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Abstract 

 The primary objective of this study was to compare the anti-inflammatory effects of 

phenolic and volatile compounds extracted from cranberries. The Griess Reagent System assay 

was used to measure the in vitro anti-inflammatory capabilities of cranberry phenolic and 

volatile extracts on RAW 264.7 mouse macrophage cells. This study tested the anti-

inflammatory capabilities of the cranberry phenolic and volatile extracts before, as a preventative 

treatment, and after, as a means of treating pre-existing inflammation, inducing inflammation 

with lipopolysaccharide (LPS). All experiments were conducted in the following manner, 

varying only in whether treated with the extracts before or after LPS: 1 x 103 RAW 264.7 cells 

were seeded into individual wells of a 96 well plate, given 16 hr to attach, and treated with the 

phenolic and volatile extracts at 2x, 4x, and 8x dilutions of their respective starting 

concentrations present in a cranberry for 1 hr either before or after 24 hr of induced inflammation 

by LPS. Then, nitric oxide (NO) levels were measured to assess the anti-inflammatory 

capabilities. When treated with the extracts after LPS, the phenolic 635.7 ppm, 317.8 ppm and 

volatile 1.8 ppm NO levels were significantly lower than the positive control, reduced by 62%, 

46%, and 50% respectively. When treated before LPS, the phenolic 635.7 ppm, 317.8 ppm and 

volatile 1.8 ppm, 0.9 ppm NO levels were significantly lower than the positive control, reduced 

by 52%, 25%, 47%, and 13% respectively. Upon overall evaluation, the phenolic and volatile 

extracts’ anti-inflammatory capabilities were very comparable even though the volatiles were at 

a 353x lower concentration, and an overall stronger preventative effect was observed. Future 

studies are needed to reveal the mechanisms by which these compounds act to prevent and 

reduce inflammation and to determine the bioavailability of these compounds.  
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Chapter 1: Introduction and Objectives 

1.1 Introduction 

 Inflammation is the human body’s urgent response to tissue damage caused by chemicals, 

physical injury, or pathogens (Weiss 2008). Inflammation occurs very often in humans because 

humans are partly microbial and living in a microbial world, which results in countless 

interactions with microbial stimuli and the possibility of tissue damage occurring (Nathan and 

Ding 2010). The body’s first line of defense to this tissue damage is called the acute 

inflammatory response, which is a non-specific response that mobilizes cells of the immune 

system, including macrophages, monocytes and neutrophils (Kumar et al. 2004). In a normal, 

healthy response, these immune cells arrive to the area of damage, activate the inflammatory 

response, and initiate an immune response that usually results in removal of the stimulus and 

healing of the tissue back to its’ normal functioning state (Liddiard 2011). When the acute 

inflammatory response does not resolve, that is where problems arise. Non-resolving 

inflammation, called chronic inflammation, is an extended, unregulated and maladaptive 

response involving active inflammation, attempts at tissue repair, and tissue damage (Weiss 

2008). Long-term low-grade chronic inflammation, noted by abnormally high levels of certain 

markers in the circulation including C-reactive protein, tumor necrosis factor-a, and interleukin-

6, is a risk factor for several chronic diseases (Nicklas et al. 2005). Chronic inflammation does 

not directly cause obesity, cancer, asthma, obstructive pulmonary disease, multiple sclerosis, or 

rheumatoid arthritis, but it is known to significantly contribute to their and many other diseases’ 

pathogenesis (Nathan and Ding 2010). Destructive periodontal disease, which affects the tissues 

surrounding and supporting the teeth, is another specific example of a disease involving 

inflammation. These patients, presenting with swollen red gums, have elevated levels of the 
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inflammatory mediators tumor necrosis factor-a and interleukin-6 (Khosravi et al. 2013). 

Obesity is another example of a disease involving inflammation and is arguably the most 

relevant to people in the United States. According to the most recent report by the Center for 

Disease Control and Prevention an overwhelming 36.5% of United States adults are obese 

(Ogden et al. 2015). The inflammation associated with obesity is caused by decreased insulin 

sensitivity, increased intracellular stress, increased autophagy, hypoxia, and apoptosis, resulting 

in the release of pro-inflammatory signals (Kloting and Bluher 2014). 

 Currently, several of the treatments for chronic inflammation include taking drugs such 

as ibuprofen (Manish et al. 2003), drugs that inhibit the toll-like receptor pathway (Lucas and 

Maes 2013) and use of immunocytokines (Bootz and Neri 2016). There are other types of 

behavioral treatments, involving diet and exercise training, where the patients do not take any 

drugs, but these are newer treatments and still an active area of investigation. Nicklas et al. 

(2005) hypothesized that increased levels of adipose tissue contribute to chronic inflammation. 

They summarized and reviewed 18 published studies on the topic and found that every study 

concluded that dietary restriction leading to weight loss reduced markers of chronic 

inflammation, including tumor necrosis factor-a, C-reactive protein, interleukin-6, interleukin-8, 

interleukin-18, and others. Lee et al. (2013) corroborated that adipose tissue is an important 

regulator of inflammation, releasing pro-inflammatory, TNF-a IL-1 IL-6 and IFN-g, and anti-

inflammatory cytokines, IL-4 IL-10 IL-3 and IL-Ra. They also stated that obesity, where a 

person contains excessive amounts of adipose tissue, is an underlying condition for inflammatory 

diseases (2013).  

 Diet is a critical factor in determining the level of adipose tissue, suggesting that diet 

plays a role in inflammation. Other studies that look at the specific effects of diet on 
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inflammation concluded that diets high in omega-3 fatty acids, fruits, nuts, vegetables, and whole 

grains are associated with lower levels of inflammation generated by production of anti-

inflammatory cytokines, whereas diets high in refined starches, sugar, and fats are associated 

with higher levels of inflammation generated by excessive production of pro-inflammatory 

cytokines (Giugliano et al. 2006). Glisan et al. (2016) also noted that high fat diets were coupled 

with increased toll-like receptor 4 expression and nuclear factor kB activation in monocytes, 

which triggers the inflammatory response. New methods of prevention and treatment of 

inflammation are an active area of investigation in the field, and the data from previous studies 

strongly suggest that diet plays a role in inflammation (Nicklas et al. 2005) (Lee et al. 2013), and 

that certain dietary factors can act as preventative or treatment methods to lower inflammation.   

 Fruits and vegetables have a variety of compounds associated with health benefits. 

Cranberries (Vaccinium macrocarpon L) specifically, contain many bioactive compounds known 

to improve urinary tract health, boost immune function, and reduce cardiovascular disease 

(Kresty et al. 2011). Recent research also shows cranberries have potential anti-inflammatory 

effects. In a study of hepatic inflammation in obese mice, cranberry polyphenol-rich extract 

decreased inflammatory markers tumor necrosis factor-a and chemokine ligand 2 by 28% and 

19% respectively (Glisan et al. 2016). The polyphenol-rich extract also decreased mRNA 

expression in the liver of the toll-like receptor 4 and nuclear factor kB, which are important in 

signaling pathways triggering inflammation, by 63% and 24% respectively, all over a period of 

ten weeks (2016). A study by Anhe et al. (2015) also showed anti-inflammatory effects of 

cranberry extract, specifically looking at the phenolic compounds, in high fat/high sucrose fed 

mice. Results showing that the cranberry extract fully prevented diet-induced intestinal 

inflammation in the mice by reducing COX2 activity and tumor necrosis factor-a. Both of the 
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aforementioned studies evaluated the cranberry extract for phenolic compounds, which likely 

have a role in the anti-inflammatory action of the extracts, but it is quite possible that other 

compounds in cranberries play a role in the berries’ anti-inflammatory effect. This possibility 

presents the purpose of this study, to explore whether the volatile compounds in cranberries also 

have anti-inflammatory properties. There has been very little research conducted specifically on 

the anti-inflammatory properties of volatile compounds extracted from cranberries, but 

previously conducted research suggests that volatile compounds overall have anti-inflammatory 

and therapeutic potential due to their ability to suppress nuclear factor kB (Salminen et al. 2008). 

Previous research also indicates that individual volatile compounds in cranberries can act as 

possible anti-inflammatory agents. α-terpineol, which is the most abundant individual volatile 

compound found in cranberries, has already shown the ability to inhibit the nuclear factor kB 

pathway (Hassan et al. 2010). This previous evidence regarding volatile compounds and the most 

abundant individual volatile compound in cranberries, α-terpineol, gives the hypothesis for the 

current study encouraging potential, that cranberry volatile and phenolic compounds reduce 

inflammation on RAW 264.7 cells, in vitro.  

1.2 Objectives 

Objective 1: Extract, quantify and identify the volatile and phenolic compounds in cranberries 

via GC and HPLC methods.  

Objective 2: Compare the anti-inflammatory effect of the volatile and phenolic extracts isolated 

from cranberries on RAW 264.7 mouse macrophage cells.  

Objective 3: Compare the anti-inflammatory effect of individual, more abundant volatile 

compounds from cranberries (α-terpineol, eucalyptol, linalool oxide, and linalool) on RAW 

264.7 mouse macrophage cells.  
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Chapter 2: Literature Review 

2.1 Phenolic Compounds 

2.1.1 Functional Properties of Phenolic Compounds 

 Phenolic compounds are found in abundance in fruits, plants, herbs, vegetables, seeds, 

roots, and leaves (Soto et al. 2015). In plants, the phenolics’ main role is to protect against stress, 

but they also have a role in development, structural integrity and scaffolding, and plants’ ability 

to adapt to changing environments (Bhattacharya et al. 2010). Phenolic compounds are 

secondary plant metabolites, produced in response to stressors such as ultraviolet radiation, 

ozone, pollution, infection by pathogens, extreme temperature exposure, and tissue damage (Soto 

et al. 2015). Phenolics also contribute to the color, taste, and putative health promoting benefits 

associated with the plant producing them (Boudet 2007). Phenolic esters play a role in 

strengthening the cell wall of plants, giving texture to plant foods, and contributing to plant 

disease resistant properties (Beveridge et al. 2000) (Parr et al. 1997). The total amount of 

phenolic compounds found in a particular plant depends on factors such as growing conditions, 

cultivation techniques, cultivar, ripening processes, storage conditions, and others, and the 

phenolic content may change, increasing under the stressful conditions previously mentioned 

(Soto et al. 2015).  

2.1.2 Classification of Phenolic Compounds by Chemical Structure 

 Phenolic compounds contain one or more aromatic rings and one or more hydroxyl 

substituents by definition. These compounds are usually not found as free compounds 

(aglycones), they are most commonly esters, glycosides, or methyl esters (Soto et al. 2015). A 

“simple phenol” is a phenolic compound containing one aromatic ring, whereas a “polyphenol” 
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contains multiple aromatic rings, and the two groups can be further classified by their side chain 

groups.  

Phenolic compounds can be formed through two different pathways, the acetic acid 

pathway and the shikimic acid pathway, forming mainly simple phenols and phenylpropanoids 

respectively (Soto et al. 2015). The “simple phenols” group can be further broken down into two 

groups, coumarins and phenolic acids. Coumarins are formed by the cyclization of o-coumaric 

acid and are glycosides. The phenolic acids contain one aromatic ring and a carboxylic acid side 

chain and they, along with their derivatives, are known for being native antioxidants (Koroleva et 

al. 2014). Caffeic acid, a specific phenolic acid derivative, is one of the most prevalent phenolic 

acids found in fruits and vegetables (Ghulam et al. 2014).  

2.1.3 Bioavailability of Phenolic Compounds 

 Phenolic compounds have been extensively studied in vitro, but it is still questioned how 

and whether the effects seen in in vitro translate in vivo. The most common phenolic compounds 

in nature are phenolic acids and flavonoids therefore the bioavailability of phenolic compounds 

can be split into groups, phenolic acids and flavonoids (Karakaya 2010). Ferulic, sinapic, p-

coumaric, and caffeic acids are all hydroxycinnamic acids, which is a subclass of phenolic acids, 

and have been found to have 25% absorption in the foregut after two hr, with a suggested 

mechanism of Na+ dependent carrier-mediated transport for absorption (Wolffram et al. 1995). In 

another study with rats fed specifically a ferulic acid rich diet, 45-53% of the dose was reported 

available for peripheral tissues, and a proportion between urinary excretion of ferulic acid and 

ferulic acid dose was determined, leading to the conclusion that the compound was highly 

absorbed (Adam et al. 2002). However, it was determined that the when the ferulic acid was in a 

food with a complex matrix, such as a cereal, there was lower absorption of the compound 
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(Adam et al. 2002). The bioavailability of flavonoids used to be believed as negligible due to 

being bound to glycosides, and that only aglycones could pass into the bloodstream from the gut, 

however, now several studies have demonstrated that specific flavonoids have a much higher 

bioavailability than previously thought. Quercetin has been reported at 62% dose absorption in 

the bile twenty minutes after ingestion in Wistar rats (Crespy et al. 2002). In a human study by 

Hollman et al. (1995), orally administered quercetin absorption was approximately 24% and the 

absorption of quercetin glycosides from onions, which were previously thought to be negligible, 

was 52%.  

2.2 Volatile Compounds 

2.2.1 Functional Properties of Volatile Compounds 

Volatiles are called “volatile” because they can be easily vaporized at ambient 

temperature. At ambient temperature they have a very low boiling point, or high vapor pressure. 

Fruits and vegetables produce a wide range of volatile compounds that make up their aroma, add 

to their flavor, and indicate the quality of the flavor (El Hadi et al. 2013). Although many of the 

same specific individual volatile compounds are found in different fruits and vegetables, it is the 

mixture of the volatile compounds that gives each fruit or vegetable its distinctive aroma (Tucker 

1993). Volatile compounds also serve as a defense mechanism against insect feeding in plants. In 

response to mechanical damage, the compounds are synthesized and released to ward off insects 

(Pare and Tumlinson 1999). There are several different factors that affect the volatile 

composition of a fruit or vegetable, including degree of maturity, genetic makeup, postharvest 

handling and storage, and environmental conditions (El Hadi et al. 2013).  

Volatile compounds are synthesized as secondary metabolites in fruits and vegetables, 

they are formed due to enzymatic activity when the tissue is disrupted due to cutting and 
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shredding (Gary 1999). For example, when chopping an onion, the smell is not very noticeable 

until the onion is sliced open, i.e. the tissue is disturbed, and the volatile compounds are formed 

and released. The volatiles important for the aroma and flavor of fruits and vegetables are 

biosynthesized from the following precursors: membrane lipids, amino acids, and carbohydrates 

(Sanz et al. 1997).  

2.2.2 Classification of Volatile Compounds by Chemical Structure 

 Biosynthetic pathways for the synthesis of volatile compounds can begin with fatty acids, 

amino acids, carotenoids, and terpenoids. Terpenoids are the largest class of secondary plant 

metabolites and are just one of the groups contributing to the total volatile profile. They consist 

of one or more isoprene units forming a hydrocarbon chain, and several variations including 

oxygenated, acyclic, monocyclic, and bicyclic exist. Terpenoids are commonly broken down into 

classes by the number of isoprene units in their structure. Hemiterpenoids (1 isoprene unit and 5 

carbon atoms), monoterpoids (2 isoprene units and 10 carbon atoms), sesquiterpoids (3 isoprene 

units and 15 carbon atoms), homoterpoids (2 and 3 isoprene units and 11 and 16 carbon atoms 

respectively) and a few diterpenoids (4 isoprene units and 20 carbon atoms) are the volatile 

terpenoids that have very high vapor pressure and can be released into the atmosphere (El Hadi 

et al. 2013).  

2.2.3 Biosynthesis of Volatile Compounds 

Volatile compounds are synthesized from isopentenyl diphosphate (IPP), a universal 5 

carbon precursor, and dimethylallyl diphosphate (DMAPP), IPP’s allylic isomer (El Hadi et al. 

2013). These two precursors can be produced via two different pathways in plants, the 

deoxyxylulose phosphate pathway, also called the mevalonate independent pathway, and the 

mevalonate pathway (McGarvey and Croteau 1995). The mevalonate pathway (MVA pathway) 
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occurs in the cytosol and starts with the condensation of an acetyl coenzyme A unit to an active 

isoprene unit (IPP) (Newman and Chappell 1999). The mevalonate independent pathway (MEP 

pathway) occurs in the cell plastids and forms IPP and DMAPP from pyruvate and 

glyceraldehyde 3-phosphate and uses methylerythritol phosphate (MEP), as the key intermediate 

(Lichtenthaler 1999).  

After IPP and DMAPP are formed via these two pathways, IPP and DMAPP are 

combined in different ratios and acted upon by enzymes to create the precursors to the final 

volatile compound. A specific example of this is two molecules of IPP and one molecule of 

DMAPP being condensed in the cytosol, catalyzed by farnesyl pyrophosphate synthetase (FFPS) 

to produce farnesyl pyrophosphate, which is the natural precursor of sesquiterpenoids 

(McGarvey and Croteau 1995).  

2.3 Phenolic Compounds and Volatile Compounds in Cranberries 

2.3.1 Phenolic Compounds in Cranberries 

 Cranberries are a rich source of phenolic compounds containing flavonoid compounds 

such as flavan-3-ols/flavonols/anthocyanins, and phenolic acids such as hydroxybenzoic acid and 

hydroxycinnamic acids, along with their derivatives (Sanchez-Patan et al. 2012). The total 

phenolic makeup of cranberries contains approximately 20-25 individual phenolic compounds 

(Wang and Zuo 2011). The exact number of different individual phenolic compounds in 

cranberries vary in the literature, but hydroxybenzoic acid/ hydroxybenzoic acid derivatives, 

quercetin, and myricetin have been found by multiple studies to be the most prevalent phenolic 

compounds, and o-hydroxcinnamic acid, p-coumaric acid, caffeic acid, ferulic acids, and 

epicatechin are present in moderate amounts (Wang and Zuo 2011) (Nowak et al. 2016). Fresh 

cranberries have also been found to have higher total phenolic levels (12.4 mg/g) than products 
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like cranberry juice (9.1 mg/g) and cranberry sauces (11.1 mg/g) (Want and Zuo 2011). This has 

posed as an important factor to consider for studies involving the effects of intake of cranberry 

phenolic compounds because fresh cranberries have an astringent and sour taste.   

2.3.2 Volatile Compounds in Cranberries 

 Cranberry volatiles constitute several different types of compounds including aromatic 

compounds, terpenes, alcohols, and aldehydes (Croteau and Fagerson 1968). The aromatic 

compounds (benzaldehyde/benzyl/benzoate esters) and terpenes (α-terpineol) appear to be the 

major contributors to cranberry aroma, contributing to 40% and 17% of the total volatile fraction 

respectively in the study by Croteau and Fagerson (1968). Croteau and Fagerson also found that 

the terpene, α-terpineol, was the most abundant cranberry volatile, individually making up 13.6% 

of the total volatile fraction (1968). The study by Hirvi et al. (1981) mirrored these results, 

reporting aromatic compounds and terpenes making up 34% and 19% respectively, and α-

terpineol individually making up 10% of the total volatile fraction. A third study by Anjou and 

Von Sydow (1967) found the aromatic compounds and terpenes made up 31% and 40% 

respectively and individual α-terpineol 23.7% of the total volatile fraction. The percentages of 

individual volatiles in cranberries varies in the literature, but all the literature concludes that 

aromatic compounds and terpenes contribute the largest amounts to the total volatile fraction, 

and α-terpineol is individually the most abundant volatile in cranberries.  

2.4 Cranberry Consumption and Cranberry Health Benefits 

2.4.1 Cranberry Consumption 

 According to the most recent report published by the United States Department of 

Agriculture, National Agriculture Statistics Service (NASS), the total amount of fresh 

cranberries consumed per person, per year, is 0.08 pounds (USDA, National Agriculture 
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Statistics Service 2014). Only these very small amounts of fresh cranberries are consumed likely 

due to the elevated hydroxybenzoic acid and proanthocyanin contents, which gives cranberries a 

very strong and astringent taste making them unacceptable to most palates in large amounts (Nile 

and Park 2014). Cranberry products, such as dried cranberries, cranberry juices, and cranberry 

sauces, even though they have lower total levels of bioactive compounds, are much more 

practical ways to consume cranberries due to addition of sugar to the products.   

2.4.2 Cranberry Health Benefits 

 Several health benefits have been attributed to cranberry consumption including 

prevention of urinary tract infections, disruption of oral pathogen virulence and biofilm 

formation, modulation of the inflammatory response, and promotion of cardiovascular health 

(Pappas and Schaich 2009). Cranberries have also shown potential inhibiting effects on 

degenerative diseases including Alzheimer’s and cancer (Pappas and Schaich 2009).  

Prevention of urinary tract infections is the most extensively researched health benefit of 

cranberries. Urinary tract infections, in 75-95% of cases, are caused by the Escherichia coli 

pathogen adhering to the epithelial cells of the urinary tract, and the high acid content of 

cranberries prevents this adhesion to prevent infection (Zafrifri et al. 1989). Although it is now 

well accepted that cranberries aid in the prevention of urinary tract infections, the specific 

compounds in the cranberries that yield these protective properties are still up for debate.  

Cranberries have been associated with dental health by reducing bacteria in the mouth 

and preventing plaque biofilm formation. The two main bacteria in the mouth responsible for 

dental caries are Streptococcus mutans and Streptococcus sobrinus. When these bacteria co-

aggregate, they form biofilms and release acids that decay the teeth. Weiss et al. (1998) found 

that cranberry juice inhibited the co-aggregation of these bacteria in 58% of samples tested. 
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Other studies later confirmed that cranberry juice inhibited co-aggregation and biofilm 

formation, associating them with possible oral health benefits, but only if the cranberry juice was 

not supplemented with sugar (Bodet et al. 2006) (Wiess et al. 2002) (Steinberg et al. 2005). The 

in vivo evidence for cranberries’ contribution to oral health is limited, but toothpastes or 

mouthwashes supplemented with cranberry phytochemicals appear to be promising.  

Recent research also shows potential for cranberries to inhibit cancer cell growth. In a 

study by Seeram et al. (2006) cranberry extracts showed the ability to inhibit cancer cell growth, 

with higher concentrations of the extracts having a higher inhibitory effect in all of the tumor cell 

lines tested, which included oral, breast, colon, and prostate cancers. In 5 out of the 6 cell lines 

studied, the cranberry extract showed a significant inhibitory effect. Cranberry had the second 

lowest IC50 value for the MCF-breast cancer cell line and the fourth lowest IC50 value for the 

CAL-2-oral cancer cell line, indicating that the cranberry extract was a very potent growth 

inhibitor in these two cases (Seeram et al. 2006). 

Consumption of cranberries is also suggested to play a role in cardiovascular health and 

neurological disease by decreasing the inflammatory response and increasing the antioxidant 

capacity in human plasma (Pappas and Schaich 2009).   

2.5 Cranberry Anti-inflammatory Properties 

2.5.1 Cranberry Phenolic Compounds Anti-inflammatory Activity 

 During inflammation, cells are faced with oxidative stress. Reactive oxygen species 

(ROS) are produced and considered one of the most potent stimuli for inflammation because they 

also stimulate the immune system monocytes/macrophages and increase the production of pro-

inflammatory cytokines TNF- α, IL-8, IL-6 and IL-1b (Sultana and Saify 2012). Cranberry 

extracts have shown the ability to decrease the production of these reactive oxygen species and 
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pro-inflammatory cytokines. In the study by Mathison et al. (2014) subjects consumed acute 

doses of cranberry beverages. Blood was collected at 2-hr intervals from 0 to 8 hr and 24 hr after 

treatment and the biomarkers of antioxidant status were lower compared to starting values.  

 In the study by Bodet et al. (2006) macrophage cells were treated with a cranberry 

phenolic fraction before stimulation with lipopolysaccharide (LPS), another potent inducer of 

inflammation. After treatments with the cranberry fraction and LPS, the inflammatory markers 

TNF- α, IL-8, IL-6 and IL-1b were compared to positive and negative controls. The cranberry 

treated cells exhibited much lower levels, indicating that the cranberry fraction was a potent 

inhibitor of the pro-inflammatory responses induced by LPS.   

2.5.2 Cranberry Volatile Compounds Anti-inflammatory Activity 

There has been very little research conducted specifically on the anti-inflammatory 

properties of volatile compounds extracted from cranberries, hence the reason for this study, but 

total cranberry fractions have shown potent anti-inflammatory activity. Previously conducted 

research suggests that volatile compounds overall have anti-inflammatory and therapeutic 

potential due to their ability to suppress nuclear factor kB, a factor that controls transcription of 

DNA to produce the pro-inflammatory cytokines (Salminen et al. 2008). Previous research also 

indicates that individual volatile terpenoids in cranberries can act as possible anti-inflammatory 

agents. α-terpineol, which is by far the most abundant individual volatile compound in 

cranberries, has already shown the ability to inhibit the nuclear factor kB pathway (Hassan et al. 

2010), thus suggesting it and possibly other individual volatile terpenoids in cranberries could 

play a role in the berries’ anti-inflammatory action.  
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Chapter 3: Extraction, Quantification, Identification, and Free Radical-Scavenging 

Activity of Cranberry Phenolic Compounds 

3.1 Introduction 

 In the literature regarding cranberries, the cranberry phenolic compounds have been 

suggested to be responsible for the majority of the berries’ beneficial health properties, including 

their anti-inflammatory activity. This study took a different approach, suspecting other 

compounds may also contribute to cranberries’ anti-inflammatory effect. The hypothesis of this 

study was that the volatile compounds, and not just the previously hypothesized phenolic 

compounds, also have anti-inflammatory capabilities when tested in vitro on RAW 264.7 cells. 

For this study, it was necessary to evaluate the cranberry phenolic extract for its in vitro anti-

inflammatory effect on RAW 264.7 cells to be able to compare its effect to the effect of the 

volatile extract. At the time of this study, the phenolic compounds have been deemed to be the 

major bioactive source of cranberry’s anti-inflammatory properties (La et al. 2010).   

 Most methods recommend using a mixture of organic solvents and polar solvents to 

extract phenolic compounds, especially for berries high in anthocyanin content like a cranberry 

(La et al. 2010). These recommendations were followed and used to extract the phenolic 

compounds for this study and are explained in section 3.3.1.   

3.2 Materials  

 Cranberries (Stahlbush Island Farm brand) were purchased from Harps Foods, 

Fayetteville, AR. Stahlbush Island Farm is located on 5000 acres of land in the Willamette 

Valley of Oregon. The cranberries farmed there are left in the field until ripe, and frozen 

immediately after harvest to seal in flavor and freshness. After purchase from Harps Foods, the 
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cranberries were stored unopened and frozen at -20° C until used for experimentation to avoid 

any degradation of the phenolic compounds. 

3.3 Methods 

3.3.1 Extraction of Phenolic Compounds 

 Cranberries were thawed to room temperature and rinsed with running water to remove 

any dirt/debris. Three separate phenolic extracts were prepared from fresh cranberries. 

Approximately 100 g of the rinsed cranberries were homogenized with 250 mL methanol, water, 

and formic acid using a Euro Turrax T18 Tissuemizer (Tekmar-Dohrman Corporation, Mason, 

OH) for approximately 60 sec. The homogenate was then vacuum filtered through Miracloth 

(CalBioche, LaJolla, CA) and the resulting filtrate was collected. The resulting residue was 

homogenized using the Euro Turrax Tissuemizer with 250 mL of acetic acid, water and acetone 

for approximately 60 sec. The residue homogenate was vacuum filtered through Miracloth and 

combined with the previously collected filtrate. That resulting residue was homogenized, and 

vacuum filtered the same as the previous residue. The final residue and Miracloth were rinsed 

with both solvents, methanol/water/formic acid and acetic acid/water/acetone to collect any 

remaining cranberry compounds and added to the final filtrate. The final filtrate was placed in a 

Buchi Rotary Evaporator R-114 (Buchi, Flawil, Switzerland) set at 40°C to evaporate all of the 

solvents leaving only the phenolic extract. Next, the phenolic extract was centrifuged for 5 min 

at 10,000 rpm and supernatant collected. The extract was then loaded onto a Sep-Pak® C18 

column cartridge (Waters Corporation, Milford, MA) and eluted with 70-100% ethanol until 

color was no longer visible in the cartridges. The samples were passed through 0.45 µm filters 

(Whatman) before HPLC analysis.  
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3.3.2 High-Performance Liquid Chromatography (HPLC) Analysis of Phenolic Compounds 

 The individual phenolic compounds from the cranberry extract were separated by HPLC 

on a 250 X 4.60 mm Symmetry 5 µm C18 column (Waters Corp, Milford, MA). The resulting 

peaks were analyzed at 320, 360, and 510 nm using a Waters Model 996 photodiode array 

detector (Waters Corp, Milford, MA). Each sample injection volume was 100 µL. Solvent A was 

the mobile phase, water acidified with phosphoric acid to pH 2.6 and methanol was used as 

solvent B. The flow rate was 1.33 mL/min, and a gradient of the solvents was used to get the best 

separation of the compounds, starting with 88% A from 0-10 minutes, 85% A from 10-26 

minutes, 40% A from 26-55 minutes, 30% A from 55-70 minutes, and 88% A from 70-85 

minutes. Detection wavelengths of 320, 360, and 510 nm was used to monitor hydroxycinnamic 

acids, flavonols and anthocyanins, respectively. Individual anthocyanin monoglucosides and 

acylated anthocyanin derivatives were quantified as Cyd (cyanidin), Pnd (peonidin), and Mvd 

(malvidin) glucoside equivalents using external calibration curves of a mix of the three 

anthocyanin glucosides. Anthocyanins were quantified as a mixture of these glucosides because 

they are naturally occurring common anthocyanidins found in nature. Hydroxycinnamic acids 

were quantified as chlorogenic acid equivalents using external calibration curves of chlorogenic 

acid and flavonols were quantified as rutin equivalents using external calibration curves of rutin. 

Results are expressed as mg of anthocyanin-3-glucoside equivalents, chlorogenic acid 

equivalents, and rutin equivalents per kg of fresh weight.  

3.3.3 Total Phenolic Content  

 The total phenolic content of the phenolic extract was measured using the Folin-Ciocalteu 

assay. First, 0.5 mL of 0.2 N Folin-Ciocalteu reagent was mixed with 0.1 mL of the cranberry 

phenolic extract. Next, 0.4 mL of 7.5% NaHCO3 was added and mixed into the solution. The 



 
 

 
 

17 

solution was then placed into a 48-well plate in triplicate and let sit in the dark for 2 hr at room 

temperature. After the 2 hr, the absorbance of each sample was read at 760 nm. Total phenolic 

quantification was determined by comparing the absorbances of the samples to the absorbances 

of known gallic acid equivalents (GAE) at 100, 50, 25, 12.5, 6.25, and 3.125 mg per kg, which 

were prepared in the same way as the samples. Results are expressed as averages of each 

triplicate, with units of mg of GAE per kg fresh weight.  

3.3.4 DMAC (4-dimethylaminocinnamaldehyde) Total Procyanidins Assay 

 Total procyanidins present in the phenolic extract was measured using the DMAC assay 

following the methods of Payne et al. (2010). A solution of 3 mL of HCl in 27 mL alcohol was 

prepared and then 0.03 g of DMAC was added to the solution (now be referred to as DMAC 

solution). Aliquots (50 µL) of blanks, standards, and extracts were prepared. 250 µL of DMAC 

solution was added to all prepared blanks, standards, extracts. Plate was read immediately at 640 

nm. Catechin was used as the standard (2, 4, 8, 16, 32, and 64 mg/kg) with results expressed as 

mg of catechin equivalents per kg fresh weight.  

3.3.5 DPPH (2,2-diphenyl-1-picrylhydrazyl) Total Antioxidant Capacity Assay of Phenolic 

Extract 

 Total antioxidant capacity of the phenolic extract was measured using a modified DPPH 

method published by Akkari et al. (2016). 1.4 mL of a solution of DPPH in methanol was added 

to 0.1 mL of the phenolic extract at 10x, 20x, 40x, 80x, and 160x dilutions. The combined 

solution sat in the dark for 30 minutes, then absorbance on a spectrophotometer at 517 nm was 

measured. Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) was used as the 

standard (50, 100, 200, 400, 800 µM) with results expressed as µM of Trolox per kg of sample.  
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3.4 Results 

3.4.1 HPLC  

 
Figure 3.1 HPLC chromatogram at 360 nm measuring for flavonols 
 

 
Figure 3.2 HPLC chromatogram at 510 nm measuring for anthocyanins 
 
 
 
 
 
 
 

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Minutes
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00

AU

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Minutes
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00



 
 

 
 

19 

Table 3.1 Composition of anthocyanins, flavonols, and hydroxycinnamic acids in cranberry 
extract 

Anthocyanins (mg ACY-3-
Glu equiv. /kg FW) 

Flavonols (mg Rutin 
equiv./kg FW) 

Hydroxycinnamic acids (mg 
Chlorogenic acid equiv./kg 

FW) 

Cyd-3-gal 148.0±1.0 Myr-3-pentoside 6.7±0.0 Chlorogenic acid 14.7±0.0 

  Myr-3-pentoside 0.7±0.0   
Cyd-3-glu 2.7±0.0 Quer-3-xylo 3.4±0.0   

Cyd-3-arab 93.1±1.0 
Quer-3-
arbinopyranoside 9.2±0.0   

Mal-3-gal 8.0±2.0 Myr-3-gal 17.4±0.0   

Peo-3-gal 489.8±4.0 
Quer-3-
arabinofuranoside 3.4±0.0   

  Quer-3-gal 25.5±0.0   
Peo-3-arab 195.0±2.0 Quer-3-glu 2.7±0.0   

  Quer-3-rham 2.7±0.0   

  
Isorham-3-
hexoside 2.7±0.0   

  
Isorham-3-
pentoside 5.4±0.1   

  
Isorham-3-
pentoside 0.7±0.0   

  
Isorham-3-
pentoside 1.3±0.0   

  
Isorham-3-
pentoside 1.3±0.0   

  
Quer-3-benzoyl-
gal 0.7±0.0   

Total 
Anthocyanins 936.6±8.0 Total Flavonols 84.4±1.0 

Total 
Hydroxycinnamic 
acids 14.7±0.0 

Anthocyanins were quantified using an external calibration curve of a mix of the three 
predominant anthocyanin glucosides found in cranberries; Cyd (cyanidin), Pnd (peonidin), and 
Mvd (malvidin) glucoside equivalents per kg of fresh weight. Flavonols were quantified using an 
external calibration curve of rutin and are expressed as mg of rutin equivalents per kg of fresh 
weight. Hydroxycinnamic acids were quantified using a chlorogenic acid external calibration 
curve and are expressed as mg of chlorogenic acid equivalents per kg of fresh weight.  
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3.4.2 Total Phenolic Content Using Folin-Ciocalteu Assay 

Table 3.2 Total phenolic content of cranberry extract  

 abs 760 nm 
extract 
dilution 

assay 
dilution Total Phenolics 

Cranberry phenolics 0.3593 0.67 50 1240 
Cranberry phenolics 0.3700 0.67 50 1277 
Cranberry phenolics 0.3760 0.67 50 1297 

     
    Average 1271 

     
Total Phenolics are expressed as the triplicate average with units of mg of gallic acid equivalents 
(GAE) per kg fresh weight. 
 

3.4.3 DMAC (4-dimethylaminocinnamaldehyde) Total Procyanidins Assay 

Table 3.3 Summary statistics of DMAC analysis of phenolic extract 
 
Mean 323.6 

Std Dev 12.7 

Std Err Mean 3.0 

Upper 95% Mean 329.9 

Lower 95% Mean 317.4 

N 3 

      Total procyanidins 323.6 mg/kg+/-2.9 SEM 
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3.4.4 DPPH (2,2-diphenyl-1-picrylhydrazyl) Free Radical-Scavenging Assay of Phenolic 

Extract 

Table 3.4 Summary statistics of DPPH analysis of phenolic extract. 

Mean 4676.4 

Std Dev 230.0 

Std Err Mean 93.9 
Upper 95% Mean 4917.7 

Lower 95% Mean 4435.1 

N 3 
      Total Antioxidant Capacity 4676.4 µM/kg+/-93.9 

3.5 Discussion 

3.5.1 HPLC Analysis Discussion 

 HPLC analysis was used to determine the composition of the anthocyanins, flavonols, 

and hydroxycinnamic acids (a subcategory of phenolic acids) present in the phenolic extract. In 

this analysis, there were seven different anthocyanin compounds present, with total anthocyanins 

equaling 936.6 ± 8.0 mg ACY-3-glucoside equiv. per kg fresh weight, sixteen different flavonol 

compounds present, with total flavonols equaling 84.4 ± 1.0 mg rutin equiv. per kg fresh weight, 

and one hydroxycinnamic acid identified, with total hydroxycinnamic acids equaling 14.7 ± 0.0 

mg chlorogenic acid equiv. per kg fresh weight (Table 3.1). It appears that the cranberry phenolic 

profile has been well mapped, because the literature is in agreeance with the results of this study. 

Although some studies reported results on dry weight basis instead of fresh weight, all studies 

reported the highest concentration of classes of compounds to be the proanthocyanidins and 

anthocyanins, at 133 g per kg dry weight and Wu et al. (2006) only looked specifically at total 

anthocyanin content and reported a value of 1400 ± 28.5 mg per kg of fresh weight, which is 

comparable to the 936.6 ± 0.8 mg per kg of fresh weight found in this study. One thing that did 
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seem to differ among the literature was the number of compounds identified in the cranberry 

phenolic fraction, found to be twenty-three in this study and reported at seventeen and eleven in 

others (Seeram et al. 2006, Gregoire et al. 2007). In the study that reported only eleven highly 

purified compounds by using HPLC analysis to separate flavonols, phenolic acids, and 

proanthocyanins of cranberries they identified the following; quercetin, quercetin-3-glucoside, 

quercetin-3-galactoside, quercetin-3-arabinofuranoside, quercetin-3-rhamnoside, myricetin, 

myricetin-3-rhamnoside, epicatechin, epicatechin-(4b-8)-epicatechin, caffeic acid, and 

chlorogenic acid (Gregoire et al. 2007), and two of those were not identified in this study.  

Differences were likely due to differences in analytical procedures. Three different wavelengths 

were monitored to identify the anthocyanins, flavonols, and hydroxycinnamic acids in this study, 

whereas Gregoire et al. (2007) did not report the wavelength(s) used to identify the compounds. 

The differences among the two studies could also be due to analysis of different cranberry 

varieties. 

3.5.2 Total Phenolics by Folin-Ciocalteu Discussion 

 The total phenolic content of the cranberry extract used in this study was 1271 mg GAE 

per kg fresh weight, shown in Table 3.2. Upon comparison to other studies analyzing cranberry 

extract for total phenolics, results seem to vary. The 1271 mg GAE per kg fresh weight found in 

this study is low compared to the 1627 mg GAE per kg of fresh weight reported by Nowak et al. 

(2016). Results of this study also seem low compared to the study by Abeywickrama et al. 

(2016), who reported the total phenolics of market-mature cranberries to be ~6100 mg GAE per 

100 g dry weight. Due to the different nature of the method (fresh weight vs. dry weight) it is 

expected that the dry weight would be much higher because of concentration of the phenolic 

compounds during the drying process. The cranberries used in these studies could also be 
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different varieties or cultivated in different methods resulting in the differing values for total 

phenolic content.  

3.5.3 DMAC (4-dimethylaminocinnamaldehyde) Total Procyanidins Discussion 

 Total procyanidins of the cranberry extract used in this study were found to be 324 

mg/kg. The literature reports greatly varying values, Wallace and Giusti (2010) evaluated eight 

different cranberry samples and found total procyanidins varying from 780 to 22,450 mg per kg. 

Another study found total procyanidins of cranberry extract to be 5 mg per kg, total procyanidins 

of whole cranberries to be 17 mg per kg, and total procyanidins of two cranberry juices to be 223 

and 216 mg per kg (Prior et al. 2001). The large variation in total procyanidins reported in the 

literature and found in this study could be due to different starting cranberry products (different 

varieties of fresh cranberries, freeze dried cranberries, cranberry juices ect.) and different 

extraction and analytical methods used for quantification.  

3.5.4 DPPH (2,2-diphenyl-1-picrylhydrazyl) Total Antioxidant Capacity Discussion 

 Total antioxidant capacity of the phenolic extract used in this study was found to be 4,676 

µM Trolox per kg. In the literature, using the oxygen radical absorbance capacity assay (OREC) 

cranberry anti-oxidant capacity has been reported as high as 95,840 µM Trolox equivalent per kg 

and ranked number one among fifty fruits and vegetables evaluated (Floegel et al. 2011), 

however different methods to evaluate total antioxidant capacity yield different results. The 

DPPH method in Floegel et al. (2011) study reported antioxidant capacity at 868 mg vitamin C 

equivalents per kg fresh weight, which is high compared to the other fruits and vegetables tested, 

but hard to directly compare to this study as Trolox is a vitamin E derivative. Borowska et al. 

(2009) reported the antioxidant capacity of wild cranberry to be 36,900 µM Trolox per kg and 

Wang and Stretch (2001) reported 8,200 – 10,100 µM Trolox per kg in their study. The large 
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variation of antioxidant capacity found in this study and in the literature is likely due to differing 

cranberry varieties, different cultivar techniques, different cranberry starting products, and 

different extraction and quantification methods.  

Chapter 4: Extraction, Quantification, Identification and Free Radical-Scavenging Activity 

of Cranberry Volatile Compounds 

4.1 Introduction 

 To discover whether the volatile compounds in cranberries also have an anti-

inflammatory effect, the volatile compounds from the cranberries needed to be extracted for in 

vitro experimentation on the RAW 264.7 cells. The volatile extract also was further analyzed 

using Gas Chromatography – Mass Spectrometry (GC-MS) to determine which individual 

volatile compounds were present. Due to the instability of volatile compounds at high 

temperatures, vacuum distillation followed by rapid cooling, to avoid any degradation, was used 

for isolation of the individual volatiles (Belitz et al. 2009).   

4.2 Materials 

 Cranberries (Stahlbush Island Farm brand) were purchased from Harps Foods, 

Fayetteville, AR. Stahlbush Island Farm is located on 5000 acres of land in the Willamette 

Valley of Oregon. The cranberries farmed there are left in the field until ripe, and frozen 

immediately after harvest to seal in flavor and freshness. After purchase from Harps Foods, the 

cranberries were stored unopened and frozen at -20° C until used for experimentation to avoid 

any degradation of the volatile compounds. 
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4.3 Methods 

4.3.1 Extraction of Volatile Compounds 

 Cranberries were thawed to room temperature and rinsed with running water to remove 

dirt and debris. Three separate volatile extracts were prepared from fresh cranberries. Volatiles 

were obtained by combining 300 g of berries, 300 mL deionized water, and 100 g NaCl and 

blending for one min in a Waring blender.  The homogenate was vacuum distilled at 28 in. Hg, 

50°C water bath, 0oC condenser for 30 min using a Buchi rotary evaporator (Buchi, Flawil, 

Switzerland). The first 200 mL was collected in a flask contained in an ice water bath. Additional 

ice packs were strapped to the condenser to aid in condensation and collection of volatiles. The 

final collected cranberry extract was put in a glass jar, sealed, and immediately stored in the 

freezer at -20 ºC until used for experimentation.  

4.3.2 Solid Phase Micro-extraction (SPME) of Volatiles 

 An 85µm, CAR/PDMS, Stableflex, 24 Ga, Manual Supelco (Bellefonte, PA) SPME fiber 

was used in this study.  Vials containing 4 mL of volatile extract were placed on a stir plate with 

temperature set at 65° C with the SPME fiber inserted into the headspace above the sample. 

Adsorption was timed for 30 min. Samples of volatiles (100 µL) were placed into 1 mL vials. 

After preheating for 5 min at 40oC, headspace volatiles were collected by SPME for 20 min at 

60oC using a DVB/CAR/PDMS fiber (Supleco Inc., Bellafonte, PA).  

4.3.3 GC Quantification of Volatiles 

 Volatiles adsorbed to the SPME fibers were desorbed at 270 °C for 2 min in the injection 

port of a Varian 3800 GC (Agilent Technologies, Santa Clara, CA) equipped with a HP-5 (5% 

phenyl-methylpolysiloxane) column (30 m X 250 um X 1 um) (Agilent Technologies, Santa 

Clara, CA). The FID detector was at 280°C.  GC runs were 29 min, and the fiber remained in the 
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injection port for 10 min after each run. The injection port was operated in splitless mode with a 

constant He flow of 25 psi. The initial oven temperature was 25° C, held for 4 min, ramped up at 

12 °C/ min to 289° C, and held at for 3 min. Volatiles were quantified as heptanal, octanal, alpha 

phellandrene, d-limonene, limonene, ocimene, nonanal, terpin-4-ol, alpha terpineol, beta 

caryophyllene, and alpha caryophyllene.  

4.3.4 GC-MS Identification of Volatiles 

 SPME-collected volatiles were analyzed by GC-MS using a Hewlett-Packard HP 5890 

series gas chromatograph equipped with a mass selective detector (MSD) and a HP-5 capillary 

column (Agilent, 30 m x 0.25 mm, film thickness 1 µm).  Working conditions included: injector 

temperature 270oC; MSD interface temperature 280oC; oven temperature programmed from -

10oC (1 min) to 280oC at 12oC/min; carrier gas (He) at a flow rate of 0.78 mL/min; injection port 

operated in splitless mode. MSD acquisition parameters included full scan mode, scan range 20-

300 m/z and scan speed 3.2 scans/s. Volatiles were identified by comparing their mass spectra 

with the spectral library (Wiley7NIST0.5), literature data, and alkane retention indices C5-C20. 

4.3.5 Total Phenolic Content  

 The total phenolic content of the volatile extract was measured using the Folin-Ciocalteu 

assay. First, 0.5 mL of 0.2 N Folin-Ciocalteu reagent was mixed with 0.1 mL of the cranberry 

volatile extract. Next, 0.4 mL of 7.5% NaHCO3 was added and mixed into the solution. The 

solution was then placed into a 48-well plate in triplicate and let sit in the dark for 2 hr at room 

temperature. After the 2 hr, the absorbance of each sample was read at 760 nm. Total phenolic 

quantification was determined by comparing the absorbances of the samples to the absorbances 

of known gallic acid equivalents (GAE), which were prepared in the same way as the samples. 
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Results are expressed as averages of each triplicate, with units of mg of GAE per 100 g fresh 

weight.  

4.3.6 DPPH (2,2-diphenyl-1-picrylhydrazyl) Total Antioxidant Capacity Assay of Volatile 

Extract 

 Total antioxidant capacity of the phenolic extract was measured using a modified DPPH 

method published by Akkari et al. (2016). 1.4 mL of a solution of DPPH in methanol was added 

to 0.1 mL of the phenolic extract at 10x, 20x, 40x, 80x, and 160x dilutions. The combined 

solution sat in the dark for 30 minutes, then absorbance on a spectrophotometer at 517 nm was 

measured. Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) was used as the 

standard (50, 100, 200, 400, 600, 800 µM) with results expressed as µM of Trolox per Kg of 

sample.  

4.4 Results 

Figure 4.1 GC-MS Chromatogram of cranberry volatiles.  
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Table 4.1 Composition of cranberry volatiles using GC-MS 
Retention Time1 (min) Volatile Compound Concentration (ppb) 

4.22 1-Butanol 18.19 
8.12 1-Pentanol 24.58 
9.1 Hexanol 24.73 

11.97 Heptanal 6.78 
13.65 1-heptanal 14.64 
13.45 Benzaldehyde 17.94 
13.87 1-octen-3-ol 16.85 
14.4 Octanal 10.87 
14.57 Alpha phellandrene 27.17 
14.98 D-limonene 22.66 
15.06 Limonene 4.20 
15.17 Eucalyptol 189.04 
15.21 Ocimene 40.25 
15.36 Ocimene 7.76 
15.63 2-octanal 110.26 
15.88 Linalool oxide 224.42 
16.35 Linalool 41.32 
16.5 Nonanal 15.46 
16.58 Nd 46.73 
18.09 Terpin-4-ol 74.36 
18.45 Alpha terpineol 2320.55 
19.46 Carvone 45.85 
19.61 Trans-2-decanal 134.20 
22.59 Beta caryophyllene 54.68 
23.21 Alpha caryophellene 58.00 

 Total Volatiles   3551.5 
Nd, not determined.  
1Retention times correspond to retention times in Figure 4.2. 
 

The results of the Folin-Ciocalteu assay measuring for total phenolics of the cranberry volatile 

extract was zero, as expected.  
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Table 4.2 Summary statistics of DPPH analysis of volatile extract. 

Mean 40.2 

Std Dev 1.8 

Std Err Mean 0.72 

Upper 95% Mean 42.0 

Lower 95% Mean 38.3 

N 6 
    Total Antioxidant Capacity 40.2 µM/Kg+/-0.72 SEM 
 

4.5 Discussion 

 The chromatogram from Figures 4.1 contain a large number of peaks, which displays the 

complex aromatic composition of cranberries. 25 individual volatile compounds in the cranberry 

volatile extract used for this study were identified using Mass Spectrometry analysis and are 

listed in Table 4.1. This number of compounds is lower than other reported studies, with a 

comprehensive literature review reporting values for food volatiles compiling the data from six 

cranberry studies reporting a total of 115 volatile compounds previously identified in cranberries 

(De Vincenzi et al. 1989). In one of the studies reviewed that used American cranberry, 42 

compounds were identified, which is closer to 25 compounds identified in this study (Croteau 

and Fagerson 1968). The data from the previous studies should be compared to the current study 

with discretion, taking into account that some of the papers reviewed used cranberry juice, 

European cranberries, and cranberry press cake, which was denoted as the berry residue 

remaining after the juice has been expressed, as the starting cranberry component for evaluation, 

whereas the cranberries in this study are American cranberries grown and harvested in Oregon 

(Anjou et al. 1967).  Another thing possibly leading to these discrepancies with the literature is 
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that the extracts obtained from the starting cranberry components were prepared for evaluation in 

different manners, for example Croteau and Fagerson (1968) used a cold press technique and this 

study used vacuum distillation.   

 The Folin- Ciocalteu assay was used to measure total phenolic content of the volatiles 

and the values were zero, as expected. Table 4.2 show the results of the DPPH assay, measuring 

for total antioxidant capacity, with total antioxidant capacity of the volatile extract calculated as 

40.2 uM/kg +/- 0.72. Results for both of these assays were very low as expected. These assays 

are typically not performed on volatile extracts, but they were in this study to keep consistency 

between the data collected from the phenolic extract and the volatile extract. The results 

demonstrate that the volatile fraction does not contain phenolics and the antioxidant activity of 

the volatile fraction is very low when compared with the phenolic fraction. 

Chapter 5: In Vitro Anti-Inflammatory Effect of Cranberry Phenolic and Volatile Extracts 

on RAW 264.7 cells.  

5.1 Introduction 

 To evaluate the anti-inflammatory capabilities of the cranberry phenolic and volatile 

extracts, an in vitro nitric oxide (NO) assay was performed. Nitric oxide assays are used to 

measure the total amount of nitrate/nitrite and are commonly used in experiments studying free 

radical scavenging, anti-cancer properties, anti-ageing properties, and anti-inflammatory 

properties (Kagoo and Chellathai 2014). In this case, NO levels were measured as an 

inflammatory marker. A set number of cells were treated with LPS (to stimulate inflammation 

and NO production), then treated with another substance and given time for that substance to 

have its’ effect on the cells (level of NO produced). Then the NO levels produced by the treated 
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cells compared to non-treated (control) were measured using colorimetric analysis to assess the 

anti-inflammatory properties of the treatments.   

 One concern that had to be addressed in methodology of this study was the solubility of 

the volatile compounds in the aqueous media. Because of the lipophilic nature of volatile 

compounds, a surfactant was needed to ensure suspension of the volatile compounds in the 

volatile treatment media. In all dilutions of the volatile treatments, there was a final 

concentration of 0.02% tween 80, a non-ionic surfactant, to ensure that the volatiles dispersed 

throughout the experimental media and were available to treat the cells. Tween 80 was chosen 

because it has been previously shown to work in cell culture and to hold volatile compounds in 

suspension in cell culture media (O’Sullivan et al. 2004). Tween 80 was found to be non-

cytotoxic to RAW 264.7 cells at the 0.02% concentration used in this study using the CellTiter 

96® Aqueous One Solution Cell Proliferation (Inah Gu, MS Thesis).   

 RAW 264.7 cells, a mouse macrophage cell line from mouse blood, were chosen for the 

NO assay because the macrophage is a major cell type involved in inflammation, and because of 

the well-known anti-inflammatory properties of cranberries (Bodet et al. 2006).  

5.2 Materials 

Cranberry phenolic and volatile extracts, explained in chapters 3 and 4 respectively, were 

used as the treatments in cell culture prior to the NO assay. The RAW 264.7 mouse macrophage 

cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD) and 

cultured in Dulbecco’s modified eagle's medium (DMEM) enriched with 1% penicillin-

streptomycin, 1% L-glutamine, and 10% fetal bovine serum (FBS). The components for the 

DMEM media and all cell culture experimental reagents were purchased from Gibco® through 
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Life Technologies (Carlsbad, CA). The Griess Reagent System kit was purchased from Promega 

Corporation (Madison, WI).  

5.3 Treatment Dosage of Cranberry Phenolic and Volatile Extracts 

 Phenolic and volatile extracts (reference chapters 3 and 4) were used as experimental 

treatments on RAW 264.7 cells before measuring the NO levels. The extracts were brought back 

to the original starting weight of the fresh cranberries so that they accurately reflect the natural 

concentrations of the phenolics and volatiles in a fresh cranberry. Due to the cells need for 

nutrient-rich media, the extracts could not be applied directly to the cells because of potential cell 

death. To keep the treatment dosage as high as possible, 2x, 4x, and 8x dilutions of the phenolic 

and volatile extracts were used. The prescribed 2x, 4x, and 8x dilutions of phenolic and volatile 

extracts were found to be non-toxic to the cells via the The CellTiter 96® AQueousOne Solution 

Cell Proliferation Assay in a preliminary study (Inah Gu, MS Thesis). 

 Treatment of the RAW 264.7 cells in this manner, with the same dilutions of phenolic 

and volatile extracts, rather than treatment with the same concentration of each extract, is 

justified by the fact that the concentrations of these compounds are not equivalent in a fresh 

cranberry. This study is representative of the amount of phenolics and volatiles that a person 

would obtain by eating fresh cranberries. Actual concentrations of treatment extracts are listed in 

Table 5.1. 

Table 5.1 Concentrations of cranberry phenolic and volatile compounds applied as treatments to 
RAW 264.7 Cells  
Treatment 1Actual Concentration 2x dilution 4x dilution 8x dilution 
Volatile Fraction 3.6 ppm 1.80 ppm 0.90 ppm 0.45 ppm 
Phenolic Fraction 1271.3 ppm 635.7 ppm 317.8 ppm 158.9 ppm 

1Actual concentration refers to starting concentration in total extracts. 
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5.4 Methods 

5.4.1 Cell Culture 

RAW 264.7 mouse microphage cells were purchased from the American Type Culture 

Collection (ATCC, Rockville, MD) and cultured in Dulbecco’s modified eagle's medium 

(DMEM) enriched with 1% penicillin-streptomycin, 1% L-glutamine, and 10% fetal bovine 

serum (FBS). The cells were maintained in 75 cm2 cell culture flasks and incubated at 37 °C in a 

5% CO2 environment. All NO assays were conducted between cell passage numbers 4-8. The 

components for the DMEM media and all experimental reagents were purchased from Gibco® 

through Life Technologies (Carlsbad, CA). 

5.4.2 Griess Reagent System Assay (NO Assay) 

Nitric oxide production was analyzed using the Griess Reagent System kit containing 

nitrite standard, N-1-napthylethylenediamine dihydrochloride (NED) solution, and sulfanilamide 

solution, which was purchased from Promega Corporation (Madison, WI). 100 µL of RAW 

264.7 cells in enriched DMEM media were seeded in a 96 well plate (plate 1) and incubated at 

37 °C and 5% CO2 for 16 hr. After 16 hr, which allowed the cells to attach to bottom of the wells 

in the plate, the media was removed and treatment media containing a range of phenolic and 

volatile cranberry extracts was added, tween 80 was added at a concentration of 0.02% to the 

volatile treatment media. The treatment media was left on the cells for 1 hr, and then removed. 

Next, lipopolysaccharide (LPS) media, concentration 100 ng LPS per mL, was applied to the 

cells and left on for 24 hr. After 24 hr, the LPS media was removed and the nitric oxide levels 

were measured. To measure nitric oxide, a nitrite standard reference curve, with concentrations 

ranging from 0 to 100 µM, was prepared on a separate 96 well plate (plate 2). Samples on plate 1 

were centrifuged for 1 min at 1000 rpm and the supernatants from the samples were added to 
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plate 2. Then, 50 µL of sulfanilamide solution was added to the standard reference curve and the 

samples on plate 2 and allowed to sit for 10 min protected from light. After ten min, 50 µL of 

NED solution was added to all wells on plate 2 and allowed to sit protected from light for 10 

min. After 10 min, the absorbance was read on a plate reader at 540 nm. After the absorbance 

readings, corrections were made to account for background absorbance of the sample control 

media. The absorbance readings were converted into nitric oxide levels using the slope value 

from the nitric oxide standard curve.  

This experiment was conducted as described above, with the cranberry treatments applied 

before the LPS, and the reverse, with the cranberry treatments applied after the LPS. For the 

reverse, the RAW 264.7 cells were seeded in the 96 well plate and allowed to sit for 16 hr. After 

16 hr the media was removed and the LPS media was applied. The LPS media was left on the 

cells for 24 hr. After 24 hr the cranberry phenolic and volatile treatment media containing the 

different concentrations was added, and a final concentration of 0.02% tween 80 was added to 

the volatile treatment media. After 1 hr with the cranberry treatment media, the plate was 

centrifuged, the supernatant transferred to a second plate, and the nitric oxide levels measured in 

the same way as described when treatments were applied before LPS.  

5.5 Statistical Analysis 

All statistical analysis was performed using JMPâ Pro Ver. 14 Statistics Software. One-

way analysis of variance for all responses for all treatment dilution combinations before and after 

by each treatment combination was ran in the Fit Y by X platform of JMP Pro Ver. 14. Multiple 

comparisons were performed using the Tukey HSD test.  

Paired t-tests were used in the Matched Pair platform of JMP Pro Ver. 14 to compare the 

before and after LPS results for each treatment.  
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5.6 Results  

5.6.1 Phenolic and Volatile Extract Treatments after Applying LPS 

 
Figure 5.1 Average NO concentration produced by RAW 264.7 cells treated with phenolic and 
volatile compounds after applying LPS. * indicates a significant difference from the positive 
control (CTR w/ LPS). Levels not connected by the same letter are significantly different.  
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Table 5.2 Means comparisons of all pairs treatment after LPS using Tukey-Kramer HSD 
Confidence Quantile. 
 Control-

0x+ 
Volatile-

8x 
Phenolic

-8x 
Volatile-

4x 
Phenolic

-4x 
Volatile-

2x 
Phenolic

-2x 
Control-

0x- 

Control-
0x+ 

-6.6141 -3.3605 -3.2148 -1.7156 0.0595 0.7510 2.3771 8.3440 

Volatile-
450 ppb 

-3.3605 -6.6141 -6.4684 -4.9692 -3.1941 -2.5026 -0.8765 5.0904 

Phenolic-
158.9 
ppm 

-3.2148 -6.4684 -6.6141 -5.1150 -3.3398 -2.6483 -1.0222 4.9446 

Volatile-
900 ppb 

-1.7156 -4.9692 -5.1150 -6.6141 -4.8390 -4.1474 -2.5214 3.4455 

Phenolic-
317.8 
ppm 

0.0595 -3.1941 -3.3398 -4.8390 -6.6141 -5.9226 -4.2965 1.6704 

Volatile-
900 ppb 

0.7510 -2.5026 -2.6483 -4.1474 -5.9226 -6.6141 -4.9880 0.9788 

Phenolic-
635.7 
ppm 

2.3771 -0.8765 -1.0222 -2.5214 -4.2965 -4.9880 -6.6141 -0.6472 

Control-
0x- 

8.3440 5.0904 4.9446 3.4455 1.6704 0.9788 -0.6472 -6.6141 

Positive values show pairs of means that are statistically significant.  
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5.6.2 Phenolic and Volatile Extract Treatments before Applying LPS 

 
Figure 5.2 Average NO concentration produced by RAW 264.7 cells treated with phenolic and 
volatile extracts before applying LPS. * indicates a significant difference from the positive 
control (CTR w/ LPS). Levels not connected by the same letter are significantly different.  
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Table 5.3 Means comparisons of all pairs treatment before LPS using Tukey-Kramer HSD 
Confidence Quantile 
 Control-

0x+ 
Volatile-

8x 
Phenolic

-8x 
Volatile-

4x 
Phenolic

-4x 
Volatile-

2x 
Phenolic

-2x 
Control-

0x- 

Control-
0x+ 

-2.934 -2.534 -0.459 0.064 2.978 7.858 9.101 19.235 

Volatile-
450 ppb 

-2.534 -2.934 -0.859 -0.336 2.579 7.458 8.701 18.835 

Phenolic-
158.9 
ppm 

-0.459 -0.859 -2.934 -2.411 0.503 5.383 6.626 16.760 

Volatile-
900 ppb 

0.064 -0.336 -2.411 -2.934 -0.019 4.860 6.103 16.237 

Phenolic-
317.8 
ppm 

2.978 2.579 0.503 -0.019 -2.934 1.946 3.188 13.322 

Volatile-
1.8 ppm 

7.858 7.458 5.383 4.860 1.946 -2.934 -1.691 8.443 

Phenolic-
635.7 
ppm 

9.101 8.701 6.626 6.103 3.188 -1.691 -2.934 7.200 

Control-
0x- 

19.235 18.835 16.760 16.237 13.322 8.443 7.200 -2.934 

Positive values show pairs of means that are statistically significant.  
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5.6.3 Analysis of Treating After vs. Treating Before Applying LPS 

  

Control-0x- Control-0x+ 
Figure 5.3 Comparison of NO levels of controls in experiments before and after LPS. NO 
Conc_A = treatment after LPS, NO Conc_B = treatment before LPS.  
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Phenolic 635.7 ppm Phenolic 317.8 ppm 

  
Phenolic 158.9 ppm Volatile 1.8 ppm 

  
Volatile 900 ppb Volatile 450 ppb 

Figure 5.4 Comparison of NO levels treating with phenolic and volatile extracts before and after 
LPS. Conc_A = treatment after LPS, NO Conc_B = treatment before LPS.  
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5.7 Discussion 

Upon statistical analysis of the data, the results of this study supported the proposed 

hypothesis that the volatile compounds contributed along with the phenolic compounds in the 

anti-inflammatory effect of cranberries. First, the results of application of the treatments after 

applying LPS will be discussed. Figure 5.1 along with the data listed in Table 5.2 show that 

application of cranberry phenolic and volatile extract treatments after applying LPS decreased 

NO levels compared to the positive control. The phenolic 635.7 ppm and 317.8 ppm treatments 

and the volatile 1.8 ppm treatment significantly lowered the amount of NO produced compared 

to the positive control. A relevant dose response is also shown in the results. That is as the 

dilution factor of the treatment extracts increased, the significance of the NO levels compared to 

the positive control decreased, showing that the more concentrated treatment extracts worked 

better to eliminate the pre-existing NO induced by LPS. Interestingly, the results of the phenolic 

635.7 ppm and volatile 1.8 ppm treatment extracts were not significantly different from one 

another, but were both significantly different from the positive control, indicating they had the 

same treatment effect on lowering pre-existing NO. This is important to note because although 

both extracts were prepared at a 2x dilution of the starting concentration in a cranberry, the 2x 

dilution of the volatile extract was 353x less than the concentration of the 2x dilution of the 

phenolic extract. So even at this extremely low concentration the volatile extract at 1.8 ppm 

worked just as well as the phenolic extract at 635.7 ppm at treating pre-existing NO. Also, the 

phenolic extract treatment at 635.7 ppm shared a letter with the negative control, the cells 

without any exposure to LPS, indicating that the NO levels of the phenolic 635.7 ppm extract 

treatment showed no significant difference from the cells that had no inflammation induced. P-

values of all treatments compared to the positive control are listed in the appendix, with the 
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significant values as follows: phenolic 635.7 ppm with a p-value of 0.0014, phenolic 317.8 ppm 

with a p-value of 0.0463, and volatile 1.8 ppm with a p-value of 0.0180.  

The results of the treatment of the cells before applying LPS also supported the 

hypothesis that the volatile compounds contribute along with the phenolic compounds in the 

anti-inflammatory effect of cranberries. Figure 5.2 along with the data in Table 5.3 shows that 

application of cranberry phenolic and volatile extract treatments before applying LPS decreased 

NO levels compared to the positive control, demonstrating a preventative effect. Both phenolic 

and volatile extract treatments at 2x (635.7 ppm and 1.8 ppm respectively) and 4x dilutions 

(317.8 ppm and 900 ppb respectively) significantly lowered the amount of NO produced 

compared to the positive control. A relevant dose response is also shown in the results when the 

experiment was conducted in this manner. As the dilution factor of the treatment extracts 

increased, the significance of the NO levels compared to the positive control was reduced, 

showing that the more concentrated treatment extracts worked better to prevent the cells from 

producing NO when inflammation was induced by LPS after treatment. Interestingly, the results 

of the 2x and 4x dilutions of the phenolic and volatile extracts were not significantly different 

from one another but were all significantly different from the positive control. This indicates that 

when used as a preventative method, the phenolic and volatile treatments at the 2x dilution 

(635.7 ppm and 1.8 ppm respectively) had the same treatment effect and the phenolic and 

volatile treatments at the 4x dilution (317.8 ppm and 900 ppb respectively) had the same 

treatment effect, as opposed to only having the same treatment effect at the 2x dilution when 

applied as a treatment after the application of LPS. It is important to note again that the volatile 

extract dilution concentrations were 353x lower than the respective phenolic extract dilution 

concentrations and worked just as well to prevent the production of NO. P-values of all 
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treatments compared to the positive control are listed in Appendix B, with the significant values 

as follows: phenolic 635.7 ppm with a p-value of <.0001, phenolic 317.8 ppm with a p-value of 

<.0001, volatile 1.8 ppm with a p-value of <.0001, and volatile 900 ppb with a p-value of 0.0415.  

Upon statistical comparison of the two treatment strategies, applying the treatments 

before inducing inflammation with LPS versus applying the treatments after inducing 

inflammation with LPS, it was clear that applying the treatments before inducing inflammation 

with LPS resulted in lower NO levels in all cases (Figure 5.3 and Figure 5.4). This indicates that 

the phenolic and volatile extract treatments worked better as a preventative treatment for 

inflammation rather than a treatment for pre-existing inflammation.  

The results of the anti-inflammatory effect of the phenolic extract agreed with other 

studies where the total cranberry phenolic fraction or a specific portion of the total phenolic 

fraction tested on other cell lines, all exhibited an anti-inflammatory effect (La et al. 2010, Bodet 

et al. 2006, Feghali et al. 2012). There has been little to no research conducted on volatile 

compounds and their anti-inflammatory capabilities in vitro, so there is not any direct literature 

to compare the anti-inflammatory effect of the volatile extract.   

 The mechanisms of how the phenolic and volatile treatments work to prevent and treat 

inflammation are unclear. From the Griess Reagent System assay used in this study, only the 

levels of NO produced were measured, i.e. the amount of a specific inflammatory marker that is 

present. One possible reason for why cranberry phenolic compounds exhibit anti-inflammatory 

effects is their ability to inhibit cells from producing pro-inflammatory cytokines including 

interleukin-8 (IL-8) and chemokine ligand 5 (CCL5) and to reduce the activation of the nuclear 

factor-kB (NF-kB) p65 pathway when inflammation is induced by LPS (Bodet et al. 2006). 

Another study attributed the anti-inflammatory capabilities of cranberry extract to its’ high 
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antioxidant capacity, showing the extract inhibited kB kinase b, which is a central node in 

inflammatory signal transduction (Heim et al. 2012). Similar mechanisms to those reported in the 

literature could have occurred in this study following treatment with the cranberry phenolic 

extract, however the studies used different cell lines and possibly used different types of 

cranberries. The volatile compounds could be reducing the aforementioned pathways and 

cytokines in the same way, but further research is necessary to uncover that information.  

Interestingly, the antioxidant activity of the volatile extract 40 µM/Kg was much lower than that 

of the phenolic fraction, 4676 µM/Kg, indicating that suppression of oxidative stress may not 

play an important role in prevention of inflammation by the volatile fraction.  

 The NO assay has limitations, which are important to consider. Number one, the doses of 

the cranberry phenolic and volatile extracts that were used to treat the RAW 264.7 cells were 

lower than the actual concentration in a cranberry. However, the dilutions were necessary due to 

needs of the RAW 264.7 cells for media and nutrients. Even at these dilutions, some of the 

phenolic and volatile extract treatments showed a significant anti-inflammatory effect on the 

RAW 264.7 cells compared to the positive control, when treated both before and after applying 

LPS, especially at the 2x dilution (635.7 ppm phenolic and 1.8 ppm volatile) of both extracts. 

Taking into consideration that cranberries can be consumed fresh or without the dilutions 

required for this study, it is reasonable to hypothesize an even stronger anti-inflammatory effect 

could be observed in an in vivo study.  

 A second limitation of this study was the quantification of only one inflammatory marker. 

Other biological markers of inflammation include interleukin-6, TNF-a, and C-reactive protein 

(Kalogeropoulos et al. 2010) It would have been beneficial to have measured the interleukin-6 

levels using an IL-6 Enzyme Linked ImmunoSorbent Assay Kit, TNF-a levels using a TNF-a 
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Enzyme Linked ImmunoSorbent Assay Kit, and C-reactive protein levels using a CRP 

Quantikine Enzyme Linked ImmunoSorbent Assay kit, however, these assays were not 

performed due to time constraints.  

 Another area of limitation in this study was that the RAW 264.7 cell line used was a 

mouse macrophage cell line, not a human cell line, so possible differences could be observed in a 

human cell line. Also, this study was conducted in vitro, and the in vivo effects could be different 

if a similar study was conducted on live mice or humans. The current literature is deficient in the 

overall bioavailability of volatile compounds, and their ability to reach macrophage cells after 

ingestion from a food source, such as cranberries. A future study involving a lung cell line could 

be beneficial because volatile compounds have been previously reported to be absorbed and 

retained at close to the original dose in the lungs during inhalation (Kohlert et al. 2000).  

 Although this anti-inflammatory study had limitations, there were also strengths. Using 

multiple different concentrations of the phenolic and volatile extract treatments to see if the dose 

was relevant was beneficial to see the minimum amount of treatment required to get a significant 

change in the NO level. Another strength of this study included starting with the respective 

concentrations of phenolic and volatile compounds present in a fresh cranberry, even though they 

were not the same, to mimic the effects of the amount of phenolic and volatile compounds 

available from consuming a fresh cranberry. Testing the phenolic and volatile extracts at 

equivalent concentrations may have yielded lower levels of NO with the volatile extract, but due 

to the 353x lower concentration of volatile compounds compared to the concentration of 

phenolic compounds in cranberries, testing them in the manner used in this study mimics the 

amounts of the compounds that would be potentially available in vivo after consuming a 

cranberry.  
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Chapter 6: Anti-Inflammatory Effect of a-terpineol, Linalool, Linalool oxide, and 

Eucalyptol on RAW 264.7 cells in vitro.  

 
6.1 Introduction 

 A secondary objective of this study was to explore the anti-inflammatory capabilities of 

four of the most abundant individual volatile compounds found in cranberry volatile extract, a-

terpineol, linalool, linalool oxide, and eucalyptol, in vitro using the Griess Reagent System NO 

assay. The purpose of exploring each of these individual volatile compounds for their anti-

inflammatory capabilities, rather than the anti-inflammatory capabilities of the entire extract, was 

to see if certain individual volatile compounds play a larger role in reducing inflammation than 

others. Treatment dosages for this objective were determined in the same manner as all other 

treatment dosages in this study, starting from each of the individual concentrations in the total 

volatile extract, 2x, 4x, and 8x dilutions were prepared. Actual concentrations of each applied 

treatment are shown in Table 6.1.  

Table 6.1 Concentrations of individual volatile compounds applied as treatments to RAW 264.7 
Cells 

Treatment 
1Actual 
Concentration 2x dilution 4x dilution 8x dilution 

Alpha-terpineol 2320.6 ppb 1160.3 ppb 580.2 ppb 290.1 ppb 
Linalool oxide 224.4 ppb 112.2 ppb 56.1 ppb 28.1 ppb 
Eucalyptol 189.0 ppb 94.5 ppb 47.3 ppb 23.7 ppb 
Linalool  41.3 ppb 20.7 ppb 10.3 ppb 5.2 ppb 

1Actual concentration refers to starting concentration in total volatile extract 

6.2 Materials 

 All standard compounds a-terpineol, linalool, linalool oxide, and eucalyptol were 

purchased from Sigma Aldrich (St. Louis, MO).  The Griess Reagent System NO assay kit was 

purchased from Promega Corporation (Madison, WI). 
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6.3 Methods 

6.3.1 Cell Culture 

RAW 264.7 mouse macrophage cells were purchased from the American Type Culture 

Collection (ATCC, Rockville, MD) and cultured in Dulbecco’s modified eagle's medium 

(DMEM) enriched with 1% penicillin-streptomycin, 1% L-glutamine, and 10% fetal bovine 

serum (FBS). The cells were maintained in 75 cm2 cell culture flasks and incubated at 37 °C in a 

5% CO2 environment. All NO assays were conducted between cell passage numbers 4-8. The 

components for the DMEM media and all experimental reagents were purchased from Gibco® 

through Life Technologies (Carlsbad, CA). 

6.3.2 Griess Reagent System Assay (NO Assay) 

Nitric oxide production was analyzed using the Griess Reagent System kit containing 

nitrite standard, N-1-napthylethylenediamine dihydrochloride (NED) solution, and sulfanilamide 

solution, which was purchased from Promega Corporation (Madison, WI). 100 µL of RAW 

264.7 cells in enriched DMEM media were seeded in a 96 well plate (plate 1) and incubated at 

37 °C and 5% CO2 for 16 hr. After 16 hr, which allowed the cells to attach to bottom of the wells 

in the plate, the media was removed and test media containing different concentrations of a-

terpineol, linalool, linalool oxide, and eucalyptol was added. The treatment media was left on the 

cells for 1 hr, and then removed. Next, lipopolysaccharide (LPS) media, concentration 100 ng 

LPS per mL, was applied to the cells and left on for 24 hr. After 24 hr, the LPS media was 

removed and the nitric oxide levels were measured. To measure the nitric oxide, a nitrite 

standard reference curve, with concentrations ranging from 0 to 100 µM, was prepared on a 

separate 96 well plate (plate 2). Samples on plate 1 were centrifuged for 1 min at 1000 rpm and 

the supernatants from the samples were added to plate 2. Then, 50 µL of sulfanilamide solution 
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was added to the standard reference curve and the samples on plate 2 and allowed to sit for 10 

min protected from light. After ten minutes, 50 µL of NED solution was added to all wells on 

plate 2 and allowed to sit protected from light for 10 min. After 10 min, the absorbance was read 

on a plate reader at 540 nm. After the absorbance readings, corrections were made to account for 

background absorbance of the sample control media. The absorbance readings were converted 

into nitric oxide levels using the slope value from the nitric oxide standard curve.  

This experiment was conducted as described above, with the a-terpineol, linalool, 

linalool oxide, and eucalyptol treatments applied before the LPS, and the reverse, with the 

treatments applied after the LPS. For the reverse, the RAW 264.7 cells were seeded in the 96 

well plate and allowed to sit for 16 hr. After 16 hr the media was removed and the LPS media 

was applied. The LPS media was left on the cells for 24 hr. After 24 hr the a-terpineol, linalool, 

linalool oxide, and eucalyptol treatment medias at different concentrations were added. After 1 

hr with the treatment media, the plate was centrifuged, the supernatant transferred to a second 

plate, and the nitric oxide levels measured in the same way as described when treatments were 

applied before LPS.  

6.4 Statistical Analysis 

All statistical analysis was performed using JMPâ Pro Ver. 14 Statistics Software. One-

way analysis of variance for all responses for all treatment dilution combinations before and after 

by each treatment combination was ran in the Fit Y by X platform of JMP Pro Ver. 14. Multiple 

comparisons were performed using the Tukey HSD test.  

Paired t-tests were used in the Matched Pair platform of JMP Pro Ver. 14 to compare the 

before and after LPS results for each treatment.  
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6.5 Results  

6.5.1 Standard Treatments after Applying LPS 

 
Figure 6.1 Average NO concentration produced by RAW 264.7 cells treated with a-terpineol, 
linalool, linalool oxide, and eucalyptol standards after applying LPS. * indicates a statistically 
significant difference from the positive control (CTR w/ LPS). Levels not connected by the same 
letter are significantly different.  
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Table 6.2.1 Means Comparisons of all pairs standard treatments after LPS using Tukey-Kramer 
HSD Confidence Quantile 

 Eucalyptol
-8x 

Control
-0x+ 

Alpha-
Terpineol

-8x 

Linalool
-8x 

Linalool
-4x 

Linalool
-oxide-

8x 

Linalool
-oxide-

4x 
Eucalyptol
-8x -6.658 -6.265 -6.257 -6.204 -6.156 -6.085 -6.022 

Control-
0x+ -6.265 -6.658 -6.649 -6.597 -6.548 -6.478 -6.414 

Alpha-
Terpineol-
8x 

-6.257 -6.649 -6.658 -6.606 -6.557 -6.487 -6.423 

Linalool-
8x -6.204 -6.597 -6.606 -6.658 -6.61 -6.539 -6.476 

Linalool-
4x -6.156 -6.548 -6.557 -6.61 -6.658 -6.588 -6.524 

Linalool-
oxide-8x -6.085 -6.478 -6.487 -6.539 -6.588 -6.658 -6.594 

Linalool-
oxide-4x -6.022 -6.414 -6.423 -6.476 -6.524 -6.594 -6.658 

Eucalyptol
-4x -5.853 -6.246 -6.255 -6.307 -6.356 -6.426 -6.49 

Linalool-
oxide-2x -2.878 -3.271 -3.279 -3.332 -3.38 -3.451 -3.514 

Linalool-
2x -2.608 -3.001 -3.009 -3.062 -3.11 -3.181 -3.244 

Alpha-
Terpineol-
4x 

-2.318 -2.711 -2.72 -2.772 -2.821 -2.891 -2.955 

Eucalyptol
-2x -1.518 -1.91 -1.919 -1.972 -2.02 -2.09 -2.154 

Alpha-
Terpineol-
2x 

5.592 5.199 5.19 5.138 5.089 5.019 4.955 

Control-
0x- 20.552 20.159 20.151 20.098 20.05 19.979 19.916 

Positive values show pairs of means that are statistically significant. Dilution factors of 2x, 4x, 
and 8x shown after standard name have the following concentrations respectively, alpha-
terpineol 1160.3 ppb, 580.2 ppb, 290.1 ppb, linalool-oxide 112.2 ppb, 56.1 ppb, 28.1 ppb, 
eucalyptol 94.5 ppb, 47.3 ppb, 23.7 ppb, linalool 20.7 ppb, 10.3 ppb, 5.2 ppb. 
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Table 6.2.2 Means Comparisons of all pairs standard treatments after LPS using Tukey-Kramer 
HSD Confidence Quantile 

 Eucalypto
l-4x 

Linaloo
l-oxide-

2x 

Linaloo
l-2x 

Alpha-
Terpineo

l-4x 

Eucalypto
l-2x 

Alpha-
Terpineo

l-2x 

Contro
l-0x- 

Eucalypto
l-8x -5.853 -2.878 -2.608 -2.318 -1.518 5.592 20.552 

Control-
0x+ -6.246 -3.271 -3.001 -2.711 -1.91 5.199 20.159 

Alpha-
Terpineol
-8x 

-6.255 -3.279 -3.009 -2.72 -1.919 5.19 20.151 

Linalool-
8x -6.307 -3.332 -3.062 -2.772 -1.972 5.138 20.098 

Linalool-
4x -6.356 -3.38 -3.11 -2.821 -2.02 5.089 20.05 

Linalool-
oxide-8x -6.426 -3.451 -3.181 -2.891 -2.09 5.019 19.979 

Linalool-
oxide-4x -6.49 -3.514 -3.244 -2.955 -2.154 4.955 19.916 

Eucalypto
l-4x -6.658 -3.682 -3.413 -3.123 -2.322 4.787 19.747 

Linalool-
oxide-2x -3.682 -6.658 -6.388 -6.099 -5.298 1.811 16.772 

Linalool-
2x -3.413 -6.388 -6.658 -6.369 -5.568 1.542 16.502 

Alpha-
Terpineol
-4x 

-3.123 -6.099 -6.369 -6.658 -5.857 1.252 16.212 

Eucalypto
l-2x -2.322 -5.298 -5.568 -5.857 -6.658 0.451 15.412 

Alpha-
Terpineol
-2x 

4.787 1.811 1.542 1.252 0.451 -6.658 8.302 

Control-
0x- 19.747 16.772 16.502 16.212 15.412 8.302 -6.658 

Positive values show pairs of means that are statistically significant. Dilution factors of 2x, 4x, 
and 8x shown after standard name have the following concentrations respectively, alpha-
terpineol 1160.3 ppb, 580.2 ppb, 290.1 ppb, linalool-oxide 112.2 ppb, 56.1 ppb, 28.1 ppb, 
eucalyptol 94.5 ppb, 47.3 ppb, 23.7 ppb, linalool 20.7 ppb, 10.3 ppb, 5.2 ppb. 
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6.5.2 Standard Treatments before Applying LPS 

 
Figure 6.2 Average NO concentration produced by RAW 264.7 cells treated with a-terpineol, 
linalool, linalool oxide, and eucalyptol standard treatments before applying LPS. * indicates a 
statistically significant difference from the positive control (CTR w/ LPS). Levels not connected 
by the same letter are significantly different. 
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Table 6.3.1 Means Comparisons of all pairs of standard treatments before LPS using Tukey-
Kramer HSD Confidence Quantile 

 
Linalool

-oxide-
8x 

Control
-0x+ 

Linalool
-8x 

Eucalyptol
-4x 

Eucalyptol
-8x 

Linalool
-4x 

Linalool
-oxide-

4x 

Linalool-
oxide-8x -3.054 -2.924 -2.885 -2.848 -2.759 -2.697 -2.494 

Control-
0x+ -2.924 -3.054 -3.015 -2.978 -2.889 -2.827 -2.624 

Linalool-
8x -2.885 -3.015 -3.054 -3.018 -2.929 -2.867 -2.664 

Eucalyptol
-4x -2.848 -2.978 -3.018 -3.054 -2.965 -2.903 -2.7 

Eucalyptol
-8x -2.759 -2.889 -2.929 -2.965 -3.054 -2.992 -2.789 

Linalool-
4x -2.697 -2.827 -2.867 -2.903 -2.992 -3.054 -2.851 

Linalool-
oxide-4x -2.494 -2.624 -2.664 -2.7 -2.789 -2.851 -3.054 

Alpha-
Terpineol-
8x 

-2.433 -2.563 -2.603 -2.639 -2.728 -2.79 -2.993 

Linalool-
2x 0.347 0.217 0.177 0.141 0.051 -0.011 -0.213 

Linalool-
oxide-2x 0.413 0.283 0.243 0.207 0.118 0.056 -0.147 

Eucalyptol
-2x 0.964 0.834 0.794 0.758 0.668 0.606 0.404 

Alpha-
Terpineol-
4x 

1.342 1.213 1.173 1.137 1.047 0.985 0.783 

Alpha-
Terpineol-
2x 

3.667 3.538 3.498 3.462 3.372 3.31 3.108 

Control-
0x- 12.573 12.443 12.403 12.367 12.278 12.216 12.013 

Positive values show pairs of means that are statistically significant. Dilution factors of 2x, 4x, 
and 8x shown after standard name have the following concentrations respectively, alpha-
terpineol 1160.3 ppb, 580.2 ppb, 290.1 ppb, linalool-oxide 112.2 ppb, 56.1 ppb, 28.1 ppb, 
eucalyptol 94.5 ppb, 47.3 ppb, 23.7 ppb, linalool 20.7 ppb, 10.3 ppb, 5.2 ppb.  
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Table 6.3.2 Means Comparisons of all pairs of standard treatments before LPS using Tukey-
Kramer HSD Confidence Quantile. 

 
Alpha-

Terpineo
l-8x 

Linaloo
l-2x 

Linaloo
l-oxide-

2x 

Eucalypto
l-2x 

Alpha-
Terpineo

l-4x 

Alpha-
Terpineo

l-2x 

Control
-0x- 

Linalool-
oxide-8x -2.433 0.347 0.413 0.964 1.342 3.667 12.573 

Control-
0x+ -2.563 0.217 0.283 0.834 1.213 3.538 12.443 

Linalool-
8x -2.603 0.177 0.243 0.794 1.173 3.498 12.403 

Eucalypto
l-4x -2.639 0.141 0.207 0.758 1.137 3.462 12.367 

Eucalypto
l-8x -2.728 0.051 0.118 0.668 1.047 3.372 12.278 

Linalool-
4x -2.79 -0.011 0.056 0.606 0.985 3.31 12.216 

Linalool-
oxide-4x -2.993 -0.213 -0.147 0.404 0.783 3.108 12.013 

Alpha-
Terpineol-
8x 

-3.054 -0.275 -0.208 0.342 0.721 3.046 11.952 

Linalool-
2x -0.275 -3.054 -2.988 -2.437 -2.058 0.267 9.172 

Linalool-
oxide-2x -0.208 -2.988 -3.054 -2.503 -2.125 0.2 9.106 

Eucalypto
l-2x 0.342 -2.437 -2.503 -3.054 -2.675 -0.35 8.555 

Alpha-
Terpineol-
4x 

0.721 -2.058 -2.125 -2.675 -3.054 -0.729 8.176 

Alpha-
Terpineol-
2x 

3.046 0.267 0.2 -0.35 -0.729 -3.054 5.851 

Control-
0x- 11.952 9.172 9.106 8.555 8.176 5.851 -3.054 

Positive values show pairs of means that are statistically significant. Dilution factors of 2x, 4x, 
and 8x shown after standard name have the following concentrations respectively, alpha-
terpineol 1160.3 ppb, 580.2 ppb, 290.1 ppb, linalool-oxide 112.2 ppb, 56.1 ppb, 28.1 ppb, 
eucalyptol 94.5 ppb, 47.3 ppb, 23.7 ppb, linalool 20.7 ppb, 10.3 ppb, 5.2 ppb. 
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6.5.3 Analysis of Treating Before vs. Treating After Applying LPS 

  

Control-0x- Control-0x+ 

Figure 6.3 Comparison of NO levels of controls in experiments before and after LPS. Conc_A = 
treatment after LPS, NO Conc_B = treatment before LPS. 
 
 

   
Alpha-Terpineol 1160.3 ppb Alpha-Terpineol 580.2 ppb Alpha-Terpineol 290.1 ppb 

Figure 6.4 Comparison of NO levels treating with alpha-terpineol before and after LPS. 
NO_Conc_A = treatment after LPS, NO Conc_B = treatment before LPS. 
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Eucalyptol 94.5 ppb Eucalyptol 47.3 ppb Eucalyptol 23.7 ppb 

Figure 6.5 Comparison of NO levels treating with eucalyptol before and after LPS. NO_Conc_A 
= treatment after LPS, NO Conc_B = treatment before LPS. 
 
 

   

Linalool 20.7 ppb Linalool 10.3 ppb Linalool 5.2 ppb 

Figure 6.6 Comparison of NO levels treating with linalool before and after LPS. NO_Conc_A = 
treatment after LPS, NO Conc_B = treatment before LPS. 
 

   
Linalool-oxide 112.2 ppb Linalool-oxide 56.1 ppb Linalool-oxide 28.1 ppb 

Figure 6.7 Comparison of NO levels treating with linalool-oxide before and after LPS. 
NO_Conc_A = treatment after LPS, NO Conc_B = treatment before LPS. 
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6.6 Discussion 

 Results from the individual volatile standard treatment NO assays show potential for a-

terpineol, linalool, linalool oxide, and eucalyptol to act individually as anti-inflammatory agents, 

especially a-terpineol. The hypothesis of this secondary objective was that each of the individual 

volatile standards would have an anti-inflammatory effect compared to the positive control. The 

results of the volatile standard treatment NO assays will be discussed in two parts, first with the 

volatile standard treatments applied after inflammation was induced by LPS. Figure 6.1 along 

with the data listed in Table 6.2.1 and Table 6.2.2 show that with application of the volatile 

standard treatments after applying LPS compared to the positive control, a-terpineol at 1160.3 

ppb was the only treatment that exhibited a statistically significant lower amount of NO with a p-

value of <.0001, p-values of all treatments compared to the positive control are listed in 

Appendix B. These results are likely due to the dilutions of a-terpineol from the starting 

concentration being the highest of all the standard compounds because it was found to have the 

highest individual concentration in the cranberry total volatile extract.  

 Second, the results of the volatile standard treatments of the cells before applying LPS 

supported the hypothesis that each of the individual volatile compounds would have an anti-

inflammatory effect compared to the positive control. Figure 6.2 and with the data listed in Table 

6.3.1 and Table 6.3.2 show that with application of volatile standard treatments before applying 

LPS compared to the positive control, i.e. looking at a preventative effect, NO levels decreased 

after treatment by a-terpineol at 1160.3 ppb, a-terpineol at 580.2 ppb, linalool at 20.7 ppb, 

linalool-oxide at 112.2 ppb, and eucalyptol at 94.5 ppb. A relevant dose response is also shown 

in the results when the experiment was conducted in this manner. As the dilution factor of the 

volatile standard treatments increased, the significance of the NO levels compared to the positive 
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control was reduced, showing that the more concentrated treatments were more effective in 

preventing the cells from producing as much NO when inflammation was induced by LPS after 

treatment. The a-terpineol 1160.3 ppb exhibited significantly lower NO levels that all of the 

other treatments that were statistically significant from the positive control, and the a-terpineol 

580.2 ppb was not significantly different from linalool at 20.7 ppb, linalool-oxide at 112.2 ppb, 

or eucalyptol at 94.5 ppb, indicating that all of those concentrations of volatile standard 

treatments had the same preventative anti-inflammatory capabilities. P-values of all treatments 

compared to the positive control are listed in Appendix B, with the significant values as follows: 

a-terpineol 1160.3 ppb with a p-value of <.0001, a-terpineol 580.2 ppb with a p-value of 0.0003, 

eucalyptol 94.5 ppb with a p-value of 0.0019, linalool-oxide 112.2 ppb with a p-value of 0.0184, 

and linalool 20.7 ppb with a p-value of 0.0235.  

Upon statistical comparison of the two treatment strategies, applying the treatments 

before inducing inflammation with LPS versus applying the treatments after inducing 

inflammation with LPS, applying the treatments before inducing inflammation with LPS resulted 

in lower NO levels in all cases (Figures 6.3 - 6.7). This indicated that the volatile standard 

treatments worked better as a preventative treatment for inflammation rather than a treatment for 

pre-existing inflammation.  

 The standard a-terpineol exhibited the most effective anti-inflammatory effects on the 

RAW 264.7 cells in this anti-inflammatory assay, being the only individual standard to work as 

treatment to pre-existing NO and as a treatment to prevent NO production and lowering NO 

levels compared to the control by 43.0% when applied after LPS and 43.3% when applied before 

LPS. There is no other current data reporting the anti-inflammatory effects of a-terpineol on 

RAW 264.7 cells for comparison, however a-terpineol has been shown to have anti-
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inflammatory effects on other cell lines. In a study looking at epithelial buccal cells, a-terpineol 

from orange juice was found to have an anti-inflammatory effect by reducing IL-6 production by 

inhibiting the gene expression of the IL-6 receptor (Held et al. 2007). In another study on U937 

human macrophage cells looking at tea tree oil steam distilled from Melaleuca alternifolia that 

contains a-terpineol, the inflammation markers IL-b1, IL-6, and IL-10 induced by LPS were 

found to be significantly reduced by treatment of the cells with the tea tree oil, and the 

mechanism for the inhibition of the inflammatory markers was that the tea tree oil extract 

components, specifically noted as a-terpineol and terpinen-4-ol, interfered with the NF-kB, p38, 

extracellular signal-regulated kinase (ERK), or mitogen-activated protein kinase (MAPK) 

pathways (Nogueira et al. 2014). In the present study, it is possible that these same pathways 

were inhibited upon treatment with a-terpineol, but the differences in cell lines and source of the 

a-terpineol must be considered upon comparison.  

 The standard eucalyptol exhibited an anti-inflammatory effect in the present study only 

when applied to the RAW 264.7 cells as a treatment before inducing inflammation with LPS, 

lowering NO levels by 25.4% compared to the positive control. There is no other current data 

reporting the anti-inflammatory effects of eucalyptol on RAW 264.7 cells for comparison, 

however eucalyptol has been shown to have anti-inflammatory effects. In an in vivo study on 

mice, eucalyptol was found to inhibit the production of TNF-a, IL-b1, and IL-6 induced by 

injection of complete Freund’s adjuvants, CFA, by a mechanism dealing with the transient 

receptor potential cation channel subfamily M member 8, TRPM8, (Caceres et al. 2017). In 

another study by Caceres Bustos et al. (2016), working on lung cells of mice, LPS was used to 

induce inflammation, and after 24 hr, the lungs and bronchoalveolar lavage of eucalyptol treated 

and untreated TRPM8 knockout and TRPM8 wild-type were taken to be analyzed and found that 
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only the TRPM8 wild-type mice exhibited anti-inflammatory effects, showing that TRPM8 was 

essential for eucalyptol to exhibit its anti-inflammatory capabilities. In another study involving 

eucalyptol and inflammation on a different cell type, but similar time frame and induction of 

inflammation to the present study, mice were intraperitoneally injected with eucalyptol one hr 

before being challenged with LPS and compared to controls. The eucalyptol injected mice had 

lower levels of TNF-a, IL-6, NO, and NF-kB (Kim et al. 2015). These studies support the data 

in the present study that eucalyptol works as a suppressor of anti-inflammatory markers when 

used as a pre-treatment to induced inflammation, and also that the mechanism for the anti-

inflammatory properties of eucalyptol in this study could have involved TRPM8, however 

comparisons between the studies must be done with caution due to the use of different cell lines. 

Confirmation of the mechanisms and suppression of other anti-inflammatory markers besides 

NO on RAW 264.7 cells warrants future research.  

 The standard linalool-oxide exhibited an anti-inflammatory effect in the present study 

only when applied to the RAW 264.7 cells as a treatment before inducing inflammation with 

LPS, lowering NO levels by 21.8% compared to the positive control. There is no other current 

data reporting the anti-inflammatory effects of linalool-oxide for comparison, therefore the 

mechanisms and the ability to suppress other anti-inflammatory markers in RAW 264.7 cells 

warrants future research.  

 The standard linalool exhibited an anti-inflammatory effect in the present study only 

when applied to the RAW 264.7 cells as a treatment before inducing inflammation with LPS, 

lowering NO levels by 21.4% compared to the positive control. There is one other current study 

reporting the anti-inflammatory effects of linalool on RAW 264.7 cells for comparison. Huo et 

al. (2013) investigated the preventative effect of linalool in vitro on RAW 264.7 cells and in vivo 
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on a lung injury model and found that linalool lowered the production of TNF-a, and IL-6 in 

vitro and in vivo compared to controls. This study looked at different biological markers of 

inflammation than the present study but confirms the preventative effect of linalool on RAW 

264.7 cells as a treatment for inflammation. There are other studies that have looked at linalool 

and the anti-inflammatory effect. In a study evaluating the anti-inflammatory effects of linalool 

from Cinnamomum osmophloeum Kanehira, a Taiwan native plant, mice were administered 

linalool at 2.6 and 5.2 mg per kg of body weight before injected with endotoxin to induce 

inflammation, and the mice treated with linalool were found to have decreased levels of the 

inflammatory markers peripheral nitrate and nitrite, IL-1b, IL-18, TNF-a, and IFN-l (Lee et al. 

2018) Contrary to the anti-inflammatory effect found in the present study and other current 

studies, in the study by Held et al. (2007) linalool identified in orange juice was found to have no 

effect on the production of the pro-inflammatory cytokine IL-6, and was found to have no 

inhibition of gene expression of the IL-6 receptor in epithelial buccal cells and overall no anti-

inflammatory effect. However, the results from this study were found using linalool isolated 

from orange juice and evaluated on a different cell line, which could have led to the differing 

results. The mechanisms by which linalool acts as an anti-inflammatory treatment on RAW 

264.7 cells has yet to be determined and warrants further research.  

 The NO assay used for experimentation in the present study had some limitations. First, it 

is hard to compare the effects of the treatments of a-terpineol, linalool, linalool oxide, and 

eucalyptol directly with each other because they were applied as treatments on the RAW 264.7 

cells at different concentrations. However, different concentrations were necessary to keep 

consistent with the rest of the study and to be as representative as possible of the concentrations 

of these compounds found in a fresh cranberry. Second, it is hard to determine if the results of 
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this study would translate in vivo in humans, because a mouse cell line was used and the ability 

of a-terpineol, linalool, linalool oxide, and eucalyptol to get into macrophages in humans has not 

been determined and warrants future research. Third, the exact mechanisms by which a-

terpineol, linalool, linalool oxide, and eucalyptol provided their respective anti-inflammatory 

effects in this study were not tested, and other experimental assays along with the NO assay 

could have been conducted to determine levels of other inflammatory markers.  

Chapter 7: Final Conclusions 

 Three objectives were addressed in the present study, number one was to extract, quantify 

and identify the volatile and phenolic compounds in cranberries. Number two was to compare 

the anti-inflammatory effect of the volatile and phenolic extracts from cranberries on RAW 

264.7 mouse macrophage cells, and number three was to compare the anti-inflammatory effect of 

four individual, more abundant volatile compounds from cranberries, α-terpineol, eucalyptol, 

linalool oxide, and linalool, on RAW 264.7 mouse macrophage cells. 

 For objective number one, the Folin-Ciocalteu assay and HPLC were used. The total 

phenolic content of the cranberries in this study was 1271 mg GAE equiv. per kg fresh weight. 

Using HPLC, the concentration of total anthocyanins was found to be 936.6 ± 8.0 mg ACY-3-glu 

equiv. per kg of fresh weight, the concentration of total flavonols was found to be 84.4 ± 1.0 mg 

rutin equiv. per kg of fresh weight, and the concentration of total hydroxycinnamic acids was 

found to be 14.7 ± 0.0 mg chlorogenic acid equiv. per kg of fresh weight. The total volatile 

content of the cranberries used in this study was 3551.5 ppb. Using GC-MS, 25 individual 

volatile compounds were identified, with the more prevalent individual compounds being a-

terpineol at 2321 ppb, linalool oxide at 224 ppb, eucalyptol at 189 ppb, and linalool at 41 ppb, 



 
 

 
 

63 

which agreed with other cranberry studies finding a-terpineol to make up the majority of the 

volatile fraction of cranberries. 

 For objective number two, the Griess Reagent System assay was used to measure NO 

levels produced in vitro by RAW 264.7 cells when treated with volatile and phenolic extracts 

before and after inducing inflammation using LPS. When the cells were treated with phenolic 

and volatile extracts after inducing inflammation with LPS, the phenolic extract treatments and 

the 1.8 ppm volatile extract treatment showed statistically significant, lower NO levels compared 

to the positive control. When the cells were treated with phenolic and volatile extracts before 

inducing inflammation with LPS, the 635.7 ppm and 317.8 ppm phenolic extract treatments and 

1.8 ppm and 0.9 ppm volatile extract treatments showed statistically significant, lower NO levels 

compared to the positive control. Treating the cells with the phenolic and volatile extracts before 

inducing inflammation with LPS resulted in lower levels of NO in all treatments. Results 

indicate that the total phenolic and volatile extracts from a cranberry act as an effective preventer 

of inflammation and an effective treatment for pre-existing inflammation.  

 For the last objective, the Griess Reagent System assay was used to measure NO levels 

produced in vitro by RAW 264.7 cells when treated with a-terpineol, linalool, linalool oxide, 

and eucalyptol before and after inducing inflammation using LPS. When the cells were treated 

with a-terpineol, linalool, linalool oxide, and eucalyptol after inducing inflammation with LPS, 

only the 1160.3 ppb a-terpineol resulted in statistically significant, lower NO levels compared to 

the positive control. However, when the cells were treated before LPS, a-terpineol 1160.3 ppb 

and 580.2 ppb, linalool 20.7 ppb, linalool oxide112.2 ppb, and eucalyptol 94.5 ppb all showed 

statistically significant lower NO levels than the positive control.  
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 Future research is warranted to determine the mechanisms by which all treatments in this 

study exhibited their respective anti-inflammatory effects. Uncovering the mechanisms by which 

these treatments lower inflammation could aid in the treatment of diseases involving 

inflammation such as obesity and periodontal disease. Future research is also necessary to 

determine the bioavailability of cranberry volatile compounds, because as of now it is unknown 

whether they can reach macrophage cells in humans at high enough doses to elicit the effects 

seen in this in vitro study. Other recommendations for future research would be to re-run the 

current study and measure additional inflammatory markers such as IL-6, TNF-a, and C-reactive 

protein, and to investigate the possible synergistic effects of combinations of the volatile 

standards, volatile extract, and phenolic extract. 

 In final summary, the most relevant finding of this study is that the volatile compounds 

extracted from cranberries have a similar anti-inflammatory effect to the phenolic compounds at 

a 353x lower concentration, whereas all previous studies have attributed the health benefits of 

cranberries to phenolic compounds. These results provide exciting information for future 

prevention and treatment of inflammation, as cranberries are low cost and easy to obtain in the 

United States. Taking into consideration that all fruits and vegetables contain some level of these 

volatile compounds, there are vast possibilities for future research on plant-based treatments for 

inflammation. 

 

 

 

 

 
 



 
 

 
 

65 

Literature Cited 

Abeywickrama, G., Debnath, S. C., Ambigaipalan, P., & Shahidi, F. (2016). Phenolics of 
selected cranberry genotypes (vaccinium macrocarpon ait.) and their antioxidant efficacy. 
Journal of Agricultural and Food Chemistry, 64(49), 9342-9351. 
doi:10.1021/acs.jafc.6b04291  

Adam, A., Crespy, V., Levrat-Verny, M., Leenhardt, F., Leuillet, M., Demigne, C., & Remesy, 
C. (2002). The bioavailability of ferulic acid is governed primarily by the food matrix rather 
than its metabolism in intestine and liver in rats. Journal of Nutrition, 132, 1962-1968.  

Akkari, H., Hajaji, S., B’chir, F., Rekik, M., & Gharbi, M. (2016). Correlation of polyphenolic 
content with radical-scavenging capacity and anthelmintic effects of rubus ulmifolius 
(rosaceae) against haemonchus contortus. Veterinary Parasitology, 221, 46-53. 
doi:10.1016/j.vetpar.2016.03.007  

Anhe, F. F., Roy, D., Pilon, G., Dudonne, S., Matamoros, S., Varin, T. V., . . . Marette, A. 
(2015). A polyphnol-rich cranberry extract protects from diet-induced obesity, insulin 
resistance and intestinal inflammation in association with increased akkermansia spp. 
population in the gut microbiota of mice. Gut Microbiota, 64, 872-883.  

Banerjee, M., Tripathi, L. M., Srivastava, V. M. L., Puri, A., & Shukla, R. (2003). Modulation of 
inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation 
in rat. Immunopharmacology and Immunotoxicology, 25(2), 213-224. doi:10.1081/IPH-
120020471  

Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. 4th ed. new york, new york, 
springer. Food Chemistry,  

Beveridge, T., Loubert, E., & Harrison, J. E.Simple measurement of phenolic esters in plant cell 
walls. Food Research International, 33(9), 775-783.  

Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and 
communication during agrobacterium and rhizobium infection. Molecular Plant Pathology, 
11(5), 705. doi:10.1111/j.1364-3703.2010.00625.x  

Bodet, C. C., Piche, M., Chandad, F., & Grenier, D. (2006). Inhibition of periodontopathogen-
derived proteolytic enzymes by a high- molecular-weight fraction isolated from cranberry. 
Journal of Antimicrobial Chemotherapy, 57, 685-690.  

Bodet, C., Chandad, F., & Grenier, D. (2006). Anti-inflammatory activity of a high-molecular-
weight cranberry fraction on macrophages stimulated by lipopolysaccharides from 
periodontopathogens. Journal of Dental Research, 85(3), 235-239. 
doi:10.1177/154405910608500306  



 
 

 
 

66 

Bootz, F., & Neri, D. (2016). Immunocytokines: A novel class of products for the treatment of 
chronic inflammation and autoimmune conditions. Drug Discovery Today, 21(1), 180-189. 
doi:10.1016/j.drudis.2015.10.012  

Boudet, A. (2007). Evolution and current status of research in phenolic compounds. 
Phytochemistry, 68(22-24), 2722-2735.  

Caceres, A. I., Liu, B., Jabba, S. V., Achanta, S., Morris, J. B., & Jordt, S. (2017). Transient 
receptor potential cation channel subfamily M member 8 channels mediate the anti-
inflammatory effects of eucalyptol: Target of eucalyptol's anti-inflammatory effects. British 
Journal of Pharmacology, 174(9), 867-879. doi:10.1111/bph.13760  

Carbone, F., & Montecucco, F. (2015). Inflammation in arterial diseases. International Journal 
of the International Union of Biochemistry and Molecular Biology Life, 67(1), 18-28.  

Crespy, V., Morand, C., Besson, C., Manach, C., Demingne, C., & Remesy, C. (2002). 
Quercetin, but not its glycosides, is absorbed from the rat stomach. Journal of Agriculture 
and Food Chemistry, 50, 618-621.  

Croteau, R., & Fagerson, I. (1968). Major volatile components of the juice of american 
cranberry. Journal of Food Science, 33, 386-389.  

de Caceres Bustos, A., Liu, B., Jabba, S., Morris, J., & Jordt, S. (2016). The anti-inflammatory 
effects of eucalyptol in a mouse model of LPS-induced pulmonary inflammation are 
mediated by TRPM8. European Respiratory Journal, 48(suppl 60), OA4541. 
doi:10.1183/13993003.congress-2016.OA4541  

Duthie, S. J., Jenkinson, A. M., Crozier, A., Mullen, W., Pirie, L., Kyle, J., . . . Duthie, G. G. 
(2006). The effects of cranberry juice consumption on antioxidant status and biomarkers 
relating to heart disease and cancer in healthy human volunteers. European Journal of 
Nutrition, 45(2), 113-122. doi:10.1007/s00394-005-0572-9  

El Hadi, M. A., Zhang, F. J., Wu, F. F., Zhou, C. H., & Tao, J. (2013). Advances in fruit aroma 
volatile research. Molecules, 18, 8200-8229.  

Feghali, K., Feldman, M., La, V. D., Santos, J., & Grenier, D. (2012). Cranberry 
proanthocyanidins: Natural weapons against periodontal diseases. Journal of Agricultural 
and Food Chemistry, 60(23), 5728-5735. doi:10.1021/jf203304v  

Floegel, A., Kim, D., Chung, S., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH 
assays to measure antioxidant capacity in popular antioxidant-rich US foods doi:https://0-
doi-org.library.uark.edu/10.1016/j.jfca.2011.01.008  

Gary, T. (1999). Flavour chemistry of vegetables. Flavour Chemistry Thirty Years of Progress, 
New York: Kluwer Academic Plenum Publishers,  



 
 

 
 

67 

Ghulam, M., Sabiha, K., Akram, M. R., Khan, S. A., & Saira, A. (2014). Caffeic acid phenethyl 
ester and therapeutic potentials. BioMed Research International, 2014(145342), 1-9.  

Giugliano, D., Ceriello, A., & Esposito, K. (2006). The effects of diet on inflammation - 
emphasis on the metabolic syndrome. Journal of the American College of Cardiology, 
48(4), 677-685. doi:10.1016/j.jacc.2006.03.052  

Glisan, S., Ryan, C., Neilson, A., & Lambert, J. (2016). Cranberry extract attenuates hepatic 
inflammation in high-fat-fed obese mice. Journal of Nutritional Biochemistry, 37, 60-66.  

Gregoire, S., Singh, A. P., Vorsa, N., & Koo, H. (2007). Influence of cranberry phenolics on 
glucan synthesis by glucosyltransferases and streptococcus mutans acidogenicity. Journal of 
Applied Microbiology, 103(5), 1960. doi:10.1111/j.1365-2672.2007.03441.x  

Heim, K. C., Angers, P., Léonhart, S., & Ritz, B. W. (2012). Anti-inflammatory and neuroactive 
properties of selected fruit extracts. Journal of Medicinal Food, 15(9), 851.  

Held, S., Schieberle, P., & Somoza, V. (2007). Characterization of alpha-terpineol as an anti-
inflammatory component of orange juice by in vitro studies using oral buccal cells. Journal 
of Agricultural and Food Chemistry, 55(20), 8040-8046. doi:10.1021/jf071691m  

Hirvi, T., Honkanen, E., & Pyysalo, T. (1981). The aroma of cranberries. Lebensmittel-
Untersuchung Und-Forschung, 172, 365-367.  

Hollman, P., de Vries, J., Van, L., S., Mengelers, M., & Katan, M. (1995). Absorption of dietary 
quercetin glycosides and quercetin in healthy ileostomy volunteers. American Journal of 
Clinical Nutrition, 62, 1276-1282.  

Huo, M., MD, Cui, X., BSc, Xue, J., MD, Chi, G., PhD, Gao, R., BSc, Deng, X., PhD, . . . Wang, 
D., PhD. (2013). Anti-inflammatory effects of linalool in RAW 264.7 macrophages and 
lipopolysaccharide-induced lung injury model. Journal of Surgical Research, 180(1), e47-
e54. doi:10.1016/j.jss.2012.10.050  

Kagoo, N., & Darling, C. (2014). A study of the in vitro free radical-scavenging property of 
hedyotis diffusa using nitric oxide assay. International Journal of Pharmacological 
Research, 4(3), 138-141. doi:10.7439/ijpr.v4i3.118  

Kalogeropoulos, A., Georgiopoulou, V., Psaty, B. M., Rodondi, N., Smith, A. L., Harrison, D. 
G., . . . Health ABC Study Investigators. (2010). Inflammatory markers and incident heart 
failure risk in older adults: The health ABC (health, aging, and body composition) study. 
Journal of the American College of Cardiology, 55(19), 2129. 
doi:10.1016/j.jacc.2009.12.045  

Karakaya, S. (2004). Bioavailability of phenolic compounds. Critical Reviews in Food Science 
and Nutrition, 44(6), 453-464. doi:10.1080/10408690490886683  



 
 

 
 

68 

Khosravi, R., Ka, K., Huang, T., Khalili, S., Nguyen, B. H., Nicolau, B., & Tran, S. D. (2013). 
Tumor necrosis factor-alpha and interluekin-6: Potential interorgan inflammatory mediators 
contributing to destructive periodontal disease in obesity or metabolic syndrome. Mediators 
of Inflammation, 2013, 1-6.  

Kim, K. Y., Lee, H. S., & Seol, G. H. (2015). Eucalyptol suppresses matrix metalloproteinase-9 
expression through an extracellular signal-regulated kinase-dependent nuclear factor-kappa 
B pathway to exert anti-inflammatory effects in an acute lung inflammation model. The 
Journal of Pharmacy and Pharmacology, 67(8), 1066.  

Klöting, N., & Blüher, M. (2014). Adipocyte dysfunction, inflammation and metabolic 
syndrome. Reviews in Endocrine and Metabolic Disorders, 15(4), 277-287. 
doi:10.1007/s11154-014-9301-0  

Kohlert, C., Van Rensen, I., Marz, R., Schindler, G., Graefe, E. U., & Veit, M. (2000). 
Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. 
Planta Med, 66, 495-505.  

Koroleva, O., Torkova, A., Nikolaev, I., Khrameeva, E., Fedorova, T., Tsentalovich, M., & 
Amarowicz, R. (2014). Evaluation of the antiradical properties of phenolic acids. 
International Journal of Molecular Science, 15(9), 16351-16380.  

Kresty, L. A., Howell, A. B., & Baird, M. (2011). Cranberry proanthocyanidins mediate growth 
arrest of lung cancer cells through modulation of gene expression and rapid induction of 
apoptosis. Molecules (Basel, Switzerland), 16(3), 2375-2390. 
doi:10.3390/molecules16032375  

Kumar, R., Clermont, G., Vodovotz, Y., & Chow, C. (2004). The dynamics of acute 
inflammation. Journal of Theoretical Biology, 230(2), 145-155.  

La, V. D., Howell, A. B., & Grenier, D. (2010). Anti-porphyromonas gingivalis and anti-
inflammatory activities of A-type cranberry proanthocyanidins. Antimicrobial Agents and 
Chemotherapy, 54(5), 1778-1784. doi:10.1128/AAC.01432-09  

La, V. D., Howell, A. B., & Grenier, D. (2010). Anti-porphyromonas gingivalis and anti-
inflammatory activities of A-type cranberry proanthocyanidins. Antimicrobial Agents and 
Chemotherapy, 54(5), 1778-1784. doi:10.1128/AAC.01432-09  

Lee, H., Lee, I. S., & Choue, R. (2013). Obesity, inflammation, and diet. Pediatric 
Gastroenterology, Hepatology, and Nutrition, 16(3), 143-152.  

Lee, S., Wang, S., Li, C., & Liu, C. (2018). Anti-inflammatory effect of cinnamaldehyde and 
linalool from the leaf essential oil of cinnamomum osmophloeum kanehira in endotoxin-
induced mice. Journal of Food and Drug Analysis, 26(1), 211-220. 
doi:10.1016/j.jfda.2017.03.006  



 
 

 
 

69 

Levy, B., & Serhan, C. (2014). Resolution of acutre inflammation in the lung. Annual Review of 
Physiology, 76, 467-492.  

Lichtenthaler, H. K. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid 
biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 
47-65.  

Liddiard, K., Rosas, M., Davies, L., Jones, S., & Taylor, P. (2011). Macrophage heterogeneity 
and acute inflammation. European Journal of Immunology, 41(9), 2503-2508.  

Lucas, K., & Maes, M. (2013). Role of the toll like receptor (TLR) radical cycle in chronic 
inflammation: Possible treatments targeting the TLR4 pathway. Molecular Neurobiology, 
48(1), 190-204. doi:10.1007/s12035-013-8425-7  

Mathison, B. D., Kimble, L. L., Kaspar, K. L., Khoo, C., & Chew, B. P. (2014). Consumption of 
cranberry beverage improved endogenous antioxidant status and protected against bacteria 
adhesion in healthy humans: A randomized controlled trial. Nutrition Research, 34(5), 420-
427. doi:10.1016/j.nutres.2014.03.006  

McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The Plant Cell Online, 7, 1015-
1026.  

Nathan, C., & Ding, A. (2010). Nonresolving inflammation. Cell, 140(6), 871-882.  

Newman, J. D., & Chappell, J. (1999). Isoprenoid biosynthesis in plants: Carbon partitioning 
within the cytoplasmic pathway. Critical Reviews in Biochemistry and Molecular Biology, 
34, 95-106.  

Nicklas, B. J., You, T., & Pahor, M. (2005). Behavioural treatments for chronic systemic 
inflammation: Effects of dietary weight loss and excercise training. Canadian Medical 
Association Journal, 172(9), 1199-1209.  

Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on 
human health. Nutrition, 30, 134-144.  

Nogueira, M. N. M., Aquino, S. G., Rossa Junior, C., & Spolidorio, D. M. P. (2014). Terpinen-4-
ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-
10 on human macrophages. Inflammation Research, 63(9), 769-778. doi:10.1007/s00011-
014-0749-x  

Nowak, D., Goslinski, M., & Szwengiel, A. (2016). Multidimensional comparative analysis of 
phenolic compounds in organic juices with high antioxidant capacity. Journal of the Science 
of Food and Agriculture, 97, 2657-2663.  

 



 
 

 
 

70 

Nowak, D., Gośliński, M., & Szwengiel, A. (2017). Multidimensional comparative analysis of 
phenolic compounds in organic juices with high antioxidant capacity: Phenolic compounds 
of organic juices. Journal of the Science of Food and Agriculture, 97(8), 2657-2663. 
doi:10.1002/jsfa.8089  

Ogden, C. L., Carroll, M. D., Fryar, C. D., & Flegal, K. M. (2015). Prevalence of obesity among 
adults and youth: United states, 2011-2014. National Center for Health Statistics, 219  

O'Sullivan, S. M., Woods, J. A., & O'Brien, N. M. (2004). Use of tween 40 and tween 80 to 
deliver a mixture of phytochemicals to human colonic adenocarcinoma cell (CaCo-2) 
monolayers. British Journal of Nutrition, 91(5), 757-764. doi:10.1079/BJN20041094  

Pappas, E., & Scheich, K. M. (2009). Phytochemicals of cranberries and cranberry products: 
Characterization, potential health effects, and processing stability. Critical Reviews in Food 
Science and Nutrition, 49, 741-781.  

Pare, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. 
Plant Physiology, 121, 325-332.  

Parr, A. J., Ng, A., & Waldron, K. W. (1997). Ester-linked phenolic components of carrot cell 
walls. Journal of Agriculture and Food Chemistry, 45(7), 2468-2471.  

Payne, M. J., Hurst, W. J., Stuart, D. A., Ou, B., Fan, E., Ji, H., & Kou, Y. (2010). Determination 
of total procyanidins in selected chocolate and confectionery products using DMAC. 
Journal of AOAC International, 93(1), 89.  

Prior, R. L., Lazarus, S. A., Cao, G., Muccitelli, H., & Hammerstone, J. F. (2001). Identification 
of procyanidins and anthocyanins in blueberries and cranberries (vaccinium spp.) using 
high-performance liquid chromatography/mass spectrometry. Journal of Agricultural and 
Food Chemistry, 49(3), 1270-1276. doi:10.1021/jf001211q  

Ross, J., & Kasum, C. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. 
Annual Review of Nutrition, 22, 19-34.  

Salminen, A., Lehtonen, M., Suuronen, T., Kaarniranta, K., & Huuskonen, J. (2008). Terpenoids: 
Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. 
Cellular and Molecular Life Sciences, 65(19), 2979-2999. doi:10.1007/s00018-008-8103-5  

Sanchez-patan, F., Bartolome, B., Martin-Alvarez, P. J., Anderson, M., Howell, A., & Monagas, 
M. (2012). Comprehensive assesment of the quality of commercial cranberry products. 
phenolic characterization and in vitro bioactivity. Journal of Agriculture and Food 
Chemistry, 60(13), 3396-3408.  

Sanz, C., Olias, J. M., & Perez, A. G. (1997). Aroma biochemistry of fruits and vegetables. 
Photochemistry of Fruit and Vegetables, Oxford University Press Inc., 125-155.  



 
 

 
 

71 

Seeram, N. P., Adams, L. S., Zhang, Y., Lee, R., Sand, D., Scheuller, H., & Heber, D. (2006). 
Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts 
inhibit gorwth and stimulate apoptosis of human cancer cells in vitro. Journal of Agriculture 
and Food Chemistry, 54, 9329-9339.  

Soto, M., Falqué, E., & Domínguez, H. (2015). Relevance of natural phenolics from grape and 
derivative products in the formulation of cosmetics. Cosmetics, 2(3), 259-276. 
doi:10.3390/cosmetics2030259  

Steinberg, D., Feldman, M., Ofek, I., & Weiss, E. I. (2005). Cranberry high molecular weight 
constituents promote streptococcus sobrinus desorption from artificial biofilm. International 
Journal of Antimicrobial Agents, (25), 247-251.  

Sultana, N., & Saify, Z. S. (2012). Naturally occurring and synthetic agents as potential anti-
inflammatory and immunomodulants. Anti-Inflammatory and Anti-Allergy Agents in 
Medicinal Chemistry, 11, 3-19.  

Tucker, G. A. (1993). Introduction. Biochemistry of Fruit Ripening, Chapman & Hall: London, 
UK, 1-51.  

Wallace, T. C., & Giusti, M. M. (2010). Extraction and Normal-Phase HPLC-Fluorescence-
Electrospray MS characterization and quantification of procyanidins in cranberry extracts. 
Journal of Food Science, 75(8), C690-C696. doi:10.1111/j.1750-3841.2010.01799.x  

Wang, C., & Zuo, Y. (2011). Ultrasound-assisted hydrolysis and gas chromatography-mass 
spectrometric determination of phenolic compounds in cranberry products. Food Chemistry, 
128, 562-568.  

Wang, S. Y., & Stretch, A. W. (2001). Antioxidant capacity in cranberry is influenced by 
cultivar and storage temperature. Journal of Agriculture and Food Chemistry, 49, 969-974.  

Weiss, E. I., Lev-Dor, R., Kashamn, Y., Goldhar, J., Sharon, N., & Ofek, I. (1998). Inhibiting 
interspecies coaggregation of plaque bacteria with a cranberry juice constituent. Journal of 
the American Dental Association, 129, 1719-1723.  

Weiss, E. L., Lev-Dor, R., Sharon, N., & Ofek, I. (2002). Inhibitory effect of a high-molecular-
weight constituent of cranberry on adhesion of oral bacteria. Critical Reviews in Food 
Science and Nutrition, 42, 285-292.  

Weiss, U. (2008). Inflammation. Nature, 454(7203), 427.  

Wolffram, S., Weber, T., Grenacher, B., & Scharrer, E. (1995). A na+-dependent mechanism is 
involved in mucosal uptake of cinnamic acid across the jejunal brush border in rats. Journal 
of Nutrition, 125, 1300-1308.  

 



 
 

 
 

72 

Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). 
Concentrations of anthocyanins in common foods in the united states and estimation of 
normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069-4075. 
doi:10.1021/jf060300l  

Zafrifri, D., Ofek, I., Adar, R., Pocino, M., & Sharon, N. (1989). Inhibitory activity of cranberry 
juice on adherence of type1 and type p fimbriated escherichia coli to eukaryotic cells. 
Antimicrobial Agents and Chemotherapy, 33, 92-98.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

73 

Appendix A: Biosafety Research Approval Letter 

 

MEMORANDUM TO: 
FROM: 
RE:  

PROTOCOL #:  

PROTOCOL TITLE: cells  

APPROVED PROJECT PERIOD:  

September 15, 2017  

Dr. Sun-Ok Lee 
Ines Pinto, Biosafety Committee Chair 
New Protocol 
18015 
Testing the effects of extracts and bioactive components on lung cancer  

Start Date September 14, 2017 Expiration Date September 13, 2020  

The Institutional Biosafety Committee (IBC) has approved Protocol 18015, “Testing the effects 
of extracts and bioactive components on lung cancer cells”. You may begin your study.  

If modifications are made to the protocol during the study, please submit a written request to the 
IBC for review and approval before initiating any changes.  

The IBC appreciates your assistance and cooperation in complying with University and Federal 
guidelines for research involving hazardous biological materials.  
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Appendix B: P-values for all statistical analysis 

Table 1 p-values of phenolic and volatile treatments after LPS compared to positive control.  
* indicates significance. 

Level  - Level Difference Std Err Dif p-Value 

Control-0x+ Control-0x- 14.95807 2.141153 <.0001* 

Control-0x+ Phenolic-2x  8.9912 2.141153 0.0014* 

Control-0x+ Volatile-2x 7.36513 2.141153 0.0180* 

Control-0x+ Phenolic-4x 6.6736 2.141153 0.0463* 

Control-0x+ Volatile-4x 4.89847 2.141153 0.3096 

Control-0x+ Phenolic-8x 3.39933 2.141153 0.7567 

Control-0x+ Volatile-8x 3.2536 2.141153 0.7954 

 
 
Table 2 p-values of phenolic and volatile treatments before LPS compared to positive control.  
* indicates significance. 

Level  - Level Difference Std Err Dif p-Value 

Control-0x+ Control-0x- 22.1686 0.9497967 <.0001* 

Control-0x+ Phenolic-2x 12.03447 0.9497967 <.0001* 

Control-0x+ Volatile-2x 10.792 0.9497967 <.0001* 

Control-0x+ Phenolic-4x 5.91233 0.9497967 <.0001* 

Control-0x+ Volatile-4x 2.99787 0.9497967 0.0415* 

Control-0x+ Phenolic-8x 2.47493 0.9497967 0.1649 

Control-0x+ Volatile-8x 0.3998 0.9497967 0.9999 
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Table 3 p-values of standards treatments after LPS compared to positive control.  
* indicates significance. 
Level  - Level Difference Std Err Dif p-Value 

Control-0x+ Control-0x- 26.81753 1.960337 <.0001* 

Control-0x+ Alpha-
Terpineol-2x 11.8572 1.960337 <.0001* 

Control-0x+ Eucalyptol-2x 4.74773 1.960337 0.4684 

Control-0x+ Alpha-
Terpineol-4x 3.947 1.960337 0.7575 

Control-0x+ Linalool-2x 3.6574 1.960337 0.8422 

Control-0x+ Linalool-oxide-
2x 3.3876 1.960337 0.9035 

Control-0x+ Eucalyptol-4x 0.41193 1.960337 1 

Control-0x+ Eucalyptol-8x 0.39287 1.960337 1 

Control-0x+ Linalool-oxide-
4x 0.24367 1.960337 1 

Control-0x+ Linalool-oxide-
8x 0.18 1.960337 1 

Control-0x+ Linalool-4x 0.10967 1.960337 1 

Control-0x+ Linalool-8x 0.06113 1.960337 1 

Control-0x+ Alpha-
Terpineol-8x 0.00873 1.960337 1 
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Table 4 p-values of standards treatments before LPS compared to positive control.  
* indicates significance. 
Level  - Level Difference Std Err Dif p-Value 

Control-0x+ Control-0x- 15.49727 0.8992653 <.0001* 

Control-0x+ Alpha-Terpineol-
2x 6.59193 0.8992653 <.0001* 

Control-0x+ Alpha-Terpineol-
4x 4.26693 0.8992653 0.0003* 

Control-0x+ Eucalyptol-2x 3.888 0.8992653 0.0019* 

Control-0x+ Linalool-oxide-2x 3.3372 0.8992653 0.0184* 

Control-0x+ Linalool-2x 3.27107 0.8992653 0.0235* 

Control-0x+ Alpha-Terpineol-
8x 0.49133 0.8992653 1 

Control-0x+ Linalool-oxide-4x 0.43013 0.8992653 1 

Control-0x+ Linalool-4x 0.22733 0.8992653 1 

Control-0x+ Eucalyptol-8x 0.16533 0.8992653 1 

Control-0x+ Linalool-oxide-8x 0.1298 0.8992653 1 

Control-0x+ Eucalyptol-4x 0.07613 0.8992653 1 

Control-0x+ Linalool-8x 0.03973 0.8992653 1 
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