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Abstract 

 

Salinity often affects irrigated areas in arid and semi-arid regions of the world. The existence and 

accumulation of soluble salts in the soil layers limit the growth of crops essential for our food. 

Salt stress dramatically affects plant growth, plant development, as well as crop yield. 

Arabidopsis thaliana is the plant model that provides a comprehensive knowledge of plant 

development, genetics and physiology, and response to abiotic stresses such as salinity. The 

redundancy of genes due to duplication, even in the simple model genome of Arabidopsis, limits 

the value of knockout (KO) mutagenesis to provide complete information on gene function. 

‘Gain-of-function’ mutants are an alternative genetic tool to identify gene functions for 

redundant genes, and those with small effect or that respond to an environmental condition. 

Transposon-mediated ‘activation tagging’ is an efficient genetic tool that can randomly generate 

‘gain-of-function’ mutants for a large number of genes. In the method used here, the transposable 

element Enhancer-Inhibitor (En-I/dSpm) system of maize was modified to develop an activation 

tag (AT) mutant library in Arabidopsis. The mobile I-AT transposon contains a transcriptional 

enhancer, from the cauliflower mosaic virus (CaMV) 35S promoter, located close to the right 

border of the transposon. This I-AT element was mobilized to randomly insert into the plant 

genome by transposition from the T-DNA, and can give rise to mutants differing in the level of 

overexpression of the adjacent genes. Consequently, the gain-of-function dominant phenotypes 

generated are displayed by the I-AT plants due to enhanced expression of the gene(s) adjacent to 

the 35S enhancer. In this study, the I-AT library was used to screen for salt tolerance, identified 

by enhanced growth or biomass of the tagged mutants compared to the wild-type grown in saline 

conditions. A number of tagged salt tolerance candidate genes were identified flanking the I-AT 

insertion, and their tagged genes characterized for their role in salt tolerance.  
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Chapter 1 

General Introduction 
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Introduction 

Arabidopsis as a plant genetic system 

The fact that plants are sessile make them important organisms to investigate the effect of the 

environment, due to their necessity to respond to environmental conditions by changes in their 

physiology. Some environmental conditions, such as temperature, nutrients and salinity have a 

substantial impact on plant growth and development. Arabidopsis thaliana is a dicotyledonous 

species that belong to Brassicaceae family. Arabidopsis is widely used as a model system to 

study the genetics of plant biological systems, as the species has advantages such as a short 

generation time, small size, a wide range of genetic and trait variations, and a high number of 

offspring, all of which make it unique for genetic studies (Shindo et al., 2007). The small 

genome of Arabidopsis makes it simpler to identify mutations and evaluate genomic responses to 

different experimental treatments. Moreover, determining the function of Arabidopsis’s genes 

facilitates scientists to extrapolate the functions of many important genes in diverse plant species 

as well as crops. The Arabidopsis Information Resource (TAIR) database, developed at the 

Carnegie Institution of Washington in Stanford, California, stores and provides information for 

Arabidopsis research. Arabidopsis Biological Resource Center (ABRC) stores the germplasm 

and makes it available for research use (Garcia-Hernandez et al., 2002).  

 

Abiotic Stress in Plants 

Like all other kinds of living organisms, plants experience various environmental stress factors 

that affect their growth and survival (Rahnama et al., 2010; Quados, 2011). ‘Abiotic stress’ refers 

to any environmental condition that affects the ability of plants to develop, grow, and produce 
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below optimal levels (Rahnama et al., 2010; Quados, 2011). Abiotic stress, by itself, has the 

potential of reducing crop yields by as much as 69% which makes it an important challenge to 

plant growth (Bray, 2001). The major abiotic stress factors that affect plants include 

drought/desiccation, extreme temperatures, and high salinity of soils (Chinnusamy et al., 2004; 

Wood, 2005; Wahid et al., 2007; Mantri et al., 2012).  

 Water is essential for the growth and development of plants, and water deficiency in 

areas where plants grow typically result in the inhibition of plant growth and development 

(Boyer, 1982). Apart from water deficit, extreme temperatures are another abiotic stress that can 

affect the plants’ ability to grow and reproduce. The most significant effect of high temperatures 

can be seen on plants still at the reproductive stage of development, by disrupting the pollination 

process that may sometimes lead to plant sterility or inability to reproduce (Hatfield and Prueger, 

2015). In crops yielding grains, such as corn, high temperatures can lead to 80-90% yield 

reduction (Hatfield and Prueger, 2015). The main reason for this is that high temperatures 

shorten the duration for grain filling and formation among grain-yielding crops. Aside from 

extreme high temperature, extreme low temperatures can also have detrimental effect on 

productivity by hampering reproductive development. For example, extreme low temperatures 

can cause abortion of the formed grains and sterility in grain-yielding crops such as wheat 

(Triticum aestivum) (Uemura et al., 2006; Hatfield & Prueger, 2015). 

 

High Salinity Stress in Plants 

Stress related to high salinity levels in soil is recognized as one of the most severe abiotic stress 

experienced by plants. Stress caused by high salinity levels in soils is estimated to affect 20% of 
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overall cultivated lands and 33% of overall irrigated agricultural lands worldwide (Ghassemi et 

al., 1995; Gupta & Huang, 2014; Shrivastava and Kumar, 2015). This can be translated to as 

much as one (1) billion hectares of land being affected by high salinity levels in soil (FAO, 2008; 

Tanji, 2002; Metternicht and Zinck, 2003;). It is estimated that every year lands affected by high 

salinity levels in soil increase by 10%, and by the year 2050 it is expected that as much as 50% 

of overall arable lands worldwide will suffer from high salinity levels that would make 

agriculture more difficult (Shrivastava and Kumar, 2015).  

Stress associated with elevated levels of salinity in the soil affects plants from all 

developmental stages: germination, vegetative growth and reproductive development. During the 

reproductive stage, salinity adversely affects plant development by inhibiting micro-sporogenesis 

and elongation of stamen filament, enhancing programmed cell death in some tissues of the 

plant, abortion of ovules, and senescence of fertilized embryos (Rahnama et al., 2010; Quados, 

2011). Despite this, plants are generally more susceptible to high salinity stress during the 

seedling stage, after transplanting, and when exposed to other forms of stressors such as disease, 

insect infestation, and nutrient imbalance (Kotuby-Amacher et al., 2000). Once affected by high 

salinity stress, plants become stunted and their leaves turn dark green which may appear to be 

thicker and more succulent than what is normal for their type. In plants belonging to woody 

species, high salinity stress is associated with leaf burn and defoliation (Kotuby-Amacher et al., 

2000). For example, alfalfa plants subjected to high salinity stress show reduced productivity and 

increased leaf-to-stem ratio which proves that high salinity has an influence on plants’ forage 

quality (Kotuby-Amacher et al., 2000). Another example is grass, which appears stunted with a 

darker green color and leaf burn symptoms (Kotuby-Amacher et al., 2000).  
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 Soil salinity is generally referred to as the total quantity of soluble salt that can be found 

in a certain soil, from a land mass or land area (Kotuby-Amacher et al., 2000; Provin and Pitt, 

2001; Munns and Tester, 2008). The severity of soil salinity is measured according to salinity or 

“the salt concentration in soil solution” and sodicity or “concentration of sodium on the exchange 

complex of the soil” (Munns and Tester, 2008; Yan et al., 2015). The United States Department 

of Agriculture (USDA) has devised a system that classifies saline soils into three (3) categories: 

(1) saline, (2) sodic, and (3) saline-sodic (Yan et al., 2015).  

Saline soils have a pH level lower than 8.5 and are sometimes referred to as “white 

alkali” and characteristically form white salt crust on their surface as they dry (Chapman, 1995; 

Provin and Pitt, 2001). Sodic soils, on the other hand, are soils that have characteristically high 

levels of sodium (Chapman, 1995; Provin and Pitt, 2001). Contrasting saline soils, sodic soils are 

referred to as “black alkali” due to the absence of white crusts that form on the surface as they 

dry (Chapman, 1995; Provin and Pitt, 2001). The high sodium levels in sodic soils are typically 

coupled with low levels of calcium and magnesium which result in the dispersion of clay 

particles that lead to the formation of structure-less soil with low water content and air 

permeability (Harivandi, 1984). The third kind of saline soil, the saline-sodic soil, is 

characterized by unstable pH levels that sometimes reach higher than 8.5 (Harivandi, 1984). 

Saline-sodic soils assume the properties of either saline or sodic soils depending on two 

conditions: (1) if the existing soluble salts remain while the levels of exchangeable sodium in the 

soil profile remains constant, the soil assumes the properties of saline soil but (2) if the existing 

soluble salts are leached downward while the levels of exchangeable sodium in the profile of soil 

remain constant, the soil assumes the properties of sodic soils (Harivandi, 1984).  

 Soil salinity can be measured by the “electrical conductivity extracted from a water-
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saturated soil paste” (Kotuby-Amacher et al., 2000; Tanji, 2002). In saline soils, electrical 

conductivity (EC) is greater than 4 deciSiemens per meter (dS.m-1) and the exchangeable sodium 

percentage (ESP) is lower than 15 (Harivandi, 1984; Chapman, 1995; Provin and Pitt, 2001; 

Munns, 2005). In sodic soils, on the other hand, the EC is less than 4 dS.m-1 and the ESP is 

higher than 15 (Harivandi, 1984; Chapman, 1995; Provin and Pitt, 2001). In cases of saline-sodic 

soils, the EC is greater than 4 dS.m-1 and the ESP is greater than 15 - a combination of traits 

found in saline and sodic soil types (Harivandi, 1984 Chapman, 1995; Provin and Pitt, 2001).  

High levels of salts in the soil can accumulate when there is not enough water to leach the 

salt ions from the soil, which may happen in cases where there is insufficient precipitation and 

irrigation (Shrivastava and Kumar, 2015). In the hot and dry regions of the world such as India, 

the problem of high salinity levels in the soil is more pronounced (Shrivastava and Kumar, 

2015). The lack of sufficient precipitation to compensate for the hot and dry climate, as well as 

the common practice of inadequate irrigation, all lead to secondary salinization of soils which 

significantly increase salinity levels (Shrivastava and Kumar, 2015). As explained by one source, 

a dry and hot climate leads to dried soil which has more concentrated salt content that further 

exacerbates salinity stress in plants (Kotuby-Amacher et al., 2000). This issue affects as much as 

20% of overall arable lands worldwide (Ghassemi et al., 1995). In general, the effects of toxicity 

caused by high salinity levels in plants may be divided into two mechanisms: (1) disturbance in 

osmotic regulation, and (2) ionic toxicity.  

Figure 1 shows the effect of salinity stress on the regulation of osmosis and ions in plants. 

During the osmotic disturbance caused by salinity stress, dehydration occurs which leads to the 

inhibition of water uptake, cell elongation, and development of leaves (Gupta and Huang, 2014). 

During ionic stress, the second phase of salinity toxicity in plants, potassium ions significantly 
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decrease while sodium ions rise excessively. This imbalance leads to toxicity which results in the 

rapid aging and dying of leaves, and impairment of photosynthetic ability, protein synthesis and 

enzyme activity (Greenway et al, 1972; Munns and Tester, 2008; Gupta and Huang, 2014). 

Signal transduction may take place during the early stage of osmotic and ionic stress which may 

either establish osmotic adjustment and ion homeostasis or cell death (Greenway et al, 1972; 

Munns and Tester, 2008; Gupta and Huang, 2014). In the event that the signal transduction 

successfully initiates osmotic adjustment and ion homeostasis, recovery or adaptation may be 

expected. However, if cell death occurs, then the chances that the plant recovers from the 

salinity-induced toxicity become significantly low. These two phases of plant’s response to 

salinity stress is described in detail below. 

 

Salinity-Induced Osmotic Disturbance 

The mechanism by which high salinity levels affect plant growth is initiated by the occurrence of 

osmotic stress, as the first phase of response. The plant cells begin to strain in maintaining 

balanced osmotic adjustment after prolonged exposure to an environment that has exceeding 

levels of ions coming from high levels of salts (Munns and Tester, 2008; Gupta & Huang, 2014). 

Impaired osmotic regulation in plants is most likely caused by the abnormal levels of the 

phytohormone Abscisic Acid (ABA) which mainly functions in signaling stress among plants 

(Davies et al, 2005; Waidyarathne, 2015). ABA specifically functions by inducing stomatal 

closure as a way to regulate ions in order to release water from the plant’s guard cell through 

osmosis (Waidyarathne, 2015). ABA may then be considered as a regulator osmotic activity in 

plant cells during exposure to abiotic stresses like salinity (Davies et al, 2005; Waidyarathne, 

2015).  
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During the initial stages of high salinity stress, various physiological changes can be 

observed in plants which include interruption of membranes, nutrient imbalance, impaired ability 

to detoxify reactive oxygen species (ROS), alteration of antioxidant enzymes, reduced and 

altered photosynthetic activity, and decreased stomatal aperture (Sharma and Dubey, 2005; 

Tanou et al, 2009; Gupta and Huang, 2014). Interruption of cell membranes is largely attributed 

to excessive accumulation of sodium in the cell walls which leads to osmotic stress and even cell 

death (Shrivastava and Kumar, 2015). Nutrient imbalance, on the other hand, takes place since 

salts in the soil serve as important sources of nutrients for the plants (Shrivastava and Kumar, 

2015). An upset in their balance, such as in the case of high salinity levels, the nutrients available 

for plants to absorb also become imbalanced (Shrivastava and Kumar, 2015). Impaired 

photosynthetic ability associated with high salinity stress is due to the decrease in leaf area, 

chlorophyll content and stomatal conductance, and reduced photosystem II efficiency caused by 

high salt levels (Sharma et al., 2012). 

The main mechanism used by plants to recover from or adapt to the osmotic stress 

induced by high salinity levels is through the osmolytes and osmoprotectants (Hasegawa et al. 

2000; Munns and Tester, 2008). Sugars, cyclic and acyclic polyols, amino acids and derivatives 

of amino acids, fructans, quaternary amino and sulfonium compounds are some of the known 

organic solutes capable of accumulating in the cells of bacteria, alga, and plants to regulate 

osmosis during stress (Hare and Xu, 1998; Munns and Tester, 2008). The compounds mentioned 

above are collectively known as compatible solutes or osmolytes due to their ability to 

accumulate in excessive amounts without impairing cellular functions (Cushman, 2001). 

Compatible osmolytes form massive units of compounds that function in restoring the osmotic 

potential of cytoplasm to facilitate water uptake and maintain turgor in the cell (Cushman, 2001). 
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Apart from such functions, compatible osmolytes are also capable of replacing the water 

surrounding proteins and stabilizing protein complexes and membranes (Cushman, 2001).  

 

Salinity-Induced Ion Toxicity 

The second phase of plant toxicity is characterized by the accumulation of ions and is known as 

the ionic phase which occurs due to the impairment of osmotic adjustment caused by the initial 

stage of toxicity (Munns and Tester, 2008; Gupta and Huang, 2014; Roy et al., 2014). The 

occurrence of ion toxicity shows that salinity stress is also a form of hyperionic stress (Gupta and 

Huang, 2014). Ion toxicity due to high salinity stress occurs when high concentrations of NaCl in 

the soil result in the excessive accumulation of Na+ and Cl- ions in the plant tissues exposed to 

the soil. The accumulation of Na+ and Cl- ions causes severe ion imbalance and physiological 

disorders (Munns and Tester, 2008; Gupta and Huang, 2014). Elevated concentrations of Na+ 

ions can lead to inhibited uptake of K+ ions which is necessary for plant growth and development 

(Gupta and Huang, 2014). Apart from sodium, chloride and potassium ions, high salinity stress 

can also cause imbalance of other ions in plants such as boron and calcium (Shrivastava and 

Kumar, 2015). Plants typically battle the surge of Na+ ions in saline environments by adjusting 

and maintaining ion homeostasis (Sun et al., 2009).  

Ion homeostasis during salt stress is enhanced through a variety of mechanisms such as 

the reduction of Na+ and Cl- ion levels and increasing concentrations of nutrition elements such 

as K+ (Sun et al., 2009). Specifically, ion homeostasis is described as the restriction of sodium 

ion accumulation, hence, the Na+ and Cl- ions are generally reduced in plants exhibiting adaptive 

ion homeostasis activity (Ji et al., 2013). Ion homeostasis in plants is supported by various 
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signaling pathways, and in case of salinity stress the most common signaling pathway is the so-

called Salt Overly Sensitive (SOS) signaling pathway (described below) that is responsible for 

exclusion of sodium ions from the roots as the first line of defense against toxicity and cell death 

(Zhu, 2000; Ji et al., 2013).  However, prolonged exposure to high salinity levels may disrupt 

this pathway, eventually leading to the accumulation of sodium in the shoot (Zhu, 2000; Ji et al., 

2013).  

 In the SOS pathway mechanism, salinity stress triggers significant increases in various 

ions (Gupta and Huang, 2014). Ca+ ions, are among the ions significantly increased during 

salinity stress and the increase in their concentration mediates their penetration into the 

cytoplasmic region of the cell wherein they attach to the SOS3 protein which specifically binds 

with Ca+ ions (Zhu, 2000; Quan et al., 2007; Huang et al., 2012; Gupta and Huang, 2014). Once 

Ca+ ions bind to the SOS3 proteins, the SOS2 protein kinases are activated which leads to 

phosphorylation and triggers the activation of SOS1, a protein that is primarily located in the 

plasma membrane and functions in exchanging Na+ and H+ ions (Zhu, 2000; Quan et al., 2007; 

Huang et al., 2012; Gupta and Huang, 2014). This mechanism leads to the maintenance of ion or 

ion homeostasis. Overexpression of the Na
+

/H
+ 

antiporter SOS1 in plasma membrane in 

Arabidopsis caused improving in plant growth, number of seeds, chlorophyll content, as well as 

reduction in Na
+ 

content compared to control plants in salt stress condition (Shi et al, 2002). The 

mechanism of the SOS pathway is primarily activated once the salinity toxicity affects the 

regulation of ions in the cells.  
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Secondary Effects of Salinity Stress 

Apart from the osmotic disturbance and ionic toxicity, plants exposed to saline stress can also 

experience secondary salinity toxicity, which affects different plant mechanisms such as the 

regulation of K+ and the accumulation of ROS. Potassium ions play an important role in inducing 

salinity tolerance traits in plants. K+ has the ability to control and maintain cell turgor and 

osmotic regulation during salinity stress (Wang et al., 2013; Chakraborty et al., 2016; Huang et 

al., 2017). However, during exposure to highly saline environments, K+ in plants may 

significantly be reduced resulting in accumulation of ROS and cellular damage (Wang et al., 

2013). Specifically, a low amount of K+ in the plant cell cytosol may lead to the activation of 

caspase-like proteases which are responsible for triggering programmed cell death (Wang et al., 

2013).   

 Apart from the disturbance of K+ acquisition, salt-induced stress may result in the 

accumulation of ROS which is also partly triggered by the reduction in K+ ions (Wang et al., 

2013). ROS include the “singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals” 

(Tripathy and Oelmüller, 2012). There are various factors that contribute to the generation and 

accumulation of ROS in plant cells and among these are the abiotic stress factors including 

salinity stress. ROS are normally controlled and regulated by various enzymatic and non-

enzymatic processes (Tripathy and Oelmüller, 2012). However, in cases wherein the ROS levels 

exceed normal, the mechanisms that regulate them are impaired and various cell damaging 

consequences may occur (Sharma and Dubey, 2005; Tanou et al, 2009; Tripathy and Oelmüller, 

2012). High levels of ROS in the cell may lead to photo-oxidative damage to DNA, proteins, and 

lipids which eventually result in cell death (Tripathy and Oelmüller, 2012). Both, the reduction 

of K+ ions and accumulation of ROS in plant cells, are secondary effects of salinity stress.  
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Improving Salt Tolerance in Plants 

While alteration or remediation of the soil conditions is an agronomic solution of reducing 

salinity stress for plants, modern science is now looking into the ability of plants to tolerate 

highly saline conditions on their own. Since the 1930s, salt-tolerant plants have been known to 

exist and since this time, scientists have studied the inherent mechanisms of salt-tolerant plants 

in order to help salt-sensitive plants evolve or be developed to increase their survivability in 

saline conditions (Flowers, 2004). To date, there are three known ways by which a plant is able 

to tolerate saline environment: (1) osmotic tolerance, (2) ion exclusion, and (3) tissue tolerance 

(Munns & Tester, 2008; Roy et al., 2014).  

Plants conduct osmotic tolerance by regulating long distance signals that limit and reduce 

shoot growth just before shoots accumulate Na+ (Munns & Tester, 2008; Roy et al., 2014). 

Specifically, osmotic tolerance involves rapid, long-distance signaling and experts assume that 

such signaling happens through processes that include ROS waves, Ca2+ waves, and/or long 

distance electrical signaling (Roy et al., 2014). Osmotic tolerance capacity differs from plant to 

plant and experts assume that such variance is due to different long-distance signaling involved 

or different initial perception of the salt or different responses associated with the signals (Roy et 

al., 2014).  

 The ion exclusion mechanism that responds to the ionic phase of salt toxicity is more 

understood compared to osmotic tolerance. As mentioned earlier, plants respond to this salt 

toxicity phase by reducing toxic ions that have accumulated in their leaf blades through various 

signaling pathways such as the SOS pathway (Zhu, 2000: Ji et al., 2013). Apart from the said 

mechanism, salt-tolerant plants also manifest an ability to increase tolerance of salts that remain 
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in the shoot by compartmentation into the vacuoles (Li et al. 2006; Roy et al., 2014). Both 

mechanisms used by some plants to tolerate the ionic phase of salt toxicity involve transporters 

and their respective controllers at both cell membrane and tonoplast (Roy et al., 2014).  

 The third category of mechanism used by plants to tolerate saline environment is the so-

called ‘tissue tolerance’. Tissue tolerance mechanisms are generally carried out by removing Na+ 

from the cytosol, and storing it by compartmentation in the vacuoles before the ions elicit an 

adverse reaction from the plant cells (Roy et al., 2014). Tissue tolerance mechanisms require 

“the synthesis of compatible solutes and higher level controls to coordinate transport and 

biochemical processes”, resulting in osmoprotection and osmotic adjustment (Roy et al., 2014). 

Among the compatible solutes synthesized to enable tissue tolerance of salt ions are mannitol, 

ononitol, proline, glycinebetaine, trehalose, ectoine, and fructan all of which function in 

increasing hyperosmotic tolerance in plants (Nakayama et al., 2005).  

The discovery of these three mechanisms involved in the plant cells’ ability to tolerate 

high salinity levels in the soil is considered to be an important breakthrough in plant science. 

However, the need for more sophisticated methods to increase salt tolerance in plants is still 

increasing, since the mechanisms tackled above are still confined to salt-tolerant plants and most 

crops nowadays remain to be salt-sensitive, necessitating efforts to either alter salinity levels of 

their environment or modify their physiological functions in order to allow tolerance for highly 

saline environments.  

Literature showing the ubiquity of the high salinity problem in large areas of arable land 

worldwide, presents the fact that the continuing efforts to change saline environments are most 

likely ineffective. Changing salinity levels in the soil through irrigation methods is highly 
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ineffective due to its high cost that makes it unsustainable, providing only a temporary solution 

to the problem. This leads experts to focus more on the plants’ ability to tolerate saline 

environments and deliberately altering plants’ physiological ability to tolerate high salinity levels 

in soil to improve their growth and production ability. Among the many methods being largely 

evaluated nowadays to improve salt tolerance among plants are by breeding for salt stress or 

genetic manipulation (Cushman et al., 2001).   

 

Salt Stress Screening Methods 

Screening methods for salt-tolerance traits and genetic resources are crucial in fighting the 

effects of soil salinity stress. Screening methods are necessary to identify specific genetic lines 

that are associated with salt tolerance traits compared to sensitive non-salt-tolerant lines (Arzani, 

2008; Bhute et al., 2012). Effective screening methods can ensure the success of breeding 

programs as well as the speedy development of salt-tolerant genotypes of plants. Faster screening 

methods are particularly useful in determining potential parents for breeding salt-tolerant 

progeny of plants. Salt stress screening methods may be based on growth or yield, damage or 

tolerance to high salinity levels, and/or physiological mechanisms (Munns and James, 2003).  

 The screening methods based on growth or yield are focused on measuring root 

elongation, leaf elongation, biomass, and yield (Munns and James, 2003). Screens based on plant 

damage or tolerance to high salinity levels are focused on measuring leakage from leaf discs, 

chlorophyll content, and chlorophyll fluorescence (Munns and James, 2003). Screening methods 

focused on specific traits study measure Na+ exclusion, K+/Na+ discrimination, and Cl- exclusion 
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(Munns and James, 2003). Apart from these basal properties, screening for salt-tolerant crops 

may also be influenced by the types of environment within which the plants grow.  

 For plants selected at the germination or seedling stage, the traits determined by specific 

screening methods include rate of germination, seedling vigor, and dry matter (Arzani, 2008). 

Screening methods in the greenhouse conditions are focused on chlorophyll content, 

photosynthesis, stomatal conductance, leakage from leaf discs, leaf Na+ concentration, leaf 

K+/Na+ ratio, leaf Cl- concentration, biomass, yield, harvest index, and use of molecular markers 

for QTL identification (Arzani, 2008). Screening methods for plants grown in vitro are focused 

on traits that include somaclonal variants, induced mutations, and development of screening tools 

(Arzani, 2008).  

 Breeding programs and screening methods both heavily rely on the genetic analysis of 

plants and present technologies specifically target the genetic background of plants to develop 

novel salt-tolerance traits. Given this, it is important to examine the role of genetic variation and 

strategies in improving plant salt tolerance traits.  

 

Genetic Strategies for Identifying Salt Tolerance Genes 

Genetic strategies are one of the most favored techniques for improving salt and drought 

tolerance among plants (Winicov, 1998). Salinity tolerance is considered to be a quantitative trait 

at the genetic level and quantitative traits have profound influence on plant productivity 

(Winicov, 1998). Given this, methods used to genetically improve salinity tolerance traits of 

plants also affect their maximum yield potential. Oftentimes, strategies that genetically improve 

the salinity tolerance trait of plants have the consequence of lowering the plants’ yield even 
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under normal conditions (Winicov, 1998). This complexity makes genetic strategies still largely 

ineffective in terms of directly improving salinity tolerance traits in crop plants. Despite this, 

genetic strategies are still considered useful in improving salinity tolerance traits in plants by 

functioning as detectors of salt-tolerance trait genes. Among the most common genetic strategies 

used for detecting salt-tolerant genes are the forward and reverse genetics. 

 

Forward and Reverse Genetics 

Forward and reverse genetics are two different strategies that enable thorough analyses of certain 

traits and functions in an organism. In forward genetics, organisms are treated to mutagens to 

induce random lesions in their DNA and general modifications in their genome to alter gene 

function (Ahringer, 2006; Lawson and Wolfe, 2011). The resulting mutant genotypes that may 

either display a targeted (based on screen) or random detectable phenotype are analyzed through 

standard molecular genetic techniques to locate the underlying gene mutation (Ahringer, 2006; 

Lawson and Wolfe, 2011). Forward genetics may therefore be described as a genetic strategy 

that works from the phenotypic level to the genotype, making it possible to identify the function 

of a gene sequence on the phenotype that they influence (Ahringer, 2006; Lawson and Wolfe, 

2011).  

The forward genetics approach always starts with the induction of heritable mutations in 

a population of the organism which is then expected to be passed onto their progeny for 

observation of detectable phenotypes that are linked to effect of the mutagenesis treatment 

(Lawson and Wolfe, 2011). N-ethyl-N-nitrosourea (ENU) is the mutagen of choice in most 

forward genetics procedures, although in some cases, radiation and insertional mutagens such as 
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retroviruses and transposons are more preferred (Lawson and Wolfe, 2011). After mutagenesis, 

genetic strategies are employed to monitor production and selection of progeny with the target 

phenotype of interest that can be attributed to the mutation induced on the parent line (Lawson 

and Wolfe, 2011). The forward genetics strategies depend on many experimental factors such as 

the phenotypes to be assayed and practical considerations such as space available, personnel, and 

total cost (Lawson and Wolfe, 2011). After phenotyping is performed to identify mutations 

associated traits of interest, molecular genetic analysis is performed to identify the gene sequence 

altered that is responsible for the mutation under study (Tierney and Lamour 2005). Apart from 

forward genetics, reverse genetics is also widely employed in determining particular traits in 

organisms.  

In contrast, reverse genetics aims to determine the phenotype that arises from specific 

alterations in the genetic sequence (Tierney and Lamour 2005; Sessions et al., 2002). Reverse 

genetics makes it possible to systematically determine the functions of gene sequences and how 

alterations in them can affect the development and behavior of an organism (Ahringer, 2006; 

Sessions et al., 2002). Furthermore, reverse genetics makes it possible to investigate the function 

of an entire gene family as well as the function of a certain gene involved in a particular 

biological process (Tierney and Lamour 2005). Reverse genetics has been useful in determining 

genetic sequences and their corresponding functions in various model organisms such as 

Arabidopsis (Sessions et al., 2002). 

 A popular reverse genetics approach is the use of insertional mutagens, particularly the 

transposons a kind of transposable element (TE).  
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Transposable Elements 

Transposable elements (TEs) are generally defined as DNA sequences that have the ability to 

move within the genome through a process called transposition, and may have an effect on the 

genome’s function by changing gene expression (Muñoz-López and García-Pérez, 2010). TEs 

were first discovered by Barbara McClintock in 1940s during a study that analyzed the genome 

of maize (Fedoroff, 2012; Pray, 2008). Although TE are ubiquitously present in almost all life-

forms, in plants like maize, TEs account for more than 80% of the genomic composition 

(Muñoz-López and García-Pérez, 2010).  

 

Classes of Transposable Elements 

TEs that occur in eukaryotic organisms are categorized into two classes depending on the 

transposition intermediate involved (Wessler, 2006). Class I involves TEs whose transposition 

intermediate is RNA and Class II involves TEs with DNA as their transposition intermediate 

(Wessler, 2006). Class I TEs are further categorized into two groups according to transposition 

mechanism and structure (Carnell & Goodman, 2003; Wessler, 2006). These two groups are the 

LTR retrotransposons and non-LTR retrotransposons (Ostertag and Kazazian, 2001; Eickbush 

and Malik, 2002). LTR stands for long terminal repeats and LTR retrotransposons are known to 

have these elements while non-LTR retrotranposons are remarkable for lacking them (Wessler, 

2006). LTR retrotransposons function by being transcribed into RNA which then undergoes 

reverse transcription mechanism to produce a DNA copy that recombines with DNA in the 

genome (Ostertag and Kazazian, 2001; Eickbush and Malik, 2002). LTR retrotransposons are 

responsible for encoding of proteins necessary for the retrotransposition of Class I TEs (Ostertag 

and Kazazian, 2001; Eickbush and Malik, 2002).  
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 Non-LTR retrotransposons, on the other hand, are responsible for encoding the reverse 

transcriptase and endonuclease proteins which are necessary for the mobilization of Class I TEs 

and other non-autonomous elements (Ostertag and Kazazian, 2001; Eickbush and  Malik, 2002). 

Non-LTR retrotransposons are further divided into two superfamilies called the autonomous long 

interspersed elements (LINEs) and non-autonomous short interspersed elements (SINEs) 

(Ostertag and Kazazian, 2001; Weiner, 2002). LINEs are known for having an “internal 

promoter for RNA polymerase II, a 5' untranslated region (UTR), two open reading frames 

(ORFs), and a 3' terminal polyadenylation site” in their structures (Loeb et al., 1986). The two 

(2) ORFs in LINEs have different functions. ORF 1 is a protein known for binding to RNA 

proteins while ORF2 is known for encoding both the reverse transcriptase and DNA 

endonuclease (Loeb et al., 1986). SINEs, on the other hand, have an “internal promoter for RNA 

polymerase III and a 3' A-rich tract” in its structure (Ostertag and Kazazian, 2001; Weiner, 

2002). SINEs measure from 80-400 bp in length and necessitate activities supported and encoded 

by autonomous retrotransposons and/or their mobility host (Ostertag and Kazazian, 2001; 

Weiner, 2002).  

 Class II TEs, on the other hand, have DNA as their DNA intermediate and function 

through mechanisms that are largely different from those that fuel Class I TEs (Muñoz-López 

and García-Pérez, 2010; Wessler, 2006). DNA transposons contain a transposase gene that is 

flanked by two (2) terminal inverted repeats (TIRs) (Muñoz-López and García-Pérez, 2010). The 

transposase gene relies on the TIRs to accomplish excision or movement of the transposable unit 

as it gets inserted into a new location within the genome (Muñoz-López and García-Pérez, 2010). 

During insertion, a few nucleotides of DNA as low as 3 at the target site are duplicated, leading 

to the formation of target site duplications (TSDs) which are a remarkable feature among DNA 
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transposons (Muñoz-López and García-Pérez, 2010). Like RNA retrotranposons, DNA 

transposons are also categorized into classes called families (Muñoz-López & García-Pérez, 

2010).  

The differences in DNA transposons families are based on the different sequences that 

determine the different kinds of DNA transposons (Muñoz-López & García-Pérez, 2010). Class I 

and II TEs have different modes of mechanism and motion within the genome which are 

influenced by the transposition intermediates involved in the structure (Fedoroff, 2012; Muñoz-

López & García-Pérez, 2010). Class I TEs, with RNA as transposition intermediates, are 

generally termed as RNA retrotansposons and are known to move within the genome through a 

copy-and-paste mechanism (Ostertag and Kazazian 2001; Hacket et al., 2013). Class I TEs 

generate “double-stranded DNA intermediate from their RNA template that is then integrated 

into chromosomes by a mechanism similar to that used by DNA-mediated mobile elements 

(transposons)” (Ostertag and Kazazian 2001; Eickbush and Malik, 2002). Class II TEs, on the 

other hand, are generally known as DNA transposons and are described to move within the 

genome through a cut-and-paste mechanism (Smit and Rigg, 1996).  

DNA transposons have various functions and one of these is their ability to inactivate or 

modify gene expression via insertion within introns, exons or regulatory regions (Muñoz-López 

& García-Pérez, 2010). 

 

Applications of Transposable Elements 

Since the discovery of their mobilization mechanism within the genome, TEs have become 

widely utilized in the field of biotechnology and medicine (Poćwierz-Kotus and Wenne, 2010). 
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For instance, transposons have an important role to play in the emergence of antibiotic resistance 

trait in microorganisms (Van Opijnen and Camili, 2013). This finding enabled experts to learn 

more about antibiotic resistance and how such can be remedied in cases of humans. But aside 

from biotechnology and medicine, TEs are remarkably useful in the field of genetics (De Lima 

Fàvaro et al., 2005; Poćwierz-Kotus and Wenne, 2010).  

TEs are typically employed as natural tools used in genetic engineering (Vizvàryovà and 

Valkovà, 2004). Transposons act as mutagens producing mutations in the form of insertions 

(thus termed insertion elements), deletions, inversions, and translocations during their 

transposition, especially if they occur in more than one copy (De Lima Fàvaro et al., 2005; 

Vizvàryovà and Valkovà, 2004). Mutations generated by transposons alter the phenotypes since 

transcription of the original gene sequence is blocked and/or the transcription pattern is modified 

(De Lima Fàvaro et al., 2005). Given this, TEs are useful tools in deliberately inducing genotypic 

alterations in order to study gene sequences and the phenotypes associated with them (Kumar 

and Narayanan, 1998; Aarts et al., 1993). TEs may also be used in gene identification and 

cloning, and as genetic markers for specific genotypes originating from common genetic 

ancestors (Kumar and Narayanan, 1998; Aarts et al., 1993; De Lima Fàvaro et al., 2005).  

 Another important function of TEs is their ability to detect stress-related genes. 

Evidently, TEs often show increased activity under stress conditions (Capy et al., 2000; 

Grandbastien, 1998; Wessler, 1996), and may remain dormant otherwise, perhaps indicating a 

genome’s adaptive response to stress. Given the role played by TEs in determining stress 

response in organisms exposed to abiotic stress, such as plants, they are a significant part of this 

study as will be shown in succeeding discussions.  
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Insertional Mutagenesis 

Since their discovery, transposons have been widely utilized as insertional mutagens (Van and 

Camili, 2013). Insertional mutagenesis, as the name implies, is the process by which “insertional 

mutations” are induced into the genome through the use of viruses or transposons (Hackett et al., 

2013). Mostly, the insertions that are located in promoter or coding regions of the gene cause 

mutant phenotypes. Considering the scope of this study, the discussion will be focused on 

insertional mutagenesis mediated by transposons.   

Insertional mutagenesis with well-described transposable elements as tags was first used 

in Drosophila melanogaster (Bingham et al., 1981). The same approach was employed in plants 

after characterization of transposable elements of maize and snapdragon (Walbot, 1992).  There 

are two kinds of insertion elements in plants that are commonly used: one is the T-DNA from 

Agrobacterium tumefaciens, and the other one is transposons. Both endogenous transposon and 

heterologous transposon have been employed effectively for tagging genes (Lightner and Caspar, 

1998; Martienssen, 1998; Pereira, A., 2000). There are different types of inserts that function in 

Arabidopsis, such as T-DNA from Agrobacterium tumefaciens and retrotransposon Tnt1 element 

from tobacco (Feldmann et al., 1991; Grandbastien et al., 1992; Lucas et al., 1995).  

A large number of genes have been characterized from populations of insertional mutants 

that were generated by T-DNA or transposons (Parinov and Sundaresan, 2000; Pereira, A., 2000; 

Sussman et al., 2000). However, there are different pros and cons of T-DNA or transposons. For 

example, the biggest advantage of using T-DNA is the stability, which does not exist when using 

transposons as a tag. T-DNA always acts as stable insertions when they are inserted in the plant 

genome, but it is unlikely that they can result in complex integration patterns or chromosomal 

rearrangements in the genomic DNA.  
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Alternatively, using transposons is more appropriate to implement targeted tagging 

(Speulman et al., 1999, 2000). Generally, transposon tagging is defined as a technique wherein 

the transposon is used to generate a DNA “tag” with a known sequence (Speulman et al., 1999, 

2000). The transposon sequence is usually employed to detect DNA sequences near the TE 

(Speulman et al., 1999, 2000). TEs, particularly the transposons, can only be useful in 

functioning as DNA tags if the target sequence is known (Speulman et al., 1999, 2000). The 

known gene sequence is normally used to detect clones that contain mutant alleles that have their 

own transposons (Weigel and Glazebrook, 2002). The sequence adjacent to the insertion can be 

identified using different techniques based on the type of the insert that was used in the 

generation of mutants. Effective techniques for identifying sequences adjacent to the insertion 

can be performed in short time comparing to gene mapping such as inverse PCR, thermal 

asymmetric interlaced or TAIL-PCR (Deng et al., 1992; Pereira and Aarts, 1998; Liu and 

Whittier, 1995; Tsugeki et al., 1996). The identification of an unknown sequence adjacent to the 

insertion allows the identification of the position of the insert in the genome.  

 

Knockout Insertional Mutagenesis Using T-DNA 

Knockout insertional mutagenesis is one of the strategies commonly used to identify mutants by 

loss-of-function mutations, but is not able to reveal the redundant genes that are complemented 

by other genes or possess additional roles (Tani et al., 2004). In the process of knockout 

mutagenesis tagging, transfer DNA or T-DNA is widely employed. T-DNA is defined as the 

DNA transferred specifically from Agrobacterium species to plant genomes (Martineau et al., 

1994). The transfer of T-DNA from bacterium to plant genome induces insertional mutagenesis, 
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and through this the T-DNA has become a useful tool that provides detailed analysis of the plant 

genomes by insertional mutagenesis (Kuromori et al., 2009; Martineau et al., 1994).  

Aside from its ability to provide systematic analysis of the plant genomes, T-DNA is also 

popularly employed because it is easily produced or generated in large numbers (Kuromori et al., 

2009). However, T-DNA mostly causes recessive phenotype and homozygous plants are 

necessary to detect if a mutant phenotype is caused by the insert or to another mutation arose 

through transformation (Marsch-Martinez et al., 2002). In addition, T-DNA insertions are 

considered to be too complex and the chromosomal rearrangements of T-DNA could lead to 

reversed configurations, such as multiple inverted or tandem copies or a truncated T-DNA insert, 

which might be problematic in analysis of adjacent genomic sequences to the insertion (Marsch-

Martinez et al., 2002).  Moreover, the frequency of T-DNA dominant morphological mutants is 

very low, typically appearing in 1 out of 1000 mutated plants (Tissier et al., 1999).  

Because of these challenges with the use of T-DNA in activation tagging methods, our 

group has developed a method that incorporates transposable elements for transposon based 

activation tagging (Marsch-Martinez et al., 2002). 

 

Activation Tagging Using Transposons 

Apart from knockout tagging using T-DNA, activation tagging is another procedure commonly 

employed to study plant genomes. Activation tagging in plants is a novel gene isolation approach 

that was first proposed by Walden et al., 1994 and has been successfully implemented using T-

DNA inserts (Kakimoto, 1996; Kardailsky et al., 1999; Borevitz et al., 2000; Weigel et al., 2000; 

Zhao et al., 2001; Marsch-Martinez et al., 2002) and applying Ac-Ds transposon system (Wilson 
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et al., 1996). The activation tagging method is used to observe genes whose functions cannot be 

identified by knockout insertional mutagenesis due to gene redundancy or for phenotype of 

genes whose expression is restricted to only specific conditions (An et al., 2005). 

Activation tagging in Arabidopsis using transposons was initially demonstrated to be a 

novel gene identification method (Aarts and Pereira, 2000; Marsch-Martinez et al., 2002). 

Activation tagging methods using transposons is an effective vehicle that introduces 

transcriptional enhancer sequences and creates a powerful system that generates gain-of-function 

mutants (Marsch-Martinez et al., 2002; Robinson et al., 2009). In Arabidopsis, populations 

possessing a tetramer of cauliflower mosaic virus (CaMV) 35S enhancer are commonly used to 

screen mutants (Aarts and Pereira, 2000; Marsch-Martinez et al., 2002). The CaMV 35S 

enhancer’s main function is to induce overexpression of closely present tagged genes, to reveal 

dominant gain-of-function mutant phenotypes (Marsch-Martinez et al., 2002; An et al., 2005; 

Robinson et al., 2009).  

The maize Ac/Ds, and Spm-dSpm or En-I are the most frequently used transposable 

element systems for insertional mutagenesis in plants (Tissier et al., 1999; Marsch-Martinez et 

al., 2002). Initially, the transposon tagging Ac-Ds system was employed in Arabidopsis as a 

heterologous transposon system. However, the transposition frequency of introducing 

transposon-tagging Ac-Ds the first time was found to be very low, around 0.2-0.5% (Dean et al., 

1992; Schmidt et al., 1995; Aarts and Pereira, 2000). Therefore, transposon-tagging Ac was not 

an appropriate method for gene isolation. On the other hand, the use of transposon EN-I 

activation tagging methods had a high success frequency rate which was about 10 in 1000 lines 

(Marsch-Martinez et al., 2002).  
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 The En-I (Spm-dSpm) transposons based system of maize is the most common tool for 

transposon-based activation tagging, which was first used in tobacco and subsequently developed 

in Arabidopsis (Pereira and Saedler, 1989; Marsch-Martinez et al., 2002). The ability of the En-I 

(Spm-dSpm) system to transpose to unlinked locations and the high transcription frequency of its 

independent transpositions was observed when it was used with Arabidopsis, which was not seen 

in tobacco or when using the Ac transposon in Arabidopsis (Pereira and Saedler, 1989; Marsch-

Martinez et al., 2002).  

The En-I (Spm-dSpm) system exploits the BAR marker that confers plant resistance to the 

herbicide Basta, as well as the SU1 marker, which converts the pro-herbicide R7402 into 

sulfonylurea which inhibits or reduces the growth of plants that contain it (Marsch-Martinez et 

al., 2002; Harb and Pereira, 2013). The first Arabidopsis genes that were isolated using En/Spm 

system were CER1 and MS2 (Aarts et al., 1993; 1995). Moreover, there are a number of genes 

that have been tagged and analyzed using the system, including the Arabidopsis HARDY gene 

(Karaba et al., 2007) for drought tolerance and water use efficiency, and the SHINE gene for 

regulation of wax biosynthesis (Aharoni et al., 2004) and lignocellulose regulation (Ambavaram 

et al., 2011). 

 

Advantages of using activation tagging over knockout tagging  

Activation tagging using the En-I (Spm-dSpm) system is said to be better than knockout tagging 

using T-DNA because the generation of gain-of-functions gene in activation tagging makes its 

mutagenesis more dominant, allowing the analysis of the function of duplicated genes (Weigel et 

al., 2000; Marsch-Martinez et al., 2002; An et al., 2005; Harb and Pereira, 2013). In addition, the 



 

27 

mutant spectrum of activation tagging systems have the capacity to generate novel and beneficial 

traits that could improve crops compared to the loss-of-function mutants used in knockout 

tagging (Weigel et al., 2000; Marsch-Martinez et al., 2002; An et al., 2005; Harb and Pereira, 

2013). Another advantage of activation tagging using transposon over knockout tagging T-DNA 

is overcoming the redundancy problem and the high frequency of transpositions (Weigel et al., 

2000; Marsch-Martinez et al., 2002; An et al., 2005; Harb and Pereira, 2013).  

 Given the pros of activation tagging using transposons, this will be the main procedure 

that will be employed in this study. 
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Scope of the dissertation 

The main objective of this study is to identify novel salt stress tolerant genes by screening a 

number of Activation tagging lines from the model plant Arabidopsis using the En-I transposon 

system. In this study, we have identified genes from Arabidopsis conferring salt tolerance in 

Arabidopsis.  

 

Objectives 

1- Identification of Arabidopsis Activation tagged mutant lines for salt stress tolerance. 

2- Characterization of genes for salinity tolerance identified from Arabidopsis activation 

tagged mutant lines. 
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Figure 1: Diagrammatic representation of the recovery/adaptation mechanism exhibited by most 

plants when exposed to salinity stress (Horie et al., 2012).  
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Identification of Arabidopsis Gain-of-Function Mutants for Salt Stress Tolerance 
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Abstract 

Agricultural production faces restrictions by abiotic stress factors such as high salt concentration 

in the soil, drought, heat and cold. Naturally occurring genomic and genetic variation undergoes 

selection by abiotic stress factors leading to evolution of stress tolerance mechanisms by 

selection in specific environments. Arabidopsis thaliana is a weed adapted to grow throughout 

the different climatic conditions of the world, and has enormous genetic diversity. To tap the 

latent diversity in Arabidopsis, independent lines of maize derived En-I transposon activation 

tagged (ATag) population of Arabidopsis plants were screened in a quantitative assay for salt 

tolerance. A salt stress treatment of 150 mM NaCl was applied for a week to 21 days old plants 

of 300 independent En-I ATag Arabidopsis lines grown in replications. This gain-of-function 

activation tagging approach enabled the identification of 15 lines with altered response to salt 

treatment, based on the evaluation of salt tolerance physiological traits. Two tolerant lines were 

systematically characterized at the genetic and molecular level for identification and 

characterization of putative tagged candidate genes involved in the altered salt tolerance 

response. These mutant lines can help identify new genes and mechanisms for salt tolerance that 

are likely naturally occurring as expression allele genotypes of genes in different natural 

populations, and help develop salt tolerant crops.  
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1.0 Introduction 

There are a multitude of abiotic stresses, the most prominent being high salinity, drought, cold, 

and heat encountered by plants during their growth and development. Salt accumulation in arid 

regions, coastal flooding, poor irrigation and improper drainage facilities induce soil salinity 

stress, affecting around 21% of the world’s irrigated land area (Ghassemi et al., 1995). The 

significant factors for high salinity are increased evapotranspiration and improper leaching 

leading to abnormal accumulation of soluble salts (the most soluble being sodium chloride) in 

the soil (Munns and Tester, 2008). A concentration of 40 mM NaCl, equivalent to the electrical 

conductivity of 4dS/m, is considered the ideal concentration for fertile soil (Munns, 2005).  

Under high salinity conditions, ion imbalance takes place by disturbing the osmotic 

homeostasis in salt sensitive plants, which can be sensed rapidly. As a result, these plants are not 

able to manage an optimal ion transport ratio, which should be high potassium ions (100-200 

mM) and low sodium ions (10-20 mM) for normal growth (Munns and Tester, 2008). Primarily, 

roots are affected by osmotic imbalances or water deficit created by high salt concentration 

which restricts nutrients entrance (Munns, 2002). Prolonged high salt soil exposure then leads to 

leaf necrosis, chlorosis, senescence and enzymatic degradation resulting in the loss of seed 

germination (Munns and Tester, 2008). This ultimately inhibits plant growth and causes losses in 

seed germination, plant height, fresh and dry weight during the growth stages, as well as 

reduction in crop yield, as documented for Vicia faba (L.) (Rahnama et al., 2010; Quados, 2011).  

Plants have developed an innate ability to respond to stresses through responses that can 

be permanent through evolutionary adaptations, depending on the type and duration of stress. 

Tissue and cell specific responses during development involve signal transduction, hormonal 
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release, and others that confers structural, morphological, physiological, biological and 

molecular tolerance (Ahmad and Prasad, 2012). The basis of physiological adaptations induced 

by plants under stress can be found in molecular mechanisms such as osmotic adjustment during 

abiotic stress response following early signal transduction, diverse response pathways and their 

genetic regulation (Pereira, 2016). This offers tolerance through re-programming developmental, 

physiological and metabolic pathways in plants (Asensi-Fabado et al., 2017).  

The high salinity environments can be combated by growing salt tolerant plants 

developed to have various tolerance mechanisms, such as by the exclusion of excess sodium ions 

from the cytoplasm, or their accumulation in vacuoles by overexpressing Na+/H+ antiporters 

(NHX1) (Munns and Tester, 2008). Genes such as the vacuolar H+ translocating 

pyrophosphatase (AVP1) in Arabidopsis, have been found to pump excess sodium ions to 

vacuoles enhancing salt tolerance (Pasapula et al, 2011). Another inherent mechanism plants 

employ is to reduce dehydration losses, oxygen scavenging, and offering chaperone like 

activities by retaining water inside the cell through accumulation of osmoprotectants like sugars, 

organic acids, amino acids and amines (Valliyodan and Nguyen, 2006). The accumulation of 

osmotic solutes and activation of the antioxidant system are the first phase of defense employed 

by the plant for salt tolerance as explained in the previous chapter (Tang et al., 2015). The 

calcium binding proteins like calmodulins, calcium dependent protein kinases (CDPKs), 

calcineurin B-like proteins and calmodulin-like proteins are reported to be involved in ABA 

dependent and independent signaling during stress responses (Kader and Lindberg, 2010; Zhang 

et al., 2005).  

Transcription factor families such as NAC, bZip, AP2/ERF, WRKY, and Trihelix have 

been well documented for their association with abiotic stresses in plants, including salt tolerance 
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in Arabidopsis and other crops such as rice, soybean, pea and maize, (Yamaguchi-Shinozaki and 

Shinozaki, 2006; Liu et al., 2007; Ambavaram et al., 2014)).  

Salt tolerance features are exhibited by plants in the field, but can also be evaluated in the 

salt sensitive genotypes to identify the response to stress by genes that might be induced to 

confer stress tolerance. Such natural defense responses employed by the plants against salt stress 

can be either screened directly in the field or in the greenhouse by treating plants in hydroponics 

under optimal and high salt concentrations during different growth phases. There are many 

physiological factors that can be considered for salt screening: ion selectivity, ion accumulation, 

osmotic adjustment, organic solutes, and water use efficiency are commonly evaluated (Shannon, 

1993). Ion selectivity is the ability of plants to maintain mineral nutrient ion balance and limit 

toxic ions, which is measured in salt tolerance screening whereas the accumulation capacity of 

sodium ions is termed ion accumulation. Osmotic adjustment is a measure of the increase in 

solutes, decreasing water and osmotic potential. Organic solute measurements indicate the 

accumulation of organic salts that maintain turgor pressure and render tolerance. High water use 

efficiency indicates the slowing down of salt accumulation in roots, offering salt stress tolerance. 

Physiological trait-based field screening studies have been performed in rice and maize by 

primarily analyzing the multiple phenotypic features for selection of salt tolerant mutants, or the 

analysis of natural variation for genome wide association studies (GWAS) (Pereira, 2016).  

In the current study, quantitative assays were performed in screening for phenotypic 

changes such as growth and biomass accumulation in response to salt stress in Arabidopsis 

activation tagging lines using a forward genetic screen strategy. 
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Transposons are mobile pieces of DNA, first identified genetically in plants, that can move 

around the genome and can modify the regulation of genes, a principle referred to by Barbara 

McClintock as ‘Controlling Elements’ as agents that could modify gene activity or regulation 

(Fedoroff, 2012; Pray, 2008). Transposons can help in identifying genes in the host genome with 

the aid of forward and reverse genetics for genes that display a phenotype with altered 

expression. Transposons have been identified in drought tolerant maize as controlling 20% of the 

abiotic stress responsive genes (Makarevitch et al., 2015), suggesting their natural role in altering 

gene expression under stress (Pereira, 2016).  

There have been many approaches described for the identification of genes for tolerance 

to abiotic stresses and this information has been used to improve the resilience of plants to 

stresses such as salinity. A widely popular classic genetic approach includes induction of loss-of-

function mutations, which are important to describe genes required for expression of the trait or 

function. However, they are not able to unveil the contribution of redundantly working genes that 

are either complemented by other genes or regulatory circuits or possess additional roles (Tani et 

al., 2004; Krishnan et al., 2017). Activation tagging as a gene isolation approach, proposed first 

by Walden et al in 1994, circumvents these limitations aiding plants in unveiling their genomic 

potential through analysis of gain-of-function phenotypes, of redundant genes or those with 

minor effects on the trait, which is useful for the identification of stress tolerant gene candidates 

for use through transgenics (Kondou et al., 2010). Activation Tagging is a method of identifying 

a gene with an insertion, such as En-I (Spm/dSpm) transposon system that is inserted by 

transformation into heterologous plants such as Arabidopsis. Activation Tagging is used for 

identification of the function of the tagged gene on the basis of its enhanced expression that 

provides a dominant gain-of-function phenotype (Tissier et al., 1999; Marsch-Martinez et al., 
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2002). There has been a shift from T-DNA insert application to transposon systems using the En-

I (Spm-dspm) from maize was used initially by Marsch-Martinez et al. in 2002. 

 Targeted transposon based tagging systems overcome the shortcomings of T-DNA based 

system that show complexity in integration patterns and rearrangements in chromosomes 

(Marsch-Martinez et al., 2002). The En-I (Spm-dSpm) heterologous transposon from maize (Zea 

mays) was used in this present study, which was found efficient in generating independent 

transpositions and with transposing ability to unlinked locations (Marsch-Martinez et al., 2002). 

The tagging construct (Figure 1) was created by using two selectable markers, BAR (resistance to 

BASTA herbicide) and SU1 (converts R7402 into herbicide sulfonylurea that restricts plant 

growth); a non-autonomous element (I/dSpm), an immobile transposase (En/Spm element minus 

terminal repeats) and a multiple copy 35S enhancer (Harb and Pereira, 2013). The marker BAR 

gene is within the I/dSpm element and the SU1 in the T-DNA insert so that the application of 

both herbicides renders the selection of plants with stable insertion elements. The strong 

enhancer within the I/dSpm enables activation tagging on a large scale and this entire unit along 

with BAR is designated as the activating I element (AIE) (Marsch-Martinez et al., 2002). The 

fact that there has been an advancement of technology is evident from the fact that the mutant 

selection through T-DNA activation tagging is maximum 1 per 1000 mutant lines whereas with 

En-I is 10 in 1000 lines (Marsch-Martinez et al, 2002).    

 The Arabidopsis genome has been explored widely by many research groups for 

identification of novel stress related candidate genes via T-DNA activation tagging. Zhao et al in 

2001 have identified roles of the flavin mono-oxygenase family members in auxin biosynthesis. 

Thread was another gain-in-function mutant belonging to the same mono-oxygenase family that 

was identified via the En-I activation tagging system (Marsch-Martinez et al., 2002). A gain-of-
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function mutation in Arabidopsis using the En-I ATag identified the Hardy gene i.e. AP2/ERF 

like transcription factor that renders Arabidopsis salt and drought tolerant, and also enhance 

biomass, photosynthesis and water use efficiency on transformation into rice (Karaba et al., 

2007). Another such mutant Shine identified from the En-I ATag system renders drought 

tolerance by leaf structure modification with reduced stomatal density and significant increase in 

cuticular wax (Aharoni et al., 2004). Ahmad et al in 2015 have identified a salt tolerant line stc-1 

(salt tolerant callus 1) that overexpressed the gene AT4G39800 (expressing myo-inositol-1-P-

synthase-1 protein) by employing a T-DNA based activation tagging system on genome wide 

screening. ORCA3 encoding a DNA binding domain in AP2/EREBP transcription factor that is 

involved in TIA pathway in Catharanthus roseus was identified using activation tagging and is 

categorized to act commonly during stress response actions (Tani et al., 2004). The drought 

tolerant rice line AH01486 was identified through T-DNA activation tag screening and was 

found to activate two glutamate receptor-like genes (Lu et al., 2014). It also offers tolerance to 

Arabidopsis plants against drought. Another rice mutant BPT-5204 was also identified via gain-

of-function mutagenesis by over-expressing the transcription factor nuclear factor Y (NF-YC13) 

that offered salt stress tolerance (Manimaran et al., 2017). The presence of an mPing 

MITEs (miniature-Ping) transposon insertion at the 5’gene region up-regulated the nearby genes 

NAC gene of maize (ZmNAC111) that conferred drought stress tolerance (Pereira, 2016; Mao et 

al., 2015). The gene polygalacturonase involved in expansion2 or the PGX2 gene is one of the 

genes in plants that was identified and characterized through activation tagging via transposons 

(Xiao et al., 2016).  

An insertional activation tagging strategy has been employed in this research to screen 

the genetic variation among a population of activation tagged (ATag) mutant lines of 
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Arabidopsis to identify salt tolerant/sensitive lines in a quantitative assay in comparison to the 

salt sensitive wild type.  
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2.0 Objectives 

 

The objective of this research is to identify novel genes for salt tolerance using a forward 

genetics strategy of activation tagging in Arabidopsis thaliana, a plant model for molecular 

genetics studies. Tolerance to abiotic stresses such as salinity is a quantitative trait, the 

phenotype being measurable and needs to be conducted on the basis of the phenotype of multiple 

plants, quantified by the difference of the tagged mutant being statistically different from the 

wild type.  
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3.0 Materials and Methods 

 

3.1 Arabidopsis Transposon Activation Tagged Mutant lines 

In previous studies the population of I-transposon ATag mutant lines were generated in 

Columbia (Col) ecotype plants that were transformed with the Agrobacterium tumefaciens T-

DNA activation-tag construct (Marsch-Martinez et al., 2002). The transposable elements used 

were derived from the maize Enhancer (En)- Inhibitor (I) transposon system cloned and 

sequenced from maize (Pereira et al., 1985, 1986), and shown to transpose in heterologous plants 

(Pereira & Saedler, 1989). The activation-tag I-transposn (I-ATag) construct (Marsch-Martinez 

et al., 2002) has two greenhouse selectable markers: a ‘positive’ selection marker BAR (for 

Basta Resistance) on the mobile I-transposon that confers resistance to the herbicide 

Basta/glufosinate; and a ‘negative’ marker SU1 (O’Keefe et al., 1994), that converts the pro-

herbicide R7402 to its active form (N-dealkylation), which reduces plant growth and can be 

identified by spraying R7402 (Dupont). Thus used for segregating out the active En-transposase 

on the T-DNA. This Arabidopsis population of stable transposed activation tag (I-ATag) mutant 

lines (Marsch-Martinez et al., 2002) generated from ecotype Columbia (Col) were obtained as 

T3 generation seed from the PhD research work of Dr. Amal Harb at Virginia Tech (Blacksburg, 

VA) and described previously in publications (Harb & Pereira, 2011; 2013). These lines had 

been selected for stable (non-transposing) I-ATag elements bearing the BAR gene for Basta 

resistance, that had transposed from the main construct bearing the En-transposase by selecting 

progeny that had segregated away the T-DNA bearing the En-transposase with the negative 

selection marker of the SU1 gene (Figure 1). These stable I-ATag lines therefore contain a stable 

I-transposon bearing 4 copies of the 35S promoter, that can effectively activate inserts as far as 

10kb away (Marsch-Martinez et al., 2002) 
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In the present study, the Arabidopsis ecotype Columbia (Col) with the reference genome 

was used in all experiments as the wild type. The ATag genotypes were cataloged with their 

original names/numbering and additional numbers added from 1-300. For synchronous 

Arabidopsis seed germination, the seed of 300 Activation tagged lines were moist stratified in 

the cold at 4 °C in the dark for approximately 3 days. Next, 10 seeds for each line were sown in 

small pots filled with moist soil (professional growing mix) from Sungro Horticulture Company, 

and all trays of the pots were kept in the growth chamber under light (150 -200 μmole m-2 s-1) at 

22°C growth conditions (12 h of light and 12 h of dark). The trays were covered with clear 

plastic domes for 5 days, and the plastic covers were subsequently removed. Plants were 

fertilized once a week using the water-soluble fertilizer MiracleGro® All Purpose Fertilizer 

(24N-8P-16K).  

 

3.2 Selection of BASTA Resistant Arabidopsis Activation tagged lines 

After one week of germination, 10 seedlings for each pot were sprayed twice a week for 2 weeks 

with 0.7 mL/L Finale (Basta herbicide contains 150 g/L glufosinate ammonium). After five to 

seven days of the last spray, sensitive ATag lines could be identified and individual seedlings of 

the resistant seedlings were cautiously transferred into new pots with new soil. The genotypes of 

106 ATag Basta resistant lines were divided into 6 batches systematically according to their 

number for salinity screening in batches. 

 

 



 

55 

3.4 Salt Stress Screen at the Vegetative Stage 

Arabidopsis T3 generation seeds of the Col Activation tag genotypes and WT Col were 

stratified, grown, and treated with Basta herbicide for selection of the ATag insert as described 

above, and selfed seed was used for further analysis. For salt treatment, 21-day old seedlings at 

the vegetative stage were separated into two sets, one for salt treatment and the other a non-

treated control set. The set of salt-treated plants were maintained in 150 mM NaCl solution for 7 

days, while the set of the control plants were grown with normal watering. The plants of both 

sets were fertilized twice, prior to salt treatment for providing essential nutrients required for 

optimal growth. After 7 days of salt stress treatment, photographs of each genotype/plant were 

taken, and the individual plants were harvested and kept in the oven at 70 °C for complete 

drying. Next, the dry biomass of each plant sample was measured using a sensitive scale and 

recorded. The relative reduction in biomass (RB) was calculated using the following equation 

[(Biomass under control condition) – (Biomass under stress condition) / (Biomass under control 

condition)], and used as a measure of growth. 

 

3.5 Phenotypic Screen of Arabidopsis Tagged lines for Salt Tolerance  

Two groups of 14 AIE lines (440-B4-7, 440-F2-20, 440-G3-25, 440-B3-34, 440-F2-64, 440-G3-

68, 440-H1-70, 440-A1-73, 441-E2-83, 441-E4-85, 441-G3-89, 440-G4-90, 440-H2-47, 440-D4-

60) as well as the wild type Col0 with three replicates were used for the phenotypic screen for 

salt tolerance. The first group (at the vegetative stage): was treated with continuous salt 

application of 150 mM NaCl starting at day 21 at the vegetative stage. At day 21 after applying 

salt treatment, growth parameter measurements and data collection was initiated. The number of 
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leaves and diameter of rosette surface area was measured with a ruler every week until day 49. 

Every alternate day from day 21 until day 62, plants were scored to determine the percentage of 

bolting and flowering (Chan et al., 2013). The second group (at the flowering stage) was treated 

continuously with 150 mM NaCl starting at day 30 at the flowering stage. Measurements were 

made for plant height and number of stems (recorded at day 62). The samples were then 

harvested and dried in the oven at 70 °C to a constant weight to calculate the dry weight (DW), 

and kept further for ion analysis. At the end of the experiment, the dried plants samples were sent 

for ion content analysis (Dr. John Hatten, Laboratory ALTH 313, University of Arkansas).  

 

3.6 Measurements of chlorophyll content 

The chlorophyll content was measured in sample leaf tissue of 10 replicates of each genotype 

and wild type under control (H2O) and salinity (150 NaCl) conditions after 10 days of treatment 

using SPAD-502 Plus Chlorophyll Meter (Konica Minolta; Tokyo, Japan). 

 

3.7 Statistical Analysis 

The data collected in this study were analyzed by the t-Test (Two-Sample Assuming Equal 

Variances). A 99% level and a 95% level of confidence were used in the study to determine the 

significance of differences between treatment and control at two levels of p-value (≤ 0.01 and ≤ 

0.05). Analysis of Variance (ANOVA) using JMP version 12 was also performed to determine 

whether the different Arabidopsis genotypes had significant differences in their morphological 

phenotypic levels.  
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4.0 Results  

The screening of the independent Arabidopsis activation tagged lines to salt stress treatment 

(150mM NaCl) during their early growth phase provided differences in genotypes to be 

identified. As a quantitative measure for plant growth and tolerance to salt, the reduction in 

biomass was adopted as a means to identify significant tolerant and sensitive lines. Based on the 

genetic analysis that will be shown in the next chapter, 14 significant mutant phenotypes with 7 

tolerant and 7 sensitive Arabidopsis AIE genotypes were selected for physiological analysis of 

the following parameters number of leaves, rosette diameter, chlorophyll content, plant height 

and number of stems, in response to salt stress, at several time intervals ranging from three to 

seven weeks.  

 

4.1 Selection of BASTA Resistant Arabidopsis Transformants 

The results of seed germination of 300 Activation tagging T2 lines showed that after one week of 

growth 262 genotypes germinated and grew well to yield mature plants. T3 seeds were produced 

from all of the 262 T2 Activation tag lines. These plants were generated to harbor an activation-

tag construct (Figure 1) as described by Marsch-Martinez et al. (2002). The activation-tag 

construct has two kinds of greenhouse selectable markers: positive marker BAR, that confers 

resistance to the Basta/glufosinate herbicide and the negative selectable marker SU1, that 

converts the pro-herbicide R7402 to an active form.  

The Basta herbicide treatments on progeny seedlings of the 262 T2 A-Tag lines from 

multiple original transformants, as well as the wild type (Col-0), showed that the wild type 

seedlings and progeny from 59 of A-Tag lines were completely dead, while seedling progeny of 
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57 activation tagging lines segregated for resistance, and all progeny seedling of 106 A-Tag lines 

survived. The A-Tag lines that were dead after Basta treatment were untransformed lines (or 

undergone silencing or mutation). The lines that survived were transformants with transposed A-

Tag inserts. Since all of the seedlings must have been BASTA resistant (dominant), these lines 

were selected for salt stress screening.  

 

4.2 Screening of Arabidopsis Genotypes for Salt Tolerance at Vegetative Stage 

The differences in biomass production under salt treatment and control conditions for an 

extended time period indicated genotypic differences that can be referred to the level of salt 

tolerance (Munns and James, 2003), and the current experiments are aimed at determining the 

same. The 106 Arabidopsis Activation Tag (ATag) lines were grown for a week and thereafter 

i.e. at 21 days after germination treated with moderately high 150mM NaCl concentration 

(Figure 2). The vegetative phase was chosen for the high salt stress application as the other 

stages, such as germination, are not documented to be tolerant enough. Subjecting the 

Arabidopsis genotypes to this salt concentration assured the selection of salt tolerant lines, while 

at the same time the sensitive lines would not be able to survive a prolonged exposure.  

 

4.3 Arabidopsis Activation Tagged Lines- Biomass in Response to Salinity 

Plant biomass is defined as an organic matter of green plants converting sunlight into plant 

material during the photosynthetic process (McKendry, 2002). Thus, plant biomass is one of the 

important factors as a basis for analyzing plant growth rate and for calculating net primary 
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production (Golzarian et al., 2011). In this study, the measurements were made based on the 

relative reduction in biomass by weighing all above-ground dry matter for both control and 

stressed plants at the vegetative stage using a quantitative analysis of biomass accumulation as an 

estimator of growth. For ease of analysis, the 106 Arabidopsis A-Tag lines were grown in six 

batches with control Col plants grown alongside. The plant dry biomass was measured for plants 

under control and under stress, then used to estimate the relative reduction of plant biomass 

(Figure 4 and 5). Based on the analysis on variance, there were significant differences found 

between wild type Col0 and the individual genotypes among the six batches of the 106 A-Tag 

lines in terms of relative reduction of plant biomass.  

The results of the analysis of the relative reduction in biomass yielded 25 genotypes that 

were categorized as tolerant genotypes with lower relative reduction in plant biomass compared 

to the wild type Col-0. Subsequently, 15 genotypes were classified as sensitive with higher 

relative reduction in plant biomass as compared to the wild type Col-0, while the remaining ten 

of genotypes exhibited no significant difference between the A-Tag lines and the wild type.  

It is evident from the analysis of relative reduction in biomass of all the batches that 

certain mutant lines were highly tolerant or sensitive while others were only moderately 

tolerant/sensitive compared to the wild type. The genotypes that were found to exhibit marked 

differences compared to the wild type being moderately tolerant were 440-C2-37, 440-H1-46, 

and 440-D1-57. However, most tolerant genotypes were found to exhibit high tolerance i.e. 440-

B4-7, 440-C4-11, 440-E1-15, 440-G3-25, 440-B3-34, 440-B4-35, 440-H4-48, 440-G3-68, 440-

H1-70, 441-E4-85, 441-G4-90, 441-H4-94, 441-D1-97, 441-A1-98, 441-A3-99, 441-B4-100, 

441-D1-102, 441-H3-109, 441-H4-110, 442-C2-114, 412-D1-116, and 411-E1-172. Similarly 

most of the sensitive genotypes were highly sensitive towards high salt conditions and included 
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the genotypes 440-F2-20, 440-F2-64, 441-E2-83, 441-G3-89, 442-C1-113, 442-E3-129, 442-G2-

131, 442-H4-138, 412-A3-189, 412-B2-192, 440-A2-2, 440-H4-72, 441-E3-84, and 412-C4-198 

which displayed a significant reduction in the biomass. Only one sensitive genotype, 440-B4-52, 

was in the moderate sensitivity range.  

 

4.4 Phenotypic Screen of Arabidopsis Activation Tagged Mutants for Salt Tolerance 

The analysis of the salt tolerance parameter of relative reduction in biomass identified 14 ATag 

mutant lines from the primary phenotypic screen and physiological analysis (Figure 2 and 3). 

Several physiological factors that are significantly affected by salinity and are phenotypically 

evident in plant growth. The parameters were: the number of leaves and rosette diameters, 

bolting and flowering, plant height, and number of stems. The 14 ATag mutant lines identified in 

the phenotypic screen with altered response to salt are 440-B4-7, 440-F2-20, 440-G3-25, 440-

B3-34, 440-F2-64, 440-G3-68, 440-H1-70, 440-A1-73, 441-E2-83, 441-E4-85, 441-G3-89, 440-

G4-90, 440-H2-47, 440-D4-60. These include the sensitive Atag 440-F2-20, 440-F2-64, 441-E2-

83, and 441-G3-89 along with ATag lines 440-H2-47 and 440-D4-60. Their biomasses were not 

significantly changed in response to salt and they were mostly similar to the wild type. The 

tolerant ATag genotypes identified are 440-B4-7, 440-G3-25, 440-B3-34, 440-G3-68, 440-H1-

70, 440-A1-73, 441-E4-85, and 440-G4-90. The phenotypic analysis was carried out for the wild 

type and the 14 mutant lines by initially analyzing the plant growth parameters using three 

replications each for control and salt stress conditions during the vegetative stage, which enabled 

their characterization either as tolerant (resistant) or sensitive.  
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The phenotypic screen results show that in the absence of salt stress treatment, all plants 

were healthy during their life cycle with slight differences in some physiological parameters. 

Some AIE lines displayed varying phenotypes under normal growth conditions. The ATag lines 

440-B4-7, 440-B3-34, 440-H1-70, 441-E4-85, 440-A1-73, and 440-G4-90 showed faster early 

growth, and these lines reached 6 true leaves (6TL) at around 14 days after sowing compared to 

the 4-5TL for the wild type Col0 and other mutant lines. This already indicates a difference in 

growth rate among the ATag lines, which indicates their superiority to the wild type parent.  On 

the other hand, out of the four selected sensitive variants, two ATag lines, 440-F2-20 and 440-

F2-64, had smaller plants than the wild type, with round small leaves and pale green color under 

normal conditions visible in the photographs of the plants. However, the sensitive genotypes 

441-E2-83 and 441-G3-89 had healthy and tall plants under normal conditions similar to the wild 

type. Other lines had normally growing plants with appearance similar to the wild type under 

normal conditions and a very prominent reduction in growth parameters upon salt treatment.     

 

4.4.1 Number of Leaves and Rosette Diameters  

The wild type Col and ATag mutant lines exhibited significant visibly distinguishable changes in 

the number of leaves and rosette diameters under salt stress treatment compared to control non-

treated conditions. Beginning with day 21 of the salt treatment the number of leaves and rosette 

diameters were the same for both control and stress treated plants in all of the selected mutant 

lines. Under normal control growth conditions, all the AIE lines and wild type Col0 showed a 

normal significant increase in the number of leaves and rosette diameters, from about four weeks 

until seven weeks of growth. However, the plants revealed marked alterations in response to 
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long-term exposure to salt stress through this same phase from Day 21 to Day 49. The 

differences begin to be evident from the third week of treatment and are most noticeable in the 

fourth and fifth weeks of treatment. The results of relative reduction on the number of leaves of 

ATag lines showed that there was a significant tolerance to salt stress in tagged lines 440-B4-7, 

440-F2-20, 440-G3-25, 440-B3-34, 440-G3-68, 440-H1-70, 441-E4-85, and 440-G4-90. The 

ATag lines 440-G3-68 and 441-E4-85 440 were found to have the maximum number of leaves 

under high salt conditions. There was not a significant changed in the leaf number of the 

sensitive lines and their response to the salt stress as the wild type (Figures 6).  

Some ATag lines also displayed salt tolerance with significant increase on their rosette 

diameter as being higher relative to the wild type. The high tolerance ability to salt stress 

treatment, by maintaining leaf growth for survival was shown by the Atags 440-B4-7, 440-G3-

25, 440-B3-34, 440-G3-68, 440-H1-70, 441-E2-83, 441-E4-85, and 440-G4-90. The ATag 440-

H1-70 showed the most tolerance, having the highest rosette diameter amongst all the genotypes 

under analysis. In sensitive ATag lines 440-F2-20, 440-F2-64, and 441-G3-89 the rosette 

diameter was dramatically smaller with salt treatment especially after two weeks of treatment 

compared to that of the wild type. The lines 440-H4-47 and 440-D4-60 had rosette diameters 

most similar to the wild type under normal and salt stress conditions (Figures 7). 

 

4.4.2 Bolting and Flowering  

The bolting and flowering percentage of the wild type were measured every other day from day 

21 till day 62, and the figure were taken at day 42 (Table 1 and Figure 3). The results of the 

screening of three replicates of each AIE lines indicated that under control conditions the 3 
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replicates of ATag lines (440-B4-7, 440-B3-34, 440-H1-70, 440-A1-73, 441-E4-85 and 440-G4-

90) bolted 100% at Day 28, and flowered 100% at day 35 which is about one week prior to the 

WT (Col-0). The other mutants (440-G3-25, 440-G3-68, 441-E2-83, 441-G3-89, 440-H2-47, and 

440-D4-60) bolted and flowered 100% at day 35 which is mostly around the same time as that of 

the WT Col-0. However, the sensitive genotypes (440-F2-20 and 441-F2-64) exhibited an 

extremely later flowering phenotype than the WT, bolting around day 42 and flowering around 

day 49. Under continuous salinity stress, the results revealed that two replicates of ATag line 

441-E4-85 bolted 100% at day 28 and flowered 100% at day 35 which is around the same time 

of this line under non-treated condition, and one week earlier than the other mutant lines in 

response to salt stress. The ATag lines  (440-B4-7, 440-G3-25, 440-B3-34, 440-G3-68, 440-H1-

70, 440-A1-73, 441-E2-83, and 440-G4-90) displayed moderate delay in bolting and flowering, 

one replicate of each line bolted 100% at day35 and flowered at day42.  The wild type Col0 and 

ATag lines 440-F2-20, 441-F2-64, 441-G3-89, 440-H2-47, and 440-D4-60 were the most 

sensitive in terms of flowering in the continuous salt stress condition. These lines were not bolted 

or flowered at all and dead after two weeks of treatment with 150 NaCl. 

 

4.4.3 Plant Height, and Number of Stems at the Flowering Stage 

The height of the plants was further found to be significantly different in non-treated condition 

and salt stress condition for the wild type and ATag mutant lines (Figure 8). Noticeably, the 

relative reduction on plant height in most of the tolerant mutant lines under salt stress conditions 

were significantly higher than the wild type Col0. Characteristically, the tolerant genotypes 440-

B4-7, 440-G3-25, 440-B3-34, 440-H1-70, 441-E4-85, 440-G4-90, 440-G3-25, and 440-B3-34 
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have the lowest relative reduction in plant height. The results also indicated that in comparing 

ATag lines to wild type, there was a significant decrease in plant height in the sensitive ATag 

line 440-F2-20 compared to the wild type Col0. For the seven remaining ATag lines, no 

significant change was observed in plant height compared to the wild type under salt stress 

condition and these lines maintained minimal reduction (Figure 8). 

The number of stems in tolerant lines was characteristically more than the wild type in 

salt stress conditions. The stems decreased in number with continuous salt treatment (Figure 8). 

The plants with greater height borne relatively more stems, and the shorter ones had lesser stems. 

The effect of salt stress on the stems was even more prominent as there was a huge reduction in 

their number. However, there was a significant increase in number of stems in response to salt 

treatment compared to the wild type in ATag lines 440-B4-7, 440-G3-25, 440-B3-34, 440-G3-

68, 440-H1-70, and 440-G4-90, and surprisingly also the sensitive genotypes 441-E2-83 and 

441-G3-89 showed more stems number than the wild type. The sensitive ATag line 440-F2-20 

showed a significant relative reduction in stems number compared to the wild type (Figure 9).  

 

4.4.4 Chlorophyll content 

The chlorophyll content of individual plants was measured using a SPAD meter (Figure 10). 

Under normal conditions, all the plants including the wild type, tolerant and sensitive mutant 

lines had chlorophyll content in the average range of 33 to 40 μmol/ m2 of leaf area. After 

elongated and continuous exposure to moderate salt concentration (150 mM NaCl) during the 

flowering stage, there was a remarkable reduction in the chlorophyll content. The relative 

reduction on chlorophyll content was reduced by ~0.2 - 0.3 μmol/m2 of leaf area in most of the 
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tolerant genotypes including 440-B4-7, 440-G3-25, 440-B3-34, 440-H1-70, 440-A1-73, 441-E2-

83, 441-E4-85, and 440-G4-90. The wild type plant under salt stress had highly relative 

reduction on the chlorophyll content by around 0.4 μmol/m2 of leaf area with the genotypes 440-

H2-47 and 440-D4-60 sharing almost similar patterns as the wild type. The sensitive genotypes 

440-F2-20, 440-F2-64 and 441-G3-89 had a higher relative reduction of ~0.6 μmol/m2, which 

was more than the wild type. Noticeably, one sensitive line, 441-E2-83, did not exhibit a higher 

reduction as did other sensitive genotypes but the relative reduction in chlorophyll content was 

similar to the tolerant genotypes.  

 

4.4.5 Mineral content analysis 

Two highly tolerant ATag genotypes of Arabidopsis, 440-B4-7 and 441-H1-70 were chosen for 

mineral composition analyses. The mineral elements that were focused for analysis were 

potassium (K), phosphorous (P), calcium (Ca), magnesium (Mg), sulphur (S), sodium (Na), iron 

(Fe), manganese (Mn), zinc (Zn), copper (Cu) and boron (B). The two ATag mutants and the 

wild type were analyzed for their mineral composition and the data was tabulated for 

comparative analysis (Tables 1 and 2, Figure 11). The elements that showed a decrease in wild 

type and increase in tolerant genotypes under stress condition were zinc (whose concentration 

was less in mutants under normal conditions compared to the wild type but increased under 

stress in contrast to the wild type), iron (whose content was increased under stress in mutants 

whereas it was lesser than wild type under normal conditions), and calcium (which remained 

same in wild type under normal and stressed conditions but its content raised slightly in both 

mutant genotypes).  
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The minerals that increased in the wild type and decreased in ATag mutant lines include 

magnesium, which slightly increased in wild type under stress but decreased in genotype 440-

B4-7 and increased in 441-H1-70. Some had a similar pattern in wild type as well as both the 

mutant genotypes. Sodium content was most noticeably highly raised under stress treatments in 

all three plant types contrary to the fact that it was minimal under normal conditions. Boron 

content decreased in all under salt stress. Copper content also reduced under stress (was less in 

mutants than wild type under normal conditions) and manganese content also decreased in all the 

mutants. The sulphur content did not very much in the three plant types and also not much after 

subjected to normal and stressed situations. Sodium, potassium and calcium are mainly involved 

in cellular mechanisms and regulation of cellular homeostasis, therefore these three will be 

discussed further  
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5.0 Discussion 

Arabidopsis is naturally a salt sensitive species and its growth is restricted as soon as the 

threshold concentration of the salt in soil exceeds its natural tolerance value, that has been 

identified in literature as ~150mM NaCl (Sanders, 2000; Sun and Hauser, 2001; Xiong and Zhu, 

2002). 

The present study was successfully conducted to study a wide range of gain-of-function 

genotypic genotypes of Arabidopsis in the greenhouse under controlled conditions, primarily to 

identify and select activation tagged Arabidopsis lines for salt tolerance. Activation tagging 

using the maize En-I transposon system (Marsch-Martinez et al., 2002), with the mobile I 

transposon bearing a 35S-enhancer tetramer in Arabidopsis has been shown to generate 10 times 

as many gain-of-function mutants compared to T-DNA activation tagging (Weigel et al., 2000) 

that tend to be methylated due to multiple T-DNA copy insertions (Chalfun-Junior et al., 2003). 

The ATag mutants induce a gain-of-function mutation by altering the level of gene expression 

(i.e. transcriptional activation) by bringing it under the control of the adjacent strong enhancer of 

the cauliflower mosaic virus active promoter 35S (Weigel et al., 2000). This way the activated 

genes (at locus up to 10kb up- or down- stream of genes) in the genome are overexpressed to 

enhance the phenotype in a quantitative way with an over-dominant gene action, and provide 

phenotypes for genes with small effect that are easily distinguished as mutants in a way that is 

not possible using gene knockout strategies. Apart from the current application in selection of 

abiotic (salt stress) tolerant mutants, such approaches have been previously used by researchers 

to generate characterized mutations such as developmental (Marsch-Martinez et al., 2002), 

phenotypic, flowering abilities, several biochemical mutations, parthenocarpy and many more 

(Marsch-Martinez & Pereira 2011). 
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The 300 Arabidopsis En-I transposon Activation Tagged (ATag) mutants were grown 

and screened in the controlled growth chambers, out of which 106 genotypes were found suitable 

for analysis. The variant salt tolerant mutant lines were grouped into six batches to give 25 

tolerant and 15 sensitive lines relative to the wild-type control, out of which 14 mutant lines were 

further selected for analysis. This included 8 tolerant and 4 sensitive lines for salt tolerance that 

were selected to identify the tagged genes. These 14 lines showed significant p-values compared 

to the wild type for salt tolerance scores using relative reduction in biomass, which was 

complemented by analysis of variance (Figure 4, A-F). The phenotypic analysis included several 

visibly distinguishable tolerance parameters whereby the tolerant genotypes mostly had 

significant p-values in comparison to wild type plants under salt stress. The sensitive lines also 

showed significant difference to the wild type, indicating the presence of salt stress mechanisms 

also in the wild type. Two sensitive genotypes, 440-H2-47 and 440-D4-60, were chosen to be 

similar to the wild type and they exhibited many similar patterns for each criteria corresponding 

to the wild type under normal as well as stressed environment.    

 

5.1 Selection of Basta resistant ATag lines, and salt screening  

The screening protocol for selection of Basta resistant ATag lines is described by Marsch-

Martinez in 2002. The Bar gene in the construct was used for selection of Basta herbicide 

resistance in Arabidopsis transgenic AIE lines. The application of glufosinate herbicide to the 

growing array of ATag lines in the greenhouse was essential to check the presence of the BAR 

gene which confers Basta resistance. This gives an effective greenhouse based selection strategy 

yielding the transposed Basta resistant ATag containing lines.  
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The screening for salt tolerance was set at a selection level based on growth at 150 mM 

NaCl concentration. This concentration of sodium chloride was selected as LD50 NaCl (lethal 

dose for 50% plant population) for Arabidopsis and many other moderately salt tolerant species 

like wheat cultivars has been identified to be 150mM (Orsini et al., 2010; Munns et al., 1995). 

Arabidopsis is highly sensitive toward high salinity during the seed germination and seedling 

stages, to the extent that callose deposition and abnormal alterations in embryo lead to seed death 

(Xiong and Zhu, 2002). Studying the salt tolerant physiological traits that are prior to the 

characterization of the candidate genes was not possible during the seedling stage, therefore high 

salt treatment was imposed during the vegetative phase. If the salt treatment were to be applied 

during the seedling stage, only the resistant ATag transposants would have been able to survive 

and no sensitive line would be obtained for comparative analyses.  

Plant biomass production is under genetic control by multiple factors. Genes, such as the 

putative vacuolar Na+(K+)/ H+ antiporter gene from Panicum virgatum L. (switchgrass), are 

known for increasing the biomass by enhancing several physiological factors like height, longer 

leaves and large stem, which impart salt stress tolerance, indicating that biomass decrease is a 

symptom of salt stress effects (Huang et al., 2017). Hence, primarily the relative reduction in 

biomass was analyzed for all the surviving genotypes to select the highly potential tolerant and 

sensitive lines for further analysis. The treatment of the entire population with moderately high 

salt treatment at its vegetative growth phase, and subsequently measuring the relative biomass 

reduction, explains the abundance of tolerant lines (about 30) obtained after screening 146 

genotypes in the greenhouse as compared to the few sensitive lines (about 11) identified. It is 

understandable that the naturally sensitive lines must have been selected out at the initial stage. A 

similar approach was employed by Harb and Pereira (2013) whereby 10 mutant lines were tested 
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for the relative reduction in biomass analysis under salt treatment that yielded one sensitive line, 

C421, and 5 tolerant lines, C65, C394, C420, C437 and C490. This was a useful result as we 

aimed to study the gain-in-function mutations. Finally, 8 tolerant and 4 sensitive genotypes were 

chosen for further analysis in the present study.  

 

5.2 Phenotypic Characteristics under Salt Stress condition 

5.2.1 Number of leaves and Rosette diameter 

Some mutant lines, especially the sensitive genotypes 440-F2-20 and 440-F2-64 plants were 

short in size while some tolerant genotypes showed much healthier and faster growth, indicating 

an effect in the ATag mutant under normal conditions. In the early research of Marsch-Martinez 

et al. (2002) the maize En-I transposon based ATag insertional strategy identified both dominant 

and recessive mutants. Two characteristic mutants identified with altered phenotypes were the 

recessive fiddlehead mutant with variegated leaves and a dominant mutant thread that was sterile 

and late flowering with long curved leaves and siliques without seeds.  

The other tolerant lines and two more sensitive mutants had indistinguishable physical 

appearance from the wild type. It is interesting here to note that the tolerant ATag lines like 440-

B4-7, 440-B3-34 and 441-E4-85 showed early vigorous growth. In addition, these lines showed 

more tolerance to salt stress effects on leaf number with respective means of 0.41, 0.46, and 0.35, 

compared to a wild type mean of 0.61, and showed more tolerance to salt stress effects on their 

rosette diameter with respective means of 0.37, 0.41, and 0.29 compared to a wild type mean of 

0.544.  
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There could be some physical mechanism in response to salt stress preventing any hampering of 

leaf growth and development.  

 

5.2.2 Plant Height and Stalk numbers 

On exposure to high salt concentration, plant height and number of stalks/stems were reduced in 

each plant, but the relative reduction in tolerant ATag lines was lesser than the wild type, 

indicating that the tolerance phenotype could be attributed to the gain function by transposon 

activation tagged genes, which could involve some changes in the cell wall components such as 

cellulose, pectin and lignin during plant growth development stages. Therefore, a plant can 

overcome the harmful effects posed by salt stress, enabling the plant to survive under saline soil 

condition. Such a strategy has been used before as shown by a T-DNA activation tagged 

Arabidopsis mutant PGXAT over expressing a polygalacturonase enzyme and exhibiting the 

phenotype of cell expansion and the regulation of pectin (Xiao et al., 2016). PGXAT mutants 

possess long hypocotyls, larger rosettes and early flowering, but reduced stem thickness because 

the increased polygalacturonase enzyme degrades pectin and promote cell expansion and 

separation (Xiao et al., 2016).  

Along with pectin, which is a cell adhesive component, the mechanical support 

contributor lignin has also been shown to be involved in enhancing plant height through 

hypocotyl elongation. The anatomical analysis of Arabidopsis plant parts like roots, hypocotyl 

and leaves have revealed higher content of lignin in salt tolerant ATag lines compared to their 

wild-type counterparts. This indicates that a firm anatomical infrastructure is required for plant 

sturdiness and height maintenance, which also confers tolerance by contributing to the continuity 
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of plant growth under salt stress (Sessions et al., 2002). The enzyme Cu/Zn superoxide dismutase 

has been found to be associated with increasing lignin content and being involved in salt stress 

tolerance (Gill et al., 2010). Hence, it will be fruitful to undertake anatomical evaluations of the 

tolerant lines to identify any changes in the cell wall for pectin and lignin composition, and 

validate the discussed predictions.    

 

5.2.3 Bolting and Flowering 

In screening for their flowering behavior, the mutants displayed an expected pattern whereby 

most of the tolerant ATag lines showed early bolting and flowering, even prior to the wild type. 

However, a few others corresponded with that of the wild type and the two most sensitive lines 

had delayed flowering under normal conditions. The sensitive ATag lines which did not flower 

in response to saline condition indicating the restriction of growth factors under salt stress. These 

observations are in support with earlier documentations where wild type Arabidopsis Col ATag 

lines have been recorded with reduced vegetative growth, less flowering, no or delayed bolting, 

and flowering along with chlorosis and necrosis on exposure to high salinity conditions (Chan et 

al., 2013). Overexpression of miRNA gma-mir172a has been found to promote early flowering 

in Arabidopsis, maize, rice and soybeans, as it up-regulates LFY, AP1 and FT whereas mir156 

promotes late flowering (Wang et al., 2016). A molecular level evaluation of the tolerant mutant 

lines from the current screen showing early flowering, by testing the response of mir172a 

expression, would question its role in up-regulation through activation tagging.  
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5.2.4 Chlorophyll content 

The salt stress treatment reduced the chlorophyll in leaves, which is the basic source for carrying 

out the essential process of photosynthesis. The tolerant plants were able to limit this reduction to 

a large extent but sensitive lines and wild type were greatly affected. In saline conditions, the 

tolerant plants tend to reduce leaf expansion compared to the controlled conditions, which 

increases the chlorophyll density per unit leaf area but may slow down the photosynthetic 

process under salt stress (Munns and Tester, 2008). Saline conditions affect the photosynthetic 

rates by initially decreasing the stomatal aperture that has been observed in sensitive durum 

wheat mutants (James et al., 2002). This reduction slows down the stomatal conductance that 

disrupts the ionic balance in cells affecting the photosystem II, which leads to degradation of 

chlorophyll in the sensitive genotypes (Negrao et al, 2017). These factors negatively regulate the 

Rubisco enzyme that leads to the slowing down of photosynthetic rate and hence supports the 

results observed, wherein sensitive lines had significantly reduced chlorophyll content and 

tolerant lines were able to relatively retain the amount. The salt stress tolerance response 

mechanism here could be that the stomatal closure is more effective in mutants than the wild 

type, which saves water from transpiring, along with maintaining the conductance that leads to 

retaining chlorophyll to a great extent (Sessions et al., 2002).  

 

5.2.5 Mineral Nutrient Analysis (K, Na, Ca and Mg)  

Nutrients such as basic mineral elements are required by plants in micro or macro quantities to 

carry out the cellular processes and biological mechanisms. Potassium, calcium, magnesium and 

sodium have been long documented to have a significant role during salt stress, being 
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participants of signal transduction, as messengers, activators/repressors, co-factors and more. 

Their concentration was important to find out, as these four nutrients show varying 

concentrations in both Activation tagged lines 440-B4-7 and 441-H1-70 as compared to the wild 

type. Potassium was found to slightly decrease under stress in ATag lines 440-B4-7, 441-H1-70 

and Col0 under salt condition, whereas sodium significantly increased in ATag lines and Col0. 

K+ and Na+ ions are involved in the maintenance of cellular homeostasis and ionic balance which 

is essential for optimal growth and development (Reguera et al., 2014). Hence, it was thought 

that an unbalance amongst them, such as the highly raised sodium content in all of these plant 

types, must work in causing a salt related sensitivity as it causes leaf necrosis, interference with 

ion channels, growth hampering, and disrupts enzymes and injures the plasma membrane 

(Parwaiz and Satyawati, 2008). But, in concordance with the obtained results, sodium has been 

found previously to also increase in content under salt stress without hampering the tolerance 

mechanism and has been listed as a factor of shoot ion independent tolerance (Chan et al., 2013; 

Munns and Tester, 2008). Similarly, in certain salt tolerant Arabidopsis transgenics the sodium 

ions increased under salt stress but were less in the wild type, and potassium ions decreased but 

transgenics accumulated more of it than the wild type (Huang et al., 2017). However, sodium 

ions are not required for plant growth but interfere in potassium uptake and ion binding sites. 

Their excess is then referred to as sodium toxicity (Quan et al., 2007). 

Na+(K+)/H+ antiporter proteins have been shown to be involved in improving cellular 

homeostasis, mainly through potassium ion accumulation that reportedly combat salt stress 

effects (Huang et al., 2017). This has been documented experimentally in several plant species 

like tobacco, mungbean, cowpea and alfalfa for inducing salt stress tolerance (Zang et al., 2015; 

Sahoo et al., 2016). However, certain species have shown reverse results with increased K+ under 
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salt stress (Huang et al., 2017). Another contrary data has been obtained from peanut cultivars 

where Na+ exclusion and external K+ administration enhanced salt tress tolerance (Chakraborty 

et al., 2016). These facts suggest that there might be a swift internal mechanism (like 

osmoprotectants) working in maintenance of the ion balance in cells, such that this high rise of 

Na+ and slight reduction of K+ does not adversely affect the cells when under salt stress. An 

alternative explanation could be that the plant responds to high salt concentration by growth 

reduction due to the disruption of balance in osmolarity of external surroundings, and not due to 

internal concentration in growing tissues (Munns, 2002).     

Calcium displayed this reverse trend and increased in both mutant genotypes under stressed 

conditions, whereas in the controls its content remained almost the same in normal and stress 

situations, suggesting its role in offering tolerance against salt stress. It has been studied that 

calcium ion accumulation curbs the high sodium ion induced ill effects and has been 

supplemented in salinity experiments to study tolerance (Cramer, 2002; Negrao, 2017). Calcium 

ions are involved in the salt overly sensitive (SOS) pathway that has recently been studied at the 

tissue level, and is conserved in several crop species including rice (Zhu, 2000; Martinez-Atienza 

et al., 2006). The SOS3 pathway in roots and SOS calcium associated binding protein 8 

(SCABP8) in shoots senses raised calcium levels under salt stress, and works in a cascade to 

combat the salt stress effects (Quan et al., 2007). Interestingly, SOS mutants have been found to 

be deficient in the maintenance of K+/Na+ homeostasis. The SOS pathway has several 

components including SOS1 which functions as a sodium/proton antiporter in the plasma 

membrane, which is vital for proper exchange of Na+ and H+ ions. SOS2, a Ser/Thr protein 

kinase is another component of the cascade that is pivotal for interactions with SOS3 and 

SCABP8. All of these factors work together in conferring salt tolerance in Arabidopsis and 
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reducing sodium ion toxicity in roots and shoot respectively.  

Magnesium was found to increase in only one tolerant mutant, 441-H1-70, and not in 

other tolerant mutants, suggesting its role in salt stress tolerance that might be responsible in 

some ATag genotypes. It is essentially the most abundant divalent cation in plant cells, and 

silencing of its transporter magnesium transporter 6 (MGT6) through RNAi results in growth 

retardation as magnesium levels drop (Mao et al., 2014). This highlights the importance of Mg+2 

in plants during growth processes including photosynthesis, and recently the role it plays in 

chloroplast-nucleus signaling has also been reported, as it is needed for protoporphyrin IX 

concentration which directs chlorophyll biosynthesis (Pontier et al., 2006). Hence, the increasing 

concentration in a tolerant line under salt stress must be a reflection of rising chlorophyll content 

as a salt stress response.  

These phenotypic and physiological analyses are the primary experiments toward the 

unraveling of the salt tolerance response mechanisms at the cellular and genetic levels. The 

mutant lines that displayed salt stress tolerance through various characteristic observations were 

then analyzed for each factor, such as chlorophyll density increase, calcium ions increase, and 

plant height changes. These processes were then followed for their connections at the cellular 

level with factors like enzymes, proteins, co-factors and signal transduction pathways, which 

were then studied for their association with the corresponding genes complemented with genetic 

analyses tools and techniques. Ultimately this will lead to the identification of candidate genes 

that can then be utilized for crop improvement and protection from salt stress scenarios.  

In summary, Activation tagging has been identified as a productive approach for the 

random generation of gain-in-function mutants of otherwise redundant or lowly expressing genes 
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that are not possible to identify using conventional knockout mutant approaches. The high 

efficacy and ease of getting transformants and their progeny in a reduced time span are the 

advantages that upbeat its usefulness. It is evident from the present study conducted that the gain 

of function mutant analysis yielded results that were unpredictable earlier. It suggested that the 

role of calcium in offering tolerance is more significant than that of sodium, which showed no 

change in content or trend in wild type and mutant lines under normal or stressed situations. A 

forward genetics approach that involves use of the En-I transposon Activation tagging system 

based on the I-ATag activating insert was proposed to reveal the hidden mysteries of the 

complex plant genome. The loss of function strategy is at times unable to identify a mutant 

phenotype or one which may not be evident after screening knockouts of a single target gene, 

which may be attributable to several factors such as the presence of a closely related or duplicate 

gene. These problems do not arise with activation tagging involving a transposon ATag, as its 

specific and definite gene targets are overexpressed. Application of such a fruitful approach in a 

convenient ecotype like Columbia (with its completely sequenced genome) will aid in the 

identification of stress related responses and factors working alongside, which can also be 

applied to commercially important crop species such as rice mutants for improvement.    
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List of Tables 

Table 1: Bolting and flowering percentage during plant growth Day 21-Day 49 of 3 biological 

replicates of 14 Columbia activation tagging lines (ColATag) comparing to the wild type Col0 

(Control 0 mM NaCl and Stress 150 mM NaCl). Salt treatments were initiated at Day 21 after 

sowing. 

Genotypes 
3 Plants- Control 0 mM NaCl 3 Plants- Stress 150 NaCl 

100 % Bolting 100 % Flowering 100 % Bolting 100 % Flowering 

Col0 3/3 Day 35 3/3 at Day42 0/3 0/3 

440-B4-7 3/3 at Day 28 3/3 at Day35 1/3 at Day 35 1/3 at Day42 

440-F2-20 3/3 at Day 42 3/3 at Day49 0/3 0/3 

440-G3-25 3/3 at Day 35 3/3 at Day42 1/3 at Day 35 1/3 at Day42 

440-B3-34 3/3 at Day 28 3/3 at Day35 1/3 at Day 35 1/3 at Day42 

440-F2-64 3/3 at Day 42 3/3 at Day49 0/3 0/3 

440-G3-68 3/3 at Day 35 3/3 at Day42 2/3 at Day35 2/3 100 at Day42 

440-H1-70 3/3 at Day 28 3/3 at Day35 1/3 at Day 35 1/3 at Day42 

440-A1-73 3/3 at Day 28 3/3 at Day35 1/3 at Day 35 1/3 at Day42 

441-E2-83 3/3 at Day 35 3/3 at Day42 0/3 0/3 

441-E4-85 3/3 at Day 28 3/3 at Day35 2/3 at Day 28 2/3 at Day35 

441-G3-89 3/3 at Day 35 3/3 at Day42 0/3 0/3 

440-G4-90 3/3 at Day 28 3/3 at Day35 1/3 at Day 35 1/3 at Day42 

440-H2-47 3/3 at Day 35 3/3 at Day42 0/3 0/3 

440-D4-60 3/3 at Day 35 3/3 at Day42 0/3 0/3 
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Table 2: Composition analysis for common elements measured on basis of dry weight of wild 

type Col0 and activation tagged line (A) 440-B4-7, (B) 441-H1-70 for control 0 mM NaCl and 

stress 150 mM NaCl treatment. % Indicating plant macronutrients (percentage in dry weight), 

Ppm indicating plant micronutrients (parts per million-mg/kg Dw), Sig= significance, NS= no 

significance. The data are average of three replicates, with ** indicating significance at p-value ≤ 

0.01, * indicating significance at p-value ≤ 0.05 using t-test. 

(A) Analysis of ATag line 440-B4-7   

Nutrient 
Symb

ol 
Unit 

Col0 

Control 

Col0 

Stress 

440-B4-7 

Control 

440-B4-7 

Stress 

Mean Mean Mean Sig. Mean Sig 

Phosphorus P % 0.7632 0.66 0.7675 NS 0.6131 NS 

Potassium K % 3.21 2.495 3.416 ** 2.374 NS 

Calcium Ca % 2.484 2.634 3.3736 ** 3.714 ** 

Magnesium Mg % 0.475 0.5178 0.635 ** 0.5487 ** 

Sulfur S % 1.346 1.326 1.2043 NS 1.241 NS 

Sodium Na Ppm 2417.5 26595.8 3284.5 ** 26354.0 NS 

Iron Fe Ppm 137.4 126.3 91.85 ** 112.5 NS 

Mg Mn Ppm 29.67 24.77 24.19 NS 19.87 ** 

Zinc Zn Ppm 99.29 93.41 72.38 ** 88.31 NS 

Copper Cu Ppm 5.222 3.561 4.166 ** 3.559 NS 

Boron B Ppm 32.455 24.76 30.19 * 18.79 ** 

 

(B)  Analysis of mutant line 440-B4-7 

Nutrient 
Symb

ol 
Unit 

Col0 

Control 

Col0 

Stress 

441-H1-70 

Control 

441-H1-70 

Stress 

Mean Mean Mean Sig Mean Sig 

Phosphorus P % 0.7632 0.66 0.7604 NS 0.6134 NS 

Potassium K % 3.21 2.495 3.459 NS 2.1303 ** 

Calcium Ca % 2.484 2.634 3.075 ** 3.5106 * 

Magnesium Mg % 0.475 0.5178 0.498 * 0.649 ** 

Sulfur S % 1.346 1.326 1.061 * 1.253 NS 

Sodium Na ppm 2417.5 26595.8 2200.4 * 24834.8 NS 

Iron Fe ppm 137.4 126.3 82.62 ** 107.9 NS 

Manganese Mn ppm 29.67 24.77 27.14 NS 16.71 * 

Zinc Zn ppm 99.29 93.41 71.09 ** 88.44 NS 

Copper Cu ppm 5.222 3.561 4.115 ** 2.508 ** 

Boron B ppm 32.455 24.76 27.29 * 18.88 * 
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Figure 1: Schematic representation of the Activation-Tag lines using the En-I transposon system 

for generation of Salinity Tolerant (SAL-T) mutants by gain-of-function, adapted from Marsch-

Martinez et al., (2002). The elements of the construct are as follows: T-DNA LB (Left border) 

and RB (right border); P35S CaMV35S promoter; EnTPase, En immobile transposase; I-element 

left (ILtir) and right (IRtir) terminal-inverted repeat; 4-Enh (tetramer of the CaMV 35S 

enhancer). Selectable marker: positive selectable marker BAR (glufosinate/Basta resistance) and 

negative selectable marker SU1 (Pro-herbicide R740). 
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Figure 2: Morphological phenotypes during vegetative stage of 3 biological replicates of 14 

Columbia activation tagged lines (ColATag) comparing to the wild type Col0 (Control 0 mM 

NaCl and Stress 150 mM NaCl). Salt treatments were initiated at Day 21 after sowing. 
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Figure 2: Morphological phenotypes during vegetative stage of 3 biological replicates of 14 

Columbia activation tagged lines (ColATag) comparing to the wild type Col0 (Control 0 mM 

NaCl and Stress 150 mM NaCl). Salt treatments were initiated at Day 21 after sowing. 
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Figure 3: Morphological phenotype at flowering stage of 14 Columbia activation tag lines 

(ColATag) comparing to the wild type Col0, with Control 0 mM NaCl (left) and Stress 150 mM 

NaCl (right). Salt treatments were initiated at Day 21 after sowing. 
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Figure 4: Comparative analysis of the response of salt stress on plant biomass of ATag lines 

analyzed in batches A-F compared to WT Col0. All the data are average of ten replicates; the 

error bars show the 99% and 95% confidence interval of the t-test. The green line shows the 

relative reduction in biomass. The data are average of ten replicates, with ** indicating 

significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. (A) Batch 1, (B) Batch 

2, (C) Batch 3, (D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 4: Comparative analysis of the response of salt stress on plant biomass of ATag lines 

analyzed in batches A-F compared to WT Col0. All the data are average of ten replicates; the 

error bars show the 99% and 95% confidence interval of the t-test. The green line shows the 

relative reduction in biomass. The data are average of ten replicates, with ** indicating 

significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. (A) Batch 1, (B) Batch 

2, (C) Batch 3, (D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 4: Comparative analysis of the response of salt stress on plant biomass of ATag lines 

analyzed in batches A-F compared to WT Col0. All the data are average of ten replicates; the 

error bars show the 99% and 95% confidence interval of the t-test. The green line shows the 

relative reduction in biomass. The data are average of ten replicates, with ** indicating 

significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. (A) Batch 1, (B) Batch 

2, (C) Batch 3, (D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 5: Relative reduction in biomass (RB) of salt screen in batches (A-F) of ATag lines 

compared to WT Col0. Bars represent ± SE, N= 10. The data are average of ten replicates, with 

** indicating significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. Red * 

indicates sensitive lines, green * indicates tolerant lines. (A) Batch 1, (B) Batch 2, (C) Batch 3, 

(D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 5: Relative reduction in biomass (RB) of salt screen in batches (A-F) of ATag lines 

compared to WT Col0. Bars represent ± SE, N= 10. The data are average of ten replicates, with 

** indicating significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. Red * 

indicates sensitive lines, green * indicates tolerant lines. (A) Batch 1, (B) Batch 2, (C) Batch 3, 

(D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 5: Relative reduction in biomass (RB) of salt screen in batches (A-F) of ATag lines 

compared to WT Col0. Bars represent ± SE, N= 10. The data are average of ten replicates, with 

** indicating significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05. Red * 

indicates sensitive lines, green * indicates tolerant lines. (A) Batch 1, (B) Batch 2, (C) Batch 3, 

(D) Batch 4, (E) Batch 5, (F) Batch 6. 
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Figure 6: Bar plot showing response of continuous salt stress among flowering stage on relative 

reduction in plant number of leaves of 14 selected ATag lines compared to WT Col0. Bars 

represent ± SE, N= 3. The data are average of 3 replicates, with ** indicating significance at p-

value ≤ 0.01, * indicating significance at p-value ≤ 0.05. Red * indicating sensitive lines, green * 

indicating tolerant lines.  
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Figure 7: Bar plot showing response of continuous salt stress among flowering stage on relative 

reduction in rosette diameter on day 49 of 14 ATag lines compared to WT Col0. Bars represent ± 

SE, N= 3. The data are average of 3 replicates, with ** indicating significance at p-value ≤ 0.01, 

* indicating significance at p-value ≤ 0.05. Red * indicating sensitive lines, green * indicating 

tolerant lines.  
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Figure 8: Bar plot showing response of continuous salt stress among flowering stage on Relative 

reduction in plant height on day 62 of 14 ATag lines compared to WT Col0. Bars represent ± SE, 

N= 3. The data are average of 3 replicates, with ** indicating significance at p-value ≤ 0.01, * 

indicating significance at p-value ≤ 0.05. Red * indicating sensitive lines, green * indicating 

tolerant lines. 
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Figure 9: Bar plot showing response of continuous salt stress among flowering stage on Relative 

reduction in number of stems on day 62 of 14 ATag lines compared to WT Col0. Bars represent 

± SE, N= 3. The data are average of 3 replicates, with ** indicating significance at p-value ≤ 

0.01, * indicating significance at p-value ≤ 0.05. Red * indicating sensitive lines, green * 

indicating tolerant lines.  



 

101 

 

Figure 10: Bar plot showing response of continuous salt stress among flowering stage on 

Relative reduction in Chlorophyll of 14 ATag lines compared to WT Col0. Bars represent ± SE, 

N= 10. The data are average of 10 replicates, with ** indicating significance at p-value ≤ 0.01, * 

indicating significance at p-value ≤ 0.05. Red * indicating sensitive lines, green * indicating 

tolerant lines.  
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Figure 11: Mineral nutrient content analysis expressed as % dry weight of wild type Col0 and 

ATag lines lines 440-B4-7 and 441-H1-70 (Control 0 NaCl and Stress 150 mM NaCl). The error 

bars are showing the 99% and 95% confidence interval of t-test. The data are average of three 

replicates, with ** indicating significance at p-value ≤ 0.01, * indicating significance at p-value 

≤ 0.05.  (A) Potassium, (B) Sodium, (C) Calcium, (D) Magnesium. 
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Chapter 3 

Identification and Characterization of Salinity Tolerance Genes 

from Arabidopsis Activation Tagged Mutant Lines 
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Abstract 

Many crops, selected to produce under optimal field conditions are often faced with high saline 

environments, either naturally occurring or produced as a consequence of continuous agricultural 

production. There have been long-term efforts using many genetic strategies to identify salt 

tolerance genes in various plants species. Gene knockouts are one of the genetic tools by loss of 

function mutations that can reveal such functions, but this method is mostly not able to reveal the 

functions of redundant genes or those with a minor phenotype. Gene overexpression analysis, 

including the use of activation-tagging using Agrobacterium T-DNA and plant transposons, has 

been used in model plants to identify gain-of-function mutants for genes that have a redundant 

function, but have a quantitative determined phenotype that can be screened for. In this study, 

activation tagging using the maize En-I (Spm) transposon system was applied using a collection 

of about 300 Arabidopsis thaliana mutant lines to identify and characterize activation tagged (I-

ATag) salt tolerant candidate genes from several tolerant mutant lines. The genomic DNA 

flanking sequences of I-ATag insertions of the activating I-element (AIE) were isolated using 

TAIL PCR then sequenced, and the candidate flanking genes characterized. Two tolerant lines, 

AIE7 and AIE70, were selected that showed over-expression of adjacent genes which could be 

candidates for salt stress response and tolerance, caused by the CaMV 35S enhancer present in 

the AIE enhancing expression of the candidate adjacent genes. The AIE7 mutant line with the 

activation tagged AT2G41430 genes, annotated as ‘Early Response to Dehydration’ (ERD) 

protein family, and AT2G41410, annotated as ‘EF-hand calcium binding protein’, are candidate 

genes for salt tolerance.  
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1.0 Introduction 

Salt stress is one of the environmental stress factors that cause significant losses in agricultural 

land and crop production. A high level of soluble salts in the soil, comprising mainly of NaCl, 

affects water availability and causes osmotic stress leading to the slower growth of plants. The 

major physiological perturbation is also caused by salt entering due to the transpiration pull, 

damaging the cells in transpiring leaves and limiting the growth of plants. There are two phases 

of growth response affected by salt stress. The first phase effects are minor, in which the plant 

inhibits the building up of Na+ and Cl- ions, and salt is effectively excluded or 

compartmentalized in vacuoles, with a response quite similar to drought response. The second 

phase is the major response, wherein the salt is built up in the cell wall and cytoplasm, and 

causes dehydration of the cell (Munns, 1993).  

Tolerance of plants to salt stress can be accomplished by regulating the expression level 

of the effectors or regulator genes, to re-establish cellular ion homeostasis during salt stress 

conditions, and promote successful adaptation (Zhu, 2001). The genes that can increase salt 

tolerance fall into three main categories: transporters that maintain the uptake and efflux of salts, 

genes that have protective and osmotic functions, and regulatory genes that maintain growth 

under saline soil by coordinate regulation of plant protective responses. To catalog these, the 

Arabidopsis Stress Responsive Gene Database (ASRGD) has recorded 139 salt stress responsive 

genes (Borkotoky et al., 2013) that reveal a number of different stress response mechanisms.  

Arabidopsis genes that have been characterized by mutant analysis to be associated with 

increased salt-tolerance phenotypes include the sañ, RS17, RS19, RS20, pst1 and the sos 

mutants, namely SOS3, SOS2, and SOS1 (Quesada et al., 2000; Zhu, 2000). The sañ sets of 
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mutants were the result of extensive screening for mutations in the Ler, Ws-2, and Col ecotypes 

of Arabidopsis (Quesada et al., 2000). Mutagens used for these gene backgrounds include EMS, 

fast neutrons and T-DNA (Quesada et al., 2000). RS17, RS19 and RS20 are mutants (for 

resistance to salts) selected from Arabidopsis that exhibit the ability to germinate under saline 

conditions (Saleki et al., 1993). These mutant lines showed tolerance not only to NaCl but also to 

KCl, K2SO4, LiCl and mannitol (Saleki et al., 1993). Another salinity-tolerant mutant found in 

Arabidopsis is the pst1 mutant (for photoautotrophic salt tolerance1), which has the ability to 

“detoxify active oxygen species and thus enhances plant tolerance to oxidative stress as well as 

salt stress” (Tsugane et al., 1999; Zhu, 2000). Given its detoxification ability, the pst1 mutant 

was also capable of tolerating other abiotic stresses such as light, heat, freezing, and drought 

(Tsugane et al., 1999; Zhu, 2000).  

Other Arabidopsis mutants found associated with salt-tolerance are the sos, or salt overly 

sensitive mutants (Zhu, 2000). There are three sos mutants, SOS1, SOS2 and SOS3. The SOS3 

gene was shown to encode a Ca-binding protein that has three EF- hands (Liu and Zhu, 1998; 

Zhu, 2000; Ishitani et al., 2000). The SOS2 gene encodes a “Ser/Thr protein kinase of 446 amino 

acids with an estimated molecular mass of 51 kD (Zhu, 2000), and the most recently cloned 

SOS1 gene was shown to encode a putative antiporter of sodium/hydrogen ions” (Shi et al., 

2000). The SOS genes play a significant role in establishing the salinity tolerance pathway in 

plants. Other genes involved in conferring a salt-tolerance phenotype, in other crop plants such 

as maize, include the PMP3 gene, which plays an important role in establishing a successful ion 

homeostasis mechanism under salt stress (Fu et al., 2012). The PMP3 gene enhances ion 

homeostasis by maintaining membrane potential in cells which results in better regulation of ion 

absorption under saline conditions (Fu et al., 2012).  
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Another gene involved in salt tolerance is the barley HVA1 gene which enhances relative 

water content in leaves, increases leaf and root biomass, and increases plant survival under 

stressful conditions (Hong and Ho. 1992). The HVA1 gene was also shown by transformation to 

increase salt tolerance in maize (Hong and Ho. 1992). Aside from the HVA1 gene, the gene mtlD 

also confers salt and drought tolerance phenotype in maize, and the combination HVA1 and mtlD 

imparts higher relative water content in leaves and overall higher plant survival compared to 

transgenic plants mutated with HVA1 or mtlD (Nguyen et al., 2013). Under saline conditions, 

plants expressing a combination of the HVA1 and mtlD genes showed fresher and drier shoots 

and shoot matter as compared to that observed in plants expressing just one of the two genes 

(Nguyen et al., 2013).  

 Genes that regulate the activity of protein kinases play a significant role in the 

development of salinity tolerance traits in plants. This is because protein kinases are largely 

involved in the signal transduction associated with salt stress and ABA (Shen et al., 2001). In 

plants, the protein kinase gene Esi47 from the salt-tolerant species of wild wheatgrass 

(Lophopyrum elongatum) was found to be in the “novel Arabidopsis protein kinase” group, 

which largely includes serine/threonine protein kinases in plants (Shen et al., 2001, p. 142). To 

date, there are three (3) Esi47 homologs described in Arabidopsis (Shen et al., 2001). All of these 

homologs show different mechanisms in providing tolerance to salt stress and ABA response in 

the leaves and roots of Arabidopsis plants (Shen et al., 2001).   

 In addition to the functional genes for salt tolerance, transcription factors have also been 

associated with abiotic stress, including salt tolerance. Transcription factors play an important 

function in stress signal transduction and the modulation of gene expression during the 

development of plants (Jin et al., 2013). Specifically, TFs contain DNA domains whose function 
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is to bind to cis-acting elements located in the promoter region of specific downstream genes 

(Saibo et al., 2009). TFs function by either inducing or repressing RNA polymerase activity in 

order to regulate gene expression (Rabara et al., 2014). Given this function, TFs are viewed as 

master regulators of genes and cellular processes and this ability makes them an ideal candidate 

for modifying stress tolerance traits in crop plants (Kasuga et al., 2012; Beckett, 2001; 

Riechmann et al., 2000; Kumar & Bandhu., 2005; Mizoi et al., 2012: Rushton et al., 2010; Shu et 

al., 2015; Puranik et al., 2012; Wang et al., 2014; Jin et al., 2013). Families of genes that are 

identified to encode TFs include AREB, DREB, WRKY, NAC, and bZIP (Kasuga et al., 2012; 

Beckett, 2001; Riechmann et al., 2000; Kumar & Bandhu., 2005; Mizoi et al., 2012: Rushton et 

al., 2010; Shu et al., 2015; Puranik et al., 2012; Wang et al., 2014; Jin et al., 2013), shown in 

Table 1. 

Among the important traits regulated by TFs is plant tolerance to abiotic stresses, such as 

drought and salinity stress (Joshi et al., 2016). The group of genes that is regulated by TFs is 

termed a regulon, and there are four regulons related to abiotic stress and salinity tolerance 

(Saibo et al., 2009). These four regulons are CBF/DREB, NAC and ZF-HD, AREB/ABF, and 

MYC (Saibo et al., 2009).  

The CBF/DREB regulon is a group of genes related to the plant’s ability to tolerate cold 

stress (Dubouzet et al., 2003). The CBF/DREB regulon exclusively exists in plants, including 

those that do not exhibit cold acclimation properties (Dubouzet et al., 2003). The CBF/DREB 

regulon is activated rapidly and temporarily by cold stress, and the TFs that regulate this regulon 

also signal the expression of other genes whose functions are related to cold stress response and 

tolerance (Dubouzet et al., 2003). Moreover, the overexpression of CBF/DREB1 in Arabidopsis 
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plants increased the survival rate of the plant in response to salt and drought (Jaglo-Ottosen et al., 

1998; Kasuga et al., 1999).  

 The second regulon comprising of NAC and ZF-HD, shows expression when the plant is 

exposed to dehydration and high salinity stress (Saibo et al., 2009). TFs regulating the NAC and 

ZF-HD regulons are responsible for activating the ERD1 gene that is associated with dehydration 

stress tolerance in plants (Nakashima et al., 1997; Tran et al., 2007). But aside from ERD1, the 

TFs in NAC and ZF-HD regulons are found to activate other genes related to stress tolerance as 

shown by the finding that overexpression of the NAC regulon results in enhanced drought 

tolerance in Arabidopsis, but without the activation of the ERD1 gene (Tran et al., 2007). The 

CBF/DREB, NAC and ZF-HD regulons are all ABA-independent, and their expression is 

unrelated to the presence or lack of abscisic acid (Saibo et al., 2009).  

The third regulon, AREB/ABF, contains either AREBs or ABFs that are generally 

characterized as bZIP TFs capable of binding to the ABRE motif and induce expression of ABA-

dependent genes (Saibo et al., 2009). The TFs of the AREB/ABF regulon are also associated 

with the activation of other protein kinases that depend on the ABA signal transduction pathway 

(Mustilli et al., 2002; Yoshida et al., 2002). These TFs are capable of regulating stomatal closure 

in times of drought, high salinity and ABA stress (Mustilli et al., 2002; Yoshida et al., 2002).  

The fourth regulon, MYC/MYB, is activated when plants are exposed to drought stress 

(Saibo et al., 2009). MYC and/or MYB TF binding cis-elements are located in the promoter 

region of the RD22 gene that is associated with the plant’s ability to tolerate drought stress, 

depending on the presence of ABA signals (Abe et al., 2003). Expression of the RD22 gene 

through the ABA signal transduction pathway also activates the MYC/MYB TFs, which then 
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results in enhanced sensitivity to ABA and increased drought tolerance (Saibo et al., 2009). In 

contrast to the first and second regulons, the third and fourth depend on the presence of ABA 

(Abe et al., 2003).  

The four regulons discussed above are associated with the plant’s ability to tolerate 

abiotic stress. Among the four regulons, the third one shows to have a direct association with 

high salinity traits in plants. Despite this, it is still necessary to characterize the other regulons 

and the mechanism of action of their TFs. This is because TFs are often multifunctional and not 

confined in activating a limited group of genes, as TFs can work in regulating the expression of 

other gene networks and factors such as protein kinases.  

Transposon mutagenesis has been used extensively to screen for salt tolerance genes. 

Transposon activation tagging approach is a comparatively recent approach that targets inducing 

gain-of-function of genes, in contrast to the suppression or gene knockout approaches that mostly 

do not give phenotype because of the redundancy of genes involved in stress response and 

essential biosynthetic pathways (Marsch-Martinez et al., 2002). Transposon based activation 

tagging is more efficient compared to T-DNA (Marsch-Martinez et al., 2002). This is likely 

based on the fact that transposons are inclined toward insertion at multiple locations in the 

chromosome that are near naturally occurring transcriptional active regions, such as in the 

introns of the genes or in coding regions, and can contribute to the activation of nearby genes or 

switch on a number of genes along the chromosomal segment in the range of enhancer activity 

(to a distance about 10kb) (Marsch-Martinez, 2002). Enhancers work by activating gene 

expression levels, often maintaining the regulatory temporal and spatial patterns and thus 

quantitatively increasing the effect of gene activity. This is in contrast to overexpression 
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constructs that increase gene expression constitutively, thus transposon activation tags maintain 

the natural regulatory pattern but increase the expression of the tagged gene.  

Activation tagging is particularly useful in tracking genes involved in metabolism, 

enabling the evaluation of the vast repertoire of natural plant compounds that are expressed 

either in low quantities or at specific sites (Borevitz et al., 2000). Since transposon-based 

activation tagging (especially the En-I/Spm system) has been effective in generating a high 

frequency of activated/overexpressed genes, it was regarded as an effective way to increase the 

expression and function of tagged genes that are involved in the signal transduction or 

transcriptional regulatory pathways of salinity tolerance. This effort is a follow up of others who 

have used the En-I activation tagging system for identifying drought stress tolerance genes, 

although salinity tolerance phenotypes have also been activated in these general stress tolerant 

mutants. Therefore, the Arabidopsis activation tagged mutant lines previously developed 

(Marsch-Martinez et al., 2002) and used by others in the lab (PhD thesis Shital Dixit), were used 

in this research in order to identify salt stress tolerant genes in Arabidopsis.  
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2.0 Objective  

The objective of this chapter is to identify and characterize genes from Arabidopsis that confer 

salt tolerance in plants.  

To achieve the objective of this study, a forward genetics strategy of gain-of-function activation 

tagging via transposons was employed. The maize Enhancer-Inhibitor (En-I) system, also known 

as the Suppressor-Mutator (Spm) transposon system was used to generate activation tags (AT) in 

the Arabidopsis genome. The I-ATag transposon used in this study contains the CaMV 35S 

enhancer, which can be mobilized in the genome by transposition, stabilized, and act as an 

enhancing element on surrounding genes in the genome (Marsch-Martinez et al., 2002). The I-

ATag transposon was proposed to function as a generator of gain-of-function mutants that could 

be selected in a screen to identify salinity tolerance mutants. Salinity tolerance would be 

identified in Arabidopsis mutant plants by the phenotypes of enhanced growth or biomass 

compared to the wild type plants grown under salt treatment. The tagged gene for salt tolerance 

could then be identified as a gene flanking the I-ATag insertion, which would have enhanced 

expression.  
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3.0 Materials and Methods 

3.1 Plant Genotypes for Activation Tagging  

The methodology used in this study is similar to that described previously for the En-I ATag 

system in ecotype Columbia (Harb and Pereira, 2011; 2013), using the transformation construct 

described previously for generation of the En-I ATag system in ecotype Wassilewskija (Ws) 

(Marsch-Martinez et al., 2002). Arabidopsis Columbia ecotype transformants containing the En-I 

ATag construct were used for selection of transposed I-ATag activation tagged plants from T3 

progeny seeds of putative salt-tolerant and salt-sensitive lines (440-B4-7, 440-E1-15, 440-F2-20, 

440-G3-25, 440-B3-34, 440-B4-35, 440-H4-48, 440-C2-54, 440-D1-57, 440-F2-64, 440-G3-68, 

440-H1-70, 440-A1-73, 441-E2-83, 441-E4-85, 441-G3-89 and 440-G4-90) as described in the 

previous chapter on salinity screening. Arabidopsis ecotype Columbia (Col) was used in all 

experiments as sensitive negative control. The ATag lines were renamed AIE7, AIE15, AIE20, 

AIE25, AIE34, AIE35, AIE48, AIE54, AIE57, AIE64, AIE68, AIE70, AIE73, AIE83, AIE85, 

AIE89, and AIE90.  

 

3.2 Selection of BASTA resistant ATag lines 

The ATag line seeds were germinated by imbibition with water and stratified at 4 °C in the dark 

for about 3 days. Later, seeds from respective lines were sown in pots occupied with moist soil 

(professional growing mix) from Sun Gro Horticulture Company, and then all the pots were kept 

in the growth chamber at 22°C with 12 hour day/night cycles, and 150 to 200 μmol m-2 s-1
. 

Plants were fertilized once a week before salt stress application using the water-soluble fertilizer 

MiracleGro® All Purpose Fertilizer (24N-8P-16K).  
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After the seeds germinated, 10 seedlings of each line were sprayed twice a week for 2 weeks 

with a 0.7 mL/L finale (Basta herbicide contains 150 g/L glufosinate ammonium). The survived 

seedlings were selected for the genotyping experiments. 

 

3.3 Salt Stress Treatment 

For salt treatment, 14-21 day old seedlings at the vegetative stage were separated into two 

groups; salt treated and untreated control grown in separate trays. The salt-treated plants were 

maintained in a 150 mM NaCl solution for one week, and later physiological, phenotypic and 

genetic parameters were measured, along with untreated control plants for comparison.  

 

3.4 Genomic DNA isolation 

200 mg of leaf samples were collected randomly from young plants (15-21 days) and DNA was 

isolated from the samples using a CTAB protocol for DNA extraction (Harb & Pereira, 2011; 

2013). Green leaf tissue was ground and homogenized using 500 μl of 2X CTAB buffer (pre-

mixed with 2% -mercaptoethanol and pre-heated at 650C). The homogenized tissue was 

incubated at 650C for 30 min with intermittent swirling. The tubes were next cooled briefly, then 

given an equal quantity (500 μl) of chloroform. Isoamyl alcohol (24:1) was added and the 

contents were mixed gently. The samples were then centrifuged at 5000 rpm for 15 minutes at 

room temperature. The upper aqueous layer was collected and transferred into new tubes, and 

then ice-cold isopropanol was added with the equal amount of upper aqueous. The mixture was 

incubated at -20 0C for 30 min, and then samples were centrifuged at 12000 rpm for 1 minute. 

After precipitation of nucleic acids, pellets were washed with cold 70% ethanol and air-dried. 
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The pellet was then suspended in 30 µl TE buffer and DNA concentration was measured using 

the NanoDrop Spectrophotometer. The DNA samples were then stored at -20 °C. 

 

3.5 Thermal Asymmetric Interlaced PCR (TAIL-PCR) 

Three reactions of TAIL-PCR were performed to identify genes adjacent to transposons using 20 

ng DNA and the primers listed in Table 2 based on the protocol described by Harb and Pereira, 

2011; 2013. DNA was isolated as described above from the candidate tolerant and sensitive 

mutant lines as well as WT Col-0. The primary TAIL PCR reaction consisted of a mix of 2 µl of 

DNA template, 1× PCR buffer, 1.5 mM MgCl2, 0.1 mM dNTPs, 1 U Taq polymerase, 0.15 μM 

Int2 primer (which is the furthest I-transposon right-junction (RJ) primer of the transposon 

insertion with every sample), and 2 μM degenerate primers (AD1, AD2, AD3, AD4, AD5, and 

AD6) individually in 6 separate reactions in a total of 20ul reaction mixture. The primary round 

of the Tail PCR is as follows: 1 Cycle denaturation at 94 °C for 2 minutes, 5 Cycles at 94 °C for 

1 minute, 62 °C for 1 minute, 72 °C for 2 minutes, 1 Cycle at 94 °C for 1 minute, 25°C for 3 

minutes, 72 °C for 2 minutes. Then there are 15 Cycles of the following: 2 cycles at 94 °C for 30 

seconds, 65 °C for 1 minute, 72 °C for 2 minutes, 1 Cycle at 94 °C for 30 seconds, 45 °C for 1 

min, and 72 °C for 2 minutes. The primary tail PCR products were then diluted 1: 40 with sterile 

distilled water and the diluted product was used as the template for the secondary TAIL PCR 

reaction. The secondary tail reaction was comprised of mix of 1μL of the diluted primary round 

tail PCR product, 1× PCR buffer, 0.1 mM dNTPs, 1 U Taq polymerase, 0.2 μM Irj-201 primer 

(which is the one inside the RJ - primer of the transposon insertion with every single reaction), 

and 2 μM degenerate primers (AD1, AD2, AD3, AD4, AD5, and AD6) in separate reactions of a 

total of 20ul reaction mixture each. The secondary round in the Tail PCR begins with 1 Cycle at 
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93°C for 1 minute then 13 cycles of the following: 2 Cycles at 94 °C for 30 seconds, 62 °C for 1 

minute, 72°C for 2 min, 1 Cycle at 94 °C for 30 seconds, 45 °C for 1 minute, and 72 °C for 2 

minutes. The secondary tail PCR reaction products were then diluted using sterile distilled water 

by 1:10 and used as the template for the tertiary reaction. The tertiary tail PCR reaction 

contained 1 μL of the diluted secondary PCR product, 1× PCR buffer, 1.5 mM MgCl2, 0.1 mM 

dNTPs, 1 U Taq polymerase, 0.2 μM DSpm1 primer (which is the nearest to the I-transposon 

right junction primer of the transposon insertion with every single), and 2 μM degenerate primers 

(AD primers 1-6) separately in a total volume of 40 µl reaction mixtures. The tertiary tail PCR 

reaction was performed as follows: 1 Cycle at 93 °C for 1 minute, 20 Cycles at 94 °C for 30 

seconds, 45 °C for 1 minute, and 72 °C for 2 minutes. The products of the tertiary tail PCR were 

then run on a 1% agarose gel and the distinct bands were excised from the gel. Specific fragment 

bands of interest were then purified and sequenced as explained above, then the sequences were 

aligned to the Arabidopsis genome using Phytozome 9.1                             

(http://phytozome.jgi.doe.gov/pz/portal.html) and The Arabidopsis Information Resource TAIR        

(https://www.arabidopsis.org/index.jsp) for the identification of the position of the Activation tag 

element insertions and information of the tagged genes. 

 

3.6 Polymerase Chain Reaction (PCR) 

Genomic DNA (20 ng) of the mutant lines, was amplified with gene specific and transposon 

primers, in a PCR reaction mix using a standard PCR program: initial denaturation at 950C for 5 

minutes, then 29 cycles of 950C for 1 minute, Tm (melting temperature) at 58 0C for 30 seconds, 

720C for 2 minutes, and final extension at 720C for 10 minutes. The PCR product was gel-

purified using the EZNA Gel Extraction Kit from Omega Bio-Tek Inc and sequenced using gene 

http://phytozome.jgi.doe.gov/pz/portal.html
https://www.arabidopsis.org/index.jsp
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specific primers (Table 3) to verify that the products amplified were the predicted target 

sequence based on TAIL-PCR results (section 3.5).  The sequenced PCR product with many N’s 

and mismatches were additionally cloned into TOPO TA Cloning vector kit (Invitrogen) in order 

to obtain quality sequence of the tagged gene where the transposon was inserted. 

 

3.9 Analysis of Transposition of Activation Tag Elements using Southern Blot Analysis  

Southern blot hybridization analysis was used to identify the copy number of insertion sites in 

the Arabidopsis mutant genome, with the wild type Columbia-0 used as negative control.  For 

Southern blot analysis, at least 500 ng or (1g genomic DNA) of each plant was digested 

overnight with EcoRI. Digested DNA samples were then loaded and electrophoresed on a 0.8 % 

w/v agarose gel with ethidium bromide in 1X TAE buffer (40 mM Tris-acetate and 1 mM 

EDTA). The separated DNA fragments were transferred to Hybond N+ membranes (Amersham, 

Buckinghamshire, UK GE Life Sciences Inc.). Restriction digestion with EcoRI enzyme enables 

the differentiation of I-ATag elements in the original full donor site (FDS) of the vector and of 

the empty donor site (EDS) of transposed ATag lines.  In order to distinguish the EDS and FDS 

lines along with the number of ATag copies, the BAR gene fragment, a part of the ATag 

element, was used for hybridization. The 513 bp BAR probe was amplified by PCR from a 

plasmid DNA as a template using primers:  

Bar F1: 5’-ACCATGAGCCCAGAACGACGC-3’  

Bar R1: 5’-CAGGCTGAAGTCCAGCTGCCAG-3’ 

The PCR products were then gel purified from the specific band used for making the probe. The 

membrane was pre-hybridized for two hours in hybridization buffer, and then in the 
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hybridization buffer with a radioactive 32P-labeled DNA probe that was carried out overnight at 

65C in the hybridization oven. The membrane was washed 3 times at room temperature for 15 

minutes using 3 solutions of 2X SDS+ 0.5X SDS, 1X SDS+ 0.25X SD, (0.5X SDS+ 0.125X 

SDS consecutively at 65°C, respectively. Membrane signals were detected and exposed to X-ray 

films by autoradiography. 

 

3.10 Genetic Analysis of mutants: 

The I-ATag plant lines AIE7, AIE20, AIE25, AIE34, AIE64, AIE68, AIE70, AIE73, AIE83, 

AIE85 were verified by sequencing the transposon flanking DNA, with transposon specific 

primer Irj201 and gene specific primers where known. The population of 20 plants of the stable 

transposed elements AIE7 and AIE70 were examined for visible morphological phenotypic traits 

and then genotyped. Three replicates of putative mutants used as pollen donors were crossed to 

the wild type ecotype Columbia (Col-0) to segregate any other background ATag inserts. The F1 

progeny were sown and sprayed with Basta herbicide, and the Basta resistant plants were then 

allowed to self-fertilize to confirm the heritability and dominance of the phenotypic traits. 12 

plants of the F2 progeny seedlings were sprayed 3 times with a 0.7 mL/L Finale (Basta herbicide 

contains 150 g/L glufosinate ammonium) for any phenotypic trait segregation. The genomic 

DNA samples of the 24 Basta resistant plants of the F2 were tested for homozygosity and 

genotyped by PCR analysis using two reactions, one reaction with gene specific primers, one 

reaction with the transposon specific primer Irj201, and one for each direction of the genes 

specific primer (forward or reverse). 
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3.11 Gene Expression Analysis 

3.11.1 RNA Isolation 

Total RNA was extracted from the leaf of all samples using Trizol (Invitrogen). The RNA 

isolation procedure began by powdering leaf tissue in liquid nitrogen and adding 1 ml of Trizol 

to the ground tissue. The samples were then incubated at room temperature for 5 minutes and 

then 200 µl of chloroform was added. The tubes of mixture were vortexed well and the mixed 

solution was then incubated at room temperature for about 2 min. The tubes were then 

centrifuged at 12000 rpm for 15 minutes at 40C. The supernatant of the samples was then 

collected and 500 µl of cool isopropanol was added to the collection and mixed, followed by 

incubation at room temperature for 10 minutes. The tubes were then spun in the centrifuge at 

12000 rpm for 10 minutes at 4 0C, the tubes removed carefully from the centrifuge, the 

supernatant discarded, 500 µl of 75% ethanol added, and the tubes again centrifuged at 7500 rpm 

for 5 min at 40C. Finally, the pellets were kept to air-dry for about 10 minutes and then 35 µl of 

nuclease free water wasadded, and the RNA solution stored at -800C. 

 

3.11.2 cDNA synthesis 

To set up the cDNA synthesis reactions, 4 µg of RNA sample was used for each reaction. RNA 

samples were treated with 2 µl of Promega RQ1 DNAse 1, 3.5 µl 10 X RT Buffer, 4 µl MgCl2, 

0.5 µl RNase inhibitor, and dH2O based on the RNA sample concentration. The final reactions 

of 34 µl were incubated in the PCR machine at 37°C for 30 min. Afterward, the DNAse 1 was 

inactivated by adding 1 µl of RQ1 DNA stop solution followed by incubation in the PCR 

machine at 650C for 10 min. The reaction mixture was then immediately placed in ice for 15 

minutes, and 5 µl of the following mix was added to the RNA: 0.5 µl 10xRT buffer, 1 µl dNTPs, 
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1 µl Random Primers, 1 µl Reverse Transcriptase Enzyme, and 1.5 µl dH2O. The final reaction 

was made to 40 µl. Finally, the RT reaction was carried out at 42°C for 1 hour and 95°C for 5 

minutes. The cDNA concentration was then measured using a NanoDrop Spectrophotometer and 

the cDNA samples were stored at -20 °C. 2 µl of the total RT reaction was used to perform the 

qPCR with the gene specific primers (Table 4). 

 

3.11.3 Quantitative PCR (qPCR) 

To set up the qPCR, 10 µl of the reaction mixture was used, which was comprised of 2 µl cDNA, 

5 µl qPCR buffer (GoTaq® qPCR Master Mix, Promega), 0.5 µl of each of the forward and 

reverse primers, and 2 µl H2O. The qRT-PCR experiments were conducted using GoTaq® qPCR 

Master Mix (Promega), gene-specific primers (Table 4), and Ubiquitin used as standard with 

three biological replicates in a CFX-96 Bio-Rad thermocycler (Bio-Rad). Increasing the 

temperature (0.5°C 10 s-1) from 55°C to 95°C was used for melt curve analysis. Un-transcribed 

RNA was also run as negative control2. The fold change in expression of each sample in 

individual experiments was determined by normalizing the Ct value for each gene against the Ct 

value of Ubiquitin reference genes, and was calculated relative to the corresponding control 

using the equation 2-ΔΔCt.  

 

3.12 PCR of Transposed element lines 

To determine the structure of the En-I transposon cassette after the I-Atag transposed (Marsch-

Martinez et al., 2002), primers from the En transposon were designed from sequences flanking 

the En/Spm transposable element at promoter junction, and the Right Border (RB) of the T-DNA 
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construct. The primers RGT-35S and RGT-SSU were designed from the terminators of the 35S 

and SSU in the construct to check if I-ATag transposon was excised from construct or still there, 

and used to amplify the empty donor site fragment to detect excision of the AT element (Table).  

En-1010F- CTGCAGCCAAACACATTTTCGC 

En-1474- ACCATGAGTGACACTGTCGAATCC 

RGT-35S-TCAACACATGAGCGAAACCC 

RGT-SSU- GTTGGTTGAGAGTCTTGTGGCCT 

Genomic PCR was performed using the gene specific primers to test if the Activation tag I-ATag 

elements moved from the original position in the construct. The PCR reaction mix comprised of 

1 µl template DNA, 1 µl of each the forward and reverse primers, 10 µl of PCR buffer and 7 µl 

of sterilized water. The PCR reaction conditions used were initial denaturation at 950C for 5 min, 

followed by 29 cycles of 950C for 1 min, 580C for 30 seconds, 720C for 2 minutes and final 

extension at 720C for 10 minutes. The products of the PCR reaction were run on a 1% agarose 

gel and then photographed under exposure of the gel to UV light. 

 

3.13 Genotypic and Phenotypic analysis of Candidate genes: 

The knockout mutant seeds of the candidate genes for salt tolerance, based on qPCR expression 

analysis of the ATag flanking genes, were obtained from The Arabidopsis Biological Resource 

Center (ABRC). The putative candidate genes were AT2G41400, AT2G41410, AT2G41420, 

AT2G41430, AT2G41440, AT3GG5280, and AT3GG5240, which were grown in the growth 

chamber and DNA isolated. Genomic DNA samples of the individual candidate lines were used 

to test for homozygous inserts using gene specific primers listed in Table 5. The homozygous 
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insert genotypes and the wild type Columbia with 10 replicates were grown and tested for one 

week for salinity tolerance using 100 mM NaCl, beginning gradually with 50 mM.  Then the 

samples for control and stress conditions were collected and kept in the oven at 70 °C for three 

days until completely dry. Relative reduction in biomass of the samples was calculated using the 

equation [(Biomass under control condition) – (Biomass under stress condition) / (Biomass under 

control condition)]. The data was analyzed using Analysis of Variance (ANOVA) and the t-Test: 

Two-Sample Assuming Equal Variances. 



 

123 

4.0 Results 

4.1 Isolation of ATag transposon flanking DNA by TAIL-PCR: 

TAIL-PCR was performed to identify DNA flanking the insertion sites of the transposed 

elements in the tolerant/sensitive AIE lines that were identified in the previous chapter in screens 

for salt tolerance. The AIE lines included 13 salt tolerant (AIE7, AIE15, AIE25, AIE34, AIE35, 

AIE48, AIE54, AIE57, AIE68, AIE70, AIE73, AIE85 and AIE90) and 4 salt sensitive lines 

(AIE20, AIE64, AIE83, AIE89). Thermal asymmetric interlaced polymerase chain reaction 

(TAIL-PCR) is an effective technique used to amplify unknown genomic sequences adjacent to 

known genomic sequences present in the insertion site. In this study three specific nested primers 

in the AIE transposon were used in combination with six arbitrary degenerate primers in the 

genome for amplification of the DNA adjacent to the activation tagged element (Figure 1). The 

transposon specific primer and AD primers are designed to have changes in annealing 

temperatures with alternating cycles of high and low annealing temperature, leading to increased 

specificity of amplification of yield products (Singer et al., 2003). The primary reaction has 

primer Int1, which is the furthest from the transposon insertion site adjacent to the tagged gene. 

The secondary reaction utilized primer Irj-201, which is located closer to the I-ATag terminus. 

Lastly, in the tertiary reaction the dSpm1 primer is used, which is typically annealed toward the 

end of the AIE element junction, adjacent to the tagged gene. Using this method, the specificity 

of amplifying the target sequence is increased with each reaction, while the non-target sequence 

is decreased. The products of the tertiary TAIL-PCR reaction amplified using the third specific 

primer DSpm1 showed the gene-specific flanked sequence in all tagged ATag lines, however not 

all of the arbitrary degenerate primers with transposons amplified a product. The stringency of 

AD primers with transposon primer annealing near the gene depends on the mix of different 
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degeneracy level of AD primers during TAIL PCR reaction, therefore only some AD primers 

were able to amplify their target sequence. However, the TAIL PCR protocol successfully 

recovered flanking gene DNA fragments adjacent to the AIE for the tagged ATag lines (Figures 

2, 3, 4). 

 

4.2 Sequencing of TAIL-PCR products and position of transposon insertions: 

The extracted DNA from TAIL-PCR products after the last primer I-terminal inverted repeat 

(ITIR-3) was then sent to Eurofins Genomics LLC for sequencing. The DNA sequencing 

chromatogram data were analyzed and the sequences were identified against the Arabidopsis 

genome using The Arabidopsis Information Resource (TAIR) resources. The output from the 

sequencing of tagged genes that were identified in the AIE mutant lines is shown in Table 6. 

Subsequently, the position of transposon AIE insertions in the Arabidopsis genome of Columbia 

activation tag mutants were identified using The Arabidopsis Information Resource (TAIR) and 

Phytozome v12.1 resources. Based on BLASTN results, the coordinates and direction of 

candidate surrounding genes located up to 10 kb upstream and 10 kb downstream of the ATag, 

and their distance from the 35S enhancer in the AIE insertion was calculated, and models for the 

mutant structure were drawn (Figure 5).  

The range of flanking candidate genes was chosen based on previous studies of Activation 

tagged genes, in which the expected and verified enhancer activity of the 35S CaMV enhancer 

on a gene can range from 10 kb upstream to 10kb downstream of the insertion site (Weigel et al., 

2000; Marsch-Martinez, et al., 2002). In most mutant lines the ATag element was found to have 
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inserted in the coding region (AIE7, AIE20, AIE70, AIE73, AIE85, AIE89 and AIE90) and for 

some mutants the insertion was in 3` UTR (AIE34 and AIE83) (Figure 5).  

 

4.3 Characterization of ATag mutant lines: 

The Arabidopsis Information Resource (TAIR) database was used for collecting genetic and 

expression data of the candidate genes amplified with TAIL PCR. The activation tagged gene 

with gene loci number, function, and expression from various tissue types is summarized in 

Table 1. Based on the position of transposon insertions in the Arabidopsis genome the results 

showed that the activation elements were located in the coding region of genes for most of the 

mutant lines. In such cases, there are multiple possible scenarios that can cause the salt stress 

phenotypes. First, only homozygous lines or knock-outs of the tagged gene can contribute to the 

phenotype. Secondly, there can be multiple undetected insertions of transposons in the genome 

contributing to the phenotype. Last, the insertion in the heterozygous state with the activation tag 

enhances the activity of the nearby genes and contributes to the salt stress phenotype. In order to 

distinguish between the multiple possibilities, a systematic genetic and molecular approach was 

taken to understand the role of the activation tag for salt tolerance. 

 

4.4 Southern Blot Analysis of Transposition of ATag elements: 

In order to test whether there are multiple I-ATag inserts in the mutant genome, a Southern blot 

for genomic DNA was performed. The Southern blot analysis with a BAR gene probe on the 

activation tag lines showed a number of single or multiple copy inserts with the Basta gene probe 
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(Figure 6). The results of the Southern blot analysis revealed that most of the ATag lines along 

with Col-wild type shared a common band. However, one lines contained one or more additional 

bands, suggesting multiple copies of transposed I inserts in the tagged lines (Figure 7). The 

tolerant line AIE7 contained a single insertion with a size of 12.000 kb. Single inserts were found 

in other activation tag lines but their estimated sizes were different: AIE34 (11.900 kb), AIE2 

(11.000 kb), AIE70 (4.100 kb), and AIE83 (1.900 kb). However, the AIE73 ATag line 

comprised of two copies of BAR inserts, one of 11.000 kb and the other of 4.000 kb.  The 

Southern blot analysis provided a number of restriction fragments hybridizing to the I-ATag 

element, which indicate the number of AIE insertion copies present at one or more loci in the 

mutant line genome. The lines with more inserts present in their genome could have multiple 

complete AIE element insertions. On the other hand, the lines with one insert indicate the 

presence of a single AIE insertion, which is most likely contributing to the salt-tolerance 

phenotype. The mutant lines with multiple insertions had to be crossed with the wild-type Col in 

order to segregate out the insert contributing to the salt tolerance phenotype. 

 

4.5 Segregation analysis of the Activation Tag lines: 

Since the Southern blot showed one insertion in the AIE7 and AIE70 lines and the tagged genes 

showed some candidate genes 10kb upstream or downstream that could be involved in salt 

tolerance, further genetic analysis of these lines was conducted to verify the T3 generation of 

Basta resistance segregation ratios. In the 20 plants from the T3 progeny of AIE7 and AIE70 

lines sprayed with Basta, all of the seedlings survived, suggesting that the original T2 plant was 

homozygous for the insert, or there was another I-ATag insert in the genome. However, genomic 
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PCR performed with gene-specific and transposon primers of both of the lines (AIE7 and AIE70) 

showed that they were heterozygous for the I-ATag insert. This suggests that the ATag line was 

probably homozygous, but with an En-transposase in the background giving rise to the wild-type 

fragment due to excision products in some cells, suggesting transposase activity in somatic cells 

(Figure 8, 9, 10, 11). The lower band represents the empty donor site of the target gene and the 

larger band includes the ATag transposon. The alternative explanation for none of the progeny 

being homozygous is that the homozygous embryos could be lethal. 

 

4.6 Genetic Analysis of Activation tagging lines AIE7 and AIE70: 

 In order to understand the genetic segregation data and conclude if the resultant phenotype is 

because of the ATag insert near the potential target gene, the pollen from the AIE7 T3 line and 

the AIE70 T3 line was crossed with the wild type (Col0). The F1 progeny of AIE7 survived 

Basta application, but the AIE70 progeny were completely dead. This indicates that the AIE7 

was successfully crossed with the wild type but the line AIE70 was not. Therefore, AIE7 

progeny were selfed and the F2 progeny were sprayed with Basta herbicide. The results of selfed 

progeny from eight F2 plants showed Mendelian segregation after Basta treatment. The 

segregation analysis of 8 F2 progeny shows that two F2 progeny were completely Basta sensitive 

(20 plants per progeny), four F2 progeny showed Mendelian segregation (20 plants per progeny) 

and two showed all Basta resistant (20 plants per progeny) (Figure 12). 

The PCR analysis of the genotyped 24 plants of the F2 progeny (12 from all Basta 

resistant progeny and 12 from segregating progeny) showed that all plants were heterozygous 

(using gene specific forward and reverse primers in one reaction) (Figure 13), and the transposon 
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Irj201 primer with the reverse direction of gene specific primers in another reaction (Figure 14). 

These results again suggest that the transposase is in the background (upper band in Figure 13) 

and is causing distortion in Mendelian segregation as observed in PCR analysis.  

In order to further test for the presence of the En transposase, the En-F and En-R primers 

with positions from En sequence as shown in Figure 17 were used, although technically the 

remnant cassette should have been deselected with the SU1 negative selectable marker (Marsch 

Martinez et al., 2002). However, out of 24 F2 progeny, 21 show amplification with the En 

primer, suggesting that the cassette is still segregating in the line and the En-transposase is active 

and can still destabilize the I-ATag element in some cells (Figure 15). The presence of the SU1 

marker gene was also checked using the primers RGT-35S and RGT-SSU (SSU = RuBisCo 

small subunit terminator) from the terminators of the 35S and SU1 in construct redrawn from 

Marsch-Martinez et al., (2002) (Figure 16, 17).  The PCR results confirm that there is absence of 

SU1 in the remnant cassette as expected for successful selection against presence by spraying 

with the pro-herbicide R7402 (Marsch-Martinez et al., 2002).  

In conclusion, the complete cassette of the En-IATag-SU1 gene was not completely 

deselected with the negative selection of the R7402 spray, as during Agrobacterium 

transformation the region from the right border at far right side of T-DNA cassette shown in 

Figure 17, (SSU marker for R7402 resistance) was probably truncated. The results from the F2 

progeny screen show one plant (#11) with no amplification with the En-F and En-R primers, but 

show amplification with the gene specific primer and transposon. This suggests that this plant is 

heterozygous and is probably stable, as it does not have the En transposase. Thus, the screening 

of the progeny of this line (plant #10) should be able to show Mendelian segregation. 
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The salinity screen results of the 18 F2 progeny of the crosses of Col0 to AIE7 displayed 

a significant decrease in the relative reduction of plant biomass with a mean of ~0.2 gm, 

compared to the wild type Col-0 mean of ~0.44 gm in response to salinity stress treatment 

(Figure 18). 

 

4.7 Expression Analysis of Tagged Genes and Neighboring Candidate Genes in Response to 

Salt Stress:  

To study the expression of the most likely activated candidate genes by the ATag element of the 

AIE7 and AIE70 lines for their role in salt tolerance, primers were designed based on insertion 

sites and the genome sequence of the genes. The primers were designed specific to the tagged 

genes and to the adjacent genes spanning 10kb upstream and 10kb downstream of the ATag 

insertion site. For AIE7, the putative AIE insertion was in gene AT2G41400, and the adjacent 

genes are AT2G41410, AT2G41415, AT2G41420, AT2G41430, AT2G41440 upstream and 

AT2G41390 and AT2G41380 downstream. For AIE70 the putative insertion was in gene 

AT3G50280 and the adjacent genes are AT3G50270, AT3G50260, AT3G50250, AT3G50240 

upstream and AT3G50290, AT3G50300 and AT3G50310 downstream. 

 Total RNA was isolated from the mutants AIE7, AIE70, and wild-type Col0 for control 

and stress treatment, cDNA was synthesized, and qPCR performed using UBQ10 (AT4G05320) 

as a reference control gene for expression. The gene expression analysis using qPCR is displayed 

for AIE7 in Figure 19 and for AIE70 in Figure 20. The analysis of the results shows that line 

AIE7 shows no expression for the gene AT2G41400- Pollen Ole e 1 allergen, and the unknown 

gene AT2G41415 in response to salt stress and control conditions. Based on the Arabidopsis eFP 
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browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi), the AT2G41400 gene is only expressed 

in the seed embryo but not in the shoot, which is used here for the gene expression analysis. 

However, the expression of some adjacent genes was highly induced in response to salt stress: 

AT2G41410-Calcium-binding EF-hand family protein (~3.5-Fold), AT2G41420- Proline-rich 

family protein (~1.8-Fold), AT2G41430- Early Responsive to Dehydration 15 (~12.1-Fold), 

AT2G41440- unknown protein (~7.8-Fold), AT2G41380- Methyltransferase activity (~7.11-

Fold), and AT2G41390- Pollen Ole e 1 allergen (~3.9-Fold).  

 

In the case of the line AIE70, the expression of the insertion tagged gene (AT3G50280- 

HXXXD-type acyl-transferase family protein) was same in both control and stress conditions, 

showing no expression. Genes AT3G50270 and AT3G50230, which belong to the same family 

of HXXXD-type acyl-transferase, AT3G50310- that encodes a member of MEKK subfamily, 

and AT3G50250 that involves in elemental activities, showed no expression in either conditions 

of control and stress. On the other hand, the expression for some adjacent genes was significantly 

up-regulated in stressed plants (AT3G50240- that is involved in cell wall organization was 

increased ~1.6-Fold, AT3G50260- that encodes a member of the DREB subfamily increased 

~0.2-Fold, and AT3G50270 a HXXXD-type acyl-transferase family protein increased by ~1.2-

Fold, suggestive of candidate genes for the phenotype. The higher expression for these adjacent 

genes could be a›ttributed to the presence of the CaMV 35S enhancer in the AIE element 

inserted in the tagged gene. Although there is no upregulation of the I-ATag insertion-tagged 

genes in AIE7 the AIE70 lines as expected, these lines function as stress conditional 

overexpressors for neighboring genes under salt treatment as shown by the qPCR data.  

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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4.8 Transposon Activation Insertion Tagging Candidate Genes Observation:  

The PCR analysis of the activation tagged lines, and specifically lines AIE7 and AIE70, showed 

that the AIE were inserted in the coding region of genes AT2G41400 and AT3G50280. It is also 

evident that AIE activates the expression of the tagged genes from as far as 10 kb distance, 

although inserted within the genes AT2G41400 and AT3G50280, and the respective Arabidopsis 

ATag lines display salt tolerance phenotypes. This suggests that activation of one or more of the 

adjacent genes are responsible for the salt tolerance phenotype. Primarily considering the case of 

the chromosome 2 insertion, i.e. in gene AT2G41400 that has the AIE insertion in line AIE7, the 

neighboring candidate genes are within a range of 20 kbp away, a distance also shown to be 

accessible for activation by the the 35S-enhancer (Marsch-Martinez et al., 2002). The genes 

AT2G41410, AT2G41430 and AT2G41440 were found to be ~1.961 kb, ~5.547 kb and ~ 6.66 

kb upstream from the IATag insertion site to the gene promoter respectively, which suggests that 

the genes can potentially induce salt tolerance to the tagged plant (Figure 25). 

The insertion I-ATag tagged gene identified on chromosome 3, adjacent to the 

AT3G50280 gene (which is predicted to code for an HXXXD-type acyl transferase family 

protein in line AIE70) is likely not responsible for the gain-of-function in salt tolerance. The 

tolerance phenotype of the AIE70 line is likely due to I-ATag mediated enhancement, expressed 

by adjacent candidate genes caused by the activation tag transposon insertion. The candidate 

tagged genes in the AIE70 line are the AT3G50270 gene at a distance of ~5.985 kb upstream 

from the IATag insertion site to gene promoter, and AT3G50240 which is around 12.347 kb 

downstream from the IATag insertion site to gene promoter. Therefore, the over-expression of 

these candidate genes in the activation tagged line are probably involved in the salt tolerance 

phenotype of the ATag Arabidopsis line.    
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4.9 Salt Screening for Candidate Genes for salt tolerance:  

An alternative method of studying the function of the candidate genes for salt tolerance can be by 

an analysis of the knockout mutant phenotype of the candidate gens in response to salt. 

Therefore, knockout insertion mutants were identified from the Arabidopsis resource TAIR, and 

the mutant lines prepared for testing potential knockout phenotypes. The knockout lines 

segregating for the T-DNA insert were grown and used for genotyping with gene and T-DNA 

specific primers. The T-DNA lines for the genes AT2G41400, AT2G41410, AT2G41420, 

AT2G41430, AT2G41440, AT3GG5280, and AT3GG5240 showed that most of the plants were 

heterozygous, so homozygous lines would have to be selected for in the next generation (Figure 

21).  

However, only the knockout line of the gene AT2G41430 was homozygous and the T-

DNA insertion elements were present in this genome of this line (Figure 22). Therefore, the 

knockout mutant KO-AT2G41430 line was tested for salt stress response. Interestingly, the salt 

screening of the KO-AT2G41430 line exhibited salt stress-sensitive phenotype compared to 

wild-type Col0, showing a significant increase in the relative reduction of plant biomass in the T-

DNA line compared to the wild type Col-0 (Figure 23, 24). These results support the fact that 

this candidate gene was activated by the I-ATag transposon insertion, and the line showed a gain 

of function phenotype function of salt tolerance. 
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5.0 Discussion 

The development of abiotic stress tolerant crops through genetic methods of selection or 

engineering is increasingly one of the most important solutions used to combat the huge losses 

due to abiotic stresses such as high salinity conditions. For this, active research has to be done to 

identify more genes at a genome-wide scale that can impart stress tolerance to offer multiple 

convenient solutions for crop improvement. It is evident that plants are triggered at the genetic 

level against these abiotic stresses and respond to signals from salt, cold or drought stresses. An 

analysis of the signals and tolerance responses will provide an insight in understanding such 

genes and their functions, which in turn will contribute to the development of tolerant lines in the 

future that will have the inherent genetic ability to fight off the inhibitory effects of such stress 

conditions. In this study, the genes that have been identified from Arabidopsis thaliana activation 

tagged lines are expected to be involved in tolerance against the high salt concentration and 

expressed in distinct plant parts for carrying out various activities.  In this study around 23 

candidate genes have been identified in the Arabidopsis ATag mutant lines that might be 

involved in response and tolerance to salt stress, in some organ or condition, which when 

activated by the 35S-enhancer provide salt tolerance at a whole plant level.  

The salt tolerance phenotype, especially for the tolerant ATag lines AIE7 and AIE70 

which have been selected for the genetic analysis described here, are expected to be regulated by 

the candidate genes described in the tolerant lines that show higher expression than wild-type 

ecotype Columbia in the presence of salt treatment. For genetic segregation analysis, the 

heterozygosity of the tolerant lines AIE7 and AIE70 was confirmed by the genetic analysis since 

T3 progenies were found to be heterozygous, although there were no wild type or homozygous 

plants found in the lines. The genetic analysis of crossing AIE7 to the Col0 wild type was 
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confirmed by the evidence of heterozygous plants in the progeny population, as all the plants 

were tolerant to Basta. This revealed the presence of only heterozygotes and the possibility that 

the homozygous progeny might be lethal, or of low frequency. The salt tolerance phenotype 

observed in these heterozygotes also means that this gain-of-function phenotype is contributed to 

by overexpression of the adjacent gene(s).  

  Through this activation tagging approach, it was observed that a large number of adjacent 

and nearby genes are also activated, and the tolerance exhibited may be attributable to a 

combined action of a number of these genes. In our findings, multiple nearby genes at 

chromosomes 2 and 5 of the lines AIE7 and AIE70 were found to be highly expressed, which 

might impart tolerance of the mutant strains to salinity. This enhanced expression of the multiple 

genes adjacent to the I-ATag insert is likely to be due to the influence of the CaMV enhancer 

elements present in the I-ATag insertion, which can activate genes more than 10 kb upstream and 

downstream of the insertion. Our results are consistent with several studies of activation tagging. 

In a previous study for T-DNA activation tagging (Weigel et al., 2000) it has been stated that 

genes at a distance of 3kb from the 35S enhancer are likely to be activated and contribute to a 

unique phenotype. However, in the En-I transposon based activation tagging, the 35S enhancer 

was shown to have the ability to activate genes on right and left sides of the AIE insertion to a 

distance of around 10kb adjacent to the insert (Marsch-Martinez et al., 2002).  

Another suggestion by previous reports is that the multiple CaMV enhancers presented in 

Ac/Ds elements can activate one or two genes at the same time in Ds lines (Moin et al., 2016; 

Mathews et al., 2003). A recent study of salt tolerance screened 70 Ac/Ds activation tag lines 

from Oryza sativa ssp indica rice plants in the T3 generation. In the Ds-16 line one activation 

tagged gene was identified as a salt stress tolerant gene (LOC_Os01g08790) which showed high 
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expression level in response to 150 mM NaCl. It was also shown that this gene was activated by 

the tetramer of the CaMV 35S enhancer (Manimaran, et al., 2017). Similarly, the salt tolerance 

phenotype of the tolerant lines AIE7 and AIE70 lines are regulated by candidate genes that have 

high induction in response to saline condition, since enhancers can enhance both constitutive and 

regulated expression of genes.  

 

Transposon activation tagging candidate genes observation:  

The gene loci AT2G41400, AT2G41410, AT2G41430 and AT2G41440 in the activation tagged 

line AIE7 are closely located on chromosome number 2, which encodes proteins that are targeted 

in the extracellular region, and the majority of their functions are still not well defined (Lin et al., 

1999). These genes are candidates that could probably exhibit the tolerance characteristic similar 

to that expressed by the mutant line AIE7 against salt stress. AT2G41400 is a pollen allergen that 

has been found to not be expressed in AIE7 tolerant lines. On the other hand, adjacent genes 

were found to be highly expressed in response to salt stress, suggesting that they might have cis 

elements in their promoters that respond to salt stress and that are enhanced in transcriptional 

activity in the I-ATag line. These candidate genes also show association with the salt tolerance 

function based on their documented function (Figure 25).  

First, AT2G41410 is a calcium binding protein in the plasma membrane that has been 

related to cell cycle regulation during stresses (Ascencia-Ibanez et al., 2008; Wang et al., 2008). 

Calcium modulation is a well-established salt tolerance feature that employs CDPKs, 

calmodulins and CBL-CIPKs (calcineurin B-like protein- CBL interacting protein kinase) for 

protection against salinity, and has been studied in this biological function, thus suggesting the 



 

136 

significant role of AT2G41410 in salt tolerance (Kader and Lindberg, 2010). The 

calcium binding EF-hand here specifically contains the calcium-binding site. Calcium ions play 

an essential role in the maintenance of ionic homeostasis by regulating the potassium to sodium 

ratio, which at high levels is detected by the salt overly sensitive pathway (SOS) (Munns, 

2005).  Here the SOS1, SOS2 and SOS3 are the main components of the pathway, where SOS3 

detects the high calcium level in shoots then deals with the sodium ion toxicity (Huang et al., 

2012). Out of the three SOS mutants, studies using the SOS3 mutant have proven the presence of 

calcium binding domains on SOS3 processing three EF hands (Yang, 2009). This function 

associates the gene AT2G41410 with the SOS pathway that plays a significant role in salt 

tolerance, which could enable swift ionic stability and maintain the K+/Na+ homeostasis 

suppressing the deleterious effects of high sodium ions and its toxicity.  

Secondly, AT2G41430, which was also found to be highly induced under salt stress in 

the line AIE7, is well characterized and expresses cytoplasmic cysteine-less hydrophilic proteins 

during various biotic and abiotic stresses (Sukweenadhi et al., 2015).  The ERD products have 

been found to play a significant role during drought, light and cold, as hydrophilic proteins 

without cysteine residues are expressed under stress responses (Aalto et al., 2012). The ERD 15 

proteins have the most notable functional and structural identities because of their ability to 

respond to not only one pathway but also various pathways (Aalto et al., 2012).  

Third, the AT2G41440 gene encodes a MADS-box protein involved during pollen 

germination as well, and is expressed specifically in the nucleus and involved in nitrogen and 

carbon regulation through small RNAs and mRNAs in the Arabidopsis roots (Wang et al., 2008; 

Vidal et al., 2013). RNA interference has been a recent regulatory focus, and miRNA expression  
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profiling has been used for the analysis of miRNAs that are involved in tolerance and sensitive 

responses of plants towards stresses (Peng et al., 2014).  

The gene loci AT3G50240, AT3G50270, AT3G50280 and AT3G63210 have also been 

found to be involved in cell regulation via the transcription factor IIIC subunit 5 (AT3G49410 in 

nucleus), the kinesin related protein (AT3G50240 in chloroplast), the HXXXD-type acyl 

transferase family protein (AT3G50270 and AT3G50280 in chloroplasts) (Zhu and Dixit, 2012; 

Kong et al., 2015). The tolerant lines here highly expressed the responsive genes AT3G50240, 

AT3G50270 and AT3G50260 involved in chloroplasts, which is one of the more recent studied 

organelles for response toward high salt conditions and attributed via cellular mechanisms like 

reactive oxygen species (ROS) based scavenging, signaling via abscisic acid, salicylic acid or 

jasmonic acid biosynthesis and protein turnover (Suo et al., 2017).  

The kinesin and transferase (transferring amino acyl groups) activity proteins associated 

with the gene loci AT3G50240, AT3G50270 and AT3G50280 have been found to cause 

localized programmed cell death that can be attributed to the involvement of MAP kinase 

pathways, dehydration response element binding factor 2 (DREB2) and elevated abscisic acid 

(ABA) biosynthesis in response to salt stress (Ascencio-Ibanez, et al., 2008; Liu et al., 2007). 

The identification of these tolerant loci by this activation tagging approach suggests that the 

strong enhancers led to high coordinate expression of all of these closely knit genes through 

gain-of-function, such that their combined regulatory function features might confer a high salt 

tolerance characteristic to the tolerant Arabidopsis ATag lines AIE7 and AIE70 compared to the 

wild type. While the enhanced expression of these genes needs the presence of the transposed 

enhancer in the ATag line, it is possible that high ‘coordinate regulation’ of this gene cluster 

might be a means to naturally evolve tolerance under selection in populations in nature. 
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Candidate Gene AT2G41430 knockout mutant:  

The analysis of the candidate gene AT2G41430 knockout mutant showed increased sensitivity to 

salt stress, revealing the function as necessary for tolerance to salt stress. It is obvious that the 

transposon activation tagging element increased the expression of AT2G41430 to above normal 

levels, which enabled the exhibition of the salt tolerance phenotype. However, the major 

advantage of the activation tag method is the display of a gain in function phenotype, which is 

not exhibited in the knockout mutant and directly suggests an application that would otherwise 

have to be tested in overexpression transformants. The AT2G41430 dehydration-induced protein 

(ERD) genes are highly induced when they experience drought stress (Kariola et al., 2006). 

AtERD15 is also a member of this locus and its miRNA silencing enhances ABA signaling 

which is a central regulator for salinity tolerance and further increases the plant salt and drought 

tolerance capacity by stomatal closure and regulation of water relations (Aalto et al., 2012). ABA 

has been characterized as a potential hormone for ABA dependent and independent signaling 

during salt stress for conferring tolerance to the plant, which is essential in determining the 

extent of plant adaption to environmental stresses (Yamaguchi-Shinozaki, and Shinozaki, 2006). 

Thus, since the AT2G41430 gene was found highly induced by salt stress in AIE7, it could be 

involved in the ABA signaling pathway and thereby confer salt tolerance. 
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List of Tables 

Table 1: Transcription factors and genes associated with salt stress. 

Name  Abbreviation Function Group of 

plants 

References   

NAM/ATAF/CUC 

transcription 

factors 

NAC Biotic and abiotic 

stress control. 

Plant tolerance 

response such as 

drought and 

salinity 

Arabidopsis, 

Rice, Grape, 

Soybean  

(Kasuga et al., 

2012) 

Basic Leucine 

Zipper 

Bzip Seed formation 

and abiotic stress 

response 

tolerance to salt, 

osmotic and 

drought stresses 

Arabidopsis, 

Rice 

(Beckett, 2001 

 

Apetala2/Ethylene 

Response Factor 

APR/ERF Response to 

abiotic stress, 

such as salinity 

stress 

Arabidopsis, 

Rice, 

Grapevine, 

Soybean 

(Riechmann et al., 

2000) 

Comes from 

WRKY domain 

WRKY  Transcriptional 

regulator of biotic 

and abiotic plant 

stress response 

Arabidopsis, 

Rice, Pinus, 

Soybean, 

Papaya, 

Poplar, 

Sorghum, 

Barley 

(Kumar & 

Bandhu., 2005) 

 

Trihelix Trihelix (GT-

factors) 

Salt stress 

tolerance 

Arabidopsis, 

Rice 

(Mizoi et al., 

2012) 

Abscisic Acid 

(ABA)  

ABA Drought, salinity 

stress, and ABA 

signaling.  

Arabidopsis, 

Rice  

(Rushton et al., 

2010) 

 

http://www.sciencedirect.com/science/article/pii/S1874939911001428
http://www.sciencedirect.com.proxy1.cl.msu.edu/science/article/pii/S1360138510000324
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Table 1 (Cont.) 

Name  Abbreviation Function Group of 

plants 

References   

APETALA2 

(AP2) 

DREB1A/CRT Response to 

Salinity Stress  

Arabidopsis, 

Rice  

(Shu et al., 2015) 

Nuclear 

Transcription 

Factor 

NF-Y Drought and 

salinity stress 

signaling and 

ABA  

Arabidopsis, 

Rice  

(Mizoi et al., 

2012) 

 

SOS Pathway  SOS Salt tolerance 

Pathway 

Arabidopsis, 

Rice 

(Puranik et al., 

2012) 

A Populous 

emphatic SOSI  

PeSOSI Response to salt 

sensitivity  

Arabidopsis (Wang et al., 

2014) 

GTL1(GT2-IIKE-

1) 

GT2-IIKE-1 Downgrades 

drought 

tolerance.   

Arabidopsis, 

Rice, 

Soybean, 

Papaya 

(Jin et al., 2013) 
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Table 2: List of primers used in TAIL PCR analysis. 

 

Primer 

ID 

Primer Sequence (5`-3`) IUPC code 

Int2 CAGGGTAGCTTACTGATGTGCG  

Irj-201 CATAAGAGTGTCGGTTGCTTGTTG  

DSpm1 CTTATTTCAGTAAGAGTGTGGGGTTTTGG  

ITIR-3 CTTACCTTTTTTCTTGTAGTG  

AD1 TG(A/T)G(A/T/G/C)AG(A/T)A(A/T/G/C)CA(G/C

)AGA 

TGWGNAGWANC

ASAGA 

AD2 (G/C)TTG(A/T/G/C)TA(G/C)T(A/T/G/C)CT(A/T/

G/C)TGC 

STTGNTASTNCTN

TGC 

AD3 CA(A/T)CGIC(A/T/G/C)GAIA(G/C)GAA CAWCGICNGAIAS

GAA 

AD4 TC(G/C)TICG(A/T/G/C)ACIT(A/T)GGA TCSTICGNACITW

GGA 

AD5 A/T)CAG(A/T/G/C)TG(A/T)T(A/T/G/C)GT(A/T/

G/C)CTG 

WCAGNTGWTNGT

NCTG 

AD6 AG(A/T)G(A/T/G/C)AG(A/T)A(A/T/G/C)CA(A/T

)AGG 

AGWGNAGWANC

AWAGG 
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Table 3: List of primers for gene identification.  

Primer ID Forward Primer  Reverse Primer  

AT5G15200 TCTGCGTGCCCTAGTTATTC 

AACCCAAAGGTTTAGCAAT

C 

AT5G43185 GCTGCATTGATCTTCCCAAA ACATTTCACCAACAATGA 

AT3G63210 GTCTTAGCAGTGAGCGAGATTG 

TGCAGGCGAGAAAGGTTA

TG 

AT4G04330 TGGAGTCATCTTCTTCACTC 

AGGGCTAAGTTCATGTGAC

G 

AT2G41400 ATTGAATGTCCAGGCTCAA 

AACCAGGGCTGAGAAATG

TT 

AT3G50280 ATGGCCGACGTAAC 

ATACTGTTACTCGGTCCAG

C 

AT1G64940 GTTACTTATCTTGGGCTCGC 

TCACCATATTCGCCACATA

G 

AT4G17970 GACGAAGTGGATGGTTCT ACTAGCAACGACGCAAAC 

Bar ACCATGAGCCCAGAACGACGC 

CAGGCTGAAGTCCAGCTGC

CAG 

En-1010 CTGCAGCCAAACACATTTTCGC  

En-1474  GACGAAGTGGATGGTTCT 

RGT-35S TCAACACATGAGCGAAACCC  

RGT-SSU 

 

GTTGGTTGAGAGTCTTGTG

GCCT 
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Table 4: Primers for qPCR analysis.  

Primer ID Forward Primer Sequence Reverse Primer Sequence 

AT3G50280 GACGGCTCTGGTGCTAAAT 
TTGACACCGTTCATGGGAT

AG  

AT3G50240 CTCTTCGGAAATGGCTGGATAA  
GTGCAGCTCGTACTTGAAT

TTG  

AT3G50250 CGGTGGTTGTGGTTGTCC  
CCCACCACTAACACCACT

AA  

AT3G50260 CTTTGGCTCGGCTCTTACTC  
GGAAGTTGAGCGTAGCAG

TT  

AT3G50270 CCTGATGGTTCTGTTCCTGATT  
CGTCCTTCATCTCGGTAAC

TTG  

AT3G50290 CGCTTTCCGCACATTTATGG  
TTGTCAAGCGGAGGGTTT

AG  

AT3G50300 TGGGAGATTCATCAGCCTCTA  
TCTTGCCCTCTCTGTCTCT

ATC  

AT3G50310 GTTGGTGATGAGTTACCGAAGA  
CATCTCAGCCGTCCATCTT

T  

AT2G41400 TGTTCAATCCCGCCAACA  
CGCCCGGTGGATAGATAA

AG  

AT2G41380 GGTGAGGTTTGTAACGGAGAA 
CTTCCATCTCAGCCGTCAA

A  

AT2G41390 TTCGTGGTGTCGTGTATTGTAG  
CTTGAGCGAGGGTTGAGT

TT  

AT2G41410  GACGTGGATCGTAACGGAAA  
TTCCATCAACCGTCGCTAT

C  

AT2G41415  GTCTGCATACTGTTGCTCTCTC  
CGCAAATTTCATGGACGC

ATAC  

AT2G41420  TCAGCAACAACAGAGCAGTC  
TCAGAAGCAAGCATCCAA

GAG  

AT2G41430 CGACTTGGTACCCTGATTACTG 
GACCTCCACCATTCTCATT

CTC  

AT2G41440   GGGAGATGTTCGTCGGATAATG  
CATGCTCTTCCGCTGATAA

GA  

AT3G63210 GTCTTAGCAGTGAGCGAGATTG  

TGCAGGCGAGAAAGGTTA

TG  

AT5G43185 GCTGCATTGATCTTCCCAAA ACATTTCACCAACAATGA 

UBQ10 CGGATCAGCAGAGGCTTATTT 

CGACTCCTTCTGGATGTTG

TAAT 
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Table 5: Sequences of specific Primers used in PCR analysis for knockout mutants genes. 

Primer ID Forward Primer Sequence Reverse Primer Sequence 

AT2G41400 ACTTCTCATGGCTTCACTCTTC ATCACCGATGGCATAGT

TAGC  

AT2G41410  ACGTCTCTTCCGTACCAAATC  TTCCATCAACCGTCGCTA

TC  

AT2G41420  TGGCTTTCTAGAAGGATGGTTAG  AGAGAGAGAGAGACTCC

AATCAG  

AT2G41430   CAACGTAGGTTCTGGTGAATGA  CGTACAGCTGCCGGAAT

AAA  

AT2G41440 CAGATGAAGAGGAAGCGAAGAG  AGCCCGTAGAGCTCGTA

ATA  

AT3G50280 GATGGCTCTGTTCCTGACTTT  TTGTCAAGCGGAGGGTT

TAG  

AT3G50270 CCTGATGGTTCTGTTCCTGATT  CGGTGGTTATGGCTGAT

GAA  

AT3G50240 TGGGCTGATTCCTCAAGTTATG  CCCATGCTATTCTGCCTA

AGT  
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Table 6: Summary of the Candidate genes and their probable roles exhibiting tolerant / sensitive 

nature to Arabidopsis Activation tagging lines. 

 

ATag Line Tolerance/ 

Sensitivity 
Gene Loci Documented Functions Reference 

AIE73 

Tolerance AT1G64940 

Cytochrome P450 mono-

oxygenases catalyzing redo 

reactions and secondary 

metabolite production 

(Goyal et al., 

2016; Dai et 

al., 2007).     

AIE7 

Tolerance 

AT2G41400 

 

Pollen Ole e 1 allergen a 

extension family protein 

function are still not well 

defined 

(TAIR, 2017; 

Lin et al., 

1999). 

AIE7 

AT2G41410 

Calcium binding proteins 

involved in cell cycle i.e. 

growth & pollen germination 

(Ascencia-

Ibanez et al., 

2008; Wang et 

al., 2008).  

AIE7 

AT2G41415 

Encodes a Maternally 

expressed gene (MEG) family 

protein 

TAIR (2017). 

AIE7 

AT2G41430 

CTC-interacting domain 1 

(cys-less hydrophilic protein) 

and salt tolerance up-

regulated on interaction with a 

biotic agent 

(Sukweenadhi 

et al., 2015; 

Aalto et al., 

2012). 

AIE7 

AT2G41440 

Regulated Nitrogen & Carbon 

cycles through small RNA 

and mRNA 

(Wang et al., 

2008; Vidal et 

al., 2013). 

AIE7 AT2G41380 Methyltransferase activity TAIR (2017). 

AIE7 

AT2G41390 

Pollen Ole e 1 allergen & 

extension family protein. 

function are still not well 

defined. 

TAIR (2017). 

AIE7 
AT2G41420 

Proline-rich family protein 

involved in megasporogenesis 
TAIR (2017). 
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Table 6: (Cont.) 

 

ATag Line Tolerance/ 

Sensitivity 
Gene Loci Documented Functions Reference 

AIE89 

Sensitivity AT3G49410 
TFIIIC for pre-transcription 

complex for class III genes 

(Zhu and Dixit, 

2012; Kong et 

al., 2015) 

AIE70 

Tolerance 

AT3G50240 Kinesin related protein 

(Zhu and Dixit, 

2012; Kong et 

al., 2015) 

AIE70 
AT3G50270 

Acyl transferase family 

protein 

AIE70 
AT3G50280 

HXXXD-type acyl-

transferase family protein 

AIE70 
AT3G50250 

Elemental activities (catalysis 

or binding) 

AIE70 
AT3G50260 

Encodes a member of the 

DREB subfamily 

AIE70 
AT3G50290 

HXXXD-type acyl-

transferase family protein 

AIE70 
AT3G50300 

HXXXD-type acyl-

transferase family protein 
TAIR (2017) 

AIE70 

AT3G50310 

Encodes a member of MEKK 

subfamily & Osmotic stress 

response 

TAIR (2017) 

AIE83 

Sensitivity AT3G63210 

MARD1 affecting ABA 

signaling & inducing 

dormancy/ senescence 

(Zhu and Dixit, 

2012; Kong et 

al., 2015) 

AIE20 

Sensitivity AT4G04330 

ATRbcX1 involved in 

synthesis of large subunit of 

Rubisco 

(Kolesinski et 

al., 2013) 

AIE89 

Sensitivity AT4G28830 

S-adenosyl-L-methionine-

dependent methyltransferases 

superfamily protein 

performing methylation and 

act as methyltransferases 

(TAIR, 2017; 

Panjabi et al., 

2008) 
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Table 6: (Cont.) 

 

ATag Line Tolerance/ 

Sensitivity 
Gene Loci Documented Functions Reference 

AIE89 

Sensitivity AT4G17970 

Aluminium activated malate 

transporter performing 

stomata movements and 

sulfate transport 

(Malcheska et 

al., 2017; 

Medeiros et al., 

2016) 

AIE34 

Tolerance AT5G15200 

Ribosomal small subunit 

structural component meant 

for mRNA binding 

(Turkina et al., 

2011; 

Ascencio-

Ibanez et al., 

2008) 

AIE85 
Tolerance AT5G43185 

Expressed protein whose 

function is not known 
TAIR (2017) 
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List of Figures 

 

 

 

Figure 1: Schematic outline represents the procedure of amplification of flanking target genomic 

DNA of the Activation tag mutant lines using Thermal Asymmetric Interlaced PCR (TAIL-

PCR). The I-Tag transposon (T-DNA) with nested primers (Int2, IRJ20, DSpm) primers shown 

along with the different short arbitrary (AD) primers used for amplification. 
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Figure 2: (A&B) Agarose gel analysis of tertiary TAIL-PCR products of Arabidopsis ATag 

lines (Col0, AIE7, AIE15, AIE20, AIE25, AIE34, AIE35, AIE48) that were positive for ATag 

construct using six arbitrary degenerate primers and specific primer DSpm1. (C) Selected 

positive plants for the ATag construct for identification of tagged genes adjacent to transposons 

by excising out the bands of tertiary TAIL-PCR using ITIR-3 primer for sequencing. M= 1kb 

plus DNA ladder. 
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Figure 3: (A) Agarose gel analysis of tertiary TAIL-PCR products of Arabidopsis ATag lines 

(Col0, AIE70, AIE73, AIE83, AIE85, AIE89, AIE90) that were positive for ATag construct 

using six arbitrary degenerate primers and specific primer DSpm1. (B) Selected positive plants 

for the ATag construct for identification of tagged genes adjacent to transposons by excising out 

the bands of tertiary TAIL-PCR using ITIR-3 primer for sequencing. M= 1kb plus DNA ladder. 
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Figure 4: Agarose gel analysis of tertiary TAIL-PCR products of Arabidopsis ATag lines (Col0, 

AIE54, AIE57, AIE64, AIE68) that were positive for ATag construct using six arbitrary 

degenerate primers and specific primer DSpm1. M= 1kb plus DNA ladder. 
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Figure 5: Schematic illustration representing the position of transposon (AIE) insertion in 

Arabidopsis genome in Columbia activation tag mutants. The arrow shows the coordinates and 

direction of candidate genes for salt tolerance based on TAIR genome sequence annotation in the 

ATag lines (A- H). The black arrow refers to the main gene of ATag insertion and the other 

arrows are the neighboring candidate gens for salt tolerance 10kb upstream and 10kb 

downstream with their distance from 35S enhancer in the AIE. 
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Figure 6: PCR analysis of plasmid DNA obtained from cloning the PCR products. Lanes 

indicating putative clones were inoculated in kanamycin selective medium for plasmid isolation. 

Isolated plasmids were used for PCR using Bar gene primer forward and reverse (513 bp). 

M=1kb DNA plus ladder.  
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Figure 7: Southern blot analysis with a BAR gene probe of transformants plants and the wild 

type Clo0, AIE7, AIE20, AIE25, AIE34, AIE64, AIE68, AIE70, AIE73, AIE83, and AIE85. The 

bands indicate independent insertions with size. Ladder is presenting the size in kilo base. AIE7- 

12000 kb, AIE34-11900 kb, AIE25- 11000 kb, AIE73- 2 bands (11000 kb - 4000 kb), AIE70- 

4100 kb, AIE83- 1900 kb. M= 1kb DNA ladder. 

 

 

 

Clo0 AIE7 AIE20 AIE25 AIE34 AIE64 AIE68 AIE70 AIE73 AIE83 AIE85 



 

162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Genomic PCR analysis using AIE7 gene specific primers (307 bp) for 20 AIE7 

transgenic plants of T3 progeny sprayed with Basta herbicide. Wild type Col0 was used as a 

positive control. HT- indicates heterozygous. M= 1kb plus DNA ladder. 
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Figure 9: Genomic PCR analysis using AIE7 gene specific primers (Reverse) and Transposon 

specific primer (Irj201) for 20 AIE7 transgenic plants of T3 progeny sprayed with Basta 

herbicide. Wild type Col0 was used as a positive control. M= 1kb plus DNA ladder. 
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Figure 10: Genomic PCR analysis using AIE70 gene specific primers (1300 kp) for 20 AIE70 

transgenic plants of T3 progeny sprayed with Basta herbicide. Wild type Col0 was used as a 

positive control. HT- indicates heterozygous. M= 1kb plus DNA ladder. 
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bbbbp kb 
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Figure 11: Genomic PCR analysis using AIE70 gene specific primers (Reverse) and Transposon 

specific primer (Irj201) for 20 AIE7 transgenic plants of T3 progeny sprayed with Basta 

herbicide. Wild type Col0 was used as a positive control. M= 1kb plus DNA ladder. 
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Figure 12: Morphological phenotypes segregation of of F2 progeny of crossing Columbia activation tag mutant lines (A) AIE7, (B) 

AIE70 with the wild type WT (Col0) after Basta Herbicide application.  
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Figure 13: Genomic PCR analysis using AIE7 gene specific primers (307bp) for 24 Col0xAIE7 

transgenic plants of F2 progeny sprayed with Basta herbicide. Wild type Col0 was used as a 

positive control. M= 1kb plus DNA ladder. 
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Figure 14: Genomic PCR analysis using AIE7 gene specific primers (Reverse) and Transposon 

specific primer (Irj201) for 24 Col0xAIE7 of F2 progeny sprayed with Basta herbicide. Wild 

type Col0 was used as a positive control. M= 1kb plus DNA ladder. 
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Figure 15: Genomic PCR analysis using En-F and En-R primers on 24 Col0xAIE7 F2 progeny 

sprayed with Basta herbicide. Wild type Col0 was used as a positive control. M= 1kb plus DNA 

ladder. 
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Figure 16: Genomic PCR analysis using using the primers RGT-35S and RGT-SSU on 24 

Col0xAIE7 F2 progeny sprayed with Basta herbicide. Wild type Col0 was used as a positive 

control. M= 1kb plus DNA ladder. 
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Figure 17: Schematic representation of the Activation-Tag lines using the En-I transposon 

system for generation of Salinity Tolerant (SAL-T) mutants by gain-of-function, adapted from 

Marsch-Martinez et al., (2002). The elements of the construct are as follows: T-DNA LB (Left 

border) and RB (right border); P35S CaMV35S promoter; EnTPase, En immobile transposase; I-

element left (ILtir) and right (IRtir) terminal-inverted repeat; 4-Enh (tetramer of the CaMV 35S 

enhancer). Selectable marker: positive selectable marker BAR (glufosinate/Basta resistance) and 

negative selectable marker SU1 (Pro-herbicide R740). 
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Figure 18: Relative reduction in biomass (RB) of F2 progeny of crossing Columbia activation 

tag mutant lines to the wild type Col0 (Col0xAIE7 line) compared to WT Col0. Bars represent ± 

SE, N= 10. The data are average of ten replicates, with ** indicating significance at p-value ≤ 

0.01, * indicating significance at p-value ≤ 0.05.  
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Figure 19: Expression analysis of tagged genes line AIE7 and the surrounding candidate genes (A-H) under control 0 NaCl and salt 

stress 150 mM NaCl conditions. Bars represent ± SE, N= 2. The data are average of two biological replicates.  
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Figure 20: Expression analysis of tagged genes line AIE70 and the surrounding candidate genes (A-H) under control 0 NaCl and salt 

stress 150 mM NaCl conditions. Bars represent ± SE, N= 2. The data are average of two biological replicates.
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Figure 21: Diagram of TDNA insertion elements in knockout mutants plants for candidate genes 

for salt tolerance for lines AIE7 and AIE 70, (A) AT2G41400, (B) AT2G41410, (C) 

AT2G41420, (D) AT2G41430, (E) AT2G41440, (F) AT3GG5240, (G) AT3GG5280. 
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Figure 22: PCR segregation analysis for present or absence of TDNA insertion elements in 

knockout mutants plants for candidate genes for salt tolerance for lines AIE7 and AIE 70, (A) 

AT2G41400-451 bp, (B) AT2G41410-578bp, (C) AT2G41420-723bp, (D) AT2G41430-520 

bp, (E) AT2G41440-591bp, (F) AT3GG5240-1165 bp, (G) AT3GG5280-556 bp, wild type 

Col0 was used as a positive control. 
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Figure 23: Response wild type and AT2G41430-KO mutant line to control condition (0 NaCl) 

and salt stress condition (150 NaCl). (A) Wt Col0, (B) AT2G41430-KO. 
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Figure 24: Relative reduction in biomass (RB) of AT2G41430-KO mutant lines compared to 

WT Col0. Bars represent ± SE, N= 10. The data are average of ten replicates, with ** indicating 

significance at p-value ≤ 0.01, * indicating significance at p-value ≤ 0.05.  
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Figure 25: Schematic illustration representing the position of transposon (AIE) insertions in the Arabidopsis genome in the Columbia 

activation tag mutant line AIE7. The arrows indicate the coordinates and direction of candidate genes for salt tolerance based on TAIR 

genome sequence annotation in the ATag line (AIE7). The black arrow refers to the gene at the ATag insertion site and the other 

arrows showing neighboring candidate genes for salt tolerance, 10kb upstream and 10kb downstream their distance from the 35S 

enhancer to the AIE, their function, and their expression in response to salt stress. 
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Conclusion 

The genes identified during expression analysis through qPCR of the AIE7 and AIE70 tolerant 

Arabidopsis mutant lines surprisingly suggest that there is a plethora of potential functions in the 

plant genome that need to be evaluated further using activation of genomic regions (with 

methods such as this transposon activation tagging system) which may lead to gain of function 

due to sets of nearby gene loci. This approach uses strong enhancers for regional activation of 

promoters enhancing local gene expression, as well as the systematic analysis of mutant 

phenotypes that are obtained, possibly due to coordinate expression of multiple genes on the 

chromosome which are not usually traceable for normal salt stress responses. This function is 

attributed to the possibilities provided by an efficient activation tagging system, whereby nearby 

genes may get activated, effecting the expression of coordinate expression of closely linked 

genes, much like a regulon, that then exhibit the tolerance phenotype in the plant.  

Activation tagging approach has high prospects, as targeting just one gene locus can yield 

a specific interaction. That being said, as revealed here the transposon based activation tagging 

system can reveal hidden dominant gain-of-function genetic interactions that are not often found 

to be expressed naturally but are unveiled in the presence of the strong promoters that activate 

nearby loci as well. Such revelations are very useful as they can be genetically incorporated in 

the economically significant crops in the form of a cassette comprising promoters, enhancers, 

transcriptional regulatory machinery and desired effector genes, to naturally defend against 

external stress factors. In some ways this system is much like bacterial operons, where several 

genes involved in a function are linked together and closely regulated. In higher organisms, they 

are separate so that multiple regulatory factors can be involved in their regulation independently. 

By coordinating regulation as a unit they are effective in combining multiple functions needed 
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for the expression of a complex trait. It is extremely beneficial in the biological field to use 

overexpression of gene functions that are feasible to control and exhibit enhanced traits, 

compared to those involving gene knockouts or suppression. Along with this, such an approach 

will also open up pathways for evaluating inter-chromosomal interactions that may be happening 

during natural responses against salt stress. The information gathered about gene loci from 

activation tagging approaches can then be evaluated further for studying the expression of linked 

genes under varied situations using transcriptome or proteomic profiling.    

Finally, just as Barbara McClintock termed these transposable elements as controlling 

elements, and while their functions in causing insertion mutations were found more spectacular, 

there remained a concept of the original description ‘controlling elements’ in the background 

while the mutagenic status was found more engaging. Just the same way, Peter Peterson’s 

analysis of this transposon system suggested the mobile element name ‘Enhancer’ in the 50’s 

before enhancers were described, suggesting a regulatory role which did not stop at the single 

gene level but affected chromosomal domains and batteries of regulated genes. The feature that 

remains is to use this method of coordinate regulation and potentially obtain enhanced traits due 

to domains of genes with similar functional roles. 
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