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Abstract 

Natural product synthesis has many applications in the field of chemical biology, due to 

the protein binding affinity to the complex three-dimensional structure. However, synthetic and 

structure-activity relationship studies concerning certain drug targets are scarce. For example, 

members of the ipomoeassin family have exhibited anti-cancer properties, but cost-effective 

optimization of these compounds has not yet been extensively studied.  Ipomoeassin F, a natural 

glycoresin isolated from the leaves of the Ipomoea squamosa plant in the Suriname rainforest, has 

shown high cytotoxicity, with IC50 values measured at the low nanomolar range. Two studies by 

Postema and Fuerstner have outlined synthesis pathways for ipomoeassin F using ring closing 

metathesis (RCM) for macrolactonization. The Shi group improved the synthetic method by 

introducing the cinnamate and tiglate moieties at different stages and developing novel protecting 

group strategies to reduce the number of steps. Recently, extensive studies were conducted 

outlining structure-activity relationship; specifically of the fucose ring, cinnamate and tiglate 

functional groups, and lipophilic aglycone.  Removal of the functional groups on the expensive 

fucoside moiety did not significantly affect the activity of the compound; therefore 

monosaccharide and galactoside analogues were designed, synthesized and biologically tested. 

The overall objective of this research is to explore the monosaccharide and galactoside analogue 

synthetic pathways in order to better understand the binding affinity and cytotoxic properties of 

ipomoeassin F. 
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CHAPTER 1: Synthesis and Biological Significance of Ipomoeassin F 

1.1: Introduction 

Resin glycosides or glycoresins, are secondary metabolites in the extensive Convolvulacae 

(morning glory) family. These metabolites can be found in either the roots or leaves of the 

Convolvulacae plants and have been used for centuries as natural remedies for various ailments.1 

Specifically, they have been exploited in traditional medicine for their laxative, antibacterial, 

antifungal and plant growth inhibitory properties, as well as their strong purgative action.2 

Research to elucidate the chemical properties of resin glycosides has been undertaken since the 

19th century, but the structural complexity of these sugars prevented extensive studies. More 

recently, modern spectroscopic techniques have provided insight into the structural characteristics 

and pharmacophores of resin glycosides.3 These amphipathic secondary metabolites are 

derivatives of monohydroxy- and dihydroxy-fatty acids, and are typically combined with a 

heteropolysaccharide structure.4  Most resin glycosides contain a macrolidic ring resulting from 

the esterification of a hydroxyl group with the aglycone carboxylic acid.5-7 Their hydrophilic sugar 

and hydrophobic fatty acid chain render them unique, and their macrolactone architecture, as well 

as amphiphilic properties, generates a high interest in their synthesis and optimization. Primarily, 

the tricolorin family, including the naturally occurring compound woodrosin,8 has evoked high 

interest among synthetic chemists due to its antifungal and cytotoxic properties.9-12   

In spite of the increasing interest in resin glycoside synthesis, structure-activity relationship 

studies to determine the mode of action are relatively uncommon.13 For example, the ipomoeassin 

family (resin glycoside derivatives) has lacked significant synthetic studies until recently.  In 2005, 

the glycoresins ipomoeassins A-E were isolated from the leaves of the Ipomoea squamosa plant, 

a species of Convolvulacae found in the Suriname rainforest (Fig. 1).14 In 2007, two years after 
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ipomoeassins A-E were characterized by the Kingston group, the compound ipomoeassin F was 

discovered. The entire ipomoeassin family is structurally similar, with only slight differences in 

the macrolactone aglycone and 4th position of the fucosyl ring; however, ipomoeassin F contains 

a C16, rather than a C14 hydroxyacid side chain15 (Fig. 1). Compared to other glycoresins, the 

ipomoessins possess an uncommon fucoside anomeric center, as well as an oxygenated aglycone 

ring structure.  Furthermore, the cinnamate and tiglate ester functional moieties replace the typical 

reduced forms on other glycoresins, including 2-methylbutyrate and 3-hydroxy-2-methylbutyric 

acid.16  

 

Although resin glycosides are considered potent against certain cancer cell lines, their IC50 

values are typically in the micromolar range, while certain ipomoeassins have shown IC50 values 

in the nanomolar region.17 All ipomoeassins exhibit a similar cytoxicity toward multiple cancer 

cell lines with structural differences contributing to slight changes in biological properties (Table 

1).18 When ipomoeassin A, the most abundant member of the family, was screened against NCI-

60 tumor cell lines, it was shown to be unique among other anticancer agents in the database.17 

Ipomoeassins D and F are the most potent compounds in the family, with relatively low IC50 values 

Figure 1: Structural difference among members of the ipomoeassin family 
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against several cancer cell lines, a property thought to be caused by the difference in the 4’O site 

in the fucoside moiety and the C-5 within the macrolactone ring.3  Although ipomoeassin F differs 

from ipomoeassin A only in the two methylene units of the C16 hydroxyacid side chain,19 it is 14 

times more potent against A2780 cells, making ipomoeassin F a prime target for optimization 

studies. 

Table 1: Structures and IC50 Values of Ipomoeassins A-F50 

  

1.2: Ipomoeassin F Synthesis Pathways 

Currently, three groups have reported total syntheses for ipomoeassin F, all of which 

employ a ring closing olefin metathesis (RCM) strategy. In 2007, Fuerstner et al. completed the 

synthesis of ipomoeassins B and E, in an attempt to progress toward more detailed structural 

editing (Fig. 2).20  Previous studies in the Fuerstner lab had shown RCM to be a productive and 

flexible strategy for the synthesis of several structurally complex resin glycosides.21-22  After using 

an N,N’-dicyclohexylcarbodiimide (DCC) mediated acylation to attach the tigloyl ester to 1, the 

alkene on the macrolactone ring could be reduced with relative selectivity without damaging the 

tiglic acid functional moiety.23  An -OPMB ether protecting group for the 4-OH position was 

selected, due to its orthogonality to the other functional groups, but steric hindrance prevented 

coordination of the Lewis acid, and, consequently, attachment of the –OPMB ether to the 4th 

position of glucose on 4. Further study revealed that a C-silylation strategy to introduce a surrogate 
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for the cinnamate functional group (Fig. 2) prevented the participation of the unsaturated acids in 

RCM by connecting them to the glucosyl donor at an early stage of the synthesis.  The surrogate 

contained a tri-substituted alkene, rendering it stable during hydrogenation with Wilkinson’s 

catalyst, and the dimethylphenylsilyl group could be deprotected post-RCM reduction.  

Subsequent to oxidative cleavage of the ether and Yamaguchi esterification of the 

cinnamate-substituted intermediate with the aglycone, the olefin was exposed to ruthenium 

carbene to form macrocycle 5.24-26 Facile deprotection of the C-silyl group was achieved with 

TASF in MeCN, then subsequent removal of the ether with trifluoroacetic acid to produce 

ipomoeassin B (5).  Ipomoeassin E was similarly synthesized by the esterification of the glucose 

donor with 8-nonenoic acid, followed by ring-closing metathesis using the 2nd generation Grubbs 

catalyst. The use of t-BuOOH caused an oxidative rearrangement, preceded by Sharpless-type 

kinetic resolution for a scalable synthesis route.  Although this strategy prevents excessive 

reduction of the ester groups, it renders structure-activity relationship (SAR) studies illogical, due 

to the installation of the cinnamate and tiglate functional groups late in the synthesis.  Also, 

deprotection of the silyl and isopropylidine groups over 2 steps with only a 45% yield toward the 

end of the synthesis is a serious drawback to the practical application of this method.     

 

Figure 2: Installation of –OPMB protecting group on the 4th position of glucose,3 

and Ipomoeassins B and E with cinnamic acid surrogate20 
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In 2009, Fuerstner applied a similar strategy to the total synthesis of ipomoeassin F (Sch. 

1). Previous studies showed that the cinnamate functional ester is reduced at the same time as the 

olefin within the macrocycle, while the tri-substituted tiglate ester is reduced at a slower rate.20 

Again, they chose to install the tiglate ester at an early stage and create a surrogate for the 

cinnamate ester by introducing the C-silyl group on 6 through retro-Brook rearrangement.29-32 As 

in the previous study, this method relied on ruthenium-catalyzed RCM to create the macrocyclic 

structure 8 from diene precursor 7, and incorporated a tri-substitued alkene for the cinnamic 

intermediate to achieve chemoselective hydrogenation.  Ipomoeassins A-D were synthesized 

through reductive opening of the single isopropylidine-protected building block 9.  By treating 

ipomoeassin B with MeC(OEt)3 and camphorsulfonic acid, an acetate group was installed on the 

4th position of fucose through an HOAc-induced rearrangement to give ipomoeassin A (11).33-34 

Compound 10 was isolated when 9 was subjected to high concentrations of trifluoroacetic acid in 

an effort to remove the acetal group late in the synthesis. Ipomoeassin F differs from ipomoeassin 

A only in the two methylene units present on the carbon chain of the aglycone; therefore, a separate 

fucoside building block with a slightly longer carbon tail was synthesized under the same 

conditions.  Due to the high biological activity of ipomoeassin F, several analogues of this 

compound were created and tested as probes, but none showed a significant increase in biological 

activity. 
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A slightly improved synthetic methodology was chosen by Postema et al. Similar to 

Fuerstner, the group exploited RCM instead of macrolactonization as a ring-closing strategy.35-37 

Schmidt glycosylation38 was used to couple two monosaccharides (glucosyl donor and fucosyl 

acceptor) using α-chloroacetate and tert-butylsilyl protecting groups (Sch. 2).39 The Schmidt donor 

12 was created by deprotection at the anomeric position with hydrazine acetate, then addition of 

the trichloroacetimidate group on the glucose fragment.23 To construct the fucosyl acceptor 13, the 

Scheme 1: Synthesis of ipomoeassin F using retro-Brook to install C-silyl3 
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triol fused with a chiral alcohol40 was subjected to equatorial benzylation mediated by 

stannylidene.41 The donor and acceptor were then connected in the presence of boron trifluoride 

etherate to yield the desired β-disaccharide 14 after acetylation and TBS deprotection.  The key 

step in this synthesis was RCM using a Hoveyda-Grubbs catalyst in 1,2-dichloroethane, for which 

the conditions of 15 mol % catalyst at 45 °C for 3 h at 0.05 M dilution were found to be optimal.42 

Due to steric hindrance of the bulky TBS group, installation of the cinnamoyl group on 15 via a 

DCC-mediated coupling reaction in 1,2-dichloroethane proved difficult, but a 62% yield was 

obtained by evaporating and replacing the solvent.43-44  After addition of tiglic acid to 15, removal 

of the TBS and α-chloroacetate protecting groups on 16 afforded the natural product ipomoeassin 

F (17).  Although this synthetic strategy improves upon the methods used by Fuerstner, it also 

presents several limitations, including low yield during protecting group removal and 

orthogonality issues.  For example, the removal of the chloroacetyl group from the anomeric 

position of the glucosyl donor 12 and α-chloroacetate protecting groups during the final step 16  

17 only gave yields of 44% and 39% respectively.  Also, the steric hindrance from the TBS group 

on the 3-OH position of the glucosyl donor hindered the addition of cinnamic acid toward the end 

of the synthesis 14  15.  

 

 

 



8 
 

 

 

 

1.3: Shi Group Synthesis Methodology 

To increase overall yield and facilitate further structure-activity relationship studies, the 

Shi group developed a more scalable and adaptable total synthesis route for ipomoeassin F. 

Ipomoeassin F was chosen due to its cytotoxicity values in the low nanomolar range and high 

potency compared to its congeners.  In fact, synthetic ipomoeassin F was shown to inhibit growth 

at least two-fold more than the naturally occurring compound when tested against HT-29, MDA-

Scheme 2: Synthesis of ipomoeassin F with Schmidt glycosylation and 

late ester installation19  
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MB-435, H522-T1, and U937 cancer cell lines.19 Further phase contrast microscopy studies 

showed a rounding up of cells, followed by induced death in H522-T1 lung cancer cells.46  

Like Postema and Fuerstner, the Shi group employed RCM as the main strategy for 

macrolactone ring formation, and adopted novel protecting group strategies to prevent reduction 

of the peripheral ester alkenes (Sch. 3).  To explore the significant biological properties of 

phenylpropanoids, or cinnamoyl-containing compounds47 and to prevent unwanted reduction 

during post-RCM hydrogenation, a synthesis route which could successfully install the cinnamate 

ester at a later stage was required for further SAR studies.  Also, it was theorized that, through 1,4-

nucleophilic addition, the cinnamate group could modify certain protein structures with its 

disubstituted, α,β-unsaturated Michael system.48  Although protecting group options were limited 

due to orthogonality and neighboring group participation in Schmidt glycosylation, TBS and 

allyloxycarbonyl (Alloc) groups were chosen for the glucosyl donor 20 and fucosyl acceptor 21 

respectively.  Because its mild deprotection conditions could be tolerated by many late-stage 

functional groups,49 Alloc on 22 was selected as a transient protecting group to later be replaced 

by TBS.50 Instead of introducing the tiglate moiety later in the synthesis, it was added directly to 

the glucosyl donor through a Steglich esterification, reducing the number of 

protection/deprotection steps. Also, construction of the dissacharide 22 was improved by 

minimizing the number of protecting groups on both the glucosyl donor 20 and fucoside acceptor 

21, showing phenomenal regio- and stereoselectivity. In addition to the natural product 24, the 11R 

epimer at C-11 of the macrolactone ring was constructed. 
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Scheme 3: Retrosynthesis of ipomoassin F  

The potency of both the natural product ipomoeassin F and its epimer were measured 

through cytotoxicity assays. Five human tumor cell lines, one immortalized normal human 

mammary epithelial cell line (MCF-10A), and one immortalized normal mouse embryo fibroblast 

cell line (NIH/3T3) were measured with 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium 

bromide,51 using the well-known cancer drug Taxol as a positive control. Although the 11R-epimer 

showed less activity than the natural product, its IC50 value was still in the nanomolar range.  The 

IC50 value against each cancer cell line was comparable to published results, and the cell viability 

curve demonstrated that it could prevent cell proliferation 20-30% more than Taxol at high 

concentrations (>100 nM).  Furthermore, the selectivity of this epimer was demonstrated by the 
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~8-fold higher potency of ipomoeassin F against U937 and MCF7, compared to literature values.  

However, ipomoeassin F showed no selectivity between general cancer cells and normal cells, and 

its IC50 values at low concentrations were slightly higher than Taxol.  

1.4: Structure-Activity Relationship Studies 

Recently, the Shi group also conducted extensive structure-activity relationship studies on 

ipomoeassin F to determine the contribution of each functional group to the overall cytotoxicity 

(Fig 3).52 Since ipomoeassin F (17) is distinguished from other resin glycosides by the carbonyl at 

the C-4 position of the macrolactone ring, as well as the tiglate and cinnamate esters on the glucosyl 

donor, a library was created to determine the connection of these groups to the overall biological 

activity. Because the ester alkene groups were essential to maintaining low IC50 values, it was 

crucial that no reduction occurred during hydrogenation of the aglycone after RCM.  

Consequently, the cinnamate functional group was introduced at a later stage during the synthesis 

of compounds 25, 26 and 27, and the hydrogenation was carefully controlled to avoid reducing the 

tigloyl alkene. A new route for the glucosyl donor, involving levulinic acid (Lev) esterification of 

the isopropylidine and p-methoxyphenyl protected glucose diol was also created.53 Not only did 

this route allow the removal of the tiglate functional moiety to examine reactivity, but it also 

prevented reduction of the ester during the RCM and hydrogenation steps.  Because Lev 

deprotection would damage the ketone on the lipophilic chain, it was replaced with chloroacetyl 

groups which could be removed under milder conditions of diazabicyclo[2.2.2]octane54 after the 

addition of the aglycone.  Subsequent acylation, RCM, hydrogenation, cinnamate esterification, 

and deprotection afforded analogues 24-27. 
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Figure 3: Ipomoeassin F analogues for SAR studies53 

By synthesizing several analogues of ipomoeassin F, using the optimized procedure 

developed previously,50 it was determined that removal of the two α,β-unsaturated esters, or 

cinnamate 24 and tiglate 25 functional groups, caused the highest loss of cytotoxicity (Fig. 4). 

Modification of the carbonyl group on the lipophilic aglycone 27 produced no change in activity 

when the compound was tested against five different cancer cell lines and compared to 

ipomoeassin F.  Although the acetate-deprived analogue 26 demonstrated a 20-fold decreased 

potency against MDA MB-231 tumor cells, the decrease was only 2-fold when measured against 
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MCF7.  Moreover, the IC50 values of each analogue were compared to both MCF-10A as a non-

tumor control, and paclitaxel, which is known to be selective for cancer cells. 27 showed a greater 

selectivity than the natural product, indicating that structural changes could improve the selectivity 

as well as cytotoxicity of the compound. Removal of the cinnamate and tiglate functional groups 

showed both esters to be crucial to the activity of the compound; however, reduction of tiglate 

caused a slightly lower bioactivity change than reduction of cinnamate. This data indicates that the 

phenylpropanoid structure, or Michael acceptor system, could contribute to a protein covalent 

interaction through irreversible pi-pi stacking with the biomacromolecule.55  

 

Figure 4: Cytotoxicity loss after removal/modification of functional moieties 
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CHAPTER 2: Ipomoessin F Analogue Design, Synthesis and Biological Evaluation 
 

 

2.1: Introduction 

Although fully protected and 3-OH Fucp protected ipomoeassin F analogues remained 

inactive, removal of the acetyl group from the fucoside acceptor caused only a slight cytotoxicity 

loss, with IC50 values still below 150 nM. A 2-23-fold loss was seen when the 4-OH-Fucp was 

removed and only a 2-14 fold loss for the 3-OH-Fucp (Fig. 5).  Because the two free hydroxyl 

groups represent the only hydrophilic region of the compound, it was theorized that they connect 

the natural product to the surrounding aqueous environment, without involvement in covalent 

protein binding. Based on the relative insignificance of the acetyl group, as well as the high cost 

of fucose ($427/5g on Sigma Aldrich), removal of the fucoside acceptor ring could potentially 

improve the synthetic route for ipomoeassin F.  Not only would the monosaccharide analogues 1 

and 2 reduce the overall production expense, but they would also shorten the synthesis, potentially 

increase cytotoxicity and/or selectivity and provide insight into the structural importance of the 

fucoside ring moiety. 

 

    Figure 5: Potential modifications to obtain 17 and 20-membered monosaccharide analogues64 
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2.2: Monosaccharide Analogue Synthesis 

Synthesis of the monosaccharide analogue was accomplished using several procedures 

developed in the previously published “Total Synthesis and Biological Evaluation of Ipomoeassin 

F and Its Unnatural 11R Epimer” and “Revealing the Pharmacophore of Ipomoeassin F through 

Molecular Editing” papers.50,53 As shown in Scheme 4, the glucosyl donor 11 was first synthesized 

from glucose (3), using protecting group strategies to achieve optimal yield and minimize the by-

products. Global acetylation to create 4 was accomplished with perchloric acid as a catalyst and 

acetic anhydride as a solvent to maximize reaction efficiency and minimize pyridine exposure. 

Following acylation, the para-methoxyphenyl protecting group was introduced to the anomeric 

position of 4 and allowed to isomerize to the alpha form over a period of 4-5 days in order to direct 

the allyloxycarbonyl protecting group to the 2-OH position of D-glucopyranoside. Due to 

incomplete isomerization of 5, a mixture of α/β products was formed, and the yield was relatively 

low (~60% over two steps). Subsequently, an isopropyl group was introduced to protect the 4th and 

6th positions of 6, using para-toluenesulfonic acid in DMF.57 Although 3-OH-Glup is typically 

more reactive than 2-OH-Glup,58 addition of the tigloyl ester moiety was not completely selective. 

Previous studies50 showed that Steglich esterification of (PMP)-β-D-glucopyranoside59 without a 

protecting group at the 2-OH-Glup produced a mixture with a ratio of 2.4:1 2-O-tiglate:3-O-tiglate. 

Since regioselective esterification favored the 2-OH-Glup, allylchloroformate was added to 

produce an allyloxycarbonyl (Alloc) protecting group on the 2nd position of (PMP)-α-D-

glucopyranoside (8). Because only mild deprotection conditions are necessary for the removal of 

Alloc, this group was ideal for improving the selectivity and avoiding migration. Early introduction 

of the tigloyl function group60 to 8 prevented extra 3-OH-Glup protection and deprotection, and 

led to a more facile installation of the cinnamate ester later in the synthesis. Finally, 4-
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methoxyphenyl (PMP) was cleaved with cerium ammonium nitrate to form 10, and the 

trichloroacetonitrile was introduced in the presence of 1,8-diazabicyclo(5.4.0)undec-7-ene 

(DBU)61 to the anomeric position to give the trichloroacetimidate donor 11 with a yield of 59% 

over two steps.  

 

 

To replace the fucosyl moiety from the previous synthesis route,50 a 2-carbon acceptor was 

developed as shown in Scheme 5. The acceptor was synthesized in three steps, using the 

commercially available (R)-epichlorohydrin. The butyl magnesium bromide compound 13 was 

prepared by suspending the alkyl halide 12 in a solution of magnesium, promoting single electron 

transfer. The resulting alkyl bromide Grignard reagent 13 was added to (R)-epichlorohydrin (14) 

through sequential copper-catalyzed epoxide ring opening to form the enantiopure alcohol (R)-1-

chloro-2-heptanol (15).62 Following transformation to the alcohol, the epoxide was successfully 

Scheme 4: Synthesis of Alloc-protected glucosyl donor 
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reformed with sodium hydroxide in a 98% yield. Finally, the oxirane species 16 was reopened with 

vinylmagnesium bromide to give the desired alcohol 17. When compared to published data, (R)-

hept-1-en-4-ol showed an enantiomeric excess of 98%.62 

 

Scheme 5: Synthesis of (R)-hept-1-en-4-ol 

To create the 2-carbon acceptor aglycone shown in Scheme 6, Williamson ether synthesis 

to connect (R)-hept-1-en-4-ol (17) with THF-protected 2-bromoethanol (19) was attempted. In 

accordance with literature, a tetrahydrofuran protecting group was attached to 2-bromoethanol (18) 

using para-toluenesulfonic acid as a catalyst to reduce byproduct and promote attack at the halide 

carbon. Although Gormisky63 reported a Williamson ether synthesis using sodium hydride (NaH) 

to reduce a secondary alcohol, unfortunately, three attempts using NaH to remove the proton from 

(R)-hept-1-en-4-ol (17) and form 20 were unsuccessful.  The reaction was attempted several times, 

by first using two equivalents of NaH, then by varying both the equivalents and time periods of 

the reaction.  Since the harsh conditions caused decomposition of the starting material, an 

unsuccessful endeavor was made to use the slightly less basic potassium hydroxide (KOH) to 

remove the secondary hydroxyl group hydrogen.  After many futile attempts under several 

different Williamson ether conditions, including the use of silver oxide (Ag2O) to connect the 

alcohol 17 with tetrahydropyranol-protected 2-bromoethanol (19), the idea of promoting a 
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Williamson ether synthesis with a base was abandoned and the indirect route shown in Scheme 6 

adopted. Instead of a direct reduction, (R)-hept-1-en-4-ol (17) was alkylated with bromoacetic acid 

under basic conditions to give the carboxylic acid 21. Due to the unsuccessful direct reduction 

with LiAlH4 (possibly due to coordination with the ether oxygen), an ethyl ester 22 was created as 

a precursor to the reduced acceptor product 23.  

              

Scheme 6: Synthesis of aglycone acceptor 
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 To synthesize the lipophilic aglycone needed to complete the macrocycle of the 

monosaccharide analogue (Sch. 7), an alkyl halide 24 was first suspended in a solution of 

magnesium and THF. This iodine-catalyzed addition of magnesium produced the Grignard reagent 

25, which was used to selectively open succinic anhydride (26). Due to a second copper-catalyzed 

Grignard reaction with the carbonyl carbon on the aglycone, 28 was the minor product with a yield 

of 24% over 2 steps. 

 

Scheme 7: Synthesis of lipophilic aglycone chain 

After synthesizing the protected donor 11, 2-carbon acceptor chain 23, and lipophilic 

aglycone 28, Schmidt glycosylation was achieved under the conditions of trimethylsilyl 

trifluoromethanesulfonate in CH2Cl2, at -78 ºC to produce 29 (Sch. 8). The glycosylation reaction 

proceeded at a moderate yield of 46%; however, subsequent removal of the Alloc protecting group 

on 29 afforded a higher yield of 99%. Protection of the 2-OH-Glup on 30 with a tert-

butyldimethylsilyl group also gave an excellent yield and prevented migration of the 4-oxo-9-

nonenoic acid chain. Purification of this aglycone was difficult, but after removal of the 

isopropylidine group with camphorsulfonic acid, 76% of product 32 was obtained. The diene 

precursor 33 was converted to the 20-membered macrolactone ring structure 34 through RCM 

using the Hoveyda-Grubbs catalyst under reflux in CH2Cl2. This process was followed by selective 
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hydrogenation with Wilkinson’s catalyst, with limited reduction of the tigloyl alkene on 35. The 

cinnamate functional group was then introduced to the glucose ring on 35 by Mukaiyama 

esterification with a 63% yield. Although an acyl migrated compound was observed for the 17-

membered ring 1, tetra-n-butylammonium fluoride was able to successfully remove the TBS 

protecting group from the 20-membered ring structure 36 after deprotection, producing the final 

monosaccharide analogue 37. The structure of this product was confirmed with 1H, 13C, COSY 

and HMBC NMR, as well as optical rotation measurement. 

 

Scheme 8: Synthesis of 20-membered monosaccharide analogue 
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After completing the synthesis of the 20-membered monosaccharide analogue, the 

cytotoxicity was tested against several different cancer cell lines. Specifically, the breast cancer 

cell lines MDA-MB-231 and MCF7 were evaluated, using either the fluorescent alarmarBlue or 

colorimetric MTT assay.64 Ipomoeassin F was used as a positive control during this procedure, 

and the vehicle-treated cells as the negative control. The lack of activity shown by both the 20 and 

17-membered ring structures confirmed the assumption that the fucoside moiety is necessary for 

cytotoxicity retention; in other words, the pyranose ring cannot be removed while retaining the 

biological activity of the compound.  Due to the rigidity and stability of the disaccharide structure, 

it was theorized that the removal of the right-hand sugar altered the overall conformation to prevent 

binding to the target protein. 

2.3: Galactoside Analogue Synthesis 

Although the disaccharide structure is essential to maintaining biological activity through 

conformational control, the fucose ring could potentially be replaced with a less expensive 

monosaccharide, such as D-galactose. The use of a different carbasugar for the acceptor portion of 

the disaccharide could not only reduce the expense of the synthesis, but also shorten the number 

of steps and and/or increase the biological activity. Furthermore, the versatile 6-OH-Galp would 

allow expansion of the range of functional groups and potential inhibition of cancer cell 

reproduction. For this reason, the retrosynthesis shown in Scheme 9 was developed to construct 

an ipomoeassin F analogue with a galactoside acceptor ring. Future studies could exploit glucose 

or D-arabinose as low-cost acceptor sugars; however, galactose was chosen for its similarity to the 

original structure, with only a slight difference at the 6th position of the acceptor ring on 44. The 

removal of the fucoside structure ultimately gave insight into the binding properties of the 
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compound and facilitated the development of future synthetic studies and methods involving less 

expensive carbasugars. 

 

Scheme 9: Retrosynthesis of galactoside analogue 

In order to prevent reduction of the cinnamate and tiglate functional moieties after RCM, 

a new glucosyl donor was designed (Sch. 10). Like the procedure outlined in the “Total Synthesis 

and Biological Evaluation of Ipomoeassin F and Its Unnatural 11R Epimer” publication,50 which 

relied on early introduction of the tigloyl ester, global acetylation to produce 4 was achieved in 

acetic anhydride with perchloric acid acting as a catalyst. Again, the para-methoxyphenyl 

protecting group was introduced to the anomeric position of glucose; however, isomerization to 

the alpha form was not required and the major product of this reaction after 12 hours was (PMP)-

β-D-glucopyranoside (45). Due to minimization of the alpha product and facile separation, the 

yield of this reaction was significantly higher than the yield in the previous method. Isopropylidine 

was added to the 5th and 6th positions of glucose to produce 47, and the levuloyl protecting group 

was chosen for the 2 and 3-OH positions on 48. Since an excess of levulinic acid (Lev) was used 

to protect these positions, the reactivity of the hydroxyl groups was irrelevant.  Although the 

relatively harsh conditions of hydrazine acetate may affect the acetyl ketone and cause a slightly 
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lower yield late in the synthesis, the higher donor yield and lack of tigloyl reduction should 

compensate for this loss. Lev was attached using DCC and DMAP for esterification of the diol to 

protect the 2nd and 3rd positions of 47. Protection was followed by the cleavage of PMP on 48 with 

cerium ammonium nitrate and introduction of trichloroacetonitrile to 49 to produce the glucosyl 

donor 50. 

 

Scheme 10: Synthesis of Lev-protected glucosyl donor 

 

 Following synthesis of the Lev and isopropylidine-protected donor, a galactoside acceptor 

ring 57 was constructed by protecting the 4th and 6th positions prior to glycosylation (Sch. 11). As 

outlined in Scheme 6, (R)-hept-1-en-4-ol (17) was synthesized from R-epichlorohydrin in excellent 

yield. After removing the anomeric acetate from globally acetylated galactose to produce 52, 

trichloroacetonitrile was connected65 to produce the galactosyl donor 53, which was able to easily 

undergo TMSOTf-catalyzed glycosylation with the secondary alcohol 17. Since the 6th position of 

the globally deprotected galactose is most reactive, the 6-OH-Galp was first protected with tert-
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butyldiphenylsilyl (TBDPS) to give 56. This functional group was chosen due to its stability during 

the harsh deprotection conditions needed for the removal of the isopropylidine and levuloyl 

groups. Although tert-butylsilyl (TBS) will remain anchored on the 3rd position during addition of 

a strong base, the more reactive 6-OH-Galp requires a more stable protecting group. As outlined 

in literature, the 3-OH position can be selectively silylated due to nucleophilicity caused by 

hydrogen bonding with the proximal hydroxyl group; therefore, the TBS-protected galactose 

acceptor 57 was obtained in 96% yield. 

 

Scheme 11: Synthesis of galactoside acceptor 

 

Following glycosylation, a ketone-protected aglycone 60 was synthesized over five steps 

from succinic anhydride, as outlined in literature.53 Ring opening of succinic anhydride (26) was 

accomplished with 4-pentenylmagnesiumbromide to produce the aglycone 28 used for 
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monosaccharide synthesis (Sch. 12). However, further modifications were necessary to prevent a 

reaction of hydrazine acetate with the unprotected ketone. Direct reduction to the ketal 28 using 

ethylene glycol was not possible, but a more indirect route of esterification with ethanol 28  58 

followed by treatment with ethylene glycol afforded the protected ketone 59. Deprotection of 59 

was achieved by treatment of the ester with sodium hydroxide, followed by hydrochloric acid to 

give the carboxylic acid 60.  

 

Scheme 12: Synthesis of ketal-protected aglycone 

 

In order to determine the role of hydrophobicity and potentially increase overall 

cytotoxicity of the compound, a small library of galactoside analogues can be synthesized 

following the pattern outlined in Scheme 13. After glycosylation of 50 and 57 and addition of an 

acetyl group to the 4-OH Fucp of 61, the isopropylidene protecting group can be removed from 

the 4th and 6th positions of 62 without damage to other functional groups. 59 can be added to the 

6th position of the donor, followed by RCM and hydrogenation 64  65, as previously described 

(Sch. 8). Due to their installation late in the synthesis, the cinnamoyl and tigloyl moieties can be 

attached with no olefin reduction. Prior to tiglate addition, the levuloyl functional groups can be 

deprotected from 66 using hydrazine acetate, with no risk of damaging the ketone on the lipophilic 
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fatty acid tether. Subsequently, the TBDPS and TBS protecting groups, then the acetal can be 

deprotected in one pot to give the triol 69.  Previous studies involving a hydroxyl-substituted 

aglycone chain and protected 6-OH have shown that TBDPS and TBS cannot be selectively 

deprotected with sufficient yield. However, due to the higher reactivity of the sixth position of 

galactose, a trityl protecting group can be specifically introduced to 6-Galp of 69, leaving 3-Galp 

and 2-Glup of 70 open to protection with α-chloroacetate (CA). The trityl group can then be 

removed with trifluoroacetic acid, leaving the free hydroxyl group on 72 open to modification. 

Several analogues, including acetyl and phenyl-substituted functional groups at the sixth position 

of the fucosyl group on 72 will be created, followed by deprotection of CA from 73 to produce a 

mini-library, including analogue 74. These modifications will allow determination of the 

hydrophobicity and protein-interaction properties of the right-hand carbasugar and further 

elucidation of the overall conformation and binding mechanisms of ipomoeassin F. 
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Scheme 13: Synthesis of ipomoeassin F galactose analogue mini-library 
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Abstract 

 

Ipomoeassin F is a plant-derived macrocyclic glycolipid with single-digit nanomolar IC50 values 

against cancer cell growth.  In previous structure–activity relationship studies, we have 

demonstrated that certain modifications around the fucoside moiety did not cause significant 

cytotoxicity loss.  To further elucidate the effect of the fucoside moiety on the biological activity, 

we describe here the design and synthesis of several fucose-truncated monosaccharide analogues 

of ipomoeassin F.  Subsequent biological evaluation strongly suggests that the 6-membered ring 

of the fucoside moiety is essential to the overall conformation of the molecule, thereby influencing 

bioactivity. 
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Introduction 

Resin glycosides are amphipathic secondary metabolites unique to the morning glory family, 

Convolvulaceae. Their broad bioactivities, such as anticancer, antibacterial, biosurfactant, 

ionophoretic, purgative and plant growth controlling activities, have attracted more and more 

attention from phytochemists and pharmaceutical chemists. The common macrolide structure of 

resin glycosides contains a hydrophobic C-11 hydroxylated fatty acid aglycone and a hydrophilic 

oligosaccharide.  The latter usually comprises two to six sugar units, part or entire portion of which 

forms the ring structure with the fatty acid.1 Although monosaccharide cyclic glycolipids have 

been isolated from other families of plants, no resin glycosides containing a single carbohydrate 

moiety have been reported to date. 

Ipomoeassins, a family of resin glycosides containing an embedded disaccharide, were 

discovered by Kingston’s group in 2005 and 2007.2  Whereas most resin glycosides showed 

micromolar cytotoxicity, several members of the ipomoeassin family exhibited low to single-digit 

nanomolar IC50 values.  Moreover, the naturally most abundant member of the family, ipomoeassin 

A, was screened against the NCI-60 tumor cell lines and its cytotoxicity profile is well 

distinguished from those of other anticancer agents in the database.5  Therefore, the ipomoeassins 

quickly inspired synthetic chemists to tackle their total syntheses. In particular ipomoeassin F 

(Table 1) has been an attractive synthetic target due to its highest potency.3,4 

 
Table 2: Structures and IC50 Values of Ipomoeassin F and Its Analogues.  

 

Compounds 
structure  IC50 (nM) 

R1 R2  MDA-MB-231 MCF7 HeLa U937 Jurkat 

Ipomoeassin F Ac H 
 

6.5 43.7 16.4 5.4 6.1 

1 H H  131 86.7 133 72.5 139 

2 Ac Ac 
 

16.5 216 138 79.8 82.6 
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Recently, we developed a new efficient gram-scale synthesis of ipomoeassin F and conducted 

its most systematic structure–activity relationship (SAR) studies to date.6,7  During the studies, we 

found that the two α,β-unsaturated esters in the glucoside moiety, that is, cinnamate and tiglate 

(Table 1), are the most critical to the cytotoxicity of ipomoeassin F.  On the other hand, 

modifications of the fucoside moiety,7 i.e. removal of the acetyl group from 4-OH-Fucp (analogue 

1, Table 1) or introduction of an acetyl group to 3-OH-Fucp (analogue 2, Table 1), did not cause a 

dramatic cytotoxicity loss for the five tested cancer cell lines (2–23 fold loss for 1 and 2–14 fold 

loss for 2, respectively). The IC50 values of both 1 and 2 are largely still below 150 nM; therefore, 

the contribution of the whole fucoside moiety to the cytotoxicity is of great interest.  In addition, 

given the high price of D-fucose ($427/5g, Sigma-Aldrich), relatively potent monosaccharide 

analogues (IC50 < 0.5 μM) of ipomoeassin F without the fucoside moiety would significantly 

decrease the production cost and also shorten the synthetic route, thereby benefiting future 

ipomoeassin research in drug discovery and chemical biology. 

 

Results and Discussion 

Molecular Design.  In earlier studies, we proved that some peripheral modifications of the 

fucoside moiety could be well withstood (analogues 1 and 2, Table 1).  To further elucidate the 

function of the fucoside moiety, analogue 3 (Fig. 6) was first designed, in which the entire fucoside 

moiety is removed.  This analogue also changes the ring size from 20-membered ring in 

ipomoeassin F to 17-membered ring.  Because ring size may have a great impact biological 

activity, we also designed analogue 4 (Fig. 6) in which the fucoside moiety is partially truncated; 

therefore, 4 maintains the same ring size as ipomoeassin F.  Using both analogues 3 and 4, we 

hope to address the question of whether the fucoside ring is dispensable or not. 
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Figure 6: Design of the monosaccharide analogues 3 and 4. 

Synthetic Strategy. The two monosaccharide analogues 3 and 4 can be straightforwardly 

synthesized by using the same strategy we developed for the total synthesis of ipomoeassin F (Sch. 

14).6  From the diene intermediate 6a/b, ring-closing metathesis (RCM) and hydrogenation were 

still adopted to construct the saturated ring structure in 5a/b, to which cinnamate could be 

introduced, followed by removal of the TBS group, to give the desired monosaccharide analogues 

3 and 4.  To control the β-linkage in 6a/b, the glucosyl donor 76 with Alloc as the neighboring 

participation group was chosen to couple with the alcohol acceptor 8a/b.  After that, replacement 

of the Alloc group with TBS, followed by removal of isopropylidene and then chemoselective 

esterification with 4-oxo-8-nonenoic acid 9,8 would lead to the key diene intermediate 6a/b as the 

RCM precursor.  Synthesis of the acceptor 8b could be achieved by alkylation of alcohol 8a3 with 

bromoacetic acid, followed by the esterification and reduction procedure.  
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Scheme 14: Retrosynthesis of monosaccharide analogues 3 and 4 

 Synthesis of the Acceptor 8b. The synthesis of 8b is outlined in Scheme 15. Alkylation of the 

other acceptor 8a3 with bromoacetic acid in the presence of NaH afforded acid 10 in moderate 

yield.  Direct reduction of acid 10 using LiAlH4 was not successful. Then we converted acid 10 to 

ethyl ester 11 first, followed by reduction with LiAlH4 to give 8b in 62% overall yield over two 

steps. 

 

Scheme 15: Synthesis of the acceptor 8b 
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     Synthesis of the RCM Precursor 6a/b.  The Glucosyl donor 7 was synthesized by following 

the route we developed previously. With both glucosyl donor and two acceptors in hand, the RCM 

precursor 6a/b was synthesized as shown in Scheme 16.  Schmidt glycosylation of 7 with acceptor 

8a/b promoted by TMSOTf in cold CH2Cl2 gave β-linked glycoside 12a in 62% yield or 12b in 

50% yield. Alloc group was then selectively removed in the presence of CH3COONH4, 

Pd[P(C6H5)3]4, and NaBH4 in excellent yield to give alcohol 13a/b within 4 min.9  13a/b was then 

treated with tert-butyldimethylsilyl triflate (TBSOTf) in the presence of 2,6-lutidine to give silyl 

ether 14a in 84% yield or 14b in 50% yield. Removal of isopropylidene using camphorsulfonic 

acid (CSA) in MeOH afforded diol 15a/b without any problem. The subsequent chemoselective 

Steglich esterification of diol 15a/b with 4-oxo-8-nonenoic acid 78 to give diene 6a/b as the key 

RCM precursor.  

 

Scheme 16: Synthesis of diene 6a/b 
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     Syntheses of Monosaccharide Analogues 3 and 4. RCM of 6a/b using Hoveyda-Grubbs 

catalyst (II)10 (10 mol%) under refluxing in CH2Cl2, followed by hydrogenation of the resulting 

alkene isomers over Wilkinson’s catalyst, constructed the desired ring structure (50% for 5a and 

50% for 5b) over two steps (Sch. 17). Cinnamate ester was then introduced to 5a/b through 

Mukaiyama esterification to afford the fully protected compound 16a/b in high yield. In the last 

step, removal of TBS using TBAF in cold THF/MeOH was first tried on substrate 16a. 

Unfortunately, instead of forming the desired monosaccharide analogue 3, the acyl-migrated 

compound 17 was obtained as the major product (42% yield) along with 18 as the minor product 

(29% yield). The structures of compounds 17 and 18 were confirmed by 1H, 13C, COSY and 

HMBC NMRs (Fig. 7). Treatment of 15a/b with TBAF and acetic acid in THF/MeOH finally 

delivered the desired monosaccharide analogues in good yield (50% for 3 and 77% for 4).  

 

Scheme 17: Synthesis of monosaccharide analogues 3 and 4 
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Figure 7: Key COSY (bold) and HMBC (arrows) correlations in 17 and 18. 

     Cytotoxicity of Ipomoeassin F and analogues. Using the fluorescent alarmarBlue or 

colorimetric MTT assay,11 the cytotoxicity of monosaccharide analogues 3 and 4, together with 

the two unexpected analogues 17 and 18, was evaluated against two breast cancer cell lines (MDA-

MB-231 and MCF7) using ipomoeassin F as the positive control and vehicle-treated cells as the 

negative control.  Compared to ipomoeassin F, all the four analogues showed no appreciable 

inhibition of cell growth at 10 μM, demonstrating that the fucoside moiety is indispensable for the 

cytotoxicity of the ipomoeassins.  

 

Conclusions 

In summary, we report here the synthesis and biological evaluation of four monosaccharide 

analogues of ipomoeassin F, 3, 4, 17 and 18, consisting of a truncated carbohydrate core. The 

fucoside moiety was completely or partially removed from the disaccharide portion of the original 

natural product.  Evaluation of these compounds against two breast cancer cell lines 

unambiguously revealed the vital role of the pyranose ring of the fucoside moiety in the biological 

activity of ipomoeassin F, very likely through conformational control.  Further studies of using 
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other economical carbohydrate building blocks to replace expensive D-fucose are planned to 

consolidate and enrich the SAR data, while improving the production efficiency.  In this regard, 

D-galactose is the most attractive to us (Fig. 8).  The small 6-OH-Galp may provide an anchor 

point for introduction of new functional moieties to better biological activities and/or facilitate the 

discovery of molecular targets. 

 

Figure 8: D-galactose-containing analogue of ipomoeassin F. 
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CHAPTER 4: Conclusions  

 

 The Postema and Fuerstner groups have reported different methodologies for the synthesis 

of ipomoeassin F, each with several impediments. The Shi group improved this synthesis route by 

introducing new protecting group strategies to increase the overall yield and facilitate structure-

activity relationship (SAR) studies, which showed the fucoside moity to be unimportant to the 

overall cytotoxicity of the compound.  

Based on the results of the SAR studies, we successfully completed and published the 

syntheses of two separate monosaccharide analogues of ipomoeassin F. Key methodologies 

include the synthesis of the Alloc-protected glucosyl donor (Sch. 4, p. 20), carboxylic acid-derived 

aglycone acceptor (Sch. 6, p. 22) and Hoveyda-Grubbs-catalyzed RCM (Sch. 8, p. 24).  Although 

SAR studies determined several functional groups on the fucoside acceptor to be unnecessary for 

cytotoxicity retention, removal of the entire structure resulted in a complete loss of biological 

activity. Therefore, studies to substitute the fucoside acceptor ring with a less expensive carbasugar 

such as galactose, glucose or D-arabinose are in progress.  
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Appendix 1: Experimental—Selected Spectra 
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Appendix 2: Experimental—Materials and Methods 

 

General Methods  

     Reactions were carried out in oven-dried glassware. All reagents were purchased from 

commercial sources and were used without further purification unless noted. Unless stated 

otherwise, all reactions were carried out under a nitrogen atmosphere and monitored by thin layer 

chromatography (TLC) using Silica Gel GF254 plates (Agela) with detection by charring with 5% 

(v/v) H2SO4 in EtOH or by visualizing in UV light (254 nm). Column chromatography was 

performed on silica gel (230–450 mesh, Sorbent). The ratio between silica gel and crude product 

ranged from 100 to 50:1 (w/w). NMR data were collected on a Bruker 400 MHz NMR 

spectrometer and a Bruker 400 MHz system. 1H NMR spectra were obtained in deuteriochloroform 

(CDCl3) with chloroform (CHCl3, δ = 7.27 for 1H) as an internal reference. 13C NMR spectra were 

proton decoupled and were in CDCl3 with CHCl3 (δ = 77.0 for 13C) as an internal reference. 

Chemical shifts are reported in ppm (δ). Data are presented in the form: chemical shift 

(multiplicity, coupling constants, and integration). 1H data are reported as though they were first 

order. The errors between the coupling constants for two coupled protons were less than 0.5 Hz, 

and the average number was reported. Proton assignments, when made, were done so with the aid 

of COSY NMR spectra. For some compounds, HSQC and HMBC NMR were also applied to 

assign the proton signals. Optical rotations were measured on an Autopol III Automatic 

Polarimeter at 25 ± 1 oC for solutions in a 1.0 dm cell. High resolution mass spectrum (HRMS) 

and were acquired in the ESI mode. The type of the mass analyzer is FTMS. 
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Chemistry: Synthetic Procedures and Analytical Data 

Compound 10  

     To an ice-cold, stirred suspension of sodium hydride (111 mg, dry NaH, 95% pure, 4.64 mmol) 

in THF (20 mL) was added dropwise a solution of 8a (300 mg, 2.11 mmol) in THF (1 mL). After 

30 min, a solution of bromoacetic acid (351 mg, 2.53 mmol) in THF (1 mL) was added dropwise. 

The resulting mixture was refluxed overnight before cooled to rt. The reaction mixture was diluted 

with ether (50 mL) and water (50 mL) and stirred for 1 h. The aqueous layer was separated and 

washed with ether (30 mL × 2), acidified with concentrated hydrochloric acid and extracted with 

ethyl acetate (50 mL × 2). The combined extracts were dried over Na2SO4. Evaporation and 

purification by column chromatography (silica, EtOAc–hexanes, 1:3 containing 0.5% AcOH) to 

afford compound 10 (258 mg, 58%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 9.62 (s, 1H), 

5.90 – 5.71 (m, 1H), 5.21 – 4.97 (m, 2H), 4.13 (s, 2H), 3.50 – 3.39 (m, 1H), 2.31 (dd, J = 7.2, 6.4 

Hz, 2H), 1.64 – 1.45 (m, 2H), 1.44 – 1.19 (m, 6H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 174.4, 134.2, 117.6, 80.7, 66.0, 38.1, 33.4, 31.8, 24. 8, 22.5, 14.0. 

Compound 11 

     DCC (387 mg, 1.88 mmol) was added in one portion to a 0ºC CH2Cl2 (2 mL) solution of 10 

(188 mg, 0.939 mmol), EtOH (274 uL, 4.69 mmol) and 4-dimethylaminopyridine (11.5 mg, 0.0939 

mmol). The reaction was allowed to warm to ambient temperature and stirred overnight. At this 

point, TLC (silica, 1:9 EtOAc–hexanes) showed the reaction was complete. The reaction mixture 

was diluted with ether (2 mL) and hexanes (1 mL), stirred for 20 minutes then filtered thru a pad 

of celite using ether (2 mL) as the eluent and the filtrate concentrated in vacuo. The residue was 

purified by column chromatography (silica, EtOAc–hexanes, 1:15 → 1:10) gave 11 (162 mg, 76%) 

as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 5.95 – 5.80 (m, 1H), 5.19 – 5.00 (m, 2H), 4.21 
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(q, J = 7.2 Hz, 2H), 4.16 – 4.01 (m, 2H), 3.50 – 3.30 (m, 1H), 2.43 – 2.17 (m, 2H), 1.63 – 1.16 (m, 

11H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.7, 134.6, 117.0, 80.2, 66.6, 

60.7, 38.1, 33.5, 31.9, 24.9, 22.6, 14.2, 14.0. 

Compound 8b  

     To an ice-cold, stirred slurry of lithium aluminium hydride (57 mg, 1.5 mmol) in THF (3 mL) 

was added dropwise a solution of ester 11 (156 mg, 0.683 mmol) in THF (3 mL). The resulting 

mixture was warmed up to rt and stirred overnight before quenched by the careful addition of 0.5 

M aqueous sodium hydroxide (1 mL). The resulting grey suspension was filtered through Celite 

and the solid washed with THF (3 mL). The combined filtrates were concentrated in vacuo. The 

residue was purified by column chromatography (silica, EtOAc–hexanes, 1:6) gave the alcohol 8b 

(103 mg, 81%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 5.91 – 5.72 (m, 1H, H-2), 5.15 – 

5.00 (m, 2H, H-1), 3.80 – 3.64 (m, 2H, H-10), 3.64 – 3.48 (m, 2H, H-11), 3.43 – 3.26 (m, 1H, H-

4), 2.27 (dd, J = 6.8, 6.0 Hz, 2H, H-3), 2.08 (br, 1H, OH), 1.60 – 1.05 (m, 8H, H-5, H-6, H-7, H-

8), 0.89 (t, J = 6.8 Hz, 3H, H-9). 13C NMR (100 MHz, CDCl3) δ 135.0, 117.0, 79.5, 69.9, 62.1, 

38.4, 33.8, 31.9, 25.1, 22.6, 14.0. 

Compound 12a 

     A mixture of acceptor 8a (350 mg, 2.46 mmol), donor 7 (1.31 g, 2.46 mmol), and 4 Å molecular 

sieves (2 g) in anhydrous, redistilled CH2Cl2 (50 mL) was stirred under an N2 atmosphere for 30 

min and then cooled to –60 oC. TMSOTf (45 µL, 0.25 mmol) was added to the mixture. Then the 

reaction mixture was allowed to gradually warm to –20 oC over 2 h, at the end of which time TLC 

(silica, 1:6 EtOAc–hexanes) showed it was complete. Then the reaction mixture was quenched 

with Et3N (50 µL) and filtrated. The filtrate was evaporated in vacuo to give a residue, which was 

purified by silica gel column chromatography (silica, EtOAc–hexanes, 1:10 → 1:8) to give 
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compound 12a (778 mg, 62%) as a colorless syrup. [α]D
25 –19.2° (c 1 CHCl3). 

1H NMR (400 MHz, 

CDCl3) δ 6.92 – 6.76 (m, 1H, Me-CH=C(Me)-C=O), 5.95 – 5.80 (m, 1H, CH2=CH-CH2-O-), 5.79 

– 5.65 (m, 1H, CH2=CH-CH2-CH-), 5.35 – 5.16 (m, 3H, H-3-Glup, CH2=CH-CH2-O-), 5.09 – 4.95 

(m, 2H, CH2=CH-CH2-CH-), 4.77 (dd, J = 9.2, 8.0 Hz, 1H, H-2-Glup), 4.63 (d, J = 7.6 Hz, 1H, H-

1-Glup), 4.60 – 4.52 (m, 2H, CH2=CH-CH2-O-), 3.93 (dd, J = 10.8, 5.6 Hz, 1H, H-6-Glup), 3.83 

– 3.72 (m, 2H, H-4-Glup, H-6-Glup), 3.69 – 3.57 (m, 1H, -CH2-CH-CH2-), 3.40 – 3.31 (m, 1H, H-

5-Glup), 2.23 (t, J = 6.4 Hz, 2H), 1.85 – 1.74 (m, 6H, CH3-CH-C(CH3)-C=O), 1.55 – 1.41 (m, 5H), 

1.39 – 1.18 (m, 9H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 166.9, 154.1, 138.0, 

134.1, 131.4, 128.1, 118.5, 117.3, 100.4, 99.6, 80.1, 76.7, 72.0, 71.6, 68.5, 67.2, 62.1, 38.4, 34. 4, 

31.7, 28.9, 24.6, 22.5, 18.9, 14.4, 14.0, 12.1. 

Compound 13a 

     To a cooled (–10 oC) solution of compound 12a (383 mg, 0.750 mmol) in 1:1 MeOH–THF (10 

mL) was added CH3COONH4 (578 mg, 7.50 mmol). With vigorous stirring, NaBH4 (5.0 mg, 0.13 

mmol), Pd[P(C6H5)3]4 (35 mg, 0.030 mmol), and NaBH4 (50 mg, 1.3 mmol) was added in 3 

portions immediately one after another. Four minutes after the addition of the second portion of 

NaBH4, TLC (EtOAc–hexanes, 1:6) indicated that the reaction was complete. The reaction mixture 

was concentrated under diminished pressure, the residue was dissolved in CH2Cl2 (20 mL) and 

washed with water (10 mL), then the organic layer was dried over Na2SO4. Evaporation and 

purification by column chromatography (silica, EtOAc–hexanes, 1:8) to afford compound 13a 

(314 mg, 98%). [α]D
25 –59.6° (c 1 CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.95 – 6.85 (m, 1H, Me-

CH=C(Me)-C=O), 5.90 – 5.75 (m, 1H, CH2=CH-CH2-), 5.15 – 5.01 (m, 3H, H-3-Glup, CH2=CH-

CH2-), 4.46 (d, J = 7.6 Hz, 1H, H-1-Glup), 3.92 (dd, J = 10.8 Hz, 5.2 Hz, 1H, H-6-Glup), 3.78 (t, 

J = 10.8 Hz, 1H, H-4-Glup), 3.74 – 3.65 (m, 2H, H-6-Glup, -CH2-CH-CH2-), 3.59 – 3.44 (m, 1H, 
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H-2-Glup), 3.40 – 3.39 (m, 1H, H-5-Glup), 2.66 (d, J = 2.0 Hz, 1H, OH), 2.40 – 2.18 (m, 2H), 

1.84 (s, 3H, CH3-CH-C(CH3)-C=O), 1.80 (d, J = 7.2 Hz, 3H, CH3-CH-C(CH3)-C=O), 1.64 – 1.48 

(m, 2H), 1.45 (s, 3H, (CH3)2C), 1.36 (s, 3H, (CH3)2C), 1.33 – 1.19 (m, 6H), 0.88 (t, J = 6.8 Hz, 

3H). 13C NMR (100 MHz, CDCl3) δ 168.0, 137.9, 134.8, 128.3, 117.7, 103.0, 99.5, 79. 8, 74.1, 

74.0, 71.3, 67.4, 62.2, 38.6, 34.7, 31.7, 28.9, 24.7, 22.5, 18.9, 14.4, 14.0, 12.1. 

Compound 13b 

     A mixture of acceptor 8b (100 mg, 0.537 mmol), donor 7 (427 mg, 0.805 mmol), and 4 Å 

molecular sieves (1 g) in anhydrous, redistilled CH2Cl2 (20 mL) was stirred under an N2 

atmosphere for 30 min and then cooled to –60 oC. TMSOTf (9.7 µL, 0.054 mmol) was added to 

the mixture. Then the reaction mixture was allowed to gradually warm to –20 oC over 2 h, at the 

end of which time TLC (silica, 1:6 EtOAc–hexanes) showed it was complete. Then the reaction 

mixture was quenched with Et3N (10 µL) and filtrated. The filtrate was evaporated in vacuo to 

give a residue, which was purified by flash column chromatography to give compound 12b (138 

mg, 46%) as a colorless syrup. To a cooled (−10 °C) solution of compound 12b (138 mg, 0.25 

mmol) in 1:1 MeOH−THF (20 mL) was added CH3COONH4 (192 mg, 2.49 mmol). With vigorous 

stirring, NaBH4 (1.94 mg, 0.051 mmol), Pd[P(C6H5)3]4 (11.4 mg, 0.01 mmol), and NaBH4 (16.9 

mg, 0.45 mmol) were added in three portions immediately one after another. Four minutes after 

the addition of the second portion of NaBH4, TLC (EtOAc−hexanes, 1:3) indicated that the 

reaction was complete. The reaction mixture was concentrated under diminished pressure, the 

residue was dissolved in CH2Cl2 (50 mL) and washed with water (25 mL), and then the organic 

layer was dried over Na2SO4. Evaporation and purification by column chromatography (silica, 

EtOAc−hexanes, 1:8 → 1:7) afforded compound 13b (116.2 mg, 99%) as a colorless syrup. [α]25
D 

–24.3° (c 1 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.91 − 6.89 (m, 1H, Me-CH=C(Me)-C=O), 
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5.83−5.76 (m, 1H, CH2=CH-CH2-), 5.15 – 5.00 (m, 3H, H-3-Glup, CH2=CH-CH2-), 4.47 (d, J = 

7.6 Hz, 1H, H-1-Glup), 4.04 − 3.91 (m, 2H, H-6-Glup, -OCH2CH2O-), 3.82 − 3.60 (m, 6H, H-4-

Glup, H-6-Glup, -CH2-CH-CH2-, -OCH2CH2O-), 3.59 – 3.53 (m, 1H, H-2-Glup), 3.40 – 3.30 (m, 

2H, H-5-Glup, OH), 2.26−2.23 (m, 2H), 1.84 (s, 3H, CH3-CH-C(CH3)-C=O), 1.80 (d, J = 6.8 Hz, 

3H, CH3-CH-C(CH3)-C=O), 1.75 – 1.61 (m, 2H), 1.45 (s, 3H, (CH3)2C), 1.37 (s, 3H, (CH3)2C), 

1.35 – 1.20 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 168.0, 137.9, 134.8, 

128.3, 117.0, 104.0, 99.6, 79.9, 74.1, 73.6, 71.4, 69.6, 67.8, 67.5, 62.1, 38.2, 33.6, 31.9, 28.9, 25.0, 

22.6, 18.9, 14.4, 14.0, 12.1. 

Compound 14a 

     TBSOTf (338 μL, 1.47 mmol) was added to a solution of compound 13a (314 mg, 0.736 mmol) 

and 2,6-lutidine (426 μL, 3.68 mmol) in distilled CH2Cl2 (10 mL) at 0 oC. The reaction was allowed 

to warm to ambient temperature and stirred for 2 h. At this point, TLC (silica, 1:9 EtOAc–hexanes) 

showed the reaction was complete. Evaporation of the solvent followed by purification of the 

residue by flash chromatography (silica, EtOAc–hexanes, 1:15 → 1:10) gave compound 14a (334 

mg, 84%) as a colorless syrup. [α]D
25 –29.1° (c 1 CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.89 – 

6.76 (m, 1H, Me-CH-C(Me)-C=O), 5.87 – 5.71 (m, 1H, CH2=CHCH2-), 5.14 (t, J = 9.2 Hz, 1H, 

H-3-Glup), 5.11 – 4.99 (m, 2H, CH2=CHCH2-), 4.50 (d, J = 7.4 Hz, 1H, H-1-Glup), 3.91 (dd, J = 

10.7, 5.3 Hz, 1H, H-6-Glup), 3.78 – 3.68 (m, 2H, H-6-Glup, -CH2-CH-CH2-), 3.63 (t, J = 9.7 Hz, 

1H, H-4-Glup), 3.55 (dd, J = 8.7, 7.5 Hz, 1H, H-2-Glup), 3.40 – 3.36 (m, 1H, H-5-Glup), 2.43 – 

2.29 (m, 1H), 2.27 – 2.15 (m, 1H), 1.87 – 1.74 (m, 6H, CH3-CH-C(CH3)-C=O), 1.59 – 1.14 (m, 

14H), 0.88 (t, J = 6.8 Hz, 3H), 0.81 (s, 9H), 0.06 (s, 3H, CH3Si), -0.03 (s, 3H, CH3Si); 13C NMR 

(100 MHz, CDCl3) δ 166.9, 137.1, 134.8, 128.7, 117.1, 101.3, 99.3, 77.1, 74.6, 73.9, 72.0, 67.0, 

62.4, 38.1, 34.3, 31.8, 29.0, 25.7 (×3), 24.7, 22.6, 18.9, 17.9, 14.3, 14.1, 12.1, -3.8, -4.9.  
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Compound 14b 

     TBSOTf (113 μL, 0.493 mmol) was added to a solution of compound 13b (116 mg, 0.246 

mmol) and 2,6-lutidine (143 μL, 1.23 mmol) in distilled CH2Cl2 (15 mL) at 0 oC. The reaction 

mixture was allowed to warm to ambient temperature and stirred overnight. At this point, TLC 

(silica, 1:6 EtOAc–hexanes) showed the reaction was complete. Evaporation of the solvent 

followed by purification of the residue by flash chromatography (silica, EtOAc–hexanes, 1:15 → 

1:10) gave compound 14b (140 mg, 97%) as a colorless syrup. [α]D
25 –26.3° (c 1 CHCl3). 

1H NMR 

(400 MHz, CDCl3) δ 6.87 – 6.82 (m, 1H, Me-CH-C(Me)-C=O), 5.88 – 5.77 (m, 1H, CH2=CHCH2-

), 5.17 (t, J = 9.6 Hz, 1H, H-3-Glup), 5.08 – 5.02 (m, 2H, CH2=CHCH2-), 4.40 (d, J = 7.2 Hz, 1H, 

H-1-Glup), 3.96 – 3.90 (m, 2H, H-6-Glup, -OCH2CH2O-), 3.78 – 3.50 (m, 6H, H-6-Glup, H-2-

Glup, H-4-Glup, -OCH2CH2O-), 3.38 – 3.28 (m, 2H, H-5-Glup, -CH2-CH-CH2-), 2.30 − 2.19 (m, 

2H), 1.88 − 1.75 (m, 6H, CH3-CH-C(CH3)-C=O), 1.50 − 1.20 (m, 14H), 0.88 (t, J = 7.0 Hz, 3H), 

0.81 (s, 9H, C(CH3)3), 0.06 (s, 3H, CH3Si), 0.02 (s, 3H, CH3Si). 13C NMR (400 MHz, CDCl3) δ 

166.9, 137.2, 135.1, 128.6, 116.6, 104.1, 99.4, 79.7, 74.4, 74.1, 71.7, 69.3, 67.6, 67.0, 62.2, 38.3, 

33.7, 32.0, 29.0, 25.6 (×3), 25.0, 22.6, 18.9, 18.0, 14.3, 14.1, 12.1, -4.2, -5.1. 

Compound 15a 

     CSA (27.4 mg, 0.118mmol) was added in one portion to a solution of 14a (319 mg, 0.59 mmol) 

in MeOH (10 mL) at room temperature. The reaction mixture was stirred for 3 h at which point 

TLC (silica, 1:4 EtOAc–hexanes) showed it was complete. The reaction was quenched with Et3N 

(33 µL, 0.24 mmol) and concentrated. The residue was purified by column chromatography (silica, 

EtOAc–hexanes, 1:4 → 1:3) gave compound 15a (263 mg, 89%) as a colorless syrup. [α]D
25 11.1° 

(c 1 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.98 – 6.87 (m, 1H, Me-CH-C(Me)-C=O), 5.88 – 5.73 

(m, 1H, CH2=CHCH2-), 5.14 – 4.99 (m, 3H, H-3-Glup, CH2=CHCH2-), 4.49 (d, J = 7.5 Hz, 1H, 
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H-1-Glup), 3.97 – 3.85 (m, 1H, H-6-Glup), 3.84 – 3.68 (m, 2H, H-6-Glup, -CH2CHCH2-), 3.67 – 

3.59 (m, 1H, H-4-Glup), 3.55 (dd, J = 9.0, 7.5 Hz, 1H, H-2-Glup), 3.45 – 3.36 (m, 1H, H-5-Glup), 

2.77 (br, 1H, OH-4-Glup), 2.44 – 2.32 (m, 1H), 2.29 – 2.16 (m, 1H), 2.07 (s, 1H, OH-6-Glup), 

1.88 – 1.78 (m, 6H, CH3-CH-C(CH3)-C=O), 1.59 – 1.18 (m, 8H), 0.89 (t, J = 6.4 Hz, 3H), 0.81 (s, 

9H), 0.09 (s, 3H, CH3Si), 0.00 (s, 3H, CH3Si); 13C NMR (100 MHz, CDCl3) δ 169.1, 138.8, 134.7, 

128.1, 117.2, 100.8, 79.2, 77.4, 75.2, 72.8, 70.8, 62.7, 38.3, 34.3, 31.8, 25.6 (×2), 24.8, 22.6, 17.9, 

14.4, 14.1, 12.1, -3.7, -5.0. 

Compound 15b 

     CSA (11.2 mg, 0.0482mmol) was added in one portion to a solution of 14b (141 mg, 0.241 

mmol) in MeOH (10 mL) at room temperature. The reaction mixture was stirred for 3 h at which 

point TLC (silica, 1:3 EtOAc–hexanes) showed it was complete. The reaction was quenched with 

Et3N (15 µL) and concentrated. The residue was purified by column chromatography (silica, 

EtOAc–hexanes, 1:4 → 1:3) gave compound 15b (102 mg, 78%) as a white foam. [α]D
25 8.7° (c 1 

CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.99 – 6.88 (m, 1H, Me-CH-C(Me)-C=O), 5.89 – 5.76 (m, 

1H, CH2=CHCH2-), 5.11 – 4.97 (m, 3H, H-3-Glup, CH2=CHCH2-), 4.39 (d, J = 7.2 Hz, 1H, H-1-

Glup), 3.98 – 3.86 (m, 2H, H-6-Glup, -OCH2CH2O-), 3.79 (dd, J = 12.0, 5.2 Hz, 1H, H-6-Glup), 

3.74 – 3.53 (m, 5H, H-2-Glup, H-4-Glup, -OCH2CH2O-), 3.46 – 3.37 (m, 1H, H-5-Glup), 3.37 – 

3.27 (m, 1H, -CH2-CH-CH2-), 2.30 − 2.20 (m, 2H), 1.87 − 1.78 (m, 6H, CH3-CH-C(CH3)-C=O), 

1.51 − 1.22 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H), 0.80 (s, 9H, C(CH3)3), 0.08 (s, 3H, CH3Si), 0.00 (s, 

3H, CH3Si). 13C NMR (400 MHz, CDCl3) δ 169.2, 139.0, 135.1, 128.0, 116.7, 103.5, 79.8, 79.3, 

75.4, 72.9, 70.5, 69.3, 67.8, 62.5, 38.2, 33.7, 31.9, 25.6 (×3), 25.0, 22.6, 18.0, 14.4, 14.1, 12.0, -

4.1, -5.1. 

Diene 6a 
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     2-Chloro-1-methylpyridinium iodide (CMPI, 151 mg, 0.590 mmol),  N,N-

dimethylaminopyridine (DMAP, 30.0 mg, 0.245 mmol) and Et3N (686 μL, 4.92 mmol) were added 

to a solution of 15a (246 mg, 0.492 mmol) and 4-oxo-8-nonenoic acid 9 (92.1 mg, 0.541 mmol) 

in dry CH2Cl2 (20 mL) at 0 oC. The reaction was allowed to warm to ambient temperature and 

stirred for 1 h. At this point, TLC (silica, 1:4 EtOAc–hexanes) showed the reaction was complete. 

Evaporation of the solvent followed by purification of the residue by column chromatography 

(silica, EtOAc−hexanes, 1:5 → 1:3) to give 6a (227.1 mg, 71%) as a colorless syrup. [α]D
25 9.4° 

(c 1 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.97 – 6.86 (m, 1H, MeCH=C(Me)C=O), 5.88 – 5.67 

(m, 2H, 2 × CH2=CHCH2-), 5.12 – 4.93 (m, 5H, H-3-Glup, 2 × CH2=CHCH2-), 4.43 (d, J = 7.5 

Hz, 1H, H-1-Glup), 4.39 (dd, J = 11.9, 4.6 Hz, 1H, H-6-Glup), 4.31 (dd, J = 11.9, 2.2 Hz, 1H, H-

6’-Glup), 3.78 – 3.67 (m, 1H, -CH2-CH-CH2-), 3.64 – 3.43 (m, 3H, H-2-Glup, H-4-Glup, H-5-

Glup), 2.90 (d, J = 5.2 Hz, 1H, OH), 2.72 (t, J = 6.2 Hz, 2H), 2.61 (t, J = 6.2 Hz, 2H), 2.45 (t, J = 

7.4 Hz, 2H), 2.41 – 2.30 (m, 1H), 2.28 – 2.16 (m, 1H), 2.11 – 1.98 (m, 2H), 1.88 – 1.77 (m, 6H, 

CH3CH=C(CH3)C=O), 1.75 – 1.61 (m, 2H), 1.57 – 1.15 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H), 0.80 (s, 

9H), 0.07 (s, 3H, CH3Si), -0.01 (s, 3H, CH3Si); 13C NMR (100 MHz, CDCl3) δ 208.7, 173.0, 168.7, 

138.5, 137.8, 134.9, 128.2, 117.0, 115.3, 100.9, 78.6, 77.2, 73.8, 72.8, 70.0, 63.5, 41.8, 38.2, 37.1, 

34.3, 33.0, 31.7, 27.8, 25.6 (×3), 24.7, 22.7, 22.6, 17.8, 14.4, 14.0, 12.0, -3.8, -5.0. 

Diene 6b 

     2-Chloro-1-methylpyridinium iodide (CMPI, 62.2 mg, 0.243 mmol), N,N-

dimethylaminopyridine (DMAP, 11.4 mg, 0.094 mmol) and Et3N (261 μL, 1.87 mmol) were added 

to a solution of 15b (102 mg, 0.187 mmol) and 4-oxo-8-nonenoic acid 9 (32.2 mg, 0.206 mmol) 

in dry CH2Cl2 (20 mL) at 0 oC. The reaction was allowed to warm to ambient temperature and 

stirred for 1 h. At this point, TLC (silica, 1:3 EtOAc–hexanes) showed the reaction was complete. 
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Evaporation of the solvent followed by purification of the residue by column chromatography 

(silica, EtOAc−hexanes, 1:5 → 1:3) to give 6b (90.2 mg, 69%) as a colorless syrup. [α]D
25 −2.5° 

(c 1 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.99 – 6.89 (m, 1H, MeCH=C(Me)C=O), 5.89 – 5.70 

(m, 2H, 2 × CH2=CHCH2-), 5.13 – 4.94 (m, 5H, H-3-Glup, 2 × CH2=CHCH2-), 4.45 (dd, J = 12.0, 

4.0 Hz, 1H, H-6-Glup), 4.36 (d, J = 7.6 Hz, 1H, H-1-Glup), 4.34 – 4.27 (m, 1H, H-6’-Glup), 3.98 

– 3.90 (m, 1H, -OCH2CH2O-), 3.73 – 3.45 (m, 6H, H-2-Glup, H-4-Glup, H-5-Glup, -OCH2CH2O-

), 3.36 – 3.28 (m, 1H, -CH2-CH-CH2-), 2.95 (br, 1H, OH), 2.76 – 2.69 (m, 2H), 2.66 – 2.57 (m, 

2H), 2.46 (t, J = 7.2 Hz, 2H), 2.26 (t, J = 6.0 Hz, 2H), 2.10 – 2.00 (m, 2H), 1.86 (s, 3H, CH3-CH-

C(CH3)-C=O), 1.81 (d, J = 7.2 Hz, 3H, CH3-CH-C(CH3)-C=O), 1.75 – 1.55 (m, 2H), 1.50 – 1.21 

(m, 8H), 0.89 (t, J = 6.8 Hz, 3H), 0.81 (s, 9H), 0.09 (s, 3H, CH3Si), 0.01 (s, 3H, CH3Si); 13C NMR 

(100 MHz, CDCl3) δ 208.8, 173.2, 168.8, 138.6, 137.9, 135.1, 128.1, 116.7, 115.3, 103.5, 79.7, 

78.5, 74.0, 72.9, 69.6, 69.1, 67.7, 63.4, 41.8, 38.2, 37.1, 33.7, 33.0, 32.0, 27.8, 25.7 (×3), 25.0, 

22.7, 22.6, 18.0, 14.4, 14.1, 12.1, -4.1, -5.1. 

Compound 5a 

     To a solution of diene 6a (95.0 g, 0.146 mmol) in CH2Cl2 (100 mL) was added Hoveyda-Grubbs 

catalyst 2nd generation (18.3 mg, 0.029 mmol) in one portion at room temperature. The reaction 

mixture was refluxed for 4 h. At this point, TLC (silica, 1:2 EtOAc–hexanes) showed the reaction 

was complete. The reaction was cooled to ambient temperature and then concentrated. Flash 

chromatography (silica, EtOAc–hexanes, 1:4 → 1:2) gave cycloalkene isomers (86.8 mg) as a 

colorless syrup. To a solution of the obtained cycloalkene in EtOH (2 mL) was added Wilkinson’s 

catalyst (25.7 mg, 0.028 mmol) in one portion at room temperature. The reaction was then stirred 

under an atmosphere of hydrogen (1 atm) for 6 h. At this point, TLC (silica, 1:2 EtOAc–hexanes) 

showed the reaction was complete. The reaction mixture was filtered thru a pad of Celite using 
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EtOAc (2 mL) as the eluent and the resulting filtrate concentrated. Flash chromatography (silica, 

EtOAc–hexanes, 1:5 → 1:3) gave 5a (69.6 mg, 76% over two steps) as a colorless syrup. [α]D
25 

5.9° (c 1 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.98 – 6.78 (m, 1H, Me-CH-C(Me)-C=O), 5.01 

(t, J = 9.2 Hz, 1H, H-3-Glup), 4.63 (dd, J = 11.6, 1.2 Hz, 1H, H-6-Glup), 4.42 (d, J = 7.6 Hz, 1H, 

H-1-Glup), 4.04 (dd, J = 11.6, 7.2 Hz, 1H, H-6-Glup), 3.84 – 3.71 (m, 1H, -OCH2CH2O), 3.60 – 

3.49 (m, 2H, H-2-Glup, H-5-Glup), 3.46 – 3.33 (m, 1H, H-4-Glup), 2.80 – 2.69 (m, 3H), 2.64 – 

2.56 (m, 2H), 2.55 – 2.36 (m, 2H), 1.85 (s, 3H), 1.81 (d, J = 6.8 Hz, 3H), 1.77 – 1.55 (m, 4H), 1.54 

– 1.19 (m, 14H), 0.90 (t, J = 6.8 Hz, 3H), 0.80 (s, 9H), 0.06 (s, 3H), -0.01 (s, 3H). 13C NMR (100 

MHz, CDCl3) δ 209.0, 172.2, 169.2, 138.8, 128.1, 99.1, 79.4, 75.2, 74.6, 72.8, 71.1, 65.0, 41.3, 

37.3, 34.0, 32.1, 31.7, 28.9, 27.5, 27.0, 25.7 (×3), 25.0, 24.4, 22.8, 22.6, 17.9, 14.4, 14.1, 12.0, -

3.8, -5.0. 

Compound 5b 

     To a solution of diene 6b (82.4 mg, 0.121 mmol) in CH2Cl2 (100 mL) was added Hoveyda-

Grubbs catalyst 2nd generation (7.6 mg, 0.012 mmol) in one portion at room temperature. The 

reaction mixture was refluxed for 4 h. At this point, TLC (silica, 1:2 EtOAc–hexanes) showed the 

reaction was complete. The reaction was cooled to ambient temperature and then concentrated. 

Flash chromatography (silica, EtOAc–hexanes, 1:4 → 1:2) gave cycloalkene isomers (67.4 mg) as 

a colorless syrup. To a solution of the obtained cycloalkene in EtOH (2 mL) was added 

Wilkinson’s catalyst (22.5 mg, 0.024 mmol) in one portion at room temperature. The reaction was 

then stirred under an atmosphere of hydrogen (1 atm) overnight. At this point, TLC (silica, 1:2 

EtOAc–hexanes) showed the reaction was complete. The reaction mixture was filtered thru a pad 

of Celite using EtOAc (2 mL) as the eluent and the resulting filtrate concentrated. Flash 

chromatography (silica, EtOAc–hexanes, 1:5 → 1:3) gave 5b (48.8 mg, 62% over two steps) as a 
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colorless syrup. [α]D
25 7.6° (c 1 CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.99 – 6.90 (m, 1H, Me-

CH-C(Me)-C=O), 5.01 (t, J = 9.2 Hz, 1H, H-3-Glup), 4.63 (dd, J = 12.2, 3.8 Hz, 1H, H-6-Glup), 

4.29 (d, J = 7.6 Hz, 1H, H-1-Glup), 4.26 – 4.18 (m, 1H, H-6-Glup), 4.07 – 3.97 (m, 1H, -

OCH2CH2O), 3.78 – 3.70 (m, 1H, -OCH2CH2O), 3.63 – 3.42 (m, 5H, H-2-Glup, H-4-Glup, H-5-

Glup, -OCH2CH2O), 3.30 – 3.22 (m, 1H, -CH2-CH-CH2-), 3.04 (d, J = 4.0 Hz, 1H, OH), 2.91 – 

2.80 (m, 1H), 2.73 – 2.60 (m, 2H), 2.58 – 2.42 (m, 2H), 2.40 – 2.30 (m, 1H), 1.86 (s, 3H, CH3-

CH-C(CH3)-C=O), 1.81 (d, J = 6.8 Hz, 3H, CH3-CH-C(CH3)-C=O), 1.70 – 1.58 (m, 4H), 1.56 – 

1.20 (m, 14H), 0.89 (t, J = 6.8 Hz, 3H), 0.80 (s, 9H), 0.07 (s, 3H, CH3Si), 0.00 (s, 3H, CH3Si). 13C 

NMR (100 MHz, CDCl3) δ 209.3, 172.9, 168.6, 138.6, 128.2, 103.7, 80.6, 78.2, 74.4, 72.9, 69.6, 

69.2, 67.9, 63.1, 42.2, 37.1, 34.1, 33.5, 32.1, 28.7, 27.9, 27.8, 25.7 (×3), 25.0, 24.4, 22.9, 22.6, 

18.0, 14.4, 14.2, 12.1, -4.1, -5.0. 

Compound 16a 

     2-Chloro-1-methylpyridinium iodide (CMPI, 42.0 mg, 0.164 mmol), N,N-

dimethylaminopyridine (DMAP, 5.0 mg, 0.041 mmol) and Et3N (115 μL, 0.82 mmol) were added 

to a solution of 5a (51.5 mg, 0.082 mmol) and cinnamic acid (24.3 mg, 0.164 mmol) in dry CH2Cl2 

(2 mL) at 0 oC. The reaction was allowed to warm to ambient temperature and stirred overnight. 

At this point, TLC (silica, 1:3 EtOAc–hexanes) showed the reaction was complete. Evaporation of 

the solvent followed by purification of the residue by column chromatography (silica, 

EtOAc−hexanes, 1:5 → 1:3) to give 16a (51.1 mg, 82%) as a colorless syrup. [α]D
25 –78.3° (c 0.7 

CHCl3). 
1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 16.0 Hz, 1H, Ph-CH=C-), 7.55 – 7.47 (m, 2H, 

2 × ArH), 7.43 – 7.35 (m, 3H, 3 × ArH), 6.85 – 6.70 (m, 1H, Me-CH-C(Me)-C=O), 6.34 (d, J = 

16.0 Hz, 1H, Ph-CH=CH-), 5.36 (t, J = 9.2 Hz, 1H, H-3-Glup), 4.99 (t, J = 10.0 Hz, 1H, H-4-

Glup), 4.50 (d, J = 7.6 Hz, 1H, H-1-Glup), 4.42 – 3.34 (m, 1H, H-6-Glup), 3.99 (dd, J = 12.0, 8.4 
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Hz, 1H, H-6-Glup), 3.85 – 3.72 (m, 1H, -OCH2CH2O-, H-5-Glup), 3.61 (dd, J = 9.2, 7.6 Hz, 1H, 

H-2-Glup), 2.83 – 2.64 (m, 2H), 2.60 – 2.37 (m, 4H), 1.82 – 1.18 (m, 25H), 0.91 (t, J = 6.8 Hz, 

3H), 0.80 (s, 9H), 0.06 (s, 3H), -0.03 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 208.9, 171.8, 167.0, 

165.9, 146.3, 138.0, 134.2, 130.5, 128.8 (×2), 128.3 (×2), 128.2, 116.8, 99.4, 75.2, 75.1, 73.2, 72.5, 

69.8, 64.2, 41.1, 37.4, 34.1, 32.1, 31.6, 28.9, 27.4, 26.9, 25.6 (×3), 25.0, 24.3, 22.7, 22.6, 17.9, 

14.4, 14.1, 12.0, -3.9, -5.1. 

Analogue 17 and 18 

     To a solution of 16a (15.0 mg, 0.0198 mmol) in THF (2 mL) was added TBAF (1M solution in 

THF, 119 μL, 119 μmol, 6 equiv) at –10 oC. The reaction mixture was stirred at the same 

temperature for 5 h at which point TLC (silica, 1:1 EtOAc–hexanes) showed it was complete. The 

reaction mixture was diluted with Et2O (10 mL), washed with 1M HCl (5 mL), saturated NaHCO3 

(5 mL), brine (5 mL). The aqueous layer was extracted with Et2O (10 mL). The combined organic 

layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified 

by column chromatography (silica, EtOAc–hexanes, 1:2 → 2:1) gave compound 17 (5.3 mg, 42%) 

as a colorless film and 18 (2.9 mg, 29%) as a colorless film. 

     17: [α]D
25 41.3° (c 0.2 CHCl3). 

1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 16.0 Hz, 1H, Ph-

CH=C-), 7.58 – 7.48 (m, 2H, 2 × ArH), 7.44 – 7.34 (m, 3H, 3 × ArH), 6.89 – 6.75 (m, 1H, Me-

CH-C(Me)-C=O), 6.41 (d, J = 16.0 Hz, 1H, Ph-CH=CH-), 5.21 – 5.11 (m, 2H, H-2-Glup, H-3-

Glup), 4.75 – 4.66 (m, 1H, H-1-Glup), 4.62 (d, J = 11.6 Hz, 1H, H-6-Glup), 4.28 – 4.16 (m, 1H, 

H-6-Glup), 3.82 – 3.69 (m, 1H, -CH2-CH-CH2-), 3.65 – 3.55 (m, 2H, H-4-Glup, H-5-Glup), 3.16 

(d, J = 4.0 Hz, 1H, OH), 2.90 – 2.36 (m, 6H), 1.81 – 1.69 (m, 6H), 1.64 – 1.52 (m, 4H), 1.47 – 

1.16 (m, 14H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (175 MHz, CDCl3) δ 209.5, 172.6, 167.8, 166.6, 

146.6, 138.2, 134.0, 130.7, 128.9 (×2), 128.3 (×2), 127.9, 116.7, 97.1, 76.6 (×2), 74.7, 70.7, 70.0, 
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64.1, 41.4, 37.3, 33.3, 32.7, 31.7, 29.0, 27.3, 27.2, 24.7, 24.2, 23.0, 22.6, 14.4, 14.1, 12.1. HRMS 

(ESI) m/z calcd for C36H50NaO10 [M+Na]+ 665.3296, found: 665.3299. 

     18: [α]D
25 –54.5° (c 0.2 CHCl3). 

1H NMR (400 MHz, CDCl3) δ 6.98 – 6.88 (m, 1H, Me-CH-

C(Me)-C=O), 4.47 (dd, J = 9.2, 8.0 Hz, 1H, H-2-Glup), 4.65 (d, J = 8.0 Hz, 1H, H-1-Glup), 4.59 

(dd, J = 12.0, 1.6 Hz, 1H, H-6-Glup), 4.18 (dd, J = 12.0, 6.4 Hz, 1H, H-6-Glup), 3.80 – 3.71 (m, 

1H, -CH2-CH-CH2-), 3.64 (td, J = 8.8, 4.0 Hz, 1H, H-3-Glup), 3.53 – 3.46 (m, 1H, H-5-Glup), 

3.45 – 3.37 (m, 1H, H-4-Glup), 3.20 (d, J = 3.6 Hz, 1H, OH), 2.84 (d, J = 2.8 Hz, 1H, OH), 2.83 

– 2.35 (m, 6H), 1.89 – 1.79 (m, 6H, CH3-CH-C(CH3)-C=O), 1.78 – 1.57 (m, 4H), 1.50 – 1.15 (m, 

14H), 0.89 (t, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 209.2, 172.4 (×2), 168.7, 139.1, 

128.1, 97.0, 76.4, 75.9, 74.8, 74.1, 71.6, 64.3, 41.4, 37.3, 33.6, 32.7, 31.7, 28.9, 27.4, 27.2, 24.7, 

24.2, 23.0, 22.6, 14.5, 14.1, 12.1. HRMS (ESI) m/z calcd for C27H44NaO9 [M+Na]+ 535.2878, 

found: 535.2883. 

Analogue 3 

     To a solution of 16a (30.4 mg, 0.0402 mmol) in THF (2 mL) was added AcOH (230 μL, 4.02 

mmol) and TBAF (1M solution in THF, 2.0 mL, 2.0 mmol) at 0 oC. The reaction was allowed to 

warm to ambient temperature and stirred overnight. At this point, TLC (silica, EtOAc-hexanes, 

1:1) showed the reaction was not complete. Then the reaction mixture was heated to 40 oC and 

stirred for two days. The reaction mixture was concentrated under reduced pressure. The residue 

was purified by column chromatography (silica, EtOAc–hexanes, 1:4 → 1:3) gave analogue 3 

(20.4 mg, 79%) as a white foam. 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 16.0 Hz, 1H, Ph-

CH=C-), 7.55 – 7.48 (m, 2H, 2 × ArH), 7.44 – 7.34 (m, 3H, 3 × ArH), 6.91 – 6.81 (m, 1H, Me-

CH-C(Me)-C=O), 6.37 (d, J = 16.0 Hz, 1H, Ph-CH=CH-), 5.30 (t, J = 9.2 Hz, 1H, H-3-Glup), 5.09 

(t, J = 10.0 Hz, 1H, H-4-Glup), 4.55 (d, J = 7.6 Hz, 1H, H-1-Glup), 4.45 – 4.37 (m, 1H, H-6-Glup), 
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4.02 (dd, J = 12.0, 8.0 Hz, 1H, H-6-Glup), 3.90 – 3.77 (m, 2H, H-5-Glup, -CH2-CH-CH2-), 3.61 

(dd, J = 9.6, 8.0 Hz, 1H, H-2-Glup), 2.85 – 2.68 (m, 2H), 2.60 – 2.38 (m, 5H), 1.84 – 1.66 (m, 8H), 

1.63 – 1.18 (m, 16H), 0.91 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 209.0, 171.9, 167.9, 

165.9, 146.4, 138.9, 134.1, 130.6, 128.9 (×2), 128.3 (×2), 127.8, 116.6, 99.3, 76.0, 74.9, 72.7, 72.6, 

69.0, 63.7, 41.0, 37.5, 33.8, 32.5, 31.6, 28.9, 27.2, 26.8, 24.8, 24.0, 22.7, 22.6, 14.5, 14.1, 12.0. 

HRMS (ESI) m/z calcd for C36H50NaO10 [M+Na]+ 665.3296, found: 665.3299.  

Analogue 4 

     2-Chloro-1-methylpyridinium iodide (CMPI, 41.8 mg, 0.062 mmol), N,N-

dimethylaminopyridine (DMAP, 3.8 mg, 0.031 mmol) and Et3N (87 μL, 0.62 mmol) were added 

to a solution of 5b (41.8 mg, 0.062 mmol) and cinnamic acid (18.5 mg, 0.125 mmol) in dry CH2Cl2 

(2 mL) at 0 oC. The reaction was allowed to warm to ambient temperature and stirred overnight. 

At this point, TLC (silica, 1:3 EtOAc–hexanes) showed the reaction was complete. Evaporation of 

the solvent followed by purification of the residue by flash column chromatography to give 16b 

(36.8 mg, 74%) as a colorless syrup. To a solution of 16b (20.0 mg, 0.0250 mmol) in THF (2 mL) 

was added AcOH (71.4 μL, 1.25 mmol) and TBAF (1M solution in THF, 0.62 mL, 0.62 mmol) at 

0 oC. The reaction was allowed to warm to ambient temperature and stirred overnight. At this 

point, TLC (silica, EtOAc-hexanes, 1:2) showed the reaction was complete. The reaction mixture 

was concentrated under reduced pressure. The residue was purified by column chromatography 

(silica, EtOAc–hexanes, 1:2 → 1:1) gave analogue 4 (13.2 mg, 77%) as a colorless film. [α]D
25 –

52.9° (c 0.5 CHCl3). 
1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 16.0 Hz, 1H, Ph-CH=C-), 7.55 – 

7.46 (m, 2H, 2 × ArH), 7.45 – 7.34 (m, 3H, 3 × ArH), 6.94 – 6.83 (m, 1H, Me-CH-C(Me)-C=O), 

6.36 (d, J = 16.0 Hz, 1H, Ph-CH=CH-), 5.27 (t, J = 9.6 Hz, 1H, H-3-Glup), 5.15 (t, J = 9.6 Hz, 

1H, H-4-Glup), 4.57 (d, J = 7.6 Hz, 1H, H-1-Glup), 4.26 (dd, J = 12.0, 2.4 Hz, 1H, H-6-Glup), 
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4.19 (dd, J = 12.0, 6.4 Hz, 1H, H-6-Glup), 4.10 – 4.00 (m, 1H, -OCH2CH2O-), 3.90 – 3.72 (m, 3H, 

-OCH2CH2O-, H-5-Glup), 3.68 – 3.60 (m, 1H, H-2-Glup), 3.58 – 3.49 (m, 1H, -OCH2CH2O-), 

3.39 – 3.25 (m, 1H, -CH2-CH-CH2-), 2.98 (d, J = 2.4 Hz, 1H, OH), 2.88 – 2.69 (m, 2H), 2.67 – 

2.52 (m, 2H), 2.53 – 2.37 (m, 2H), 1.80 – 1.71 (m, 6H, CH3-CH-C(CH3)-C=O), 1.70 – 1.21 (m, 

18H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 209.0, 172.0, 167.9, 165.6, 146.4, 

139.0, 134.0, 130.6, 128.9 (×2), 128.3 (×2), 127.7, 116.6, 103.4, 80.3, 74.9, 72.8, 72.2, 69.5, 68.8, 

67.6, 62.8, 42.2, 37.2, 34.0, 33.0, 32.0, 28.5, 28.1, 27.9, 25.1, 24.1, 23.3, 22.6, 14.5, 14.0, 12.0. 

HRMS (ESI) m/z calcd for C38H54NaO11 [M+Na]+ 709.3558, found: 709.3562.  
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