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Abstract 

The demand of light-weight and inexpensive imaging system working in the infrared range 

keeps increasing for the last decade, especially for civil applications. Although several group IV 

materials such as silicon and germanium are used to realize detectors in the visible and near 

infrared region, they are not the efficient approach for imaging system in the short-wave infrared 

detection range and beyond due to bandgap limit. On the other hand, this market is heavily relied 

upon mature technology from III-V and II-VI elements over years, which are costly to growth and 

incompatible with available Si complementary metal-oxide-semiconductor (CMOS) foundries. 

This limits the fabrication of large scale focal plan arrays detectors in this detection range. 

Therefore, a material system that meets the necessary requirements has long been in demand.  

The Ge1-xSnx material system has been introduced as a potential solution for low-cost high-

performance photodetector for short-wave infrared towards mid-infrared detections due to its 

compatibility with Si CMOS process and wide detection range by incorporating more Sn in the 

alloy. Since then, immense growth efforts have been made to improve the material quality reaching 

device-quality using commercial chemical vapor deposition (CVD) reactors or molecular beam 

epitaxy (MBE) chambers. 

This dissertation will develop Si-based GeSn photodetectors technology to realize low-cost 

high-performance focal plane arrays detectors working in the SWIR towards MIR. It began with 

the development of fabrication process of single element GeSn photoconductor and photodiode, 

followed by systematic characterization and analysis of detectors’ figures of merits to provide a 

more optimized structure. A peak responsivity of 20 A/W (photoconductor) and 0.34 A/W 

(photodiode) at 2 µm were achieved. An external quantum efficiency of 20 % was reported for the 

first time. The highest value of specific detectivity D* is only 3-4 times less than commercially 



 

 

available Extended-InGaAs detector. Surface passivation technique was also pursued to reduce 

surface leakage current. Finally, infrared imaging capability was demonstrated using single pixel 

detector. The study involves a wide range of Sn composition from 10 to 22 %. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2018 by Thach Ngoc Pham 

All Rights Reserved 
 

  



 

 

Acknowledgment 

I would like to express my deep gratitude and my sincere thanks to my advisor, Dr. Shui-

Qing (Fisher) Yu, who always motivates and fully supports me during my research time. He gave 

me opportunity to study, work, develop skills, and become mature. I would like to thank Dr. 

Gregory Salamo, Dr. Simon Ang, and Dr. Hammed A. Naseem to be part of my Ph.D. committee 

members. 

 I am also grateful to Dr. John Tolle, and Dr. Joe Margetis from ASM for providing high 

quality GeSn samples used in this research work. I thank Dr. BaoHua Li of Arktonics LLC. where 

I gained precious working experience. Many thanks to Dr. Mourad Benamara from Nano Institute 

and Errol Porter from HiDEC for providing excellent training and support of facilities usage. 

Special thanks to Dr. Wei Du for the very useful discussion and assistance in paper writing.  

Huong Tran for being a very good lab partner, Yiyin Zhou for all of the support in clean room, and 

other colleagues Sattar Al-Kabi, Wei Dou, P.C. Grant, Matt. Grant, Seyed Amir, …  

I would like to thank my family who are always being understanding and supportive and 

colleagues and friends who make my time living in Fayetteville enjoyable. Special thanks to Liang 

Huang for all the conversations he inspired me. 

The work in this dissertation was partially supported by an Air Force SBIR Phase-II Project 

"Epitaxial Technologies for SiGeSn High Performance Optoelectronics Devices" under contract 

number FA9550-16-C-0016 (PI: Dr. Baohua Li from Arktonics LLC and Program manager: Dr. 

Gernot S. Pomrenke from Air Force Office of Scientific Research). Any opinions, findings, and 

conclusions or recommendations expressed in this material are those of the author and do not 

necessarily reflect the views of the Air Force. The work is also supported by the National Science 



 

 

Foundation (NSF) under contract number EPS-1003970. Any opinions, findings, and conclusions 

or recommendations expressed in this material are those of the author and do not necessarily reflect 

the views of the NSF. Support is also appreciated from Defense Advanced Research Projects 

Agency DARPA under contract number W911NF-13-1-0196 (Program Manager: Dr. Jay Lewis). 

Any opinions, findings, and conclusions or recommendations expressed in this material are those 

of the author and do not necessarily reflect the views of the DARPA. Final National Aeronautics 

and Space Administration Established Program to Stimulate Competitive Research (NASA 

EPSCoR) under contract number NNX15AN18A. Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author and do not necessarily reflect 

the views of the NASA. 

Chapter 2 and 4 are largely reproduced from publications in the Electronics Letter, Optical 

Express, and Journal of Applied Physics. 

Parts of chapter 2 were originally published as: 

(1) “Si-based Ge0.9Sn0.1 photodetector with peak responsivity of 2.85 A/W and longwave 

cutoff at 2.4 μm,” T.N. Pham, W. Du, B.R. Conley, J. Margetis, G. Sun, R.A. Soref, J. 

Tolle, B. Li and S.-Q. Yu, Electron. Lett., vol. 51, no. 11, pp. 854–856, May 2015. 

 

Parts of chapter 4 were originally published and are accepted as: 

(1) “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-

wave infrared detection,” T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. 

Soref, H. A. Naseem, B. Li, and S.-Q. Yu, Opt. Express, vol. 24, no. 5, pp. 4519–4531, 

Mar. 2016. 
 

(2) “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” H. 

Tran, T. Pham, W. Du, Y. Zhang, P.C. Grant, J.M. Grant, J. Margetis, J. Tolle, G. Sun, R. 

A. Soref, M. Mortazavi, B. Li, and S.-Q. Yu, J. Appl. Phys, 2018. 

  



 

 

Table of Contents 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Motivation 1 

1.2 Background: 4 

1.3 Challenges and goals: 8 

1.4 Photodetector background and figures of merits: 9 

1.4.1 Photoconductor: 9 

1.4.2 Photodiode 12 

1.4.3 Figures of merits 14 

1.5 Organization 17 

Chapter 2: Systematic Study of thin film Ge1-xSnx Photoconductors ........................................... 18 

2.1 Thin film Ge1-xSnx photoconductors growth and structures 18 

2.2 Device fabrication 20 

2.3 Spectral response cut-off 23 

2.4 Responsivity and Specific Detectivity D* 25 

2.5 Spectral detectivity 30 

Chapter 3: Systematic Study of thick film Ge1-xSnx Photoconductors ....................................... 32 

3.1 Thick film Ge1-xSnx photoconductors growth and structures 32 

3.2 Device fabrication process 35 

3.3 Spectral response 37 

3.4 Responsivity and Specific Detectivity D* 41 

Chapter 4: Development of Ge1-xSnx Photodiodes ....................................................................... 49 

4.1 First generation Ge1-xSnx photodiodes 50 

4.1.1 Material growth and device structure of GeSn photodiode 50 

4.1.2 Device fabrication 53 

4.1.3 Temperature dependent current-voltage characterization 55 

4.1.4 Spectral response 60 

4.1.5 Temperature dependent responsivity 62 

4.1.6 Specific D* and noise analysis 63 

4.2 Second generation Ge1-xSnx photodiodes 67 



 

 

4.2.1 New photodiode structure design 67 

4.2.2 Material growth and characterization 71 

4.2.3 Device fabrication 73 

4.2.4 Temperature dependent current-voltage characterization 74 

4.2.5 Temperature dependent responsivity and external quantum efficiency 77 

4.2.6 Specific spectral D* 80 

Chapter 5: Effect of germanium oxynitride and germanium tin / germanium oxide passivation 

technique ....................................................................................................................................... 82 

5.1 Germanium oxynitride as surface passivation technique for GeSn photodiodes 83 

5.1.1 Device fabrication 83 

5.1.2 Device characterization 84 

5.2 Aluminum oxide on germanium tin oxide as surface passivation for GeSn photodetectors

 91 

5.2.1 Device fabrication 91 

5.2.2 Device characterization 98 

Chapter 6: Demonstration of a SWIR image .............................................................................. 101 

6.1 Measurement setup 105 

6.2 Transmission mode 106 

6.3 Reflection mode 107 

Chapter 7: Summary and future work ......................................................................................... 111 

7.1 Summary 111 

7.2 Future work 113 

References ................................................................................................................................... 116 

Appendix A ................................................................................................................................. 126 

 



 

 
 

List of Figures 

Figure 1: Replotted spectral detectivity of InAs, PbSe, Ge, PbS, HgCdTe, and InGaAs detectors 

[11] .................................................................................................................................................. 3 

Figure 2: Lattice constant versus bandgap energy of Si-Ge-Sn ternary, III-V, and II-VI 

compounds [16]. Dotted lines signify indirect bandgap materials and solid lines mark direct 

bandgap materials. .......................................................................................................................... 5 

Figure 3: Geometry and bias of a photoconductor .......................................................................... 9 

Figure 4: Band diagram p-n junction of a photodiode .................................................................. 12 

Figure 5: Fabrication process flow of thin film Ge1-xSnx photoconductors with interdigitated 

structures using photoactive BCB as dielectric layer ................................................................... 20 

Figure 6: Top view microscope images of (a) mesas etching using RIE (1st mask), (b) defined 

active area with BCB (2nd mask), (c) defined metal contacts (3rd mask), (d) standard 

photoconductor after lift-off, (e) 12-24 interdigated photoconductor after lift-off, and (f) top view 

SEM image of a metal covered slope created by BCB. ................................................................ 22 

Figure 7: Normalized photoresponse at 10 % cut-off of low tin photoconductors (0.9, 2.6, 3.2, 7, 

8, and 10 % Sn) was measured at 300 K....................................................................................... 23 

Figure 8: (a) Normalized spectral response of 10 % Sn photoconductor at 77 and 300 K. (b): 

Slope and bandgap fitting of spectral response at 77 and 300 K. ................................................. 25 

Figure 9: Responsivity versus voltage bias at 300 K of 10 % Sn standard PD and 12-24 IEPD. 27 

Figure 10: Temperature dependent responsivity of 12-24 IEPD with 10 % Sn from 77 to 300 K. 

Other market dominating infrared detectors are plotted for comparison. ..................................... 28 

Figure 11: Extracted resistance from 77 to 300 K of 10 % Sn photoconductor. Inset: Voltage- 

dark current characteristic at 100, 200, and 300 K of 10 % Sn photoconductor . ........................ 29 



 

 
 

Figure 12: Temperature dependent specific detectivity D* of 12-24 IEPD with 10 % Sn from 77 

to 300 K......................................................................................................................................... 30 

Figure 13: Spectral D* of thin film 10 % Sn photoconductor at 77 and 300 K. ........................... 31 

Figure 14: TEM image of (a) 2-layer-structure with a maximum Sn composition of 14.4 % and 

(b) 3-layer-structure with a maximum Sn composition of 17.5 % [23]. ....................................... 34 

Figure 15: Fabrication process flow of thick film Ge1-xSnx photoconductors with interdigitated 

structures using SiO2 as dielectric layer........................................................................................ 35 

Figure 16: Top view microscope image of (a) ASM 108 after wet etching at low temperature, (b) 

ASM 108 after defining the active windows, (c) 500x500 µm2 ASM 108 with 6-12 interdigitated 

electrodes structure after lift-off, and (d) 500x500 µm2 ASM 108 with 12-24 interdigitated 

electrodes structure after lift-off ................................................................................................... 37 

Figure 17: Normalized spectral response with 10 % cut-off wavelength of 11 %, 13 %, 16 %, 20 

%, and 22 % Sn photoconductors measured at 300 K. ................................................................. 38 

Figure 18: Normalized temperature dependent spectral response of 500 µm coplanar 

photoconductor with a nominal Sn composition of (a) 11 %, (b) 13 %, (c) 16 %, (d) 17.5 %, (e) 

20 %, and (f) 22 %. ....................................................................................................................... 40 

Figure 19: Temperature dependent responsivity of (a) 11 % Sn coplanar photoconductor and (b) 

11 % Sn IEPD 12-24 measured at 1.55 µm. ................................................................................. 41 

Figure 20: Temperature dependent responsivity of coplanar structure with (a) 11 % Sn, (c) 13 % 

Sn, (e) 16 % Sn, (g) 17.5 % Sn, (i) 20 % Sn, and (k) 22 % Sn and 12-24 interdigitated electrodes 

structure with (b) 11 % Sn, (d) 13 % Sn, (f) 16 % Sn, (h) 17.5 % Sn, and (j) 20 % Sn measured at 

2.0 µm. .......................................................................................................................................... 43 

Figure 21: Current flow simulation of 11 % Sn photoconductor using Silvaco. .......................... 47 



 

 
 

Figure 22:  Spectral detectivity of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductors was plotted at (a) 77 K and (b) 300 K in comparison with commercially 

available detectors. ........................................................................................................................ 48 

Figure 23 (a): Schematic cross-sectional view of the device structure. Figure 23 (b): Top view 

microscope image of 250 µm device. ........................................................................................... 51 

Figure 24: Ge/Ge1-xSnx/Ge DHS band structure (not to scale).  Type-I band alignment was 

formed, which provides a favorable carrier confinement for the device. ..................................... 52 

Figure 25: Fabrication process flow of first generation DHS GeSn photodiode with an absorption 

layer of 250 nm and with SiO2 as dielectric layer ......................................................................... 53 

Figure 26: Top view SEM image of (a) 500 µm diamter devic and (b) 250 µm diamter device . 55 

Figure 27: Temperature dependent I-V characteristic of GeSn photodiode with (a) 7 % Sn and 

(b) 10 % Sn and the mesa size is 250 µm in diameter. ................................................................. 55 

Figure 28: Zero-bias resistance-area product (R0A) at different temperatures of (a) 7 % Sn and (b) 

10 % Sn devices. Linear fit of (Icorr)
-1 as a function of dV/dIcorr at 77 and 300 K of the (c) 10 % 

Sn sample of 250 µm, (d) 500 µm in diameter, and (e) 7 % Sn sample of 250 µm and 500 µm in 

diameter. Activation energy of 7 and 10 % Sn with different mesa sizes was shown in Figure 28 

(f)................................................................................................................................................... 56 

Figure 29: Normalized temperature dependent spectral response of (a) 7 % Sn photodiode and 

(b) 10 % Sn photodiode. Temperature dependent absorption edge of (c) 7 % Sn photodiode with 

m = 1.11 and (d) 10 % Sn photodiode with m = 0.61. .................................................................. 61 

Figure 30: Temperature dependent responsivity measured at 1.55 µm of (a) 7 % Sn and (b) 10 % 

Sn devices with mesa size of 250 µm in diameter. ....................................................................... 63 



 

 
 

Figure 31: Temperature dependent specific D* versus applied bias measured at 1.55 µm of (a) 7 

% Sn and (b) 10 % Sn devices with mesa size of 250 µm in diameter. ........................................ 66 

Figure 32: Spectral D* of 7 and 10 % Sn photodiodes measured at 0.1 V reverse bias voltage 

across a 250 µm-diameter device.  Other market dominating detectors in same spectral range are 

plotted for comparison. ................................................................................................................. 67 

Figure 33: (a) Depletion width vs. Doping concentration of 11 % Sn assuming an intrinsic layer 

of 600 nm and ND=NA. (b) Diffusion length vs. Electron lifetime. (c) Diffusion length vs. Hole 

lifetime. (d) Newly proposed structure of photodiode with 11 % Sn (nominal) .......................... 68 

Figure 34: Silvaco simulation of (a) current flow of newly design structure and (b) current 

density versus voltage with Ge0.89Sn0.11 lifetime of 1µs, 0.1ns, 1ns, and 1ps............................... 70 

Figure 35:  TEM image (middle) of the cross-section of the sample with each layer clearly 

resolved.  The SIMS depth profile analysis of the devices’ Ge, Sn, Si composition (left) and 

doping profile (right)..................................................................................................................... 72 

Figure 36: Schematic diagram of the Ge0.89Sn0.11 photodiode ...................................................... 73 

Figure 37: Top view microscope image of (a) mesa after wet etching at 0o C and (b) devices after 

lift-off process. .............................................................................................................................. 74 

Figure 38: (a) Temperature dependent J-V characteristic of GeSn photodiode with 11 % Sn and 

the mesa size is 500 µm in diameter. (b) J-V characteristic of 11 % Sn photodiode at 300 K with 

mesa size of 100, 250, and 500 µm in diameter. .......................................................................... 75 

Figure 39: (a) Temperature dependent responsivity versus bias voltage measured at 2 µm of 11 

% Sn photodiode with 500 µm in diameter. (b) Measured responsivity as a function of 

wavelength for different applied voltages to demonstrate the Franz-Keldysh effect. (c) 

Temperature-dependent spectral EQE. The dots are measured data using 2 µm laser diode. ...... 78 



 

 
 

Figure 40: Spectral D* of the 500 µm Ge0.89Sn0.11 photodiode measured with a voltage bias of -

0.1 V at 77 K (red) and 300 K (black). For comparison, the D* spectra of several commercial 

detectors and our previously reported detector at 77 K (green) are also plotted.  The numbers 

indicate the values of D* at 2.0 µm. ............................................................................................. 81 

Figure 41: Fabrication process flow of 11 % Sn photodiode with GeON as surface passivation 

layer and with SiO2 as dielectric layer .......................................................................................... 83 

Figure 42: Room temperature current density versus voltage of 11 % Sn photodiodes with (a) 

250 and (b) 500 µm in diameter and 3nm, 1 nm, and 0 nm GeON passivation. (c) Temperature 

dependent current density versus voltage of 11 % Sn photodiodes with 250 µm in diameter and 

3nm GeON passivation. (d) Reverse saturation current Arrhenius plot of 11 % Sn photodiodes 

with 250 and 500 µm in diameter with (solid) and without (dash) GeON passivation. ............... 85 

Figure 43: Reverse dark current Arrhenius plot measured at -0.1, -0.5, and -1 V of 11 % Sn 

photodiodes with 250 µm in diameter and (a) 0 nm and (b) 3 nm of GeON passivation. ............ 88 

Figure 44: Temperature dependent responsivity versus bias voltage measured at 2 µm of 11 % Sn 

photodiode with (a) 250 µm in diameter and 3 nm of GeON passivation and (b) (a) 500 µm in 

diameter and 0 nm of GeON passivation. (c) Temperature dependent D* versus bias voltage 

measured at 2 µm of 11 % Sn photodiode with 250 µm in diameter and 3 nm of GeON 

passivation..................................................................................................................................... 89 

Figure 45: Spectral D* of the 250 µm Ge0.89Sn0.11 photodiode with 3 nm of GeON passivation 

measured with a voltage bias of -0.1 V at 77 K (green) and 300 K (red). For comparison, the D* 

spectra of commercial detector Ext-InGaAs and 250 µm Ge0.89Sn0.11 at 77 K without passivation 

(blue) are also plotted.  The numbers indicate the values of D* at 2.0 µm. ................................. 91 



 

 
 

Figure 46: Fabrication process flow of thick film GeSn photoconductors with Al2O3 / Ge of 250 

nm and with SiO2 as dielectric layer ............................................................................................. 91 

Figure 47: Top view microscope image of the photoconductor surface (a) after depositing SiO2 

on passivation layer (step 3), (b) after 1st SiO2 opening step (step 4) with only 50 nm of SiO2, (c) 

after 2nd SiO2 opening step (step 6), and (d) after lift-off (step 8). ............................................... 94 

Figure 48: (a) Al2s spectra and (b) Si2p spectra of 13 % Sn sample after wet etching in BOE 

solution for 10 and 15 s. (c) Al2s spectra and (b) Si2p spectra of 11 % Sn sample after wet 

etching in BOE solution for 10 and 15 s. ...................................................................................... 95 

Figure 49: (a) Al2s spectra, (b) Si2p spectra, and (c) Ge3d spectra of 11 %, 13 %, 20 %, and 22 

% Sn samples after wet etching in BOE solution for 15-17 s. The small shift towards longer 

binding energy level in (c) signals the existence of germanium oxide. ........................................ 97 

Figure 50: Current density-voltage characteristic of (a) 13 % Sn and (b) 22 % Sn sample with 

(dash) and without passivation (solid) measured at 77 and 300 K. .............................................. 98 

Figure 51: Temperature dependent responsivity measure at 2.0 µm of (a) 13 % photoconductor 

with passivation, (b) 13 % Sn photoconductor without passivation, (c) 22 % Sn photoconductor 

with passivation and (d) without passivation. ............................................................................. 100 

Figure 52: Replotted trends of array format size over years [112]. ............................................ 102 

Figure 53: (a) Movement pattern of the single element detector driven by programmable 3D-

stage. (b) Metal-coated star with 6mm length. (c) Transmission mode setup. (d) Relfection mode 

setup ............................................................................................................................................ 106 

Figure 54: (a) Beam profile of 2.0 µm laser incident light. (b) Image of the star using 

transmission mode and 2.0 µm laser. .......................................................................................... 107 



 

 
 

Figure 55: Image at the surface of the star using a white light source and 11 % Sn photodiode 

with different setting of delay time ranging from (a) 50 ms, (b) 100 ms, (c) 200 ms, (d) 250 ms, 

(e) 300 ms, and (f) 500 ms. ......................................................................................................... 108 

Figure 56: Image at the surface of the star using white light source and reflection mode measured 

by 11 % Sn photodiode at (a) 77 K and (b) 300 K with the aid of 1.6 µm filter. ....................... 110 

Figure 57: (a) Bar code at the back side of a gift card. (b) Reverse image of the bar code captured 

by 11 % Sn photoconductor. ....................................................................................................... 110 

Figure 58: Processing flow of substrate removal process ........................................................... 113 

Figure 59: Mask layout (3rd mask) of linear array detector. ....................................................... 114 

Figure 60: Circuit connection of photoconductor linear array. ................................................... 115 



List of Tables 

Table 1: Summary of Ge1-xSnx and Si1-x-yGeySnx photodetectors ................................................... 6 

Table 2: GeSn layer thickness, maximum Sn composition and strain of the layer having highest 

Sn composition.............................................................................................................................. 34 

Table 3: Etching time at 0o and 2o C and corresponding etching depth of different Sn 

composition samples ..................................................................................................................... 36 

Table 4: Extracted bandgap using spectral response intensity of 11 %, 13 %, 16 %, 17.5 %, 20 %, 

and 22 % Sn photoconductors....................................................................................................... 41 

Table 5: Current density measured at 77 and 300 K and shunt resistance extracted at 77 and 300 

K. ................................................................................................................................................... 46 

Table 6. Sn Composition, Thickness, and Strain for Each Layer. ................................................ 52 

Table 7. Series Resistance, Shunt Resistance, Reverse Saturation Current, and Activation Energy 

at 77 K and 300 K ......................................................................................................................... 58 

Table 8. Dark current and photocurrent at different reverse bias voltages ................................... 64 

Table 9. Thermal Noise and Shot Noise of 7 and 10 % Sn DHS Photodiodes with Different 

Diameter Size, Temperature, and Applied Voltage. ..................................................................... 65 

Table 10. Series Resistance, Shunt Resistance, and Dark Current at 77 K and 300 K ................. 76 

Table 11. Extracted series resistance, shunt resistance, and dark current density at -1 V, and 

activation energy of 250 µm and 500 µm 11 % Sn photodiodes at 77 and 300 K. ...................... 87 

Table 12. Extracted current density at 1 V of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductors measured at 77 and 300 K. ................................................................................ 99 

 

 



 

1 
 

Chapter 1: Introduction 

1.1 Motivation 

The infrared radiation was first discovered by Friedrick William Herschel in the early 19th 

century [1]. Since then, numerous efforts have been made to detect and analyze the spectrum, 

which prospered the invention of the first infrared photodetectors in early 20th century. This IR 

radiation in general span from 0.8 to 12 μm and was divided into different categories as follow: 

(1) near-IR region ranging from 0.8 to 1.0 μm, (2) short-wave IR (SWIR) ranging from 1.0 to 3.0 

μm, (3) mid-wave IR (MIR) region ranging from 3.0 to 5.0 μm, (4) long-wave IR (LWIR) ranging 

from 8.0 to 12.0 μm, and (5) very long-wave IR which covers wavelength beyond 12.0 μm. There 

is a range from 5.0 to 8.0 μm that wasn’t classified into any categories due to large atmospheric 

absorption preventing the transmission of those wavelengths in this particular range [2]. 

Over the years of research and develop, IR photodetectors were revealed with numerous 

applications. The MWIR and LWIR regions are most important for free-space communications 

and astronomy since the high transparency of the atmosphere at these wavelengths allows 

transmission without significant losses [3], [4]. The same regions are also widely used for night 

vision and missile tracking for military applications. On the other hand, the SWIR regime has its 

own advantages and interests. By nature, the night-glow of sky contains SWIR illumination that 

is sufficient to passively enable SWIR detector while it cannot be observed by human eyes. 

Besides, SWIR has unique inspection capabilities such as: (1) seeing through many packaging 

materials which is opaque in visible spectrum without the need of contact or destroying the objects, 

(2) improved penetration through scattering media such as fog, haze, and tissue [5]. Due to distinct 

features of SWIR technology listed above, it has been used for a vast multitude of applications 

from military applications to civil applications including automotive, solar cell inspection, 
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materials and products quality control, gas sensing, surveillance, night vision camera …[6], [7]. 

The market of infrared camera integrated on automobile and cell phone is the most attracting one 

with a market value estimated at millions of dollars. 

The market of SWIR imaging is currently dominated by mature technology from III-V 

elements such as indium gallium arsenide (InGaAs and extended-InGaAs), indium antimonide 

(InSb), from II-VI such as mercury cadmium telluride (MCT), lead sulfide (PbS), and from silicon 

(Si) and germanium (Ge) for shorter wavelength. Figure 1 depicts the spectral detectivity of 

dominant detectors working in the SWIR. Since the first introduction of MCT and InSb 

photodetectors in 1960s, the quality of those materials was gradually improved and has become 

one of most popular materials for IR photodetectors. However, both MCT and InSb detectors 

require cryogenic cooling system to deliver good performance imaging [8]. Cooling requirements 

are the main obstacle to the more widespread use of IR systems that makes them bulky, heavy, 

expensive and inconvenient to use. The cost equipping a cryogenic cooling system ranges from 

$15k to $50k, which increases the total cost of a detector. On the other hand, InGaAs detectors, 

which was first demonstrated in 1980s, offer low dark current and high responsivity at room 

temperature [4], [8]. Despite its immense performance, InGaAs detectors or either MCT, PbS, 

InSb are incompatible with CMOS process. The fabrication of SWIR could not inherit any benefits 

from available CMOS foundries which results in limited sizes of focal plane arrays (FPAs), high 

cost, and limited mass production. Other competitors that are worth to notice are Si and Ge 

detectors which have good performance in the range of 1.0-1.6 µm. Although strain engineering 

was pursued to reduce the band-gap [9], [10], the progress of extending the detection range beyond 

2.0 µm becomes difficult. Therefore, a material system that meets the necessary requirements (e.g. 

working in SWIR towards MIR with good performance and CMOS fabrication process compatible 
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to be non-expensive solution either using single element detector or FPAs) has long been in 

demand. 

 

Figure 1: Replotted spectral detectivity of InAs, PbSe, Ge, PbS, HgCdTe, and InGaAs detectors 

[11]  

The field of Si photonics has seen impressive growth since the early visions of 1980s and 

1990s. It has achieved numerous applications in near IR wavelength range in the fields of 

interconnect, sensors, imaging, displays, and optical storage [12]. The success of Si photonics was 

thought to be limited within NIR range not until R. Soref proposed a new vision that newly 

designed silicon-based optoelectronic circuits will operate from 1.6 to 200 um range [13]. Since 

then, endless efforts of developing new material system from group IV was made to establish a 

solid foundation of Si-based optoelectronics devices working in the SWIR range and beyond. A 

newly developed group IV alloy, GeSn, has been introduced with outstanding material properties 

that are favorable for SWIR detection: 
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• The ability to engineer the lattice constant and bandgap by varying the composition of Ge 

and Sn 

• Wide range of coverage from SWIR and beyond up to 12 µm through band-to-band 

transitions 

• Low material growth temperature below 400oC fully compatible with CMOS process 

• The feasibility of selective area growth which is desirable for optoelectronics integration 

1.2 Background: 

Germanium (Ge) was first investigated as a candidate material to incorporate on Si 

optoelectronics. Much success was achieved in developing high speed Ge detectors with 

responsivity of 1 A/W at 1.55 µm and a working bandwidth in GHz level [9]. However, Ge light 

emission device performance was limited due to its indirect bandgap. Either introducing 2% tensile 

strain into Ge film or high doping level up to 3×1019 cm-3 (n-type) could compensate for the energy 

difference between Γ (direct) and L (indirect) valleys. This resulted in successful demonstration 

of Ge laser with emission at 1.6 µm [14]. The solutions also suffer from difficulties in fabrication 

of tensile strain Ge and low performance of heavily doped Ge laser. 

Tin (Sn), also a group IV element, is a semi-metal with a diamond cubic allotrope. When 

it is introduced to Ge to form Ge1-xSnx alloy, the band gap of the material can be tuned. This 

incorporation of Sn shrinks Γ (direct) and L (indirect) valleys. Since Γ valley drops faster than L 

valley as Sn incorporation increases, it allows a crossover point from indirect to direct material (6 

– 10 % Sn depending on the strain of the GeSn film) [15]. The wide range of tunable bandgap of 

GeSn alloy as shown in Figure 2 (band gap versus lattice constant) shows promising potential for 

SWIR towards MIR detection range. 



 

5 
 

 

Figure 2: Lattice constant versus bandgap energy of Si-Ge-Sn ternary, III-V, and II-VI 

compounds [16]. Dotted lines signify indirect bandgap materials and solid lines mark direct 

bandgap materials. 

The major technical challenge with Sn incorporation into the Ge lattice is the large lattice 

mismatch between the elements (17%) and the instability of the α-Sn (or grey Sn) above 13oC 

[17]. This results in unstable GeSn alloy. Various deposition technique via chemical vapor 

deposition (CVD) or molecular beam epitaxy (MBE) has been explored. With the discovery of a 

viable Sn precursor, deuterated stannane SnD4, significant material breakthrough using UHV-

CVD was made [18], [19]. In 2012, an alternative low cost and chemically stable precursor tin 

tetrachloride SnCl4 was found for material growth using CVD reactors in combination with 

germane or di-germane precursors. Since then, there has been a huge growth for GeSn research 

with reports of material growth, material characterizations, and high performance devices such as: 

demonstration of direct bandgap [15], [20] followed by demonstration of optical pump laser [21]–

[23] , quantum-well study [24]–[28], light emitting devices [25], [29], [30], photodetectors [31]–

[59] …  
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The summary in Table 1 highlights key parameters of Ge1-xSnx photodetectors that were 

developed through years: 

Table 1: Summary of Ge1-xSnx and Si1-x-yGeySnx photodetectors 

Year 
Sn% 

Si% 
Structure 

Responsivity 

λ = 1.55 μm 

@-1 V bias 

(A/W) 

Responsivity λ 

> 1.55 μm 

@-1 V bias 

(A/W) 

IDark  Ref. 

2009 2 % Sn PIN 0.05 @ -0.16 V - 1 A/cm2 ASU [31] 

2011 
0.5 % 

Sn 
PIN 0.1 - 10 A/cm2 

Stuttgart 

[32] 

2011 2 % Sn PIN 0.12 @ -0.25 V - 
1.0 

A/cm2 ASU [33]  

2011 3 % Sn PIN 0.23 
0.12 

@1.64 μm 

1.8 

A/cm2 

CAS China 

[34]  

2012 
2 % Sn, 

7 % Si 
PIN - - 

1 

mA/cm2 
ASU [35]  

2013 
3.85 % 

Sn 
PIN 0.27 

0.165 

@1.6 μm 

0.4 

A/cm2 

NTU 

Taiwan [36] 

2012 4 % Sn PIN 0.2 0.17@1.6 μm 
100 

A/cm2 

Stuttgart 

[37] 

2012 9 % Sn QW/PC 1 @ -5 V 
0.1 

@ 2.2 μm 
0.5 mA 

Ghent 

Belgium 

[38] 

2013 
3.6 % 

Sn 

PIN/ Ge 

substrate 
 

0.71 A/W @ -

3V and 1790 

nm 

6.1 

mA/cm2 

CAS China 

[39] 

2013 8 % Sn PN 0.031 - 
11 µA @ 

-1 V 

Stanford 

[40]  

2013 
9.8 % 

Sn 
PN - - 

100 µA 

@ 5 V 

Delaware 

[41] 

2013 9 % Sn PN - - 
1 A/cm2 

@ -0.6 V 

Delaware 

[42]  

2014 
1.78 % 

Sn 
PIN 0.18 @ 0 V - 

0.05 

A/cm2 

NCCU 

Taiwan [43]  
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Table 1 (Cont.): Summary of Ge1-xSnx and Si1-x-yGeySnx photodetectors 

Year 
Sn% 

Si% 
Structure 

Responsivity 

λ = 1.55 μm 

@-1 V bias 

(A/W) 

Responsivity λ 

> 1.55 μm 

@-1 V bias 

(A/W) 

IDark  Ref. 

2014 
4.2 % 

Sn 
PIN 0.22 @ 0V - 

0.89 

A/cm2 

Stuttgart 

[44] 

2014 7 % Sn QW/PIN 0.13 - 
0.1 

A/cm2 

Stuttgart 

[45] 

2014 7 % Sn PC 0.18 @ 10 V - 
1.5 mA 

@ 10 V 
UA [46] 

2014 
10 % 

Sn 
PC 1.63 @ 50 V - - UA [47] 

2014 
12 % 

Sn 
PN - - 

0.05 A 

@ -0.5 V 

Delaware 

[48] 

2015 5 % Sn PIN 0.18 
0.06 @ 1.63 

µm 

73 

mA/cm2 

NUS 

Singapore 

[49] 

2015 
10 % 

Sn 
PC 2.85 @ 5V - 

7.7 

A/cm2 UA [50] 

2016 
2.5 % 

Sn 
PIN 0.3 - 

1 

mA/cm2 

@-0.5 V 

NTU 

Taiwan [51] 

2016 
2.5 % 

Sn 
Arrays/PIN - 

0.45 A/W @ 

1.7 µm 

0.1 

mA/cm2 

@-0.1 V 

NTU 

Taiwan [52] 

2016 6% Sn PIN 0.35 0.09 @ 2 µm 3 A/cm2 CAS China 

[53] [54]  

2016 
10 % 

Sn 
PIN 0.19 @ -0.1 V - 

4.3 

A/cm2 UA [55] 

2017 
2.8 % 

Sn 
MQW/PIN 62 mA/W - 

0.059 

A/cm2 

NCCU/NTU 

Taiwan [56] 

2017 3% Sn QW/PIN - - 
4 

mA/cm2 

Stanford 

[57]  

2017 10% Sn MQW PIN - 
0.02 A/W @ 2 

µm 

0.031 

A/cm2 

NUS 

Singapore 

[58] 

2018 8 % Sn 
MSM 

(GeSnOI) 
0.39 A/W 

0.1 A/W @ 2 

µm 

65nA 

@1V 

NUS 

Singapore 

[59] 
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1.3 Challenges and goals: 

 Last couple of years witnessed the potential and growing performance of GeSn 

photodetectors that is approaching the one of extended-InGaAs. Yet, the device design, either 

photodiodes or photoconductors, was not fully optimized. Hence, there is a room for GeSn 

photodetectors performance to be improved by (1) controlling and optimizing the active layer 

thickness, the Sn composition, and the doping concentration, and (2) applying an effective surface 

passivation which is necessary to reduce the leakage current. The optimization process is therefore 

needed, yet, it should be matched with growth and fabrication capabilities. It is also worth to note 

that the interface layer between Ge buffer and high quality GeSn was also found to be an 

unintentional defective layer. As a result, GeSn photodetector performance will be reduced and 

Ge buffer will also contribute to the overall detector results. Finally, realizing images in IR range 

using single element / arrays of GeSn detectors that is being developed has not yet been fully 

explored.  

 The long-term goal of this work is to demonstrate low cost high performance GeSn FPAs 

detectors by using Si-based GeSn photodetectors. To realize this goal, it is necessary to establish 

the baseline performance of single element GeSn photodetectors starting with photoconductor and 

photodiode structure. The study began with the evaluation of thin film photoconductors (~200 nm) 

with 10 % Sn. The active GeSn film thickness was eventually increased up to 1.0 µm and Sn 

composition ranges from 11 % to 22 %, which is the world-record at that time. The study of GeSn 

photodiodes began with 7 % and 10 % Sn samples, based on which a more optimized photodiode 

design structure was proposed, fabricated, and characterized using 11 % Sn. External quantum 

efficiency was reported as the first time. A 2.0 µm incident laser source was used to eliminate the 

contribution of Ge layers. Second, two different surface passivation methods, which are 
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germanium oxynitride and germanium / germanium tin oxide with aluminum oxide, were studied 

to reduce the surface leakage current. Third, imaging capability in SWIR using single element 

GeSn photodetectors was developed by controlling the movement path in such way that follows 

the structure of a detector array. Subsequently, linear arrays would be implemented. Finally, 

fabrication process of GeSn photodetectors was developed and improved.   

1.4 Photodetectors background and figures of merits: 

1.4.1 Photoconductor: 

The detection principle of a photoconductive detector is defined by the change of the 

conductivity when an incident light source having energy greater than the bandgap of the detector 

material shines upon it. Due to photons excitation, the additional free charge carriers are generated 

in the semiconductor. As the electric field is applied, those photogenerated carriers, which cause 

an increase in the conductivity of the detector, are collected at the electrodes and form the 

photocurrent, as shown in Figure 3. 

 

Figure 3: Geometry and bias of a photoconductor 
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The conductivity (ohm-1cm-1) of a photoconductive detector without illumination can be 

expressed as: 

𝜎𝑜 = 𝑁𝑜𝜇𝑛𝑞 +  𝑃𝑜𝜇𝑝𝑞 (1) 

Where No and Po are free carrier concentrations of electron and holes (cm-3), µn and µp are 

mobilities of electron and holes (cm2 sec-1 V-1), and q is charge on electron, 1.6 × 10-19 cm-3. 

As excess electrons δn and holes δp are generated by the absorption of photons, the conductivity 

is increased by an amount: 

∆𝜎 = 𝛿𝑛𝜇𝑛𝑞 +  𝛿𝑝𝜇𝑝𝑞 = 𝛿𝑛(𝜇𝑛 + 𝜇𝑝)𝑞 (2) 

Since each absorbed photon breaks a bond and creates an electron-hole pair, the excess electron 

and hole are equal. Assuming the light intensity is constant and independent with time (or steady 

state), the excess carriers in intrinsic semiconductors become: 

𝛿𝑛 = 𝐺𝑜𝜏𝑛 (3) 

where Go is the net optical generation rate and τn is electron lifetime. The change in conductivity 

can be rearranged as: 

∆𝜎 = 𝐺𝑜𝜏𝑛(𝜇𝑛 + 𝜇𝑝)𝑞 (4) 

The photocurrent can be expressed as: 

∆𝐼 =  ∆𝐽𝐴 = ∆𝜎𝐸𝐴 = 𝐺𝑜𝜏𝑛(𝜇𝑛 + 𝜇𝑝)𝑞𝐴
𝑉

𝑙
 (5) 

or 

∆𝐼 =  𝐺𝑜𝑞𝑙𝐴 (
𝜏𝑛

𝜏𝑡,𝑛
+  

𝜏𝑛

𝜏𝑡,𝑝
) (6) 

where A = w×t is the corss-sectional area, E = V/l is the electric field, τt,n is the electron transit 

time, τt,p is the hole transit time. 
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The ratio (
𝜏𝑛

𝜏𝑡,𝑛
+  

𝜏𝑛

𝜏𝑡,𝑝
) is defined as the photoconductive gain showing how fast carriers can 

transit to electrodes and contribute to the photocurrent before they are recombined. It could be 

further simplified as 
𝜏

𝜏𝑡,𝑛
  since electrons seems to dominate the conductivity in well-known high 

sensitivity photoconductors [reference?]. If τn is much shorter than transit time, the electron and 

hole will immediately recombine, which result in a small photocurrent. If the transit time is shorter 

than the carrier lifetime, more photocurrent is generated thanks to significant increase in the 

amount of electron / hole reaching the electrodes without being recombined. 

Next, the optical generation rate Go is defined as the number of injected photon flux per unit 

volume multiplied by the quantum efficiency 

𝐺𝑜 =  𝜂
𝑃𝑖𝑛𝑐/ℎ𝑣

𝑙𝑤𝑡
 (7) 

where Pinc is the optical power (W) of incident light, l×w×t is the unit volume, and ƞ is the quantum 

efficiency.  The QE is a function of absorption multiplied with intrinsic quantum efficiency ƞi or 

the number of electron-hole pairs generated by each absorbed photon. 

𝜂 =  𝜂𝑖(1 − 𝑅)(1 − 𝑒𝛼𝑑) (8) 

where R is the optical reflectivity between air and semiconductor, α is the absorption coefficient, 

and d is active layer thickness. The photocurrent will become: 

∆𝐼 =  𝜂
𝑃𝑖𝑛𝑐/ℎ𝑣

𝑙𝑤𝑡
𝑞𝑙𝐴 (

𝜏𝑛

𝜏𝑡,𝑛
+  

𝜏𝑛

𝜏𝑡,𝑝
) =  𝜂𝑞

𝑃𝑖𝑛𝑐

ℎ𝑣
 (

𝜏𝑛

𝜏𝑡,𝑛
+  

𝜏𝑛

𝜏𝑡,𝑝
) (9) 

Dividing equation of the photocurrent by the optical incident power yields the responsivity (A/W), 

which is one of figure of merit of photodetector: 
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ℜ =
∆𝐼

𝑃𝑖𝑛𝑐
=  𝜂

𝑞

ℎ𝑣
 (

𝜏𝑛

𝜏𝑡,𝑛
+  

𝜏𝑛

𝜏𝑡,𝑝
) (10) 

1.4.2 Photodiode 

When the incident light having energy greater than the bandgap of the photodiode material 

illuminated the photosensitive area, the electrons in valence band are excited to the conduction 

band and leaves holes in the valence band. This effect occurs throughout N region, P region, and 

depletion region. In the depletion region, the electric field swept the electrons towards N region 

while holes moved to P region. At the same time, electrons in P region (conduction band) and 

holes in N region (valence band) are subsequently diffused to N region and P region respectively. 

As electrodes are formed and connected to external circuit, the electrons located in N regions and 

the holes located in P regions will be extracted and form photocurrent. 

 

Figure 4: Band diagram p-n junction of a photodiode 

In addition to the required energy of incident light for the photo excitation, the temperature 

of the photodiode should be low to avoid thermal excitation across the bandgap, especially for low 

bandgap material, GeSn, e.g.  
𝑘𝑇

𝑞
≪ 𝐸𝑔 (eV). k is the Boltzmann’s constant (1.38 × 10-23 WsK-1) 

and T is the temperature (K).  
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The depletion width where electron-hole pairs are generated from photon excitation is defined in 

centimeters as: 

𝑊 =  103√
𝐾𝜙𝑜(𝑁𝑑 + 𝑁𝑎)

𝑁𝑎𝑁𝑑
 (11) 

where K is the dielectric constant (K=16 for Ge), Nd is the donors concentrations in N region, Na 

is the acceptors concentration in the P region, and Фo is the potential barrier: 𝜙𝑜 =
𝑘𝑇

𝑞
ln (

𝑁𝑎𝑁𝑑

𝑛𝑖
2 ). 

ni is the intrinsic carrier concentration. The diffusion length of electrons and holes are expressed 

as: 

𝐿𝑒 = √
𝑘𝑇

𝑞
𝜇𝑒𝜏𝑒 (12) 

𝐿ℎ = √
𝑘𝑇

𝑞
𝜇ℎ𝜏ℎ (13) 

where µe and µh are electron and hole mobilities, and τe and τh are electron and hole lifetimes. The 

absorption is quite small in the diffusion length. 

The dark current and photocurrent of a photodiode in a steady state are described as follow: 

𝐼𝑑𝑎𝑟𝑘 = 𝐼𝑜(𝑒
𝑞𝑉

𝑘𝐵𝑇 − 1) (14) 

𝐼𝑝ℎ = 𝑞𝐴𝐺𝑜(𝐿ℎ + 𝐿𝑒) = 𝑞𝜂
𝑃𝑖𝑛𝑐

ℎ𝑣
 (15) 

where Io is the reverse saturation current. Once again, the responsivity is the ratio of 

photogenerated current over the optical incident power. Unlike the responsivity of photoconductor, 

the gain is typically equal to one. 
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ℜ =
𝐼𝑝ℎ

𝑃𝑖𝑛𝑐
=  𝜂

𝑞

ℎ𝑣
 (16) 

1.4.3 Figures of merits 

Responsivity, the ratio of photocurrent to incident light intensity, indicates how efficiently 

the detector responds to an optical signal. It is expressed as 

ℜ =
𝐼𝑝ℎ

𝑃𝑖𝑛𝑐
=  𝜂

𝑞

ℎ𝑣
× 𝐺𝑎𝑖𝑛 (16) 

The gain in photoconductor is defined as the ratio of effective carrier lifetime versus 

carriers transit time as described above. Therefore, increasing photoconductive gain will result in 

an increase of responsivity. There are several methods to enhance the photoconductive gain among 

which the reduction of the transit time is presented in this study. It was implemented in the 

fabrication process of photoconductor by introducing interdigitated electrodes which reduces the 

travel distance of electrons / holes. In addition, an increase in applied bias will significantly reduce 

the transit time as well. In the case of photodiode, the gain becomes one.  

Another method to improve the responsivity is to reduce the loss in the quantum efficiency. 

The ideal value of one is desired, yet there are losses due to: (1) optical reflection losses; (2) surface 

traps or recombination; (3) absorption coefficient and absorption depth; (4) generation of carriers 

located a long distance away from the depletion region. For Ge / GeSn material, the reflection loss 

(normal incident) is approximately ~0.36. This loss could be reduced by applying an antireflection 

coating and was not included in this study. Besides, the loss due to surface traps or recombination 

could be overcome by applying an effective surface passivation that was discussed in chapter 5. 

Next, the absorption coefficient of different Sn composition ranging from 7 % to 20 % remains at 

around 10000 cm-1. To match with the absorption coefficient, a thicker active layer is required. 
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However, this is strongly dependent on the growth capability. In our study, the thickness of GeSn 

active layer was increased up to 1.0 µm (photoconductor) and 500 nm (photodiode). Finally, 

photodiode structure has been revised to optimize the position of depletion region and diffusion 

length (chapter 4 part 2). 

Another figure of merit is the noise equivalent power (NEP). It is the required power 

incident on the detector to produce a signal output equal to the rms noise output. In other word, 

𝑁𝐸𝑃 =  𝑖𝑟𝑚𝑠/ℜ (17) 

where irms is the root-mean-square noise current (A) and ℜ is the responsivity (A/W). Either 

spectral responsivity or blackbody responsivity could be used. This NEP value could be used to 

compare the detectivity performance of similar types of detectors in term of materials, structure, 

and size. In the case between different types of detectors, specific detectivity D* was preferred. 

This parameter (cm Hz1/2 W-1 or Jones) normalizes the active detector area to 1 cm2 and the noise 

bandwidth to 1 Hz.   

𝐷∗ =  
√𝐴Δ𝑓

𝑖𝑟𝑚𝑠
ℜ (18) 

where A is the active detector area, and Δ𝑓is the bandwidth over which the measurement collection 

occurs. In this context, it is also referred to as the equivalent noise bandwidth (ENBW) or the 

switching bandwidth defined as 1/(2*T), where T is the observational period. This bandwidth is 

different from the maximum bandwidth of the device in terms of switching speed.  The irms is the 

sum of noise current in the detector system. It includes Johnson noise or thermal noise, shot noise 

due to the fluctuations of charges, generation-recombination noise, and 1/f noise. 
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𝑖𝑟𝑚𝑠 =  √𝑖𝑠ℎ𝑜𝑡
2 +  𝑖𝑡ℎ𝑒𝑟𝑚𝑎𝑙

2 + 𝑖𝐺−𝑅
2 + 𝑖1/𝑓

2  (19) 

The Johnson noise or thermal noise is contributed by the random thermal motion of charge carriers 

in a resistive element. It occurs in the absence of external applied bias and is linked with the 

resistance of the device. Either photoconductor or photodiode contains this noise. 

𝑖𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = √4𝑘𝑇∆𝑓/𝑅0 (20) 

where k is Boltzmann constant, T is the absolute temperature, ∆𝑓 is the measurement bandwidth 

(1 Hz), and Ro is the resistance of the device. 

The generation-recombination noise is referred as the random generation and recombination of 

free charge carriers due to crystal vibrations. The Generation-recombination noise occurs mainly 

in photoconductor since recombination is invalid in an ideal photodiode limited by diffusion. 

𝑖𝐺−𝑅 = √
4𝑞𝐼∆𝑓 × 𝐺𝑎𝑖𝑛

1 + (2𝜋𝑓𝜏)2
 (21) 

The shot noise describes the fluctuations of electrons at the collection circuit and is described as: 

𝑖𝑠ℎ𝑜𝑡 = √2𝑞𝐼∆𝑓 (22) 

where I is the average current flow from a photodetector under illumination. This mean I contains 

dark current and photo current. 

The 1/f noise or flicker noise dominates the noise current if the detector works under low frequency 

condition. 

𝑖1/𝑓 = √
𝐵𝐼𝐷𝐶

𝑎 ∆𝑓

𝑓𝑏
 (23) 
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where B is a constant depending on detector material, IDC is the DC current through detector, f is 

frequency under measurement, a and b are constant and usually have value of 1 and 2 respectively. 

1/f noise is usually negligible by considering an appropriate measuring frequency. 

1.5 Organization  

Design, fabrication, and characterization of GeSn photoconductors are organized as follow. 

The first chapter gives an introduction and motivation of Si-based GeSn photodetector for SWIR 

range towards MIR. It also contains background and figures of merit of photodetectors. The second 

chapter covers the study of thin film photoconductors. Interdigitated electrodes structure was 

introduced and fabricated to enhance the photoconductive gain, which increases the responsivity 

of the photodetector. Chapter 3 further explores photoconductor devices by introducing thick 

active layer up to 1.0 µm and incorporating high Sn % up to 22 %. This results in a tremendous 

enhancement in responsivity and extension in cut-off wavelength up to MIR. New fabrication 

process was developed in this chapter.  

Chapter 4 involves the study of GeSn photodiode. The first part covers the baseline 

performance of 7 % and 10 % Sn photodiode, based on which analysis and simulation was 

processed to figure out limiting factors of photodiode structure. The second part presents the new 

proposed structure with significant enhancement in performance.  

In order to reduce surface leakage current, two surface passivation methods were studied 

and is summarized in chapter 5 with detailed fabrication process and characterization. Chapter 6 

focuses on the demonstration of SWIR imaging using a single element GeSn detectors that was 

fabricated and studied in previous chapters.  

A summary of this work along with future approach is presented in chapter 7.  
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Chapter 2: Systematic Study of thin film Ge1-xSnx Photoconductors 

This chapter conducts a study of thin film Ge1-xSnx photoconductors grown on Ge buffered 

Si. It evolves Si CMOS compatible fabrication process and temperature dependent characterization 

of GeSn photoconductor with a nominal Sn composition of 10 % and with film thickness of 100 

nm. In this study, interdigitated structures were implemented to reduce transit time which results 

in enhancing photoconductive gain. Square mesas of 0.5 and 1.0 mm were fabricated into 

photoconductors with and without interdigitated electrodes. The electrode width is 3, 6, and 12 μm 

with a corresponding electrode gap of 6, 12, and 24 μm, respectively. Photoconductors without 

interdigitated electrodes or co-planar contacts were used as control samples. Spectral response at 

77 and 300 K of photoconductors with Sn compositions up to 10 % has been investigated with 

longest cutoff at 2.4 µm. Temperature dependent responsivity of photoconductors has been 

conducted with a peak responsivity of 2.85 A/W at 1.55 µm and 77 K. This is higher than Ge (0.8 

A/W) and standard InGaAs (1 A/W) detectors at the same wavelength. The specific detectivity of 

GeSn photoconductor has been improved and is one order of magnitude below extended-InGaAs 

detector. A peak D* of 3.5×109 cm·Hz1/2W-1 was obtained. 

2.1 Thin film Ge1-xSnx photoconductors growth and structures 

In the past few years, the growth of high quality GeSn film was demonstrated by several 

research groups. Different growth approaches using either CVD system [60]–[67] or MBE system 

[32], [68]–[71] were employed with the use of Sn-based precursors deuterated stannane (SnD4) or 

tin tetrachloride (SnCl4) in combination with germane GeH4 or digermane Ge2H6. Ge2H6 and SnD4 

have been used to demonstrate a film of Sn composition up to 15 % [67], [72], [73]. However, 

SnD4 is well-known as an unstable gas and decomposes at room temperature while Ge2H6 is 

potentially explosive in liquid form due to its easiness of decomposition. Therefore, it requires 
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specialized handling and storage which makes these precursors less appealing for widespread use 

in semiconductor manufacturing. SnCl4, on the other hand, is a better choice for industrial standard 

deposition tools due to its stability and ease of handling and storing. In addition, GeH4 is more 

stable and is cost-effective from industrial manufacture perspective. 

In this study, the thin GeSn films were grown on Ge-buffered Si substrate using ASM 

Epsilon 2000 plus reduced pressure CVD system. The growth temperature was kept below 450oC. 

SnCl4 and GeH4 were chosen as precursors for the growth of GeSn active layer and Ge buffer 

layer. The Ge buffer layer acts as a virtual substrate compensating the lattice mismatch with Si and 

reducing the defect propagation, which is one of the reason of lower material quality and device 

performance. Ge buffer thickness is kept around 700 nm and GeSn active layer thickness is 

approximately 200 nm and 100 nm for 7 % and 10 % Sn respectively. The Sn composition and 

thickness were determined by using X-ray diffraction (XRD) and secondary-ion mass 

spectrometry (SIMS). The thickness limit will be further explained in chapter 3 and more growth 

details are found in Ref [74]. 
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2.2 Device fabrication 

 

Figure 5: Fabrication process flow of thin film Ge1-xSnx photoconductors with interdigitated 

structures using photoactive BCB as dielectric layer 

Thin film GeSn samples of 10 % Sn were fabricated into photoconductors with (IEPD) and 

without (standard or coplanar PD) interdigitated structures using three-steps mask. The fabrication 

process flow that was illustrated in Figure 5 has six major process steps. The fabrication process 

started with samples cleaning using acetone and isopropyl alcohol in ultra sonic bath for five 

minutes each to remove organic traces. After being rinsed with deionized water, the samples were 

baked for three minutes to dehydrate water vapor and to promote ahesion prior photolithography. 

The second step, mesas etching, began with spin-coating of hexamethyldisilazane (HMDS) 

to achieve the surface hydrophobicity before applying positive photoresist AZ4110. Mesas with 

an area of 500 x 500 µm2 each were defined using 1st photomask and developer AZ 300 MIF. 

Mesas etching was performed using Reactive-ion Etching (RIE) system from Plasma Therm.  

The etching process of GeSn / Ge samples could be explained as follows: the plasma glow assists 
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in ionization of Ar gas to form Ar ions and dissociation of CF4 gas into reactive ions which are 

CF3 and F. At the GeSn surface, F radicals will react with Ge atoms to form volatile byproducts 

GeF4 which is easily desorbed from the surface [75], [76]. In contrast, nonvolatile products tin 

fluoride (SnFx) are formed when F radicals reacts with Sn atoms. This results in a deposition of 

very thin layer of SnFx that prevents further chemical reactions. It also implies that the etching rate 

will be dramatically reduced as Sn composition increases. However, in case of thin layer of GeSn, 

it can still etch through thanks to physical sputtering effects by Ar ions. At the Ge buffer surface, 

Ar ions assist in breaking bonds and leave opened space for chemical reactions taking place. 

Subsequently, GeF4 is formed as volatile byproducts, which are sputtered away. The etching 

process is calibrated to stop at Si substrate. The photoresist was stripped by using acetone and IPA 

in ultrasonic bath, followed by descum for three minutes. Figure 6 (a) shows the GeSn mesas after 

etching using RIE.  

The third step is to define the detector active area where the incident light will be aligned 

and focused. A benzocyclobutene polymer (BCB) was spin-coated and exposed as a negative 

photoresist using the 2nd photomask. It also plays as an isulator layer. After development, an area 

of mm was opened on top of the mesas as shown in Figure 6 (b). GeSn samples were loaded into 

an oven with N2 flow to proceed the BCB curing process at 250o C for 5 hours. This resulted in a 

thickness of 3.5 µm which is 2.0 µm above the photoconductor mesas height and a slope at the 

sidewalls as shown in Figure 6 (f). However, BCB is not recommended for the process of high tin 

composition samples and samples with doping due to long period of baking at high temperature.  

The next process defines metal contacts and interdigitated structures for photoconductors 

using the 3rd photomask. A negative photoresist AZ5214E was used to ease the lift-off process, 

followed by a descum step to completely remove resist residues. A Cr/Au thickness of 10 nm / 200 
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nm was deposited using thermal evaporator. Chromium was used to promote the adhesion between 

samples’ surface and gold contacts. Fabrication of photoconductor samples were finished by a lift-

off process in acteone and a rinse in IPA / DI water.  

Figure 6 (d) and (e) present a top view optical image of the final photoconductor device 

without and with interdigitated electrodes 12-24. There are three sets of interdigitated structures 

which are 3-6, 6-12, and 12-24. The width of electrodes in each set is 3, 6, and 12 µm while the 

center to center spacing between two consecutive electrodes is 6, 12, and 24 µm respectively. The 

width of interdigitated electrodes contains 10 % error in size. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 6: Top view microscope images of (a) mesas etching using RIE (1st mask), (b) defined 

active area with BCB (2nd mask), (c) defined metal contacts (3rd mask), (d) standard 

photoconductor after lift-off, (e) 12-24 interdigated photoconductor after lift-off, and (f) top 

view SEM image of a metal covered slope created by BCB.  
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2.3 Spectral response cut-off 

Figure 7 summarizes the spectral response of photoconductors with low Sn composition 

from 0.9 to 10 % Sn that was characterized at 300 K and normalized at 1.5 µm. The 10 % cut-off 

was applied to evaluate cut-off wavelength of each Sn composition. The lowest Sn % device, 0.9 

% Sn, shows a cut-off wavelength of 1700nm. This cut-off is further red shift to 1780, 1810, 2142, 

2150, 2250 nm with 2.6, 3.2, 7, 8, 10 % Sn device respectively. As Sn composition increases, the 

cut-off wavelength is extended to longer coverage due to the reduced bandgap. This is in agreement 

with the Vegard’s law interpolation between Ge and Sn [77]. The Sn composition used in the 

measurement is nominal Sn. 

 

Figure 7: Normalized photoresponse at 10 % cut-off of low tin photoconductors (0.9, 2.6, 3.2, 

7, 8, and 10 % Sn) was measured at 300 K. 

The spectral response of 10 % Sn photoconductor was measured and normalized at 1.5 µm 

to allow direct comparison of cut-off wavelength at 77 and 300 K as shown in Figure 8 (a). As the 

temperature increases from 77 to 300 K, a red shift from 2.2 µm to 2.4 µm was observed. The long 
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cut-off wavelength is beyond 1.55 µm which is the band-to-band absorption edge of Ge. This 

suggests that the absorption is contributed from GeSn material. The distortion of signal at 1.8 – 

1.9 µm that occurs for every temperature is due to atmospheric absorption. 

The absorption edge of 10 % Sn photoconductor was further investigated by analyzing the 

absorption coefficient of detector’s active region. This value could be evaluated either by using 

spectroscopic ellipsometry or experimental photoresponse measurement as described in Refs [41], 

[78]. The photoresponse intensity is:  

𝑃𝑃𝑅 = 𝑃𝐼𝑁 × (1 − 𝑒−𝛼𝑥) (25) 

where PIN is the incident light intensity, α is absorption coefficient, and x is the device thickness. 

This equation can be simplified to PPR = C×α as the thickness of the Ge0.9Sn0.1 active layer is much 

smaller than the light penetration depth i.e., αx << 1. Moreover, the absorption coefficient near the 

absorption edge can be expressed as: 

𝛼 ∝ [ℎ𝑣 − 𝐸𝑔 ± 𝐸𝑝]𝑚 (26) 

where hν is the incident photon energy, Eg is the bandgap of the material, Ep is the energy of the 

phonon that allows for indirect bandgap transition, and m is a constant. Therefore, the m value and 

the bandgap near the absorption edge can be evaluated by fitting photon energy versus spectral 

response intensity as shown in Figure 8 (b). Based on the study of band-to-band transition, the m 

is generally equal to 2 and 1/2 for the indirect and direct bandgap transition, respectively. The m 

values in this study were extracted as 0.67 for the 10 % Sn device at 300 K and 2.09 at 77 K. The 

10 % Sn alloy has been identified as a direct bandgap material, the Sn composition of 9.24% in 

this study is very close to the indirect-to-direct transition point. Although the sample is still an 

indirect bandgap material, the absorption arising from direct bandgap transition dominates the 

spectral response, leading to the m value of 0.67 which is close to 1/2. However, as temperature 
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decreases, the m value goes up to 2.09 which indicates an indirect gap transition. The bandgap 

values near the absorption edge were extracted as 0.566 and 0.532 eV at 77 and 300 K. This is 

equivalent with a cut-off wavelength of 2188 at 77 K and 2326 nm at 300 K. 

 

 

(a) (b) 

Figure 8: (a) Normalized spectral response of 10 % Sn photoconductor at 77 and 300 K. (b): 

Slope and bandgap fitting of spectral response at 77 and 300 K. 

2.4 Responsivity and Specific Detectivity D* 

Responsivity is an important figure of merit of photodetector. It measures the change in 

the current per incident light power. The incident light that was used in this experiment is 1.55 µm 

laser with a spot size of 1 mm in diameter and with calibrated power. Detailed measurement 

technique of responsivity is discussed in Appendix.  

Figure 9 plots responsivity versus voltage bias of 10 % Sn photoconductors with 12-24 

interdigitated electrodes (IEPD) and photoconductor without interdigitated electrodes (Standard 

PD) at 300 K. Regardless of device structures, as the applied voltage increases, the responsivity 
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increases. This could be explained as follow: the responsivity is proportional to the 

photoconductive gain which is expressed as a ratio of carrier lifetime over carrier transit time. 

Based on equation (10), carrier transit time is reduced as higher voltage bias is applied, resulting 

in an enhance in photoconductive gain and responsivity.   

A responsivity of 0.27 A/W was measured at 10 V applied bias from a 0.5x0.5 mm2 12-24 

IEPD device. The obtained responsivity from IEPD device shows an enhance of 6.2 comparing 

with standard PD device at same applied bias while it is only 3-4 times less than the one of 

commercially available Ge and Extended-InGaAs detectors. High obtained responsivity from 

IEPD device is as expected since the introduction of interdigitated electrodes reduce the transit 

time of carrier and consequently contributes to the improvement of photoconductive gain. As the 

applied voltage keeps increasing, responsivity of IEPD devices starts saturating. The saturation 

behavior is caused by the minority carrier sweep-out effect that occurs when the photoconductive 

gain is equal or less than unity. This might suggest that the carrier effective lifetime becomes 

smaller than the carrier transit time, which enables the formation of a built-in space charge region 

around the metal contacts that causes repulsion of carriers. 

With such improvement in responsivity comparing with standard PD, temperature 

dependent responsivity of 12-24 IEPD was investigated. The responsivity of 12-24 IEPD in Figure 

10 shows a significant enhancement with decreasing temperatures. A maximum responsivity of 

2.85 A/W under 5 V bias at 77 K and 1.55 μm was achieved, which is 75% higher than our previous 

study on a PD in Ref. [47] with lower applied bias and three times that from commercially available 

InGaAs photovoltaic detectors. This dramatically increased responsivity can be explained as 

follows: as temperature decreases, the activated background carrier concentration is reduced while 

the effective carrier lifetime increases, resulting in a higher photoconductive gain at low 
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temperature. Note that for the commercial photodiode detectors, normally there is no significant 

change in responsivity as temperature decreases. It is worth pointing out that, at low temperatures, 

the responsivity value starts to saturate at 3 V and decreases beyond 5 V applied bias. This 

saturation behavior was explained above. 

 

Figure 9: Responsivity versus voltage bias at 300 K of 10 % Sn standard PD and 12-24 IEPD. 

 



 

28 
 

 

Figure 10: Temperature dependent responsivity of 12-24 IEPD with 10 % Sn from 77 to 300 K. 

Other market dominating infrared detectors are plotted for comparison. 

 Specific detectivity D* is another important figure of merit to directly compare individual 

detector. According to equation (18), D* can be calculated using noise current, responsivity, device 

area, and 1 Hz equivalent noise bandwidth. The noise current is estimated based on shot noise and 

thermal noise. Therefore, current-voltage characteristic of 10 % Sn photoconductor with 12-24 

interdigitated electrodes was measured from 77 to 300 K. Linear behavior of I-V demonstrated 

that the metal contacts of photoconductors are Ohmic. The dark resistance was also extracted for 

each temperature in Figure 11. As the temperature decreases, the resistance increases as a result of 

the carrier frozen in the device. 

For this set of devices wherein dark current is large, the shot noise dominates others noise 

mechanisms. As applied voltage increases, the noise current increases with a factor of √V while 

the responsivity saturates. Although the responsivity is enhanced at low temperature, it cannot 
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compensate for the increasing noise current at high applied voltage. Therefore, the D* decreases 

after a certain applied voltage. At 77 K, the peak D* value of 3.95x109 cm*Hz1/2*W-1 was observed 

at 1V, as shown in Figure 12. 

 

Figure 11: Extracted resistance from 77 to 300 K of 10 % Sn photoconductor. Inset: Voltage- 

dark current characteristic at 100, 200, and 300 K of 10 % Sn photoconductor . 
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Figure 12: Temperature dependent specific detectivity D* of 12-24 IEPD with 10 % Sn from 77 

to 300 K. 

2.5 Spectral detectivity  

The spectral detectivity of the 10 % Sn IEPD at 77 and 300 K is plotted together with market 

dominating infrared detectors such as Ge, InGaAs, extended-InGaAs, PbS, and InAs for 

comparison in Figure 13. The absorption edge of spectral response at 300 K is 2.4 μm and blue 

shifts to 2.2 μm with the decreasing temperature. The D* reported in this study is only one or two 

orders of magnitude lower than these mature detectors in the SWIR range. Although the 

responsivity of 10 % Sn IEPD achieves 2.85 A/W, which is two to three times enhance than that 

of mature detectors listed above, the higher dark current in 10 % Sn IEPD reduces the overall value 

of D*. In order to improve D* value of GeSn photoconductors and compete with commercially 

available FPAs in the SWIR, a decrease in the dark current together with an increase in 

responsivity are required. It could be done by reducing the defects and background doping during 
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material growth and by growing a thicker GeSn active layer. It is worth to note that the current 

active layer thickness of 10 % Sn IEPD is only around 100 nm.  

 

Figure 13: Spectral D* of thin film 10 % Sn photoconductor at 77 and 300 K. 
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Chapter 3: Systematic Study of thick film Ge1-xSnx Photoconductors 

The performance of Ge0.9Sn0.1 photoconductors presented in chapter 2 was limited by: (1) 

the thin absorption layer of 100 nm, which results in a short cut-off wavelength of 2.4 µm at 300 

K and a peak responsivity of 2.85 A/W despite of the gain enhancement from interdigitated 

electrodes structures; (2) the low tin composition of 10 % (nominal) that contributes in the short 

cut-off wavelength; (3) a high dark current that is possibly originated from the defective GeSn / 

Ge layers and the lack of effective surface passivation technique. Thanks to the recent 

breakthrough in growth technique using CVD system, better GeSn material quality has been 

achieved with higher Sn composition up to 22 % and thicker GeSn absorption layer up to 1.0 µm. 

This enabled a new systematic study of high Sn composition and thick film GeSn photoconductors. 

In this chapter 3, a set of samples with Sn composition ranging from 11 to 22 % and with thickness 

of 500-1000 nm will be presented. Mesas size of 0.5 and 1.0 mm were fabricated into 

photoconductor devices with and without interdigitated electrodes (width of 12 µm and spacing of 

24 µm). Temperature dependent dark current-voltage, spectral response, and responsivity were 

measured.  

3.1 Thick film Ge1-xSnx photoconductors growth and structures 

In general, a higher Sn composition that is more than 10 % Sn is preferred to extend the 

cut-off wavelength of a photodetector to mid-IR range. Such high Sn incorporation enables 

bandgap reduction and hence prolongs the detection range of GeSn photodetector. Although 

significant progress of material growth using CVD system has been made recently, it has reached 

a threshold of ~ 15 % Sn regardless of precursor choice and recipe. In the recent work, the 

compressive strain was discovered as the main limiting factor of Sn incorporation rather than the 

chemical reaction [23], [79]. When GeSn is grown on a Ge buffer using a nominal 9 % GeH4 
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based recipe, a distinct two-layer structure was formed as follow: (1) As the growth starts, the first 

layer being defective is gradually relaxed and has 9 % Sn incorporation; (2) the second layer being 

low-defect density changes to 12 % Sn without changing the growth recipe. This specific growth 

mechanism is called spontaneous-relaxation-enhanced (SRE) process that inspires a new set of 

GeSn photoconductors with Sn composition up to 22 % and with a thickness ranging from 500-

1000 nm. Those samples could be divided in two groups where the first group employed the SRE 

approach which results in two-layer structure with 16 % Sn and the second group used GeSn virtual 

substrate approach which leads to three-layer structure with 22 % Sn. The GeSn virtual substrate 

method is a continuous growth using the two-layer GeSn structure obtained from the SRE process 

to achieve higher Sn composition. 

In this chapter 3, GeSn samples were grown using an industry-standard ASM Epsilon® 

2000 PLUS reduced pressure chemical vapor deposition (RPCVD) reactor. The transmission 

electron microscopy (TEM), the Secondary Ion Mass Spectrometry, X-ray diffraction (XRD) 2θ-

ω scan, and reciprocal space mapping (RSM) were used to determine the layer thickness, the Sn 

compositions and strain. The Ge buffer layer thickness is around 600 nm and the defective layer 

thickness ranges from 200 to 400 nm. As the Sn is gradually increases, average Sn composition is 

used for convenience. Table 2 summarizes samples information including the total thickness of 

GeSn layer, the maximum Sn composition, and the strain of layer having the highest Sn 

composition [80]. The first three samples, ASM 108 – 116 -112 have with two-layer structure 

while samples ASM 118 – 128 – 129 is composed of three-layer structure. TEM images of sample 

ASM 116 and ASM 118 are shown in Figure 14 as examples of two and three-layer structure [23]. 

It is worth to note that sample ASM 128 has achieved the highest Sn composition which surpasses 

the record of Sn incorporation growth by using CVD reactor with GeH4 recipe (12%) and Ge2H6 
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recipe (15%). With such high Sn incorporation and GeSn absorption layer thickness, longer cut-

off wavelength extended to mid-IR and high responsivity could be realized. 

Table 2: GeSn layer thickness, maximum Sn composition and strain of the layer having highest 

Sn composition 

Sample 
GeSn 

thickness (nm) 

The maximum 

Sn content (%) 

Strain 

(%) 

0108-ASM 840 11.4 -0.14 

0116-ASM 920 14.4 -0.39 

0112-ASM 660 15.9 -0.29 

0118-ASM 1120 17.5 -0.38 

0128-ASM 1210 22.3 -0.61 

0129-ASM 1420 20.0 -0.52 

 

  

(a) (b) 

Figure 14: TEM image of (a) 2-layer-structure with a maximum Sn composition of 14.4 % and 

(b) 3-layer-structure with a maximum Sn composition of 17.5 % [23]. 
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3.2 Device fabrication process 

 

Figure 15: Fabrication process flow of thick film Ge1-xSnx photoconductors with interdigitated 

structures using SiO2 as dielectric layer 

Figure 15 presents the fabrication process flow of thick film Ge1-xSnx photoconductors. It 

has six major steps which are similar with the one of thin film photoconductor. The most 

significant change is the etching method due to the increase of Sn composition and thickness of 

the GeSn absorption layer. Such change leads to the modification of dielectric layer and metal 

deposition process. In addition, SiO2 deposited by PECVD system was selected to replace BCB 

polymer due to the ease of process with no exposure to high temperature for long time. 

After going through the cleaning process, square mesas of 500 x 500 µm2 were defined by 

using photolithography. The photoresist thickness is around 1.7 µm after hard baking process at 

130o C for 15 mins. The etching target is to reach Si substrate to eliminate the contribution of Ge 

background to the responsivity measurement. This results in an etching depth of 1500 to 2000 nm. 

At first, a wet chemical solution of HCl: H2O2: H2O = 1:1:10 was performed at room temperature. 

However, severe lateral etching was observed and the photoresist as the stopping mask was 
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removed after 30 minutes. Therefore, low temperature wet etching was studied and performed. 

The low temperature wet etching will reduce the activities of molecules; hence smoother mesas 

side walls could be obtained as shown in Figure 16 (a). Since those six samples contain multiple 

layer of grading GeSn on a Ge buffer, the etching depth will be presented in Table 3.  

A wet chemical etching solution of HCl: H2O2: H2O = 1:1:10 was prepared in a beaker 

which was surrounded by ice to reach 0o C. The etching temperature of samples ASM 108 – 112 

– 116 was strictly maintained at 0o C for the whole etching time presented in Table 3. In contrast, 

the etching process of samples ASM 118 – 128 - 129 was divided into two steps: the temperature 

was kept at 0o C for the first 60 minutes and was later increased to 2-3o C until a blue dark color 

was observed. This indicated that Si layer was reached. It is recommended to perform dry etching 

with Chlorine based gas for samples having a thick GeSn absorption layer (more than 1.5 µm).  

Table 3: Etching time at 0o and 2o C and corresponding etching depth of different Sn 

composition samples 

 Sample 
Etching time 

@ 0o C (min) 

Etching time 

@ 2o C (min) 

Etching 

depth (µm) 

0108-ASM 60 - 1.54 

0116-ASM 65 - 1.73 

0112-ASM 75 - 1.93 

0118-ASM 60 13 1.87 

0128-ASM 60 15 2.16 

0129-ASM 60 17 2.7 

 

After the wet etching process, samples were processed similar with those steps in chapter 

2. The SiO2 thickness to be deposited was adjusted to be 30-40 % of the etching depth. It is 

extremely difficult to balance the exposure dose during the exposure of small interdigitated 

electrodes on the top of the mesas due to the height difference between top and bottom. It is also 

important to note that only sample ASM 108 has a SiO2 layer deposited by PECVD system, as 

shown in Figure 16 (b). The SiO2 layer that was deposited on the other samples was done using 
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Electron-Beam Evaporator system. The fabrication process of those samples will be later clarified 

in Chapter 5. Figure 16 (c) and (d) show the final state of ASM 108 photoconductor with metalized 

interdigitated electrodes structures of 6-12 and 12-24 respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 16: Top view microscope image of (a) ASM 108 after wet etching at low temperature, 

(b) ASM 108 after defining the active windows, (c) 500x500 µm2 ASM 108 with 6-12 

interdigitated electrodes structure after lift-off, and (d) 500x500 µm2 ASM 108 with 12-24 

interdigitated electrodes structure after lift-off 

3.3 Spectral response 

Spectral response of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn photoconductors was 

measured from 77 to 300 K to determine the working range of thick film GeSn photodetectors. 
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Figure 17 presents the normalized spectra of the above photodetectors with 10 % cut-off at 300 K. 

The 11 % Sn sample has the shortest cut-off wavelength of around 3.0 µm. This has surpassed the 

one of 10 % Sn photoconductor reported in chapter 2. As Sn composition increases, the cut-off 

wavelength is extended to longer coverage due to the reduced bandgap. This is in agreement with 

the Vegard’s law interpolation between Ge and Sn [77]. The wavelength is extended to around 4.0 

µm using 20 and 22 % Sn samples. Although those two samples have a 2 % difference in Sn 

composition, their cut-off wavelength is similar. In fact, the Sn composition of ASM 129 was 

obtained from a single point on the wafer using SIMS measurement. Moreover, different bandgap 

was observed by measuring photoluminescence at other positions of the wafer, which suggests a 

non-uniformity of Sn composition is possible.  

 
Figure 17: Normalized spectral response with 10 % cut-off wavelength of 11 %, 13 %, 16 %, 20 

%, and 22 % Sn photoconductors measured at 300 K. 
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Temperature dependent spectral response of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % 

Sn photoconductors were plotted side by side and were normalized at 2.0 µm as shown in Figure 

18 (a), (b), (c), (d), (e), and (f) respectively. As the temperature increases from 77 to 300 K, a red 

shift from 2.6 µm to 3.0 µm, 2.9 µm to 3.3 µm, 3.0 µm to 3.5 µm, 3.25 µm to 3.7 µm, 3.4 µm to 

4.0 µm, 3.3 µm to 3.8 µm was observed for 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn samples. 

The long cut-off wavelength is far beyond 1.55 which is the band-to-band absorption edge of Ge. 

This suggests that the absorption is contributed from GeSn material. The distortion of signal at 2.6 

– 2.8 µm that occurs for every temperature and samples is due to atmospheric absorption. The 

eruption of intensity beyond 3.2 was observed in samples with 16 %, 17.5 %, 20 %, and 22 % Sn. 

This is mainly due to existence of a thin SiO2 layer that was not completely removed during the 

fabrication process of GeSn photoconductor devices with passivation. Sample with 13 % Sn was 

not affected because of its short cut-off wavelength below 3.2 µm while sample with 11 % Sn was 

not included in this fabrication batch. 

The bandgap near the absorption edge can be evaluated by fitting photon energy versus 

spectral response intensity as presented in chapter 2. The fitting bandgap reduces as the Sn 

composition increases. However, the one of 20 % and 22 % Sn, found in Table 4, is both close to 

0.31 eV, which once again confirms the non-uniformity of Sn composition of sample 20 % Sn.  
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(a) (b) 

  
(c) (d) 

Figure 18: Normalized temperature dependent spectral response of 500 µm coplanar photoconductor 

with a nominal Sn composition of (a) 11 %, (b) 13 %, (c) 16 %, (d) 17.5 %, (e) 20 %, and (f) 22 %. 
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Figure 18 (Cont.) 

  

(e) (f) 

 

Table 4: Extracted bandgap using spectral response intensity of 11 %, 13 %, 16 %, 17.5 %, 20 %, 

and 22 % Sn photoconductors 

 11 % Sn 

ASM 108 

13 % Sn 

ASM 116 

16 % Sn 

ASM 112 

17.5 % Sn 

ASM 118 

20 % Sn 

ASM 129 

22 % Sn 

ASM 128 

Eg (eV) 0.41 0.38 0.34 0.32 0.31 0.31 

 

3.4 Responsivity and Specific Detectivity D* 

  
(a) (b) 

Figure 19: Temperature dependent responsivity of (a) 11 % Sn coplanar photoconductor and (b) 11 % 

Sn IEPD 12-24 measured at 1.55 µm.  

The responsivity of 11 % Sn photoconductor was first characterized from 77 to 300 K by 

using a 1.55 µm laser source with a power density of 0.4 mW/cm2. The beam spot was estimated 
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to be larger than the parameter of the 500×500 µm2 mesas. Since 1.55 µm laser source was used, 

it is worth to notice the contribution of Ge in the final responsivity of the device, which results in 

a larger responsivity. This contribution is originated from the Ge buffer layer since Ge areas 

surrounding the mesas were completely removed during the wet etching process. Later batch of 

GeSn devices were measured at 2.0 µm to eliminate the contribution factor from Ge buffer layer. 

Figure 19 (a) and 6 (b) presents the temperature dependent responsivity of 11 % Sn 

photoconductor with coplanar structure and 12-24 µm interdigitated electrodes structures. The 

responsivity of the devices in Figure 6 shows a significant enhancement with decreasing 

temperatures. This dramatically increased responsivity can be explained as follows: as temperature 

decreases, the activated background carrier concentration is reduced while the effective carrier 

lifetime increases, resulting in a higher photoconductive gain at low temperature. A peak 

responsivity of 1.18 A/W and 16.1 A/W was obtained at 5 V (77 K coplanar) and 2 V (77 K IEPD), 

respectively. The IEPD structure reduces the transit time, hence improves the photoconductive 

gain and results in higher responsivity. This peak responsivity of 16.1 A/W is the world record 

value of GeSn photoconductor at this time and is six times higher than our previous thin 

photoconductors because of thicker high-quality GeSn active layer, which enhances photons 

absorption rate. Note that for the commercial photodiode detectors, normally there is no significant 

change in responsivity as temperature decreases. The responsivity of IEPD devices decreases as 

the applied voltage over 2 V at low temperatures. This behavior is explained by the minority carrier 

(electron) transit time becoming shorter than the effective lifetime, which enables the formation of 

a built-in space charge region around the metal contacts to cause repulsion of carriers. 
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(a) (b) 

  
(c) (d) 

Figure 20: Temperature dependent responsivity of coplanar structure with (a) 11 % Sn, (c) 13 % Sn, 

(e) 16 % Sn, (g) 17.5 % Sn, (i) 20 % Sn, and (k) 22 % Sn and 12-24 interdigitated electrodes structure 

with (b) 11 % Sn, (d) 13 % Sn, (f) 16 % Sn, (h) 17.5 % Sn, and (j) 20 % Sn measured at 2.0 µm. 
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Figure 20 (Cont.) 

  
(e) (f) 

  

(g) (h) 

  
(i) (j) 
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Figure 20 (Cont.) 

 

 
(k) 

 

To eliminate the effect of Ge buffer layer, responsivity of GeSn photoconductors with and 

without interdigitated electrodes of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn were measured 

at 2.0 µm, as shown in Figures 20. The fabrication process of those devices will be discussed in 

the following chapter 5. The peak responsivity of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

coplanar photoconductors measured at 2.0 um and 77 K was 0.29, 0.25, 0.56, 0.5, 0.16, and 0.17 

A/W respectively. Thanks to the increase of photoconductive gain by using 12-24 interdigitated 

electrodes photoconductors (IEPD), the peak responsivity of 11 %, 13 %, and 20 % Sn was 

enhanced to 1.5, 0.73, and 0.77 A/W. However, the responsivity behavior the responsivity 

characteristic of 16 % and 17.5 % Sn samples with 12-24 IEPD is similar with the one of coplanar 

structure. This suggests that the12-24 IEPD devices act as coplanar structure and the electrodes 

were not fully in contact with GeSn active layer due to the existence of a thin layer SiO2. This was 

confirmed by using XPS measurement for those samples. The 22 % Sn photoconductor only has 

coplanar structure. 
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Temperature dependent I-V characteristic of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % 

Sn photoconductors were measured to calculate the noise current and specific D*. Current density 

and shunt resistance was also extracted at 77 and 300 K in Table 5. The current density of 11 % 

Sn photoconductor is 8 times less than the one of 13 % Sn at 77 K and is 21 times less than the 

photoconductor incorporated with highest Sn %, 22 % Sn, at 77 K. It is expected that 22 % Sn 

sample would have highest shot noise and thermal noise due to owning highest dark current and 

lowest shunt resistance. The specific D* would be reduced by RMS noise current value, which is 

the sum of shot noise and thermal noise.  

Table 5: Current density measured at 77 and 300 K and shunt resistance extracted at 77 and 300 

K. 

Devices 

Current density @ 

1 V (A/cm2) 

Shunt resistance 

(Ω) 

77 K 300 K 77 K 300 K 

11 % Sn, CP 0.05 1.1 10100 694 

11 % Sn, IEPD 12-24 2.2 8.6 240 51 

13 % Sn, CP 0.4 0.85 1811 658 

13 % Sn, IEPD 12-24 11.4 19.5 37 21 

16 % Sn, CP 0.5 1.2 840 309 

16 % Sn, IEPD 12-24 30 26.8 13 19 

17.5 % Sn, CP 0.72 1.16 556 333 

17.5 % Sn, IEPD 12-24 39 33 10 12 

20 % Sn, CP 0.94 1.5 426 259 

20 % Sn, IEPD 12-24 29 32 14.2 12.5 

22 % Sn, CP 1.03 1.88 389 209 

Although growth technique has been gradually improved, GeSn photoconductor 

performance was not significantly improved and hindered by high dark current. Silvaco simulation 

was therefore performed based on the sample structure from TEM cross-section images, which 

typically is composed of a layer of high Sn composition laying on a defective layer of lower Sn 

composition, germanium buffers layers, and a silicon substrate. The defective layers were 

represented high carrier concentration of 1019 cm-3. Figure 21 plots the current flow inside 11 % 
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Sn photoconductor. The current flow is not evenly distributed and remains mostly in layers with 

high carrier concentration or defective layers. This is the main reason besides the fact that effective 

surface passivation method was not applied, causing high dark current in photoconductor. By 

removing those layers, GeSn photoconductor D* is believed to be improved. The cutoff 

wavelength of the spectral response will be further extended due to relaxation of the GeSn film. 

On the other hand, the measured photodetector characteristic of substrate removal sample will 

come directly from GeSn film. This is a milestone in the study of GeSn material system. The 

fabrication process will be discussed in future work section of chapter 7. 

 
Figure 21: Current flow simulation of 11 % Sn photoconductor using Silvaco. 

The specific D* was first calculated using noise current, responsivity, device area, and 1 

Hz equivalent noise bandwidth. It was later used to plot spectral D* for 11 %, 13 %, 16 %, 17.5 

%, 20 %, and 22 % Sn photoconductors at 77 K (Figure 22 (a)) and 300 K (Figure 22 (b)). 

Commercially available detectors such as InGaAs, InAs, PbS, Ext-InGaAs were plotted together 

as a baseline to achieve and surpass in future. In summary, the performance at 77 K of 11 % Sn 

photoconductor is only 3-4 times less than the one of Ext-InGaAs. As Sn composition increases 

from 11 % to 22 % Sn, the detection range was extended from SWIR range to mid-IR range up to 

4.0 µm at 300 K. 
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(a) 

 
(b) 

Figure 22:  Spectral detectivity of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductors was plotted at (a) 77 K and (b) 300 K in comparison with commercially 

available detectors. 
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 Chapter 4: Development of Ge1-xSnx Photodiodes 

 The last two chapters, chapter two and chapter three, revealed a comprehensive study of 

thin film and thick film GeSn photoconductors. The responsivity of GeSn photoconductor was 

improved by implementing a thicker active GeSn layer with less defects while the cut-off 

wavelength was extended to mid-infrared range by increasing Sn composition up to 22 %. This 

chapter four will investigate another type of photodetector which is a double heterostructure 

photodiode (DHS) Ge / Ge1-xSnx / Ge. The Ge1-xSnx i-layer is grown on top of n-type Ge buffer on 

Si substrate and covered by a thin p-type Ge cap layer. The first photodiode design with a nominal 

Sn composition of 7 and 10 % defines a baseline of GeSn photodiode while the later one with more 

optimized structure and better growth technique reveals its capability and potentials for SWIR to 

MIR photodetection. 

For the first-generation photodiode, 10 % Sn sample with an i-layer of 250 nm thick has a 

cut-off wavelength up to 2.3 and 2.6 µm at 77 and 300 K. A peak responsivity of 0.19 A/W under 

-0.1 V bias at 300 K was observed and reduced to 0.07 A/W as the applied voltage increased to -

1 V. A D* of 2.4×109 Jones (10 % Sn) and 4×109 Jones (7% Sn) at 1.55 µm was calculated 

respectively. However, the performance of that device is limited by following factors: (1) the thin 

GeSn active layer (~ 250 nm) that results in low responsivity, (2) the short cut-off wavelength due 

to compressive strain, (3) the short depletion region, because of high doping junction (~ 1019 cm-

3), that enables high dark current (25 mA/cm2 at -0.1V) and poor carrier collection. Moreover, the 

device responsivity was over estimated with a contribution from Ge buffer as it was measured 

using a 1.55 µm laser source. 
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In order to address the above issues, a newly designed photodiode structure together with 

newly developed growth technique [23], [65], [66] have been implemented. Details structure will 

be further discussed in the following section 4.2. The cut-off wavelength of 11 % Sn with a thick 

GeSn absorption layer of 700 nm is extended to 2.5 and 2.8 µm at 77 and 300 K due to thicker 

active layer and less compressive strain. The device shows a dark current density of 7.9 mA/cm2 

at 0.1 V. The room-temperature responsivity was measured as 0.34 A/W at 2 µm, corresponding 

to an external quantum efficiency (EQE) of 20 %.  It is worth noting that since the responsivity 

was measured using a 2.0 µm laser, the contribution from the Ge buffer layer was mostly 

eliminated, leading to a more accurate characterization of the GeSn photodiode. 

4.1 First generation Ge1-xSnx photodiodes 

4.1.1 Material growth and device structure of GeSn photodiode  

The GeSn DHS samples were grown using an ASM Epsilon® 2000-plus reduced- pressure 

chemical vapor deposition system. Figure 23 (a) illustrates the schematic cross-sectional view of 

the device structure, composed of a 750-nm-thick p-type Ge layer (also serving as the buffer layer), 

a 200-nm-thick unintentionally doped Ge1-xSnx active layer, and a 50-nm-thick n-type Ge cap 

layer.  Since the unintentionally doped GeSn layer was measured to be slightly p-type doped, in 

order to achieve a good p-n junction, the doping concentrations for p-type and n-type Ge layers 

were chosen as 5×1018 and 1×1019 cm-3, respectively.  The relaxed p-type Ge layer was grown by 

a two-step growth method.  Since the introduction of boron doping leads to the degradation of Ge 

seed layer quality, firstly an undoped 150 nm Ge seed layer was grown at < 400⁰C in H2 carrier 

gas using GeH4 as precursor at the partial pressure of 0.2 torr.  The temperature was then increased 

to 600 ⁰C at a ramp rate of 1 ⁰C/min while keeping the GeH4 partial pressure, followed by the 

introduction of 1 % B2H6 as boron doping source once the temperature stabilized at 600 ⁰C.  A 
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post growth in-situ anneal was done at > 800 ⁰C, which reduced the threading dislocations and re-

distributed the boron dopant more evenly across the entire p-type Ge layer. 

The chamber was then cooled down to < 350 ⁰C in H2 ambience for GeSn layer growth. 

The SnCl4 and GeH4 were used as Sn and Ge precursors, respectively.  The GeH4/SnCl4 molar 

flow ratio varied between 0.95 and 0.99 depending on the target Ge/Sn composition.  The H2 was 

used as carrier gas at a flow rate of 15 slm.  Finally, the 50-nm-thick n-type Ge layer was deposited 

at the same temperature to avoid Sn-precipitation.  N2 carrier gas was used to increase the Ge 

growth rate at the low growth temperature and 1% PH3 was used as the phosphorous doping source.  

A detailed study of this growth method was reported elsewhere [63].  

  

(a) (b) 

Figure 23 (a): Schematic cross-sectional view of the device structure. Figure 23 (b): Top view 

microscope image of 250 µm device. 

 

The material quality, layer thickness, and strain of two samples presented in this study were 

characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) 

techniques.  TEM results show the high quality of grown material with defects trapped at Ge/Si 

interfaces due to the optimized growth of Ge buffer layer, leading to the low-defect GeSn active 

layer.  The XRD-measured Sn compositions of 6.44 and 9.24 % are slightly lower than the targets 

of 7 and 10 %, respectively.  Further analysis using two-theta omega scan (not shown here) reveals 
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a clear single Ge1-xSnx peak for each sample, which suggests the high material quality. The 

Ge0.9Sn0.1 and Ge0.93Sn0.7 active layers exhibit the in-plane compressive strain of 0.48 and 0.33 %, 

respectively. The material characterization results are summarized in Table 6. 

Table 6. Sn Composition, Thickness, and Strain for Each Layer. 

Nominal 

Sn % 

Measured 

Sn % 

p-type Ge 

thickness 

(nm) 

Ge1-xSnx 

thickness 

(nm) 

n-type Ge 

thickness 

(nm) 

Ge1-xSnx in-

plane Strain 

7.0 6.44 750 200 50 -0.43 % 

10.0 9.24 750 200 50 -0.48 % 

 

 
Figure 24: Ge/Ge1-xSnx/Ge DHS band structure (not to scale).  Type-I band alignment was 

formed, which provides a favorable carrier confinement for the device. 

Based on our theoretical study, both GeSn layers with 7 and 10 % Sn compositions remain indirect 

bandgap due to the compressive strain (otherwise 10 % Sn could be the direct bandgap).  

Incorporation of Sn pushes down the Γ- and L-valley in the conduction band while lifts the valence 

band, therefore the type-I alignment of the Ge/Ge1-xSnx/Ge DHS is achieved, which favorites the 

carrier confinement.  The band structures of 7 and 10 % Sn samples are shown in Figure 24.  
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4.1.2 Device fabrication 

 

Figure 25: Fabrication process flow of first generation DHS GeSn photodiode with an absorption 

layer of 250 nm and with SiO2 as dielectric layer 

A 7 % and a 10 % Sn GeSn DHS were fabricated into photodiode devices with a top active 

area of 250 and 500 µm in diameter following the processing flow as shown in Figure 25. It was 

composed of six major steps which resembles of the fabrication process of thin film 

photoconductor presented in chapter 2. However, a wet etching method and another choice of 

dielectric layer were employed.  

After cleaning with acetone / IPA / DI water, circular mesa structures with diameters of 

250 and 500 µm were defined by photolithography. Wet chemical etching method was selected 

instead of RIE etch to have a better control on the etching depth with increasing Sn composition 

and active layer thickness. In addition, the byproducts generated from the reaction of CF4 and Sn 

are not soluble and prevent further chemical reaction. Therefore, only physical sputtering process 

will occur and results in rough surface. In this section, the solution of HCl:H2O2:H2O = 1:1:20 was 

used for the mesa etching. H2O2 acts as a strong oxidizer to form Ge-O which is soluble in aqueous 
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solution while HCl continuously remove Sn particles by forming SnClx. Others wet etching 

solution such as NH4OH:H2O2:H2O = 1:2:160 [81], [82] and H2SO4:H2O2:H2O = 1:1:8 [83] has 

also showed success in etching GeSn material. In fact, wet chemical etching suffers from lateral 

etching to the sidewall of devices. Hence, dry etching with the use of chlorine base gas is more 

desired for future GeSn devices.  

The etching depth was controlled to be 500 nm to expose the p-type Ge layer for metal 

contact.  A stable etching rate of 100 nm/min at room temperature was observed with only a slight 

decrease as Sn composition increases. This discrepancy in etching rate will expand as higher Sn 

composition samples will be used.  

In the next step where active area is defined, BCB was replaced by SiO2 as the dielectric 

layer for photodiode device. This is due to the curing process of BCB at 250o C for 5 hours. Such 

high temperature for long period of time might affect the doping profile of the top n-type Ge cap 

layer, where one of the contact is formed, and leads to non-rectifying diode like behavior in I-V 

characteristic of DHS GeSn photodiode. Hence, a 100-200 nm-thick SiO2 passivation layer was 

then deposited by plasma-enhanced chemical vapor deposition followed by the openings made for 

the metal contacts. Electrode pads were patterned and metalized with 10/200 nm of Cr/Au.  The 

top view SEM image of the final devices with a diameter of 250 and 500 µm are shown in Figure 

26 (a) and (b) respectively. 
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(a) (b) 

Figure 26: Top view SEM image of (a) 500 µm diamter devic and (b) 250 µm diamter device 

4.1.3 Temperature dependent current-voltage characterization 

 

  

(a) (b) 

Figure 27: Temperature dependent I-V characteristic of GeSn photodiode with (a) 7 % Sn and (b) 10 

% Sn and the mesa size is 250 µm in diameter. 

Figures 27 (a) and (b) illustrate the dark current-voltage (I-V) characteristics from 300 to 

77 K of the GeSn photodiodes (mesa size of 250 µm in diameter) with Sn compositions of 7 and 

10 %, respectively.  The rectifying diode like behavior was observed on both devices at each 

temperature. Similar behavior was observed for devices with mesa size of 500 µm in diameter, 
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that are not shown here. As the temperature increases, the reverse current density increases as a 

result of more thermally activated carriers.  At a certain reverse voltage, the current density of the 

10 % Sn device is higher than that of the 7 % Sn device for each temperature.  This is mainly due 

to the narrower bandgap of the 10 % Sn device compared to that of the 7 % Sn device due to the 

higher Sn composition, which results in the more thermally excited carriers.  

  

(a) (b) 

  

(c) (d) 

Figure 28: Zero-bias resistance-area product (R0A) at different temperatures of (a) 7 % Sn and (b) 

10 % Sn devices. Linear fit of (Icorr)
-1 as a function of dV/dIcorr at 77 and 300 K of the (c) 10 % 

Sn sample of 250 µm, (d) 500 µm in diameter, and (e) 7 % Sn sample of 250 µm and 500 µm in 

diameter. Activation energy of 7 and 10 % Sn with different mesa sizes was shown in Figure 28 

(f). 
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Figure 28 (Cont.) 

  

(e) (f) 

 

The diode current can be expressed as [42]: 

0

( )
exp[ ]S corr

Sh

q V R I V
I I

nkT R

−
= +  (27) 

where I is the measured current, I0 is the reverse saturation current, q is the electronic charge, V is 

the applied voltage, n is the ideality factor, k is the Boltzmann constant, T is the absolute 

temperature, Rs is the series resistance, Rsh is the shunt resistance, and 
corr ShI I V R= −  is the 

corrected diode current (net current flowing through the diode) [42], [84], [85].  Shunt resistance 

Rsh was first extracted by taking dI/dV near 0 V (where 1/Rsh dominates other terms) for each 

temperature. Consequently, the zero-bias resistance-area product (R0A≈RshA) was calculated with 

the corresponding device area A, as shown in Figure 28 (a) and 28 (b).  R0A values of 300 and 11 

Ω∙cm2 were obtained at 77 K for 7 and 10 % Sn devices, respectively, which are lower values 

compared to those of InGaAs and HgCdTe detectors [8], [86].  The shunt resistance is mainly 

coming from the following facts: 1) surface recombination due to the lack of surface passivation. 

This part of shunt resistance can be eliminated by applying passivation technique that reported in 
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[49], [57]; 2) since wet chemical etching process was used for mesa etch, the Sn could be re-

deposited on the mesa surface and sidewall, resulting in the shunt current. 

Replacing I by 
corr ShI I V R= − in equation (27) and taking the reciprocal derivative

1( / )corr corr SdV dI nkT q I R−= + , the series resistance Rs can be extracted at the y-axis intercept of the 

dV/dIcorr versus (Icorr)
-1 plot, as shown in Figure 28 (c), (d), and (e).  By extrapolating the semi-

logarithmic plot of Icorr versus V-RSIcorr, the reverse saturation current I0 can be evaluated from the 

y-axis intercept (figures are not shown here).  Moreover, the Arrhenius activation energy was 

estimated from a fit of temperature dependent
0 00 exp( )AI I E kT= − , where I00 is a constant, as 

shown in Figure 28 (f).  The GeSn diode parameters are summarized in Table 7. 

Table 7. Series Resistance, Shunt Resistance, Reverse Saturation Current, and Activation Energy 

at 77 K and 300 K 

Device 

77 K 300 K 
EA 

(eV) 

RS 

(Ω) 

RSh 

(kΩ) 
I0 (A) 

RS 

(Ω) 

RSh 

(kΩ) 
I0 (A)  

7 % Sn, 250 µm 26.2 599 6.4×10-8 55.5 0.85 2.2×10-5 0.14 

7 % Sn, 500 µm 19.6 101 2.4×10-7 44.7 0.22 5.9×10-5 0.13 

10 % Sn, 250 µm 35.6 23.0 3.2×10-6 40.6 0.21 6.9×10-5 0.13 

10 % Sn, 500 µm 33.2 4.70 2.6×10-5 41.3 0.08 8.1×10-5 0.10 

 

As the Sn composition increases, the shunt resistance Rsh decreases while the reverse 

saturation current I0 increases.  On the other hand, devices with larger mesa size feature lower 

shunt resistance and higher saturation current compared to those with smaller mesa size.  There is 

no clear trend for the series resistance Rs, which ranges from 19.6 Ω (7 % Sn, 500 µm) to 35.6 Ω 

(10 % Sn, 250 µm) at 77 K and from 40.6 Ω (10 % Sn, 250 µm) to 55.5 Ω (7 % Sn, 250 µm) at 
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300 K.  It is desirable to have small series resistance in a photodiode.  For our samples, the high 

series resistance might be attributed to the relatively thin n-type Ge contact layer (50 nm cap layer). 

In contrast with RS, infinite parallel shunt resistance Rsh is desirable in a photodiode since it reduces 

the thermal noise effect.  A parallel shunt resistance from 100 to 600 kΩ and 5 to 23 kΩ at 77 K 

and from 220 to 850 Ω and 84 to 214 Ω at 300 K was obtained for 7 and 10 % Sn devices, 

respectively.  The lower value of shunt resistance with the higher Sn-composition device signals 

the existence of the leakage current.  The device with larger perimeter featuring lower shunt 

resistance was observed as expected.  Similar photodiode behavior has been reported for InGaAs, 

extended-InGaAs, and short-wave HgCdTe detectors [87].  From the temperature-dependent 

reverse saturation current, the Arrhenius activation energies EA for both devices were extracted.  

According to the theoretical study, the EA ~ Eg/2 indicates that the Shockley-Hall-Read 

recombination is the main source of dark current [88]. For the EA obtained in this study, their values 

ranging from 0.1 to 0.14 eV were much lower than Eg/2 (~0.28 and 0.24 eV for 7 and 10 % Sn 

devices, respectively), which seems to suggest a process of defect-assisted tunneling and/or 

thermionic tunneling [33], [89], [90].  

The reverse dark current density was further investigated to estimate the surface leakage 

current, which is proportional to the perimeter of the device under test.  At -1 V, Jsurf were extracted 

to be ~ 2 mA/cm and 40 mA/cm for 7 and 10 % Sn sample at 77 K, respectively.  As the temperature 

increases to 300 K, these values reach 18 mA/cm and 100 mA/cm.  The relatively high surface 

leakage current density is mainly due to these causes: 1) no surface passivation technique was 

applied on the sidewalls of photodiode device; and 2) the narrowed bandgap of the Ge1-xSnx alloy 

leads to more thermally excited carriers.  The dark current can be reduced by a passivation 
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technique either using Si [49], yttrium-doped GeO2 [91], or GeOx/Al2O3 [57] as the passivation 

layer.      

4.1.4 Spectral response 

Figures 29 (a) and 29 (b) show the spectral response of 7 and 10 % Sn photodiode detectors 

in the temperature range from 300 to 77 K.  The red shift of absorption edge as the temperature 

increases was observed for both devices.  The 7 % Sn device exhibits a cutoff wavelength of 2.0 

and 2.2 µm at 77 and 300 K, respectively.  Such cutoff wavelengths are way beyond the Ge band-

to-band absorption edge (1.55 µm), indicating that the photoresponse beyond 1.55 µm is mainly 

contributed by the GeSn absorption.  For the 10 % Sn device, the observed photoresponse extended 

to 2.3 and 2.6 µm at 77 K and 300 K, respectively.  This longer wavelength coverage is due to the 

reduced bandgap for the increased Sn composition as expected by Vegard’s law interpolation of 

Ge and Sn [30].  The signal distortion at 1.8-1.9 µm is due to the atmospheric absorption that 

occurred for all of devices regardless of the Sn composition and temperature. 

As mentioned in equation in chapter 2, a semi-logarithmic plot of spectral response 

intensity versus the photon energy can be used to extract the m values, as shown in Figure 29 (c) 

and 29 (d) for the 7 and 10 % Sn photodiode devices.  Based on the study of band-to-band 

transition, the m is generally equal to 2 and 1/2 for the indirect and direct bandgap transition, 

respectively.  The m values in this study were extracted as 1.11 for the 7 % Sn device, and 0.61 for 

the 10 % Sn device at 300 K.  This can be explained as following: for the 7 % Sn device, the energy 

separation between indirect and direct bandgap is small (28 meV), therefore the absorption edges 

of indirect and direct bandgap transition cannot be identified, resulting in the “overall” absorption 

edge with m value between the 2 and 1/2; while for the 10 % Sn device, since the GeSn alloy with 

10 % Sn has been identified as a direct bandgap material, the Sn composition of 9.24 % in this 
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study is very close to the indirect-to-direct transition point.  Although the sample is still an indirect 

bandgap material, the absorption arising from direct bandgap transition dominates the spectral 

response, leading to the m value of 0.61 which is close to 1/2.  Moreover, as temperature decreases, 

the m values stay almost unaltered for both devices, indicating the identical absorption mechanism 

at each temperature.   

  

(a) (b) 

  

(c) (d) 

Figure 29: Normalized temperature dependent spectral response of (a) 7 % Sn photodiode and (b) 10 

% Sn photodiode. Temperature dependent absorption edge of (c) 7 % Sn photodiode with m = 1.11 

and (d) 10 % Sn photodiode with m = 0.61. 
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4.1.5 Temperature dependent responsivity 

The responsivity was measured at 1.55 µm with a normal incidence laser beam. The I-V 

curves measured under dark and laser illumination at each temperature were used to calculate the 

responsivity value verse the bias voltage.  Responsivity can be interpreted as [39], [78]: 

)1()1(
24.1

x
r erR 

 −−−=  (28) 

where λ is the wavelength, r is the Fresnel loss, ηr is the collection efficiency, α is the absorption 

coefficient, and x is the thickness of absorption layer.  

Figures 30 (a) and 30 (b) show the responsivity at 1.55 µm of 7 and 10 % Sn photodiode 

devices at the temperatures ranging from 77 to 300 K.  The peak responsivities of 0.3 and 0.19 

A/W were obtained at 300 K with 0.1 V reverse bias voltage for 7 and 10 % Sn samples 

respectively.  As the reverse bias voltage increases, the responsivity decreases.  This may be due 

to the higher leakage current under higher reverse bias voltage.  In addition, it has been reported 

that the voltage dependent change of absorption coefficient as a result of the Franz-Keldysh effect 

could affect the responsivity [92].  At 1 V reverse bias voltage, the responsivities reduce to 0.15 

and 0.07 A/W for 7 and 10 % Sn devices, respectively.  The temperature dependent responsivity 

shows the monotonically decreased value at lower temperatures for both devices.  The increasing 

bandgap with the decreasing temperature is responsible for this with the absorption coefficient 

drop.  Moreover, in general the responsivity of 7 % Sn sample is higher than that of 10 % Sn 

sample.  This is mainly due to the higher material quality of 7 % Sn sample, which was confirmed 

by the material characterization.  The lower material quality of 10 % Sn sample leads to the 

enhanced non-radiative recombination such as Shockley-Read-Hall recombination (recombination 

through the defect levels), which reduces the extraction efficiency of photo generated carriers, 

resulting in the lower responsivity than 7 % Sn sample. 
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According to equation (28), responsivity could be improved by reducing the Fresnel optical 

reflection losses with an appropriate antireflection coating and by increasing the GeSn layer 

thickness. However, the increase in x decreases the response speed of the detector [86], [93].  The 

tradeoff between high responsivity and high-speed response should be taken into account in the 

design of the photodetector. 

 

  

(a) (b) 

Figure 30: Temperature dependent responsivity measured at 1.55 µm of (a) 7 % Sn and (b) 10 % 

Sn devices with mesa size of 250 µm in diameter. 

4.1.6 Specific D* and noise analysis 

Noise analysis 

The figure-of-merit most commonly used to compare individual detector is specific 

detectivty D* since it normalizes detector area and uses an equivalent noise bandwidth of 1 Hz.  

D* can be expressed as: 

2
*

n

R A fA
D

NEP I


= =  
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where A is the area of the detector, NEP is noise equivalent power, R is responsivity, Δf is the 

bandwidth, and In
2 is mean squared noise current in the bandwidth.  For an ideal photodiode, the 

noise current is generally composed of thermal fluctuations (Johnson-Nyquist) and shot noise [86]. 

Flicker or 1/f noise is excluded since its contribution is not significant for measurement conditions 

above 1 Hz. Therefore, 2 2 2

n thermal shotI I I= + .  The thermal noise follows 𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = √4𝑘𝑇∆𝑓/𝑅0, 

where k is the Boltzmann constant, T is absolute temperature, Δf is the bandwidth, and R0 is the 

resistance. The shot noise is related to dark current and photocurrent caused by incident light 

source.  It can be described as 2 ( )shot dk phI q I I f= +  , where q is the electron charge, Idk is the dark 

current, and Iph is the photocurrent.  The photocurrent was extracted from the responsivity 

measurement.  In this study, noise bandwidth was set by configuring the time constant and 

slope/oct of the lock-in amplifier to 100 ms and 18 dB/oct, respectively.  The dark current and 

photocurrent for the devices with 250 µm in diameter are listed in the Table 8.  

Table 8. Dark current and photocurrent at different reverse bias voltages 

Temperature 

(K) 

Applied 

voltage 

(V) 

7 % Sn 10 % Sn 

Dark 

current (A) 

Photocurrent 

(A) 

Dark 

current 

(A) 

Photocurrent 

(A) 

300 
-0.2 9.55×10-5 4.81×10-6 6.42×10-4 2.79×10-6 

-1 2.82×10-3 2.47×10-6 8.97×10-3 1.07×10-6 

77 
-0.2 3.03×10-6 2.88×10-6 6.55×10-5 2.17×10-6 

-1 1.12×10-3 2.07×10-6 4.6×10-3 1×10-6 

 

Since the ideal photodiode features the suppressed dark current, the thermal noise is the 

main source of detector noise. However, for the Ge1-xSnx detector in this study, the shot noise is 

the dominant source of noise due to the relatively high dark current. Based on the measured 
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temperature dependent I-V characteristic, each noise component can be determined, as 

summarized in Table 9. 

Table 9. Thermal Noise and Shot Noise of 7 and 10 % Sn DHS Photodiodes with Different 

Diameter Size, Temperature, and Applied Voltage. 

Device 
Thermal Noise 

(A*Hz-1/2) 
Shot Noise (A*Hz-1/2) 

 
 -0.2 V -1 V 

77 K 300 K 77 K 300 K 77 K 300 K 

7 % Sn, 250 µm 8.4×10-14 4.4×10-12 1.4×10-12 5.7×10-12 1.9×10-11 3.0×10-11 

7 % Sn, 500 µm 2.1×10-13 8.7×10-12 2.8×10-12 1.2×10-11 3.4×10-11 4.5×10-11 

10 % Sn, 250 µm 4.3×10-13 8.8×10-12 4.7×10-12 8.6×10-12 3.8×10-11 5.4×10-11 

10 % Sn, 500 µm 9.5×10-13 1.4×10-11 1.4×10-11 2.4×10-11 5.2×10-11 7.0×10-11 

 

At 77 K, the thermal noise is two or three orders of magnitude less than the shot noise at 

various applied bias voltages. As temperature increases, both thermal and shot noise increase with 

the thermal noise rising more rapidly than shot noise.  The thermal noise increases about two orders 

of magnitude while the shot noise increases less than one order of magnitude as the temperature 

increases from 77 to 300 K.  At 300 K, the thermal noise is only one order of magnitude smaller 

than the shot noise at -1 V, and is almost equal to the shot noise at -0.2 V.  Therefore for the 

calculation of D*, both thermal noise and shot noise were considered even at lower temperatures. 

Specific detectivity D* 

Specific detectivity D* of Ge1-xSnx photodiode detectors was determined by using 1 Hz 

equivalent noise bandwidth, the device area, the calculated noises and the measured responsivity.  

Figures 31 (a) and 31 (b) show the D* of 7 and 10 % Sn devices with a diameter of 250 µm from 

77 K to 300 K.  The peak D* of 4×109 and 2.4×109 cmHz1/2W-1 for 7 and 10 % Sn devices were 

obtained at 77 K, respectively.  Although the responsivity exhibits the smallest value at this 

temperature, the dark current significantly decreases, resulting in the reduced noise power, and 
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consequently the improved D* value compared to that at 300 K.  The lower peak D* of the 10 % 

Sn device compared to that of the 7 % Sn device is due to the smaller responsivity and larger noise 

power.  Moreover, the D* of devices with different mesa sizes show the very close values under 

the same temperature and bias voltage, suggesting the uniform device quality of Ge1-xSnx detectors.  

  

(a) (b) 

Figure 31: Temperature dependent specific D* versus applied bias measured at 1.55 µm of (a) 7 % Sn 

and (b) 10 % Sn devices with mesa size of 250 µm in diameter. 

      

Spectral D* of 7 and 10 % Sn photodiodes (measured at 0.1 V reverse bias voltage) is 

shown in Figure 32 to directly compare with D* of other market-dominating detectors that use Ge, 

PbS, InAs, and InGaAs technologies.  The spectral response absorption edge is extended to 2.6 

μm at 300 K for the 10 % Sn device, which is comparable to the edge-response of  an extended-

InGaAs detector at 300 K. Compared to our previous study on GeSn photoconductors [47], [50], 

the spectral D* here has been improved due to the lower dark current of the present GeSn 

photodiode.  The spectral D* of the 7 % Sn device at 77 K is only one order of magnitude lower 

than that of extended-InGaAs detectors.  A decrease in the device dark current via a thicker GeSn 

layer and via application of the passivation technique would dramatically reduce the noise. 

Moreover, a thicker GeSn layer would enhance the absorption in SWIR. Therefore significantly 
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improved D* of GeSn photodiode detectors can be achieved, making them competitive with 

commercially available detector technologies in the above-discussed SWIR FPA applications-

space. 

 
Figure 32: Spectral D* of 7 and 10 % Sn photodiodes measured at 0.1 V reverse bias voltage 

across a 250 µm-diameter device.  Other market dominating detectors in same spectral range 

are plotted for comparison. 

4.2 Second generation Ge1-xSnx photodiodes 

4.2.1 New photodiode structure design 

Based on previous study in section 4.1, there are several problems to be addressed in order 

to further improve the performance of the devices such as: a narrow depletion region 

approximately 10 nm or less at -1V due to high doping concentration of each Ge and GeSn layer 

(1019cm-3), a thin absorption layer (200nm) that limits the responsivity, and a high dark current 

due to placement of junction at defective layer and lack of passivation method. In fact, those issues 

could be resolved by literally design a new structure with lower doping concentration and thicker 

absorption layer. However, it is important to match the design with the current growth technique. 
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Samples studied in this section will not include surface passivation technique which will be 

discussed in chapter 5. 

With the current growth limitation, a nominal Sn composition of 11 % is selected in this 

design which results in n-type Ge0.89Sn0.11 / i-Ge0.89Sn0.11 / p-type Ge0.91Sn0.09 structure. The 

calculation of depletion width versus doping concentration with 11 % Sn, diffusion length versus 

electron and hole lifetime has been done as shown in Figure 33 (a), 33 (b), and 33 (c) while the 

selection of doping concentration and thickness were presented in Figure 33 (d).     

  

(a) (b) 

 
 

(c) (d) 

Figure 33: (a) Depletion width vs. Doping concentration of 11 % Sn assuming an intrinsic 

layer of 600 nm and ND=NA. (b) Diffusion length vs. Electron lifetime. (c) Diffusion length 

vs. Hole lifetime. (d) Newly proposed structure of photodiode with 11 % Sn (nominal) 
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The design justification is as follow. It is ideal to have ND=NA as low as possible, 1x1017 

cm-3 or less, to increase the depletion width as suggested from Figure 33 (a). If the intrinsic layer 

is doped unintentionally, it is preferred p-type doping of 1x1016 cm-3 or less. This results in the 

formation of junction above defective layer and an increase carrier lifetime. The junctions will be 

formed at n-type Ge0.89Sn0.11 / i-Ge0.89Sn0.11 and at p-type Ge0.91Sn0.09 / i-Ge0.89Sn0.11. The diffusion 

length of hole in n-type GeSn layer is ~800 nm assuming τp=10 ns (Figure 33 (c)) while the 

diffusion length of electron in p-type GeSn layer is ~3 µm (Figure 33 (b)) assuming τp=1 ns. 

However, due to current growth limitation, a total GeSn thickness of 1 µm is selected although the 

thickness of intrinsic layer of 1µm is preferred to fully absorb photons at 2 µm. Based on previous 

study of thick GeSn sample, the first 300-400nm GeSn is considered as defective layer. An active 

layer of 600 nm should be allocated above the defective layer. Therefore, a n-type GeSn thickness 

of 100 nm and a p-type GeSn thickness of 400 nm were chosen. The excessed thickness will be 

counted as diffusion length. Ge cap layer profile is kept as n-type 1019 cm-3 50 nm to provide good 

Ohmic contacts that were observed previously. This layer should also be thin enough to reduce 

light absorption. Ge buffer is doped with 1019 cm-3 p-type and Ge buffer thickness is 1 µm. This 

thick highly doped Ge buffer layer helps to spread the current inside of the device. The device 

structure is summarized in Figure 33 (d). 
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(a) 

 

(b) 

Figure 34: Silvaco simulation of (a) current flow of newly design structure and (b) current 

density versus voltage with Ge0.89Sn0.11 lifetime of 1µs, 0.1ns, 1ns, and 1ps. 
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In Figure 34 (a), the current flow of newly design structure using Silvaco simulation 

software suggests that there is current crowding effect near the p-contacts, the sidewalls of mesa, 

and the surface of Ge buffer layer. This could be resolved by either having a backside contacts on 

lapped Si surface or thick Ge buffer in combination with surface passivation technique. Different 

configuration of Ge0.89Sn0.11 lifetime of 1µs, 0.1ns, 1ns, and 1ps were used to extract current 

density – voltage characteristic of new photodiode structure. This parameter is strongly connected 

with material growth quality of GeSn layer. The better material quality is the longer carrier lifetime 

lasts. Our material quality is predicted to be near 10 ns due to large current density of 10 A/cm2. 

4.2.2 Material growth and characterization 

Based on the proposed design, the new photodiode structure was grown using an industry 

standard ASM Epsilon® 2000 Plus reduced pressure chemical vapor deposition system with SnCl4 

and GeH4 as Sn and Ge precursors, respectively.  A 1160-nm-thick p-type (Boron as dopant) Ge 

buffer was first grown on the Si substrate.  Then a 550-nm-thick p-type (unintentionally doped) 

Ge0.89Sn0.11 layer was grown followed by a 150-nm thick n-type (Arsenic as dopant) Ge0.89Sn0.11 

layer.  The growth was completed by capping with a 60-nm-thick heavily doped n-type Ge layer. 

The details of the growth technique were published elsewhere [23], [66]. 

After growth, material characterizations including cross-sectional transmission electron 

microscopy (TEM) and secondary ion mass spectrometry (SIMS) were performed to identify the 

layer thicknesses, Sn composition, and doping profile.  Figure 35 shows a TEM image of the 

sample (middle panel) where each layer can be identified clearly.  (Note that for GeSn, two distinct 

layers can be resolved: a 250-nm-thick defective bottom layer and a 450-nm-thick high-quality top 

layer).  The Sn composition and doping profile obtained from SIMS are shown in Figure 35 left 

and right panels, respectively.  The Sn composition was measured as 11% in the GeSn top layer, 
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with a slight decrease in the GeSn bottom layer.  The higher Sn composition in the GeSn top layer 

is due to the ease of Sn incorporation when the underneath layer is relaxed [23], [66]. The magenta 

and red curves in Figure 35 (right panel) indicate the As and B doping concentrations, respectively.  

The Ge cap and buffer layers were heavily doped to easily form Ohmic contacts.  The n- and p-

type doping concentrations of the Ge0.89Sn0.11 layer were measured as 2×1018 cm-3 (from the SIMS 

result) and 1×1017 cm-3 (unintentional doping, measured separately from a different reference 

sample), respectively.  As a result, the depletion region (calculated as 150-nm width) is located 

mainly in the p-type GeSn layer with high material quality.  Since the depletion region edge is 

~150 nm away from the defective GeSn bottom layer, most photo generated carriers can be 

effectively collected. 

Figure 36 summarizes the structure of newly growth photodiode sample. Comparing with 

the proposed design, this growth has shown great efforts to achieve Sn composition, thickness of 

each layer, and most of the doping concentration. 

 

Figure 35:  TEM image (middle) of the cross-section of the sample with each layer clearly 

resolved.  The SIMS depth profile analysis of the devices’ Ge, Sn, Si composition (left) and 

doping profile (right). 
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4.2.3 Device fabrication 

 
Figure 36: Schematic diagram of the Ge0.89Sn0.11 photodiode 

The fabrication process of 2nd generation photodiode followed similar steps presented in 

previous section 4.1. Due to thicker Ge / GeSn layer which is around 760 nm, etching process, 

SiO2 deposition, and metal deposition process were modified accordingly. 

Wet chemical etching using HCl: H2O2: H2O = 1:1:10 solution at 0o C was employed to 

etch circular mesa structures with diameters of 100 µm, 250 µm and 500 µm. Due to the nature of 

lateral etching of wet chemical etching process, low temperature etching at 0o C was studied and 

applied to reduce lateral etching and to enhance surface smoothness. The solution was prepared in 

a beaker which was submerged in another beaker of ice. The control of temperature is very 

important since a slight chance from 0 to 2 0C introduces a change in etch rate of 10 nm / min. 

With a stable etching rate of 20 nm / min at 0 0C, the etching depth was controlled to be 700 nm 

to expose the p-type Ge layer for metal contact. Figure 37 (a) shows the mesas after wet etching 

at 0 0C with a smooth side edge. At room temperature, the etching rate of similar Sn composition 

increases to approximately 100 nm / min. 
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A 300-nm-thick SiO2 passivation layer was then deposited by plasma-enhanced chemical 

vapor deposition followed by the openings made for the metal contacts.  Electrode pads were 

patterned and metalized with 10/300 nm of Cr/Au. The thickness of silicon oxide and metal were 

adjusted to be 30 – 40 % of the etching depth to make sure the slope of mesas was successfully 

connected. Figure 36 shows the cross-view of a schematic diagram for the typical device while 

figure 37 (b) presents the top view microscope image of the devices with different mesas diameter 

after lift-off process. 

  

(a) (b) 

Figure 37: Top view microscope image of (a) mesa after wet etching at 0o C and (b) devices after 

lift-off process. 

4.2.4 Temperature dependent current-voltage characterization 
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Figure 38 (a) shows the temperature dependent dark current-voltage characteristics of the 

500 µm photodiode with 11 % Sn from 77 to 300 K.  It exhibited the rectifying diode-like behavior 

for presenting temperatures.  This characteristic was also observed using 7 and 10 % Sn photodiode 

presented above. As the temperature increases, the dark current density increases. At – 1 V and 77 

K, the dark current density of 250 µm and 500 µm device is 1.1 and 0.4 A/cm2 respectively, which 

is 9-10 times less than the one of 10 % Sn of similar size. While at 300 K, the dark current density 

of 250 µm and 500 µm device increases to 3 and 1.6 A/cm2. This dark current density is 5-6 times 

less than the one of 10 % Sn. Such reduction of dark current with a slight increase in Sn 

composition could be attributed to newly design which relocate the junctions away from defective 

layer. In order to further understand the origin of the dark current, the dynamic resistances Rdynamic 

will be extracted from I-V characteristics and analyze in our future publication. Generally 

speaking, the dynamic resistance is a combination of series, forward bias, trap-assisted tunneling 

(TAT) and shunt resistances as given in Ref. [94].  

  

(a) (b) 

Figure 38: (a) Temperature dependent J-V characteristic of GeSn photodiode with 11 % Sn and the 

mesa size is 500 µm in diameter. (b) J-V characteristic of 11 % Sn photodiode at 300 K with mesa 

size of 100, 250, and 500 µm in diameter. 
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Table 10. Series Resistance, Shunt Resistance, and Dark Current at 77 K and 300 K 

 

 

Table 10 summarized series resistance, shunt resistance, and dark current of 7, 10, and 11 

% Sn photodiode with diameter of 250 and 500 µm at 77 and 300 K. Parameters of 11 % 

photodiode with new design are highlighted for comparison. The series resistance of 11 % 

photodiode ranged from 36 (250 µm) and 33 Ohm (500 µm) at 77 K to 22 (250 µm) and 24 Ohm 

(500 µm) at 300 K. The relatively high series resistance suggested that there is a current crowding 

effect at the contacts, which was predicted by current flow using Silvaco simulation. The shunt 

resistance of the 500 µm devices ranges from 0.9 to 12 kΩ, which is much smaller than that of 

commercial detectors whose shunt resistance is in the range of mega-Ohms. This is mainly due to 

the surface and sidewall leakage currents, which could be significantly reduced by using advanced 

passivation techniques [49], [57]. However, the reported value of shunt resistance has been 

improved 2.5 times at 77 K and 10 times at 300 K comparing with 10 % Sn device. Such increase 

in shunt resistance will reduce the noise current and result in high specific detectivity D*. 

Device 

77 K 300 K 

RS 

(Ω) 

RSh 

(kΩ) 

JD @-

1V 

(A/cm2) 

RS 

(Ω) 

RSh 

(kΩ) 

JD @-

1V 

(A/cm2) 

7 % Sn, 250 µm 26.2 599 2.3 55.5 0.85 5.8 

7 % Sn, 500 µm 19.6 101 1.8 44.7 0.22 3.2 

10 % Sn, 250 µm 35.6 23.0 9.4 40.6 0.21 18 

10 % Sn, 500 µm 33.2 4.70 4.3 41.3 0.08 7.8 

11 % Sn, 250 µm 36 12×103 1.1 22 6.9 3 

11 % Sn, 500 µm 33 12 0.4 24 0.9 1.6 
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Figure 38 (b) shows the dark current densities of the devices with different diameters of 

100 µm, 250 µm and 500 µm at 300 K.  The current in the reverse bias region does not scale with 

the junction area, and the current density decreases with decreasing size of the devices for all 

temperatures.  The similar behavior was observed in Ref. [95].  In fact, the TAT mechanism 

dominates the bias region, and the TAT current strongly depend on the trap density.  From the I-V 

analysis, the trap distribution is non-uniform, which leads to that the reverse current does not scale 

with junction area.  

4.2.5 Temperature dependent responsivity and external quantum efficiency 

The temperature-dependent responsivity measured at 2.0 µm is shown in Figure 39 (a).  A 

peak responsivity of 0.32 A/W was obtained at -0.1 V bias and 300 K temperature.  The obtained 

responsivity is approximately three times of our previously reported device (0.12 A/W measured 

at 2 µm),13 which can be explained as follows:  i) the thicker GeSn layer enhances the light 

absorption, resulting in more photo generated carriers; ii) the optimized doping profile separates 

the depletion region of the pn junction away from the defective GeSn layer, leading to improved 

carrier extraction efficiency.  Moreover, since a 2.0 µm laser source was used, the responsivity is 

mainly contributed by the GeSn layer.  Note that the responsivity decreases as the temperature 

decreases.  This is due to the bandgap increase at lower temperature, which results in reduced light 

absorption.  In addition, trap states (inside the high quality GeSn layer) not only affect the tunneling 

mechanism, but also are responsible for non-radiative recombination of the photo-generated 

carriers.  In fact, at lower temperature, the photo-excited carriers partially recombine at the deeper 

level trap, where they cannot gain sufficient thermal energy and then to be released; while at higher 

temperatures, the carriers could recombine through the shallow trap level, where they can be 

released by thermal excitation, which leads to increased responsivity at higher temperature.  In 
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addition, at all temperatures, the responsivity decreases with increased reverse bias.  This 

responsivity reduction is possibly associated with the Franz-Keldysh effect [55], [96]. Figure 5 (b) 

shows the normalized responsivity of the 500 µm photodiode at 300 K for different voltage bias 

from 0.1 V to 1 V.  The responsivity decreases near the band edge due to Franz- Keldysh effect 

[96]. Note that the band edge appears to shift to shorter wavelength with higher electric field.  The 

Franz-Keldysh effect describes oscillations in the carrier transition probability for energies above 

the conduction band edge in the presence of an electric field [96]. 

  
(a) (b) 

 
(c) 

Figure 39: (a) Temperature dependent responsivity versus bias voltage measured at 2 µm of 11 % 

Sn photodiode with 500 µm in diameter. (b) Measured responsivity as a function of wavelength 

for different applied voltages to demonstrate the Franz-Keldysh effect. (c) Temperature-dependent 

spectral EQE. The dots are measured data using 2 µm laser diode. 
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The EQEs of the Ge0.89Sn0.11 photodiode from 300 to 77 K are shown in Figure 39 (c).  The 

EQEs increase as the temperature increases.  The reasons are expected to be similar to those of the 

increase of the responsivity.  The falling edge of the EQE curve, which corresponds to spectral 

response cutoff, shifts towards longer wavelength as temperature increases because of the reduced 

bandgap energy.  The EQE curve at room temperature shows a cusp-like feature at around 2.3 µm 

significantly different from its smooth rolling-over feature at low temperatures.  The feature 

originates from the absorption of the 150-nm n-type doped GeSn layer above the depletion region.  

At 300 K, the EQE achieves 22 % and 20 % at 1.55 µm and 2.0 µm, respectively.  The theoretical 

calculated value of EQE for GeSn material system at 2.0 µm is ~60 % without anti-reflection 

coatings (assuming 100% internal quantum efficiency).  The measured EQE of our Ge0.89Sn0.11 

photodiode is one third of this value, indicating that the internal quantum efficiency is ~33 %.  The 

EQE could be improved by using a passivation technique to reduce the surface recombination or 

using anti-reflection coating to reduce the reflection loss.  Moreover, it was found that EQEs 

measured using 2 µm laser diode (dots) agree well with the values from spectral EQEs at the same 

wavelength.  However, there are relative errors that are less than 10 % between the QE measured 

using 2 µm laser diode and the QE measured using FTIR. The reason comes from that the devices 

respond to second harmonic distortion of the laser diode.      

In addition, near the absorption edge, the product of the absorption coefficient and the layer 

thickness in this case is much smaller than unity.  Therefore, the spectral response signal is 

approximately proportional to the absorption coefficient, which is related to the energy bandgap 

of direct semiconductors through the following equation [97]: 

hv

Ehv
C

g

5.0)( −
=  (29) 
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where α is the absorption coefficient, C is a constant, hν is the photon energy, and Eg is the 

bandgap.  The bandgap of the GeSn absorbing layer at different temperatures was extracted by 

plotting (S·hv)2 against hν, where S is the spectral response signal. The extracted bandgap at 300 

K was 0.46 eV.  The temperature dependence of the bandgap was predicted by the Varshni’s 

relation. 

4.2.6 Specific spectral D*  

The spectral specific detectivity D* of the Ge0.89Sn0.11 photodiode at 77 and 300 K was 

plotted together with previously reported Ge0.9Sn0.1 detector and with others commercialized 

available detectors, as shown in Figure 40. The D* of the Ge0.9Sn0.1 was replotted using 

responsivity measured at 2.0 µm to be comparable with the Ge0.89Sn0.11 photodiode. Thanks to the 

new design structure and the mature growth technique, the performance of Ge0.89Sn0.11 photodiode 

has been improved with a peak D* of 1.7×109 cm⋅Hz1/2⋅W-1 at 300 K and 4.3×109 cm⋅Hz1/2⋅W-1 at 

77 K, which is four times higher than that of Ge0.9Sn0.1 detector.  It is worth noting that this D* 

value is only one order of magnitude lower than that of the commercial extended-InGaAs detector. 

As the temperature increases, the D* decreases due to the increase in the noise current. This has 

been observed in the noise analysis presented in previous section. Moreover, a steeper falling edge 

was observed from the Ge0.89Sn0.11 photodiode compared to that of the previously reported device.  

This is due to the reduced mid-gap defect states that could serve as carrier 

generation/recombination centers, which indicates the improved material quality. 
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Figure 40: Spectral D* of the 500 µm Ge0.89Sn0.11 photodiode measured with a voltage bias of -

0.1 V at 77 K (red) and 300 K (black). For comparison, the D* spectra of several commercial 

detectors and our previously reported detector at 77 K (green) are also plotted.  The numbers 

indicate the values of D* at 2.0 µm. 
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Chapter 5: Effect of germanium oxynitride and germanium tin / germanium oxide 

passivation technique 

High dark current is currently one of the key factor holding back the performance of GeSn 

photodetector. As the Sn composition increases, the band gap decreases which results in the 

enhancement of tunneling and intrinsic carrier concentration. Moreover, the high dark current 

could possibly be due to surface leakage via dangling bonds at the surface of GeSn or Ge and 

materials defects. While the materials defects could not be resolved immediately, the later issue 

could be reduced by implementing an appropriate surface passivation. Several efforts using Si, 

SiO2, SiNx, GeOx / GeSnOx followed by Al2O3 have shown success with different degrees [49], 

[57]. To attain low dark current GeSn photodetector, this chapter presents an effort to study two 

types of surface passivation technique: GeOxNy (germanium oxynitride) and GeOx / GeSnOx 

followed by Al2O3.  

The first method, germanium oxynitride passivation, is well-known as an effective surface 

passivation technique for germanium-based optoelectronics devices. Thanks to the incorporation 

of nitride, the germanium oxynitride film has proven to have excellent chemical, water, and heat 

stability than germanium oxide [98], [99]. The growth of germanium oxynitride layer has been 

successfully demonstrated via thermal and plasma nitridation of Ge surfaces [100]–[102], 

chemical vapor deposition [103], and thermal ammonolysis of GeO2 [104], [105]. It was applied 

on GeSn photodiodes samples with 11 % Sn presented in second part of chapter 4. The second 

method employed an oxygen source instead of ozone source in atomic layer deposition system to 

form germanium oxide and germanium tin oxide which have been demonstrated as an effective 

surface passivation for MOSFETs [106]. This method was recently reported using GeSn 

photodiodes. Since GeOx / GeSnOx layer is volatile in contact with water, a layer of Al2O3 (ALD) 
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was deposited immediately above GeOx / GeSnOx layer as a protective layer. The quality of the 

oxidized germanium layer depends strongly on pressure and temperature [107]. A set of thick film 

GeSn photoconductor with and without passivation were processed in parallel. 

Photodiodes samples with germanium oxynitride passivation showed a decrease in dark current.  

5.1 Germanium oxynitride as surface passivation technique for GeSn photodiodes 

5.1.1 Device fabrication 

 

Figure 41: Fabrication process flow of 11 % Sn photodiode with GeON as surface passivation 

layer and with SiO2 as dielectric layer 

The fabrication process of GeSn photodiode with surface passivation using GeON followed 

the one presented in chapter 4.2 except for an additional step to deposit GeON passivation with 1 

and 3 nm thickness right after defining the mesas as shown in Figure 41. The process began with 

the forming of circular mesas of 250 and 500 µm in diameter using photolithography. Wet 

chemical etching (HCl:H2O2:H2O = 1:1:10) at low temperature was performed to transfer the 

pattern down to p-Ge while reducing the lateral sidewall attack. After removing the photoresist as 

a mask, a thin layer of GeON was deposited on top of the devices. This particular process was 

done by our collaborator ASM Inc. Next, a PECVD layer of SiO2 was deposited to provide contacts 

isolation between n-Ge and p-Ge. The fabrication process concluded with opening active areas 
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through SiO2 / GeON layer and metal contacts formation via electron-beam evaporator of 10 nm 

adhesion layer Cr and 300 nm Au. 

5.1.2 Device characterization  

Current density-voltage analysis 

Figure 42 (a) and 42 (b) depicts current density versus applied voltage of 250 and 500 µm 

in diameter 11 % Sn photodiodes measured at room temperature. Each set of devices is composed 

of 3 configurations: 3 nm GeON sample, 1 nm GeON sample, and no GeON sample (only SiO2). 

For the case of 250 µm in diameter devices, the sample with 3 nm GeON has lowest current density 

of 1.41 A/cm2 at -1V, which is 2.5 times less than the sample without surface passivation and 2 

times less than the one with 1 nm of GeON. For the case of 500 µm devices, although the current 

density measured at -1V of each sample did not show significant discrepancy, sample with 3 nm 

GeON has the smallest current density at 1.52 A/cm2. In addition, it is worth to note that the dark 

current suppression using 1 nm of GeON passivation is not sufficient based on the current density 

measured at room temperature.  

Temperature dependent current density of 3 nm GeON devices with a diameter of 250 and 

500 µm was further investigated and was used to extract shunt resistance, series resistance, and 

activation energy. Only temperature dependent J-V of 250 um device was shown in Figure 42 (c). 

The rectifying diode like behavior was observed on both devices at each temperature. As the 

temperature increases, the reverse current density increases as a result of more thermally activated 

carriers. By having a 3nm of GeON passivation, the current density measured at 77 K and -1V is 

0.16 A/cm2, which is 7.5 times less than the device without passivation under identical 

measurement condition. At 300 K and -1V, the current density was reduced by two times 

comparing with 0 nm GeON device. 
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(a) (b) 

  
(c) (d) 

Figure 42: Room temperature current density versus voltage of 11 % Sn photodiodes with (a) 250 

and (b) 500 µm in diameter and 3nm, 1 nm, and 0 nm GeON passivation. (c) Temperature 

dependent current density versus voltage of 11 % Sn photodiodes with 250 µm in diameter and 

3nm GeON passivation. (d) Reverse saturation current Arrhenius plot of 11 % Sn photodiodes with 

250 and 500 µm in diameter with (solid) and without (dash) GeON passivation. 

The shunt resistance and series resistance were extracted by using the current equation 

presented in chapter 4. Under forward bias regions, the series resistance is the dominant factor of 

the photodiode resistance. The series resistance is determined by the electric contacts and the n-

type Ge layer. Under reverse bias regions, the shunt resistance predominates. The sources of shunt 

resistance are mainly coming from the following facts: 1) There is surface recombination due to 

the lack of surface passivation. 2) Since a wet chemical etching process was used for the mesa 
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etch, some Sn could be re-deposited on the mesa surface and sidewall, resulting in the shunt current 

[55]. In fact, an increase of shunt resistance from 5 to 1750 kΩ at 77 K and from 720 Ω to 3.15 kΩ 

at 300 K was observed for 250 µm in diameter devices with 0 and 3 nm GeON, respectively. As 

shown in Table 11, the device with larger perimeter featuring lower shunt resistance was obtained 

as expected. In contrast with Rsh, small series resistance is desirable in a photodiode. There is no 

clear trend for series resistance as the temperature changes. The series resistance is in the range of 

13 – 16 Ω for devices with 3 nm GeON regardless of diameter and temperature. Whereas the series 

resistance of devices without GeON passivation ranges from 24 to 47 Ω. 

The activation energy provides information about the dominant current mechanism. One 

of the common method that is being employed to determine activation energy is to plot the reverse 

saturation current versus the inverse of the temperature 
0 00 exp( )AI I E kT= − , where I00 is a constant 

and EA is the activation energy in the forward bias region. If the activation energy EA is comparable 

to the bandgap Eg, diffusion current dominates. If it is half of the bandgap, Shockley-Read-Hall 

(SRH) recombination-generation current is limiting. If it is much less than half of the bandgap, the 

trap-assisted tunneling (TAT) and band-to-band tunneling (BTBT) are possible the dominant 

factors [33], [89], [90], [108]. The possible sources causing TAT are from the points defected 

during the epitaxy growth at low temperature which is not evitable and from the dangling bonds 

at the surface. Effective passivation method could reduce the traps at the surface, which results in 

increase the activation energy. For the EA obtained in this study, the 250 µm in diameter devices 

without passivation has an EA value of 0.16 eV that is lower than Eg/2 (0.23 eV for 11 % Sn 

devices), which seems to suggest a process of TAT and / or BTBT. Meanwhile, the devices with 

3 nm GeON passivation shows an EA value of 0.28 eV which is near Eg/2. This activation energy 
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value means that the forward-bias current is dominated by diffusion and SRH components, and 

the leakage current is minimized. 

Table 11. Extracted series resistance, shunt resistance, and dark current density at -1 V, and 

activation energy of 250 µm and 500 µm 11 % Sn photodiodes at 77 and 300 K. 

Device 

77 K 300 K 
EA 

(eV) 

RS 

(Ω) 

RSh 

(kΩ) 

JD @-

1V 

(A/cm2) 

RS 

(Ω) 

RSh 

(kΩ) 

JD @-

1V 

(A/cm2) 

 

3 nm, 250 µm 14 1749 0.16 16 3.15 1.6 0.28 

0 nm, 250 µm 47 5 1.13 24 0.72 2.98 0.16 

3 nm, 500 µm 13 2.68 0.6 15 0.39 2.1 0.16 

0 nm, 500 µm 30 10.5 0.39 25 0.27 1.6 0.14 

 

The extraction method of activation energy based on the use of reverse saturation current 

only features current mechanism in the forward bias region where the reverse saturation current is 

calculated. The activation energy in the reverse bias region could be determined by plotting the 

Arrhenius reverse dark current under different applied bias. Figure 43 (a) and 43 (b) plot the 

extracted activation energy under -0.1, -0.5, and -1V applied bias and is noticeable that the 

activation energy decreases with the bias. This decrease can be explained by the presence of higher 

electric fields, which enhances the TAT and BTBT leakage contributions. Both samples with 3nm 

GeON passivation and without passivation exhibit two slopes of activation energy. The first slope 

region belongs to 77 – 140 K range while the second slope belongs to 180 – 300 K range. The 

sample without GeON passivation has very low activation energy value (<< Eg/2) regardless of 

temperature, in the range from 0.03 (-0.5 and -1 V) to 0.05 eV (-0.1 V) for the first slope region 

and from 0.004 (-0.5 and -1 V) to 0.005 eV (-0.1 V) for the second slope region. Such low 
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activation energy (<0.1 eV) suggests a prevailing current mechanism from band-to-band tunneling. 

On the other hand, 3 nm GeON sample shows a significant increase in activation energy in both 

region. It is worth to point out that an activation energy of 0.25 eV was obtained at -0.1 V. This 

highest value is close to Eg/2, which favors SRH current mechanisms. It is likely that the 

passivation method using GeON is more effective to reduce leakage current at low reverse bias. 

While at -0.5 V and beyond, the current leakage is dominated by tunneling effect due to high 

doping of n-Ge / p-Ge and small bandgap of Ge0.89Sn0.11. Similar behavior was recently reported 

by using ozone oxidation to form GeO and GeSnO followed by ALD deposition of Al2O3 [57].  

  
(a) (b) 

Figure 43: Reverse dark current Arrhenius plot measured at -0.1, -0.5, and -1 V of 11 % Sn 

photodiodes with 250 µm in diameter and (a) 0 nm and (b) 3 nm of GeON passivation. 

Temperature dependent responsivity and specific D* 

The responsivity characterization of 3 nm GeON sample was performed with 2 µm incident 

laser source. An optical chopper was connected to a lock-in amplifier where the change in voltage 

was manually read. Temperature dependent responsivity of 3 nm GeON passivation device was 

investigated and directly compared with controlled samples which do not have GeON passivation 

and was presented in chapter 4, as shown in Figure 44 (a) and 44 (b). Once again, the responsivity 
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decreases as the temperature decreases. A peak responsivity of 0.37 A/W measured at -0.1 V and 

300 K was obtained. This is slightly better than the reported value, 0.32 A/W, under similar 

condition. It is also equivalent with an EQE of 23 %. Besides, the responsivity of the sample with 

3 nm GeON passivation at each temperature was improved from 0.21 to 0.24 A/W (77 K), from 

0.23 to 0.27 A/W (100K), from 0.26 to 0.3 A/W (180 K), and from 0.32 to 0.37 A/W (300 K). This 

is likely due to enhanced photogenerated carrier collection efficiency from diffusion as a result of 

less surface recombination.  

  
(a) (b) 

 
(c) 

Figure 44: Temperature dependent responsivity versus bias voltage measured at 2 µm of 11 % Sn 

photodiode with (a) 250 µm in diameter and 3 nm of GeON passivation and (b) (a) 500 µm in 

diameter and 0 nm of GeON passivation. (c) Temperature dependent D* versus bias voltage 

measured at 2 µm of 11 % Sn photodiode with 250 µm in diameter and 3 nm of GeON passivation. 
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Although responsivity is highest at room temperature, the specific D* is highest at 77 K 

where current density is smallest. As analyzed in previous chapters, D* is a function of 

responsivity, active areas, and reverse of square root of noise current, which is the prevailing 

factor. Therefore, as the temperature decreases, the D* increases. A peak D* of 9.7x1019 Jones 

was achieved at 77 K as shown in Figure 44 (c), which is twice larger than the one of the device 

without surface passivation.  

The spectral D* of the 250 µm Ge0.89Sn0.11 photodiode with 3 nm of GeON passivation at 

77 and 300 K and at -0.1 V was plotted with the one without passivation and commercial detector 

Ext-InGaAs, as shown in Figure 45. The peak D* at 2um of 3nm GeON device measured at 77 K 

is only 6 times less than Ext-InGaAs and is twice larger than the controlling device without 

passivation. The small red shift at 77 K of the device with passivation is contributed from smaller 

applied bias (-0.1 V) comparing with the one without passivation (-0.3 V). This discrepancy in 

cut-off wavelength near the band edge is associated with Franz- Keldysh effect. 
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Figure 45: Spectral D* of the 250 µm Ge0.89Sn0.11 photodiode with 3 nm of GeON passivation 

measured with a voltage bias of -0.1 V at 77 K (green) and 300 K (red). For comparison, the D* 

spectra of commercial detector Ext-InGaAs and 250 µm Ge0.89Sn0.11 at 77 K without passivation 

(blue) are also plotted.  The numbers indicate the values of D* at 2.0 µm. 

5.2 Aluminum oxide on germanium tin oxide as surface passivation for GeSn photodetectors 

5.2.1 Device fabrication 

 

Figure 46: Fabrication process flow of thick film GeSn photoconductors with Al2O3 / Ge of 250 

nm and with SiO2 as dielectric layer 
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Figure 46 presents the fabrication process of thick film photoconductors with incopration 

of surface passivation. It involved six pair of samples with Sn composition of 11 %, 13 %, 16 %, 

17.5 %, 20 %, and 22 %. Only one sample per pair was applied with surface passivation while the 

other one went through similar process without applying surface passivation layer. The later 

samples has been presented in chapter 3. The process began with formation of 500x500 µm2 square 

mesas by using photoligthography and low temperature chemical wet etching. Photoresist, acting 

as a hard mask, was baked at 130o C for 15 min. Detailed etching process was reported previously 

in chapter 3.  

Before the deposition of surface passivation layer, a chemical pre-clean step was performed 

using HF : HCl (1:1). This chemical solution has been proven as a very effective method to clean 

Ge and GeSn surface due to the volatibility of SnO and GeO in HF : HCl [109]. Cleaned samples 

were immediately loaded in the ALD chamber that was preheated to 200o C. In contrast with ozone 

precusor, higher temperature is prefered due to Ge-O bonding diffulty in the oxidation process for 

germanium and germanium tin using oxide precursor. However, processing temperature of 300o C 

and above has led to Sn segregation to the samples surface escpecially for our case where 5/6 

samples have high Sn composition from 13 %. Therefore, a temperature of 200o C was selected as 

the operating tempearture for oxidation process and deposition of Al2O3. After exposing samples 

with consecutive 100 cycles of Ar and O2, 10 nm of Al2O3 was deposited by using 

trimethylaluminum (TMA) and water precursors at 200o C. The  2nd batch of six samples was 

loaded in the same ALD chamber and was only exposed with identical temperature condition. 

The fabrication process resumed with the deposition of SiO2 using electron beam 

evaporator for all samples with and without passivation as shown in Figure 47 (a). The thickness 

of SiO2 was kept in the range of 400 – 600 nm, which is 30-40 % of the etching depth. The active 
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areas were immediately defined on top of the mesas, followed by oxide opening step by using 

BOE (for samples without passivation). Normally, the oxide layer would be fully opened so that 

the metal contacts could be properly formed. However, that would result in removing the very thin 

surface passivation layer, which contradicts with the defined purpose. Therefore, two-steps oxide 

opening was done with careful thickness calibration by Ellipsometry. The first step will leave 

approximately 40 nm of SiO2 after exposing with BOE solution, which is sufficient to protect the 

underneath passivation layer, as shown in Figure 47 (b). This 40 nm of SiO2 along with 10 nm of 

GeSnO / Al2O3 were later removed right at 3rd mask alignment step defining the metal contacts, as 

shown in step 6 of Figure 6 and in optical image of Figure 47 (c). Since the SiO2 layer surrounding 

the mesas were partially etched away at the same time, it is important to control the etching time 

in BOE solution. The thickness of SiO2 in the first etching step was confirmed by subtracting the 

remaining thickness of SiO2 provided by Ellipsometry measurement (449 nm) and by Dektak (467 

nm) from the original thickness (490 nm).   
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(a) (b) 

  
(c) (d) 

Figure 47: Top view microscope image of the photoconductor surface (a) after depositing SiO2 on 

passivation layer (step 3), (b) after 1st SiO2 opening step (step 4) with only 50 nm of SiO2, (c) after 

2nd SiO2 opening step (step 6), and (d) after lift-off (step 8). 

 XPS characterizations were performed to determine the etching time of the remaining 

SiO2 and passivation layer. Intensity (count/s) versus the binding energy of Al2s was plotted in 

Figure 48 (a) (13 % Sn) and Figure 48 (c) (11 % Sn) while Figure 48 (b) (13 % Sn) and Figure 48 

(d) present the intensity versus the binding energy of Si2p for 10 and 15 s that the samples were 

exposed in BOE solution. In fact, Al2O3 and SiO2 layer of 13 % Sn sample were mostly removed 

after 15 s dip due to quick fall of Al2s and Si2p signals. For the case of 11 % Sn sample, the 

intensity of Si2p decreased while the one of Al2s increased as the etching time increased from 10 

s to 15 s. This concludes that part of SiO2 layer was removed and Al2O3 layer was intact. Therefore, 
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11 % Sn sample was further processed in BOE with an extra 2-3 s considering a safe SiO2 thickness 

for the deposition of metal contacts. 

  
(a) (b) 

  
(c) (d) 

Figure 48: (a) Al2s spectra and (b) Si2p spectra of 13 % Sn sample after wet etching in BOE 

solution for 10 and 15 s. (c) Al2s spectra and (b) Si2p spectra of 11 % Sn sample after wet etching 

in BOE solution for 10 and 15 s. 
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Knowing the etching time of the 2nd etch step, metal contacts were defined by third 

photolithography mask followed by a wet etch in BOE for 17 s for samples with passivation layer. 

The fabrication process ended with metal deposition of 10 / 300 nm Cr /Au and lift-off in PG 

remover heated at 80o C. Top view of metalized devices was shown in Figure 47 (d). XPS was 

once again performed to (1) verify that the remaining SiO2 layer and the passivation layer were 

removed and (2) determine the oxide state of germanium / germanium tin layer of the active areas. 

The XPS beam was focused on the open area of 11 %, 13 %, 20 %, and 22 % Sn coplanar devices. 

Figure 49 (a) plots the intensity versus the binding energy of Al2s atoms and Figure 49 (b) presents 

the one of Si2p atoms. Based on the intensity of Al2s and Si2p, SiO2 and Al2O3 layer were mostly 

removed only for samples with 13 % and 22 % Sn. This suggests that the SiO2 layer deposited by 

electron-beam evaporator is not uniform. Figure 49 (c) summarizes the core spectra of germanium 

(Ge3d) using 11 %, 13%, 20 %, and 22 % Sn samples. The Ge3d binding energy of four samples 

mainly centered at 30.3 eV with a small broadening shifting towards higher energy level. This 

chemical shift, roughly 2.3 eV, signals the presence of the oxide. The oxide should be formed in 

the exposure with oxygen source in ALD chamber since air oxidation forms higher oxides of Ge 

[107] and our samples were treated with HF : HCl solution which is very efficient in breaking the 

nature bonding of Ge-O / Sn-O. In general, there are four well-known oxide states for germanium 

which are 1+, 2+, 3+, and 4+ corresponding with a shift in binding energy of 0.8, 1.8, 2.6, and 3.4 

eV, respectively [107], [110]. Obtaining higher oxidation states requires energy to break more Ge 

bonds, which can be supplied by thermal energy or activated oxygen. The 2+ and 4+ are the most 

favorable oxidation state of Ge due to high stability of Ge=O bond geometry and two-bridge 

bonded oxygen atoms. Studies has shown that emission of 3+ state was observed in addition to 2+ 

and 1+ states at 200o C, which is similar with our study despite of a low intensity. Further 
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optimization on the flow, temperature, and pressure would improve the forming of Ge-O bond and 

quality of the passivation layer. 

  
(a) (b) 

 
(c) 

Figure 49: (a) Al2s spectra, (b) Si2p spectra, and (c) Ge3d spectra of 11 %, 13 %, 20 %, and 22 % 

Sn samples after wet etching in BOE solution for 15-17 s. The small shift towards longer binding 

energy level in (c) signals the existence of germanium oxide. 
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5.2.2 Device characterization 

  
(a) (b) 

Figure 50: Current density-voltage characteristic of (a) 13 % Sn and (b) 22 % Sn sample with 

(dash) and without passivation (solid) measured at 77 and 300 K. 

Current-voltage measurements of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductors samples with and without passivation was performed at 77 and 300 K. The 

current density of all samples measured at 1 V was extracted and summarized in Table 12. As Sn 

composition increase, the current density increases as a result of more available thermally excited 

carriers. As suggested by XPS spectra presented above, 13 % Sn sample has better surface 

passivation layer, followed by 22 % Sn sample. The current density of 13 % Sn photoconductor 

was reduced from 0.85 A/cm2 (without passivation) to 0.4 A/cm2 (with passivation) measured at 

300 K and 1 V, as shown in Figure 50 (a). A slight reduction in current density from 1.93 to 1.88 

A/cm2 was also observed for 22 % Sn photoconductor sample at 300 K. The current density at 77 

K remained the same. For the case of 11 %, 16 %, 17.5 %, and 20 % Sn, there is no clear 

discrepancy between samples with passivation and those without passivation, as shown in Figure 

50 (b). This is in agreement with XPS Ge3d spectra where Ge-O was not clearly formed and hence 

only Al2O3 was deposited for samples with passivation. In addition, the very thin layer of Al2O3 / 
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SiO2 was not completely removed during the fabrication process for some samples, which in turn 

slightly increased the resistance of those devices.    

Table 12. Extracted current density at 1 V of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductors measured at 77 and 300 K. 

Temperature 
Al2O3 / 

GeOx 

Current density at 1 V (A/cm2) 

11 % Sn 13 % Sn 16 % Sn 17.5 % Sn 20 % Sn 22 % Sn 

77 K 
With 0.25 0.22 0.51 0.88 1.03 1.03 

Without 0.27 0.22 0.47 0.72 0.94 1.03 

300 K 
With 0.38 0.4 1.64 1.3 1.56 1.88 

Without 0.31 0.85 1.24 1.16 1.49 1.93 

 

Temperature dependent responsivity of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 % Sn 

photoconductor samples with and without passivation was characterized at 2.0 µm using incident 

laser source and from 77 to 300 K. Representative curves of responsivity versus voltage using 13 

% and 22 % Sn photoconductor samples with and without passivation were presented in Figure 51 

(a), 51 (b), 51 (c), and 51 (d), respectively. It is expected to observe an increase in responsivity as 

the applied bias increases and as the temperature decreases. A peak responsivity of 0.2 A/W was 

obtained at near 5 V for those samples. However, samples with and without passivation do not 

show distinct enhance in responsivity.  

In summary, the surface passivation technique using oxide as precursor to oxidize 

germanium surface followed by a deposition of Al2O3 in an ALD system has been demonstrated 

on high Sn composition photoconductors. The responsivity of samples with and without 

passivation is similar while the 13 % Sn sample with passivation shown a reduction in current 

density at 300 K. XPS spectra of Ge3d also revealed the existence of germanium oxide for that 

sample. Further optimization of the deposition recipe and the fabrication process such as increase 

in depositing temperature, a replacement of oxide with ozone precursor, and deposition of the SiO2 
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layer by using PECVD would improve the quality of the passivation layer and hence further 

improve GeSn photoconductor performance. 

  

(a) (b) 

  

(c) (d) 

Figure 51: Temperature dependent responsivity measure at 2.0 µm of (a) 13 % photoconductor 

with passivation, (b) 13 % Sn photoconductor without passivation, (c) 22 % Sn photoconductor 

with passivation and (d) without passivation. 
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Chapter 6: Demonstration of a SWIR image  

The development of IR imaging sensor began in 1950s where capturing images relied on 

scanning single element detector and linear arrays detectors. An image is generated by scanning 

the scene across the linear array. This early system represented for the first-generation imagers. It 

utilized InSb and PbSe in the MWIR region (3–5 µm), and Ge:Hg in the LWIR region (8–14 µm) 

for military purpose. The Ge:Hg detector arrays required two-stage cooler to operate at 25 K and 

to provide high image quality. It was later replaced by the well-known narrow bandgap material 

HgCdTe that only requires one stage cooler to operate at 80 K. The number of elements in first 

generation detector arrays was either 60, 120, or 180 [11], [111]. 

The second-generation sensor started in 1980’s. It typically has more elements (>106) and 

each individual element, called “pixels”, is configured in two-dimensional arrays at the focal plane 

of an imaging system. Such assemblage of pixels is called focal plane array (FPA). The major 

factor that distinguishes second-generation with the first-generation IR sensor is the presence of 

staring systems, which includes the multiplexing functions in the focal plane. Fully two-

dimensional array formats were introduced in early 1990’s such as HgCdTe arrays of 64×64 and 

256×256 elements for LWIR, and InSb arrays of 480×640 elements for MIR. By the late 1990’s, 

InGaAs linear array of 256, 512, and 1024 elements was fabricated for environmental sensing from 

0.8 to 2.6 µm [11], [111]. 

There is no clear definition for third-generation IR sensors which emerged at the beginning 

of the millennium. In the common understanding, third-generation IR systems provide enhanced 

capabilities such as larger number of pixels, higher frame rates, better thermal resolution, as well 

as multicolor functionality and other on-chip signal-processing functions [112]. 
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For the last couple of decades, array size of IR FPAs has been revolutionized with 

exponential increase rate. As illustrated in Figure 52, FPAs have the same growth rate as dynamic 

random-access memory (DRAM) ICs which had a double growth rate approximately 18 months. 

However, FPA size was behind the one of DRAM by about 5–10 years. Charge coupled devices 

(CCDs) have the largest array size of 100 M pixels, followed by PtSi, InSb, HgCdTe, and InGaAs. 

The largest CCD color arrays, made by Dalsa, have approximately 25 megapixels, with a pixel 

size of 12 µm and a chip size over 60 mm on a side [111].  

 

Figure 52: Replotted trends of array format size over years [112]. 

In fact, the fundamental limit of a pixel size is determined by diffraction: 𝑑 = 2.44𝜆f where 

d is the diameter of the spot, 𝜆 is the wavelength, and f is the f-number of the focusing lens [113]. 

As an example, a detector operating in the 5 μm wavelength has a minimum detector size of 25 

μm using common f/2.0 optics. For SWIR, pixel size will shrink accordingly. Using the same 

optics, a detector operating at 2.0 μm can use detector pixels as small as 10 μm. Besides, the pixel 

size was also constrained by the perimeter of readout circuit wafer. Since the silicon industry has 



 

103 
 

standardized on a field size of 22×22 mm2 for its lithography tools, the size of each pixel should 

not exceed 18 µm to be fitted in a 1024×1024 array. To obtain an FPA with larger pixel counts, 

“stitching” technique was employed [11], [113].  

There are multiple methods to classify the architectures of FPAs among which monolithic 

and hybrid are the most common one. In the monolithic approach, photon detection and circuit 

readout or multiplexing are performed in a single piece device without using any external circuit 

connection. As a result, the fabrication steps and difficulties are significantly reduced, leading to 

a cost reduction and higher yields. So far, the monolithic arrays on Si are the most mature 

technology in this approach with two generic device systems available in the market e.g. charge 

coupled devices (CCDs) and complementary metal-oxide-semiconductor (CMOS) sensors. In 

CCD sensor, the charge is first integrated at the pixel and subsequently transferred to limited 

number of outputs (usually one node) where the voltage signal is converted and collected by 

external circuit. Therefore, high image quality could be achieved thanks to high output uniformity. 

The CMOS sensor has a more interesting way to address data. Each pixel performs its own charge-

voltage conversion and can be individually addressed. It also includes amplifiers, noise-correction, 

and digitization circuits which results in a complex structure and a reduction in the active area for 

sensing. Although it affects the output image due to less uniformity (fill factor, which is ratio of a 

pixel’s light sensitive area to its total area, is reduced from 80 % to 30-50 % [11]), CMOS sensor 

has an advantage in fabrication cost with available CMOS foundries.  

In a hybrid approach, detectors and multiplexers are fabricated separately in different 

substrate and could be optimized independently. Therefore, the fill factor near 100 % is achievable 

and there are more room for multiplexer chip. The detector and multiplexer are connected via the 

flip-chip bonding technique with the use of indium bumps or loophole interconnection. Both 
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methods encounter difficulties in making small pixel pitches less than 10 µm since high yield is a 

required standard. On the other hand, light illumination could either aligned to top front or to back 

side. The back-side illumination is preferred to avoid metallization areas from the multiplexer chip 

(front size). The opaque areas and substrate thickness are thinned to the range of 10-20 µm to avoid 

crosstalk and maintain sufficient quantum efficiency [113]. 

Si-based GeSn detector system is strongly believed to be a non-expensive high 

performance solution for IR imager supported by the facts: (1) high responsivity and specific D*, 

(2) extended cut-off wavelength from SWIR to MIR up to 4.0 µm, (3) group IV materials growth 

on Si wafer which enables the ability to be manufactured in large-scale in CMOS foundry, and (4) 

monolithic integration on Si photonics. In addition, in 2016, the concept was first successfully 

demonstrated by Chang et al. A GeSn-based 320×256 focal plane array imaging sensor with 

spectra response in the 1.6-1.9 μm range was used to capture a tungsten light bulb although the 

FPA was grown on Ge substrate [52]. In this chapter, a single-element Si-based GeSn 

photodetector (11 % Sn photodiode and 11 % Sn photoconductor with spectral response up to 2.8 

µm) will be used to demonstrate the imaging capability in SWIR. A three-dimensional stage was 

used to control the movement of a single detector in serpentine fashion to mimic the function of 

an array. It is a milestone showing that the GeSn material becomes more mature since the first 

introduction and Si-based GeSn detectors have enormous potential to compete with commercially 

available detectors in the SWIR and MIR.  

Details growth method, material structure and characterization, and devices fabrication of 

11 % Sn photoconductor and 11 % Sn photodiode that were used in this chapter were presented in 

chapter 4 and 5. 
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6.1 Measurement setup 

The IR imaging process using a single Si-based GeSn photodetector is a consecutive 

sequential of pixel movement and signal detection. To mimic the function of an array detectors, a 

single pixel movement employed a serpentine pattern with a time delay of 0.25 ms in between 

each move as shown in Figure 53 (a). The array size was defined by providing y-length and z-

length. The choice of scan step, which is the center-to-center distance between two consecutive 

position, is important and depends on the single pixel dimension. 

The single pixel was first wired-bonded on a chip carrier that was attached to a Janis 

cryostat system mounting on a z-stage of 3D-stage. At the start of each measurement, the stage 

was programmed to move to a home position which is equivalent to the origin position of z-axis 

(vertical) and y-axis (horizontal). Next, z-stage and y-stage were driven to the starting coordinate 

where the first responsivity signal was immediately captured by using a lock-in amplifier and an 

integrated chopper set at 380 Hz. The incident light could either be from a 2.0 µm laser source or 

a white light source with a wavelength range of 360-2400 nm (HL-2000 model from OceanOptics). 

Subsequently, the pixel was moved to the second position. 

Figure 53 (c) and 53 (d) plot the optical setup of transmission and reflection mode. The 

beam spot size is set to be larger than the object. In the transmission mode, the incident light (2.0 

µm laser source) was shined directly to the object which is placed in parallel with the detector. The 

single pixel detector will collect the shape of the object. In the reflection mode, the white light 

source was aligned to a 50/50 beam splitter where the object is attached. The choice of white light 

source eased the calibration process. The reflected surface image of the object was collect by the 

single pixel. An optical filter of 1.6 µm was also used to remove the wavelength above 1.6 µm. 
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(a) (b) 

 

 

(c) (d) 

Figure 53: (a) Movement pattern of the single element detector driven by programmable 3D-

stage. (b) Metal-coated star with 6mm length. (c) Transmission mode setup. (d) Relfection mode 

setup 

6.2 Transmission mode 

Transmission mode experiment was first conducted to demonstrate the IR imaging 

capability of single pixel Si-based GeSn photodetector due to its simplicity of optics and material 

of the object. In this experiment, the object is a star covered by aluminum foil, which prevents the 

penetration of IR wavelength. A 500 µm in diameter photodiode of 11 % Sn was used to capture 
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signal at 77 K and to replicate an array of 41×41 elements with a scan step of 250 µm. A total 

delay time of 0.55 s between two consecutive positions was selected. 

As the incident beam spot size is larger than the object, the captured image will include the 

shape of the object and part of the incident light spot, which could be considered as the background. 

Therefore, the beam spot image without object was captured and was utilized to eliminate the 

background by normalizing the signal from the image with object and the one without object. The 

incident 2.0 µm laser source’s beam spot was plotted in contour mode in Figure 54 (a). Figure 54 

(b) presents the image of the star object after eliminating the background with clear vertices.     

  
(a) (b) 

Figure 54: (a) Beam profile of 2.0 µm laser incident light. (b) Image of the star using 

transmission mode and 2.0 µm laser. 

6.3 Reflection mode 

Reflection mode is a common method to provide the image at the surface of the object. The 

demonstration of IR imaging started with a metal-coated star as the object with a dimension of 6 

mm each side. A 500 µm in diameter photodiode of 11 % Sn was used to capture signal at 77 K 

and to replicate an array of 71×71 elements with a scan step of 100 µm. Similar setting of delay 

time (0.55 s) was selected and filter was not applied. Figure 55 (f) shows the image of the star’s 
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surface after 40 minutes of scanning using a single pixel detector. Such a long scanning time is not 

efficient for capturing a larger area. The scanning time could be reduced either by increasing the 

scan step which sacrifices the resolution of the image or by decreasing the delay time which could 

cause image distortion. In this study, the delay time was modified to provide a more optimized 

scanning time without significantly reducing the image quality.  

 
 

(a) (b) 

 
 

(c) (d) 

Figure 55: Image at the surface of the star using a white light source and 11 % Sn photodiode 

with different setting of delay time ranging from (a) 50 ms, (b) 100 ms, (c) 200 ms, (d) 250 

ms, (e) 300 ms, and (f) 500 ms. 
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Figure 55 (Cont.) 

  
(e) (f) 

Figure 55 (a), 55 (b), 55 (c), 55 (d), 55 (e), and 55 (f) depict the images of the object for 

50, 100, 200, 250, 300, and 500 ms delay time, respectively. Image distortion was observed when 

the delay time is approximately 200 ms or less. In addition, there is no clear difference for the case 

of 300 ms or 500 ms delay time. The 250 ms case provides an acceptable image quality with a 

total scanning time of 20 minutes, which is half of the original setting. Therefore, the 300 ms delay 

time is a good choice for image quality while the option of 250 ms delay time is best for scanning 

time. 

Further scans were collected with the aid of a 1.6 µm filter to reduce the majority 

contribution from visible light. As a result, the images of the star were successfully captured in the 

SWIR using 11 % Sn photodiode at 77 and 300 K, as shown in Figure 56 (a) and 56 (b). It is as 

expected to observe a better image quality at 77 K due to higher D* value.   
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(a) (b) 

Figure 56: Image at the surface of the star using white light source and reflection mode measured 

by 11 % Sn photodiode at (a) 77 K and (b) 300 K with the aid of 1.6 µm filter. 

The demonstration of IR imaging capability resumed with the use of 11 % Sn 

photoconductor. The measurement was conducted at 77 K where the 11 % Sn photoconductor 

reach its peak D* to reproduce an image of a gift card bar code, a more common object in daily 

life. The four digits 4-5-8-6, marked by red circle as shown in Figure 57 (a), was successfully 

captured as a reverse image in Figure 57(b). Further optimization in optics would significantly 

improve the image quality. 

 

 
(a) (b) 

Figure 57: (a) Bar code at the back side of a gift card. (b) Reverse image of the bar code captured 

by 11 % Sn photoconductor.  
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Chapter 7: Summary and future work 

7.1 Summary 

This research focuses on the study of Si-based GeSn photodetector to provide a non-

expensive high-performance solution for FPAs in SWIR towards MIR detection. Two primary 

photodetector structures were fabricated and systematically characterized to set up a baseline for 

single element detector. The active GeSn layer was growth on a buffer Ge layer on a Si substrate 

by using a CVD reactor.  

The first studied structure was a thin film GeSn photoconductor with a nominal Sn 

composition up to 10 % and an active GeSn layer thickness of 200 nm. The photoconductive gain 

was enhanced by introducing interdigitated electrodes structures which reduces the carrier transit 

time. A peak responsivity of 2.85 A/W was reported at 1.55 µm and 77 K and a cut-off wavelength 

was extended to 2.6 µm at 300 K. As the growth technique was gradually improved, higher Sn 

composition were incorporated and thicker GeSn active layer were achieved. GeSn 

photoconductors with Sn composition of 11 %, 13 %, 16 %, 17.5 %, 20 %, and 22 %, and a 

thickness up to 1.0 µm were fabricated and characterized. The cut-off wavelength of 22 % Sn 

device surpassed the SWIR and reached 4.0 µm while 11 % Sn device showed a peak responsivity 

of 20 A/W at 2.0 µm due to superior material quality. 

The second type of detector that was studied is a DHS Ge/GeSn/Ge on Si substrate 

photodiode. It involves two photodiode structure designs. The first one which contains 7 % and 10 

% Sn was used to evaluate the photodiode performance by extracting temperature dependent 

spectral response, I-V characteristic, shunt resistance, series resistance, responsivity, and D*. 

Several issues limiting the GeSn photodiode performance were found: (1) the thin GeSn active 
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layer (~ 250 nm) that results in low responsivity, (2) the short cut-off wavelength at 2.4 µm due to 

compressive strain and low Sn incorporation, (3) the short depletion region, because of high doping 

junction (~ 1019 cm-3), that enables high dark current (25 mA/cm2 at -0.1V) and poor carrier 

collection. The second photodiode design was proposed to address the above factors not only based 

on the analyzed results but also from the growth capability. The cut-off wavelength of 11 % Sn 

with a thick GeSn absorption layer of 700 nm is extended to 2.8 µm at 300 K. The device shows a 

dark current density of 7.9 mA/cm2 at 0.1 V. The room-temperature responsivity was measured as 

0.34 A/W at 2.0 µm, corresponding to an external quantum efficiency of 20 %. 

Surface leakage current is a significant factor that contributes to the high dark current of 

GeSn photoconductor and photodiode. This could be reduced by applying an effective surface 

passivation technique. Two types of surface passivation have been studied in this work: 

germanium oxynitride (GeON) and germanium oxide followed by aluminum oxide (GeO / Al2O3). 

The first technique, which was applied on photodiodes, has revealed a reduction of dark current at 

low bias voltage. This results in an overall increase in D*. The second technique was deposited on 

high Sn composition photoconductor devices by using an ALD system. Due to limited choice of 

oxide precursor which has lower oxidation energy and low deposition temperature, the desired 

passivation layer was not completely fulfilled. As a result, no significant improvement was 

observed.  

The next step in the development of Si-based GeSn photodetector was a demonstration of 

IR imaging using a single element photodetector fabricated in this study. The single pixel was 

integrated to a 3D-stage and its movement was programmed to mimic the function of an array 

detector. Transmission mode and reflection mode were performed to capture an IR image of a 
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metal-coated star and a series of number using 11 % Sn photoconductor and 11 % Sn photodiode. 

This was one step toward the realization of FPAs in SWIR.  

7.2 Future work 

The performance of GeSn photoconductor is currently withheld by high dark current. In 

addition to the lack of an effective surface passivation method, the defective layers at the interface 

layers of Ge buffer / Si substrate and GeSn / Ge buffer is believed to be the source of high dark 

current. One way to address this issue is to remove the defective layers and fabricate the device on 

an SiO2 / Si substrate. The fabrication process follows Figure 58. 

 

Figure 58: Processing flow of substrate removal process 

Based on the results of two passivation method presented in this study, there is still room 

to improve. The germanium oxynitride method needs more optimization on the layer thickness 

while more efforts adjusting the deposition temperature, pressure, and choice of oxygen precursor 

are required for the case of germanium oxide /aluminum oxide method. 
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With the success of IR imaging using a single pixel GeSn photodetector, fabrication and 

demonstration of IR image capture using a linear array of detector is the next step to realize the Si-

based GeSn FPAs for SWIR detection. Figure 59 shows the third mask of the photomask design 

of an array with 16 single photoconductors. The photoconductor size is reduced to 100×100 µm2 

and the pitch size is either 20 or 10 µm.   

 

Figure 59: Mask layout (3rd mask) of linear array detector. 

Unlike the single photoconductor, the change of current in each pixel as light is on is 

collected by an external readout circuit without using lock-in amplifier technique. In this study, 16 

channels National Instrument data acquisition (DAQ) was used. Since the DAQ has a minimum 

detection voltage of 300 µV and a total applied voltage of +/- 10 V, a basic differential op-amp 

with a gain of 10 was required.  The signal here could be understood as the photocurrent signal by 

subtracting signal from the pixel with the one covered with metal as illustrated in Figure 60. As 
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the array is composed of 16 pixels, an equal number of op-amps are needed. The amplified output 

voltage of 16 op-amps are subsequently connected to the DAQ.  

 

Figure 60: Circuit connection of photoconductor linear array.  
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Appendix A: Measurement methods 

The temperature-dependent testing setup is mainly composed of a Janis cryostat using 

liquid nitrogen cooling and controlled by a Lakeshore cryogenic controller. A chip carrier with 

wired-bonded devices placed inside cryostat was connected to outside measurement equipment 

through an isolated BNC feed-through system. The current-voltage characteristic was measured 

using a Keithley 6487 picoammeter, based on which the electrical parameters such as reverse 

saturation current, series resistance, and shunt resistance were extracted. The temperature-

dependent spectral response measurement was conducted by using a Fourier-transform infrared 

(FTIR) spectrometer system. The IR light from the internal source was guided and focused to the 

sample mounted in the cryostat. Although this method reduces the high-order diffraction ambiguity 

of full IR spectrum analysis, the radiant flux of the light source remains arbitrary. For the 

responsivity measurement, a laser diode with a wavelength of 1.55 or 2.0 μm optically chopped at 

380 Hz and a lock-in amplifier were used. The optical power of the laser diode was measured using 

an ILX Lightwave power meter. The absolute responsivity values were calibrated using a NIST 

traceable InGaAs p-i-n photodiode. Moreover, the D* was calculated based on measured values 

of responsivity and the dark current. 

The spectral EQE of a GeSn photodiode was first reported. It was calibrated by using an 

Extended InGaAs p-i-n photodiode’s spectral EQE, spectral response of the GeSn photodiode, and 

spectral response of the Extended InGaAs p-i-n photodiode. The spectral response of Extended 

InGaAs photodiode and GeSn photodiode was obtained via Nicolet 6700 FTIR system and under 

same condition for both photodetectors. Dividing the two spectra response at each wavelength 

yields a ratio which could be used to calibrate the EQE value at each wavelength of GeSn 
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photodiode. The devices active area was taken into consideration. The ratio is: 
𝐸𝑄𝐸1

𝐸𝑄𝐸2
=

𝑆1

𝑆2
×

𝐴2

𝐴1
  

where EQE1, S1, and A1 are external quantum efficiency at a single wavelength, spectral response 

at a single wavelength, and active area of GeSn device while EQE2, S2, and A2 are external 

quantum efficiency at a single wavelength, spectral response at a single wavelength, and active 

area of Extended InGaAs device, respectively. As A1, A2, S1, S2, and EQE2 were known, EQE1 

was therefore calculated. EQE2 was determined via digitized spectral EQE provided by the 

supplier. As the EQE of GeSn photodiode was extracted, responsivity at each single wavelength 

could also be determined and verified with measured value with an error less than 10 %.  
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