortest path between dock door i and storage location j is 

determined. The number of storage locations visited is obtained by traveling to either the left or 

right side of dock door i. There are m /2 – ti / w storage locations visited by traveling to the left of 

dock door i. The distance between dock door i and storage location j by traveling to the left of 

dock door i is di – ti + w / 2 + ti – w / 2 + w / 2 + (j – 1) w + 2v = di + j w – w / 2 + 2v for  
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j = 1, 2, …, m /2 – ti / w. (see storage locations 1 thru 3 in Figure 3.6). If storage locations are 

visited by traveling to the right of dock door i, we consider storage locations being on either the 

left or the right side of the warehouse. If storage locations are located on the left side of the 

warehouse, there are ti / w storage locations visited by traveling to the right of dock door i. The 

distance between dock door i and storage location j by traveling to the right of dock door i is  

ti – di + w / 2 + m w / 2 – ti – w / 2 + (m / 2 – j + 1 / 2) w + 2v = m w – di – j w + w / 2 + 2v for  

j = m / 2 – ti / w + 1, m / 2 – ti / w + 2, …, m / 2 (see storage locations 4 thru 8 in Figure 3.6). If 

storage locations are located on the right side of the warehouse, there are m / 2  storage locations 

visited by traveling to the right of dock door i. The distance between dock door i and storage 

location j located to the right of dock door i is ti – di + w / 2 + (j – ti / w – 1) w + 2v = j w – w / 2 

– di + 2v for j = m / 2 + 1, m / 2 + 2,…, m (see storage locations 9 thru 16 in Figure 3.6). 

Case 2: When a back-to-back storage location coincides with the location of dock door i, the 

distance from dock door i to the storage location by traveling either to the left of dock door i or 

to the right of dock door i is equal to w / 2. Equations for Case 2 can be obtained easily by 

replacing di – ti with zero in equations for Case 1. 

Case 3: If the nearest back-to-back storage location is to the left of the dock door i, 

Equations provided for Case 1 still hold.  

Case 4: When a storage location coincides with the location of dock door i, the distance to 

reach the nearest location is zero. Replacing di – ti with w / 2, Equations derived for Case 1 apply 

for Case 4.  

Proof of Proposition 3.2 

Four different expressions are developed for expected Horizontal roundtrip-distance 

depending on the location of dock door i. 
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If dock door i is located in Region 1 (di ≤ w m / 2) 

 Expected horizontal roundtrip-distance to the one-sided aisle is 
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 Expected horizontal roundtrip-distance to the two-sided aisle is 
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If dock door i is located in Region 2 (w m / 2 ˂ di ≤ w m / 2 + v) 

Expected horizontal roundtrip-distance to the one-sided aisle is 
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If dock door i is located in Region 3 (w m / 2 + v ˂ di ≤ w m / 2 + 2v) 

Expected horizontal roundtrip-distance to the one-sided aisle is 
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If dock door i is located in Region 3 (w m / 2 + 2v ˂ di ) 

Expected horizontal roundtrip-distance to the one-sided aisle is 
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Proof of Propositions 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 

Using Lemma 2.1 and Corollary 2.1 in Chapter 2. the proof of Proposition 2.2 from Chapter 

2 can be applied to Propositions 3.1, 3.2 and 3.3. However, using Lemma 2.2 and Corollary 2.2, 

the proof of Proposition 2.2 can be applied to Propositions 3.4, 3.5 and 3.6. 

Equations for Layout D with Continuous Approximations 

Scenario 1 

The expected distance traveled in Layout D with an even number of dock doors is 
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where d1i = [W (k1 – i + 1)] / (k1 + 1) and d2j = [ j (L + 2v)] / (k2 + 1). 
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The expected distance traveled in Layout D with an odd number of dock doors is 
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where d1i = [W (k1 – i + 1)] / (k1 + 1) and d2j = [j (L + 2v)] / (k2 + 1)  

Scenario 2 

The expected distance traveled in Layout D with an even number of dock doors is 
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where d1i = [W + (k1 – 1) δ1] / 2 – (i – 1) δ1 and d2j = [(L + 2v) – (k2 – 1) δ2] / 2 + (j – 1) δ2 
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The expected distance traveled in Layout D with an odd number of dock doors is 
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where d1i = [W + (k1 – 1) δ1] / 2 – (i – 1) δ1 and d2j = [(L + 2v) – (k2 – 1) δ2] / 2 + (j – 1) δ2 

Scenario 3 

Case 1 (
22kd ≤ L / 2): 

The expected distance traveled in Layout D is
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where d1i = ϕ1 + (k1 – i) δ1 for Scenario 2 and d2j = ϕ2 + (k2 – j) δ2. 
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Case 2 (L / 2 ˂ 
22kd ≤ L / 2 + v): 

The expected distance traveled in Layout D is 
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where d1i = ϕ1 + (k1 – i) δ1 for Scenario 2 and d2j = ϕ2 + (k2 – j) δ2. 

Case 3 (L / 2 + v ˂ 
22kd ≤ L / 2 + 2v): 

The expected distance traveled in Layout D is 
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where d1i = ϕ1 + (k1 – i) δ1 for Scenario 2 and d2j = ϕ2 + (k2 – j) δ2. 
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Case 4 (L / 2 + 2v ˂ 
22kd ): 

The expected distance traveled in Layout D is 
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where d1i = ϕ1 + (k1 – i) δ1 for Scenario 2 and d2j = ϕ2 + (k2 – j) δ2. 
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Chapter 4  

Contribution 3: A Working Paper on, “Configuring Contour-Line-Shaped Storage 

Region(s) in a Multi-Dock, Unit-Load Warehouse” 

Abstract 

The performance of a unit-load warehouse having multiple dock doors is analyzed when a 

storage region or storage regions can be either rectangle-shaped or contour-line-shaped. 

Assuming a uniform distribution of unit loads over a storage region, a randomized storage policy 

is used. Moreover, considering the activity levels of unit-loads, an ABC class-based storage 

policy is used by assigning unit loads to three storage regions on a priority basis. Expected 

distances traveled in rectangle-shaped storage regions are compared with expected distances in 

their counterpart contour-line-based storage regions. With an objective of minimizing expected 

roundtrip rectilinear distance, the best rectangle-shaped and contour-line-shaped storage regions 

are determined for different numbers and locations of dock doors. Specifically, we consider dock 

doors to be either equally dispersed along an entire wall of the warehouse or centrally located 

with a specified distance between them; significantly, for the former scenario, a rectangle-shaped 

warehouse outperforms a corresponding contour-line-shaped warehouse for multiple dock doors. 

When dock doors are distributed with a specified distance between them, requiring the 

warehouse to be rectangle-shaped instead of contour-line shaped increases the expected 

roundtrip distance from approximately six percent to less than one percent, depending on the 

number of dock doors and skewness of the ABC curve. 

 

Keywords: Multiple dock doors, Shape factor, Class-Based Storage Policy, Contour-Line-

Shaped, Single-Command.  
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4.1. Introduction 

We focus on developing expected-distance approximations for both rectangle-shaped and 

contour-line-shaped warehouse designs when either randomized or class-based storage policies 

are in use. Specifically, we determine the warehouse design that minimizes rectilinear roundtrip 

distance between dock doors and storage locations in a continuous region. The continuous 

formulations provide valuable insights regarding the effects of the number and location of dock 

doors on expected distance and the optimal storage configuration. 

The following assumptions underlie the formulations obtained: 

1. A randomized storage policy is used when S/R locations are distributed uniformly over a 

continuous region (not necessarily rectangle-shaped). 

2. A dedicated storage policy is used among classes of products when S/R locations are 

divided into three classed and a random storage policy is used within each class. 

3. Rectilinear roundtrip distance is measured. 

4. Times to store/retrieve and travel vertically are ignored. 

5. Acceleration and deceleration of S/R equipment are negligible; therefore, travel velocity 

is the same for both horizontal and vertical directions. 

6. Each dock door is equally likely to be selected for travel to/from storage locations. 

7. When we refer to the configuration of a warehouse, we actually mean the configuration 

of the storage region within the warehouse; we recognize many other functions are 

performed in the warehouse. Our focus is on the unit-load storage function. 

As illustrated in Chapter 2, travel distance between two S/R locations in different S/R aisles 

underestimates the rectilinear travel distance by approximately 31.69% for a particular set of 

parameter values. Therefore, we consider only single-command operations in which S/R 



158 

equipment transports a unit load from a dock door to a storage location and returns empty to the 

dock door or it travels empty from a dock door to a retrieval location and transports a unit load to 

the dock door. 

In assigning unit loads to storage locations, a large number of storage assignment policies 

can be selected and implemented. Random and class-based storage are widely used storage 

assignment policies. With a random storage policy, a unit load can be stored in an equally-likely-

selected location from among all empty storage locations in the warehouse. With a class-based 

storage policy, a specific unit load can be stored in an equally-likely-selected location from 

among all empty storage locations in a storage region assigned to the particular class of products. 

Dividing the storage region into three different classes (ABC class-based storage policy) and 

storing the most popular unit loads of products in the class “closest” to the dock door(s) has been 

widely studied and applied.  

The shape factor for a warehouse is defined as the ratio of the width and depth of a rectangle-

shaped warehouse, where the width designates the length of the wall containing dock doors. 

Optimizing the shape factor results in minimizing expected distance traveled in a warehouse. An 

objective of this study is to determine the optimal shape factor for each rectangle-shaped class 

within a multi-dock-door, unit-load warehouse. 

A contour line encloses all storage locations having expected distance traveled between dock 

doors and storage locations less than or equal to the value of the contour line (Francis et al., 

1992). Hence, the storage locations on a contour line have identical expected distances from/to 

the set of dock doors. Initially, we develop contour lines of a warehouse having multiple dock 

doors. Moreover, similar to other studies of class-based storage, we categorize products into 

three classes and calculate expected distance for the overall warehouse. Figure 4.1 illustrates 
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rectangle-shaped (left) and contour-line-shaped (right) warehouses for 3 centrally located dock 

doors with a specified distance δ between adjacent dock doors.  

 

Figure 4.1: Rectangle-shaped and contour-line-shaped warehouses with 3 dock doors and ABC 

storage regions 

Throughout the research, the first two scenarios from previous chapters are considered: 

Scenario 1 consists of equally spaced dock doors dispersed over the entire width of the wall and 

Scenario 2 consists of dock doors centrally located about the wall’s centerline with a specified 

distance δ between adjacent dock doors. Comparing the results for contour-line-shaped 

warehouses with the results for corresponding rectangle-shaped warehouses, the expected-

distance penalty incurred by requiring the warehouse configuration to be rectangle-shaped is 

determined for various numbers and locations of dock doors. Additionally, the effect of ABC 

curve shapes on the penalty is examined for different skewness levels. 

The chapter is organized as follows. First, research literature related to rectangle-shaped and 

contour-line-shaped warehouse configurations is reviewed. Next, the notation used in subsequent 

sections is presented. The derivation of expected-distance expressions for each class is provided 

in Section 4.4. Sections 4.5 and 4.6 include expected-distance formulations for rectangle-shaped 
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and contour-line-shaped warehouses, respectively. In Section 4.7, we examine the penalty, as 

measured by expected distance, by forcing a storage region to be rectangle-shaped instead of 

contour-line-shaped. Section 4.8 provides computational results based on specified values of 

parameters. Section 4.9 contains design conclusions and provides recommendations for future 

research. 

4.2. Literature Review 

The first to develop an analytical model for expected single-command distance in a single-

dock-door warehouse was Francis (1967a). He solved facility layout problems in the context of 

warehouse design by considering the location of the dock door as the known point and storage 

locations as facilities. He concluded a width-to-depth ratio of 2:1 for a rectangle-shaped 

warehouse minimizes expected rectilinear distances between a centrally located dock door and 

storage locations. Using contour lines, he developed total cost models for single and multiple 

types of products and configured the areas of storage regions in a continuous space using contour 

lines. He provided solutions to the models and, based on his results, offered useful design 

benchmarks. 

Francis (1967b) employed a procedure based on a special case of the Neyman-Pearson 

Lemma to calculate expected distance. Specifically, based on two mathematical properties, he 

cleverly transformed a two-dimensional spatial domain to a one-dimensional objective function 

domain. Instead of integrating over the two-dimensional storage region, he integrated over the 

objective function space contained within a contour line. Developing properties of facility 

designs and providing examples of optimal designs, he also presented sufficient conditions for 

optimal facility designs for warehouses having one or more dock doors. In addition to warehouse 

designs, he cited parking lot and stadium designs as possible applications.  
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For a given set of dock-door locations, Francis (1967b) proved there is no other shape for a 

storage region having an expected distance less than that for a contour-line-shaped storage 

region. Hence, a rectangle-shaped storage region will have an expected distance at least as great 

as that for a contour-line-shaped storage region. Importantly, as will be demonstrated in Section 

4.8, Francis’s properties apply to Scenario 2, but they do not apply to Scenario 1, because the 

dock-door locations will differ for the contour-line-shaped warehouse and the optimally 

configured rectangle-shaped warehouse.  

Mallette and Francis (1972) represented the facility design problem as a generalized 

assignment problem by considering the plane to be composed of grid squares. Providing 

necessary and sufficient conditions, they evaluated the performance of a multi-dock-door 

rectangle-shaped warehouse under a class-based storage policy with rectilinear travel between 

dock doors and centroids of grid squares. 

Developing continuous formulations for the warehouse layout problem, Francis and White 

(1974) provided expected-distance results when travel is based on rectilinear, Euclidean, 

Chebyshev, and squared-Euclidean metrics. Specifically, using the contour-line approach, they 

provided optimal warehouse designs. Illustrating the contour-line approach in calculating 

expected distances traveled, Francis et al. (1992) provided expressions and examples of optimum 

designs for up to three dock doors. Generalizing their studies, our research develops the 

expected-distance formulations for k dock doors considering class-based storage regions. 

Whereas the previous research addressed the overall shape of the storage region, additional 

research has addressed the configuration of aisles within a warehouse. For example, in 

evaluating the effect on space utilization of aisle width and the angle of alignment of the pallets, 

Moder and Thornton (1965) appear to be the first researchers to consider non-traditional aisle 
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designs. Developing formulations for total warehouse volume and material handling costs, Berry 

(1968) investigated two types of aisle design: rectangular and diagonal. He concluded a 

warehouse having a diagonal aisle configuration has lower total cost than a warehouse having a 

rectangular aisle configuration. He also concluded a warehouse layout that maximizes space 

utilization (area occupied) differs from one that minimizes expected distance. 

White (1972) combined rectilinear travel with radial travel by considering the combination of 

a set of rectilinear aisles and a set of radial aisles in a continuous space warehouse. He showed 

expected distance shifts from rectilinear distance to Euclidian distance as the number of radial 

aisles increases. 

Gue and Meller (2006) proposed fishbone aisle design and their results showed single-

command distance in a traditional warehouse can be reduced up to 20.3% by using a fishbone 

design. Gue and Meller (2009) studied two non-traditional aisle configurations within a 

warehouse: flying-V and fishbone. Inserting a nonlinear cross-aisle in the warehouse layout, they 

showed expected distance can be reduced by 8-12% depending on the size of the warehouse. 

Having a diagonal and straight middle-cross-aisle, and arranging S/R aisles perpendicularly 

above the cross-aisle, they concluded expected distance can be reduced by as much as 20.3%.  

Meller and Gue (2009) presented the first implementation of two non-traditional warehouse 

designs. Because having a single centrally located dock door is a disadvantage for the fishbone 

design, they introduced a new design, the chevron aisle design. They concluded the performance 

of the warehouse having chevron aisle design is very close to the warehouse having fishbone 

aisle design. 

Using Monte Carlo simulation, Pohl et al. (2007) evaluated the performance of designs 

proposed by Gue and Meller (2009) for dual-command travel. Their results indicate the flying-V 
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design reduces expected distance by approximately 12.5%; whereas, reduction in expected 

distance for fishbone design is approximately 15.9%. Because the reduction in expected distance 

for fishbone design is greater than for flying-V, Pohl et al. (2009) concentrated on developing 

analytical formulations for expected distance in a fishbone design. They noted expected distance 

with dual-command travel in a fishbone design can be approximately 10%-15% less than in a 

traditional warehouse of the same size. They concluded the fishbone design dominates other 

warehouse designs they considered when the half-warehouse shape is approximately square. 

Based on a turnover-based storage policy and single-command and dual-command travel, 

Pohl et al. (2011) compared the expected distance for flying-V and fishbone designs. They 

concluded flying-V does not perform well compared to traditional warehouses, whereas fishbone 

design performs better. They concluded the reduction in dual-command travel distances is 

between 6% and 16% depending on the size of the warehouse. 

Gue et al. (2012) extended the work in Gue and Meller (2009) and considered multiple dock 

doors. They proposed two new aisle designs: modified flying-V and inverted-V. The former 

design can reduce expected distances 3-6%; whereas the latter design results in either a reduction 

of less than 1% or an incremental increase in expected distance. They also showed that 

increasing the number of dock doors decreases the benefit of the flying-V design and the best 

location for pickup and deposit (P&D) points is the centerline of the warehouse.  

Gálvez and Ting (2012) confirmed the results drawn by Gue et al. (2012) and proposed a 

rotated fishbone layout which performs better than other layouts when 2 dock doors are located 

in the upper corners of the warehouse. For a big warehouse, their experiment showed the rotated 

fishbone design performs better than a traditional aisle design up to 17% and 18% for single- and 

dual-command travel, respectively.  
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Using a continuous approach, Cardona et al. (2012) determined the slope of a cross-aisle in a 

fishbone design that minimizes expected distance. From their analytical study, they agreed with 

Gue and Meller (2009) that the savings on the expected distance for the fishbone design are 

greater than 18%. 

Incorporating vertical travel distances into flying-V and fishbone designs, Clark and Meller 

(2013) concluded increasing the height of vertical travel decreases the improvement over 

traditional warehouses for both designs by between 3% and 5% with a 20/80 demand curve.  

Inserting one, two and three cross-aisles in a unit-load warehouse, Ozturkoglu et al. (2012) 

proposed chevron, leaf and butterfly designs. Allowing cross-aisles and S/R aisles to be located 

at any angle with respect to the wall containing the dock door, they provided continuous space 

formulations for expected distance. They also developed discrete formulations to more 

accurately measure travel distances. Comparing the proposed aisle designs with a traditional 

aisle design, their results showed chevron is the best design for warehouses with 27 or fewer 

aisles and the reduction in expected distance is approximately 16%. For middle-size warehouses 

(more than 27 aisles and less than 65 aisles), the leaf aisle design occupies 6% more space than a 

traditional aisle design, but reduces expected distance by 19.3%. For warehouses with more than 

65 aisles, the butterfly aisle design performs slightly better than the leaf aisle design and reduces 

expected distance by approximately 20% compared to an equivalent traditional aisle design.  

Relaxing the assumption by Gue et al. (2012) of multiple dock doors located on one side of 

the warehouse, Ozturkoglu et al. (2014) considered multiple dock doors distributed on different 

sides of the warehouse. They developed a network-based formulation to obtain the expected 

distance in a given design. Determining the best angle for cross-aisles and S/R aisles for a given 
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number of dock doors in a unit-load warehouse, they concluded the potential benefit of 

alternative aisle designs depends on the number and locations of dock doors. 

An early study employing a class-based storage policy is credited to Heskitt (1963). Defining 

the cube-per-order (CPO) index as the ratio of required storage area to order frequency for a 

SKU, he proposed assigning SKUs with the lowest CPO index to locations with the smallest 

expected distance. Francis (1967a) proved the optimality of CPO index for single-command 

travel when the expected distance between dock doors and storage locations is not a function of 

the products assigned to the storage locations. 

Hausman et al. (1976) introduced the problem of assigning classes of SKUs to storage 

locations in an AS/RS with the objective of minimizing travel time. Subsequent to their 

publication, numerous papers addressed class-based storage policies in the design of an AS/RS 

with the objective of maximizing throughput. A relatively recent review of literature on class-

based storage policies can be found in de Koster et al. (2007) and Gu et al. (2007). 

Bender (1981) studied approaches to represent the Pareto curve, as well as their limitations. 

He proposed a new approach to describe the Pareto curve mathematically. Moreover, he included 

three applications of his model to illustrate the concept behind his approach. Using his 

formulations, we examined the effect of ABC curve shapes on the penalty resulting from 

requiring a warehouse to be rectangle-shaped, rather than contour-line-shaped.  

Recently, Thomas and Meller (2014) presented expected-distance models for put-away, order 

picking and replenishment operations for both random and class-based storage policies by using 

Bender’s formulations to determine the percent of activity for each class in a traditional 

warehouse design. Moreover, they allowed dock doors to be uniformly distributed along either 

one side or two opposite sides of the warehouse. They determined the optimal shape factor of the 



166 

warehouse design by incorporating horizontal travel distances for put-away, order picking and 

replenishment operations. Their numerical results demonstrated the optimal shape factor differs 

among the operations they considered. Extending their study for specified dock-door locations 

(Scenario 2) may provide useful rules of thumb for warehouse designers. 

4.3. Notation 

The notation used in developing expected-distance formulations is listed below and 

illustrated in Figure 4.1. 

Wi = width of the union of storage areas 1 thru i (1 = A, 2 = A∪B, 3 = A∪B∪C)  

Di = depth of the union of storage areas 1 thru i (1 = A, 2 = A∪B, 3 = A∪B∪C) 

Si = shape factor (Si = Wi / Di) for the storage space containing classes 1 thru i  

  (1 = A, 2 = A∪B, 3 = A∪B∪C)   

Ai = the total storage area required by product class i (i = A, B, C) 

Ai∪j = the total storage space required for classes i and j (i = A, B, C and j = A, B, C) 

Ti = throughput rate, measured in number of roundtrips per unit time, for product  

  class i (i = A, B, C) 

ti =  percentage of the movement for class i (i = A, B, C and ti = Ti / ∑ 𝑇𝑖∀𝑖 ) 

pi  = percentage of the storage space required for class i (i = A, B, C and pi = Ai / ∑ 𝐴𝑖∀𝑖 ) 

k = number of dock doors 

ki = number of dock doors “covered” by storage area i (i = A, B, C) 

ki∪j = number of dock doors “covered” by the union of storage areas i and j (i = A, B, C and 

   j = A, B, C) 

ω = the width of a dock door 
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ѱ = the clearance between adjacent dock doors 

δ = the distance between centerlines of two adjacent dock doors (i.e. ith and (i+1)th dock 

  doors) (δ = ω + ѱ) 

SCi = single-command roundtrip distance of storage area i (i = A, B, C) 

zk,i = the objective function value of contour line i in a warehouse having k dock doors 

f*k,i = the minimum value of the objective function for contour line i in a warehouse having  

  k dock doors 

hk,i = the distance from dock door k to contour line i 

Ak,i = the area enclosed by contour line i in a warehouse having k dock doors 

q(zk,i) = the functional relationship between Ak,i and hk,i 

r(zk,i) = inverse function relating Ak,i and hk,i (found by solving q(zk,i) for k) 

E[Dk,i] = one-way expected distance of contour line i in a warehouse having k dock doors 

4.4. Derivation of expected-distance formula for each class 

Expected-distance expressions for storage area A, the union of storage areas A and B, and the 

union of storage areas A, B and C can be developed directly. However, it remains to develop an 

expected-distance expression for only storage area B or for only storage area C. To do so, we 

first use the relationship between expected distance for Class A and the expected distance for the 

union of storage areas A and B, which is E [SCA∪B] = pA E [SCA] + pB E [SCB]. Because pA = AA 

/ AA∪B = (W1 D1) / (W2 D2) and pB = (AA∪B – AA) / AA∪B = (W2 D2 – W1 D1) / (W2 D2), the 

expected distance for Class B is 

 

E [SCB] = (AA∪B E [SCA∪B] – AA E [SCA]) / (AA∪B – AA) or 

E [SCB] = (W2 D2 E [SCA∪B] – W1 D1 E [SCA]) / (W2 D2 – W1 D1). 

(4.1) 
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Now, obtaining the expected distance for Class C, we use the relationship between the 

expected distance for the union of storage areas A and B, and the expected distance for the union 

of storage areas A, B and C, E [SCA∪B∪C] = pA∪B E [SCA∪B] + pC E [SCC]. Because pA∪B = AA∪B / 

AA∪B∪C = (W2 D2) / (W3 D3) and pC = (AA∪B∪C – AA∪B) / AA∪B∪C = (W3 D3 – W2 D2) / (W3 D3), the 

expected distance for Class C is 

 

E [SCC] = (AA∪B∪C E [SCA∪B∪C] – AA∪B E [SCA∪B]) / (AA∪B∪C – AA∪B) or 

E [SCC] = (W3 D3 E [SCA∪B∪C] – W2 D2 E [SCA∪B]) / (W3 D3 – W2 D2). 

(4.2) 

4.5. Rectangle-shaped warehouse 

In this section, we develop expected single-command distance formulas for a rectangle-

shaped warehouse. Assuming storage/retrieval (S/R) locations are uniformly distributed over 

continuous storage regions, the optimal width and the optimal depth of each storage region is 

approximated. Specifically, two scenarios are considered regarding the number and locations of 

dock doors: 1) k dock doors are dispersed over an entire wall of the warehouse with an equal 

distance between adjacent dock doors and 2) k dock doors are located along one wall of the 

warehouse with a fixed distance (δ) between adjacent dock doors. 

From Chapter 2, the expected single-command distance for k dock doors dispersed over the 

entire wall of the warehouse is 

 E [SC] = [(2k + 1) W] / [3(k +1)] + D, (4.3) 

and the expected single-command distance for k centrally located dock doors with a specified 

distance (δ) between adjacent dock doors is  

 E [SC] = W / 2 + [(k 2 – 1) δ 2] / 6W + D. (4.4) 

In deriving expected-distance formulas, three cases are taken into consideration for each 

scenario, as illustrated in Figure 4.2: 1) all dock doors are covered by the storage area A; 2) all 
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dock doors are covered by the union of storage areas A and B, but some dock doors are not 

covered by storage area A; and 3) all dock doors are covered by the union of storage areas A, B 

and C, but some dock doors are not covered by the union of storage areas A and B. Although the 

number of dock doors shown differs among the cases, the formulations are valid for any number 

of dock doors. 

 

Figure 4.2: Cases for dock-door locations in a rectangle-shaped warehouse for each scenario 

Employing expected-distance formulas, a general formulation of the nonlinear-programming 

optimization problem is used to determine the widths and depths of storage regions: 

Minimize : E [SCCase1] x1 + E [SCCase2] x2 + E [SCCase3] x3 

Subject to : W1 D1 = AA, W2 D2 = AA∪B and W3 D3 = AA∪B∪C  

1) W3 ≥ (k + 1) (ω + ѱ) and 2) W3 ≥ k δ 

W3 ≥ W2 ≥ W1 and D3 ≥ D2 ≥ D1 

x1 + x2 + x3 = 1 
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Wi > 0 and Di > 0. 

 x1, x2 and x3 binary 

The first constraint assures the space requirement is met for each storage region. Pre-

determined areas are given as AA, AA∪B and AA∪B∪C. The second constraint requires the width of 

the overall warehouse (AA∪B∪C) to be sufficient for the location of k dock doors; the constraint 

differs, depending on the scenario. Alternatively, we could have relaxed the rectangularity 

assumption and based the width constraint on different storage regions (e.g. (ω + ѱ) ≤ W1 (k + 1) 

or (ω + ѱ) ≤ W3 (k + 1) for Scenario 1); we defer such considerations to future research. 

Satisfying the rectangularity assumption for the overall warehouse, the third constraint is added 

to our optimization model. The fourth constraint guarantees only one case is chosen in 

calculating expected single-command distance. The last two constraints define the set of 

constraints for the nonnegative and binary properties of decision variables, respectively. 

Solving the nonlinear-programming optimization problem, we used an open source code, 

Couenne (2006), in AMPL (2013) software package. Couenne (2006) solves Mixed-Integer 

Nonlinear Programming (MINLP) formulations by using linearization, bound reduction and 

branching methods within a branch and bound algorithm (Belotti, 2009; Belotti et al. 2009). 

Notice, binary variables are used to incorporate conditional expressions for expected single-

command distances. Section 4.8 includes results from Couenne (2006). 

4.5.1. Dock doors dispersed over an entire wall 

In this sub-section, we develop expected single-command distance formulations for a 

rectangle-shaped warehouse having k dock doors dispersed over the entire wall. Because the 

distance between adjacent dock doors, W3 / (k + 1), is a function of the width of the entire 

warehouse (W3), the width of the storage areas for Class A (W1) and the union of Classes A and 
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B (W2) do not affect the spacing between adjacent dock doors. Therefore, Equation (4.3) is used 

for the union of Classes A, B and C; whereas, Equation (4.4) is used to develop expected-

distance expressions for Class A and the union of Classes A and B. 

By adjusting Equations (4.3) and (4.4), the expected distance for Class A and the union of 

Classes A and B, and the union of Classes A, B and C are obtained as follows 

 E [SCA] = W1 / 2 + [(k – 1) W3
 2] / [6(k + 1) W1] + D1, (4.5) 

  E [SCA∪B] = W2 / 2 + [(k – 1) W3
 2] / [6(k + 1) W2] + D2, (4.6) 

  E [SCA∪B∪C] = [(2k + 1) W3] / [3(k +1)] + D3. (4.7) 

Equations (5), (6) and (7) hold for all cases.  

Case 1: If all dock doors are covered by storage area A, [(k – 1) W3] / (k + 1) ≤ W1. Substituting 

Equations (4.5) and (4.6) into Equation (4.1) and reducing the resulted equation, the expected 

distance for Class B is 

  
     

  

2 2 2

2 2 1 1 2 1 3

2 2 1 1

3 1 1

6 1
B

k W D W D k D D W
E SC

k W D W D

    


 
. (4.8) 

Similarly, substituting Equations (4.6) and (4.7) into Equation (4.2), the expected distance for 

Class C is 

  
        

  

2

3 3 3 3 2 2 2 2 3

3 3 2 2

2 2 1 3 1 3 1 2 1

6 1
C

W D k W k D D k D W W k W
E SC

k W D W D

            
 

 (4.9) 

Because the percentage of the movement for class i is ti, the expected distance traveled for a 

rectangle-shaped warehouse having k dock doors for Case 1 is  
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 
    

 

  
  

  

  

   

  

    

  

2 22
2 2 1 13 1 1 1

1 2 2 1 1

2
3 3 3 32 1 3

2 2 1 1 3 3 2 2

2

2 2 2 2 3

3 3 2 2

3 11 3 1 2

6 1 6 1

2 2 1 3 11

6 1 6 1

3 1 2 1

6 1

A B

B C

C

k W D W DW k k D W W
E SC t t

k W k W D W D

W D k W k Dk D D W
t t

k W D W D k W D W D

D k D W W k W
t

k W D W D

      
   

      

            
       

      
 

.




 (4.10) 

Case 2: If some dock doors are not covered by storage area A, but all dock doors are covered by 

the union of storage area A and B, W1 ≤ [(k – 1) W3] / (k + 1) ≤ W2. Developing expected-

distance formulas, we first determine the number of dock doors covered by each class, kA = k – 2 

⌈ {(k – 1) W2 – (k + 1) W1} / 2W2 ⌉ and kB = k – kA. Adjusting Equation (4.4) for kA dock doors 

and storage area A, the expected distance from/to dock doors covered by Class A is  

 E [SCkA
] = W1 / 2 + [(kA

2 – 1) W3
 2] / [6(k + 1)2 W1] + D1. (4.11) 

A new formulation for the expected distance from/to dock doors not covered by Class A, but 

covered by Class B, is 

 E [SCkB
] = (2k – kB) W3 / 2(k + 1) + D1. (4.12) 

Multiplying the two previous equations by the corresponding percent of usage for dock 

doors, then summing these equations and dividing by k, the expected distance for Class A is 

  
       

 

2 2

3 1 3 1

12

1

1 3 1 1 2

6 1

A A A B B

A

k k W k k k W k k k W W
E SC D

k k W

       
 


. (4.13) 

Because all dock doors are covered by the union of storage areas A and B, and the union of 

storage area A, B and C, Equations (4.6) and (4.7) can be used directly for Case 2. Therefore, 

substituting Equations (4.6) and (4.13) into Equation (4.1), the expected distance for Class B is  
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 
    

  

 
   

       

   

2 22

3 12 3 2 2 2

2

2 2 1 1 2 2 1 1

1 3 1 1 1

2

2 2 1 1

11 3 1 2

6 1 6 1

3 1 1 2 2 1

6 1

A A

B

A B B

k k W DD k W k W D W
E SC

k W D W D k k W D W D

k k k W k k k W k k D W D

k k W D W D

       
   

       
 

, (4.14) 

and substituting Equations (4.6) and (4.7) into Equation (4.2), the expected distance for Class C 

is obtained 

 
        

  

2

3 3 3 3 2 2 2 2 3

3 3 2 2

2 2 1 3 1 3 1 2 1
.

6 1
C

W D k W k D D k D W W k W
E SC

k W D W D

            
 

 (4.15) 

Multiplying the expected distance for each storage area by the percentage of the movement 

for storage area, the expected distance for a rectangle-shaped warehouse with Case 2 is  

 
       

 

    

  

 
   

       

 

2 2

3 1 3 1

12

1

2 22

3 12 3 2 2 2

2

2 2 1 1 2 2 1 1

1 3 1 1 1

2

2 2

1 3 1 1 2

6 1

11 3 1 2

6 1 6 1

3 1 1 2 2 1

6 1

A A A B B

A

A A

B B

A B B

B

k k W k k k W k k k W W
E SC t D

k k W

k k W DD k W k W D W
t t

k W D W D k k W D W D

k k k W k k k W k k D W D
t

k k W D

        
  

  

            
        

       
  

        

  

1 1

2

3 3 3 3 2 2 2 2 3

3 3 2 2

2 2 1 3 1 3 1 2 1
.

6 1
C

W D

W D k W k D D k D W W k W
t

k W D W D

 
 

  

              
   

 
(4.16) 

Case 3: If some dock doors are not covered by the union of storage areas A and B, [(k – 1) W3] / 

(k + 1) > W2. Calculating the number of dock doors covered by storage area A, the equation 

given in Case 2 can be used for Case 3 because some dock doors also are not covered by Class 

A, kA = k – 2 ⌈ {(k – 1) W3 – (k + 1) W1} / 2W3 ⌉. Hence, kB∪C = k – kA. Likewise, the number of 

dock doors covered by the union of storage areas A and B is kA∪B = k – 2 ⌈ {(k – 1) W3 – (k + 1) 

W2} / 2W3 ⌉. Therefore, kC = k – kA∪B. Using Equation (4.11) for dock doors covered by Class A 
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and adjusting Equation (4.12) for dock doors covered by the union of Classes B and C (k B∪C 

instead of kB), the expected distance for Class A is 

  
       

 

2 2

3 1 1 3

12

1

1 3 1 1 2

6 1

A A A B C B C

A

k k W k W k k W k k k W
E SC D

k k W

        
 


. (4.17) 

Similarly, the expected distance traveled for dock doors covered by the union of storage 

areas A and B is  

 E [SCkA∪B
] = W2 / 2 + [(kA∪B 

2 – 1) W3
 2] / [6(k + 1) 2 W2] + D2, (4.18) 

and the expected distance traveled for dock doors not covered by the union of storage areas A 

and B is 

 E [SCkC
] = (2k – kC) W3 / 2(k + 1) + D2. (4.19) 

Therefore, the expected distance for the union of storage areas A and B is 

 
       

 

2 2

3 2 2 3

22

2

1 3 1 1 2

6 1

A B A B A B C C

A B

k k W k W k k W k k k W
E SC D

k k W

  



       
 


. (4.20) 

Substituting Equations (4.17) and (4.20) into Equation (4.1), the expected distance for Class 

B is obtained 

 

 
   

   

       

   

       

   

2 2 2 2

3 2 3 1

2

2 2 1 1

2 3 2 2 2

2

2 2 1 1

1 3 1 1 1

2

2 2 1 1

1 1

6 1

3 1 1 2 2 1

6 1

3 1 1 2 2 1
.

6 1

A B A B A A

B

A B C C

A B C B C

k k W D k k W D
E SC

k k W D W D

k k k W k k k W k k D W D

k k W D W D

k k k W k k k W k k D W D

k k W D W D

 



 

  


 

       


 

       
 

 (4.21) 

Likewise, substituting Equations (4.7) and (4.20) into Equation (2), the expected distance for 

Class C is 
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 
   

  

 
   

       

   

2 2

33 3 3 3

2

3 3 2 2 3 3 2 2

2 3 2 2 2

2

3 3 2 2

12 1 3 1

3 1 6 1

3 1 1 2 2 1
.

6 1

A B A B

C

A B C C

k k WW D k W k D
E SC

k W D W D k k W D W D

k k k W k k k W k k D W D

k k W D W D

 



     
   

       
 

 (4.22) 

Multiplying the expected distance for each class by the percentage of the movement for each 

class and summing the resulting equations, the expected distance for Case 3 is  

 

 
       

 

   
   

       

   

   

2 2

3 1 1 3

12

1

2 2 2 2

3 2 3 1

2

2 2 1 1

2 3 2 2 2

2

2 2 1 1

1 3 1 1 2

6 1

1 1

6 1

3 1 1 2 2 1

6 1

3 1 1

A A A B C B C

A

A B A B A A

B

A B C C

B

A

B

k k W k W k k W k k k W
E SC t D

k k W

k k W D k k W D
t

k k W D W D

k k k W k k k W k k D W D
t

k k W D W D

k k k W
t

 

 



        
  

  

   
 

   

          
   

 


   

   

   

  

 
   

       

   

1 3 1 1 1

2

2 2 1 1

2 2

33 3 3 3

2

3 3 2 2 3 3 2 2

2 3 2 2 2

2

3 3 2 2

2 2 1

6 1

12 1 3 1

3 1 6 1

3 1 1 2 2 1

6 1

B C B C

A B A B

C C

A B C C

C

k k k W k k D W D

k k W D W D

k k WW D k W k D
t t

k W D W D k k W D W D

k k k W k k k W k k D W D
t

k k W D W D

 

 



      
 

   

           
        

         
 

.


  

(4.23) 

As stated, for Scenario 1, the distance between adjacent dock doors is a function of the width 

of the entire warehouse. Another approach is to allow the distance between adjacent dock doors 

to be a decision variable. From Chapter 2, locating dock doors as close as possible to the center 

of a wall minimizes expected distance traveled. Therefore, the optimal solution will be the 

smallest feasible distance between adjacent dock doors. Hence, finding the minimum distance 

between adjacent dock doors converts the problem to the next scenario. 
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4.5.2. Dock doors along one wall with δ separation between adjacent dock doors 

When dock doors are centrally located with a fixed distance (δ) between adjacent dock doors, 

we employ a process similar to that employed in the previous sub-section to develop expected-

distance expressions. However, only Equation (4.4) is used because the distance between 

adjacent dock doors does not depend on storage area widths.  

Adjusting Equation (4.4), the expected distance for Class A and the union of Classes A and 

B, and the union of Classes A, B and C are  

 E [SCA] = W1 / 2 + [(k 2 – 1) δ 2] / 6W1 + D1, (4.24) 

 E [SCA∪B] = W2 / 2 + [(k 2 – 1) δ 2] / 6W2 + D2, (4.25) 

 E [SCA∪B∪C] = W3 / 2 + [(k 2 – 1) δ 2] / 6W3 + D3. (4.26) 

As stated, three cases are considered. Equations (4.24), (4.25) and (4.26) hold for all cases.  

Case 1: If all dock doors are covered by Class A, (k – 1) δ ≤ W1. Expected-distance expressions 

for Classes B and C are obtained by substituting Equations (4.24) and (4.25) into Equation (4.1), 

and Equations (4.25) and (4.26) into Equation (4.2), respectively. Therefore, the expected 

distance for Class B is 

  
       

 

2 2 2 2

2 2 2 2 1 1 1 1

2 2 1 1

1 3 2 1 3 2

6
B

D k W W D D k W W D
E SC

W D W D

          
   


, (4.27) 

and the expected distance for Class C is  

  
       

 

2 2 2 2

3 3 3 3 2 2 2 2

3 3 2 2

1 3 2 1 3 2

6
C

D k W W D D k W W D
E SC

W D W D

          
   


. (4.28) 

Consequently, the expected distance for a rectangle-shaped warehouse having k dock doors 

with Case 1 is 
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 
   

       

 

       

 

2 2

1 1 1

1

2 2 2 2

2 2 2 2 1 1 1 1

2 2 1 1

2 2 2 2

3 3 3 3 2 2 2 2

3 3 2 2

1 3 2

6

1 3 2 1 3 2

6

1 3 2 1 3 2
.

6

A

B

C

k W W D
E SC t

W

D k W W D D k W W D
t

W D W D

D k W W D D k W W D
t

W D W D



 

 

   
 
  

          
    

 
 

          
    

 
 

 
(4.29) 

Case 2: If some dock doors are not covered by storage area A, but are covered by storage area B, 

W1 ≤ (k – 1) δ ≤ W2. The number of dock doors covered by Class A is kA = k – 2 ⌈ [(k – 1) δ – 

W1] / 2δ ⌉. Hence, kB = k – kA. Adjusting Equation (4.24) for kA dock doors, the expected distance 

for dock doors covered by Class A is 

 E [SCkA
] = W1 / 2 + [(kA

2 – 1) δ 2] / [6W1] + D1. (4.30) 

Developing a new formula for kB dock doors, the expected distance for dock doors not 

covered by Class A, but covered by Class B, is 

 E [SCkB
] = (k – kB / 2) δ + D1. (4.31) 

Therefore, the expected-distance expression for Class A with Case 2 is 

  
   2 2

1 1

1

1

1 3 2 2

6

A A A B B

A

k k W k W k k k
E SC D

kW

       
  
  

. (4.32) 

Obtaining the expected distance for Classes B and C, Equations (4.25) and (4.26) can be used 

directly because the union of storage areas A and B, and the union of storage areas A, B and C 

cover all dock doors. Therefore, substituting Equations (4.25) and (4.32) into Equation (4.1), the 

expected distance for Class B is 
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 
   

 

    
 

2 2

2 2 2 1

2 2 1 1

2 2

1 1 1 1

2 2 1 1

1 3 2

6

1 3 2 2 2
,

6

B

A A A B B

D k k W W D
E SC

k W D W D

D k k W k W k k k k D

k W D W D



 

   
 



      




 (4.33) 

and substituting Equations (4.25) and (4.26) into Equation (4.2), the expected distance for Class 

C is obtained 

  
       

 
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6
C

D k W W D D k W W D
E SC

W D W D

          
   


. (4.34) 

Finally, the expected distance for a rectangle-shaped warehouse with Case 2 is 

 
   

   
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 

 (4.35) 

Case 3: If some dock doors are not covered by the union of storage areas A and B, (k – 1) δ > 

W2. The number of dock doors covered by Class A and by the union of Classes A and B are kA = 

k – 2 ⌈ {(k – 1) δ – W1} / 2δ ⌉ and kA∪B = k – 2 ⌈ {(k – 1) δ – W2} / 2δ ⌉, respectively. Hence, kB∪C 

= k – kA and kC = k – kA∪B. Using Equation (4.30) for dock doors covered by Class A and 

adjusting Equation (4.31) for dock doors covered by the union of Classes B and C (k B∪C instead 

of kB), the expected distance for Class A is 
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  
   2 2

1 1

1

1
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6
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A

k k W W k k k k
E SC D

kW

       
  . (4.36) 

Then, the expected distance traveled for dock doors covered by the union of Classes A and B 

is 

 E [SCkA∪B
] = W2 / 2 + [(kA∪B 

2 – 1) W3
 2] / [6(k + 1)2 W2] + D2, (4.37) 

and the expected distance traveled for dock doors not covered by the union of Classes A and B is 

 E [SCkC
] = (2k – kC) W3 / 2(k + 1) + D2. (4.38) 

Therefore, the expected distance for the union of Classes A and B is 

  
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2
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
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  . (4.39) 

Substituting Equations (4.36) and (4.39) into Equation (4.1), the expected distance for Class 

B is obtained 
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 (4.40) 

Likewise, substituting Equations (4.26) and (4.39) into Equation (4.2), the expected distance 

for Class C is  
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 (4.41) 

The expected distance traveled for a rectangle-shaped warehouse having k dock doors for 

Case 3 is obtained 
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 (4.42) 

4.6. Contour-line-shaped warehouse 

In this section, the concept of contour sets and contour lines defined by Francis et al. (1992) 

is used to develop expected single-command distance formulas for contour-line shaped 

warehouses. As stated, a contour line includes all points with expected distances to/from dock 

doors that are less than or equal to the value of the contour line. Contour lines determine the 

shape of the storage regions or/and the overall shape of the warehouse. For a detailed procedure 

to construct contour lines, see Francis (1963). After constructing contour lines, expected single-

distance formulations are developed. As stated, Francis (1967b) employed a special case of the 

Neyman-Pearson Lemma to calculate expected distance. For proofs of the properties underlying 

his procedure, see Francis (1967c). To illustrate the procedure, we consider a contour-line-

shaped warehouse having three dock doors.  

As illustrated in Figure 4.3 (left), consider a storage area, A, with three dock doors having a 

specified distance between adjacent dock doors, δ. Assuming travel to/from storage locations is 
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equally likely for each dock door, contour lines are illustrated in Figure 4.3 (right). Notice the 

number of contour sets is k / 2 and (k + 1) / 2 for an even and an odd number of dock doors, 

respectively. All contour lines within a set have the same shape. 

 

Figure 4.3: Contour line construction for a storage region having three dock doors with a 

specified distance between adjacent dock doors 

Within the storage region shown in Figure 4.3, there are 2 contour sets. The first set is 

defined by the triangular-shaped set of points. The second set is defined by the points lying 

outside the first contour set and within the 5-sided contour set of points. The objective function 

value for the first contour set is 

 z3,1 = (1 / 3) [(δ – h3,1) + h3,1 + (δ + h3,1)] = (2δ + h3,1) / 3. (4.43) 

The minimum objective function value (2δ / 3) occurs when h3,1 equals zero; therefore, for 

the first contour set, f *3,1 = 2δ / 3. Solving Equation (4.43) for h3,1 gives h3,1  = 3z3,1 – 2δ. Solving 

for the area contained within a contour line having value h3,1, we obtain A3,1 = h3,1
 2 / 3. 

Therefore, solving for h3,1 as a function of the area gives h3,1 = (3A3,1)
 1/2. Furthermore, the 

functional relationship between A3,1 and z3,1 is 

 q(z3,1) = A3,1 = h3,1
 2 / 3 =  (3z3,1 – 2δ)2 / 3 = 3z3,1

 2 – 4z3,1(δ) + 4δ 2 / 3. (4.44) 

Based on the assumption of uniformly distributed points over the storage region, Equation 

(4.44) can be treated as the cumulative distribution function for single-command travel distance. 

Taking the first derivative of Equation (4.44) with respect to z3,1 yields the probability density 

function for the first contour set, q’(z3,1) = 6z3,1 – 4δ. Solving Equation (4.44) for z3,1 yields the 
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inverse function related to z3,1 and A3,1, which is the value of the objective function on the 

contour line enclosing A3,1, 

 r(A3,1) = z3,1 = (2δ + h3,1) / 3 = 2δ / 3 + (3A3,1)
 1/2 / 3 (4.45) 

Because h3,1 ≤ δ for the first contour set, the maximum objective function equals δ. 

Therefore, the expected one-way distance for the first contour set is  
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   
  
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 (4.46) 

Similarly, the objective function value for the second contour set having 5 sides is 

 z3,2 = (1 / 3) [h3,2 + (δ + h3,2) + (2δ + h3,2)] = δ + h3,2. (4.47) 

The minimum objective function value for the second contour set is equivalent to the 

maximum value of the first contour set, which is f*3,2 = δ. Solving Equation (4.47) for h3,2 gives 

h3,2 = z3,2 – δ. The storage area enclosed by any contour line having value h3,2 is A3,2 = h3,2
 2 + 

2h3,2
 (δ) + δ 2 / 3; therefore, solving for h3,2 as a function of the area gives h3,2 = (A3,2 + δ 2 / 3) 1/2 

– δ. As with the first contour set, the functional relationship between A3,2 and z3,2 is 

q(z3,2) = A3,2 = h3,2
 2 + 2h3,2

 (δ) + δ 2 / 3 =  (z3,2 – δ) 2 + 2(z3,2 – δ) δ + δ 2 / 3  = z3,2
 2 – 2δ 2 / 3. (4.48) 

Taking the derivative of Equation (4.48) with respect to z3,2 equals 2z3,2, which is the 

probability density function for the second contour set. Obtaining the value of the objective 

function for the second contour set enclosed by A3,2, Equation (4.48) is solved for z3,2. The value 

of the objective function is 

 r(A3,2) = z3,2 = δ + h3,2 = δ + (A3,2 + 2δ 2 / 3) 1/2 – δ = (A3,2 + 2δ 2 / 3) 1/2 (4.49) 
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The expected one-way distance for the second contour set is 
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 (4.50) 

Equations (4.46) and (4.50) are conditional expected values. To calculate the overall 

expected value, we remove the conditions by multiplying the result in Equation (4.46) by the 

probability of traveling to a point within the first contour set (A3,1 / A3,2) and multiplying the 

result in Equation (4.50) by the probability of traveling to a point in the second contour set  

([A3,2 – A3,1] / A3,2). Summing the results obtained and multiplying by 2, the expected single-

command distance in a contour-line-shaped warehouse having three dock doors is 

    
3

3 2
2

3,2

3,2 3,2

4 20
2 3

3 27
E SC A

A A


    (4.51) 

A continuation of the approach given above leads to the following expected-distance 

formulations for Scenarios 1 and 2, respectively. 

  
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
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 (4.52) 

   
   

3 2
2 2 2 3 4 212 3 5 2

9018 3

A k k k
E SC

kAA

     
   (4.53) 

Although the objective functions of contour sets differ for an even and an odd number of 

dock doors, Equations (4.52) and (4.53) are valid for any number of dock doors. A proof of the 

claim and the step-by-step derivations of Equations (4.52) and (4.53) are provided in the 

Appendix.  
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As with a rectangle-shaped warehouse, we consider three cases for the locations of dock doors 

for each scenario (see Figure 4.4).  

 

Figure 4.4: Cases for dock-door locations in contour-line-shaped storage regions for each 

scenario 

4.6.1. Dock doors dispersed over an entire wall 

In this sub-section, we develop a general formulation of expected single-command distance 

in a contour-line-shaped warehouse having k dock doors dispersed over an entire wall with a 

class-based storage policy. Notice the distance between adjacent dock doors, hk, k/2 = hk, (k+1)/2 = 

[6AA∪B∪C / (k2 + 3k + 2)] 1/2, is a function of the storage area of the entire warehouse (AA∪B∪C); 

thus, the storage regions for Class A (AA) and the union of Classes A and B (AA∪B) do not affect 

the spacing between adjacent dock doors. Hereafter, for the sake of simplicity, we use hk instead 

of hk, k/2 and hk, (k+1)/2 in formulations. 

Case 1: If all dock doors are covered by Class A, AA∪B∪C (k2 – 3k + 2) / (k2 + 3k + 2) ≤ AA. Based 

on Case 1 of Scenario 1, the space between adjacent dock doors is determined by the union of 

Classes A, B and C. However, in calculating expected distances for Class A and the union of 
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Classes A and B, the expected-distance formulations for Case 1 in Scenario 2 apply. To calculate 

the expected distance for Class A, Equation (4.53) is used, with A replaced by AA, the area for 

Class A. To calculate the expected distance for Class B, we employ Equation (4.1) after 

calculating the expected distance for the union of Classes A and B by replacing A in Equation 

(4.53) with the area for the union of Classes A and B. After making the appropriate substitutions 

in Equation (4.1), we obtain 

  
   

 
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Similarly, adjusting Equation (4.53) for the union of Classes A and B and Equation (4.52) for 

the union of Classes A, B and C and substituting the resulting equations into Equation (4.2), the 

expected distance for Class C is 
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 (4.55) 

With the percentage of the movement for each class, the expected distance for a contour-line-

shaped warehouse with Case 1 is 
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 (4.56) 

Case 2: If some dock doors are not covered by storage area A, but all dock doors are covered by 

the union of storage areas A and B, AA < AA∪B∪C (k2 – 3k + 2) / (k2 + 3k + 2) ≤ AA∪B. Determining 

the number of dock doors covered by Class A, the functional relationship between the distance 

from/to dock doors to/from contour line i and the area enclosed by the contour line i is used. 

Because the resulted equation is a cubic function and solving the equation requires manipulation 

of complex numbers, Viète's trigonometric solution is used to obtain the number of dock doors. 

A simpler approach in finding the number of dock doors covered by storage area A is to use a 

mathematical software package, such as Mathematica (2015).  

Equation (A.4) and Equation (A.13) relate the area enclosed by a particular contour line and 

the number of dock doors; with an even number of dock doors, from Equation (A.4), given the 

area covered by a contour line, we can determine the number of dock doors covered by a contour 

line. Using a similar approach with Equation (A.13) for an odd number of dock doors, we can 

determine the number of dock doors covered by a contour line. For Class A, with an even 

number of dock doors, the number of dock doors covered by Class A is kA = 2⌊3 –1/2 cos  

{arccos [3 3/2 k (3 + 3k + k2) AA / (2 AA∪B∪C)] / 3} + 0.5⌋; for an odd number of dock doors,  
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kA = 2⌊3 –1/2 cos {arccos [3 3/2 k (3 + 3k  + k2) AA / (2 AA∪B∪C)] / 3}⌋ + 1. Therefore, the expected 

distance traveled for Class A is 

 

 
   

   

2 2 3 5 3

2

3/21/2 2 2

2

135 9 15 6

270

5 3 12 1
.

270

A

A

A

k A k A A A

k AA A

A

A

E
A h k k k h k k k

A k

k A k h k k

A

S

k

C
   



  
 

 (4.57) 

Because all dock doors are covered by the union of Classes A and B, adjusting Equation 

(4.53), the expected distance for the union of Classes A and B is 
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Therefore, substituting Equations (4.57) and (4.58) into Equation (4.1), the expected distance 

for Class B is  
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 (4.59) 

Likewise, adjusting Equation (4.52) for the union of storage areas A, B and C, substituting 

the adjusted equation and Equation (4.58) into Equation (4.2), the expected distance for Class C 

is obtained 
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 (4.60) 

Including the percentage of the movement for each class, the expected distance for a contour-

line-shaped warehouse with Case 2 is  
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(4.61) 

Case 3: If some dock doors are not covered by the union of storage areas A and B, AA∪B < 

AA∪B∪C (k2 – 3k + 2) / (k2 + 3k + 2). The equations used in Case 2 to calculate the number of dock 

doors covered by the storage area A can be used for Class A with Case 3. Similarly, following 

the same steps for Case 2, the number of dock doors covered by the union of Classes A and B is 

kA∪B = 2⌊3 –1/2 cos {arccos [3 3/2 k (3 + 3k + k2) AA∪B / (2 AA∪B∪C)] / 3} + 0.5⌋ for an even 

number of dock doors and kA∪B = 2⌊3 –1/2 cos {arccos [3 3/2 k (3 + 3k + k2) AA∪B / (2 AA∪B∪C)] / 

3}⌋ + 1 for an odd number of dock doors. Therefore, the expected distance traveled for dock 

doors covered by Class A is 
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 (4.62) 

Because not all dock doors are covered by the union of Classes A and B for Case 3, adjusting 

Equation (4.62), the expected distance traveled for dock doors covered by the union of Classes A 

and B is obtained 
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 (4.63) 

Therefore, substituting Equations (4.62) and (4.63) into Equation (4.1), the expected distance 

for Class B is 

 

 
   

 

   
 

 
 

     
 

2 2 3 5 3

2

3/21/2 2 2 2 2

2 2

3/21/23 5 3 2 2

2

135 9 15 6

270

5 3 12 1 135

270 270

9 15 6 5 3 12 1
.

270

k A k A A A

B

A B A

A k A A k A

A B A A

B

A B B B

A

B B

B A B B B

A

B

k A A A A k A A

A A

A

A h k k k h k k k
E SC

k A A

k A k h k k A h k k k

k A A k A A

h k k k k A k h k k

k A A

    





 



 



   




    
 

 

     
 




 (4.64) 

As with Case 2, adjusting Equation (4.52) for the union of storage areas A, B and C, 

substituting the adjusted equation and Equation (4.63) into Equation (4.2), the expected distance 

for Class C is obtained 
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 (4.65) 

Because of the length of the formula for the expected distance with Case 3, we do not include 

the overall formula. Multiplying the percentage of the movement of each storage area (tA, tB and 

tC) by the expected distance for the corresponding storage area (E [SCA], E [SCB] and E [SCC]) 

the expected distance for a contour-line-shaped warehouse can be obtained. 

4.6.2. Centrally located dock doors with δ separation between adjacent dock doors 

In this sub-section, we use a similar process to that employed in the previous sub-section. In 

contrast to Scenario 1, because the distance between dock doors is specified in Scenario 2, all 

formulations are based on Equation (4.53). 

Case 1: If all dock doors are covered by Class A, (k2 – 3k + 2) δ 2 / 6 ≤ AA. Adjusting Equation 

(4.53) for Class A and the union of Classes A and B and substituting adjusted equations into 

Equation (4.1), the expected distance for Class B is 
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Similarly, adjusting Equation (4.53) for the union of Classes A and B and the union of 

Classes A, B and C and substituting adjusted equations into Equation (4.2), the expected distance 

for Class C is 
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Therefore, the expected distance for a contour-line-shaped warehouse with Case 1 is  
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(4.68) 

Case 2: If some dock doors are not covered by storage area A, but all dock doors are covered by 

the union of storage areas A and B, AA < (k2 – 3k + 2) δ 2 / 6 ≤ AA∪B. As with Scenario 1, the 

number of dock doors covered by Class A is determined by using Viète's trigonometric solution, 

kA = 2⌊3 –1/2 cos {arccos [3 5/2 k AA / δ 2] / 3} + 0.5⌋ for an even number of dock doors and kA = 

2⌊3 –1/2 cos {arccos [3 5/2 k AA / δ 2)] / 3}⌋ + 1 for an odd number of dock doors. Therefore, the 

expected distance for Class A is obtained 
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 (4.69) 

Adjusting Equation (4.53) for the union of Classes A and B, and substituting the resulted 

equation and Equation (4.69) into Equation (4.1), the expected distance for Class B is  
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Likewise, adjusting Equation (4.53) for the union of Classes A and B, and the union of 

Classes A, B and C, the expected distance for Class C is 
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Therefore, the expected distance traveled for a contour-line-shaped warehouse with Case 2 is 
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 (4.72) 

Case 3: If some dock doors are not covered by the union of storage areas A and B, AA∪B < (k2 – 

3k  + 2) δ 2 / 6. The equations used in Case 2 to calculate the number of dock doors covered by 

the storage area A can be used for Class A with Case 3. Similarly, following the same steps for 

Case 2, the number of dock doors covered by the union of Classes A and B is kA∪B = 2⌊3 –1/2 cos 

{arccos [3 5/2 k AA∪B / δ 2] / 3} + 0.5⌋ for an even number of dock doors and kA∪B = 2⌊3 –1/2 cos 

{arccos [3 5/2 k AA∪B / δ 2)] / 3}⌋ + 1 for an odd number of dock doors. Therefore, the expected 

distance traveled for dock doors covered by Class A is 
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 (4.73) 

Because not all dock doors are covered by the union of Classes A and B, adjusting Equation 

(4.73), the expected distance traveled for dock doors covered by the union of Classes A and B is 
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 (4.74) 

Therefore, substituting Equations (4.73) and (4.74) into Equation (4.1), the expected distance 

for Class B is  
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Adjusting Equation (4.53) and substituting it and Equation (4.74) into Equation (4.2), the 

expected distance for Class C is 
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For the same reason as Case 2, we do not include the overall formula for the expected 

distance for Case 3. As stated, the expected distance for a contour-line-shaped warehouse can be 

obtained.by multiplying the percentage of the movement of each storage area (tA, tB and tC) by 

the expected distance for the corresponding storage area (E [SCA], E [SCB] and E [SCC]). 

4.7. The penalty of forcing a storage region to be rectangle-shaped 

In this section, we extend results contained in the two previous sections. Specifically, we are 

concerned with comparing the expected distance for a rectangle-shaped storage region with the 

expected distance for a corresponding contour-line-shaped storage region. In contrast to earlier 

sections, we limit our attention, initially, to one storage region. To calculate the penalty, we 

subtract the expected distance for a contour-line-shaped warehouse from that for a rectangle-

shaped warehouse, and divide the result by the expected distance for a contour-line-shaped 

warehouse ({E [SCRectangle] – E [SCContour-line] / E [SCContour-line]}. 

Let ξi denote the penalty of requiring a storage region to be rectangle-shaped for Scenario i  

(i = 1 and 2). Using Equations (4.3) and (4.52), ξ1 is given 
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, (4.77) 

and using Equations (4.4) and (4.53), ξ2 is obtained 
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. (4.78) 

For the case of a single-dock-door warehouse with the dock door centrally located along a 

wall, using either Equation (4.77) or Equation (4.78), an optimally shaped storage region (W = 

(2A) 1/2 and  
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D = (A / 2) 1/2) yields a penalty of 0.0607 or 6.07% when compared with a triangularly shaped 

storage region. The same result was obtained by Francis (1967a) for a single dock door. 

Extending his study, we obtain the penalty of requiring the storage region to be rectangle-shaped 

for any number of dock doors by using Equation (4.77) for Scenario 1 and Equation (4.78) for 

Scenario 2. 

4.8. Computational Results 

This section presents computational results from our research by solving the nonlinear-

programming optimization problem provided in Section 4.5 and by applying formulations 

developed in Section 4.6. At the beginning, we provide the penalty of requiring a single-class 

warehouse of 250,000 ft2 to be rectangle-shaped, instead of contour-line-shaped. Notice the 

distance between adjacent dock doors cannot be smaller than 12 ft for Scenario 1 (ω + ѱ ≥ 12 ft); 

whereas it is a specified value of 12 ft for Scenario 2 (δ = 12 ft). In Subsection 4.8.2, the penalty 

for our initial settings with three classes are presented and explained in detail. We assume the 

areas of the three storage regions for class-based storage are AA = 50,000 ft2, AB = 75,000 ft2, and 

AC = 125,000 ft2. We also assume the following throughput rates apply for each product class:  

TA = 300 roundtrips / hour, TB = 130 roundtrips / hour and TC = 70 roundtrips / hour. Finally, we 

investigate the effect of ABC curve’s skewness on the penalty. Tabulated computational results 

are provided in the Appendix. 

4.8.1. Penalty calculations for a single-class warehouse 

In this section, the expected single-command distance for a rectangle-shaped storage region 

is compared to that for a contour-line-shaped storage region. As illustrated in Figure 4.5, 

increasing the number of dock doors decreases the penalty when the width constraint is satisfied 
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for both scenarios although the penalty is negative-valued for Scenario 1 (except for a single-

dock-door). Significantly, the rectangle-shaped storage region performs better than the 

corresponding contour-line-shaped warehouse for Scenario 1 because dock-door locations 

change depending on the width of the overall warehouse. (This result demonstrates the Neyman 

Pearson Lemma requirement for the locations of dock doors to be fixed). Our results indicate the 

width of the rectangle-shaped warehouse for both scenarios is narrower than that for the contour-

line-shaped warehouse.  

 

Figure 4.5: The penalty for Scenarios 1 and 2 

When the width constraint is active for the rectangle-shaped storage region with both 

scenarios, the penalty increases with an increasing number of dock doors because it forces the 

storage region to be wider than it would be if it were optimally shaped. 

As with Chapter 2, the optimal shape factor for Scenario 1 is between 1.50 and 2.00; also, 

increasing the number of dock doors decreases the optimal shape factor. For Scenario 2, the 

optimal shape factor is equal to or greater than 2.00; increasing the number of dock doors 
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increases the optimal shape factor. In our example, the width constraint is active for 73 and 51 

dock doors with Scenarios 1 and 2, respectively. 

4.8.2. Penalty calculations for a warehouse having multiple classes 

In this section, we extend the previous subsection by considering a class-based storage 

policy. From research results in Chapter 2, when dock-door locations are determined with 

Scenario 1 for the union of storage areas for Classes A, B and C, the optimal shape factor will be 

less than 2.0. However, once the dock-door locations are determined, then the calculation of 

expected distances for Class A and the union of Classes A and B will be based on Scenario 2; 

from Chapter 2, the optimal shape factor for Scenario 2 will be greater than 2.0. Therefore, 

depending on the values of the storage areas, the desired width of the storage areas for Class A 

and the union of Classes A and B might not be feasible, because the overall warehouse width 

was established by the union of Classes A, B and C.  

Figure 4.6 displays the optimal width (left) and the optimal shape factor (right) of each 

rectangle-shaped storage region with Scenario 1 under a class-based storage policy. For a single 

dock door, the optimal shape factor for all storage regions are equal to 2.00, although each 

storage region has a different width. For our example, the width of a storage region for the union 

of Classes A and B is constrained by the width of the overall warehouse when k = 2 thru k = 51.  
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Figure 4.6: The optimal width and optimal shape factor for each storage region with Scenario 1 

for a rectangle-shaped warehouse. 

The width constraint for the overall warehouse is active for k = 37. Thereafter, increasing the 

number of dock doors will increase the width of the overall warehouse. After locating 51 dock 

doors, the width of storage region for the union of Classes A and B will not be constrained 

because the width of the overall warehouse will be large. Therefore, the special case of the 

Neyman-Pearson Lemma to calculate expected distance does not apply to Scenario 1. 

As depicted in Figure 4.7, with k = 2, the width of the warehouse is less than the depth of the 

warehouse and the storage area for Class C is located behind the storage area for the union of the 

storage areas for Classes A and B.  

 

Figure 4.7: Rectangle-shaped warehouse design with 1 dock door (left) vs. 2 dock doors (right) 

for Scenario 1 
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An interesting observation is the optimal shape factor for the overall warehouse is smaller 

than 1 when k = 3 thru k = 40. The smallest value of the optimal shape factor equals 0.81 with 36 

dock doors. 

Similarly, Figure 4.8 illustrates the optimal width (left) and the optimal shape factor (right) of 

each rectangle-shaped storage region with Scenario 2 and a class-based storage policy. The 

optimal shape factor for each storage region is equal to or greater than 2.00.  

             

Figure 4.8: The optimal width and optimal shape factor for each storage region with Scenario 1 

Because the width the overall warehouse is large, it is not a constraint for the storage region 

of the union of Classes A and B. Increasing the number of dock doors will always increase the 

optimal shape factor for each storage region.  

Figure 4.9 demonstrates the penalty of requiring the storage regions to be rectangle-shaped. 

Similar to a single-class warehouse, increasing the number of dock doors decreases the penalty 

when the width constraint is satisfied. Except for a single-dock-door, the penalty is negative-

valued for Scenario 1. As with a single-class warehouse, the width of the rectangle-shaped 

warehouse for both scenarios is narrower than that for the contour-line-shaped warehouse. With 

given parameter values, the penalty increases when the number of dock doors exceeds 37 for 

Scenario 1 and exceeds 81 for Scenario 2. When the width constraint is active, the penalty 

dramatically increases with an increasing number of dock doors for Scenario 1; however, for 
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Scenario 2, the penalty increases slightly with an increasing number of dock doors. As with one 

storage region, the warehouse with rectangle-shaped storage regions outperforms the 

corresponding warehouse with contour-line-shaped storage regions because of the flexibility of 

dock-door locations in Scenario 1. 

 

Figure 4.9: The penalty for Scenarios 1 and 2 under class-based storage policy 

4.8.3. Penalty calculations for different shapes of the ABC curve 

 How dependent on the shape of the ABC curve is the penalty resulting from requiring a 

rectangle shape for the warehouse? To address the question, we calculate the skewness of the 

ABC curve using Bender’s formulation (Bender, 1981), Y = (1 + β) X / (β + X), where the β 

represents the skewness of the curve. The value of β must be calculated in such a way that the 

curve fits data points. Given the percentage of overall storage area within region i (Xi) and the 

percentage of overall activity in region i (Yi), the value of parameter β is determined by using the 

least squares method, ∑Yi – (1 – β) ∑ [Xi / (β – Xi)] = 0. For a detailed procedure, see Bender 

(1981). Specifically, Table 4.1 contains values for β for 15 ABC curves. 
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Table 4.1: β parameter values and ABC curves 

  Roundtrips (%) Storage (%) 

Curve β parameter  Class A Class B Class C Class A Class B Class C 

1 0.0001 0.9996 0.0003 0.0001 0.2 0.3 0.5 

2 0.0005 0.9980 0.0015 0.0005 0.2 0.3 0.5 

3 0.0010 0.9960 0.0030 0.0010 0.2 0.3 0.5 

4 0.0050 0.9805 0.0146 0.0050 0.2 0.3 0.5 

5 0.0100 0.9619 0.0283 0.0098 0.2 0.3 0.5 

6 0.0500 0.8400 0.1145 0.0455 0.2 0.3 0.5 

7 0.1000 0.7333 0.1833 0.0833 0.2 0.3 0.5 

8 0.1988 0.6000 0.2600 0.1400 0.2 0.3 0.5 

9 0.5000 0.4286 0.3214 0.2500 0.2 0.3 0.5 

10 1.0000 0.3333 0.3333 0.3333 0.2 0.3 0.5 

11 2.0000 0.2727 0.3273 0.4000 0.2 0.3 0.5 

12 3.0000 0.2500 0.3214 0.4286 0.2 0.3 0.5 

13 4.0000 0.2381 0.3175 0.4444 0.2 0.3 0.5 

14 5.0000 0.2308 0.3147 0.4545 0.2 0.3 0.5 

15 6.0000 0.2258 0.3127 0.4615 0.2 0.3 0.5 

16 7.0000 0.2222 0.3111 0.4667 0.2 0.3 0.5 

 

Based on the work of Francis (1967a), we know expected distance is minimized by ranking 

classes based on the ratio of throughput or number of roundtrips to the amount of storage space 

required for each class; it is not based on throughput ranking, alone. Table 4.2 includes several β 

parameter values and associated minimum, maximum and average penalty values for both 

scenarios. The average penalty is the numerical average of the penalty for the number of dock 

doors ranging from 1 to 100 with Scenario 2. 

Based on the computational results, for Scenario 1, it appears requiring a storage region to be 

rectangle-shaped, rather than contour-line-shaped, results in a penalty ranging from -48.53% to 

6.07% when the number of dock doors ranges from 1 to 100. However, increasing the value of 

parameter β decreases the minimum penalty percentage because the effect of Class C on the 

expected distance traveled for rectangle-shaped warehouse heavily increases. 
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Table 4.2: Minimum, maximum and average penalty values for 15 ABC curves 

  Scenario 1 Scenario 2 

Curve 
β 

parameter  
Min Max Avg Min Max Avg 

1 0.0001 -48.53% 6.07% -30.12% 0.87% 6.07% 2.34% 

2 0.0005 -48.42% 6.07% -30.07% 0.87% 6.07% 2.34% 

3 0.0010 -48.28% 6.07% -30.01% 0.88% 6.07% 2.35% 

4 0.0050 -47.22% 6.07% -29.51% 0.92% 6.07% 2.38% 

5 0.0100 -46.01% 6.07% -28.93% 0.97% 6.07% 2.43% 

6 0.0500 -39.07% 6.07% -25.39% 1.31% 6.07% 2.68% 

7 0.1000 -34.07% 6.07% -22.66% 1.53% 6.07% 2.89% 

8 0.5000 -22.94% 6.07% -15.85% 2.04% 6.07% 3.45% 

9 1.0000 -20.01% 6.07% -13.84% 2.20% 6.07% 3.63% 

10 2.0000 -18.12% 6.07% -12.54% 2.30% 6.07% 3.76% 

11 3.0000 -17.41% 6.07% -12.04% 2.34% 6.07% 3.80% 

12 4.0000 -17.04% 6.07% -11.78% 2.36% 6.07% 3.83% 

13 5.0000 -16.81% 6.07% -11.62% 2.37% 6.07% 3.85% 

14 6.0000 -16.66% 6.07% -11.52% 2.38% 6.07% 3.86% 

15 7.0000 -16.55% 6.07% -11.44% 2.39% 6.07% 3.86% 

 

For Scenario 2, the penalty ranges from a high of 6.07% to a low of 0.87% when the number 

of dock doors ranges from 1 to 100. When the ABC curve is almost linear, the minimum penalty 

percentage is greater because the effect of Class C on the expected distance traveled is greater. 

The maximum penalty of approximately 6.07 percent is not significantly affected by the number 

of dock doors or skewness of the ABC curve for both scenarios.  

4.9. Conclusion 

Designing a unit-load warehouse is a challenging problem due to a large number of feasible 

warehouse designs and numerous design parameters. After developing expected single-command 

distance formulas, we studied the performance of a unit-load warehouse having multiple dock 

doors when a storage region or storage regions can be either rectangle-shaped or contour-line-

shaped. Although designing a contour-line-shaped warehouse might be impractical and very 
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expensive to construct, results obtained from the formulas we developed can be used as lower 

bounds for the expected single-command distance. Therefore, the penalty incurred by requiring 

the warehouse configuration to be the most common configuration (rectangular) can be 

calculated for various number and locations of dock doors. 

For a single dock door, the expected-distance penalty for a rectangle-shaped warehouse is 

about 6.07% greater than the corresponding contour-line-shaped warehouse. Interestingly, for 

multiple dock doors, the rectangle-shaped warehouse outperforms the corresponding contour-

line-shaped warehouse when dock doors are uniformly dispersed over the entire wall of the 

warehouse because the distance between adjacent dock doors is not the same for a contour-line-

shaped warehouse and a rectangle-shaped warehouse (e.g. see Figure 4.10 for the case of three 

dock doors). Notice this is true when result depend on the parameters of the ABC curve. The 

penalty ranges from -48.53% to 6.07% depending the number of dock doors and skewness of the 

ABC curve. When dock doors are dispersed over an entire wall (Scenario 1) and the number of 

dock doors ranges from 1 to 100, the optimal shape factor for the overall rectangle-shaped 

warehouse ranges from 2.00 to 0.81. Similarly, the optimal shape factor for the union of storage 

regions A and B ranges from 2.20 to 1.62. However, the optimal shape factor for storage region 

A is equal to or greater than 2.00 for any number of dock doors. 

 

Figure 4.10: The distance between adjacent dock doors with Scenario 1 when k = 3  
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When dock doors are located with a fixed distance between adjacent dock doors (Scenario 2), 

the penalty ranges from 6.07 % to 0.87% as the number of dock doors increases, regardless of 

the skewness of the ABC curve or storage policy. The maximum penalty of requiring a 

rectangle-shaped warehouse is no greater than approximately 6.07 percent regardless of the 

locations of dock doors. When skewness of the ABC curve increases, the minimum percentage 

decreases because the effect of Class C on the expected distance traveled decreases. However, 

the optimal shape factor for all storage regions are equal to or greater than 2.00 for any number 

of dock doors. 

This research can be extended to incorporate n classes. Using a similar approach to that 

employed in Section 4, the expected distance for the overall warehouse can be calculated by 

using formulas derived for three classes of storage. In addition, relaxing the nesting requirement 

for storage regions, the penalty for different shapes (not nested rectangles) can be calculated. 

Further, as noted in Section 5, consideration of a different width constraint for Scenario 1 might 

yield interesting results, particularly regarding the penalty of requiring a rectangle-shaped 

storage region. Finally, constructing contour lines in an existing warehouse (requiring the overall 

storage region to be rectangle-shaped with contour-line-shaped storage regions inside the 

rectangle-shaped storage region) might also prove beneficial for designers. 
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Appendix 

The expected single-command distance formulas for contour-line shaped warehouse with 

Scenarios 1 and 2 are provided below. We begin with a detailed explanation of derivations for 

Scenario 1 and an even number of dock doors. Then, we present only equations for an odd 

number of dock doors with Scenario 1 and for both an even and an odd number of dock doors 

with Scenario 2.  

Derivation of Equation 52 (even number of dock doors) 

The objective function value for contour set i is 
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The minimum objective function value occurs when hk,i equals zero; therefore, the minimum 

objective function value for contour set i is obtained:  
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Solving Equation (A.2) for hk,i gives 
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Solving for the area contained within a contour line having value hk,i, we obtain  
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Therefore, solving for hk,i as a function of the area gives  
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Furthermore, the functional relationship between Ak,i and zk,i is 
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Based on the assumption of uniformly distributed points over the storage region, Equation 

(A.6) can be treated as the cumulative distribution function for single-command travel distance. 

Taking the first derivative of Equation (A.6) with respect to zk,i yields the probability density 

function for contour set i: 
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Solving Equation (A.6) for zk,i yields the inverse function related to zk,i and Ak,i, which is the 

value of the objective function on the contour line enclosing Ak,i, 
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Because r (Ak,i) = f *k, i+1 if i < k / 2, the expected round-trip single-command distance for 

Scenario 1 with an even number of dock doors is 
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Derivation of Equation 52 (odd number of dock doors) 

Following the steps for an even number of dock doors, equations for an odd number of dock 

doors with Scenario 1 are obtained: 
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Because r (Ak,i) = f *k, i+1 if i < (k + 1) / 2, the expected round-trip single-command distance 

for Scenario 1 with an odd number of dock doors is 
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Derivation of Equation 53 (even number of dock doors) 

Following the steps for Scenario 1, equations for an even number of dock doors with Scenario 2 

are: 
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Because r (Ak,i) = f *k, i+1 if i < (k + 1) / 2, the expected round-trip single-command distance 

for Scenario 2 with an even number of dock doors is 
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Derivation of Equation 53 (odd number of dock doors) 

Following the steps for Scenario 1, equations for an odd number of dock doors with Scenario 

2 are obtained: 
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Because r (Ak,i) = f *k, i+1 if i < (k + 1) / 2, the expected round-trip single-command distance 

for Scenario 2 with an odd number of dock doors is 
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Proof by induction 

We prove by induction the general expression derived for the contour-line-shaped warehouse 

is valid for any number of dock doors. 
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Assume Equation (A.37) holds for k dock doors.  
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It is sufficient to show Equation (A.38) holds for k + 1 dock doors regardless k + 1 being 

either an even number of dock doors or an odd number of dock doors. 
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Expression for an even number of dock doors (k + 1 is even) 
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Because r (Ak,i) = f *k, i+1 if i < (k + 1) / 2, the expected round-trip single-command distance 

for Scenario 1 with k + 1 dock doors is 
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Expression for an odd number of dock doors (k + 1 is odd)  
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Because r (Ak,i) = f *k, i+1 if i < (k + 2) / 2, the expected round-trip single-command distance 

for Scenario 1 with k + 1 dock doors is 
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Therefore, Equation (A.38) holds for any number of dock doors regardless of the number of 

dock doors being even or odd. 
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Table 4.3: Penalty calculations for a storage region with Scenario 1 

k ω + ѱ E [SCContour] S* E [SCRectangle] Penalty (%) 

1      500.00     666.6667      2.0000  707.1068 6.066 

2      353.55     766.0323      1.8000  745.3560 -2.699 

3      273.86     815.4980      1.7143  763.7626 -6.344 

4      223.61     845.9791      1.6667  774.5967 -8.438 

5      188.98     866.7985      1.6364  781.7360 -9.813 

6      163.66     881.9640      1.6154  786.7958 -10.790 

7      144.34     893.5183      1.6000  790.5694 -11.522 

8      129.10     902.6203      1.5882  793.4920 -12.090 

9      116.77     909.9788      1.5789  795.8224 -12.545 

10      106.60     916.0524      1.5714  797.7240 -12.917 

11        98.06     921.1515      1.5652  799.3053 -13.228 

12        90.78     925.4938      1.5600  800.6408 -13.490 

13        84.52     929.2363      1.5556  801.7837 -13.716 

14        79.06     932.4954      1.5517  802.7730 -13.911 

15        74.26     935.3594      1.5484  803.6376 -14.082 

16        70.01     937.8959      1.5455  804.3997 -14.234 

17        66.23     940.1583      1.5429  805.0765 -14.368 

18        62.83     942.1886      1.5405  805.6816 -14.488 

19        59.76     944.0209      1.5385  806.2258 -14.597 

20        56.98     945.6829      1.5366  806.7178 -14.695 

21        54.45     947.1971      1.5349  807.1649 -14.784 

22        52.13     948.5826      1.5333  807.5729 -14.865 

23        50.00     949.8551      1.5319  807.9466 -14.940 

24        48.04     951.0278      1.5306  808.2904 -15.009 

25        46.23     952.1121      1.5294  808.6075 -15.072 

26        44.54     953.1175      1.5283  808.9011 -15.131 

27        42.98     954.0525      1.5273  809.1736 -15.186 

28        41.52     954.9242      1.5263  809.4272 -15.236 

29        40.16     955.7387      1.5254  809.6639 -15.284 

30        38.89     956.5015      1.5246  809.8852 -15.328 

31        37.69     957.2175      1.5238  810.0926 -15.370 

32        36.56     957.8907      1.5231  810.2874 -15.409 

33        35.50     958.5249      1.5224  810.4707 -15.446 

34        34.50     959.1235      1.5217  810.6435 -15.481 

35        33.56     959.6892      1.5211  810.8066 -15.514 

36        32.66     960.2249      1.5205  810.9609 -15.545 

37        31.81     960.7327      1.5200  811.1071 -15.574 

38        31.01     961.2148      1.5195  811.2457 -15.602 

39        30.24     961.6731      1.5190  811.3774 -15.629 

40        29.51     962.1094      1.5185  811.5027 -15.654 

41        28.82     962.5251      1.5181  811.6219 -15.678 

42        28.16     962.9218      1.5176  811.7356 -15.701 

43        27.52     963.3006      1.5172  811.8441 -15.723 

44        26.92     963.6628      1.5169  811.9478 -15.744 

45        26.34     964.0094      1.5165  812.0470 -15.764 

46        25.79     964.3415      1.5161  812.1419 -15.783 

47        25.25     964.6599      1.5158  812.2329 -15.801 

48        24.74     964.9654      1.5155  812.3201 -15.819 

49        24.25     965.2588      1.5152  812.4038 -15.836 

50        23.78     965.5408      1.5149  812.4843 -15.852 
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Table 4.3: Penalty calculations for a storage region with Scenario 1 (Cont.) 

k ω + ѱ E [SCContour] S* E [SCRectangle] Penalty (%) 

51        23.33     965.8121      1.5575  812.6410 -15.859 

52        22.89     966.0733      1.6180  813.0818 -15.836 

53        22.47     966.3249      1.6796  813.8025 -15.784 

54        22.07     966.5674      1.7424  814.7879 -15.703 

55        21.68     966.8013      1.8063  816.0238 -15.596 

56        21.30     967.0272      1.8714  817.4971 -15.463 

57        20.94     967.2453      1.9377  819.1954 -15.306 

58        20.58     967.4560      2.0051  821.1073 -15.127 

59        20.24     967.6598      2.0736  823.2222 -14.926 

60        19.92     967.8570      2.1433  825.5301 -14.705 

61        19.60     968.0479      2.2141  828.0215 -14.465 

62        19.29     968.2328      2.2861  830.6878 -14.206 

63        18.99     968.4119      2.3593  833.5208 -13.929 

64        18.70     968.5856      2.4336  836.5128 -13.636 

65        18.42     968.7541      2.5091  839.6566 -13.326 

66        18.14     968.9175      2.5857  842.9453 -13.001 

67        17.88     969.0762      2.6634  846.3725 -12.662 

68        17.62     969.2304      2.7423  849.9324 -12.309 

69        17.37     969.3801      2.8224  853.6190 -11.942 

70        17.13     969.5257      2.9036  857.4272 -11.562 

71        16.89     969.6673      2.9860  861.3519 -11.170 

72        16.66     969.8050      3.0695  865.3881 -10.767 

73        16.44     969.9390      3.1542  869.5315 -10.352 

74        16.22     970.0695      3.2400  873.7778 -9.926 

75        16.01     970.1965      3.3270  878.1228 -9.490 

76        15.80     970.3203      3.4151  882.5628 -9.044 

77        15.60     970.4410      3.5044  887.0940 -8.589 

78        15.41     970.5586      3.5948  891.7131 -8.124 

79        15.21     970.6732      3.6864  896.4167 -7.650 

80        15.03     970.7851      3.7791  901.2016 -7.168 

81        14.85     970.8943      3.8730  906.0650 -6.677 

82        14.67     971.0008      3.9681  911.0040 -6.179 

83        14.49     971.1048      4.0643  916.0159 -5.673 

84        14.32     971.2064      4.1616  921.0980 -5.159 

85        14.16     971.3057      4.2601  926.2481 -4.639 

86        14.00     971.4027      4.3597  931.4636 -4.111 

87        13.84     971.4974      4.4605  936.7424 -3.577 

88        13.68     971.5901      4.5625  942.0824 -3.037 

89        13.53     971.6807      4.6656  947.4815 -2.490 

90        13.39     971.7694      4.7699  952.9377 -1.938 

91        13.24     971.8561      4.8753  958.4493 -1.380 

92        13.10     971.9410      4.9818  964.0143 -0.816 

93        12.96     972.0241      5.0895  969.6312 -0.246 

94        12.82     972.1054      5.1984  975.2982 0.328 

95        12.69     972.1850      5.3084  981.0139 0.908 

96        12.56     972.2631      5.4196  986.7766 1.493 

97        12.43     972.3395      5.5319  992.5850 2.082 

98        12.31     972.4144      5.6454  998.4377 2.676 

99        12.19     972.4878      5.7600  1004.3333 3.275 

100        12.07     972.5598      5.8758  1010.2706 3.877 
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Table 4.4: Penalty calculations for a storage region with Scenario 2 

k E [SCContour] S* E [SCRectangle] Penalty (%) 

1    666.6667      2.0000  707.1068 6.066 

2    666.8095      2.0006  707.2086 6.059 

3    667.0456      2.0015  707.3783 6.046 

4    667.3735      2.0029  707.6157 6.030 

5    667.7921      2.0046  707.9209 6.009 

6    668.2999      2.0067  708.2937 5.984 

7    668.8956      2.0092  708.7341 5.956 

8    669.5780      2.0121  709.2418 5.924 

9    670.3458      2.0154  709.8169 5.888 

10    671.1977      2.0190  710.4590 5.849 

11    672.1325      2.0230  711.1681 5.808 

12    673.1489      2.0275  711.9438 5.763 

13    674.2457      2.0323  712.7861 5.716 

14    675.4217      2.0374  713.6946 5.667 

15    676.6757      2.0430  714.6692 5.615 

16    678.0065      2.0490  715.7094 5.561 

17    679.4129      2.0553  716.8152 5.505 

18    680.8938      2.0620  717.9861 5.448 

19    682.4481      2.0691  719.2218 5.389 

20    684.0745      2.0766  720.5220 5.328 

21    685.7721      2.0845  721.8864 5.266 

22    687.5397      2.0927  723.3146 5.203 

23    689.3761      2.1014  724.8062 5.139 

24    691.2804      2.1104  726.3608 5.075 

25    693.2514      2.1198  727.9780 5.009 

26    695.2882      2.1296  729.6575 4.943 

27    697.3896      2.1398  731.3987 4.877 

28    699.5546      2.1503  733.2012 4.810 

29    701.7823      2.1613  735.0646 4.743 

30    704.0716      2.1726  736.9885 4.675 

31    706.4216      2.1843  738.9723 4.608 

32    708.8312      2.1964  741.0155 4.540 

33    711.2995      2.2089  743.1178 4.473 

34    713.8255      2.2218  745.2785 4.406 

35    716.4084      2.2350  747.4972 4.340 

36    719.0471      2.2486  749.7733 4.273 

37    721.7408      2.2627  752.1064 4.207 

38    724.4886      2.2771  754.4959 4.142 

39    727.2896      2.2918  756.9412 4.077 

40    730.1428      2.3070  759.4419 4.013 

41    733.0475      2.3226  761.9974 3.949 

42    736.0027      2.3385  764.6071 3.886 

43    739.0077      2.3548  767.2705 3.824 

44    742.0616      2.3715  769.9870 3.763 

45    745.1635      2.3886  772.7561 3.703 

46    748.3127      2.4061  775.5772 3.643 

47    751.5083      2.4239  778.4497 3.585 

48    754.7496      2.4422  781.3732 3.527 

49    758.0358      2.4608  784.3469 3.471 

50    761.3661      2.4798  787.3703 3.415 
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Table 4.4: Penalty calculations for a storage region with Scenario 2 (Cont.) 

k E [SCContour] S* E [SCRectangle] Penalty (%) 

51    764.7398      2.4992  790.4429 3.361 

52    768.1561      2.5190  793.5641 3.308 

53    771.6142      2.5391  796.7333 3.255 

54    775.1136      2.5597  799.9500 3.204 

55    778.6533      2.5806  803.2135 3.154 

56    782.2328      2.6019  806.5234 3.105 

57    785.8513      2.6236  809.8790 3.058 

58    789.5081      2.6457  813.2798 3.011 

59    793.2026      2.6682  816.7252 2.966 

60    796.9341      2.6910  820.2146 2.921 

61    800.7020      2.7142  823.7475 2.878 

62    804.5055      2.7379  827.3234 2.836 

63    808.3441      2.7619  830.9416 2.796 

64    812.2171      2.7862  834.6017 2.756 

65    816.1238      2.8110  838.3030 2.718 

66    820.0638      2.8362  842.0451 2.680 

67    824.0363      2.8617  845.8274 2.644 

68    828.0409      2.8876  849.6493 2.610 

69    832.0768      2.9139  853.5104 2.576 

70    836.1435      2.9406  857.4101 2.543 

71    840.2405      2.9677  861.3478 2.512 

72    844.3671      2.9951  865.3231 2.482 

73    848.5229      3.0695  869.3607 2.456 

74    852.7072      3.1542  873.5045 2.439 

75    856.9196      3.2400  877.7511 2.431 

76    861.1595      3.3270  882.0965 2.431 

77    865.4263      3.4151  886.5368 2.439 

78    869.7197      3.5044  891.0684 2.455 

79    874.0389      3.5948  895.6878 2.477 

80    878.3837      3.6864  900.3917 2.506 

81    882.7534      3.7791  905.1770 2.540 

82    887.1476      3.8730  910.0407 2.581 

83    891.5657      3.9681  914.9799 2.626 

84    896.0074      4.0643  919.9921 2.677 

85    900.4722      4.1616  925.0745 2.732 

86    904.9595      4.2601  930.2248 2.792 

87    909.4690      4.3597  935.4406 2.856 

88    914.0002      4.4605  940.7197 2.923 

89    918.5526      4.5625  946.0599 2.995 

90    923.1258      4.6656  951.4593 3.069 

91    927.7194      4.7699  956.9158 3.147 

92    932.3330      4.8753  962.4275 3.228 

93    936.9662      4.9818  967.9928 3.311 

94    941.6184      5.0895  973.6099 3.398 

95    946.2895      5.1984  979.2772 3.486 

96    950.9788      5.3084  984.9931 3.577 

97    955.6861      5.4196  990.7560 3.670 

98    960.4110      5.5319  996.5646 3.764 

99    965.1530      5.6454  1002.4175 3.861 

100    969.9118      5.7600  1008.3133 3.959 
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Table 4.5: Computational Results for ABC storage regions with Scenario 1 

k hk kA kA∪B Case ? E [SCContour] E [SCRectangle] Penalty (%) 

1      500.00  1 1 Case 1 452.15 479.58 6.066 

2      353.55  2 2 Case 1 591.11 524.60 -11.251 

3      273.86  3 3 Case 1 651.66 541.15 -16.959 

4      223.61  4 4 Case 1 687.09 550.38 -19.896 

5      188.98  3 5 Case 2 710.74 556.30 -21.729 

6      163.66  4 6 Case 2 727.91 560.43 -23.009 

7      144.34  5 7 Case 2 740.97 563.47 -23.956 

8      129.10  6 8 Case 2 751.22 565.80 -24.683 

9      116.77  5 7 Case 3 759.46 567.65 -25.256 

10      106.60  6 8 Case 3 766.24 569.15 -25.721 

11        98.06  7 9 Case 3 771.92 570.39 -26.107 

12        90.78  8 10 Case 3 776.76 571.44 -26.433 

13        84.52  9 11 Case 3 780.93 572.33 -26.711 

14        79.06  8 12 Case 3 784.55 573.10 -26.951 

15        74.26  9 13 Case 3 787.73 573.78 -27.161 

16        70.01  10 14 Case 3 790.54 574.37 -27.345 

17        66.23  11 15 Case 3 793.05 574.89 -27.509 

18        62.83  12 16 Case 3 795.30 575.36 -27.655 

19        59.76  11 15 Case 3 797.33 575.78 -27.787 

20        56.98  12 16 Case 3 799.17 576.16 -27.905 

21        54.45  13 17 Case 3 800.85 576.50 -28.013 

22        52.13  14 18 Case 3 802.38 576.82 -28.112 

23        50.00  15 19 Case 3 803.79 577.10 -28.202 

24        48.04  14 20 Case 3 805.08 577.37 -28.285 

25        46.23  15 21 Case 3 806.28 577.61 -28.361 

26        44.54  16 22 Case 3 807.39 577.83 -28.432 

27        42.98  17 23 Case 3 808.42 578.04 -28.498 

28        41.52  16 24 Case 3 809.39 578.24 -28.559 

29        40.16  17 23 Case 3 810.29 578.42 -28.616 

30        38.89  18 24 Case 3 811.13 578.59 -28.669 

31        37.69  19 25 Case 3 811.92 578.74 -28.719 

32        36.56  20 26 Case 3 812.66 578.89 -28.766 

33        35.50  19 27 Case 3 813.36 579.03 -28.810 

34        34.50  20 28 Case 3 814.02 579.17 -28.851 

35        33.56  21 29 Case 3 814.64 579.29 -28.890 

36        32.66  22 30 Case 3 815.23 579.41 -28.928 

37        31.81  23 31 Case 3 815.79 579.56 -28.958 

38        31.01  22 30 Case 3 816.33 580.01 -28.949 

39        30.24  23 31 Case 3 816.83 580.79 -28.898 

40        29.51  24 32 Case 3 817.31 581.86 -28.808 

41        28.82  25 33 Case 3 817.77 583.22 -28.682 

42        28.16  26 34 Case 3 818.21 584.83 -28.523 

43        27.52  25 35 Case 3 818.62 586.69 -28.332 

44        26.92  26 36 Case 3 819.02 588.77 -28.113 

45        26.34  27 37 Case 3 819.41 591.07 -27.866 

46        25.79  28 38 Case 3 819.77 593.57 -27.594 

47        25.25  29 39 Case 3 820.12 596.25 -27.298 

48        24.74  28 38 Case 3 820.46 599.11 -26.979 

49        24.25  29 39 Case 3 820.78 602.13 -26.640 

50        23.78  30 40 Case 3 821.09 605.30 -26.281 
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Table 4.5: Computational Results for ABC storage regions with Scenario 1 (Cont.) 

k hk kA kA∪B Case ? E [SCContour] E [SCRectangle] Penalty (%) 

51        23.33  31 41 Case 3 821.39 608.60 -25.906 

52        22.89  32 42 Case 3 821.68 612.01 -25.517 

53        22.47  31 43 Case 3 821.95 615.52 -25.115 

54        22.07  32 44 Case 3 822.22 619.13 -24.700 

55        21.68  33 45 Case 3 822.48 622.83 -24.274 

56        21.30  34 46 Case 3 822.73 626.63 -23.835 

57        20.94  33 47 Case 3 822.97 630.51 -23.386 

58        20.58  34 46 Case 3 823.20 634.47 -22.927 

59        20.24  35 47 Case 3 823.42 638.51 -22.457 

60        19.92  36 48 Case 3 823.64 642.62 -21.979 

61        19.60  37 49 Case 3 823.85 646.80 -21.491 

62        19.29  36 50 Case 3 824.05 651.05 -20.995 

63        18.99  37 51 Case 3 824.25 655.36 -20.490 

64        18.70  38 52 Case 3 824.44 659.73 -19.978 

65        18.42  39 53 Case 3 824.63 664.16 -19.459 

66        18.14  40 54 Case 3 824.81 668.65 -18.932 

67        17.88  39 53 Case 3 824.98 673.20 -18.399 

68        17.62  40 54 Case 3 825.15 677.79 -17.859 

69        17.37  41 55 Case 3 825.32 682.43 -17.313 

70        17.13  42 56 Case 3 825.48 687.12 -16.760 

71        16.89  43 57 Case 3 825.63 691.86 -16.202 

72        16.66  42 58 Case 3 825.78 696.64 -15.639 

73        16.44  43 59 Case 3 825.93 701.46 -15.070 

74        16.22  44 60 Case 3 826.08 706.33 -14.496 

75        16.01  45 61 Case 3 826.22 711.23 -13.917 

76        15.80  46 62 Case 3 826.35 716.17 -13.333 

77        15.60  45 61 Case 3 826.48 721.15 -12.745 

78        15.41  46 62 Case 3 826.61 726.16 -12.152 

79        15.21  47 63 Case 3 826.74 731.21 -11.555 

80        15.03  48 64 Case 3 826.86 736.28 -10.954 

81        14.85  47 65 Case 3 826.98 741.40 -10.349 

82        14.67  48 66 Case 3 827.10 746.54 -9.741 

83        14.49  49 67 Case 3 827.21 751.71 -9.128 

84        14.32  50 68 Case 3 827.33 756.90 -8.512 

85        14.16  51 69 Case 3 827.43 762.13 -7.892 

86        14.00  50 70 Case 3 827.54 767.38 -7.269 

87        13.84  51 69 Case 3 827.65 772.66 -6.643 

88        13.68  52 70 Case 3 827.75 777.97 -6.014 

89        13.53  53 71 Case 3 827.85 783.29 -5.382 

90        13.39  54 72 Case 3 827.94 788.65 -4.747 

91        13.24  53 73 Case 3 828.04 794.02 -4.108 

92        13.10  54 74 Case 3 828.13 799.42 -3.468 

93        12.96  55 75 Case 3 828.22 804.83 -2.824 

94        12.82  56 76 Case 3 828.31 810.27 -2.178 

95        12.69  57 77 Case 3 828.40 815.73 -1.529 

96        12.56  56 76 Case 3 828.49 821.21 -0.878 

97        12.43  57 77 Case 3 828.57 826.71 -0.225 

98        12.31  58 78 Case 3 828.65 832.22 0.431 

99        12.19  59 79 Case 3 828.73 837.76 1.089 

100        12.07  60 80 Case 3 828.81 843.31 1.749 
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Table 4.6: Computational Results for ABC storage regions with Scenario 2 

k kA kA∪B Case ? E [SCContour] E [SCRectangle] Penalty (%) 

1 1 1 Case 1 452.153 479.580 6.066 

2 2 2 Case 1 452.387 479.748 6.048 

3 3 3 Case 1 452.771 480.028 6.020 

4 4 4 Case 1 453.301 480.419 5.982 

5 5 5 Case 1 453.973 480.921 5.936 

6 6 6 Case 1 454.785 481.533 5.881 

7 7 7 Case 1 455.731 482.256 5.820 

8 8 8 Case 1 456.808 483.087 5.753 

9 9 9 Case 1 458.013 484.027 5.680 

10 10 10 Case 1 459.342 485.075 5.602 

11 11 11 Case 1 460.792 486.229 5.520 

12 12 12 Case 1 462.359 487.488 5.435 

13 13 13 Case 1 464.041 488.852 5.347 

14 14 14 Case 1 465.834 490.319 5.256 

15 15 15 Case 1 467.735 491.887 5.164 

16 16 16 Case 1 469.741 493.556 5.070 

17 17 17 Case 1 471.849 495.323 4.975 

18 18 18 Case 1 474.056 497.189 4.880 

19 19 19 Case 1 476.360 499.150 4.784 

20 20 20 Case 1 478.758 501.206 4.689 

21 21 21 Case 1 481.246 503.354 4.594 

22 22 22 Case 1 483.823 505.594 4.500 

23 23 23 Case 1 486.486 507.924 4.407 

24 24 24 Case 1 489.233 510.342 4.315 

25 25 25 Case 1 492.060 512.846 4.224 

26 26 26 Case 1 494.967 515.436 4.135 

27 27 27 Case 1 497.950 518.108 4.048 

28 28 28 Case 1 501.007 520.862 3.963 

29 29 29 Case 1 504.136 523.696 3.880 

30 30 30 Case 1 507.335 526.609 3.799 

31 31 31 Case 1 510.602 529.598 3.720 

32 32 32 Case 1 513.935 532.663 3.644 

33 33 33 Case 1 517.332 535.801 3.570 

34 34 34 Case 1 520.791 539.010 3.498 

35 35 35 Case 1 524.310 542.288 3.429 

36 36 36 Case 1 527.887 545.631 3.361 

37 37 37 Case 1 531.522 549.038 3.295 

38 38 38 Case 1 535.211 552.506 3.231 

39 39 39 Case 1 538.953 556.033 3.169 

40 40 40 Case 1 542.748 559.618 3.108 

41 41 41 Case 1 546.592 563.258 3.049 

42 42 42 Case 1 550.485 566.952 2.991 

43 43 43 Case 1 554.425 570.699 2.935 

44 44 44 Case 1 558.410 574.496 2.881 

45 45 45 Case 1 562.440 578.342 2.827 

46 46 46 Case 1 566.513 582.237 2.776 

47 47 47 Case 1 570.627 586.177 2.725 

48 46 48 Case 2 574.781 590.164 2.676 

49 47 49 Case 2 578.974 594.195 2.629 

50 48 50 Case 2 583.205 598.269 2.583 
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Table 4.6: Computational Results for ABC storage regions with Scenario 2 (Cont.) 

k kA kA∪B Case ? E [SCContour] E [SCRectangle] Penalty (%) 

51 47 51 Case 2 587.472 602.385 2.539 

52 48 52 Case 2 591.775 606.542 2.495 

53 47 53 Case 2 596.112 610.739 2.454 

54 48 54 Case 2 600.483 614.975 2.413 

55 49 55 Case 2 604.886 619.247 2.374 

56 48 56 Case 2 609.321 623.556 2.336 

57 49 57 Case 2 613.787 627.899 2.299 

58 50 58 Case 2 618.283 632.276 2.263 

59 49 59 Case 2 622.807 636.686 2.228 

60 50 60 Case 2 627.360 641.128 2.195 

61 51 61 Case 2 631.940 645.601 2.162 

62 50 62 Case 2 636.547 650.104 2.130 

63 51 63 Case 2 641.180 654.635 2.098 

64 52 64 Case 2 645.839 659.196 2.068 

65 51 65 Case 2 650.522 663.785 2.039 

66 52 66 Case 2 655.229 668.400 2.010 

67 51 67 Case 2 659.959 673.042 1.982 

68 52 68 Case 2 664.712 677.709 1.955 

69 53 69 Case 2 669.487 682.402 1.929 

70 52 70 Case 2 674.283 687.118 1.904 

71 53 71 Case 2 679.101 691.859 1.879 

72 54 72 Case 2 683.939 696.622 1.854 

73 53 73 Case 2 688.797 701.416 1.832 

74 54 72 Case 3 693.674 706.251 1.813 

75 53 73 Case 3 698.570 711.126 1.797 

76 54 74 Case 3 703.484 716.040 1.785 

77 55 73 Case 3 708.416 720.992 1.775 

78 54 74 Case 3 713.365 725.979 1.768 

79 55 75 Case 3 718.332 731.002 1.764 

80 56 74 Case 3 723.315 736.058 1.762 

81 55 75 Case 3 728.314 741.146 1.762 

82 56 76 Case 3 733.329 746.266 1.764 

83 55 75 Case 3 738.359 751.415 1.768 

84 56 76 Case 3 743.404 756.595 1.774 

85 57 77 Case 3 748.464 761.802 1.782 

86 56 76 Case 3 753.538 767.037 1.791 

87 57 77 Case 3 758.626 772.298 1.802 

88 56 78 Case 3 763.728 777.584 1.814 

89 57 77 Case 3 768.843 782.896 1.828 

90 58 78 Case 3 773.971 788.231 1.842 

91 57 77 Case 3 779.111 793.591 1.859 

92 58 78 Case 3 784.264 798.972 1.875 

93 57 79 Case 3 789.429 804.375 1.893 

94 58 78 Case 3 794.606 809.800 1.912 

95 59 79 Case 3 799.794 815.245 1.932 

96 58 80 Case 3 804.994 820.711 1.952 

97 59 79 Case 3 810.205 826.195 1.974 

98 58 80 Case 3 815.426 831.699 1.996 

99 59 81 Case 3 820.658 837.221 2.018 

100 60 80 Case 3 825.900 842.761 2.042 
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Chapter 5  

Conclusions and Future Research 

In this research, we relaxed the single-dock-door assumption and developed expected-

distance formulations for single- and dual command travel in traditional unit-load warehouse 

designs having multiple dock doors along one wall or two adjacent walls of the warehouse. From 

the formulas derived, the shape factors (width-to-depth ratios) minimizing expected distances 

were provided for three traditional layout configurations; as well as a new layout configuration. 

We also compared the performance of a rectangle-shaped warehouse with that of a contour-line 

shaped warehouse by considering randomized and class-based storage policies.  

5.1. Conclusions from Chapter 2 

Discrete and continuous expected-distance formulations of optimization problems were 

developed for a rectangle-shaped, unit-load warehouse having dock doors aligned perpendicular 

to the wall containing dock doors.  

For three multi-dock-door scenarios involving different dock-door locations, the shape factor 

minimizing expected distance was determined from optimization models for both single- and 

dual-command travel.  

For both single- and dual-command travel, increasing the number of dock doors will 

always increase expected distance when dock doors are centrally located; however, 

expected distance may increase or decrease depending the number of dock doors when 

they are not centrally located. Specifically, dock doors should be located as near as 

possible to the centerline of the warehouse. 
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The optimal shape of a unit-load warehouse was obtained for any number of dock doors and 

three scenarios of dock-door locations along a single wall.  

The optimal shape factor depends on the number and locations of dock doors. When dock 

doors are spread over an entire wall of the warehouse, the distance between adjacent 

dock doors is a function of the warehouse’s width; the optimal shape factor is between 

1.5 and 2.0. However, when dock doors are distributed about the centerline of a 

warehouse wall and distances between adjacent dock doors are specified, the optimal 

shape factor is equal to or greater than 2.0. When dock doors are clustered toward the 

end of a wall, the optimal shape factor can be less than 1.5, between 1.5 and 2.0, or 

greater than 2.0, depending on the number of dock doors and the distance from the 

leftmost end of the wall and the nearest dock door. 

Penalties based on the increase in expected distance traveled when using a non-optimal 

design versus an optimal design were calculated. According to our computational results, we 

inferred that designing a balanced warehouse (expected horizontal roundtrip-distance is equal to 

expected vertical roundtrip-distance) is a reasonable design goal.  

Configuring a warehouse optimally results in a balanced warehouse when dock doors 

are equally distributed over an entire warehouse wall; whereas, it results in an 

unbalanced warehouse when the distance between adjacent dock doors is specified.  

The findings of this study supported the rule of thumb used by warehouse designers (the 

warehouse width being twice the warehouse depth) even when multiple dock doors are installed 

along one of the warehouse walls. 
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5.2. Conclusions from Chapter 3 

Extending our research described in Chapter 2, discrete and continuous optimization 

problems were developed for three different layout configurations containing a middle-cross-

aisle. Moreover, we allowed dock doors to be located along two adjacent aisles. The 

performance of all warehouse designs was tested for an equal number of S/R locations and the 

optimal shape factor values were provided for each design.  

With multi-dock-doors, Layout A outperforms Layouts B and C for single-command 

travel. In contrast to single-command travel, Layout B always outperforms Layouts A and 

C for dual-command travel. Designing a warehouse having S/R aisles perpendicular to 

the wall containing dock doors performs the best. 

Our study showed Layout A performs best for single-command travel when either multiple 

dock doors are uniformly distributed along one warehouse wall or the distance between adjacent 

dock doors is specified; whereas, Layout B performs better than Layouts A and C for dual-

command travel. Because having S/R aisles parallel to the wall containing dock doors will 

prevent S/R equipment access directly to the S/R locations, Layout C will always performs the 

worst for multi-dock-doors. 

When the distance between adjacent dock doors is fixed, increasing the number of dock 

doors will always increase expected distance traveled regardless of warehouse or 

operation types. 

A unit-load warehouse performs the best when its dock doors are located as near as possible 

to the centerline of the warehouse. Increasing the number of dock doors results in locating dock 

doors farther from the centerline of the warehouse. Therefore, using more than the necessary 

number of dock doors increases operating costs.  
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When dock doors are centrally located (Scenarios 1 and 2), the expected distance for a 

single-command focused warehouse is less than that for the corresponding dual-

command focused warehouse. When two sets of dock doors are clustered near one corner 

of the warehouse (Scenario 3), the expected distance for the cross-docking focused 

warehouse is smaller than both the single- and dual-command focused warehouses.  

Locating dock doors centrally along two adjacent wall’s of a warehouse results in an 

additional distance to return S/R equipment to receiving dock doors for dual-command travel. 

Therefore, the additional travel diminishes the improvement gained by using travel-between. 

When dock doors are located near one corner of the warehouse, dual-command travel improves 

the performance of the warehouse. 

5.3. Conclusions from Chapter 4 

We developed expected single-command distance formulations for a contour-line-shaped 

warehouse to analyze the performance of a unit-load warehouse having multiple dock doors. 

Using two scenarios from previous chapters and equations developed in Chapter 2 for a 

rectangle-shaped warehouse, the penalty of requiring a warehouse to be rectangle-shaped was 

calculated under a randomized storage policy. Moreover, the penalty results were provided under 

an ABC class-based storage policy by assigning unit loads to three storage regions on a priority 

basis. 

For a single dock door, the expected distance for a rectangle-shaped warehouse is about 

6.07% greater than the corresponding contour-line-shaped warehouse. 

When a single dock door is located on the centerline of a warehouse wall, the contour-line-

shaped warehouse performs approximately 6% better than the corresponding rectangle-shaped 

warehouse, regardless of the storage policy or skewness of ABC curves.  
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When multiple dock doors are spaced uniformly over an entire warehouse wall (Scenario 

1), the rectangle-shaped storage region performs better than the corresponding contour-

line-shaped warehouse. 

The Neyman-Pearson Lemma does not apply to Scenario 1 because dock-door locations 

change depending on the width of the overall warehouse. 

When dock doors have a fixed distance between them (Scenario 2), the penalty of 

requiring a rectangular warehouse ranges from a high of 6.07 % to a low of 0.87% as 

the number of dock doors increases. 

Depending on the number of dock doors and skewness of the ABC curve, the penalty of 

requiring storage regions to be rectangle-shaped for Scenario 2 can be found by using 

formulations developed in this research effort. 

5.4. Practical application of the research 

Generally speaking, warehouse designers use three rules of thumb: 1) install dock doors over 

an entire wall of the warehouse; 2) employ a warehouse shape factor (width-to-depth ratio) equal 

to 2.0, regardless of the number of dock doors located along the warehouse wall; and 3) design 

rectangle-shaped warehouses. 

Researchers, on the other hand, tend to develop mathematical models of travel in a rectangle-

shaped warehouse using an assumption of a single, centrally located dock door. In this research 

effort, the single-dock-door assumption for a unit-load warehouse is relaxed to more accurately 

represent reality. Likewise, in recognition constraints might exist which prevent dock doors 

being centrally located on a warehouse wall, we developed formulations for cases in which the 

dock doors must be off-set from the centerline of the warehouse. Finally, we developed 

expected-distance formulations for the case where the warehouse is not required to be 
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rectangular. Having developed numerous expected-distance formulations, how might the 

research results be used by the warehouse designer? 

In our research, we addressed two scenarios in which dock doors might be located over an 

entire wall of a warehouse: regardless of the number of dock doors required, space them equally 

over an entire wall; and install as many dock doors as possible over a wall, but provide a 

practical spacing between adjacent dock doors. Based on visits to numerous warehouses, we 

found the spacing between the centerlines of adjacent dock doors ranged from 10 feet to 16 feet. 

In our research, we used a spacing of 12 feet. Therefore, if the wall containing the dock doors is 

300 feet in length, 25 dock doors would be located along the wall.  

In Chapters 2, 3, and 4, results were provided for Scenario 1 (dock doors dispersed over an 

entire wall, regardless of the number required). We did so because Scenario 1 was used by other 

researchers, not because we deemed it a practical approach for warehouse design. Yet, as 

indicated, a rule of thumb employed by warehouse designers is space dock doors equally over an 

entire wall, regardless of the number required. Why is the rule of thumb used?  

The rationale for spacing dock doors over an entire wall of a warehouse is it is cheaper to 

install them during initial construction than it is to add dock doors later to an existing warehouse. 

The argument is based on the uncertainty of the number of dock doors required over the life of 

the facility. Based on years of experience, during which the mission for the facility and the need 

for dock doors change, designers tend to include as many dock doors as possible along the 

warehouse wall. Although installing dock doors over an entire wall of the warehouse might be 

less expensive from a capital cost perspective, our results show doing so can increase expected 

distance significantly if all dock doors are used equally. Hence, a trade-off occurs between 

capital cost and operating cost.  
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Based on our results, if designers include more dock doors than needed, we recommend 

warehouse operators not use dock doors at both ends of the wall, but use only the required 

number of doors distributed about the centerline of the warehouse. The challenge, of course, is 

Parkinson’s Law, which (when applied to warehouse design) claims dock door usage will expand 

to include all available dock doors. We are familiar with firms that include the floor-level dock 

door equipment in the wall, but do not provide doors for all docking stations. (A temporary wall 

exists where a door would normally appear.) 

When picking aisles are aligned perpendicular to the wall containing dock doors (Layouts A 

and B), our results support the approach of designing warehouse with a shape factor of 2.0 even 

when multiple dock doors are used. However, there will be a significant penalty in distance 

traveled if picking aisles are aligned parallel to the wall containing dock doors (Layout C) and a 

shape factor of 2.0 is used. For this reason, for a unit-load warehouse with dock doors on a single 

wall, we do not recommend using Layout C. 

The results obtained in Chapters 2 and 3 are based on discrete formulations and continuous 

approximations. If continuous approximations are used to determine the optimal shape factor, 

adjustments will be required when developing detailed designs for storage rack. Given the 

discrete formulations, the designer can calculate the expected distance for a range of discrete 

values for the number of picking aisles. Given the number of storage positions to be included, an 

integer value is easily determined for the length of the picking aisles; for each combination of 

integer values for n (the number of picking aisles) and m (the length of the picking aisle, 

measured in storage locations) the expected distance can be calculated using the formulas 

provided.  
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For Layouts A, B, and C, regardless of the number of dock doors, if only single command 

operations are performed, Layout A is preferred; if only dual command operations are 

performed, Layout B is preferred.  

When dock doors are located on two adjacent walls of the warehouse (Layout D), the 

preferred locations for the dock doors depend heavily on the level of cross-docking occurring in 

the warehouse. If very little cross-docking occurs, the dock doors should be centrally located on 

each wall; if significant cross-docking occurs, then the dock doors for receiving should be 

located as close as possible to the dock doors for shipping. As the level of cross-docking 

increases, the centroids of the dock-door locations shift from the center of the walls to the 

adjacent ends of the walls. 

How might the warehouse designer apply the results in Chapter 4? Although designing a 

contour-line-shaped warehouse might be impractical and very expensive to construct, results 

obtained from the formulas we developed can be used to obtain the penalty incurred by requiring 

the warehouse configuration to be the most common configuration (rectangular). In addition, the 

contour line does not have to define the physical boundaries of the warehouse; it can, instead, be 

used to define the boundaries for the storage regions for product classes located within a 

rectangle-shaped warehouse, with space not used for product storage used for ancillary activities. 

For the warehouse size we considered (250,000 square feet of storage area), even though 

expected distance can be reduced by as much as 6 percent by employing contour-line-shaped 

storage regions instead of rectangle-shaped storage regions, the magnitude of the reduction 

decreases as the number of dock doors increases. For large-sized warehouses (those with more 

than 70 dock doors) the savings in distance traveled is reduced to 2 percent. Based on the results 

provided, warehouse designers can use Equation 4.78 to calculate the savings potential for any 
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number of dock doors and any storage area. In the end, a judgment is required regarding the 

tradeoff between reductions in distance traveled and increased cost of installing and managing 

non-rectangle-shaped storage regions.  

5.5. Future Research 

In developing expected-distance expressions for traditional layout configurations, we 

assumed a random storage policy is used. A class-based storage policy is only applied for Layout 

A. Therefore, consideration of class-based and turnover-based storage policies for Layouts B, C 

and D would be welcome. Another assumption made throughout the research is that dock doors 

are equally likely to be used. Having unequal flows across the dock doors could prove to be an 

interesting research topic. For Layout D, different mixtures of single-command, dual-command 

and cross-docking travel might yield greater insights regarding the design of the warehouse. 

Likewise, a consideration of dock doors located on non-adjacent walls and on more than two 

walls might yield new insights for warehouse designers. 

For Chapter 4, relaxing the nesting requirement for class-based storage regions would be an 

interesting idea to explore. Requiring the overall storage region to be rectangle-shaped with 

contour-line-shaped storage regions inside the rectangle-shaped storage region might prove 

beneficial to designers.  
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