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Abstract 

Altering the foreign body reaction by targeting macrophages has been of interest in the 

biomaterials field to improve the integration of longevity of implanted biomedical devices.  The 

objective of this dissertation was to study the effect of locally delivered bioactive modulators on 

macrophage activation at the implantation site of different biomaterials in rats. Iloprost, a 

prostacyclin analog, was tested for its ability to direct macrophages to their pro-wound healing 

phenotype after the implantation of microdialysis probe in the subcutaneous space of male 

Sprague Dawley rats. This study showed that iloprost can shift macrophage activation states in 

vivo to the pro-wound healing phenotype and decrease the levels of the pro-inflammatory 

chemokine (CCL2) at two days post implantation. It also demonstrated the need of more 

experiments to confirm iloprost effect in shifting macrophage activation to their CD163+CD68+ pro-

wound healing phenotype at a longer time point than two days post implantation.  

To achieve this goal, iloprost was studied for its ability to modulate macrophages to their 

pro-wound healing, pro-tissue remodeling phenotype at 7 days post implantation time point, after 

the implantation of the PVA sponges and compared to dexamethasone effect on macrophage 

activation. This project focused on assessing macrophage activation caused by implanted 

polyvinyl alcohol non-biodegradable vs. collagen biodegradable sponges in the subcutaneous 

space of male Sprague Dawley rats. Like dexamethasone, iloprost was able to shift the 

macrophage to their CD163+CD68+ pro-wound healing phenotype and decreased the levels of 

CCL2 found in the collected wound fluid from the explanted sponges. Additionally, iloprost 

administration significantly decreased the number of infiltrating cells around PVA sponge. 

Once the ability of iloprost to modulate the macrophages phenotype was confirmed, a 

material-based study was designed to compare macrophage activation caused by implanted 

polyvinyl alcohol non-biodegradable vs. collagen biodegradable sponges in the subcutaneous 

space of male Sprague Dawley rats. Collagen scaffolds, isolated from the same rat strain, were 



 

synthesized and implanted subcutaneously to perform this study. The administration of iloprost 

and dexamethasone lead to a decrease in the levels of pro-inflammatory CCL2, and an increase 

in the population of CD163+CD68+ in both sponge models compared to their correspondent 

control sponges. Although, the levels of CCL2 in the wound fluid collected from the collagen 

control sponges were significantly less those collected from the PVA sponges, both materials 

initiated an inflammatory response cascade that was similar in terms of collagen distribution, and 

CD163+CD68+ macrophages around the implant. 
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Chapter 1 

General Introduction 
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1.1. Foreign body response and wound healing 

Over the past decades, there has been an extensive interest in bioengineered implantable 

devices such as artificial joints [1], sensors [2-5], heart valves [6], catheters [7],  and both 

reconstructive and cosmetic implants [8, 9]. The term “biomaterial” is defined as a substance that 

has been engineered to perform supportive therapeutic or diagnostic procedure through directly 

interacting with the living organism [10]. The biomaterial/ blood interface interactions and the 

normal homeostatic response to the implantation of these devices result in limited in vivo 

functionality and longevity for the implanted devices [11, 12]. The excessive growth of collagen 

around these implants as a mechanism to protect the host against foreign materials has been a 

major obstacle referred to as foreign body response (FBR) [13-16]. This response is characterized 

by persistent inflammation, macrophage infiltration, foreign body giant cells, and fibrotic cell 

formation [17]. Materials bigger than 10 µm in size cannot be phagocytosed, hence these 

materials are identified as foreign objects and get encapsulated in a collagenous bag as an 

ultimate result to the foreign body response [13]. Biomaterial malfunction, infections, and soft-

tissue contractures can be some of the consequences of the biomaterial encapsulation [18]. 

The foreign body response is initiated by the surgical implantation of biomaterials, which 

causes a mechanical disruption to tissue homeostasis that eventually leads to fibrin-dominated 

thrombus activation, platelet activation and the activation of the complement system [13].  A, 

group of different proteins including fibronectin, fibrinogen, IgG and other proteins, adsorb to the 

surface of biomaterials immediately after implantation forming a biodegradable matrix called the 

provisional matrix [13, 15]. The provisional matrix releases mediators that initiate the resolution 

and repair processes that include inflammatory cells and fibroblast recruitment (Figure 1.1). The 

fibrin network also activates the platelets to release the platelet derived growth factor (PDGF), 

transforming growth factor β (TGF-β), and other chemokines, which later contribute to fibroblast 

and neutrophil recruitment to the implantation site [19, 20]. The events of spontaneous adsorption 
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of nonspecific proteins on the implant surface that eventually lead to phagocyte and fibroblast 

recruitment are defined by the term device biofouling. 

 

  

Figure 1.1. Steps of the foreign body response following the implantation of biomaterial. 
Reprinted from Materials Today.,18, Sridharan, R., Cameron, A. R., Kelly, D. J., Kearney, C. J., 
O’Brien, F. J. Biomaterial based modulation of macrophage polarization: a review and suggested 
design principles, 2015, 313-325, with permission from Elsevier Under a Creative 
Commons license.    

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Following the adsorption of proteins to the implant surface, the inflammatory cells arrive 

at the implantation site. This cellular cascade is usually characterized by an acute inflammatory 

state which can last minutes to several days depending on the extent of the injury caused by the 

biomaterial implantation. Neutrophils have a short a life time (24 – 48 hours) and are the 

predominant cells at the wound site that characterize acute inflammation. Neutrophils arrive at 

the wound site in response to the chemokine gradient within a few hours of the injury and  play 

an essential role in the removal of  debris and dead cells around the wound [21].  

Chemokines, cytokines with chemoattractant properties, are subdivided into four major 

families: C, CC, CXC, and CX3C. The chemokine family is responsible for the recruitment of 

specific cell types to a wound site. The chemokine (C-C motif) ligand 2 (CCL2), monocyte 

chemoattractant protein-1 (MCP-1), is a 13 kDa chemokine that is known to recruit monocytes to 

an inflammation site caused by either injury or infection [22]. Chemokines also play a key role in 

angiogenesis, tumor metastasis, and lymphocyte differentiation [23, 24].  CXCL8 (IL-8) is the main 

chemokine responsible for neutrophil recruitment to the implant site [25].  

Within three to five days post implantation, monocytes/macrophages start to migrate to 

the wound site, becoming the predominant cell type, and playing a significant role in regulating 

various aspects of inflammation throughout the wound healing process [26]. As those events 

progress in the inflammation cellular cascade, monocytes/macrophages are driven to the implant 

site in response to chemokines and other chemoattractants, such as CCL2, platelet- derived 

growth factor (PDGF), CXCL4, Interleukin 1 (IL-1) and TGF-β [27-30].  CCL2 (macrophage 

chemoattractant protein, MCP-1), CCL3 (macrophage inflammatory protein, MIP-α), CCL-4 

(macrophage inflammatory protein, MIP-1β), and CCL7 (MCP-3) are chemokines that have been 

shown to recruit monocytes/ macrophages to the wound site [24, 31]. 
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The recruited macrophages adhere to the provisional matrix proteins using their surface receptors 

and the receptor-ligand interactions. This adhesion is mainly orchestrated by the integrin family, 

surface receptors that facilitate the adhesion, binding and signal transduction between cells and 

their surrounding microenvironment [32]. Some studies showed that macrophage adhesion is 

partially mediated by the interaction between the phagocyte integrin, the leukocytes integrin Mac-

1 (CD11b/CD18), and other protein ligands such as fibrinogen, fibronectin, immunoglobulin G 

(IgG) and complement factor fragment C3bi [33-36]. Mainly, the proteins involved with cellular 

adhesion are rich with RGD tri-peptide sequence (Arg-Gly-Asp tri-peptide sequence) which binds 

to several integrins (αvβ3, αvβ5, and α5β1) [37].  

The most common classes of integrins expressed by macrophages are β1, β2, and β3. In 

addition to their role in macrophage adhesion, β1 integrins have been shown to play a role in the 

formation of foreign body giant cells (FBGCs) resulting from Interleukin-4 (IL-4) induced 

macrophages fusion [38]. β2 integrins are important for macrophage initial adhesion to the 

provisional matrix adhesion and play a crucial role in podosomes formation [39-41]. Podosomes, 

actin-rich structures present on the plasma membrane of macrophages and dendritic cells, 

provide the macrophages with the ability to spread over the surface of biomaterials which later 

allow the macrophages to fuse together, forming foreign body giants cells (FBGCs) [42, 43].   

While some biomaterials are too big (particle sizes > 10 μm in diameter) to be 

phagocytosed, macrophages and foreign body giant cells persist at the implant site secreting 

mediators into the microenvironment existing between the cellular membrane and the biomaterial 

surface with the aim of destructing the biomaterial surface [44-46]. During the frustrated 

phagocytosis process, as labeled by Henson, macrophages and foreign body giant cells release 

a wide spectrum of chemical degradative mediators and cytotoxic substances, such as reactive 

oxygen intermediates (ROIs), oxygen free radicals, degradative enzymes and phagosomes to the 
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biomaterial thus enhancing the potential oxidation and biodegradation biomaterial surface and 

eventually leading to potential biomaterial failure [47, 48].  

Once adherent macrophages on the biomaterial surface are activated in an attempt to 

phagocytose the biomaterial, they secrete different inflammatory mediators, such as cytokines, 

chemokines, growth factors and other bioactive agents that direct the progress of inflammatory 

state and the wound healing response to the biomaterial implantation [49, 50]. Table 1 

summarizes the chemical mediators secreted by macrophages during the foreign body response. 

 

Table 1.1. Molecules secreted by macrophages during the foreign body response. 

Group of secreted molecules Secreted molecules 

Growth factors TGF-α, TGF-β1, M-CSF, VEGF/VPF [51, 52]. 

Bioactive lipid mediators  Prostaglandins, prostacyclin (PGI2), thromboxane 
leukotrienes [53, 54]. 

 Chemokines and Cytokines CCL2, IL-1 β, IL-6, IL-8, IL-10, IL-12, IL-18, INF-γ 
MIPs, TNF-α [31, 55]. 

Reactive nitrogen intermediates Nitric oxide, nitrites, nitrates [56, 57]. 

Reactive oxygen intermediates Hydrogen peroxide, hydroxyl radical, superoxide 
[58, 59]. 

Tissue reorganization enzymes collagenase, elastase, hyaluronidase [60]. 

 

 



7 
 

 Due to the excessive collagen production and low degradation rate, an acellular fibrotic 

capsule starts to form around the implanted biomaterial that isolates the microenvironment around 

the implant from the whole body which potentially hinders the functionality of biomaterials that 

entail communication with the body enzymes such as biosensors  [61, 62].  

Modulating the foreign body reaction to biomaterial implants to provide an appropriate 

microenvironment that leads to improved tissue integration and implant outcomes has been of 

historical interest for biomaterials scientists [63-66]. While research has been focused relationship 

between the chemistry of the biomaterial and its influence on the foreign body reaction 

progression in terms of protein adsorption and complement activation, other research focused on 

the physio-chemical properties of the biomaterial surface which play a major role in the 

composition of the early provisional matrix. [67-69]. Numerous studies highlighted the importance 

of well controlled inflammatory response that is mediated by the macrophages role in tissue repair 

and regeneration, as well as presented strategies to promote tissue regeneration including, 

controlled delivery of anti-inflammatory drugs [70, 71], cytokines delivery [72, 73], and the delivery 

of nanoparticles that promote that phagocytic behavior of macrophages [74].  

1.2.  Macrophages  

Macrophages are myeloid cells that are known to play a key role in orchestrating the 

inflammatory state progression after biomaterial implantation, in addition to their role in clearing 

and degrading cellular debris [75].  Both macrophages and their fused morphologic multinucleated 

giant cells (FGBCs) represent the dominant early active responders to different biomaterial 

implants of various materials [46], including polymers [76, 77], metals [78, 79], protein based 

materials such as collagen [80, 81], and ceramics [82].  

The main function of macrophages is to facilitate the host immune and inflammatory 

responses against foreign bodies. Thus, a clear understanding of the complex interaction between 
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macrophages and biomaterials is crucial for the improved integration of the implanted biomaterial 

and the surrounding tissues.  

1.2.1. Origin of macrophages and macrophages heterogeneity. 

Monocytes, macrophages, and dendritic cells constitute the main cells in the mononuclear 

phagocytic system [83] . Mononuclear phagocytes originate from myeloid progenitor cells in the 

bone marrow that are regulated by macrophage colony stimulating factor (MCSF-1) and 

granulocyte colony stimulating factor (GM-CSF) [84].  Monocytes, amoeboid shaped leukocytes, 

are known to be recruited to a wound site where they are differentiated to macrophages [85]. 

Within 24 hours, monocytes leave the bone marrow to the peripheral blood stream where they 

circulate for a few days before being transferred to multiple tissues to replenish different resident 

macrophages [86, 87]. Once monocytes get transferred to the tissues, they don’t return to blood 

circulation but rather reside in the tissue as mature differentiated macrophages [85]. 

 The migrated monocytes differentiate into highly distinct cell populations, such as 

macrophages, osteoclasts and dendritic cells [88, 89].  First discovered by Ilya Mechnikov in 1882, 

macrophages are known to have multiple morphologies, from round pancake shaped, to 

elongated with large nuclei [90]. Macrophages are distributed throughout different regions of the 

body where they display a wide range of functional and morphological diversity despite having 

the same origin.  

Macrophages are heterogeneous cells with respect to their phenotype and function. in 

addition to their morphological and functional diversity, macrophages express various cell surface 

receptors and release different signaling molecules. Alveolar macrophages in the lungs, Kupffer 

cells in the liver, microglia in the brain, osteoclasts in the bones, and Langerhans cells in the 

epidermis  are common examples of cell types that are differentiated from migrated monocytes 

[89]. Macrophages exhibit a recognizable plasticity that has been extensively studied as a means 

to improve the outcome of different inflammation-associated disease states in which 
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macrophages engage such as cancer [91-94], fibrosis [95-98], obesity [99, 100], wound healing 

and tissue remodeling [101, 102].The differentiation pathways for these cells have been of major 

interest to the scientific community [103-105].  

It has also been shown that the surrounding microenvironment plays a role in the 

functional regulation of the differentiated macrophages [106]. Remarkably, a specific macrophage 

differentiation profile is generated at the site of biomaterial implantation based on the tissue 

physiology and the physiochemical properties of the biomaterial [88, 104, 107]. Human peripheral 

blood monocytes have been shown to express cell surface receptors, such as cluster of 

differentiation 14 (CD14), CD16 and CD64, in addition to chemokine receptor expression CCR2 

and CX3CR1. Macrophages, in the initial differentiation stages, express different markers 

including the β2 integrin CD11b, mannose receptor (MR), and macrophage colony stimulating 

factor 1 receptor precursor (MCSF-1) [108].  

1.2.2.  Macrophage functions 

Macrophages clear cellular debris of neutrophils and erythrocytes on a daily basis. They 

also clear dead cells from the spleen, thymus and other tissues. Homeostasis is another critical 

process that involves the intervention of macrophages to maintain the hematopoietic stem cell 

(HSC) niches [109]. 

Macrophages play an essential role in both innate and adaptive immunity.  Both 

macrophages and dendritic cells are called antigen presenting cells (APC), where they facilitate 

the initial recognition and capturing of antigens and later help in the activation of both T and B 

lymphocyte effector mechanisms [110]. Pattern recognition receptors, a repertoire of plasma 

membrane receptors expressed by antigen presenting cells, are capable of initially recognizing 

all classes of macromolecules known as pathogen-associated molecular patterns (PAMPs). 

These include bacterially-derived carbohydrates (lipopolysaccharide (LPS)) that constitute the 

cell wall in gram negative bacteria, peptidoglycans found on the gram positive bacteria cell wall, 
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nucleic acids such as bacterial or viral DNA or RNA, glucans from fungi, and lipoproteins [110]. 

This demonstrates the macrophages crucial role in tissue homeostasis organization, clearing the 

extracellular microenvironment from potential undesirable objects that project any threat on the 

host [111]. 

Toll like receptors, transmembrane proteins associated with differential recognition of 

foreign pathogens, are usually expressed on the surface of antigen presenting cells [112]. Toll-

like receptors (TLR) mainly recognize ligands of exogenous origin such as bacteria, fungi and 

viruses. However, there have been studies where Toll-like receptors (TLR) were involved in 

recognizing ligands of endogenous origin, such as apoptotic cells, heat shock proteins and 

fibrinogen [110, 111]. Biomaterials activate macrophage responses via Toll-like receptor 4 

(TLR4), which is similar to macrophage activation by lipopolysaccharide (LPS), though, the 

response magnitude following gram-negative bacterial invasion and biomaterial implantation is 

different. Gram-negative bacterial invasion leads to infections, which are primarily cleared by 

adaptive immune responses through antibody-producing cell activation such as B cells and T 

cells. On other hand, biomaterial implantation leads to inflammation and foreign body responses 

without the intervention of B and T lymphocyte activation [113]. 

 Antigen presenting cells (APC) also express scavenger receptors (SR) which play an 

important role in the uptake and clearance of end products,  such as modified host molecules and 

apoptotic cells [114]. Scavenger receptors are involved in the recognition of modified low-density 

lipoproteins, binding, phagocytosis and clearance of microbial pathogens and modified 

endogenous molecules from the host. Other pattern recognition receptors involved in the innate 

and adaptive immune responses are the mannose receptors (MR), phagocytic receptors from the 

C-type lectin superfamily. Mannose receptors bind to carbohydrate moieties on several 

pathogens, such as bacteria, fungi, parasites and viruses. Recent studies have shown that 

mannose receptors are also involved in the silent clearance of inflammatory molecules [115-117]. 

A list of macrophage pattern recognition receptors and ligands is shown in Table 2. 
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Macrophages play a dynamic role in tissue repair and wound healing. The wound healing 

process is divided into four phases, hemostasis, inflammation, proliferation and resolution. This 

process starts by vasoconstriction and clot formation (hemostasis), followed by the inflammatory 

stage [28]. During the inflammatory stage, monocytes, attracted by a variety of chemokines, 

migrate from blood to the wound site to differentiate into macrophages.  Infiltrated macrophages 

amplify the inflammatory response by secreting various inflammatory mediators to attract more 

macrophages to the wound site. Those mediators include various cytokines, chemical mediators 

(NO and prostaglandins) and growth factors such as PDGF (platelet derived growth factor), TGF 

(transforming growth factor) and FGF (fibroblast growth factor) which stimulate angiogenesis, 

extracellular matrix deposition, fibroproliferation and migration of cells such as fibroblasts at the 

wound site which indirectly influences the extracellular matrix (ECM) deposition [28, 30, 118]. 

They also secrete pro-angiogenic factors such as VEGF (vascular endothelial growth factor) 

which promote vascularization at the wound site to improve wound healing [20]. Additionally, 

macrophage presence at the wound site is essential to remove neutrophils, a process known as 

efferocytosis which has been proven to be a critical part of wound healing [119, 120]. 

Macrophage-derived growth factors such as TGF-β and platelet-derived growth factor (PDGF) 

have been shown to directly stimulate collagen synthesis and fibroblast proliferation [121].  

Macrophages also secrete a wide array of chemokines, inflammatory and anti-inflammatory 

cytokines, such as IL-1β, IL-4, IL-6, IL-10 and TNF-α during various stages of FBR/wound healing 

progression. Macrophage inflammatory protein 1α (MIP-1α) and MCP-1 are chemokines that are 

known for their distinguished expression patterns during the wound repair process and their 

crucial role in macrophage recruitment to the wound site [122, 123] . 
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Table 1.2. Macrophage pattern recognition receptors and their ligands 

Pattern recognition receptors Ligand 

Mannose receptor (MR) Lipoarabinomannan, L-selectin [115, 124] 

Scavenger receptors (SR) Apoptotic cells [114, 125] 

Toll-like receptors (TLR) 
TLR-2 
TLR-3 
TLR-4 
TLR-5 
TLR-6 
TLR-7 
TLR-8 
TLR-9 

 

 
Lipoproteins and glycolipids [112] 

Virus [126] 
Lipopolysaccharide (LPS) [112, 127] 

Flagellin [128] 
Lipoproteins [129] 

single-stranded RNA [130] 
single-stranded RNA [130] 

Bacterial (CpG) DNA [112, 131] 

Type 3 complement receptor 
(CR3) 

β-glucan, fibrinogen [132] 
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1.2.3. Macrophage activation 

Macrophages are highly versatile immune cells that play a significant role in regulating various 

aspects of inflammation. Macrophages direct outcomes during the foreign body response using 

different cytokines [26, 133, 134]. Macrophages exist in a continuum of activation states with 

sufficient plasticity to be altered between an inflammatory and a wound healing/tissue remodeling 

phenotype [135, 136]. Macrophages are activated through multiple engaged specific cell surface 

receptors with different stimulants found within the local microenvironment of the macrophage 

[137]. 

Macrophage activation exists along a continuum of phenotypes [138]. Macrophages get 

activated by producing mediators that change their phenotype through autocrine signaling. Those 

mediators are secreted in response to different stimulants, such as bacterial related products 

(LPS and peptidoglycans), lipids, and cytokines. Macrophages have been classified into two 

activation states, M1, or classically activated macrophages and M2, or alternatively activated 

states [136]. Lately, Murray et al. endorsed new nomenclature guidelines that recommended 

referring to the term “macrophage polarization” as “macrophage activation” and referencing the 

macrophage activation states based on their stimuli rather than using the broad M1/M2 paradigm 

[139]. The work presented in this dissertation will follow the new nomenclature recommendation, 

however, the M1/M2 paradigm will still be discussed to relate the new findings to what has been 

presented in the literature by the scientific community in the past. 

Classically activated macrophages, pro-inflammatory macrophages, are produced during a 

cell-mediated immune response [140, 141]. This macrophage phenotype is produced by the 

presence of interferon-γ (INF-γ) and tumor necrosis factor (TNF-α), or lipopolysaccharide (LPS) 

and is known to secrete pro-inflammatory cytokines [142, 143]. INF-γ is a pro-inflammatory 

cytokine that is primarily produced by natural killer cells in response to infections to activate 

macrophages, causing them to secrete their own pro-inflammatory cytokines. This leads to a 
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phenotype of macrophages with microbicidal and tumoricidal functions. T-helper (Th1) cells also 

produce INF-γ where the activated macrophage phenotype becomes more susceptible to LPS 

presence in the host [144, 145]. TNF-α is a pro-inflammatory cytokine produced primarily by 

macrophages when a ligand of the toll-like receptor (TLR-4) gets activated [146]. Activation of 

TNF-α receptors leads to the activation of transcription factors (NF-κB) and activation protein 1 

(AP-1) which eventually leads to apoptosis [147].  

Classically activated macrophages are generally recognized through the secretion of pro-

inflammatory cytokines (IL-1β, IL-6, and TNF-α, IL-12, IL-23), and inducible nitric oxide synthase 

[88, 148]. These cells also showed an increased expression of CCR7, CD64, CD80, CD86 and 

MCH II. Cluster of differentiation 64 (CD64), a transmembrane glycoprotein (72-kDa), has been 

presented as a therapeutic agent in antibody-mediated immune diseases and chronic 

inflammatory diseases [149]. Both CD80 and CD86 are known to be co-stimulators for T-cell 

activation by interacting with cytotoxic T lymphocyte antigen-4 (CTLA-4 or CD152) [150]. Major 

histocompatibility complex class II (MCH II) plays a role in presenting the processed exogenous 

antigens to T-helper cells and activating the intracellular pathway [151].  M1 macrophages are 

known to secrete a variety of chemokines such as CCL15, CCL20, CXCL9, CXCL10, and 

CXCL13 which play a role in attracting more macrophages to the wound site [152]. 

Alternatively activated macrophages, M2 macrophages, are also activated through innate 

and adaptive signaling mechanisms, however, they are more involved in wound repair than 

orchestrating defense mechanisms [88]. Apoptotic cells and implanted biomaterials that fail to be 

phagocytosed because of their large surface area have been shown to activate this group of 

macrophages [153]. Other cytokines such as IL-4 and IL-13 have been identified to induce the 

M2 macrophage phenotype. IL-4 is secreted by mast cells and basophils promoting the formation 

of macrophages that promote wound healing during the early phases of tissue injury. The adaptive 

immune response can also produce IL-4 and is proposed by some to be the predominant pathway 
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for the development of wound healing macrophages. IL-4 and IL-13 are also secreted by Th2 

cells to induce the formation of wound healing macrophages. Unlike M1 macrophages, M2 

macrophages are not considered antigen presenting cells and are not as efficient as M1 

macrophages at producing oxygen free radicals [154]. Additionally, the M2 macrophage activation 

profile is characterized by the expression of low levels of IL-12 and IL-23, and high levels of IL-

10, an anti-inflammatory cytokine [155]. IL-10 secretion from M2 macrophages leads to 

dampening the immune response and limiting the inflammatory progression [156]. M2 

macrophages reroute the metabolism of arginine by producing ornithine and polyamine, thus 

fostering cell growth and leading to tissue repair [157]. Cluster of differentiation 206 (CD206) has 

been shown to be highly expressed on M2 cell surface receptors and has been widely accepted 

as a non-specific M2 marker [158].  

M2 macrophages are sub-divided into three different groups, M2a, M2b, and M2c [141]. 

M2a macrophages are activated in response to IL-4/IL-13 secretion [159],  and have been shown 

to play a role in encapsulation, killing parasites and helminths, and allergic responses. Besides 

suppressing the production of the pro-inflammatory cytokines (IL-1β, IL-6, IL-12, and TNF-α), M2a 

macrophages secrete anti-inflammatory cytokines (IL-1ra, IL-4, and IL-10) [141]. 

M2b macrophages are activated in response to bacterial liposaccharides (LPS), immune 

complexes (Fc or complement), IL-1R, and the clearance of apoptotic neutrophils [160]. These 

cells are recognized by producing pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and CCL1) in 

addition to their ability to produce nitric oxide (NO) which is different from other M2 macrophages 

[141, 161]. Nevertheless, these cells resemble the rest of the M2 subpopulation in producing large 

amounts of IL-10. These cells express MCH II on their surface and uniquely express both LIGHT 

and SPHK1 genes [160, 162]. M2b macrophages have been exploited in regulating Leishmania 

major infection and reducing early reperfusion injury after myocardial ischemia in mice [163, 164].  
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 M2c macrophages are activated in response to glucocorticoids, IL-10 and TGF-β. Like 

M2a, these cells are considered anti-inflammatory by inhibiting the production of pro-inflammatory 

cytokines (IL-1β, IL-6, IL-12, and TNF-α) and rerouting the metabolism of arginine by producing 

ornithine and polyamine which leads to a decrease in iNOS levels [141, 165]. M2c macrophages 

are further characterized by releasing the anti-inflammatory cytokines IL-1RII, IL-10 and TGF-β.  

Alternatively activated macrophages are typed by their production of the surface marker 

CD206.  Macrophages with CD206 and with high expression of CD163 are considered by many 

to be valuable during wound healing and integration [102, 138].These cells are recognized by 

their high expression of CD163 on their cell surface which is essential for the clearance of 

hemoglobin in deformed red blood cells. CD163, a130 kDa type 1 transmembrane protein that is 

heavily glycosylated, is a member of scavenger receptor cysteine-rich group B family [166]. Those 

receptors have been found responsible for the endocytosis of hemoglobin-haptoglobin (Hb-Hp) 

complexes and converting it into anti-inflammatory metabolites [167]. CD163 has been 

recognized as a marker for M2c macrophages since it is expressed on the surface of wound 

healing macrophages. M2c macrophages are poor antigen presenting cells because of their low 

expression of MHC II [166, 168, 169]. 

M2c macrophages have been recognized as being anti-inflammatory, pro-wound healing, 

and pro-tissue remodeling cells which make them of high interest in the field of biomaterials [102]. 

These characteristics were exploited in shifting the macrophage activation state to be 

predominantly M2c at the implantation site in the aim of providing improved host/implant 

integration and functional outcomes. The focus of the biomaterials community to reach this aim 

has been either material-based or chemical modulators-based macrophage activation [52, 64, 66, 

101, 170, 171]. 
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Table 1.3. Macrophage activation states characteristics 

Macrophage 
phenotype 

Inducers Cytokines 
secreted  

Expressed markers Roles 

M1 INF-γ, LPS, 
TNF-α 

IL-1β, IL-6, IL-
12, IL-15, IL-18, 
IL-23, TNF-α, 

CCL15, CCL20, 
CXCL9, 
CXCL10, 
CXCL11, 
CXCL13 

CD68, ↑CD80, 
CD86, ↑ MHC II, 

↓ MRC1 

Pro-inflammatory, 
killing of 

intracellular 
Pathogens, and 

phagocytosis 
initiation [152, 172]. 

M2a IL-4, 
IL-13 

IL-10, IL-1ra, 
IL-4 

CD68, CD204, 
CD206, MHC II 

 

Anti-inflammatory, 
killing of parasites 

and helminths, 
allergic responses 
[141, 152, 173]. 

M2b LPS, ICs, 
IL-1β 

IL-10, IL-1β, IL-
6, TNF- α, 

CCL1, CCL20, 
CXCL1, 

CXCL2, CXCL3 

CD68, CD86, 
↑ IL-10, ↓ IL-12, 
MHC II, CD86 

Immuno-regulation, 
interaction with B 

cells, 
both pro-

inflammatory and 
anti-inflammatory 

function 
(ambiguous) [141, 

160, 174].  

M2c IL-10, 
TGF- β, 

GCs 

IL-10, IL-1ra, IL-
18, TGF-β 

CD68, ↑ CD163, 
CD204, CD206, 
↓IL-6, ↓TNF- α, 

 

Matrix deposition, 
clearance of 

apoptotic cells, 
tissue remodeling 

and 
pro-wound healing 

[138, 154, 156, 
173]. 
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1.3. The use of modulators in macrophage activation studies 

Macrophage activation (macrophage polarization) has recently emerged as a new means 

of promoting wound healing by modulating the outcome of foreign body response to implanted 

biomaterials using stimulants or modulators (cytokines or glucocorticoids such as 

dexamethasone)[64, 101, 138, 175, 176].  Many studies have concluded that the local delivery of 

glucocorticoids such as dexamethasone reduced the collagen capsule formation around the 

biomaterial implants and shifted macrophages to their M2c state, which are known to be anti-

inflammatory and pro-wound healing macrophages [177-179]. On the other hand, some studies 

proved that the delivery of certain cytokines can modulate the foreign body response to implanted 

biomaterials such as the delivery of interleukin-4 (IL-4) [73, 180-182] and interleukin 10 (IL-10) 

[183-186]. Other studies evaluated the effect of lipoxin A4 (LxA4) and resolvin D1 (RvD1), two 

different pro-resolution lipid mediators, on the modulation of the inflammatory response to 

biomaterials [187-189].  Other strategies involved the delivery of nitric oxide which inhibits the 

collagen deposition at the implanted biomaterial [190, 191]. 

Dexamethasone, a synthetic glucocorticoid, has been widely used as an 

immunosuppressant and anti-inflammatory drug [179]. Dexamethasone’s mechanism of action is 

represented by binding to the glucocorticoid receptors that further translocate it to the nucleus. 

Trans-repression and transactivation are the main mechanisms where dexamethasone utilizes its 

anti-inflammatory effect [192]. Trans-repression is the down regulation of pro-inflammatory genes 

through the direct binding of the glucocorticoid receptor to negative glucocorticoid receptor 

elements and by interfering with activator protein-1 and nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) [193]. Transactivation is the increase in the expressions of certain 

anti-inflammatory genes including lipocortin-1 and the type II IL-1 receptor [194]. Macrophage 

glucocorticoid receptors have also been shown to regulate Toll-like receptor-4-mediated 

inflammatory responses by selective inhibition of p38 MAP kinase [195]. Due to these processes 
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dexamethasone has been shown to down-regulate pro-inflammatory cytokines such as CCL2, IL-

6, and TNF-α at the transcriptional level [29] as well as reducing CCL2, IL-6, and TNF-α protein 

concentrations in different studies [171, 178, 196, 197]. Recent studies have concluded that the 

local delivery of dexamethasone reduced the collagen capsule formation around the biomaterial 

implants and shifted macrophage to their M2c state which is known to be anti-inflammatory and 

pro-wound healing macrophages[170, 177, 178].  Thus, dexamethasone is the “gold standard” 

for biomaterials studies and is a commonly-used anti-inflammatory compound which enables 

comparing new macrophage modulators to [175, 179, 198-200].  

Iloprost was studied as an in vivo macrophage modulator. Iloprost is a synthetic 

prostacyclin (PGI2) stable analog reported to have anti-inflammatory effects [201-204]. 

Prostacyclin is the common name for the prostaglandin, PGI2. It is a metabolite of arachidonic 

acid with a half-life of seconds which has been reported to have anti-inflammatory effects via the 

I prostanoid receptor, E prostanoid receptor, and the cyclic adenosine monophosphate (cAMP) 

pathway [205]. PGI2 and iloprost have been recently described as efficacious treatments for 

reducing fibrosis [205-207]. PGI2 analogs have also been reported to suppress LPS induced 

monocyte chemoattractant protein-1 (MCP-1 or CCL2) in human monocytes and dendritic cells 

[201, 203]. 

 IL-10 is an 18 kDa cytokine that is secreted by monocytes, macrophages and T helper 

type II cells and T regulatory cells. IL-10 has been reported to inhibit the production of pro-

inflammatory cytokines, (IL-1β, TNF-α and INF-γ), down regulate MHCII antigens, and block the 

NF-κB activity [208]. IL-10 suppressive effect on inflammatory cytokines IL-1β, IL-6 and TNF-α 

happens via the STAT3 signaling pathway [209]. IL-10 has also been employed in tissue 

remodeling and wound healing studies and was presented as anti-fibrotic agent [210, 211]. 

Resolvin is an endogenous lipid mediator that is derived from eicosapentaenoic acid 

(EPA), termed resolvin E, or docosahexaenoic acid (DHA), termed resolvin D.  Recently, studies 
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have shown that lipid mediators such as lipoxins, resolvins and protectins are active modulators 

in the resolution of inflammation [187]. The resolution of inflammation is comprised of three 

phases: downregulation of pro-inflammatory signaling molecules, apoptosis of 

polymorphonuclear leukocytes (PMNs), and activating macrophages to mediate phagocytosis of 

the apoptotic PMNs which is followed by the migration to the lymph nodes [188]. This is initially 

represented by a suppression of pro-inflammatory signaling molecules and then by a release of 

anti-inflammatory molecules which is known to help in the apoptosis of inflammatory PMNs. It has 

also been shown that these pro-resolving molecules can block PMN trafficking, attract monocytes, 

reverse vascular permeability, induce apoptosis of residual activated PMNs and facilitate the 

removal of exudate and fibrin. Recent studies have shown that RvE1 at nanomolar concentrations 

can suppress PMN migration and pro-inflammatory cytokines signaling of IL-6, TNF-α and IL-1. 

Moreover, it can attract macrophage and promote the clearance of PMN at the tissue site. Like 

E-series, D-series and protectins have been shown to suppress PMNs, pro-inflammatory 

cytokines,  and promote monocytes infiltration and phagocytosis [212]. 

1.4. Wound healing- material chemistry of implant relationship 

Biomaterial surface properties have been found to have a crucial impact on the foreign 

body reaction during the first two weeks after implantation [213]. The events during the foreign 

body reaction may impact the functionality of implanted devices and affect both short- and long-

term integration at the host/biomaterial interface, which explains the need of the foreign body 

reaction mechanism to different biomaterials. The relationship between physiochemical 

properties of implanted biomaterials, adsorbed proteins, adherent cells, and the released 

cytokines is not yet fully characterized since the interaction among these factors is complex and 

dynamic. Macrophages are known to regulate the host inflammatory responses against the 

invasion of foreign bodies. Thus, a clear understanding of the complex interaction between 

macrophages and biomaterials is crucial for the improvement of materials employed in the 
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construction of biomedical devices to elicit a favorable immune response while simultaneously 

performing their intended applications [107, 214].   

Different materials-based approaches to elicit M2 macrophages microenvironment around 

an implant have been elucidated.  Bioactive hydrogels, such as those based on alginate, chitosan, 

collagen, elastin, hyaluronic acid, and (poly)ethylene glycol (PEG) precursors have been used 

[80, 215] and have been recognized not to induce significant inflammatory responses and to 

embrace their physicochemical properties to improve tissue regeneration and wound healing 

processes [170, 216, 217]. Being the prime structural protein in connective tissues, collage based-

scaffolds have been incorporated in the structures of many biomaterial implants for tissue 

regeneration [218-220]. Chitin and chitosan are other polymers that have been used in biomaterial 

structures, since they have adhesive, antibacterial and fungicidal properties [221-223]. PEG- and 

alginate-based biomaterials have been used as controlled release vehicles since those materials 

are easily functionalized using chemical conjugation methods [224-226].  

The surface interaction between biomaterials and tissues have impact on tissue 

remodeling and wound repair based on the area of physical contact, tissue ingrowth, and chemical 

bonding [227-230]. Additionally, changes in cell phenotype, including the cell morphology, 

development, or biochemical properties have been recognized by changing biomaterial surfaces 

[78, 231].  The pore size of scaffolds has been denoted as a critical property for modulating 

macrophages to their pro-wound healing state [78, 232, 233]. The pore size of a scaffold can be 

exploited to regulate the migration speed of cells: the smaller the average pore size, the lower the 

fibroblast migration speed in collagen-GAG scaffolds. This can be employed to control the tissue 

regeneration rate [78, 214, 232]. Furthermore, controlling the crosslinking degree of collagen and 

preserving the native polymer structure can delay the biomaterial degradation [234, 235]. 

However, a study reported that cross-linked implants elicited a majority of M1 macrophages, 

whereas non-cross-linked scaffolds elicited a predominantly M2c macrophages response [236].  
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Another study pointed out the effect of cellular scaffolds vs. acellular scaffolds on macrophage 

activation states. Interestingly, cellular scaffolds elicited M1 macrophages state; however, 

acellularized scaffolds elicited a predominantly M2c macrophages state [237, 238].  

Polyvinyl alcohol (PVA) based scaffolds have been also used in wound healing and tissue 

repair studies [239-241]. PVA sponges, unlike other materials, are made of an inert non-

biodegradable material, can be easily sectioned for histological and immunohistochemical 

analysis, and their implantation and excision have been well described in the literature [242, 243]. 

PVA sponges have been very useful tool to study the biomaterial/tissue integration, collagen 

deposition, wound fluid composition, and the effects of chemical modulators on the wound healing 

process [242, 244]. Due its low protein adsorption characteristics, high water solubility, and its 

chemical resistance PVA has been commonly used in medical devices [245]. Such biomaterials 

have been used in several applications including connective tissue replacement, drug delivery, 

fibrovascular tissue ingrowth studies, ophthalmic materials [246-250]. Collecting wound fluid from 

implanted PVA sponges allows for both qualitative and quantitative analyses that can evaluate 

the macrophage activation and cytokines profile around the implant. 

Collagen is a natural raw material that has been widely used and accepted as a scaffold that 

is impregnated with either different cells (e.g., stem cells) and/or different drugs or bioactive 

proteins [251, 252]. Collagen popularity in biomaterial structures comes from the fact that 

collagen-based scaffold conserves the biochemical composition and the structural properties of 

the extracellular matrix (ECM) [253-255]. Maintaining the three dimensional microstructural 

properties of the extracellular matrix has been deemed important for directing the cellular 

phenotype through the geometric cues and growth factors which have multiple roles in cells 

adhesion and differentiation [256].  
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Table 1.4. Selected biomaterial features with their effect on the foreign body response 

Biomaterial Feature Effect on FBR  

↑ Porosity ↓ Fibrosis [257, 258] 

Uniform 30–40 µm pores ↓ Encapsulation, ↑ M2 macrophages [259] 

↑ roughness of the surface  ↓ Fibrosis, ↑ protein adsorption [260-262] 

↑ Sharp edges ↑ Inflammation [263] 

RGD-, chitosan-adsorbed surfaces  ↑ Macrophage fusion [255] 

Hydrophilic surfaces ↓ Protein adsorption, ↓ macrophage fusion 
[264] 

Hydrophobic surfaces ↑ Protein adsorption, ↑ macrophage fusion 
[265] 

surface charge ↓ protein adsorption [266] 
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1.5.  Microdialysis sampling  

Microdialysis is a well-established minimally-invasive diffusion-based sampling technique 

that has been widely used for monitoring bioactive molecules in the pharmaceutical and 

neuroscience fields [267-275]. A microdialysis probe consists of a semi-permeable membrane 

with a defined molecular weight cut-off (MWCO), an inlet tubing, inner canula, and an outlet tubing 

(Figure 1.2). Being a device that can be implanted in multiple tissue regions, microdialysis 

sampling probes can be exploited in many studies as drug delivery device while simultaneously 

collecting dialysates from surrounding extracellular fluid in a real-time manner to later be analyzed 

using different quantification methods [178, 276, 277]. With 100 kDa or greater MWCO 

membranes, microdialysis has been used to collect large macromolecules such as the cytokines 

[278]. Large pore microdialysis with 1000 kDa MWCO has been also used to determine the tissue 

distribution and the pharmacokinetic (PK) properties of larger molecules, such as R7072 

therapeutic monoclonal antibodies [279]. 

 The in-vivo sampling process starts when a perfusion fluid, closely matching the ionic 

strength and composition of the extracellular fluid, passes through the inlet tubing using a syringe 

pump, that tunes the infusion rate, and comes out of outlet tubing, which is referred to as the 

dialysate. Microdialysis is a diffusion-based method, where the analytes can diffuse into the semi-

permeable membrane due to the molecular concentration gradient existing between both sides 

of the molecular weight cutoff semi-permeable membrane. In other words, the molecules 

delivered through the microdialysis probe are at a higher concentration inside than their 

concentration at the extracellular space where the probe is implanted. This concentration gradient 

allows these molecules to pass through the semi-permeable membrane out to the extracellular 

space. Following the same manner, the molecules dissolved in the extracellular space form a 

concentration gradient at both sides of the semi-permeable membrane. This results in molecules 

smaller than the molecular weight cutoff to cross the membrane and being collected in the 
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dialysates, which can be quantified using different analysis methods. Microdialysis sampling has 

been exploited in biomaterial/host interaction and provides a tool for the collection of small 

proteins such as cytokines. Cytokines are typically present in low picomolar to femtomolar 

concentrations in the extracellular space and have low diffusivity which results in poor recovery 

of cytokines. However, microdialysis sampling has been advantageous since it allows continuous 

real time sampling in awake-and-freely moving animals and acquisition of analytically-clean 

samples that does not require any further processing. Noteworthy, the ability to implant more than 

one probe per animal allows each animal to serve as its own control which reduces the number 

of animals required for study completion [280-283].     

 

 

  

Figure 1.2. A schematic of a microdialysis probe. Reprinted form European Journal of 
Pharmaceutical Sciences, 57, Geoffrey D. Keeler, Jeannine M. Durdik, Julie A. Stenken, 
Comparison of microdialysis sampling perfusion fluid components on the foreign body reaction in 
rat subcutaneous tissue, 2013, 60-67, with permission from Elsevier. 
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1.6. Dissertation aims  

The focus of this dissertation is to study the effect of locally delivered modulators on 

macrophage activation at the implantation site of different biomaterials in rats. Chapter 3 presents 

the use of iloprost as a macrophage modulator in vivo to shift macrophages to their pro-wound 

healing phenotype after the implantation of microdialysis probe in the subcutaneous space of 

male Sprague Dawley rats at two days post implantation. As previously mentioned, the 

microdialysis sampling probes is advantageous as they serve as both the implanted biomaterial 

as well as simultaneously delivering the modulator and collecting the dailysates from the 

extracellular fluid. These initial studies showed that iloprost can shift macrophage activation states 

in vivo to the pro-wound healing phenotype at two days post implantation time point and presented 

the necessity to design more studies to confirm the effect of locally delivered iloprost at a longer 

time periods post implantation. 

Chapter 4 focuses on studying effect of iloprost on macrophage activation at 7 days post 

implantation of non-biodegradable PVA sponges. This was achieved by comparing the effect of 

iloprost to the effect of dexamethasone, a gold standard in macrophage activation studies. The 

implanted PVA sponges present a robust tool to study the macrophage activation profile at 7 days 

post implantation time point and to deliver drug modulators to the surrounding tissues in the aim 

of shifting the macrophages to their pro-wound healing phenotype.  

The last part of the dissertation, presented in chapter 5, focuses on assessing 

macrophage activation after implanting collagen biodegradable sponges in the subcutaneous 

space of male Sprague Dawley rats and comparing the findings to those in chapter 4 after 

implanting polyvinyl alcohol non-biodegradable sponges. Collagen scaffolds, isolated from the 

same rat strain, were synthesized and implanted subcutaneously the subcutaneous space of male 

Sprague Dawley rats to determine if a difference in the level or extent of macrophage activations 

exists between using these two different implants.  
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2.1. Chemicals  

Microdialysis and Sponges reagents.  

Dexamethasone-21-phosphate disodium salt (Sigma Aldrich, St Louis, MO); Ethylene oxide 

(Anderson Sterilizers, Inc., Haw River, NC); iloprost (Cayman Chemicals, Ann Arbor, MI); Ringer’s 

solution for chapter 3 (147 mM NaCl, 4.6 mM KCl, 2.3 mM CaCl2), pH 7.4 and was prepared in 

HPLC-grade water (Fisher Scientific, Waltham, MA); 0.9% sterile saline USP (Hospira, Inc., Lake 

Forest, IL). Sterile lactate Ringer’s solution (USP) (Hospira, Inc., Lake Forest, IL) was used in 

studies presented in chapters 4 and 5.  

Surgical reagents. 

Isoflurane (Abbot Laboratories, North Chicago, IL); povidone-iodine (Professional Disposables 

International, Orangeburg, NY); Super glue gel control (Henkel, Westlake, OH); Vetbond™ (3 M, 

St. Paul, MN); 10% neutral buffered formalin (BDH, VWR, West Chester, PA). 

Analysis reagents.  

Aniline blue/WS (Macron Fine Chemicals, Center Valley, PA); anti-CD68 antibody (Santa Cruz 

Biotechnology, Inc., Dallas, TX);  anti-CD163 antibody (Santa Cruz Biotechnology,  Inc.,  Dallas, 

TX); Apex™ antibody labeling kits (Alexa Fluor 488, Life Technologies, Carlsbad, CA); Apex™ 

antibody labeling kits (Alexa Fluor 647, Life Technologies, Carlsbad, CA);   BD OptEIATM rat MCP-

1 (CCL2) ELISA set (BD Biosciences, San Jose, CA); Biebrich Scarlet / Acid Fuchsine solution 

(ScyTek laboratories, Inc, Logan, UT); Bouin’s fixative solution, picric acid- formalin- acetic acid 

mixture (Ricca chemical company, Arlington, TX);  Bovine serum albumin (BSA; Rockland 

Immunochemicals, Gilbertsville, PA); Halt protease inhibitor (Pierce, Rockford, IL); Hoechst 

34580 (Sigma-Aldrich, St Louis, MO); high performance liquid chromatography water (HPLC)-

grade water (Fisher Scientific, Waltham, MA); OCT [optimal cutting temperature solution] 

(Sakura®Finetek, Torrance, CA). VECTASHIELD (Vector Laboratories, Burlingame, CA).  
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2.2. Iloprost affects macrophage activation and CCL2 concentrations in a microdialysis 

model in rats 

2.2.1.  Cell culture   

These in vitro experiments represent the initial study that demonstrated the use of iloprost 

as a potential modulator of macrophage phenotype in vivo [1]. NR8383 cells from American Type 

Culture Collection (ATCC) (Manassas, VA) were used for testing iloprost. NR8383 cells were 

cultured using 15 (v/v%) fetal bovine serum (Sigma-Aldrich, St. Louis, MO), 1 (v/v) % of 100 U/mL 

penicillin (Sigma-Aldrich, St. Louis, MO), and 84 (v/v%) of F-12K which contained a 100 g/mL 

streptomycin, 0.25 g/mL amphotericin (ATCC) and 2 mM glutamine (Sigma-Aldrich, St. Louis, 

MO). NR8383 cells were incubated at 37 °C and 5% CO2.  

 Cultures were prepared in 1-mL of media in 6-well plates.  For ELISA measurements, a 

density of 1.8 × 105 cells/ mL per well was used.  For qRT-PCR, 2.8 × 105 cells/ mL were used to 

obtain sufficient levels of sample.  Cells were exposed to 50 ng/mL lipopolysaccharide 

(Salmunella typhimurium (LPS), Calbiochem, obtained from EMD Millipore, Billerica, 

Massachusetts) or a combination of 50 ng/mL LPS plus 10 or 100 nM iloprost (Cayman Chemical, 

Ann Arbor, MI).  Cells were allowed to incubate for 24 hours prior to ELISA or qRT-PCR 

measurement.  ELISA measurement of CCL2 (BD Bioscience, San Jose, CA) was performed 

using the cell culture supernatant as provided in the manufacturer instructions.   

 RNA was extracted from treated cells using the Trizol reagent (Life Technologies, Grand 

Island, NY) following the provided manufacturer procedure. A RNeasy Kit from Qiagen 

(Germantown, MD) was used as a column clean up step.  Primers were sourced from Life 

Technologies (Grand Island, NY).  Total RNA was quantified using a Nanodrop 

Spectrophotometer 2000c at 260/280 and 260/230 nm absorbance ratio. Then, using a 

formaldehyde denaturing gel, the quality of the RNA was determined before synthesizing cDNA 

by reverse transcription (RT) using a high capacity RNA-to-cDNA kit (Life Technologies, Grand 
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Island, NY) and loaded in a thermo-cycle PCR TC-3000.  qRT-PCR was performed using primers 

from Life Technologies with GADPH as a housekeeping gene (NM_017008.3) with CD-163 

(NM_001107887.1) and CD-206 (NM_001106123.1) as the targets and measured on a 7500 Real 

Time PCR System (Applied Biosystems, Foster City, CA).  For qRT-PCR, 40 cycles were used 

(50°C to 95°C to 60°C).  

2.2.2. Microdialysis  

Microdialysis sampling was performed using CMA 20 microdialysis probes with 10 mm 

polyether sulfone membranes and 100 kDa MWCO (Harvard Apparatus, Holliston, MA). All 

microdialysis probes were sterilized before implantation using ethylene oxide gas (Anderson 

Sterilizers, Inc., Haw River, NC). Ringer’s solution (147 mM NaCl, 4.6 mM KCl, 2.3 mM CaCl2), 

pH 7.4 in HPLC-grade water (Fisher Scientific, Waltham, MA) with 2% bovine serum albumin 

(BSA, Rockland Immunochemical, Gilbertsville, PA) was prepared. A BAS Bee pump 

(Bioanalytical Systems Inc., West Lafayette, IN) with 1-mL glass syringes was used to pass 

perfusion fluid through the microdialysis probe.  Ringer’s with 2% BSA was used as a control 

perfusion fluid while 1 pg/mL of Iloprost + 2% BSA in Ringer’s was used as a treatment perfusion 

fluid. All perfusion fluids were autoclaved prior to the addition of BSA and iloprost and passed 

through a 0.2 µm sterile filter prior to use. Animals were placed in a CMA 120 freely-moving 

collection system (CMA Microdialysis, Solna, Sweden) after the implantation of microdialysis 

probes.   

2.2.3. Probe implantation, cytokine sampling, and tissue harvesting  

Surgical procedures and protocols were approved by University of Arkansas Institutional 

Animal Care and Usage Committee (IACUC) and followed the NIH Guide for Care and Use of 

Laboratory Animals. Male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN) in a weight 

range of 275-335 grams were used. Animals were acclimated and housed for 1 week before being 

selected for surgical operation in a temperature-controlled facility at 72°F with ad libitum access 
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to food and water.  Aseptic technique was used for all surgical procedures. All surgical instruments 

were autoclaved and cooled prior to use. Surgical procedures used for microdialysis probe 

implantation and subsequent daily handling have been previously described [2-4].  

Animals were induced with anesthetic using 5% isoflurane (Abbot Laboratories, North 

Chicago, IL) in 1 L min-1 oxygen by placing them in an induction chamber.  Rats were maintained 

under anesthesia, 3% isoflurane in 1 L min-1 oxygen, using a nose cone. Body temperature was 

monitored and maintained during surgical operation and collection period at 37°C using a 

temperature-controlled heating pad. The dorsal side, surgical site, was shaved to have a final 

clipped area approximately 5 cm width by 7.5 cm long.  The surgical site was scrubbed using 

chlorhexidine scrub moistened gauzes and 70% alcohol wipes. Four incisions were made 

(approximate ~0.75 cm per incision) perpendicular to the spine through the skin to reach the 

subcutaneous space. Two incisions were positioned on the anterior end, slightly in front of the 

shoulders blades, while the other two were placed on the posterior end with ~4 cm longitude 

separation from the anterior incisions. A horizontal spacing of a minimum of 1 cm was maintained 

between the incisions at each end. After making the incisions, a sterile plastic straw (ethylene 

oxide sterilized) was fed from the posterior incisions up a through the anterior incision. The 

microdialysis device was then inserted into the straw. The probe was implanted in the posterior 

incision by first inserting sterile split tubing along with an introducer needle into the subcutaneous 

space through the posterior incision. The introducer needle then was removed leaving the split 

tubing in the subcutaneous space. The probes were gently fed into the split tubing. Both the inlet 

and the outlet tubing were carefully passed through the straw until they were externalized from 

the anterior incisions. The split tubing and the straw were then removed. Each probe’s 

functionality was initially tested by passing sterile Ringer’s solution through the inlet at 3 µL/min 

and observing the fluid coming from the outlet tubing. The posterior incisions were sealed using 

Vetbond™. After microdialysis probe implantation, rats were moved to a CMA 120 freely moving 
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collection system which provides a continuous collection of the dialysates in awake and freely 

moving rats. At the end of the collection, the rats were aestheticized and maintained under 

anesthesia as previously described. The inlet and outlet tubing lines were clipped to about 4 

inches length and connected to each other. Wounds were flushed with sterile saline and the tubing 

lines were inserted into a subcutaneous pocket (~1 cm2) that was dissected from the anterior 

incision area toward the head.  All the incisions were closed using Vetbond™.  Sterile saline (3.0 

mL) was administered subcutaneously to prevent dehydration of the skin.  All animals were 

checked and weighed daily for the duration of the study. All rats were given a broad-spectrum 

antibiotic, Baytril (5 mg), each day post microdialysis probe implantation. On the days of 

collection, the animals were anesthetized and maintained as previously outlined. The pocket was 

wiped with chlorhexidine, and the tubing lines were externalized out of the pocket. The pocket 

area was flushed with sterile saline. After ensuring the probes allowed fluid flow, the animals were 

moved to the CMA 120 collection bowl and followed the previous steps at the end of the collection. 

For this study, two microdialysis probes were implanted in the subcutaneous space of a 

male Sprague- Dawley rat. One probe served as a control and the other was used to deliver 

iloprost. The collection period started by flushing the probes and associated tubing lines for 20 

minutes at 3 µL/minute with a rate reduction of 0.5 µL every 5 minutes until the desired flow rate 

of 1 µL/minute was reached. Line flushing is necessary to clear any air bubbles that might cause 

blockage in the collection lines and to remove the dead volume of the liquid remaining in the lines 

between the collection periods. Dialysates collected during the flush period were saved for 

chemical analysis. Dialysates were collected once an hour for 4 hours. After the 4 hours collection 

period was completed, a final flush with Ringer’s solution was performed on both sides at a flow 

rate of 3 µL/ minute for 30 minutes. The tubing lines were connected using tubing connectors 

(Harvard Apparatus) and placed back into the pocket at the nape of the animal’s neck. The 
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collection procedure was performed on the same day of probe implantation, one-day post 

implantation, and two days post implantation. 

Animals were euthanized using CO2 at the end of the third day of collection (two days post 

implantation). Tissue surrounding the probe was excised and immediately embedded in optimal 

cutting temperature solution (Sakura®Finetek, Torrance, CA) and rapidly frozen using liquid 

nitrogen prior to immunohistochemical and histological staining procedures.  

2.2.4. Iloprost release characterization 

To estimate the concentration of Iloprost released into the subcutaneous tissue, a 

measurement of the drug loss from the dialysis probe in vitro was performed. This experiment 

was implemented based on retro dialysis concepts, where reverse dialysis of the drug was 

performed. In this technique, iloprost was added to the perfusion fluid and its extraction efficiency 

(EE) was used as a measure for the loss [5]. Retrodialysis is a commonly used calibration method 

of in vivo microdialysis and has been widely used in studying the effect of localized drug delivery 

studies [6-9]. A calibrator is usually included in the perfusate during retrodialysis studies and the 

fraction of loss across the membrane to the surrounding tissue is measured. By using this 

technique, it is possible to estimate the concentration of the iloprost released into the extracellular 

fluid. The loss of the iloprost from the perfusion fluid was quantified with liquid chromatography 

coupled with tandem mass spectrometry. 

The concentration recovery was obtained using the concentration of iloprost in the 

perfusion fluid (Ci) and the concentration in the dialysates (Cdial) (Equations 1 and 2).  

 

𝐸𝐸 =
𝐶𝑖−𝐶𝑑𝑖𝑎𝑙

𝐶𝑖
 ×  100           (1)  

% 𝐿𝑜𝑠𝑡 = 100 − 𝐸𝐸       (2) 
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In vitro microdialysis and sample preparation: 

In vitro experiments used the same CMA 20 microdialysis probes with 10 mm 

polyethersulfone (PES) membranes and 100 kDa MWCO perfused at 1 µL/min with 1 mg/mL of 

iloprost in Ringer’s solution (147 mM NaCl, 4.6 mM KCl, 2.3 mM CaCl2) and 2% BSA. Dialysates 

were collected in 60 L aliquots over 3 hours.  To extract iloprost from the perfusion fluid and to 

remove the interference of the BSA and the other salts prior to subsequent mass spectrometry 

analysis, C18 spin columns (G-Biosciences, St. Louis, MA) were used. The standard protocol 

provided by the manufacturer (G-Bioscience) was adopted with some modifications. First, the 

spin column was conditioned by spinning down 100 µL acetonitrile with 0.1% formic acid three 

times to clean any organic matter trapped in the C18 material and was followed by conditioning 

the column to enable loading the sample by spinning down 100 µL 0.1% of formic acid solution 

three times. Then, the sample was loaded to the spin column, followed by a desalting step 

performed by spinning down 100 µL of 0.1% formic acid three times. To elute iloprost from the 

C18 spin column, three volumes of 100 µL of 0.1% formic acid in methanol was used. The eluate 

was dried using a stream of nitrogen or vacuum concentrator. The obtained dried sample was 

reconstituted in 50 µL ethanol prior to LC-MS/MS analysis. 

High-performance liquid chromatography-electrospray ionization-tandem mass 

spectrometry (HPLC-ESI-MS/MS)  

Iloprost concentration was quantified by HPLC-ESI-MS/MS using an HP 1100 series 

HPLC coupled to a Bruker Esquire 2000 quadrupole ion trap mass spectrometer. The iloprost 

was chromatographically separated using a (Discovery 568222-U) 5 µM C18 (15 cm x 4.6 mm) 

column. Injection volume of 3 µL, column flow rate of 0.7 µL/min, and linear gradient of 70% - 

100% methanol in water with 0.1% of formic acid were set as the conditions for the 15-min 

analysis. Mass spectra were obtained in the negative-ion mode.  The capillary of ESI was set to 

+3800 V; the nebulizer was set to 32 psi, and the dry gas was set to 12 L.min-1 at 300°C. The 
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signal was monitored using selected reaction monitoring mode at m/z 359.3 (M-H). Fragmentation 

of the 359.3 negative ion produced ion fragments of 174.5, 230.7, 268.6, and 341.0 m/z. To 

quantify iloprost, a four-point calibration curve was prepared using concentrations between 1 and 

1000 µg/mL. 

2.2.5. CCL2 quantification in the collected dialysates using ELISA  

Collected dialysates were stored at -80°C at the end of the collection day. CCL2 

concentrations were quantified in the dialysates collected over the collection period of 4 hours for 

the same day of the probe implantation, one-day post implantation, and two days post 

implantation using a BD OptEIA™ rat MCP-1 ELISA set (BD Biosciences, San Jose, CA). ELISA 

was run on the day following the three days collection period and the quantification procedure 

was followed according to the manufacturer’s instructions with modifying the sample and the 

standards volume to a 50 µL to match the dialysate volume. The flush and first-hour dialysates 

collected on the day of implantation were diluted at 1:4 ratio while the other dialysates were diluted 

at 1:10 ratio with the assay diluent provided with the ELISA kit. The concentration range of the 

ELISA kit was between 31.25 pg/mL and 2000 pg/mL.   

2.2.6. Immunohistochemical staining  

Excised frozen tissues embedded in optimal cutting temperature solution were stored at -

80°C and were cut at 5 µm thickness with a Leica CM3050 S cryostat (Leica Microsystems, 

Wetzlar, Germany) and mounted on microscope slides.  Staining was performed as previously 

described [3, 4]. After mounting, slides were fixed with methanol for 20 minutes at -20°C. Tissue 

sections were marked after that with a hydrophobic barrier pen then they were incubated with a 

blocking buffer which was composed of (PBS + 2% (v/v) horse serum + 0.05% (v/v) Tween 20 + 

0.1% (w/v) BSA for 30 minutes in a humidity chamber. After that, 4 cycles of washes were applied 

for 5 minutes per wash. The primary antibodies that were used for staining were cluster of 

differentiation 68 (CD68) (Santa Cruz Biotechnology, Dallas, TX) and cluster of differentiation 163 
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(CD163) (Santa Cruz Biotechnology, Dallas, TX). Fluorophore conjugation to the antibodies was 

performed using APEX Antibody Labeling Kits (Life Technologies, Carlsbad, CA). CD68 was 

conjugated with Alexa Fluor 488 (Life Technologies, Carlsbad, CA), while CD163 was conjugated 

with Alexa Fluor 647 (Life Technologies, Carlsbad, CA).  After the washing cycles, the tissue 

sections were incubated in the fluorophore-antibody conjugate solution at 4°C in the dark 

overnight. The antibodies-fluorophores conjugate solution had the following ratio (1:50 for CD163 

and 1:125 for CD68). On the next day, the slides were washed three times for 15 minutes per 

wash in phosphate buffered saline with protection from light. The washing buffer residues were 

removed from the biological tissues using a KimWipe tissue. After that, the slides were 

counterstained with a nuclear stain (Hoechst 34580) and were incubated for 12 minutes at room 

temperature, protected from light with three wash cycles with phosphate buffered saline for 10 

minutes per cycle. The washing buffer residues were removed from the tissues using KimWipes. 

Then, the tissue sections were covered with VECTASHIELD (Vector Laboratories, Burlingame, 

CA) and a cover slip was placed on top. A TCS SP5 II confocal microscope (Leica Microsystems, 

Wetzlar, Germany) was used to obtain images for the stained slides.  

2.2.7. Histological Staining (H&E and Masson’s Trichrome staining) 

Tissue sections were prepared at 5 µm thickness using a Leica CM3050 S cryostat (Leica 

Microsystems, Wetzlar, Germany) and mounted on microscope slides. Tissues were first fixed 

with 10% neutral buffered formalin (BDH, VWR, West Chester, PA) for 90 minutes. Both H&E and 

Masson’s Trichrome Staining were performed on the tissue sections following the standard 

protocol instructions. A Zeiss Axioskop II plus microscope (Carl Zeiss Inc., Thornwood, NY) with 

Cannon EOS Digital camera software was used to image the stained tissues. 

2.2.8.  Statistical analysis 

Origin® 2015 software platform (OriginLab Corporation, Northampton, MA) was used for 

performing statistical analyses.  For the cell culture samples analyzed by ELISA, ANOVA followed 
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by Tukey post-hoc test was used with significance set to p≤ 0.05. For qRT-PCR the relative 

expression software tool (Multiple condition solver) REST-MCS version 2 using pair wise fixed 

reallocation randomization test was used and significance was set to p≤ 0.05.  For the dialysates, 

the normality of the collected data, and thus the possibility of using parametric statistics, was 

determined using a Shapiro-Wilk test. For CCL2 concentrations measured in the collected 

dialysates, the data was presented as box-and-whiskers plots. Two-way ANOVA with repeated 

measurements and Bonferroni post-hoc test were performed to determine if there was a 

significant difference between the samples within the collection periods.  For comparing the 

CD163+ CD68+ cell percentages in the tissues around the microdialysis probe, a two-sample t–

test was performed to determine if there is a significant difference in the percentage between the 

tissues around the control and treatment probes. Significance was defined as p≤0.01. 
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2.3. Optimizing the Use of Sponge Implants as a Model to Study Macrophage Activation 

2.3.1. Sponge Implantation procedure. 

Surgical procedures and protocols were approved by University of Arkansas Institutional 

Animal Care and Usage Committee (IACUC) and followed the NIH Guide for Care and Use of 

Laboratory Animals. Male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN) in a weight 

range of 250 – 300 grams were used. Animals were acclimated and housed for 1 week before 

being selected for surgical operation in a temperature-controlled facility at 72°F with ad libitum 

access to food and water.  Aseptic technique was used for all surgical procedures. All surgical 

instruments were autoclaved and cooled prior to use.  

The PVA sponges (PVA Unlimited Inc, Warsaw, IN) measured 12 mm × 3 mm in size.  

Sponges were soaked in 0.9% sterile saline USP (Hospira, Inc., Lake Forest, IL) overnight and 

then sterilized by autoclaving at 121ºC for 30 minutes prior to use. On the day of surgical 

procedures, animals were transported from the housing room to an appropriate procedure room 

in the animal care facility. Animals were induced with anesthetic using 5% isoflurane (Abbot 

Laboratories, North Chicago, IL) in 1 L.min-1 oxygen by placing them in an induction chamber.  

Rats were maintained under anesthesia 3% isoflurane in 1 L.min-1 oxygen using a nose cone. 

Body temperature was monitored and maintained during surgical operation at 37°C using a 

temperature-controlled heating pad. The dorsal side, surgical site, was shaved to have a final 

clipped area approximately 5 cm width by 7.5 cm long.  The surgical site was scrubbed using 

chlorhexidine scrub moistened gauzes and 70% alcohol wipes. Two incisions were made 

(approximate ~1cm per incision) parallel to the spine through the skin to reach the subcutaneous 

space. One incision was positioned on the anterior end, slightly in front of the shoulders blades, 

while the other was placed on the opposite posterior end. A small (1 cm) subcutaneous pocket 

was created on the dorsal side where one PVA sponge was inserted into each pocket (Figure 

2.1). 
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Figure 2.1. Image showing the placement positions of PVA sponges. (A) Image taken at the same 
day of implantation. (B) Image taken after 7 days of implantation. Arrows point the sites of 
incisions. Images were taken by the author. 
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Optimizing the direct dosing protocol using IR750: 

Two sponges were implanted in the dorsal subcutaneous space of 3 male Sprague-

Dawley rats. All sponges were soaked in sterile lactate Ringer’s solution (USP) (Hospira, Austin, 

TX) 24 hours prior implantation. One day after implantation, subcutaneous injections of 100 µL 

IR750 (1 µM) were administered to one site of sponge implantation in each animal. One hour after 

the injections, the rats were euthanized, and fluorescence images were obtained using the IVIS 

Lumina XR system. To compare the distribution profiles of the fluorophore subcutaneous images, 

another set of 100 µL IR750 (1 µM) subcutaneous IR750 injections were administered to the other 

sponges in each animal right before obtaining images. 

Bioactive modulators studies: 

Animals were divided into three groups (6 animals in each group) where PVA sponges 

were soaked in either the vehicle solution (lactate Ringers’ solution) in group #1 (control group), 

100 µM dexamethasone in group #2 (treatment group), or 1 nM iloprost in group #3 (treatment 

group) prior to implantation. Two PVA sponges were implanted in the dorsal subcutaneous space 

of each animal. The incisions were closed using super glue. All animals were checked and 

weighed daily for the duration of the study. All rats were given a broad-spectrum antibiotic, Baytril 

(5 mg), each day post sponge implantation.  A 100 µL daily booster dose, of the assigned 

treatments, lactate Ringers’ solution to group #1 (control group), 100 µM dexamethasone to group 

#2 (treatment group), or 1 nM iloprost to group #3 (treatment group), was administered 

subcutaneously into each implantation site 24 hours after implantation until experiment 

completion (7 days post implantation). A week after implantation, animals were euthanized using 

CO2 and the tissues surrounding the PVA sponge were excised for either histological/ 

immunohistochemical analysis or CCL2 quantification. 
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2.3.2. CCL2 quantification in the collected wound fluid using ELISA  

After being explanted, sponges were squeezed into sterile protease inhibitors containing 

Eppendorf tubes to extract the wound fluid. Collected wound fluid was stored at -80 ºC until the 

day of analysis. CCL2 concentrations were quantified in the wound fluid collected after 7 days of 

implantation using a BD OptEIA™ rat MCP-1 ELISA set (BD Biosciences, San Jose, CA). The 

average collected volume obtained from each sponge was approximately 100 μL. The 

quantification procedure was followed according to the manufacturer’s instructions. ELISA 

measurements were done in triplicates for each sample. The collected samples were diluted at a 

1:500 ratio with the assay diluent provided with the ELISA kit. The concentration range of the 

ELISA kit was between 31.25 pg/mL and 2000 pg/mL. Quantified cytokine levels were normalized 

to the total protein levels in the wound fluid.  
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2.3.3. Immunohistochemical staining  

Frozen tissues embedded in optimal cutting temperature solution were stored at -80°C 

and were cut at 10 µm thickness with a Leica CM3050 S cryostat (Leica Microsystems, Wetzlar, 

Germany) and mounted on microscope slides.  Staining was performed as previously described 

in section 2.2.6 for the tissues around the microdialysis probes. After mounting, slides were fixed 

with methanol for 20 minutes at -20°C. Tissue sections were marked with a hydrophobic barrier 

pen, then incubated with a blocking buffer, composed of PBS + 2% (v/v) horse serum + 0.05% 

(v/v) Tween 20 + 0.1% (w/v) BSA, for 30 minutes in a humidity chamber. After that, 4 cycles of 

washes were applied for 5 minutes per wash. The primary antibodies that were used for staining 

were cluster of differentiation 68 (CD68) (Santa Cruz Biotechnology, Dallas, TX) and cluster of 

differentiation 163 (CD163) (Santa Cruz Biotechnology, Dallas, TX). Fluorophore conjugation to 

the antibodies was performed using APEX Antibody Labeling Kits (Life Technologies, Carlsbad, 

CA). CD68 was conjugated with Alexa Fluor 488 (Life Technologies, Carlsbad, CA), while CD163 

was conjugated with Alexa Fluor 647 (Life Technologies, Carlsbad, CA).  After the wash cycles, 

the tissue sections were incubated in the fluorophore- antibody conjugate solution at 4°C in the 

dark overnight. The antibodies- fluorophores conjugate solution had the following ratio (1:50 for 

CD163 and 1:125 for CD68). On the next day, the slides were washed three times for 15 minutes 

per wash in phosphate buffered saline with protection from light. The washing buffer residues 

were removed from the biological tissues using a KimWipe tissue. After that, the slides were 

counterstained with a nuclear stain (Hoechst 34580) and were incubated for 12 minutes at room 

temperature, protected from light with three wash cycles with phosphate buffered saline for 10 

minutes per cycle. The washing buffer residues were removed from the tissues using KimWipes. 

Then, the tissue sections were covered with VECTASHIELD (Vector Laboratories, Burlingame, 

CA) and a cover slip was placed on top. A TCS SP5 II confocal microscope (Leica Microsystems, 

Wetzlar, Germany) was used to obtain images for the stained slides.  
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2.3.4. Histological Staining (H&E and Masson’s Trichrome staining) 

Tissue sections were prepared at 10 µm thickness using a Leica CM3050 S cryostat (Leica 

Microsystems, Wetzlar, Germany) and mounted on microscope slides. Tissues were first fixed 

with 10% neutral buffered formalin (BDH, VWR, West Chester, PA) overnight. Both H&E and 

Masson’s Trichrome Staining were performed on the tissue sections following the standard 

protocol instructions. A Zeiss Axioskop II plus microscope (Carl Zeiss Inc., Thornwood, NY) with 

Cannon EOS Digital camera software was used to image the stained tissues. 

2.3.5.  Statistical analysis 

Origin® 2018 software platform (OriginLab Corporation, Northampton, MA) was used for 

performing statistical analyses.  To compare the levels of CCL2 collected from the wound fluid of 

the PVA sponges, CCL2 levels were first normalized to tissue protein concentrations. The 

normality of the obtained data and thus the possibility of using parametric statistics was 

determined using a Shapiro-Wilk test. The data was plotted as the mean value of the samples 

form 6 rats in each group, where error bars represented ±SD. Two-way ANOVA with repeated 

measurements and Bonferroni post-hoc test were performed to determine if there was a 

significant difference in CCL2 levels between the three groups.  For comparing the CD163+ CD68+ 

cell percentages in the tissues around the PVA sponges, two-way ANOVA with repeated 

measurements and Bonferroni post-hoc test were performed to determine if there is a significant 

difference in the percentages between the tissues around the control and treatment sponges. 

Significance was defined as p≤ 0.001. 
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2.4. Comparison of Polyvinyl Alcohol (PVA) vs Collagen Sponges to Assess 

Macrophage Activation Patterns in Rats 

2.4.1. Synthesis of collagen sponges 

Collagen Isolation 

The isolation process was adopted from a study published by Rajan et al. [10]. Collagen 

was extracted from the tails of male Sprague-Dawley rats that were included in previous studies. 

Prior to extraction, rat tails were soaked into 70% ethanol for 1-2 min followed by keeping it in 

phosphate buffered saline for couple of minutes. A small cut was made at the tip of the tails. Then, 

the tails were twisted to break cartilage. Skins were removed via lancet, and tendons were pulled 

with forceps to be removed. These steps were repeated until all tendons were removed. Obtained 

tendons were placed in a beaker containing 0.5 M acetic acid. Acetic acid/tendon mixture was 

magnetically stirred in an ice-bath for 4 hours and placed into a refrigerator (4°C) overnight. 

Later, dissolved tendons were filtered through a sterile triangular bandage. Filtrates were 

poured into dialysis membranes (MWCO 6000-8000), and dialysis was performed against 

deionized water (pH < 3) for 3 days at room temperature. After dialysis, collagen solution was 

poured into centrifuge tubes followed by centrifugation at 10000 rpm for 20 min to remove 

residuals. Supernatants were collected and divided into petri dishes for the freeze-drying process. 

Prior to this process, collagen containing petri dishes were kept at - 80°C for 2 days followed by 

freeze-drying for 4 days. Lyophilized collagen was kept in a Ziploc bag at 4°C for short-term use 

(Figure 2.2).  
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Collagen Scaffold Development  

Collagen solution (20 mg/mL) was prepared by dissolving lyophilized collagen in 0.5 M 

acetic acid. The dissolved collagen solution was divided into a 48-well plate as each well 

containing 500 μL collagen solution to produce collagen scaffolds that are close in dimensions to 

the PVA sponges used in chapter 4. The well plate was kept at - 80°C for a day followed by freeze-

drying for 2 days. The developed collagen sponges were further cross-linked with glutaraldehyde 

(GA) solution. Collagen sponges were placed in a beaker containing 0.5 M GA solution and placed 

on a mini-shaker for 24 h. After the crosslinking treatment, the samples were kept in 0.1 M glycine 

for 24 h to remove excess glutaraldehyde. Later, the sponges were washed with DI water three 

times for further removal of excess chemicals. Then, the samples were frozen at -80°C for a day 

and freeze-dried for one day. Produced collagen scaffold were sterilized using ethylene oxide gas 

and stored until further use.  

Figure 2.2. Produced collagen disc before glutaraldehyde crosslinking. Images were taken by the 
author. 



71 
 

2.4.2. Scaffold Characterization 

The morphological analysis of the developed collagen sponges was performed via 

scanning electron microscopy (SEM). For this, the sponges were first coated with gold using a 

sputter coater. Later, the samples were mounted on a holder using a carbon tape and 

characterized with SEM. 

2.4.3. Collagen sponge Implantation procedure. 

Surgical procedures and protocols were approved by University of Arkansas Institutional 

Animal Care and Usage Committee (IACUC) and followed the NIH Guide for Care and Use of 

Laboratory Animals. Male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN) in a weight 

range of 250 – 300 grams were used. Animals were acclimated and housed for 1 week before 

being selected for surgical operation in a temperature-controlled facility at 72°F with ad libitum 

access to food and water.  Aseptic technique was used for all surgical procedures. All surgical 

instruments were autoclaved and cooled prior to use.  

  All collagen sponges were sterilized before implantation using ethylene oxide gas 

(Anderson Sterilizers, Inc., Haw River, NC). The same surgical procedures described in section 

2.3.1 were followed. On the day of surgical procedures, animals were transported from the 

housing room to an appropriate procedure room in the animal care facility. Animals were induced 

with anesthetic using 5% isoflurane (Abbot Laboratories, North Chicago, IL) in 1 L.min-1 oxygen 

by placing them in an induction chamber.  Rats were maintained under anesthesia 3% isoflurane 

in 1 L.min-1 oxygen using a nose cone. Body temperature was monitored and maintained during 

surgical operation at 37°C using a temperature-controlled heating pad. The dorsal side, surgical 

site, was shaved to have a final clipped area approximately 5 cm width by 7.5 cm long.  The 

surgical site was scrubbed using chlorhexidine scrub moistened gauzes and 70% alcohol wipes. 

Two incisions were made (approximate ~1cm per incision) parallel to the spine through the skin 

to reach the subcutaneous space. One incision was positioned on the anterior end, slightly in front 
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of the shoulders blades, while the other was placed on the opposite posterior end. A small (1 cm) 

small subcutaneous pockets was created on the dorsal side where one collagen sponge was 

inserted to each pocket. 

Animals were divided into three groups (6 animals in each group) where collagen sponges 

were soaked in either the vehicle solution (lactate Ringers’ solution) in group #1 (control group), 

100 µM dexamethasone in group #2 (treatment group), or 1 nM iloprost in group #3 (treatment 

group) prior to implantation. Two collagen sponges were implanted in the dorsal subcutaneous 

space of each animal. The incisions were closed using super glue. All animals were checked and 

weighed daily for the duration of the study. All rats were given a broad-spectrum antibiotic, Baytril 

(5 mg), each day post sponge implantation.  A daily booster dose of the assigned treatment was 

administered subcutaneously into each implantation site 24 hours after implantation until 

experiment completion (7 days post implantation). A week after implantation, animals were 

euthanized using CO2 and the tissues surrounding the collagen sponge were excised for either 

histological/ immunohistochemical analysis or CCL2 quantification. 

2.4.4. CCL2 quantification in the collected wound fluid using ELISA  

The accumulated wound fluid was extracted by squeezing the explanted sponges into 

sterile Eppendorf tubes containing protease inhibitors. Collected wound fluid was stored at -80ºC 

until the day of analysis. CCL2 concentrations were quantified in the wound fluid collected after 7 

days of implantation using a BD OptEIA™ rat MCP-1 ELISA set (BD Biosciences, San Jose, CA). 

The average collected volume obtained from each sponge was approximately 100 μL. The 

quantification procedure was followed according to the manufacturer’s instructions. ELISA 

measurements were done in triplicates for each sample. The collected samples were diluted at 

1:500 ratio with the assay diluent provided with the ELISA kit. The concentration range of the 

ELISA kit was between 31.25 pg/mL and 2000 pg/mL. Quantified cytokine levels were normalized 

to the total protein levels in the wound fluid.  
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2.4.5. Immunohistochemical staining  

Excised frozen tissues embedded in optimal cutting temperature solution were stored at -

80°C and were cut at 10 µm thickness with a Leica CM3050 S cryostat (Leica Microsystems, 

Wetzlar, Germany) and mounted on microscope slides.  Staining was performed as previously 

described for the tissues around the microdialysis probes. After mounting, slides were fixed with 

methanol for 20 minutes at -20°C. Tissue sections were marked with a hydrophobic barrier pen, 

then incubated with a blocking buffer, composed of PBS + 2% (v/v) horse serum + 0.05% (v/v) 

Tween 20 + 0.1% (w/v) BSA, for 30 minutes in a humidity chamber. After that, 4 cycles of washes 

were applied for 5 minutes per wash. The primary antibodies that were used for staining were 

cluster of differentiation 68 (CD68) (Santa Cruz Biotechnology, Dallas, TX) and cluster of 

differentiation 163 (CD163) (Santa Cruz Biotechnology, Dallas, TX). Fluorophore conjugation to 

the antibodies was performed using APEX Antibody Labeling Kits (Life Technologies, Carlsbad, 

CA). CD68 was conjugated with Alexa Fluor 488 (Life Technologies, Carlsbad, CA), while CD163 

was conjugated with Alexa Fluor 647 (Life Technologies, Carlsbad, CA).  After the wash cycles, 

the tissue sections were incubated in the fluorophore- antibody conjugate solution at 4°C in the 

dark overnight. The antibodies- fluorophores conjugate solution had the following ratio (1:50 for 

CD163 and 1:125 for CD68). On the next day, the slides were washed three times for 15 minutes 

per wash in phosphate buffered saline with protection from light. The washing buffer residues 

were removed from the biological tissues using a KimWipe tissue. After that, the slides were 

counterstained with a nuclear stain (Hoechst 34580) and were incubated for 12 minutes at room 

temperature, protected from light with three wash cycles with phosphate buffered saline for 10 

minutes per cycle. The washing buffer residues were removed from the tissues using KimWipes. 

Then, the tissue sections were covered with VECTASHIELD (Vector Laboratories, Burlingame, 

CA) and a cover slip was placed on top. A TCS SP5 II confocal microscope (Leica Microsystems, 

Wetzlar, Germany) was used to obtain images for the stained slides.  
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2.4.6. Histological Staining (H&E and Masson’s Trichrome staining) 

Tissue sections were prepared at a 10 µm thickness using a Leica CM3050 S cryostat 

(Leica Microsystems, Wetzlar, Germany) and mounted on microscope slides. Tissues were first 

fixed with 10% neutral buffered formalin (BDH, VWR, West Chester, PA) overnight. Both H&E 

and Masson’s Trichrome Staining were performed on the tissue sections following the standard 

protocol instructions. A Zeiss Axioskop II plus microscope (Carl Zeiss Inc., Thornwood, NY) with 

Cannon EOS Digital camera software was used to image the stained tissues. 

2.4.7.  Statistical analysis 

Origin® 2018 software platform (OriginLab Corporation, Northampton, MA) was used for 

performing statistical analyses.  To compare the levels of CCL2 collected from the wound fluid of 

the collagen sponges, CCL2 levels were first normalized to tissue protein concentrations. The 

normality of the obtained data and thus the possibility of using parametric statistics was 

determined using a Shapiro-Wilk test. The data was plotted as the mean value of the samples 

form 6 rats in each group, where error bars represented ±SD. Two-way ANOVA with repeated 

measurements and a Bonferroni post-hoc test were performed to determine if there was a 

significant difference in CCL2 levels between the three groups.  For comparing the CD163+ CD68+ 

cell percentages in the tissues around the collagen sponges, two-way ANOVA with repeated 

measurements and a Bonferroni post-hoc test were performed to determine if there is a significant 

difference in the percentages between the tissues around the control and treatment sponges. 

Significance was defined as p≤ 0.001. 
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Chapter 3 

Iloprost affects macrophage activation and CCL2 concentrations in a microdialysis 

model in rats. 
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Figure 3.1. Experimental design overview of chapter 3. 
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3.1. Introduction 

Macrophages are highly versatile immune cells that play a significant role in regulating various 

aspects of inflammation [1-3]. The response of macrophages to implanted materials is deemed 

critical to improved long-term outcomes of implanted biomedical devices [4-8].Macrophages with 

high expression of surface markers, CD68 and CD163, have been recognized as being anti-

inflammatory, pro-wound healing, and pro-tissue remodeling cells which make them of high 

interest in the field of biomaterials [8, 9]. 

In this chapter, implanted microdialysis probes were used to locally deliver iloprost while 

simultaneously collecting CCL2 in dialysates.  These initial studies aimed to investigate the role 

of locally-delivered iloprost, a synthetic prostacyclin analog, via microdialysis sampling in altering 

the macrophage activation state. Cytokine pharmacology is of significant biomedical interest since 

there are many studies showing relationships between pathophysiological processes and 

cytokine concentrations [10, 11].  Iloprost effectiveness towards reducing CCL2 concentrations 

and promoting a CD163+ phenotype was assessed using cell culture techniques before use in our 

rat model.  The microdialysis probe served as a foreign body implant and also allowed testing of 

the hypothesis that iloprost could serve as a macrophage modulator promoting an anti-

inflammatory response at the implant site.   

Microdialysis is a minimally-invasive diffusion-based sampling technique that has been widely 

used in neuroscience and pharmaceutics to collect bioactive molecules [12, 13]. Microdialysis 

probes are primarily used as sampling devices, but they can also be used to locally apply different 

drugs. A major advantage of microdialysis sampling is that it allows the delivery of biochemical 

agents, such as drugs and other molecules with a molecular weight smaller than the defined 

molecular weight cutoff (MWCO), to freely diffuse across the open pores of the semi-permeable 

membrane while performing simultaneous sampling collection of endogenous solutes from the 

tissue space [14].  
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The markers used to assess the effectiveness of iloprost and its pharmacodynamic response 

were the localized concentrations of CCL2 and the presence of CD68+CD163+ macrophages 

surrounding the microdialysis implant in excised tissue. 

3.2. Results 

3.2.1. Cell culture 

Dosing NR8383 cells with iloprost (10 and 100 nM) in combination with LPS caused a 

significant reduction in measured concentrations of CCL2 from the culture media at 24 hours post 

stimulation (Figure 3.2a).  The level of expression for the surface markers CD163 and CD206, 

which are indicative of anti-inflammatory macrophages, was increased in the presence of iloprost 

(Figure 3.2b). 

  

a b 

Figure 3.2. (a)  CCL2 concentrations from NR8383 macrophage cultures 24 hr after LPS (50 
ng/mL) or LPS + iloprost.  (b). CD163 and CD206 gene expression with LPS and iloprost relative 
to LPS stimulation. * denotes p ≤ 0.05.  

 



80 
 

3.2.2. Iloprost dose optimization 

One of the challenges encountered during this study was to determine the optimal dose 

of iloprost.  Iloprost has not been used as a macrophage modulator in any foreign-body reaction 

study.  Since iloprost has anticoagulant properties, it was necessary to determine if different doses 

would affect the localized healing of the implanted microdialysis probe. Our initial studies used 

100 pg/mL of iloprost in the perfusion fluid. However, when using this dose, it was observed that 

wounds created during the microdialysis probe implantation would not properly heal.  Frequently, 

bleeding was observed around the implanted probe. In several cases, the probe would fail before 

the end of the study. For this reason, the infusion dose in the perfusion fluid was reduced to 1 

pg/mL during the study. This reduction of iloprost dosage to 1 pg/mL resulted in greatly minimizing 

the observed anticoagulation effect and significantly improved probe longevity (Figure 3.3). 

  

Figure 3.3. (A) Image showing observed bleeding around implanted microdialysis probe 
delivering 100 pg/mL of iloprost. (B) Image showing implanted microdialysis probe delivering 1 
pg/mL. Arrows point at the site of microdialysis probe implantation. Images were taken by the 
author  
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3.2.3. Iloprost release characterization 

Approximately, 90% absolute recovery was achieved during the necessary sample 

preparation steps with the dialysates for iloprost. The limit of detection (LOD) and limit of 

quantification (LOQ) were determined to be at 0.9 and 3 µg/mL, respectively. 

The estimation of the percent recovery was calculated based on the loss of iloprost from 

the perfusate, assuming that the percent recovery equals the percent loss during retrodialysis  

[15]. The loss of iloprost was 17% indicating that an approximate delivery in vivo was 0.188 pg/mL 

(17% EE / 0.9 absolute recovery for sample preparation) at the 1.0 μL/min perfusion rate through 

the implanted microdialysis probe.  

 

 

  

Chemical formula and 
Exact mass 

Chemical structure 

C13H19
- 

175.15 m/z 

 
C15H19O2

- 

231.14 m/z 

 
C22H29O3

- 

341.21 m/z 

 
 

Figure 3.4. Mass spectrum representing fragmentation of iloprost using HPLC-ESI-MS 
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3.2.4. CCL2 quantification in the dialysates: 

On the day of implantation, CCL2 concentrations were between 200 pg/mL and 12,000 

pg/mL in control animals vs. 250 pg/mL to 6000 pg/mL in animals with iloprost treatment. No 

significant difference was observed in the CCL2 concentrations between in the control and the 

treatment dialysates collected during the flush and hours 1 through 3. By hour 4, CCL2 

concentrations between controls and iloprost treatment dialysates were significantly different 

(Figure 3.5a). 

One-day post implantation (Figure 3.5b), CCL2 concentrations were between 4000 – 7500 

pg/mL in the dialysates collected from the control probe. For the iloprost treatment, CCL2 

concentrations decreased from 4000 pg/mL during the initial flush to 2500 pg/mL by the end of 

the four-hour collection period. CCL2 concentrations were found to be significantly different 

between the control and the treatment probes during this 4th collection hour. 

Two days post implantation (Figure 3.5c), the CCL2 concentrations collected remained 

steady and like those from one-day post implantation in the range of 5000-6500 pg/mL for both 

the control and treatment probes. Additionally, the treatment dialysates exhibit similar 

concentration decreases as those observed on one-day post implantation with CCL2 

concentrations decreasing from 5000 to 1800 pg/mL. The CCL2 concentrations between the 

control vs. the treatment dialysates were significantly different for the 2-, 3- and 4-hour collection 

points. 
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a  Implantation Day    b Day 1 Post Implantation 

 

 

c Day 2 Post Implantation 

  

Figure 3.5. Box-and-whiskers plots of CCL2 concentrations in the dialysates collected from both 
(1 pg/mL) iloprost treatment probes (T) and control (C) on the same day of implantation (a), 24-h 
post implantation (b) and 48 h post implantation (c). The box represents the 25–75 percentiles. 
The line through the box represents the median, whiskers represent the fence and ▫ represents 
the mean. *p ≤ 0.05, n=5 where n represents the number of animals. 
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3.2.5. Histological analysis: 

Both H&E and Masson’s trichrome staining were performed on the tissue sections 

surrounding the control and treatment probes to investigate and compare both cellular and 

collagen distribution in tissues around the explanted probes. Less cellular density was observed 

around the iloprost-treated probes as compared to the control probes (Figures 3.6 and 3.7).  A 

higher cellular density was observed with the control implants.  At higher magnification, collagen 

density was less in the tissues immediately surrounding the iloprost-treated probe compared to 

the tissues immediately surrounding the control probes (Figure 3.7). 

 

  

Figure 3.6. H&E and Masson’s Trichrome staining for tissues around the explanted microdialysis 
probe. Scale bars represent 50 μm. 
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3.2.6. Immunohistochemistry analysis 

Immunohistochemical staining was performed to determine the presence and the 

population of CD163+CD68+ macrophages among macrophages (CD68+ cells) in tissues 

surrounding the implant. At lower magnification (Figure 3.8), a greater population of 

(CD163+CD68+) cells in the tissue around the treatment probe compared to the control probe was 

observed to be denser in the range of 100-500 µm around the probe. At higher magnification, 

fewer CD163+ cells were observed in the tissue immediately surrounding the iloprost-treated 

probe compared to the cells further away. However, this population was greater than the CD163+ 

cell population in the tissue immediately surrounding the control probe. The percentage of 

CD163+CD68+ among CD68+ cells was calculated manually and compared in both treatment and 

control probes at the higher magnification (40X) to determine the population of these cells 

immediately around the probe (Figure 3.9). 

  

Figure 3.7. Masson’s Trichrome staining for tissues around the explanted microdialysis probe. 
Scale bars represent 20 μm. (M) indicates a microdialysis probe membrane. 
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Figure 3.8. Immunohistochemical staining for CD68 (green), CD163 (red), and nuclei (blue) in 
the tissue surrounding microdialysis probe. Overlapped colors represent CD68+CD163+ 
macrophages. Indicates a microdialysis probe membrane. Scale bars represent 100 µm in top 
images and 50 µm in the bottom images. 
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Figure 3.9. Box charts represent the percentage of CD68+CD163+ cells among CD68+ cells in 
the tissues immediately surrounding both control and treatment probes. The box represents the 
25-75 percentiles. The line through the box represents the median, whiskers represent the fence 
and ▫ represents the mean. *p ≤0.01, n = 5 where n represent the number of measurements. 
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3.3. Discussion 

A significant effort in the field of implanted biomedical devices and regenerative medicine 

has focused on modulating macrophages to their alternatively activated state [16]. There have 

been more recent molecular approaches to elucidating different effects of macrophage activation 

[3, 17] as well as directing macrophage activation to a desired endpoint [18]. Modulating the 

foreign body reaction to implanted biomedical devices to provide an appropriate 

microenvironment that leads to improved tissue integration and implant outcomes has been of 

historical interest for both the pharmaceutical and the biomaterial research community [3]. 

Depending on the stimulus, the macrophage population can be shifted to a desirable 

phenotype. Our recent studies have demonstrated that in vivo localized delivery of 

dexamethasone to the biomaterial implantation site could shift the macrophages to a CD163+ 

state [19, 20].  However, there have been concerns regarding using steroids with respect to 

dampening too much of the initial inflammatory response [21].  For this reason, a prostaglandin 

approach was applied. 

The microdialysis sampling probe serves as both the implanted biomaterial as well as the 

means to both deliver modulators and collect cytokines.  Since the loss of iloprost was 

approximately 15% from the microdialysis probe, this means that 1 × 10-19 g per minute of iloprost 

was being released into the tissue from the microdialysis probe.  It is not possible to perform an 

in vivo calibration as the concentrations being delivered are too low to detect.  Iloprost has been 

reported to be highly potent in different studies so the low concentrations necessary here for 

altering macrophage phenotype and response are reasonable.  In macrophage culture iloprost 

concentrations as low as 10 nM (3.6 ng/mL) caused a suppression of the inflammatory response 

to LPS.  In vivo, the use of iloprost caused a reduction in CCL2 collected concentrations and 

increased the presence of CD163+ cells in the tissue surrounding the implant. 
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After microdialysis probe insertion, the concentrations of CCL2 steadily rose with concentrations 

greatly increasing 2 hours post implantation.  At the hour 2 collection point, the CCL2 

concentrations with iloprost treatment appear to be depressed and reach a significant reduction 

relative to controls by 4 hours post implantation.  Within one-day post implantation, CCL2 levels 

were lower than the previous day around 6,000 pg/mL for controls.  As iloprost was locally 

delivered, the CCL2 concentrations gradually decreased and were significantly different at hour 

4.  At two days post implantation, the CCL2 levels were lower than the previous day with controls 

averaging roughly 4,500 pg/mL.  After 2 days, iloprost infusion to the tissue appeared to affect 

CCL2 concentrations faster than the previous day around 2 hours after initiation of the iloprost 

infusion. 

The time delay in observing an effect with decreased CCL2 concentrations with iloprost is 

consistent with our observations for another anti-inflammatory drug, dexamethasone.[20]   

Immediately after probe implantation, the expected cascade of cellular infiltration would be 

platelets (from breaching blood vessels) to neutrophils and ultimately macrophages.  Platelets are 

known to release chemokines such as CCL2.  By one-day post implantation, there are likely 

several types of cells focused on resolving the inflammation from the implant.  This may contribute 

to the longer time needed to see an effect in CCL2 concentrations from iloprost delivery.  By two 

days, the wound induced by the implant is starting to reorganize the tissue and macrophages 

would be the expected resident cells at this point in the continuum.  This may be the reason CCL2 

concentrations are observed to decline after initiation of the iloprost treatment. 

The data also illustrates that CCL2 levels rebound in the treatment group after removal of 

the iloprost.  A limitation of using 100 kDa MWCO membranes with microdialysis probes is their 

propensity to be affected by either air bubbles or other unwanted experimental artifacts.  While 

many other microdialysis studies, particularly in the brain, have been reported for long-term 

continuous collection, this is not practicable with these probes.  Thus, iloprost treatment was not 
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continuous.  CCL2 concentrations quantified in the flush fluid were similar for both treatment and 

control.  While this flush fluid represents an approximate representation of the localized cytokine 

levels surrounding the probe outside of the collection period, both probes are treated equally with 

respect to perfusion fluid flow rates.  Since the flow rate starts at 3 µL/min to flush potential air out 

of the lines and to maintain a steady flow, the CCL2 concentrations are higher than collections 

from the 1 to 4-hour time points. This is because microdialysis extraction efficiency (EE) is flow 

rate dependent and EE is lower at higher flow rates. It is common for microdialysis probes to be 

flushed before use at higher flow rates, but often these solutions are thrown away and not 

quantified.  For cytokine analysis, we chose to keep these samples and analyze them as their 

values may provide useful information. Since all the dialysates are run on a single ELISA plate 

for quantitation, this does not provide an increase in workload. 

Microdialysis sampling will remove endogenous mediators from the local implantation site.  

In these studies, alterations in the CCL2 concentrations that would be caused by continuous 

perfusion were not observed.  If this occurred, the concentrations of CCL2 collected would be 

expected to decline during sampling.  A steady-state of CCL2 concentrations appears to be 

maintained for control probes at the one and two-day time points.  This may be occurring because 

the relative amount of CCL2 being removed is approximately 10% or lower.  Our typical in vitro 

recovery for CCL2 across these membranes is roughly 10%.  However, in vivo CCL2 can bind 

tissue glycosaminoglycans allowing for a potential dynamic equilibrium with the removal of the 

material.  Nevertheless, while it is likely and expected the microdialysis probe removes different 

signaling compounds from the tissue space, iloprost delivery affected the localized response to 

the implanted dialysis probes. 

Histological analyses showed the tissues surrounding the treatment probe to be more 

fragile with less cellular infiltration and less collagen distribution compared to tissues around the 

control probes. This is observed in Figures 3.4 and 3.5 where iloprost caused less tissue 
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integration with the host tissue. This also has been observed in our studies with the immediate 

infusion of dexamethasone [20]. This observed effect is likely due to the effect of iloprost reducing 

TGF-β1- induced procollagen mRNA expression and has prevented collagen formation and 

increased collagen turnover [22]. The immunohistochemical analysis showed that local delivery 

of iloprost affected macrophage phenotype by shifting them to CD163+ macrophages, which are 

known to be tissue remodeling and major promoters for the wound healing process.  At higher 

magnification, CD163+ macrophages were observed in the tissues immediately surrounding the 

treatment probe (< 50µm).  This is also interesting since iloprost was not continuously delivered 

to the implantation site suggesting that macrophage modulation does not need continuous 

exposure to a modulator to change phenotype. 

The microdialysis technique has limitations in this type of research. The main issue is the 

diffusion restrictions affecting the collection of larger molecular weight solutes [23]. Collecting 

cytokines in vivo is a challenge and many cytokines that are known to be part of macrophage 

signaling particularly with respect to the inflammatory (IL-1β, IL-6, and TNF-α) and anti-

inflammatory response (IL-10) are difficult to collect due to their size and/or their low localized 

concentrations within the probe-implanted space.  CCL2 has a much lower molecular weight than 

these other cytokines and is more abundant in concentration.  The use of much higher molecular 

weight cutoff membranes (1 MDa) combined with special pumps (push/pull) may allow collection 

of these larger cytokine proteins. 

3.4. Conclusion 

Iloprost has been used in this work to successfully modulate macrophage phenotypes in vivo. The 

localized delivery of iloprost led to a decrease in concentration of the pro-inflammatory chemokine 

(CCL2), less cellular density and less collagen formation surrounding probes suggesting the 

potential use of iloprost in modulating the foreign body response to an implanted biomaterial.  

There is a need to investigate other potential macrophage modulators besides steroids since the 
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use of corticosteroids to suppress the inflammatory response may ultimately fail to prevent 

unwanted secondary fibrosis due to the loss of the beneficial effects caused by blocking 

endogenous prostaglandin induction [21]. This work constitutes a first building block toward 

conducting future studies to determine the utility of iloprost and other potential modulators during 

distinct stages of the foreign body response.  Other experimental variables such as delay in 

infusion time (waiting a few days post implantation), and how long a macrophage phenotypic 

response is maintained are questions that can be answered with further research. 
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Chapter 4 

Optimizing the Use of Sponge Implants as a Model to Study Macrophage Activation 
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Figure 4.1. Experimental design overview of chapter 4. 
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4.1. Introduction 

 Macrophage activation concepts have been utilized in the field of biomaterials to promote 

wound healing and enhance the biomaterials/tissue integration. Shifting the macrophages to their 

pro wound healing CD163+CD68+ state has been desirable to prolong the implants life and 

decrease the encapsulation around the implanted devices [1-4]. Among the materials 

incorporated in the biomaterials structure to be later used in wound healing and tissue repair 

studies is polyvinyl alcohol (PVA) [5-8].  

This study ultimately aims to optimize the use of PVA sponge implants and modulators 

delivery to shift the macrophage activation state to their pro wound healing state, CD163+CD68+ 

to provide better biomaterial/tissue integration outcomes at a longer time period. This study also 

aimed to testing the ability of iloprost as a macrophage modulator at a longer time, 7 days post 

sponge implantation, than what was tested for in chapter 3, 2 days post implantation. Using 

sponge implants in macrophage activation studies will serve the interest of evaluating the 

macrophage response at longer time periods. This study included optimizing the direct dosing 

system using IR-750 fluorophore to determine flow paths of the injection surrounding the PVA 

sponge implant and to isolate the variable for the subcutaneous injections administration to the 

sponge implantation site. This was followed with using both dexamethasone as the gold standard 

to assess the use of PVA sponges as a model to study macrophage activation and optimizing the 

use of iloprost as another modulator at 7 days post implantation time point. 

Using a PVA sponge as a model in wound healing studies is advantageous because of 

the ability to collect the wound fluid and various cytokines and chemokines at the implantation 

site which can be later quantified to provide an indication about the progression of the 

inflammatory status at the targeted time point. Collecting wound fluid from implanted PVA 

sponges allows for both qualitative and quantitative analyses that can evaluate the macrophage 

activation and cytokine profile around the implant. Moreover, the PVA sponge can serve as a drug 
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delivery vehicle, directly releasing the drug at the implantation site which is advantageous in 

biomaterial-host interaction studies. Thus, assessment of different drugs or biomolecules to 

modulate the microenvironment around the implanted biomaterial can be rapidly performed along 

with estimates of effective dosages that would be needed to achieve a desired biological outcome. 

4.2. Results 

4.2.1. Optimize the direct dosing protocol using IR750 

To ensure the injected modulator drugs at the implant site were reaching the implantation 

site and eliminate the variability in the subcutaneous booster dosing system, subcutaneous 

injections of fluorescent material, 100 µL IR750 (1 µM), were administered to one site of sponge 

implantation in each animal one day post implantation. Those injections helped determine the 

flow paths of the injection surrounding the implant which was observed using an IVIS Lumina XR 

system (Figure 4.2). These injections matched the volume that was useed in for the booster dose 

injections.   

To compare the distribution profiles of the fluorophore subcutaneous images, another set 

of 100 µL IR750 (1 µM) subcutaneous IR750 injections were administered to the other sponges 

in each animal. Interpretation of the obtained images suggested using the implanted sponges to 

deliver the same treatment in each animal to prevent any possible intervention between different 

treatments at the site of implantation. 
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Figure 4.2. Flow path of SC injections surrounding the PVA sponge implants. (A) Fluorescence 
image obtained after one hour of 100 µL SC IR750 (1 µM) injection at the PVA sponge 
implantation site. (B) Fluorescence image obtained immediately after a 100 µL SC IR750 (1 µM) 
injection at the PVA sponge.  
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4.2.2. CCL2 quantification in the wound fluid collected from PVA sponges 

The average volume of the collected wound fluid from each sponge was 100 µL.  Wound 

fluid was extracted from the control, dexamethasone-treated, and iloprost-treated sponges on day 

7. CCL2 levels were determined using ELISA and were normalized to total protein concentrations 

found in the sample. Data has been plotted at the mean value of samples from 6 rats. Error bars 

represent the ±SD. 

The levels of CCL2 in the wound fluid collected from the dexamethasone treated sponges 

and those collected from the iloprost treated sponges were found to be significantly less than the 

wound fluid levels of CCL2 from the control sponges (p ≤0.001). No significant difference was 

found between the wound fluid levels of CCL2 from dexamethasone-treated sponges vs.  iloprost-

treated sponges (Figure 4.3). 
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Figure 4.3. Bar graphs showing the concentration of CCL2 collected from the wound fluid around 

the control, dexamethasone-treated, and iloprost-treated sponges respectively after 7 days of 
implantation. Concentrations are given as the mean from six animals. Error bars represent the ± 
SD. Significance is denoted by *p ≤0.001, n=6 where n represent the number of animals. 
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4.2.3. Histological analyses 

 H&E and Masson’s trichrome staining were performed on the tissue sections around the 

control, dexamethasone-treated sponges, and iloprost-treated sponges to evaluate the cellular 

density and the collagen distribution at the tissue/sponge interface.  

Fewer cells were observed in the tissues surrounding both iloprost treated sponges and 

dexamethasone treated sponges compared to the tissues around the control sponges (p ≤0.001). 

Cellular density in the tissues around the iloprost treated sponges was found to be similar to that 

around the dexamethasone treated sponges (Figures 4.4 and 4.5). At a higher magnification, less 

collagen density was observed in the tissues surrounding both iloprost treated sponges and 

dexamethasone treated sponges compared to the tissues around the control sponges (Figure 

4.6).  

Figure 4.4. H&E staining for tissues around the explanted PVA sponges. Top scale bars 
represent 100 µm. Bottom scale bars represent 50 µm. (S) indicates a sponge. 
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Figure 4.5. Bar graphs showing the cell count/2500 µm2 of the tissues surrounding the control, 
dexamethasone-treated, and iloprost-treated sponges respectively after 7 days of implantation. 
The cell counts are presented as the mean from six animals. Error bars represent the ± SD. 
Significance is denoted by *p ≤0.001, n=6 where n represent the number of animals. 
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Figure 4.6. Masson’s Trichrome staining for tissues around the explanted PVA sponges. Scale 
bars represent 100 µm. (S) indicates a sponge. 
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4.2.4. Immunohistochemistry Analysis 

Immunohistochemical staining was performed to determine the presence and the subset 

population of CD163+CD68+ macrophages among macrophages (CD68+ cells) in tissues 

surrounding the control and treatment PVA sponges. More CD163+CD68+ cells were observed in 

the tissues around the iloprost-treated sponges and dexamethasone treated sponges compared 

to the tissues around the control sponges (p ≤0.001). The presence of the CD163+CD68+ cells 

was noticeable in the tissues at a range of (0 – 250 µm) surrounding the dexamethasone treated 

sponges and iloprost-treated sponges compared to almost no CD163+CD68+ cells around the 

control sponges at the same range. The percentage of CD163+CD68+ among CD68+ cells was 

calculated manually in both treatment and control probes at the higher magnification (20X) to 

evaluate the population of these cells around the implanted sponges (Figure 4.8).  
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Figure 4.7. Immunohistochemical staining for CD68 (green), CD163 (red), and nuclei (blue) in 
the tissue around the explanted PVA sponges. Overlapped colors represent CD68+CD163+ 
macrophages. Scale bars represent 250 µm. The sponge material is shown in pink. (S) Indicates 

a sponge.  
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Figure 4.8. Bar graphs showing the percentage of CD163+CD68+cells among CD68+ cells in the 
tissues around the control, dexamethasone-treated, and iloprost-treated sponges respectively 
after 7 days of implantation. The percentages are given as the mean from six animals. Error bars 
represent the ± SD. Significance is denoted by *p ≤0.001, n=6 where n represent the number of 
animals.  
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4.3. Discussion 

Historically, there has been significant interest in the role macrophages serve with respect 

to modulating the undesirable fibrotic outcome to implanted materials [9-12]. Macrophages 

functional behavior is mainly affected by their surrounding environmental cues where they 

become activated existing in a continuum of highly inflammatory to highly pro-wound healing 

phenotypes that are of importance to prevent the unwanted outcomes to biomedical implants [13-

15].  

Dexamethasone is a synthetic glucocorticoid with prevailing anti-inflammatory and 

immunosuppressive properties and has been considered the “gold” standard” in the biomaterials 

field [16-22].  Dexamethasone has shown ability to shift macrophages to their CD163+CD68+ 

phenotype, formerly called M2c activation state, which is considered critical to wound healing [23, 

24]. These studies have shown that tissue surrounding dexamethasone eluting materials are 

characterized as having reduced cellular density. Noteworthy, this finding has also been 

consistent when studying the macrophage activation after the PVA sponge implantation. Iloprost 

has also been studied in our lab for its ability to shift macrophages to their CD163+CD68+ 

phenotype in both cell culture and in-vivo at 3 days post implantation time point [25, 26]. This 

study introduced the importance of studying the effect of this modulator drug at a longer time 

point.  

The use of PVA sponge implants in our study not only served the interest of evaluating 

the macrophage response at longer time periods but also constituted a delivery vehicle of different 

drug modulators to evaluate the macrophage activation phenotype shifts in response to these 

modulators. PVA, a synthetic polymer, has been widely used in the past 30 years in several 

medical devices due its chemical resistance and its low protein adsorption properties [27-29]. 

CCL2 is a chemokine known to recruit monocytes to the implantation site in response to 

acute tissue injuries [30]. The levels of the pro-inflammatory chemokine CCL2 were significantly 
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decreased in the wound fluid collected from the dexamethasone-treated sponges and the iloprost-

treated sponges compared to the control sponges. This decrease in CCL2 levels confirms that 

both modulators exert expected anti-inflammatory properties after being administered to the 

implantation site.  

Fewer cells and less collagen distribution have been noted during the histological analyses 

in the tissues surrounding dexamethasone-treated sponges and the iloprost-treated sponges 

compared to the tissues surrounding the control sponges (Figures 4.3 and 4.4). These finding 

have also been noted in the tissues treated with iloprost at 3 days post implantation time point 

and the previously performed dexamethasone studies [23-25]. The iloprost effect on collagen 

comes from the fact that iloprost is considered an exogenous agonist to anti-fibrotic receptors that 

augment the downstream biological responses to suppress fibrosis and is mainly used to reverse 

right ventricle fibrosis by re-orchestrating the collagen balance [31].  

Treating the implanted PVA sponges with dexamethasone or iloprost resulted in shifting 

the macrophages to the CD163+CD68+ phenotype which is a crucial turning point toward improved 

integration. This confirmed the ability to use iloprost as a macrophage modulator at a longer time 

period, and allowed to study the cellular distribution around the implant. The manual quantification 

of the CD163+CD68+ phenotype among CD68+ suggested no significant difference in the ability of 

iloprost and dexamethasone to shift the macrophages to their desired CD163+CD68+ phenotype. 

However, it is also important to note that this quantification represents only the cells shown in the 

obtained immunohistochemistry images and this suggestion cannot be definitive since not the 

whole tissue was spanned to quantify the percentage of the CD163+CD68+ cells. 
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4.4. Conclusion 

The implanted PVA sponges provided a useful tool to study the macrophage activation 

profile at 7 days post implantation in addition to deliver drug modulators to the surrounding tissues 

in the aim of shifting the macrophages to their CD163+CD68+ phenotype. CCL2 in the wound fluid 

collected from the dexamethasone treated sponges and those collected from the iloprost treated 

sponges were found to be significantly less than the wound fluid levels of CCL2 from the control 

sponges, with no significant difference found between the wound fluid levels of CCL2 from 

dexamethasone-treated sponges vs.  iloprost-treated sponges. Less cellular infiltration and less 

collagen formation was observed in the tissues surrounding both iloprost treated sponges and 

dexamethasone treated sponges compared to the tissues around the control sponges. Greater 

presence of CD163+CD68+ cells was observed in the tissues surrounding both iloprost-treated 

sponges and dexamethasone-treated sponges compared to the tissues around the control 

sponges which confirms iloprost as a potent modulator of macrophage phenotype. 
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Chapter 5 

Comparison of Polyvinyl Alcohol (PVA) vs Collagen Sponges to Assess Macrophage 

Activation Patterns in Rats 
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Figure 5.1. Experimental design overview of chapter 5. 
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5.1. Introduction 

Implanted biomaterials are widely used to improve the quality of life for many different patient 

subgroups. Macrophages are the primary cells that direct immune functions and influence the 

severity of the FBR [1-3]. Biomaterials scientists have been interested in locally modulating 

macrophages at the site of the biomaterial to the alternatively activated, pro-wound healing state 

to improve the integration of many biomaterials with their host, thus saving costs and greatly 

improving quality of life [4-8].  

After confirming the ability of iloprost to modulate the macrophages phenotype, a material-

based study was designed to assess macrophage activation caused by implanted polyvinyl 

alcohol sponges vs. collagen sponges in the subcutaneous space of male Sprague Dawley rats. 

This project aimed to comparing the findings from the polyvinyl alcohol studies performed in 

chapter 4 to modulating macrophage activation phenotype after the implantation collagen 

biodegradable sponges in the subcutaneous space of male Sprague Dawley rats. The first aim of 

this project focuses on creating synthetic collagen scaffolds (sponges) in house using natural 

collagen from the rat tail. The collagen scaffolds prepared were assessed for pore size and pore 

size distribution using scanning electron microscopy (SEM).  

The second aim included implanting collagen sponges and evaluating the foreign body 

response to these implants. This also includes the delivery of the previously tested modulators, 

dexamethasone and iloprost, for their ability to shift macrophages to their pro-wound healing 

state. The use of these modulators enable screening and comparing the effect of the chemistry 

of biomaterial on macrophage activation. 

Collagen is a natural raw material that has been incorporated in the structure of implanted 

biomaterials to serve various applications [9, 10]. As researchers are getting more interested in 

including modulators into these matrices, it is of biomedical significance to determine how different 

modulators affect this material as well as the PVA sponge.   
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5.2. Results 

5.2.1. Collagen Sponges Characterization 

The morphology of collagen sponges was analyzed with the SEM. The sponges revealed 

homogenous porosity with interconnected pore networks. The pore size at the sponge surface 

was measured in a range between 100 and 200 μm, while the pore size at the inner core of the 

sponges was 30-40 μm (Figure 5.2). Developing sponges with high porosity is important, because 

the surface area increases with the porosity; and as a result, higher amounts of drug can be 

adsorbed on the surface of the sponges [11, 12]. 

  

Figure 5.2. Scanning electron microscope (SEM) images representing the morphology of 
collagen sponges at their surface and the inner core. 
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5.2.2. CCL2 Quantification in the wound fluid collected from the collagen sponges 

The average volume of the collected wound fluid from each sponge was 100 µL.  Wound fluid 

was extracted from the control, dexamethasone-treated, and iloprost-treated sponges on day 7. 

CCL2 levels were determined using ELISA and were normalized to total protein concentrations 

found in the sample. Data has been plotted at the mean value of samples from 6 rats. Error bars 

represent the ±SD. 

The levels of CCL2 in the wound fluid collected from the dexamethasone-treated sponges and 

those collected from the iloprost-treated sponges were found to be significantly less than the 

wound fluid levels of CCL2 from the control sponges in both the PVA and the collagen sponges. 

No significant difference was found between the wound fluid levels of CCL2 from dexamethasone-

treated PVA sponges vs. iloprost-treated PVA sponges. Similarly, the wound fluid levels of CCL2 

from the dexamethasone-treated collagen sponges and the iloprost-treated collagen sponges 

were also found to be similar. Interestingly, the levels of CCL2 in the wound fluid collected from 

the collagen control sponges were significantly less those collected from the PVA sponges (Figure 

5.3). 
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Figure 5.3. Bar graphs showing the concentration of CCL2 collected from the wound fluid around 
the control, dexamethasone-treated, and iloprost treated sponges respectively after 7 days of 
implantation. Concentrations are given as the mean from six animals. Error bars represent ± SD. 
Significance is denoted by *p ≤0.001, n=6 where n represent the number of animals. 
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5.2.3. Histological analyses 

H&E and Masson’s trichrome staining were performed on the tissue sections around the 

control, dexamethasone-treated sponges, and iloprost-treated sponges for both PVA and 

collagen sponges to evaluate the cellular density and the collagen distribution at the 

tissue/sponge interface.  

Fewer cells were found around the dexamethasone-treated collagen sponges and the 

iloprost-treated collagen sponges compared to those around the control collagen sponges (p 

≤0.001) (Figures 5.4 and 5.6). On the other hand, fewer cells were observed in the tissues 

surrounding both iloprost-treated PVA sponges and dexamethasone-treated PVA sponges 

compared to the tissues around the control sponges. Cell count around the iloprost-treated PVA 

sponges was found to be similar to that around the dexamethasone-treated PVA sponges (p 

≤0.001) (Figure 5.5 and 5.6).  
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Figure 5.4. H&E staining for tissues around the explanted Collagen sponges. Nuclei: blue; 
eosinophilic structures: red; basophilic structures; purple. Top scale bars represent 100 µm. 
Bottom scale bars represent 50 µm. (S) indicates a sponge. 
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Figure 5.5. H&E staining for tissues around the explanted sponges. Nuclei: blue; eosinophilic 
structures: red; basophilic structures; purple. Top images: PVA sponges. Bottom images: 
Collagen sponges. Scale bar represent 50 µm. (S) Indicates a sponge. 

 

Figure 5. Masson’s Trichrome staining for tissues around the explanted Collagen sponges. 
Cytoplasm: light red; collagen: blue. Scale bars represent 50 µm. (S) indicates a sponge.Figure 
4. H&E staining for tissues around the explanted sponges. Nuclei: blue; eosinophilic structures: 
red; basophilic structures; purple. Top images: PVA sponges. Bottom images: Collagen 
sponges. Scale bar represent 50 µm. (S) Indicates a sponge. 



123 
 

 

  

Figure 5.6. Bar graphs showing the cell count/2500 µm2 of the tissues surrounding the control, 
dexamethasone-treated, and iloprost-treated sponges respectively after 7 days of implantation. 
The cell counts are presented as the mean from six animals. Error bars represent the ± SD. 
Significance is denoted by *p ≤0.001, n=6 where n represent the number of animals. 
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Collagen distribution was observed to be less in the tissues surrounding the dexamethasone-

treated collagen sponges and the iloprost-treated collagen sponges when compared to the tissue 

around the control collagen sponges (Figures 5.7 and 5.8). Likewise, less collagen distribution 

was observed in the tissues surrounding the dexamethasone-treated PVA sponges and the 

iloprost-treated PVA sponges compared to the tissue around the control PVA sponges (Figure 

5.7) 

  

Figure 5.7. Masson’s Trichrome staining for tissues around the explanted Collagen sponges. 
Cytoplasm: light red; collagen: blue. Scale bars represent 50 µm. (S) indicates a sponge. 
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Figure 5.8. Masson’s Trichrome staining for tissues around the explanted sponges. Top images: 
PVA sponges where scale bars represent 100 µm. Cytoplasm: light red; collagen: blue. Bottom 
images: Collagen sponges where scale bar represent 50 µm. (S) Indicates a sponge. 
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5.2.4. Immunohistochemistry Analysis 

Immunohistochemical staining was performed to determine the presence of CD163+CD68+ 

macrophages among macrophages (CD68+ cells) in tissues surrounding the control and treatment 

PVA and collagen sponges. The percentage of CD163+CD68+ among CD68+ cells was calculated 

manually in both treatment and control sponges at the higher magnification (20X) to evaluate the 

population of these cells around the implanted sponges (Figure 5.9). The percentage of 

CD163+CD68+ cells among CD68+ cells was higher in the tissues around the iloprost treated 

sponges and dexamethasone treated sponges compared to the tissues around the control 

sponges when calculated for the PVA and collagen sponges (p≤ 0.001) (Figure 5.10).  

 

  

Figure 5.9. Immunohistochemical staining for CD68 (green), CD163 (red), and nuclei (blue) in 
the tissue around the explanted PVA sponges. Overlapped colors represent CD163+CD68+ 

macrophages. Top images: PVA sponges; where the sponge material is shown in pink. Bottom 
images: Collagen sponges. Scale bars represent 250 µm. (S) Indicates a sponge. 
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Figure 5.10. Bar graphs showing the percentage of CD163+CD68+cells among CD68+ cells in the 

tissues around the control, dexamethasone-treated, and iloprost-treated PVA sponges and 
collagen sponges respectively after 7 days of implantation. The percentages are given as the 
mean from six animals. Error bars represent the ± SD. Significance is denoted by *p ≤0.001 n=6 
where n represent the number of animals. 
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5.3. Discussion  

This project aims to present a model to study and compare macrophage activation in response 

to polyvinyl alcohol (PVA) non-biodegradable sponges and collagen biodegradable sponges after 

being implanted subcutaneously in male Sprague Dawley rats. These two materials represent a 

model for a degradable vs. non-degradable material. There are many types of materials, so it is 

certainly important to note we are not claiming that this model system covers all possible 

materials/tissue possibilities. While there is a growing interest in using collagen matrices in 

biomedical implants and as degradable drug-delivery scaffolds, it is necessary to study how the 

collagen matrices affect the macrophage activation patterns. It is also important to determine how 

different modulators affect the biodegradable materials of collagen sponges and compare that 

effect to the non-biodegradable material of PVA sponges. 

The physiochemical properties of the biomaterial surface play a major role in the composition 

of the early provisional matrix [20].  The relationship between the chemistry of the biomaterial and 

its influence on the foreign body response have been of major interest in terms of protein 

adsorption and complement activation [21, 22]. It has also been shown that the capsule formation 

during the inflammatory response after biomaterials implantation is dependent on the shape of 

the implant [23-25]. Cell bioactivity has been shown to be affected by the physical properties of 

implanted biomaterials including their structural composition, mechanical properties, and 

microarchitecture [13-16]. Scaffold architecture is of critical importance in the field of tissue 

engineering where scaffolds requires interconnected structure with high porosity to allow the 

cellular infiltration, ensure adequate diffusion of the nutrients into the infiltrating cells as well as 

adequate diffusion of waste products out of the scaffolds [17]. One study showed that using 

polytetrafluoroethylene materials of different pore sizes resulted in differential expression of pro-

inflammatory cytokines in vitro and decreased fibrous capsule thickness in vivo [18]. 
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Collagen scaffolds have been used as a delivery vehicle of anti-inflammatory agents, such as 

the anti-inflammatory cytokine IL-10 [19, 20] . Thus, studying the macrophage activation profiles 

after the implantation of collagen scaffolds while delivering anti-inflammatory drugs/modulators 

has a promising potential to present biomaterials with the capacity to promote regeneration as 

well as modulating the inflammatory response at the implantation site. The administration of 

iloprost and dexamethasone lead to a decrease in the levels of the pro-inflammatory chemokine 

CCL2 when they were used in two different sponge models; the PVA and collagen. Noteworthy, 

the levels of CCL2 were statistically less in the wound fluid collected from the control collagen 

sponges when compared to the control PVA sponges. 

Fewer cells were observed around the dexamethasone-treated collagen sponges and the 

iloprost-treated collagen sponges when compared to those around the control collagen sponges. 

Cells are known to mainly interact with scaffolds via ligands on the material surface. In the case 

of natural origin materials, such as collagen, the surface of these materials has Arg-Gly-Asp 

(RGD) integrin binding sequences ligands which allows for efficient binding between the cells and 

scaffold [21, 22]. However, the scaffolds made from synthetic materials don’t possess these 

ligands on their material surface. Less cellular density was observed in the tissues surrounding 

both iloprost-treated PVA sponges and dexamethasone-treated PVA sponges compared to the 

tissues around the control sponges, which has been consistent with our previous studies on both 

modulators [23-25]. Cellular density in the tissues around the iloprost-treated PVA sponges was 

found to be similar to that around the dexamethasone-treated PVA sponges. 

Both modulators, dexamethasone and iloprost, shifted the macrophages to their 

CD163+CD68+ pro-wound healing, anti-inflammatory state and the population of these cells was 

significantly higher than those around the control sponges despite differences in the scaffold 

materials. Both modulators shifted the macrophages to their pro-wound healing state within the 
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collagen sponge pores in the iloprost-treated sponges and the dexamethasone-treated sponges, 

which is critical to improve the integration of tissue/biomaterial interface. 

5.4. Conclusion 

The administration of iloprost and dexamethasone lead to a decrease in the levels of 

CCL2, less collagen formation, and an increase in the population of CD163+CD68+ in both sponge 

models compared to their corresponding control sponges. Although the levels of CCL2 in the 

wound fluid collected from the collagen control sponges were significantly less those collected 

from the PVA sponges, both materials initiated an inflammatory response cascade that was 

similar in terms of collagen distribution and CD163+CD68+ macrophages around the implant. 

Successfully synthesizing collagen scaffolds allows the use of a scaffold that is of natural origin 

and isolated from the same rat strain. Given the significance of using collagen scaffolds for many 

types of biomedical implants, this gives us an important starting point for many future studies that 

includes the use of collagen scaffolds as delivery vehicle in addition of being a tool to study wound 

healing and tissue regeneration. 
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The presented studies in this dissertation focused on determining the effect of locally 

delivered bioactive modulators on macrophage activation at the implantation site of different 

biomaterials in rats. This project has initially tested different modulator candidates, such as 

iloprost, for their ability to direct macrophages to their pro-wound healing phenotype after the 

implantation of a microdialysis probe in the subcutaneous space of male Sprague Dawley rats. 

This was followed by studying macrophage activation after the implantation of PVA sponges to 

improve tissue integration and thus long-term/successful outcomes for biomedical implants. The 

last part of this project focused on assessing macrophage activation after implanting polyvinyl 

alcohol non-biodegradable vs. collagen biodegradable sponges in the subcutaneous space of 

male Sprague Dawley rats. 

Modulating the macrophage response to implants is of significant interest as a means to 

promote improved biomaterial/tissue integration. Macrophages play a key role in regulating the 

foreign body response. The initial studies aimed to investigate the role of locally-delivered iloprost, 

a synthetic prostacyclin analog, via microdialysis sampling in altering the macrophage activation 

state. The microdialysis sampling probe served as both the implanted biomaterial as well as the 

means to both deliver iloprost and collect the pro-inflammatory chemokine, CCL2.  The 

macrophage phenotype surrounding the dialysis probes was assessed by the presence of 

CD163+CD68+ cells in the tissue surrounding the implant and by measuring CCL2 concentrations 

collected in the dialysates.  This localized delivery of iloprost via the implanted microdialysis 

probes resulted in a decrease of the pro-inflammatory chemokine CCL2 and an increase the 

population of CD163+CD68+ macrophages at two days post implantation. CD163+CD68+ 

macrophages are characterized as being anti-inflammatory, pro-wound healing and pro-tissue 

remodeling cells.  These initial studies showed that iloprost can shift macrophage activation states 

in vivo to the pro-wound healing phenotype and demonstrated the need for more experiments to 
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determine the effect of locally delivered iloprost during distinct stages of the foreign body 

response.  

To study the effect of iloprost on macrophage activation at longer time periods after the 

implantation of non-biodegradable implants, PVA sponges were chosen as a model to assist 

achieving this aim.  This study ultimately aimed to determine the appropriate time sequences 

necessary to achieve optimal modulation of macrophages that affect the tissue integration and 

thus long-term/successful outcomes for biomedical implants. This study included optimizing the 

direct dosing system using IR-750 fluorophore to determine flow paths of the injection surrounding 

the PVA sponge implant. This was followed by comparing dexamethasone (a commonly used 

steroid) with iloprost to assess this model.  Optimizing the use of iloprost as a modulator at 7 days 

post implantation time point was necessary. The implanted PVA sponges provided a useful tool 

to study the macrophage activation profile at 7 days post implantation by also delivering drug 

modulators to the surrounding tissues in the aim of shifting the macrophages to their pro-wound 

healing phenotype. CCL2 in the wound fluid collected from the dexamethasone treated sponges 

and those collected from the iloprost treated sponges were found to be significantly less than the 

wound fluid levels of CCL2 from the control sponges with no significant difference found between 

the wound fluid levels of CCL2 from dexamethasone-treated sponges vs.  iloprost-treated 

sponges. Less cellular infiltration and less collagen formation were observed in the tissues 

surrounding both iloprost-treated sponges and dexamethasone-treated sponges compared to the 

tissues around the control sponges. Greater presence of CD163+CD68+ cells was observed in the 

tissues surrounding both iloprost treated sponges and dexamethasone treated sponges 

compared to the tissues around the control sponges, which confirms iloprost as a potent 

modulator of macrophage phenotype 

Completing the previous studies confirmed the ability of iloprost to modulate the macrophage 

phenotype. A material-based study was designed to assess macrophage activation caused by 
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implanted polyvinyl alcohol non-biodegradable vs. collagen biodegradable sponges in the 

subcutaneous space of male Sprague Dawley rats. This project started by synthesizing and 

characterizing natural origin collagen scaffolds isolated from the same rat strain, followed by 

implanting collagen sponges that delivered the previously tested drug modulators, 

dexamethasone and iloprost, for their ability to shift macrophages to their pro-wound healing 

state. The administration of iloprost and dexamethasone lead to a decrease in the levels of pro-

inflammatory CCL2, less collagen formation, and an increase in the population of CD163+CD68+ 

in both sponge models compared to their correspondent control sponges. Although, the levels of 

CCL2 in the wound fluid collected from the collagen control sponges were significantly less than 

those collected from the PVA sponges, both materials initiated an inflammatory response cascade 

that was similar in terms of collagen distribution and CD163+CD68+ macrophages around the 

implant. 

Multiple studies have shown the importance of macrophage activation in wound healing and 

tissue repair. Understanding the macrophage response to different chemical cues in the 

surrounding microenvironment has been crucial to improve the implanted biomaterials integration. 

However, there is still a need to explore the effect of drug modulators on different cell lines to 

ensure that no counteractions could potentially lead to unintended side effects that hinder 

biomaterial/tissue integration. 

Since collagen scaffolds have been widely used for different applications in the biomedical 

field, this study provides an important starting point for many future studies that includes the use 

of collagen scaffolds as delivery vehicles in addition of being a tool to study wound healing and 

tissue regeneration. Also, these scaffolds will provide a tool to serve the objective of determining 

integration outcomes for sponge implants at 14 and 28 days post implantations time points during 

the foreign body response given that our past studies have only determined acute outcomes at 

3- and 7-days post implantation. These sponges can also serve the need to provide more 
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information on macrophage behavioral changes once the delivery of modulator is terminated or 

interrupted. It is important to determine how different timing of macrophage modulator application 

during the initial phase of the FBR (first 7 days) affects longer-term outcomes at 14 and 28-days 

post implantation. Performing these studies will demonstrate how long the effect of these 

modulators will last after being delivered and will determine if continuous dosing system is 

necessary to maintain the desired outcome. Noteworthy, controlling the degradation rate of 

collagen scaffolds is an important factor in long term tissue/biomaterial interaction studies. This 

can be achieved by controlling the crosslinking degree of the collagen. Another aspect that 

requires further investigation is the pore size of scaffolds and their role in wound healing with the 

presence of macrophage modulators. Pore size has been denoted as a critical property for 

modulating macrophages to their pro-wound healing state. controlling the scaffolds pore size can 

be utilized to control the integration speed of the implant with the surrounding tissues [1].  

This research provides an opportunity for further investigation to improve the longevity and 

integration of biomaterials into the host tissue. Given the complexity of the extracellular 

environment, a comprehensive analysis approach is a necessity to determine interactions 

between biomaterials and their surrounding microenvironment.  Optimization of robust 

microdialysis probes allows the localized delivery of macrophage modulators while 

simultaneously sampling during further time points during foreign body response, such as +14 

days after implantation, as fibrosis begins to peak at this time point. Performing these studies can 

provide real time cytokine profiles, gene expression levels, and histochemical and histological 

data which can be combined to further understand the molecular interaction between biomaterials 

and host tissues. Additionally, the sponge experiments are useful for the extraction of different 

cells to perform phenotypic analysis using flow cytometry and gene expression assays. 

Another important future aspect that is recently gaining major interest in the field of 

biomaterials is adjusting the balance between classically activated macrophages and alternatively 
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activated macrophages. Lately, some studies have hypothesized that allowing the biomaterials to 

first promote the classically activated phenotype of macrophages before shifting them to their 

alternatively activated phenotype would enhance the ultimate healing. This can be done by 

controlling the dosing system of the administered modulators and compare the outcomes between 

delayed macrophage modulation vs. immediate (after implantation) macrophage modulation. 

While these studies show a great promise to use iloprost as modulator for macrophage 

activation to their CD163+CD68+ pro-wound healing state in vivo resulting in improved wound 

healing, they are still limited on a handful of markers, and it may be appropriate to include a 

markers panel that provides a more conclusive characterization of the macrophage response 

associated with iloprost administration. Such panels can be provided by studying the gene 

expression profiles by isolating the macrophages from the in vivo environment and correlate these 

profiles to the available in vitro profile provided by different macrophage phenotypes [2]. Using 

flow cytometric and cell sorting analyses constitute a powerful tool to identify activated 

macrophage phenotypes throughout the use of a multiple cell surface markers panel [3, 4].  

Moreover, differentiating the angiogenesis assays has been also described as a method to 

recognize the different behaviors between macrophage phenotypes [5]. CD163+CD68+ 

macrophages are known to promote angiogenesis and tissue repair, while M1 macrophages are 

mainly anti-angiogenic  [6, 7]. Optimizing the use of the microdialysis techniques further allows 

collecting cytokines to provide a real time protein secretion profile around the implants. However, 

the main challenge is the diffusion restrictions affecting the collection of larger molecular weight 

solutes due to the fact that many cytokines that play a role in macrophage signaling such as IL-

1β, IL-6, and TNF-α and IL-10 are difficult to collect due to their size and/or their low localized 

concentrations within the probe-implanted space [8, 9].The use of large pore microdialysis probes 

with molecular weight cutoff membranes (1 MDa) combined with special pumps (push/pull) may 

allow collection of these larger cytokine proteins [8, 10].  
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