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Abstract

Let ϕ be an analytic self-map of the unit disk D. The composition operator with

symbol ϕ is denoted by Cϕ. Reverse Carleson type conditions, counting functions and

sampling sets are important tools to give a complete characterization of closed range

composition operators on BMOA and on Qp for all p ∈ (0,∞).

Let B denote the Bloch space, let H2 denote the Hardy space. We show that if Cϕ is

closed range on B or on H2 then it is also closed range on BMOA. Closed range

composition operators Cϕ : B → BMOA are also characterized. Laitila found the

isometries among composition operators on BMOA. We extend this to Qp for all

p ∈ (0,∞).
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1 Introduction

The Hardy space H2 is the collection of analytic functions on the open unit disk D whose

power series have square summable coefficients, that is if

f(z) =
∞∑
n=0

anz
n

then

||f ||2H2 =
∞∑
n=0

|an|2 <∞.

The above defines a norm in H2. Let ϕ be an analytic self-map of D. The composition

operator, denoted by Cϕ, is the operator that maps f to f ◦ ϕ, that is

Cϕf = f ◦ ϕ

for f analytic on D. Studies of composition operators start with the Hardy space setting.

Boundedness, compactness as well as closed rangeness have been studied in this setting.

Then, a very natural question is to study these properties on other function spaces.

Closed range composition operators were first studied by Cima, Thomson and Wogen

in [9], in the context of H2. Their results are in terms of the boundary behavior of the

symbol ϕ. They posed the question of studying closed range composition operators in

terms of properties of ϕ on D rather than on its boundary. The question was answered by

Zorboska in [38] who studied the problem in H2 and also in weighted Bergman spaces. In

[17] Jovovic and MacCluer studied the problem in weighted Dirichlet spaces. Closed range

composition operators in the Bloch space were investigated by Ghatage, Yan and Zheng in

[14], by Ghatage, Zheng and Zorboska in [15], by Chen and Gauthier in [8] and by

Akeroyd, Ghatage and Tjani in [3]. Akeroyd, Ghatage and Tjani revisited the problem in

the context of the Bergman space, see [2] and [3]. The journey on closed range composition
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operators is continued on Besov type spaces Bp,α, p > 1, α > 1 by Tjani, see [34].

Let X, Y be Banach spaces, let T : X → Y be a linear operator. The norms in X, Y are

denoted by ||.||X , ||.||Y respectively. We say that a bounded operator T is bounded below if

there exists a δ > 0 such that for all x ∈ X

||Tx||Y ≥ δ||x||X . (1)

Moreover, if TX is a closed subspace of Y , then we say that T is closed range.

The Closed Graph Theorem, see [37, Theorem 1.5], says that T is a bounded operator

if and only if its graph is closed in X × Y . If T is one-to-one and is closed range then, by

the Closed Graph Theorem and since T−1 : T (X)→ X is a bounded operator, and we can

easily see that T is bounded below. Moreover, if T is bounded below and (xn) is a sequence

in X such that Txn → y for some y ∈ Y , then by (1) we can easily see that (xn) is a Cauchy

sequence, hence it converges to some x ∈ X. Since T is a bounded operator Txn → Tx and

so Tx = y. We conclude that T is closed range. Therefore if T : X → Y is a bounded

linear operator that is one-to-one then T is closed range if and only if T is bounded below.

Here and thereafter, if A and B are two quantities that depend on an analytic function

f on D, we will use the notation A � B and say that A is equivalent to B; that is, there

exist positive constants c1, c2 such that

c1A ≤ B ≤ c2A.

This thesis aims to contribute by giving a complete characterization of closed range

composition operators on BMOA, the space of analytic functions on D with bounded

mean oscillation and also on the spaces Qp, 0 < p <∞.

In Chapter 2, we give definitions of BMOA, VMOA, the Bloch Space, the Dirichlet

space and the Bergman space. We also give the properties and connections of these spaces

that we will use in later chapters.
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In Chapter 3, we characterize closed range composition operators, Cϕ, on BMOA. It is

well known that composition operators in BMOA are bounded for any symbol ϕ that is an

analytic self-map of D. A crucial tool to this work is a non univalent change of variables

formula involving the counting function for BMOA that is similar to the well known

change of variables formula involving the Nevanlinna counting function. Let q ∈ D,

αq = q−z
1−q̄z , and ζ ∈ D. If ζ ∈ ϕ(D) the BMOA counting function is

Nq,ϕ(ζ) =
∑
ϕ(z)=ζ

(1− |αq(z)|2) ,

it is understood that if ζ is not in the range of ϕ, then Nq,ϕ(ζ) = 0.

Given ε > 0 and q ∈ D let Gε,q = {ζ : Nq,ϕ(ζ) > ε (1− |αq(ζ)|2)} and let

Gε = ∪q∈DGε,q . We define the notion of sampling in BMOA and prove the following.

Theorem 3.6 Let ϕ be a non-constant analytic self map of D. If Cϕ is closed range on

BMOA then there exists ε > 0 such that Gε is a sampling set for BMOA. Moreover, if

∩q∈DGε,q is a sampling set for BMOA, then Cϕ is closed range on BMOA.

The above result provides necessary and in general different sufficient conditions for Cϕ

to have closed range on BMOA. Next we look for a single condition that is both necessary

and sufficient.

Given ε > 0 and q, q′ ∈ D let Gε,q′,q = {ζ : Nq′,ϕ(ζ) > ε (1− |αq(ζ)|2) }.

Theorem 3.8 Let ϕ be an analytic self-map of D. Then, there exists k > 0 such that

for all q ∈ D, ||αq ◦ ϕ||∗ ≥ k if and only if there exists an ε > 0 and r ∈ (0, 1) such that for

all q ∈ D, there exists q′ ∈ D such that

|Gε,q′,q ∩D(q, r)|
|D(q, r)|

� 1 .

Moreover, Gε = ∪q∈DGε,q′,q satisfies the reverse Carleson condition.

By using reverse Carleson type sets we prove the following.

Theorem 3.11 Let ϕ be an analytic self-map of D. Then the composition operator
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Cϕ : B → BMOA is closed range if and only if there exists an ε > 0 and r ∈ (0, 1) such

that for all q ∈ D, there exists q′ ∈ D such that

|Gε,q′,q ∩D(q, r)|
|D(q, r)|

� 1 .

In Theorem 3.14 we show that a set satisfies the reverse Carleson condition if and only

if it is a sampling set on BMOA.

Next, we use another method and provide a full characterization of closed range

composition operators on BMOA. We note that by Theorem 3.8 and Theorem 3.11, Cϕ is

closed range on BMOA if and only if it is closed range as an operator from B to BMOA.

Theorem 3.12 The composition operator Cϕ is closed range on BMOA if and only if

there exists a constant k > 0 such that ||αq ◦ ϕ||∗ ≥ k, for all q ∈ D.

Since a composition operator Cϕ is bounded on VMOA if and only if ϕ ∈ VMOA, we

have the following.

Corollary 3.13 Let ϕ ∈ VMOA. Then Cϕ is closed range on VMOA if and only if

there exists a constant k > 0 such that ||αq ◦ ϕ||∗ ≥ k, for all q ∈ D.

We also show that if Cϕ is closed range on the Bloch space or the Hardy space then it

is closed range on BMOA, see Corollary 3.16 and Corollary 3.18. Moreover, we show that

for a univalent self-map of D, Cϕ is closed range on B if and only if Cϕ closed range on

BMOA, see Corollary 3.17.

Finally, in Theorem 3.19 we give another characterization of closed range composition

operators on BMOA.

Theorem 3.19 For each ϕ analytic self map of D, the following conditions are

equivalent:

(a) There exists k ∈ (0, 1] such that for every w ∈ D, ||αw ◦ ϕ||∗ ≥ k.

(b) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with
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|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||H2 ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .

In Chapter 4 we define the spaces Qp and study closed range composition operators on

them.

Firstly, we show a Lipschitz continuity property that ||f ◦ αq − f(q)||Qp has with

respect to the pseudohyperbolic metric. The space Dp will be defined in Chapter 4.

Theorem 4.1 Let p ∈ (0, 1]. Then, for each f ∈ Qp and for all q, w ∈ D

| ||f ◦ αq − f(q)||2Dp − ||f ◦ αw − f(w)||2Dp | ≤ 2p+1ρ(q, w) ||f ||2Qp .

If p ∈ (1,∞) then Qp is the Bloch space with and equivalent norm and we have the

following.

Theorem 4.3 Let p ∈ (1,∞). Then for each f ∈ Qp and all q, w ∈ D

| ||f ◦ αq − f(q)||2Dp − ||f ◦ αw − f(w)||2Dp | ≤ 4p ρ(q, w) ||f ||2Qp .

Let p ∈ [0,∞). The counting function for Qp for each q ∈ D, and if ζ ∈ ϕ(D) is defined by

Nq,ϕ(ζ, p) =
∑
ϕ(z)=ζ

(1− |αq(z)|2)p ;

if ζ /∈ ϕ(D) then Nq,ϕ(ζ, p) = 0.

In Theorem 4.5 and Theorem 4.6 we give necessary and different sufficient conditions

for Cϕ to be closed range in Qp, for p ∈ (0, 1), in terms of sampling type measures.

Theorem 4.5 Let p ∈ (0, 1) and assume that Cϕ is a bounded operator on Qp. If there
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exists an ε > 0 such that

sup
q∈D

∫
∩q∈DGε,q

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ) � ||f ||2Qp

then the composition operator Cϕ is closed range on Qp.

Theorem 4.6 Let p ∈ (0, 1) and assume that Cϕ is a bounded operator on Qp. If Cϕ is

closed range on Qp then there exists an ε > 0 such that for all f ∈ Qp

sup
q∈D

∫
Gε

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ) � ||f ||2Qp .

The main results of the chapter are Theorem 4.7, Theorem 4.8 and Theorem 4.9. They

provide a complete characterization of closed range composition operators on Qp for all

p ∈ (0,∞). We also note that Theorem 4.9 gives a characterization of all isometries on Qp

for all p ∈ (0,∞). The isometries in B with the standard norm are known. Theorem 4.9

gives the isometries in the norm ||.||Qp , p > 1.

Theorem 4.7 Let p > 0 and assume that Cϕ is a bounded operator on Qp. Then, there

exists k > 0 such that for all q ∈ D, ||αq ◦ ϕ||Qp ≥ k if and only if there exists an ε > 0 and

r ∈ (0, 1) such that for all q ∈ D, there exists q′ ∈ D such that

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|
� 1 .

Theorem 4.8 Let p > 0 and assume that Cϕ is a bounded operator on Qp. The

composition operator Cϕ is closed range on Qp if and only if there exists a constant k > 0

such that ||αq ◦ ϕ||Qp ≥ k, for all q ∈ D.

Theorem 4.9 Let p > 0, assume that Cϕ is a bounded operator on Qp. The following

conditions are equivalent:

(a) There exists k ∈ (0, 1] such that for every w ∈ D, ||αw ◦ ϕ||Qp ≥ k.

(b) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with
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|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||Dp ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .

We conclude this chapter by providing the following corollary which summarizes our

results on closed range composition operators on B.

Corollary 4.10 Let ϕ be a non-constant analytic self-map of D, and p > 1. Then, the

following are equivalent

(a) The composition operator Cϕ is closed range on B.

(b) For all q ∈ D, ||αq ◦ ϕ||B � 1.

(c) There exists an ε > 0 and r ∈ (0, 1) such that for all q ∈ D, there exists q′ ∈ D such

that ∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|
� 1 .

(d) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with

|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||Dp ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .
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2 The Bloch space, BMOA and VMOA

Let D be the open unit disk {z ∈ C : |z| < 1} in the complex plane C and let T be the unit

circle. A Möbius transformation is a one-to-one analytic function that maps D onto itself.

It has the form eiθαq(z) where

αq(z) =
q − z
1− q̄z

for q ∈ D and z ∈ D. The set of all Möbius transformations is denoted by Aut(D). Note

that αq exchanges the points 0 and q and its inverse under composition is itself. Moreover,

|α′q(z)| = 1− |q|2

|1− q̄z|2

and

1− |αq(z)|2 =
(1− |q|2)(1− |z|2)

|1− q̄z|2
= (1− |z|2)|α′q(z)| (2)

for q, z ∈ D.

For each p, q ∈ D

αq ◦ αp(z) = αq
( p− z

1− p̄z
)

=
q − p−z

1−p̄z

1− q̄ p−z
1−p̄z

=
p− q − z(1− qp̄)
−(1− q̄p) + z(p̄− q̄)

= −1− qp̄
1− q̄p

αp(q)− z
1− ᾱp(q)z

Let b = αp(q) and ρ = −1−qp̄
1−q̄p . Then, |ρ| = 1 and we obtain

αq ◦ αp = ρααp(q) . (3)
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The pseudohyperbolic distance ρ between two points q, z ∈ D is defined by

ρ(q, z) = |αq(z)| = | q − z
1− q̄z

|, (4)

is invariant under Möbius transformations, that is, for all z, q ∈ D and ϕ ∈ Aut(D).

ρ(ϕ(q), ϕ(z)) = ρ(q, z)

and satisfies the following version of triangle inequality, see [12, Lemma 1.4]. Given

z, q, w ∈ D,

ρ(q, w)− ρ(w, z)

1− ρ(q, w)ρ(w, z)
≤ ρ(q, z) ≤ ρ(q, w) + ρ(w, z)

1 + ρ(q, w)ρ(w, z)
. (5)

Let A denote area measure on D normalized by the condition A(D) = 1, for each H ⊆ D,

abbreviate A(H) with |H|. We denote the euclidean disk centered at q with radius

r ∈ (0, 1) with D(q, r). The pseudohyperbolic disk D(q, r) centered at q with radius

r ∈ (0, 1) is

D(q, r) = {z : ρ(z, q) < r}. (6)

If r ∈ (0, 1) is fixed and z ∈ D(q, r) then by [37, Proposition 4.5]

A(D(q, r)) � (1− |z|2)2 � |D(q, r)| � (1− |q|2)2, (7)

and

|1− q̄z| � 1− |z|2 � 1− |q|2. (8)

9



Definition 2.1. The Bloch space B of D is the space of analytic functions f on D such that

||f ||B = sup
z∈D

(1− |z|2)|f ′(z)| <∞.

The Bloch space is a Banach space with norm ||f ||B = |f(0)|+ ||f ||B. It is invariant

under Möbius transformations, that is, if f ∈ B then f ◦ ϕ ∈ B, for all Möbius

transformation ϕ. In fact, by (2) and for all q, z ∈ D

||f ◦ αq||B = sup
z∈D

(1− |z|2)|(f ◦ αq)′(z)|

= sup
z∈D

(1− |z|2)|f ′(αq(z))||α′q(z)|

= sup
z∈D

(1− |αq(z)|2)||f ′(αq(z))|

= sup
z∈D
|(1− |ζ|2)|f ′(ζ)|

= ||f ||B.

The polynomials are not dense in the Bloch space. The closure of the polynomials in the

Bloch norm is called the little Bloch space, denoted by B0. It is well known, see for

example [37, page 84].

f ∈ B0 ⇔ lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

Moreover, as Rubel and Timoney showed in [25] the Bloch space is the largest Möbius

invariant Banach space that has a non-zero linear functional that extends to a continuous

linear functional on H(D), the space of all analytic functions on D.

Definition 2.2. The Bergman space A2 is the Hilbert space of analytic functions f on D

that are square-integrable with respect to normalized area measure that is,

||f ||2A2 =

∫
D
|f(z)|2dA(z) <∞.

10



An equivalent norm on A2, see for example [37, Theorem 4.28] is given by

||f ||2A2 � |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|2)2dA(z).

It is well known that the Bloch space can be regarded as the area version of BMOA. In

particular, by [1, Theorem 5.5] and for all f ∈ B,

||f ||B � sup
q∈D
‖|f ◦ αq − f(q)||A2 ,

and by [37, Theorem 4.28],

||f ||2B � sup
q∈D

∫
D
|f ′(z)|2 (1− |αq(z)|2)2 dA(z) . (9)

Definition 2.3. The Dirichlet space D is the space of analytic functions on D such that

||f ||D = |f(0)|2 +

∫
D
|f ′(z)|2dA(z) <∞.

Next, we give the definition of analytic BMO, namely BMOA space which is a Möbius

invariant version of the Hardy Space H2.

Definition 2.4. An analytic function f ∈ H(D) belongs to BMOA if

||f ||G = sup
q∈D
‖|f ◦ αq − f(q)||H2 <∞ . (10)

We note that ||f ||G defines a seminorm and |f(0)|+ ||f ||G is a norm in BMOA that

makes it a Banach space.

Notation S(h, θ) = {z ∈ D : |z − eiθ| < h}, where θ ∈ [0, 2π), h ∈ (0, 1).

The notion of BMOA first arose in the context of mean oscillation of a function over

cubes with edges parallel to the coordinate axes or equivalently over sets of the form
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S(h, θ) ([28, pages, 36-39]). That is,

||f ||2∗ � sup
h∈(0,1),θ∈[0,2π)

1

h

∫
S(h,θ)

|f ′(z)|2(1− |z|2)dA(z). (11)

Given h > 0 and θ ∈ R, let

Q = {reiθ : θ0 < θ < θ0 + h, 1− h < r < 1}.

A positive measure µ in D is a Carleson measure for the Hardy space if there exists a

constant k > 0 such that µ(Q) ≤ kh, for all h > 0. It is known, see for example [12,

Lemma 3.3], that µ is a Carleson measure for the Hardy space if and only if

sup
q∈D

∫
D

1− |q|2

|1− q̄z|2
dµ(z) <∞ .

Then f ∈ BMOA if and only if |f ′(z)|2(1− |z|2)dA(z) is a Carleson measure for the Hardy

space.

Theorem 2.1. [31, page 178] (The Littlewood-Paley Identity) If f is an analytic on D,

then

||f ||2H2 = |f(0)|2 + 2

∫
D
|f ′(z)|2 log

1

|z|
dA(z). (12)

The following allows us to obtain a useful variation of the Littlewood-Paley identity,

see [31, page 178] and [12, Lemma 3.2 ].

Proposition 2.2. For every analytic function g on D,

∫
D
|g(z)| log

1

|z|
dA(z) �

∫
D
|g(z)|(1− |z|2)dA(z).

12



Proof. We know that for all z ∈ D \ {0}

1− |z|2 ≤ 2 log
1

|z|
, (13)

and |z| > 1/4 implies that there exists a constant c1 > 0 such that

log
1

|z|
≤ c1(1− |z|2). (14)

Let g be an analytic function on D. Then by (13)

∫
D
|g(z)|(1− |z|2)dA(z) ≤ 2

∫
D
|g(z)| log

1

|z|
dA(z) , (15)

and |g| is subharmonic. Therefore, if |z| ≤ 1/4 then

|g(z)| ≤ 16

∫
D(z,1/4)

|g(ζ)|dA(ζ)

= 16

∫
D(z,1/4)

|g(ζ)|(1− |ζ|2)

1− |ζ|2
dA(ζ).

Notice that if ζ ∈ D(z, 1/4), then |ζ| ≤ 1/2 and

|g(z)| ≤ 22

∫
D
|g(ζ)|(1− |ζ|2)dA(ζ). (16)

By (14)

∫
D\D(0,1/4)

|g(z)| log
1

|z|
dA(z) ≤ c1

∫
D
|g(z)|(1− |z|2) dA(z) (17)
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and by (16)

∫
D(0,1/4)

|g(z)| log
1

|z|
dA(z) ≤ 22

∫
D(0,1/4)

log
1

|z|

∫
D
|g(ζ)|(1− |ζ|2) dA(z) dA(ζ)

= 22

(∫
D(0,1/4)

log
1

|z|
dz

)∫
D
|g(ζ)|(1− |ζ|2)dA(ζ).

Notice that

∫
D(0,1/4)

log
1

|z|
dA(z) =

∫ 1/4

0

∫ 2π

0

log
1

r
rdr

dθ

π

= 2

∫ 1/4

0

r log
1

r
dr

� .1178934 ,

and there exists c > 0 such that

∫
D(0,1/4)

|g(z)| log
1

|z|
dA(z) ≤ c

∫
D
|g(ζ)|(1− |ζ|2)dA(ζ) . (18)

Therefore by (15), (17), and (18) we arrive at the conclusion.

By the Littlewood-Paley identity

||f ||2G = sup
q∈D

∫
D
|(f ◦ αq)′(z)|2 log

1

|z|
dA(z)

and by Proposition 2.2, ||f ||G � ||f ||∗ where

||f ||2∗ = sup
q∈D

∫
D
|(f ◦ αq)′(z)|2(1− |z|2)dA(z) . (19)
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Note that by (19) and by making change of variables αq(z) = w we obtain

||f ||2∗ = sup
q∈D

∫
D
|(f ′(αq(z)))|2|α′q(z)|2(1− |z|2)dA(z)

= sup
q∈D

∫
D
|f ′(w)|2(1− |αq(w)|2)dA(w) . (20)

There are a number of equivalent norms in BMOA. We will use

||f ||BMOA = |f(0)|+ ||f ||∗.

It is easy to see that BMOA is a Möbius invariant Banach space. Let f ∈ BMOA, p ∈ D.

Then by (20)

||f ◦ αp||2∗ = sup
q∈D

∫
D
|(f ◦ αp)′(z)|2(1− |αq(z)|2)dA(z)

= sup
q∈D

∫
D
|(f ′(αp(z))|2|α′p(z)|2(1− |αq(z)|2)dA(z)

= sup
q∈D

∫
D
|f ′(ζ)|2(1− |αq(αp(ζ))|2)dA(ζ) .

For each q ∈ D and by (3), let αq ◦ αp = eiθαQ for some Q ∈ D, θ ∈ R; then

||f ◦ αp||2∗ = sup
Q∈D

∫
D
|f ′(w)|2(1− |αQ(w)|2)dA(w)

= ||f ||2∗.
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For each q ∈ D and since BMOA is a Möbius invariant Banach space, ||αq||∗ = ||z||∗,

||αq||∗ � ||z||G

= sup
q∈D
||αq − q||H2

= sup
q∈D
||z(1− |q|2)

1− q̄z
||H2

= sup
q∈D

(1− |q|2)|| z

1− q̄z
||H2

= sup
q∈D

(1− |q|2) ||z
∞∑
n=0

(q̄z)n||H2

= sup
q∈D

(1− |q|2)||
∞∑
n=1

(q̄)n−1zn||

= sup
q∈D\{0}

(1− |q|2)
1

|q|
( ∞∑
n=1

|q|2n
) 1

2

= sup
q∈D

(1− |q|2)
1

|q|
(

1

1− |q|2
− 1)

1
2

= 1. (21)

One of the many similarities between the Bloch space and BMOA is that polynomials are

not dense in either space. The closure of the polynomials in the BMOA norm is VMOA,

the space of analytic functions with vanishing mean oscillation. The space VMOA can be

characterized as all those analytic functions f on D such that

lim
|q|→1

∫
D
|f ′(w)|2(1− |αq(w)|2dA(w) = 0 (22)

(the ”little-oh” version of (20)).

We can see that BMOA is a subspace of the Bloch space as follows:

|f ′(0)| ≤ ||f ||H2

16



for any f analytic on D; therefore there exists c > 0 such that for each q ∈ D

|f ′(q)|(1− |q|2) = |(f ◦ αq − f(q))′(0)|

≤ ||f ◦ αq − f(q)||H2

≤ c||f ||∗ . (23)

Hence, ||f ||B ≤ c||f ||∗ for all f ∈ BMOA and BMOA ⊂ B and the inclusion map

i : BMOA→ B is continuous.

Below we establish the growth of BMOA functions. Let f ∈ BMOA. Then f is

analytic on D and for all z ∈ D,

|f(z)− f(0)| = |z
∫ 1

0

f ′(tz)dt |.

Since the inclusion map i : BMOA→ B is continuous, there exists c > 0 such that for all

z ∈ D

|f ′(z)|(1− |z|2) ≤ c||f ||∗

and

|f(z)− f(0)| ≤ |z|
∫ 1

0

|f ′(tz)|dt

≤ c|z| ||f ||∗
∫ 1

0

1

1− t2|z|2
dt

=
c

2
||f ||∗ log

1 + |z|
1− |z|

. (24)

Therefore,

|f(z)| ≤ |f(0)|+ c

2
||f ||∗ log

1 + |z|
1− |z|

. (25)
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Finally we note that

D ⊂ VMOA ⊂ BMOA ⊂ B ⊂ A2.

Let H∞ denote the set of all functions in H(D) that are bounded. Given f ∈ H∞ let

||f ||∞ = sup
z∈D
|f(z)| .

By applying Schwarz Lemma we obtain that for all z ∈ D, |f ′(z)|(1− |z|2) ≤ ||f ||∞, see [37,

page 101]. By (10) it is now easy to see that H∞ ⊂ BMOA. There are unbounded

functions in BMOA.

The function log(1− z) ∈ BMOA. In fact, if f is any analytic, univalent, and zero free

function then log f ∈ BMOA (This result first appeared in [5] and [10]). Below we give

more examples of BMOA functions.

If (an) is a bounded sequence then
∑∞

n=1
1
n
anz

n ∈ BMOA, and if
∑∞

n=1 |an|2 <∞ then∑∞
n=0 anz

λn ∈ BMOA, where (λn) is a sequence of integers satisfying

λn+1

λn
≥ λ > 1,

λ is a constant and n is a natural number.
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3 Bounded and closed range composition operators on BMOA

Given ϕ an analytic self-map of D, the composition operator, Cϕ is defined for all

f ∈ H(D) as follows,

Cϕf = f ◦ ϕ.

It is well known that all composition operators Cϕ are bounded on the Hardy space H2

and, if ϕ(0) = 0, then Cϕ is a contraction.

Theorem 3.1. [31, page 13] Littlewood’s Subordination Principle (1925)

Suppose ϕ is an analytic self-map of D, with ϕ(0) = 0. Then for each f ∈ H2,

Cϕf ∈ H2 and ||Cϕf ||H2 ≤ ||f ||H2.

More generally, we have the following.

Theorem 3.2. [31, page 13] Littlewood’s Theorem (1925)

Let ϕ : D→ D be an analytic function.Then Cϕ is bounded on H2(D), and

||Cϕf ||H2 ≤

√
1 + |ϕ(0)|
1− |ϕ(0)|

||f ||H2 .

Definition 3.1. The Nevanlinna counting function of ϕ is

Nϕ(w) =
∑

ϕ(z)=w

log
1

|z|

if w ∈ ϕ(D); if w 6∈ ϕ(D) then we set Nϕ(w) = 0.

Theorem 3.3. [31, page 187] Littlewood’s Inequality If ϕ is an analytic self-map of

D, then for each w ∈ D \ {ϕ(0)},

Nϕ(w) ≤ log |1− w̄ϕ(0)

w − ϕ(0)
|.
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Definition 3.2. For each q ∈ D, and if ζ ∈ ϕ(D) the BMOA counting function is

Nq,ϕ(ζ) =
∑
ϕ(z)=ζ

(1− |αq(z)|2) ;

if ζ 6∈ ϕ(D) then we set Nq,ϕ(ζ) = 0.

Counting functions have played an important role in the study of compact, bounded

and closed range composition operators. The Nevanlinna counting function for composition

operators in BMOA appears with a non-univalent change of variables as it is done in [31,

page 186].

For each f ∈ BMOA,

||Cϕf ||2∗ = sup
q∈D

∫
D
|(f ◦ ϕ)′(z)|2(1− |αq(z)|2)dA(z)

= sup
q∈D

∫
D
|(f ′(ϕ(z))|2|ϕ′(z)|2(1− |αq(z)|2)dA(z) .

Then we have

||Cϕf ||2∗ = sup
q∈D

∫
D
|f ′(ζ)|2Nq,ϕ(ζ) dA(ζ). (26)

It is well known that Cϕ is always bounded on BMOA, see [4, Theorem 12]. Littlewood’s

Subordination Principle provides a proof, see for example [33]. Smith points out in [32]

that Littlewood’s inequality provides an alternate proof, which we will describe below for

our chosen norm.

Theorem 3.4. Let ϕ be an analytic self-map of D. Then Cϕ is a bounded operator on

BMOA.

Proof. For all z ∈ D \ {0} we have,

1− |z|2 ≤ log
1

|z|2
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therefore by (26)

||Cϕf ||2∗ ≤ sup
q∈D

∫
D
|f ′(ζ)|2

∑
ϕ(z)=ζ

log
1

|αq(z)|2
dA(ζ) . (27)

By Proposition 2.2 and Littlewood’s Inequality, there exists C > 0 such that

||Cϕf ||2∗ ≤ sup
q∈D

∫
D
|f ′(ζ)|2 log

1

|αϕ(q)(ζ)|2
dA(ζ)

≤ sup
q∈D

∫
D
|f ′(ζ)|2 log

1

|αq(ζ)|2
dA(ζ)

≤ C||f ||2∗ , (28)

and Cϕ is a bounded operator on BMOA.

Next, let X = B, BMOA or VMOA and Y = BMOA or VMOA. We show that for

Cϕ to be bounded below, we can restrict on subspaces of functions that vanish at the

origin. The canonical seminorm in X is denoted by ||.||sX .

Proposition 3.5. Let X = B, BMOA or VMOA and Y = BMOA or VMOA. The

composition operator Cϕ : X → Y is bounded below if and only if there exists a δ > 0 such

that ||Cϕf ||∗ ≥ δ ||f ||sX , for all f ∈ X.

Proof. First, assume that Cϕ : X → BMOA is bounded below. Let f ∈ X and

g(z) = f(z)− f(ϕ(0)). Then, g ∈ X, g(ϕ(0)) = 0, ||g||sX = ||f ||sX and

||g ◦ ϕ||∗ = ||f ◦ ϕ||∗ . Thus, there exists δ > 0 such that

||Cϕf ||∗ = ||f ◦ ϕ||∗ = ||g ◦ ϕ||∗ = ||g ◦ ϕ||BMOA ≥ δ ||g||X ≥ δ ||g||sX = δ ||f ||sX .

Conversely, assume that there exists a δ > 0 such that ||f ◦ ϕ||∗ ≥ δ ||f ||sX , for all f ∈ X.

Then by (24) there exists C > 0 such that

|f(0)| ≤ |f(ϕ(0))|+ C ||f ||sX log
1 + |ϕ(0)|
1− |ϕ(0)|

,
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which implies that there exists C > 0 such that

||f ||X = |f(0)|+ ||f ||sX

≤ |f(ϕ(0))|+ C ||f ||sX log
1 + |ϕ(0)|
1− |ϕ(0)|

+
1

δ
||f ◦ ϕ||∗

≤ |f(ϕ(0))|+ c

δ
||f ◦ ϕ||∗ log

1 + |ϕ(0)|
1− |ϕ(0)|

+
1

δ
||f ◦ ϕ||∗

≤ C ||f ◦ ϕ||BMOA.

Hence, Cϕ is bounded below on BMOA.

Definition 3.3. Let µ be a finite positive Borel measure on D. We say that µ is a Carleson

measure for the Bergman space if there exists constant c > 0 such that for all f ∈ A2

∫
D
|f(z)|2dµ(z) ≤ c

∫
D
|f(z)|2dA(z).

By [37, Theorem 7.4], given r ∈ (0, 1), µ is a Carleson measure if and only if there

exists cr > 0 such that for all w ∈ D,

µ(D(w, r)) ≤ cr|D(w, r)|.

The Berezin symbol of µ is

µ̃(q) =

∫
D
|α′q(z)|2 dµ(z) , q ∈ D . (29)

It is well known that µ is a Carleson measure for the Bergman space if and only if µ̃, is

a bounded function on D, that is,

sup
q∈D

∫
D
|α′q(z)|2dµ(z) . 1 , (30)

see for example [37, Theorem 7.5]. The proof of (30) can be used to show that µq′ , q
′ ∈ D,
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is a collection of uniformly Carleson measures for the Bergman space if and only if

sup
w,q′∈D

∫
D
|α′w(z)|2dµ(z) . 1 . (31)

For any symbol ϕ and by Theorem 3.4, Cϕ is a bounded operator on BMOA. Then for all

q ∈ D, ||Cϕαq||∗ . 1 and by (26)

sup
q,q′∈D

∫
D
|α′q(ζ)|2Nq′,ϕ(ζ)dA(ζ) . 1 .

By (31) and for all q′ ∈ D, Nq′,ϕ(ζ)dA(ζ) is a collection of uniformly Carleson measures for

the Bergman space.

Definition 3.4. Let µ be a finite positive Carleson measure on D. We say that µ satisfies

the reverse Carleson condition if there exists r ∈ (0, 1) such that for all w ∈ D,

|D(w, r)| � µ(D(w, r)).

It is shown in [16, Theorem 4.1] that µ satisfies the reverse Carleson condition if and

only if

sup
q∈D

∫
D
|α′q(z)|2dµ � 1 .

A set H ⊂ D satisfies the reverse Carleson condition if the Carleson measure χH(z)dA(z)

satisfies the reverse Carleson condition; Luecking showed in [20] that this is equivalent to

∫
D
|f(z)|2dA(z) ≤ C

∫
H

|f(z)|2dA(z),

for all f ∈ A2. It is also equivalent to

∫
D
|f ′(z)|2 (1− |z|2) dA(z) ≤ c

∫
H

|f ′(z)|2 (1− |z|2) dA(z) ,
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for all f ∈ H2.

Definition 3.5. We say that H ⊆ D is a sampling set for BMOA if for all f ∈ BMOA

sup
q∈D

∫
H

|f ′(z)|2 (1− |αq(z)|2) dA(z) � ||f ||2∗ .

For each ε > 0 and q ∈ D let Gε,q be

Gε,q = {ζ : Nq,ϕ(ζ) > ε (1− |αq(ζ)|2)} (32)

and let Gε be

Gε = ∪q∈DGε,q . (33)

Theorem 3.6. Let ϕ be a non-constant analytic self map of D. If Cϕ is closed range on

BMOA then there exists ε > 0 such that Gε is a sampling set for BMOA. Moreover, if

∩q∈DGε,q is a sampling set for BMOA, then Cϕ is closed range on BMOA.

Proof. First, suppose that Cϕ is closed range on BMOA. If the conclusion fails, then for

every ε > 0, Gε is not a sampling set for BMOA and we can find a sequence (fn) in

BMOA with fn(0) = 0 and ||fn||BMOA = 1 for all n such that

lim
n→∞

sup
q∈D

∫
G 1
n

|f ′n(z)|2(1− |αq(z)|2) dA(z) = 0 . (34)

For each n we have,

||fn ◦ ϕ||2∗ = 2 sup
q∈D

∫
D
|f ′n(ζ)|2Nq,ϕ(ζ) dA(ζ)

≤ I1 + I2 , (35)
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where

I1 = 2 sup
q∈D

∫
G 1
n

|f ′n(ζ)|2Nq,ϕ(ζ) dA(ζ) (36)

and

I2 = 2 sup
q∈D

∫
D\G 1

n

|f ′n(ζ)|2Nq,ϕ(ζ)dA(ζ) . (37)

By Littlewood’s inequality, there exists C > 0 such that for all ζ 6= ϕ(q),

∑
ϕ(z)=ζ

log
1

|αq(z)|2
≤ C log

1

|αϕ(q)(ζ)|2
. (38)

For all n,

I1 ≤ C sup
q∈D

∫
G 1
n

|f ′n(ζ)|2
∑
ϕ(z)=ζ

log
1

|αq(z)|2
dA(ζ)

≤ C sup
q∈D

∫
G 1
n

|f ′n(ζ)|2 log
1

|αϕ(q)(ζ)|2
dA(ζ) .

Note that for any q ∈ D and for any natural number n,

∫
G 1
n

|f ′n(ζ)|2 log
1

|αq(ζ)|2
dA(ζ) = A−B ,

where

A =

∫
D
|f ′n(ζ)|2 log

1

|αq(ζ)|2
dA(ζ)

and

B =

∫
D\G 1

n

|f ′n(ζ)|2 log
1

|αq(ζ)|2
dA(ζ) .
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Then by Proposition 2.2,

A ≤ C

∫
D
|f ′n(ζ)|2 (1− |αq(ζ)|2) dA(ζ)

and by (13),

B ≥ 1

2

∫
D\G 1

n

|f ′n(ζ)|2 (1− |αq(ζ)|2) dA(ζ) .

We conclude that

I1 ≤ C sup
q∈D

∫
G 1
n

|f ′n(ζ)|2(1− |αq(ζ)|2) dA(ζ). (39)

Next, for n a fixed natural number, ζ 6∈ G1/n, and q ∈ D,

Nq,ϕ(ζ) ≤ 1

n
(1− |αq(ζ)|2) ,

and

I2 ≤
1

n
sup
q∈D

∫
D\G 1

n

|f ′n(ζ)|2(1− |αq(ζ)|2) dA(ζ)

≤ 1

n
sup
q∈D

∫
D
|f ′n(ζ)|2(1− |αq(ζ)|2) dA(ζ)

≤ 1

n
||fn||2∗

=
1

n
. (40)

By (34), (35), (39) and (40), ||fn ◦ ϕ||∗ → 0, as n→∞ and Cϕ is not closed range on

BMOA which contradicts our hypothesis and the conclusion holds.

Conversely, assume that there exists ε > 0 such that ∩q∈DGε,p is a sampling set for
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BMOA. Let f ∈ BMOA. Then, for all q ∈ D

||f ◦ ϕ||2∗ ≥
∫
Gε,q

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ)

≥ ε

∫
Gε,q

|f ′(ζ)|2(1− |αq(ζ)|2) dA(ζ)

≥
∫
∩q∈DGε,q

|f ′(ζ)|2(1− |αq(ζ)|2) dA(ζ) . (41)

Since Gε is a sampling set for BMOA we conclude that Cϕ is closed range on BMOA.

The following is a corollary of the proof of [16, Proposition 4.1].

Theorem 3.7. Let µq, q ∈ D be a collection of positive uniformly Carleson measures, let

α, β be such that α + β = 2.Then

lim
r→1

sup
q,w∈D

∫
D\D(w,r)

(1− |w|2)α(1− |ζ|2)β

|1− w̄ζ|4
dµq(ζ) = 0 . (42)

For each ε > 0 and q, q′ ∈ D let Gε,q′,q be

Gε,q′,q = {ζ : Nq′,ϕ(ζ) ≥ ε (1− |αq(ζ)|2) }. (43)

Theorem 3.8. Let ϕ be an analytic self-map of D. Then, there exists k > 0 such that for

all q ∈ D, ||αq ◦ ϕ||∗ ≥ k if and only if there exists an ε > 0 and r ∈ (0, 1) such that for all

q ∈ D, there exists q′ ∈ D such that

|Gε,q′,q ∩D(q, r)|
|D(q, r)|

� 1 . (44)

Moreover, if the above holds then Gε = ∪q∈DGε,q′,q satisfies the reverse Carleson condition.

Proof. First, assume that there exists k > 0 such that for all q in D, ||αq ◦ ϕ||∗ ≥ k. Then,

for each q ∈ D there exists a q′ ∈ D such that
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∫
D
|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) ≥ k

2
. (45)

By Theorem 3.7 and since for all q′ ∈ D, Nq′,ϕ(ζ)dA(ζ) is a collection of uniformly Carleson

measures for the Bergman space,

lim
r→1

sup
q,q′∈D

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) = 0 .

We conclude that there exists r ∈ (0, 1) such that for all q, q′ ∈ D

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) <
k

4
. (46)

Now, for each ε > 0, q ∈ D and q′ ∈ D as in (45), write

∫
D
|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) = I1 + I2 + I3 , (47)

where

I1 =

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) ,

I2 =

∫
D(q,r)\Gε,q′,q

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) ,

and

I3 =

∫
Gε,q′,q∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) .
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By (46),

I1 <
k

4
. (48)

Next,

I2 ≤ ε

∫
D(q,r)\Gε,q′,q

|α′q(ζ)|2(1− |αq(ζ)|2) dA(ζ)

≤ ε ||αq||2∗

≤ C ε . (49)

By (38)

I3 =

∫
Gε,q′,q∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ)

≤ C

∫
Gε,q′,q∩D(q,r)

|α′q(ζ)|2(1− |αϕ(q′)(ζ)|2) dA(ζ)

≤ C

∫
Gε,q′,q∩D(q,r)

(1− |q|2)2

|1− q̄ζ|4
dA(ζ)

�
∫
Gε,q′,q∩D(q,r)

1

|D(q, r)|
dA(ζ)

� |Gε,q′,q ∩D(q, r)|
|D(q, r)|

. (50)

By (45), (48), (49), (50), we conclude that there exists r ∈ (0, 1) such that for all w ∈ D,

k

4
< ε+ C

|Gε,q′,q ∩D(w, r)|
|D(q, r)|

or

k

4
− ε ≤ |Gε,q′,q ∩D(q, r)|

|D(q, r)|
. (51)

Hence, for any ε > 0 with ε < k/4, the set Gε,q′,q satisfies (44).
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Next, assume that there exists an ε > 0 and r ∈ (0, 1) such that for all q ∈ D, there

exists q′ ∈ D such that (44) holds. Then, for each fixed q ∈ D,

||αq ◦ ϕ||2∗ ≥
∫
Gε,q′,q

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ)

≥
∫
Gε,q′,q∩D(q,r)

|α′q(ζ)|2 (1− |αq(ζ)|2) dA(ζ) .

By (7), (8)

||αq ◦ ϕ||∗ ≥ C
|Gε,q′,q ∩D(q, r)|
|D(q, r)|

� 1

and the conclusion follows.

Lastly, since

|Gε,q′,q ∩D(w, r)|
|D(w, r)|

≤ |Gε ∩D(w, r)|
|D(w, r)|

,

and by (45) and (50), it is clear that Gε satisfies the reverse Carleson condition.

In section III of [20], Luecking characterized when a measurable subset F of D satisfies

the reverse Carleson condition by using pseudohyperbolic disks, disks whose centers lying

on the unit circle T and also using a collection of disks whose centers lie on D. All the

arguments remain valid if we replace F with a collection of measurables subsets Fq, q ∈ D

and we obtain the following proposition.

Proposition 3.9. Given a collection of measurable sets Fq, q ∈ D, the following are

equivalent:

(A) There exists a constant δ > 0 and r ∈ (0, 1) such that for all q ∈ D and for all disks

D with centers on T, there exists q′ ∈ D such that

|Fq′ ∩D| > δ |D ∩D| .
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(B) There exists a constant δ0 > 0 and η ∈ (0, 1) such that for all q ∈ D there exists

q′ ∈ D such that

|Fq′ ∩ D (q, η(1− |q|)) | > δ0 |D (q, η(1− |q|)) | .

(C) There exists a constant δ1 > 0 and r ∈ (0, 1) such that for all q ∈ D there exists

q′ ∈ D such that

|Fq′ ∩D(q, r)| > δ1 |D(q, r)| .

Next, we discuss how the main result in [20] can be modified to allow for a reverse

Carleson type condition for a collection of measurable sets Fq, q ∈ D. Let δ0 and η be fixed

and assume (B) in Proposition 3.9 holds. Since η is fixed, as Luecking does in [20, page 6],

we abbreviate the notation for the disk D(q, η(1− |q|)) with D(q). Let A1 denote the space

of analytic and Lebesgue integrable functions on D. Given an analytic function f and

λ ∈ (0, 1) define the set

Eλ(q) = {z ∈ D(q) : |f(z)| > λ |f(q)|}

and the operator

Bλf(q) =
1

|Eλ(q)|

∫
Eλ(q)

|f(z)| dA(z).

Note Lemma 1, Lemma 2 and Lemma 3 in [20]. Moreover as done in [20, page 9], if

ε ∈ (0, 1) is small enough and

F = {q ∈ D : |f(q)| ≥ ε3Bλf(q)} (52)

then

∫
D
|f(z)| dA(z) < 2

∫
F

|f(z) dA(z) ,
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and for all q ∈ F there exists q′ ∈ D such that

1

|D(q)|

∫
Fq′∩D(q)

|f(z)| dA(z) ≥ 1

2
δ0λ|f(q)| .

Integrating the above over F we obtain

∫
F

1

|D(q)|

∫
Fq′∩D(q)

|f(z)| dA(z) dA(q) ≥ 1

2
δ0λ

∫
F

|f(q)| dA(q)

≥ 1

4
δ0λ

∫
D
|f(q)| dA(q) , (53)

for all f ∈ A1. The theorem below is now an extension of one direction of the main

theorem in [20].

Theorem 3.10. Given a collection of measurable subsets of D, Fq, q ∈ D, and F as in

(52), if there exists a constant δ0 > 0 and η ∈ (0, 1) such that for all q ∈ D there exists

q′ ∈ D such that

|Fq′ ∩ D(q, η(1− |q|)) | > δ0 |D(q, η(1− |q|))| ,

then there exists a constant C > 0 such that for all q ∈ F there exists q′ ∈ D such that for

all f ∈ A1,

∫
F

1

|D(q)|

∫
Fq′∩D(q)

|f(z)| dA(z) dA(q) ≥ C

∫
D
|f(q)| dA(q) .

Remark 3.1. The main theorem in [20] as well as Theorem 3.10 remain valid if |f | is

replaced with |f |2 , see [20, page 6]. Moreover, as Luecking indicates in [20, page 10],

instead of dA(z) one may use the measure (1− |z|2)2 dA(z), and the main theorem in [20]

is valid. The two critical properties of the weight w(z) = (1− |z|2)2 are

w(q) ≤ C inf{w(z) : z ∈ D(q, η)} and that w(αq(z)) = |α′q(z)|2 (1− |z|2)2. Consequently,

Theorem 3.10 is also valid for the measure (1− |z|2)2 dA(z).

We are now ready to prove the following.
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Theorem 3.11. Let ϕ be an analytic self-map of D. Then the composition operator

Cϕ : B → BMOA is closed range if and only if there exists an ε > 0 and r ∈ (0, 1) such

that for all q ∈ D, there exists q′ ∈ D such that

|Gε,q′,q ∩D(q, r)|
|D(q, r)|

� 1 . (54)

Proof. First, assume that there exists ε > 0 and r ∈ (0, 1) such that for all q ∈ D, there

exits q′ ∈ D such that (54) holds. By Proposition 3.9 this is equivalent to the existence of

an ε > 0, a constant δ0 > 0 and η ∈ (0, 1) such that for all q ∈ D there exists q′ ∈ D such

that

|Gε,q′,q ∩D (q)| > δ0 |D (q)| . (55)

Given such q ∈ D and q′ ∈ D, for each f ∈ B

||Cϕf ||2∗ ≥
∫
Gε,q′,q

|f ′(ζ)|2Nq′,ϕ(ζ) dA(ζ)

≥ ε

∫
Gε,q′,q

|f ′(ζ)|2 (1− |αq(ζ)|2) dA(ζ) .

≥ ε

∫
Gε,q′,q∩D(q)

|f ′(ζ)|2 (1− |αq(ζ)|2) dA(ζ) .

If ζ ∈ D(q) then ζ ∈ D(q, r), for any fixed η and r ∈ (0, 1) with r ≥ 2η/1 + η2, and by (2),

(7), (8), (1− |αq(ζ)|2) � 1; therefore

||Cϕf ||2∗ ≥ C

∫
Gε,q′,q∩D(q)

|f ′(ζ)|2 dA(ζ) . (56)

By (7), (55), Theorem 3.10, and Remark 3.1 , for all f ∈ A2

∫
F

∫
Gε,q′,q∩D(q)

|f ′(ζ)|2 dA(ζ) dA(q) ≥ C

∫
D
|f ′(q)|2(1− |q|2)2 dA(q)
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Therefore by (56), for all f ∈ A2

||Cϕf ||2∗ ≥ C

∫
D
|f ′(q)|2(1− |q|2)2 dA(q)

� ||f ||2A2 .

Since the BMOA seminorm is invariant under Mobius automorphisms, for all q ∈ D

||Cϕf ||2∗ ≥ C||f ◦ αq − f(q)||2A2 . (57)

By (9) we conclude that for all f ∈ B, ||Cϕf ||∗ ≥ C||f ||B and by Proposition 3.5,

Cϕ : B → BMOA is closed range. Conversely, if Cϕ : B → BMOA is closed range then for

all q ∈ D, ||αq ◦ ϕ||∗ ≥ C ||αq||B ≥ C and by Theorem 3.8 the conclusion follows.

Theorem 3.12. The composition operator Cϕ is closed range on BMOA if and only if

there exists a constant k > 0 such that ||αq ◦ ϕ||∗ ≥ k, for all q ∈ D.

Proof. First, assume that there exists a constant k > 0 such that ||αq ◦ ϕ||∗ ≥ k. Then

given a q ∈ D, there exists qn ∈ D such that

k2 ≤ lim
n→∞

∫
D
|α′q(ζ)|2Nqn,ϕ dA(ζ)

or

lim
n→∞

∫
D
|α′q(ζ)|2

(
k2 −Nqn,ϕ(ζ)

)
dA(ζ) ≤ 0 .

Therefore

lim
n→∞

∫
D\Gk2,qn,q

|α′q(ζ)|2
(
k2(1− |αq(ζ)|2)−Nqn,ϕ(ζ)

)
dA(ζ) ≤ 0 . (58)

If for each q ∈ D there exists a natural number n such that the Lebesgue area measure
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of D \Gk2,qn,q is 0, then

||Cϕf ||2∗ ≥
∫
Gk2,qn,q

|f ′(ζ)|2Nqn,ϕ(ζ) dA(ζ)

=

∫
D
|f ′(ζ)|2Nqn,ϕ(ζ) dA(ζ)

≥ k2

∫
D
|f ′(ζ)|2 (1− |αq(ζ)|2) dA(ζ)

and ||Cϕf ||∗ ≥ k ||f ||∗ for all f ∈ BMOA . By Proposition 3.5, Cϕ is closed range on

BMOA.

Therefore from now on we may assume that for some q ∈ D and for all n the Lebesgue

area measure of D \Gk2,qn,q is positive. The integrand in (58) is non negative in D \Gk2,qn,q,

so we must have that for almost every ζ ∈ D \Gk2,qn,q,

k2(1− |αq(ζ)|2)−Nqn,ϕ(ζ)→ 0 . (59)

For each f ∈ BMOA

∫
D\Gk2,qn,q

|f ′(ζ)|2 k2(1− |αq(ζ)|2)−Nqn,ϕ(ζ) dA(ζ) ≤ k2 ||f ||2∗

therefore by (59) and the Lebesgue Dominated Convergence Theorem

lim
n→∞

∫
D\Gk2,qn,q

|f ′(ζ)|2 k2(1− |αq(ζ)|2)−Nqn,ϕ(ζ) dA(ζ) = 0 . (60)

Write

∫
D
|f ′(ζ)|2k2(1− |αq(ζ)|2) dA(ζ) = I + II , (61)
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where

I =

∫
D\Gk2,qn,q

|f ′(ζ)|2 k2(1− |αq(ζ)|2) dA(ζ)

and

II =

∫
Gk2,qn,q

|f ′(ζ)|2 k2(1− |αq(ζ)|2) dA(ζ) .

Note that I = I1 + I2, where

I1 =

∫
D\Gk2,qn,q

|f ′(ζ)|2 k2(1− |αq(ζ)|2)−Nqn,ϕ(ζ) dA(ζ)

and

I2 =

∫
D\Gk2,qn,q

|f ′(ζ)|2Nqn,ϕ(ζ) dA(ζ) .

By (60), I1 → 0 as n→∞, and

II ≤
∫
Gk2,qn,q

|f ′(ζ)|2Nqn,ϕ(ζ) dA(ζ) .

Therefore by (61) and for all q ∈ D

∫
D
|f ′(ζ)|2k2(1− |αq(ζ)|2) dA(ζ) ≤

∫
D
|f ′(ζ)|2Nqn,ϕ(ζ) dA(ζ)|+ I1

≤ ||Cϕf ||2∗ + I1 . (62)

We conclude that k||f ||∗ ≤ ||Cϕf ||∗ for all f ∈ BMOA, and by Proposition 3.5, Cϕ is

closed range on BMOA.

For the converse if Cϕ is closed range on BMOA then Cϕ is bounded below on
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BMOA. By Proposition 3.5 and by (21) there exists δ > 0 such that for all q ∈ D,

||αq ◦ ϕ||∗ ≥ δ ||αq||∗

� 1 ,

and the conclusion follows.

It is proved in [4, Theorem 12] that Cϕ is bounded in VMOA if and only if

ϕ ∈ VMOA. The following now is an immediate corollary of Theorem 3.12.

Corollary 3.13. Let ϕ ∈ VMOA. Then Cϕ is closed range on VMOA if and only if there

exists a constant k > 0 such that ||αq ◦ ϕ||∗ ≥ k, for all q ∈ D.

Theorem 3.14. A subset H of D satisfies the reverse Carleson condition if and only if H

is a sampling set for BMOA.

Proof. First, assume that H satisfies the reverse Carleson condition. If H is not a sampling

set for BMOA, then there exists a sequence (fn) in BMOA such that ||fn||∗ = 1 and

lim
n→∞

sup
q′∈D

∫
H

|f ′n(z)|2 (1− |αq′(z)|2) dA(z) = 0 ,

and so for q′ = 0,

lim
n→∞

∫
H

|(f ′n(ζ)|2 (1− |ζ|2) dA(ζ) = 0 . (63)

Since BMOA is continuously contained in H2, there exists a constant C > 0 such that

||fn||H2 ≤ C and by (63), H does not satisfy reverse Carleson condition. We conclude that

H is a sampling set for the BMOA space.

Conversely, suppose that H is a sampling set for the BMOA space. Then for all q ∈ D,
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||αq||∗ � 1 and

sup
q′∈D

∫
H

|α′q(z)|2 (1− |αq′(z)|2) dA(z) � 1 .

Then, there exists C > 0 such that for all q ∈ D

∫
H

|α′q(z)|2 dA(z) ≥ C . (64)

By [16, Theorem 4.1] and (64) we conclude that H satisfies the reverse Carleson

condition.

Proposition 3.15. Let H ⊆ D and q ∈ D. Then H satisfies the reverse Carleson condition

if and only if αq(H) satisfies the reverse Carleson condition.

Proof. For each H ⊆ D be a Carleson set for the Bergman space, for fixed q ∈ D, and by

making below the change of variables z = αq(ζ) we obtain

∫
αq(H)

|α′p(z)|2 dA(ζ) =

∫
H

|(αp ◦ αq)′(ζ)|2 dA(ζ) .

By [16, Theorem 4.1] the result follows.

Corollary 3.16. Let ϕ be an analytic self-map of D. If Cϕ is closed range on the Bloch

space, then it is also closed range on BMOA.

Proof. By [3, Corollary 2.3], Cϕ is closed range on the Bloch space if and only if for all

q ∈ D, ||αq ◦ ϕ||B � 1. Since BMOA is continuously contained in B, for all q ∈ D we have

that ||αq ◦ ϕ||∗ � 1. By Theorem 3.12 we conclude that Cϕ is closed range on BMOA.

Corollary 3.17. Let ϕ be a univalent self-map of D. Then, Cϕ is closed range on B, if

and only if Cϕ is closed range on BMOA.

Proof. It is shown in [15, Corollary 2] that for ϕ a univalent self-map of D, if Cϕ is closed

38



range on BMOA, then it is also closed range on B. By Corollary 3.16 the result is now

clear.

Corollary 3.18. Let ϕ be an analytic self-map of D. If Cϕ is closed range on H2, then it

is also closed range on BMOA.

Proof. Given q ∈ D, let kq denote the normalized reproducing kernel in H2, that is

kq(z) =
1− |q|2

1− qz
.

It is known, see [22] and [16], that Cϕ is closed range on H2 if and only if for all q ∈ D,

||kq ◦ ϕ||H2 � 1. By (12) it is easy to see that ||kq ◦ ϕ||H2 � |q| ||αq ◦ ϕ||H2 , if q 6= 0. By

Theorem 3.12 and since the inclusion map i : BMOA→ H2 is continuous, the conclusion

easily follows.

Laitila characterized in [18] the isometries among composition operators on BMOA.

Moreover he showed that if ϕ is an inner function then ||Cϕf ||∗ = ||f ||∗, for all

f ∈ BMOA. Below we give another characterization of closed range composition operators

on BMOA. Our proof extends and simplifies the proof in [18] for the isometries.

Theorem 3.19. For each ϕ analytic self map of D, the following conditions are equivalent:

(a) There exists k ∈ (0, 1] such that for every w ∈ D, ||αw ◦ ϕ||∗ ≥ k.

(b) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with

|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||H2 ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .

Proof. First, assume that (a) holds for some k ∈ (0, 1] and let w ∈ D. Then, there exists a
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sequence (qn) in D such that for all n,

||αw ◦ ϕ ◦ αqn − αw(ϕ(qn))||2H2 ≥ k2 − 1

n
. (65)

Since (ϕ(qn)) is a bounded sequence in D, it has a convergent subsequence in D. Without

loss of generality, there exists w′ ∈ D such that ϕ(qn)→ w′. By (65),

|αw(ϕ(qn))|2 = ||αw ◦ ϕ ◦ αqn||2H2 − ||αw ◦ ϕ ◦ αqn − αw(ϕ(qn))||2H2

≤ 1− k2 +
1

n
,

therefore, |αw(w′)|2 ≤ 1− k2 and w′ ∈ D.

Let αw ◦ αϕ(qn) = λnαbn where λn bn = αw(ϕ(qn)) and |λn| = 1. Then for all z ∈ D,

αw ◦ ϕ ◦ αqn(z)− αw(ϕ(qn)) = αw ◦ αϕ(qn) ◦ ϕqn(z)− αw(ϕ(qn))

= λnαbn ◦ ϕqn(z)− λnbn

= λn
(|bn|2 − 1)ϕqn(z)

1− b̄nϕqn(z)
. (66)

Therefore,

||αw ◦ ϕ ◦ αqn − αw(ϕ(qn))||H2 ≤ (1 + |bn|)||ϕqn||H2 ;

by (65) we conclude, by taking a further subsequence if necessary, that

lim
n→∞

||ϕqn||H2 ≥ k

1 + |aw(w′)|

≥ k

2
(67)
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and (b) holds. Note that if k = 1 above then, w = w′ and

lim
n→∞

||ϕqn||H2 = 1 .

Next, assume that (b) holds for some k ∈ (0, 1] and let w ∈ D. Then there exists w′ ∈ D

with |αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||H2 ≥ k . (68)

Let |λn| = 1 and (bn) be as in the proof of (a)→ (b). Then (66) is valid, and for every

n ∈ N

||αw ◦ ϕ ◦ αqn − αw(ϕ(qn))||2H2 ≥ (1− |bn|)2||ϕqn||2H2 .

We conclude that

||αw ◦ ϕ||2∗ ≥ ||αw ◦ ϕ ◦ αqn − αw(ϕ(qn))||2H2

≥ (1− |bn|)2||ϕqn||2H2 ,

and by (68)

||αw ◦ ϕ||2∗ ≥
(1− |αw(w′)|2)2

(1 + |αw(w′)|)2
k2 . (69)

If k ∈ (0, 1) and since |αw(w′)|2 ≤ 1− k2 we conclude by (69) that for all w ∈ D

||αw ◦ ϕ||∗ ≥
k4

4
.

If k = 1, then w = w′ and by (69) ||αw ◦ ϕ||2∗ = 1 . The proof is now complete.
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4 Composition operators on Qp

In this chapter we study the spaces Qp and closed range composition operators on them.

Definition 4.1. For p ∈ [0,∞) we say that a function f analytic on D belongs to Qp if

||f ||2Qp = sup
q∈D

∫
D
|f ′(z)|2(1− |αq(z)|2)p dA(z) <∞,

where ||f ||Qp is a seminorm and |||f |||Qp = |f(0)|+ ||f ||Qp defines a norm in Qp that makes

it a Banach space.

The collection of all Qp spaces includes many familiar spaces.

• if p = 0 then Q0 is the Dirichlet space with an equivalent norm.

• if p = 1 then Q1 is the space BMOA.

• if p > 1 then Qp is the Bloch space with an equivalent norm, see [36, Corollary 1.2.1].

It is known, see [36], that if 0 ≤ p < q <∞ then Qp ⊆ Qq and the inclusion map is

continuous. Moreover, if 0 ≤ p 6= q ≤ 1 then Qp 6= Qq.

Let p ∈ (0,∞) and let f(z) =
∑∞

n=0 anz
n with an nonnegative and non increasing. It is

shown in [36, Corollary 3.3.1] that f ∈ Qp if and only if supn∈N nan <∞. For example,

f(z) =
∑∞

n=1
1
n
zn = log(1− z) ∈ Qp for all p.

Now, we estimate ||αq||Qp and show that there exists c > 0 such that ||αq||Qp ≤ c, for

each given p ≥ 0.

Fixing p ≥ 0, q ∈ D and by making the change of variables αq(z) = ζ we obtain,

||αq||2Qp = sup
λ∈D

∫
D
|α′q(z)|2(1− |αλ(z)|2)p dA(z)

= sup
λ∈D

∫
D
(1− |αλ ◦ αq(ζ)|2)p dA(ζ) (70)
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Since for a fixed q ∈ D, each Möbius transformation can be written as eiθαλ ◦ αq,

λ ∈ D, θ ∈ R we obtain,

||αq||2Qp = sup
λ∈D

∫
D
(1− |αλ(ζ)|2)p dA(ζ).

Note that by (2),

∫
D
(1− |αλ(ζ)|2)pdA(ζ) = (1− |λ|2)p

∫
D

(1− |ζ|2)p

|1− λ̄ζ|2p
dA(ζ) .

Now we apply [37, Lemma 3.10] with c = p− 2. We have the following cases:

• If c < 0 then 0 ≤ p < 2 and

||αq||2Qp . (1− |λ|2)p . 1.

• If c > 0 then p > 2 and as |λ| → 1

||αq||2Qp � (1− |λ|2)p
1

(1− |λ|2)p−2
= (1− |λ|2)2 . 1.

• if c = 0 then p = 2 and as |λ| → 1

||αq||2Qp � log
1

1− |λ|2
(1− |λ|2)2 . 1.

Hence, there exists c > 0 such that for all q ∈ D, ||αq||2Qp ≤ c.

For each p ∈ [0,∞) the inclusion map i : Qp → B is continuous. Similarly to the proof

of (25) we obtain that there exists c > 0 such that

|f(z)| ≤ |f(0)|+ c||f ||Qp log
1 + |z|
1− |z|

. (71)

Let p ∈ [0,∞). The weighted Dirichlet space Dp in the space of all functions f ∈ H(D)
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satisfying

||f ||2Dp =

∫
D
|f ′(z)|2(1− |z|2)pdA(z) <∞ .

The above is a seminorm in Dp and |||f |||Dp = |f(0)|+ ||f ||Dp is a norm in Dp and Dp is a

Banach space with this norm.

Note that given q ∈ D and by making the change of variables αq(z) = ζ we obtain

||f ◦ αq − f(q)||2Dp =

∫
D
|(f ◦ αq)′(z)|2(1− |z|2)pdA(z)

=

∫
D
|f ′(ζ)|2(1− |αq(ζ)|2)pdA(ζ)

therefore, f ∈ Qp if and only if

sup
q∈D
||f ◦ αq − f(q)||Dp <∞.

Below we show a Lipschitz continuity property that ||f ◦ αq − f(q)||Qp has with respect to

the pseudo hyperbolic metric.

Theorem 4.1. Let p ∈ (0, 1]. Then, for each f ∈ Qp and for all q, w ∈ D

| ||f ◦ αq − f(q)||2Dp − ||f ◦ αw − f(w)||2Dp | ≤ 2p+1ρ(q, w)p ||f ||2Qp .

Proof. Given p, q ∈ D and by (5),

Ap,q := |
∫
D
| f ′(z)|2

(
(1− |αq(z)|2)p − (1− |αw(z)|2)p

)
dA(z) |

≤
∫
D
|f ′(z)|2| |αq(z)|2 − |αw(z)|2|pdA(z)

≤ 2p
∫
D
|f ′(z) |2 | |αw(z)| − |αq(z)| |pdA(z)

≤ 2pρ(w, q)p
∫
D
|f ′(z)|2

(
1− |αq(z)| |αw(z)|

)p
dA(z). (72)
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Let A1 := {z ∈ D : | αw(z) |>| αq(z) |} and A2 := {z ∈ D : | αq(z) |>| αw(z) |}. Then we

have

∫
A1

|f ′(z)|2 (1− |αw(z)| |αq(z)|)p dA(z) ≤
∫
A1

|f ′(z)|2(1− |αq(z)|2)p dA(z)

≤ ||f ||2Qp

and

∫
A2

|f ′(z)|2 (1− |αw(z)| |αq(z)|)p dA(z) ≤
∫
A2

|f ′(z)|2(1− |αw(z)|2)p dA(z)

≤ ||f ||2Qp .

Therefore by (72),

Ap,q ≤ 2p+1 ρ(w, q)p ||f ||2Qp .

and the conclusion follows.

Remark 4.1. Let U be a measurable subset of D, 0 < p ≤ 1, f ∈ Qp, w ∈ D and

Aw =

∫
U

|f ′(z)|2 (1− |αw(z)|2)p dA(z) .

It is a corollary of the proof of Theorem 4.1 that for each f ∈ Qp and q, w ∈ D,

|Aw − Aq| ≤ 2p+1 ρ(w, q)p||f ||2Qp .

Since Q1 = BMOA the following is part of the above theorem.

Theorem 4.2. There exists C > 0 such that for each f ∈ BMOA and p, q ∈ D

| ||f ◦ αp − f(p)||2H2 − ||f ◦ αq − f(q)||2H2| ≤ C ρ(p, q)||f ||2∗ .
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If p > 1 and z, ζ ∈ D let γζ(z) = 1− |αζ(z)|2. Then for each q, w, z ∈ D

|γq(z)p − γw(z)p| ≤ p
(
|αq(z)|2 − |αw(z)|2

)
(γq(z)p−1 − γw(z)p−1).

Therefore, if f ∈ Qp then similarly to the proof of Theorem 4.1 we obtain the following

Theorem 4.3. Let p ∈ (1,∞). Then for each f ∈ Qp and all q, w ∈ D

| ||f ◦ αq − f(q)||2Dp − ||f ◦ αw − f(w)||2Dp | ≤ 4p ρ(q, w) ||f ||2Qp .

Remark 4.2. Let U be a measurable subset of D, p > 1, f ∈ Qp, w ∈ D and

Aw =

∫
U

|f ′(z)|2 (1− |αw(z)|2)p dA(z) .

It is a corollary of the proof of Theorem 4.3 that for each f ∈ Qp and q, w ∈ D,

|Aw − Aq| ≤ 4p ρ(w, q)||f ||2Qp .

Definition 4.2. Let p ∈ [0,∞). The counting function for Qp for each q ∈ D, and if

ζ ∈ ϕ(D) is defined by

Nq,ϕ(ζ, p) =
∑
ϕ(z)=ζ

(1− |αq(z)|2)p ;

if ζ /∈ ϕ(D) then Nq,ϕ(ζ, p) = 0.

From now on we abbreviate the notation for the counting function for Qp to Nq,ϕ(ζ).

The Nevanlinna counting function for composition operators in Qp appears with a

non-univalent change of variables as is done in [31, page 186].
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For each f ∈ Qp,

||f ◦ ϕ||2Qp = sup
q∈D

∫
D
|(f ◦ ϕ)′(z)|2(1− |αq(z)|2)dA(z)

= sup
q∈D

∫
D
|(f ′(ϕ(z))|2|ϕ′(z)|2(1− |αq(z)|2)dA(z) ,

and we have

||f ◦ ϕ||2Qp = sup
q∈D

∫
D
|f ′(ζ)|2Nq,ϕ(ζ) dA(ζ). (73)

If Cϕ is a bounded operator on Qp for some p ∈ (0,∞) then for all q ∈ D, ||Cϕαq||Qp . 1

and by (73)

sup
q′∈D

∫
D
|α′q(ζ)|2Nq′,ϕ(ζ)dA(ζ) . 1 .

By (31) and for all q′ ∈ D, Nq′,ϕ(ζ)dA(ζ) is a collection of uniformly Carleson measures on

the Bergman space. By (71) and similarly to the proof of Proposition 3.5 we obtain the

following.

Proposition 4.4. Let p ∈ (0,∞). The composition operator Cϕ is bounded below on Qp if

and only if there exists a δ > 0 such that for all f ∈ Qp, ||Cϕf ||Qp ≥ δ ||f ||Qp.

For each ε > 0 and q ∈ D let Gε,q be

Gε,q = {ζ : Nq,ϕ(ζ) > ε(1− |αq(ζ)|2)p} (74)

and let Gε be

Gε = ∪q∈DGε,q. (75)

On the next two theorems we study Cϕ on Qp with p ∈ (0, 1).
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Theorem 4.5. Let p ∈ (0, 1) and assume that Cϕ is a bounded operator on Qp. If there

exists an ε > 0 such that

sup
q∈D

∫
∩q∈DGε,q

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ) � ||f ||2Qp (76)

then the composition operator Cϕ is closed range on Qp.

Proof. Let f ∈ Qp, assume that (76) holds. Then by (73) and for all q ∈ D,

||f ◦ ϕ||2Qp ≥ sup
q∈D

∫
Gε,q

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ)

≥ sup
q∈D

∫
∩q∈DGε,q

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ)

≥ ε ||f ||2Qp

and Cϕ is closed range on Qp.

Theorem 4.6. Let p ∈ (0, 1) and assume that Cϕ is a bounded operator on Qp. If Cϕ is

closed range on Qp then there exists an ε > 0 such that for all f ∈ Qp

sup
q∈D

∫
Gε

|f ′(ζ)|2Nq,ϕ(ζ)dA(ζ) � ||f ||2Qp . (77)

Proof. Suppose that Cϕ is closed range on Qp. If the conclusion fails, then for every ε > 0,

Gε does not satisfy the condition (77) for Qp and we can find a sequence (fn) in Qp with

fn(0) = 0 and ||fn||Qp = 1 for all n such that

lim
n→∞

sup
q∈D

∫
G 1
n

|f ′n(ζ)|2Nq,ϕ(ζ)dA(ζ) = 0 . (78)

For each n we have by (73),

||fn ◦ ϕ||2Qp = sup
q∈D

∫
D
|f ′n(ζ)|2Nq,ϕ(ζ) dA(ζ)

≤ I1 + I2 , (79)
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where

I1 = sup
q∈D

∫
G 1
n

|f ′n(ζ)|2Nq,ϕ(ζ)dA(ζ), (80)

I2 = sup
q∈D

∫
D\G 1

n

|f ′n(ζ)|2Nq,ϕ(ζ)dA(ζ) . (81)

For n a fixed natural number, if ζ 6∈ G1/n then for all q ∈ D,

Nq,ϕ(ζ) ≤ 1

n
(1− |αq(ζ)|2)p ,

and

I2 ≤
1

n
sup
q∈D

∫
D\G1/n

|f ′n(ζ)|2(1− |αq(ζ)|2)p dA(ζ)

≤ 1

n
sup
q∈D

∫
D
|f ′n(ζ)|2(1− |αq(ζ)|2)p dA(ζ)

=
1

n
||fn||2Qp

=
1

n
. (82)

By (78), (79), (80) and (82), ||fn ◦ ϕ||Qp → 0, as n→∞ and Cϕ is not closed range on Qp

which contradicts our hypothesis and the conclusion holds.

Theorem 4.7. Let p > 0 and assume that Cϕ is a bounded operator on Qp. Then, there

exists k > 0 such that for all q ∈ D, ||αq ◦ ϕ||Qp ≥ k if and only if there exists an ε > 0 and

r ∈ (0, 1) such that for all q ∈ D, there exists q′ ∈ D such that

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|
� 1 . (83)

Proof. First, assume that there exists k > 0 such that for all q in D, ||αq ◦ ϕ||Qp ≥ k. Then,
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for each q ∈ D there exists a q′ ∈ D such that

∫
D
|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) ≥ k

2
. (84)

By Theorem 3.7 and since for all q′ ∈ D, Nq′,ϕ(ζ)dA(ζ) is a collection of uniformly Carleson

measures for the Bergman space,

lim
r→1

sup
q,q′∈D

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) = 0 .

We conclude that there exists r ∈ (0, 1) such that for all q, q′ ∈ D

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) <
k

4
. (85)

Now, for each ε > 0, q ∈ D and q′ ∈ D as in (84), write

∫
D
|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) = I1 + I2 + I3 , (86)

where

I1 =

∫
D\D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) .

I2 =

∫
D(q,r)\Gε,q′

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) ,

and

I3 =

∫
Gε,q′∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) .
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By (85),

I1 <
k

4
. (87)

Next,

I2 ≤ ε

∫
D(q,r)\Gε,q′

|α′q(ζ)|2(1− |αq(ζ)|2)p dA(ζ)

≤ ε ||αq||2Qp

≤ C ε (88)

By (38)

I3 =

∫
Gε,q′∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ)

�
∫
Gε,q′∩D(q,r)

1

|D(q, r)|
Nq′,ϕ(ζ) dA(ζ)

� 1

|D(q, r)|

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ) . (89)

By (84), (87), (88), (89), we conclude that there exists r ∈ (0, 1) such that for all w ∈ D,

k

4
< ε+ C

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|

or

k

4
− ε ≤

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|
. (90)

Hence, for any ε > 0 with ε < k/4, the set Gε,q′ satisfies (83).

Next, assume that there exists an ε > 0 and r ∈ (0, 1) such that for all q ∈ D, there
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exists q′ ∈ D such that (83) holds. Then, for each fixed q ∈ D,

||αq ◦ ϕ||2Qp ≥
∫
Gε,q′
|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ)

≥
∫
Gε,q′∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ) .

By (7),(8)

||αq ◦ ϕ||2Qp ≥
∫
Gε,q′∩D(q,r)

|α′q(ζ)|2Nq′,ϕ(ζ) dA(ζ)

� 1

|D(q, r)|

∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ)

� 1. (91)

and the conclusion follows.

The following is an immediate corollary of the proof of Theorem 3.12.

Theorem 4.8. Let p > 0 and assume that Cϕ is a bounded operator on Qp. The

composition operator Cϕ is closed range on Qp if and only if there exists a constant k > 0

such that ||αq ◦ ϕ||Qp ≥ k, for all q ∈ D.

The following is an immediate corollary of the proof of Theorem 3.19. The whole proof

goes through with the Hardy space seminorm ||.||H2 being replaced with the weighted

Dirichlet space seminorm ||.||Dp . Note that for isometries among composition operators on

Qp, k = 1 and w = w′ below. If Cϕ is an isometry on Qp then by [29, Thm 2.1] ϕ(0) = 0

and so we may only look at the seminorms.

Theorem 4.9. Let p > 0, assume that Cϕ is a bounded operator on Qp. The following

conditions are equivalent:

(a) There exists k ∈ (0, 1] such that for every w ∈ D, ||αw ◦ ϕ||Qp ≥ k.

(b) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with
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|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||Dp ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .

If p ∈ (1,∞), then Qp is Bloch space B with an equivalent norm. Therefore, Theorem

4.7, Theorem 4.8 and Theorem 4.9 provide another approach to closed range composition

operators on the B. Moreover, note that Theorem 4.9 provides a characterization for

isometries among composition operators on B with norm ||.||Qp , p > 1. Recall that if p > 0

then for each ε > 0 and q ∈ D let Gε,q be

Gε,q = {ζ : Nq,ϕ(ζ) > ε(1− |αq(ζ)|2)p} .

Corollary 4.10. Let ϕ be a non-constant analytic self-map of D, and p > 1. Then, the

following are equivalent

(a) The composition operator Cϕ is closed range on B.

(b) For all q ∈ D, ||αq ◦ ϕ||B � 1.

(c) There exists an ε > 0 and r ∈ (0, 1) such that for all q ∈ D, there exists q′ ∈ D such

that ∫
Gε,q′∩D(q,r)

Nq′,ϕ(ζ) dA(ζ)

|D(q, r)|
� 1 .

(d) There exists k ∈ (0, 1] such that for every w ∈ D there exists w′ ∈ D with

|αw(w′)|2 ≤ 1− k2, there exists a sequence (qn) in D such that ϕ(qn)→ w′ and

lim
n→∞

||ϕqn||Dp ≥ k ,

where for all natural numbers n, ϕqn = αϕ(qn) ◦ ϕ ◦ αqn .
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