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ABSTRACT 

There is an urgent need for novel treatments for Candida infections. The utility of antimicrobial 

peptides for antifungal therapy has garnered interest in recent years. One promising family of 

peptides is the Histatins, a family of naturally-occurring peptides secreted into the oral cavity 

that display antimicrobial activity. Histatin 5 is a twenty-four amino acid peptide with strong 

antifungal activity. Studies from our laboratory have identified a small histatin-derived peptide, 

KM29, that yields fungicidal activity 10-fold greater than Histatin 5 against multiple Candida 

species. Our laboratory has focused on understanding the mechanism of action of KM29 to 

further develop it as a therapeutic agent for oral and systemic candidiasis. To this end, a genetic 

screen was carried out using the available genome-wide deletion collection in S. cerevisiae. Our 

goal was to use this as a subrogates species to learn about the killing mechanism used by KM29 

in Candida species. Analysis of the mutants revealed a significant presence of genes involved in 

mitochondrial function conferring increased resistance to KM29. We hypothesized that the S. 

cerevisiae mutants affected in different aspects of mitochondrial function will be more resistant 

to KM29 either because there is less ROS production due to their defective mitochondria, or less 

ATP production, which in turn may decrease peptide uptake and/or mitochondrial localization. 

We observed concentration dependent ROS production after exposure to KM29, however, this 

ROS production was loosely correlated with cell death. We also observed mitochondrial 

membrane potential depolarization and mitochondrial fission after exposure to KM29, indicating 

impairment of mitochondrial function. Additionally, we observed that the respiratory status of 

yeast cells inversely regulates KM29 fungicidal activity by influencing KM29 uptake. In 

conclusion, these studies provide valuable insights into the mechanism of action of KM29 and of 

cationic peptides in general.  
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LITERATURE REVIEW 

Candidiasis  

Due to advances in healthcare causing more people to be at-risk for fungal infections, the 

frequency these infections has increased, making this a growing human health concern. Most 

fungal infections are caused by Candida, Aspergillus, or Cryptococcus species of fungi, with 

Candida species being the most prevalent causative agents of mycoses-related infections (1, 2). 

The genus Candida contains approximately 150 different species, with approximately 18 being 

medically relevant (2). As harmless commensals, Candida species constitute part of the normal 

human flora, often residing as a commensal in the gut, genitourinary tract, and skin (2). Usually, 

Candida-related opportunistic mycoses arise from conditions of reduced immune function or 

imbalanced bacterial microflora (2). Diseases caused by Candida species can range from 

mucosal infections to bloodstream infections, with the former occurring much more frequently 

(3). Although there are several clinical manifestations, mucosal candidiasis is often characterized 

by white plagues occurring on mucosal surfaces (4, 5). The exception to this is vulvovaginal 

candidiasis that has unique clinical manifestations (3). Clinical manifestations of systemic 

candidiasis vary greatly as Candida species have the potential to infect nearly every organ which 

results in different presentations based on what organ becomes infected (6-9). Although 

occurring less frequently, systemic candidiasis is perceived as the more threatening human health 

concern due to the associated high mortality rate. Candida species infections are the fourth most 

common cause of nosocomial bloodstream infections in the US and have attributable mortality 

rates estimated to be between 15% and 49% (10-12). Additionally, systemic candidiasis 

infections cause significant financial burdens. In 2002, it was estimated that financial costs 

resulting from systemic candidiasis cases amounted to $1.7 billion in the US alone (13). It is 
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recognized that the most common cause of all forms of candidiasis is C. albicans, causing 90% 

of vulvovaginal candidiasis cases and 50 to 60% of systemic candidiasis cases (14-16). Likewise, 

Candida species are often subdivided into two classes: Candida albicans and non-albicans 

Candida (NAC) species. Medically relevant NAC species include C. glabrata, C. parapsilosis, 

and C. tropicalis (2). 

Candida albicans 

 C. albicans is a diploid, opportunistic pathogen. As stated above, C. albicans in the most 

common cause of all forms of candidiasis. Interestingly, this may be associated with the relative 

frequency that C. albicans is isolated from human subjects. In various studies, it has been shown 

that 30 to 60% of healthy human subjects carry C. albicans in their microflora (17). Various sites 

from which C. albicans has been isolated include: oral mucosa, vaginal mucosa, the gut, and the 

skin (2, 17, 18). Due to the diploid genome, it has been difficult to study using traditional genetic 

approaches, however, much has been clarified regarding the pathogenicity and virulence factors 

of C. albicans.  

 It comes to no surprise that C. albicans has a vast array of virulence factors given its 

ability to infect a wide range of locations and induce many different clinical manifestations. 

Some of its virulence factors include: dimorphism, secretion of adhesins and invasins, formation 

of biofilms, and secretion of hydrolytic enzymes (19).  

 C. albicans is a dimorphic fungus that can grow as either budding yeast or true hyphae 

(20). The morphogenetic switch between these two forms is regulated by several environmental 

cues such as pH, starvation, the presence of serum, temperature, and CO2 (21). Although both 

forms of C. albicans have shown to be pathogenic, the transition to hyphae is believed to be 

crucial for pathogenicity (2). Two independent studies showed that infections caused by non-
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filamentous C. albicans had reduced lethality (22, 23). Additionally, C. albicans hyphae has 

shown to be more invasive than the yeast form (20).  

 Another virulence factor of C. albicans is the secretion of adhesins and invasins. 

Adhesins are cell wall proteins that confer C. albicans the ability to adhere to surfaces or host 

cells, while invasins induce engulfment of the organism (24). Although secretion of adhesins is 

not a novel process with the genus Candida, it is important to note that C. albicans has been 

reported to have greater adherence than other Candida species (25, 26). Interestingly, several of 

the seemingly most important adhesins for C. albicans ability to adhere to surfaces are hyphae 

specific. The most notable genes implicated in adherence include those from the agglutinin-like 

sequence (ALS) gene family (27, 28). Eight members make up this family, with Als3 being 

implicated the most in adherence to host cells (28, 29). Another hyphae specific adhesin 

important for adherence is Hwp1 (28, 30). Apart from the hyphae specific proteins, numerous 

non-hyphae specific proteins have been implicated in adherence, including: Eap1, Iff4, Ecm33, 

Mp65, Phr1, Sap9, Sap10, and Int1 (31, 32).  

 Additionally, C. albicans secretes various invasins that can trigger both passive 

(endocytosis) and active (penetration) entry into host cells (31-34). Two proteins implicated in 

triggering passive engulfment of C. albicans into host cells include Als3 and Ssa1 (29, 35). 

Studies have shown that independent deletions of these result in reduced adherence and invasion 

(32, 35). In contrast, the molecular mechanisms regulating active penetration have yet to be 

clarified (19).  

 The colloquial definition of a biofilm is a “surface-associated microbial community 

surrounded by an extracellular matrix” (36). Biofilms can form on both abiotic (biomedical 

devices for example) and biotic (host cell) surfaces (19). Biofilm formation is a very relevant 
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topic in the fields of clinical microbiology and drug resistance. It is estimated that 80% of all 

microbial infections are caused by biofilms (37). Additionally, with the advent and more 

frequent use of biomedical devices such as pacemakers and catheters, it is particularly troubling. 

With regards to C. albicans, biofilm formation is of particular concern due to the azole 

antifungal resistance that is commonly associated with it (36, 38). Various explanations, such as 

changes in membrane composition, changes in cell wall composition, expression of multidrug 

resistance pumps, and presence of persister cells, have been proposed to explain the associated 

azole resistance with biofilm formation (36). Biofilm formation in C. albicans is commonly 

described as a progression through four distinct steps: substrate adherence, biofilm initiation, 

biofilm maturation, and biofilm dispersal. This progression is regulated by complex genetic 

pathways involving many genes encoding for various transcription factors and cell wall proteins 

(36).   

 Although there are several other virulence factors that aid in C. albicans pathogenicity, 

the last that will be discussed is the secretion of hydrolytic enzymes. Secretion of hydrolytic 

enzymes by C. albicans is thought to not only function in degrading host substrates relevant for 

the immune response, but also aid in acquisition of nutrients (39, 40). The secreted hydrolytic 

enzymes can be grouped into three classes: proteases, lipases, and phospholipases (19).  

 The protease class of secreted hydrolytic enzymes is largely made up of the secreted 

aspartic proteases (SAP) family (19). Ten members constitute this family and can further be 

broken down into three groups, each group associated to a particular form of candidiasis (40). 

Deletion of these members results in varying forms of reduced pathogenicity in animal infection 

models (41, 42).  
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 C. albicans has ten lipase genes and four different classes of phospholipases (43, 44). 

Studies have shown that deletion of genes from both classes of enzymes results in significant 

reduction of pathogenicity, supporting their role as virulence factors (45, 46).  

 As stated before, Candida species infections are the fourth most common cause of 

nosocomial bloodstream infections in the US, with C. albicans being the most frequent cause 

(11, 47). With advances in healthcare and an increase in population of people with risk factors, 

the frequency of Candida related infections are on the rise (2). As a growing human health 

concern, it is imperative that more resources be funneled into studying C. albicans and the other 

medically relevant Candida species.  

Non-albicans Candida species  

 Although C. albicans predominates among the species of Candida that can cause 

infection, there are other Candida species that impact human health. The most medically relevant 

non-albicans Candida (NAC) species include C. glabrata, C. parapsilosis, and C. tropicalis (2). 

To highlight the relevancy of these organisms, it is estimated that ~90% of all Candida related 

bloodstream infections are caused by C. albicans and the three NAC species mentioned (16).   

 Among all the Candida species, C. glabrata is the second most common species isolated 

in systemic candidiasis cases in the US, making this organism the most common species among 

all NAC species (47). C. glabrata is an opportunistic fungus most commonly isolated from the 

oral cavity (48). This organism has a haploid genome and is traditionally viewed as being more 

closely related to S. cerevisiae than other medically relevant Candida species (49). The haploid 

genome of C. glabrata, as well as its emergence as a significant fungal pathogen makes it an 

enticing organism to study. 
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 In contrast to C. albicans, C. glabrata is not dimorphic and only grows as yeast cells (2). 

This is interesting due to the relative importance of the yeast-hyphae switch in C. albicans 

pathogenicity, however, this may denote the distant relation between the two. Relating to this, C. 

glabrata does not express hyphae specific adhesins but instead utilizes the EPA gene family that 

encodes for non-hyphae specific adhesins (50). Similar to C. albicans, C. glabrata is able to 

form biofilms which may reflect its propensity of being isolated from dentures (51). 

Additionally, C. glabrata secretes yapsin proteases, which share similarities with SAP9 and 10 

proteases (52). Yapsin proteases are important for C. glabrata pathogenicity and survival in the 

host, as studies have shown deletion of genes encoding these proteases reduces survival in 

macrophages (53).  

Of particular clinical importance is the drug resistance often associated with C. glabrata 

infections. Various clinical isolates of C. glabrata demonstrating resistance to azoles, 

caspofungin, or polyenes have been recovered (54-56). Not only does C. glabrata have intrinsic 

resistance to azoles but various mechanisms contributing to significant azole resistance have 

been identified (2). Although the increase in C. glabrata isolated from candidiasis infections is 

believed to be due to wide-spread use of fluconazole, there is debate whether this increase has 

been exacerbated by improvements in identification methods (57, 58).  

 The second most common NAC species isolated in systemic candidiasis cases in the US 

is C. parapsilosis (47). In different regions of the world, C. parapsilosis is the second most 

common Candida species isolated in Candida related bloodstream infections (59). Bloodstream 

infections caused by this organism have shown to have mortality rates ranging from 4 to 45% 

(60, 61). Furthermore, C. parapsilosis is the second most common Candida species isolated in 

Candida related bloodstream infections originating in NICUs (62). C. parapsilosis is a diploid 
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pathogenic fungus that can grow as yeast cells or pseudohyphae (63). C. parapsilosis can be a 

part of the normal human flora, often isolated from the skin, nails, and hands, but it can also be 

found in soil, natural sources of water, and domestic animals (63-65). Additionally, C. 

parapsilosis is often isolated from medical devices and thus is a common cause of nosocomial 

infections (65). Unlike most Candida infections arising from endogenous sources, infections 

caused C. parapsilosis arise from exogenous sources (66). Although the pathogenicity and 

virulence factors of this organism haven’t been as extensively studied as they have been in C. 

albicans, it is known that biofilm formation is important for C. parapsilosis virulence (63). Also, 

various SAP gene family proteases have been identified in this organism (67). In general, 

antifungal resistance isn’t an issue with C. parapsilosis, although isolated incidents of 

amphotericin B and azole resistance have been reported (68, 69).  

 The fourth most common cause of systemic candidiasis in the US is C. tropicalis, 

however, it is the second most common cause of systemic candidiasis in Latin America and the 

Asia-Pacific region (59). Additionally, the majority of bloodstream infections caused by this 

organism arise from hematologic malignancies (62). C. tropicalis is a diploid opportunistic 

pathogen that constitutes part of the normal human flora (2, 70). This organism is able to grow as 

yeast cells or true hyphae. The ability to grow as true hyphae is a significant virulence factor, 

similar to C. albicans, and because of this, C. tropicalis is believed to be one of the most virulent 

NAC species (70). An additional virulence factor of C. tropicalis includes the secretion of 

hyphae specific adhesins, encoded by the ALS and HWF genes (71, 72). Aiding in its virulence, 

C. tropicalis secretes SAP proteases and is able to form biofilms (70, 73). Similar to C. 

parapsilosis, incidents of azole and amphotericin B resistance have been reported in C. tropicalis 

(70, 74). 
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 As stated above, it is estimated that ~90% of all Candida related bloodstream infections 

are caused by C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis (16). Additionally, even 

though C. albicans is main cause of all candida related infections, the frequency of isolation 

from infections of most of the NAC species has increased (16). Furthermore, C. glabrata and C. 

parapsilosis have been isolated from bloodstream infections occurring after specific medical 

procedures at a frequency that rivals, and sometimes surpasses, the frequency that C. albicans is 

isolated in those incidents (62). These data, as well as the reported incidents of antifungal 

resistance in the NAC species, denote the medical importance of these organisms and the need to 

develop new antifungals.  

Emerging Candida species: Candida auris 

 Adding to the medical relevancy of Candida species is the recently emerging fungal 

pathogen, Candida auris. This species was first isolated in 2009 from an ear infection of a 

patient in Japan (75). Since then, cases involving infections caused by this species have arisen 

around the globe, including in locations such as Korea, Kuwait, Germany, Brazil, South Africa, 

and several others (76-80). Additionally, there have been several cases in the US (81). 

Interestingly, the seemingly explosive emergence of this species throughout many different 

continents is thought to be due to four different clades simultaneously emerging (82).  

 Various characteristics of this species have been elucidated in the recent years. Candida 

auris is positive for biofilm formation, and only some of the strains are positive for 

phospholipase and proteinase production (83, 84). This species is similar to C. parapislosis due 

to its ability to cause exogenous nosocomial infections (84). The most alarming characteristic 

however, is the drug resistance observed in C. auris strains. Studies have shown that C. auris 

strains have considerably high fluconazole resistance (85, 86). Although echinocandins seem to 
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be effective against this species, the cost and availability of these compounds may make their use 

limited (80).  

Current antifungal therapies  

 The therapeutic agents used to treat superficial and systemic candidiasis are mainly 

limited to three classes of compounds: the polyenes, azoles, and echinocandins (87). The first 

major antifungal breakthrough came in 1953 with the discovery of Amphotericin B, a broad-

spectrum antifungal in the polyene class of compounds (88). In 2006 two new antifungals were 

approved, posaconazole and anidulafungin (87, 88). Posaconazole is an azole antifungal that is 

active against Zygomycetes and anidulafungin is an echinocandin class antifungal with good 

activity against most Candida species (88).  

 As stated above, the first class of antifungals to be discovered were the polyenes. 

Amphotericin B deoxycholate is the only compound in this class that has been clinically 

approved to treat Candida infections (87). This compound has good activity against most 

Candida species, with minimal inhibiting concentration values (MIC90) ranging from 0.12-4 (88, 

89). The exception to this is against C. krusei, a NAC species, with the MIC90 value ranging 

from 0.5-8 (88, 89). Amphotericin B works by binding to ergosterol, a fungi specific cell 

membrane component, causing the formation of pores in the cell membrane and leading to cell 

death (90, 91). This compound also doesn’t have any major drug-drug interactions, unlike many 

of the other commonly used antifungals (88). The major drawback of Amphotericin B, however, 

is its drug toxicity towards patients; it has been known to induce renal toxicity and damage. It is 

estimated that ~50% of patients who receive Amphotericin B as a therapeutic agent will 

experience adverse effects in the form of electrolyte abnormalities or renal damage (92). Due to 

the relative effectiveness of this compound against various Candida species, efforts have been 
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made to decrease the drug toxicity, most notably through the use Amphotericin B: lipid 

formulations. The major drawback of this, however, is cost (87, 93). Drug toxicity aside, 

Amphotericin B is the first choice for treatment for neonates with systemic candidiasis and for 

pregnant patients (88, 94).  

 The next class of compounds in the antifungal arsenal, and the most widely used, is the 

azoles (95). The first azole to be approved for treatment of fungal infections was miconazole, 

with many others being synthesized and approved since then, most recently posaconazole (87, 

88). The four major compounds in this class include: fluconazole, itraconazole, posaconazole, 

and voriconazole. However, there are many other azoles available for use such miconazole, 

ketoconazole, and others (88).  

This class is known for the presence of five-membered aromatic rings containing nitrogen 

atoms and the two subclasses of azoles are differentiated by the number of nitrogen atoms 

present (96). This structure is intimately related to the function and mechanism of action of this 

class of compounds as the nitrogen atoms have the propensity to bind to the heme group of 

cytochrome P450 14α-demethylase (87). This enzyme is encoded by ERG11 and is vital to the 

production of ergosterol, thus binding inhibits ergosterol biosynthesis (98). Subsequent to 

inhibition of ergosterol biosynthesis, cell growth is halted (99). It is important to note the 

fungistatic, rather than fungicidal, nature of azoles, as this characteristic could allow for drug 

resistance (98).  

Compounds within this class have differing spectra of activity; voriconazole and 

posaconazole have effective activity against all the most medically relevant Candida species, 

while fluconazole and itraconazole are effective against all except C. glabrata and C. krusei (88, 



11 
 

100, 101). This is demonstrated by the various MIC90 values for these drugs against Candida 

species.  

One of the major drawbacks of this class of compounds are the various drug-drug 

interactions they display, making it imperative for patients to review their prescriptions before 

receiving antifungal therapy (88). All four major compounds within the azole class interact 

negatively with antiarrhythmics, antipsychotics, and migraine medications, thus combinations of 

these are suggested against (88). Also, three of the four major compounds interact negatively 

with immunosuppressants (88). Another drawback of azole therapy is the accompanied drug 

toxicity. Azole therapy has been shown to induce rashes, headaches, gastrointestinal 

complications, and hepatotoxicity (102, 103). Additionally, azole therapy has been shown to 

cause birth defects, hence why Amphotericin B is the preferred antifungal for pregnant women 

(104) .  

In most instances, fluconazole is the first choice for treatment for all forms of candidiasis. 

This is mainly due to the other azole compounds not conferring significant advantages over 

fluconazole in certain manifestations of candidiasis (88). However, fluconazole can be readily 

replaced by the other azoles if the patient’s infection is at risk of developing fluconazole 

resistance or being fluconazole-refractory (88, 94).  

The final class of commonly used antifungal compounds are a group of semisynthetic 

lipopeptides called echinocandins (105). Three clinically approved compounds constitute this 

class: caspofungin, micafungin, and anidulafungin (106). The advent of this class is relatively 

recent, with the first echinocandin being discovered in the 1970s and the first echinocandin being 

approved for clinical use, caspofungin, in 2001 (87). Anidulafungin was the last echinocandin 

approved, in 2006 (Roemer, 2014). All three compounds of this class display effective activity 
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against all the medically relevant Candida species besides C. parapsilosis (88). These 

compounds also have similar activity to each other, with the MIC90 values ranging from .03-4 

across the top four medically relevant Candida species for all three compounds (107).  

These compounds function by inhibiting β-1,3 glucan synthase, thus inhibiting β-1,3 

glucan synthesis. β-1,3 glucan is an essential cell wall component of pathogenic yeast and 

inhibiting the biosynthesis of this molecule results in cell death (108). These compounds have 

few drug-drug interactions and drug toxicity problems (88). They are believed to interact with 

various immunosuppressants, but the resulting effects are mild. Likewise, adverse effects due to 

echinocandin administration are rare and mild (88).  

Various experiments have shown that echinocandin compounds are at least as effective as 

Amphotericin B and fluconazole (109, 110). Additionally, fewer adverse effects are associated 

with echinocandin administration compared to these two. Because of this, recent guidelines for 

treatment of systemic candidiasis are straying away from recommending fluconazole as the first 

choice for treatment and instead are recommending echinocandins (94).  

As stated above, the antifungal arsenal is limited to three classes of compounds: the 

polyenes, azoles, and echinocandins (87). Each class has limitations based on drug toxicity, 

drug-drug interactions, cost, and effectiveness against certain Candida species. Considering the 

small number of antifungals available and the limitations of each class, it is imperative new 

antifungals be developed.  

Drug resistance in Candida species 

 Drug resistance is a common concern in all clinical microbiology fields. For fungal 

infections caused by Candida species, it is particularly concerning due to the increase in 

frequency of infections caused by innately fluconazole resistant Candida species, C. glabrata 
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and C. krusei, and the increase in isolation frequency of fluconazole resistant Candida species 

(88, 107). Between 2001 and 2007, the in vitro resistance to fluconazole increased for four 

Candida species, including C. albicans, C. tropicalis, C. guilliermondii, and C. lusitaniae (107). 

This increase was also observed for C. krusei isolates between the years 1997 and 2007 (107). 

Although the increases in fluconazole resistant strains were minimal, the fact that there is an 

upward trend is concerning.  

 Various mechanisms of resistance for commonly used antifungals have been elucidated 

in the recent years. For fluconazole in particular, several molecular mechanisms of resistance 

spanning many Candida species have been clarified. Many of the mechanisms of resistance to 

fluconazole involve modifications of the drug target (98). As mentioned earlier, the azole class of 

compounds are inhibitors of the enzyme encoded by ERG11, 14α-demethylase (97). These 

alterations can take the form of upregulation of ERG11, point mutations of ERG11, and 

aneuploidy of chromosome 5 (98). Upregulation of ERG11 is thought to be due to gain of 

function mutations in UPC2, an upstream regulator of sterol biosynthesis (111). The specificity 

for which point mutations of ERG11 conferring increased fluconazole resistance seems to be 

low, with 21 different point mutations observed to confer resistance in C. albicans isolates (98). 

Regarding aneuploidy of chromosome 5, gain of this chromosome has been observed to increase 

fluconazole resistance (112). Each of these mechanisms of fluconazole resistance have been 

identified in C. albicans isolates, while upregulation of ERG11 and point mutations of ERG11 

have been observed in C. parapsilosis and C. tropicalis (98). Only one of these mechanisms, 

point mutations of ERG11, have been observed in the emergent Candida species, C. auris (98).  

 Two ERG11-independent mechanisms of fluconazole resistance in Candida species have 

also been clarified. These include bypassing the ERG11 pathway, and upregulation of drug 
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efflux pumps (98). Bypass of the ERG11 pathway is usually accomplished by loss-of-function 

mutations in ERG3 (113). This presumably results in a minimalization of damage caused by 

fluconazole (113). The mechanism of upregulating drug efflux pumps usually involves CDR1 

and CDR2 of the ATP-binding cassette (ABC) family or MDR1 of the major facilitator 

superfamily (MFS) class (98). Resistance is acquired because upregulation of these pumps 

results in reduced cytoplasmic levels of fluconazole (98). 

Bypass of the ERG11 pathway has been observed in C. albicans and C. tropicalis isolates 

(98). Upregulation of both classes of drug efflux pumps has been observed in C. albicans, C. 

glabrata, and C. parasiplosis. C. krusei isolates have been observed to have upregulation of the 

ABC transporters, but not the MFS transporters. In contrast, C. tropicalis isolates have been 

observed to have upregulation of the MFS transporters, but not the ABC transporters (98).  

 In addition to reports of increased frequency of fluconazole resistance, an increase in 

frequency of echinocandin resistance in Candida species has been reported (55, 114, 115). 

Although the frequencies of echinocandin resistance remain relatively low, this has the potential 

to be a great clinical concern if this upward trend continues (105). Adding to the concern is the 

fact that guidelines are now recommending echinocandins as the first choice for treatment of 

various forms of candidiasis due to its effectiveness, low drug toxicity, and minimal drug-drug 

interactions.  

 As stated earlier, the echinocandin class of compounds functions by inhibiting β-1,3 

glucan synthase, resulting in reduced cell wall integrity (108). The major subunit of this enzyme 

is encoded by FKS1 and resistance mechanisms involve point mutations of this gene (116, 117). 

Indeed, various point mutations of FKS1 have been observed in various Candida species. The 

Candida species isolates that display increased echinocandin resistance due to mutations in FKS1 
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include: C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. dubliniensis (118). Resistance 

has also been observed in C. glabrata resulting from point mutations in FKS2, a paralog of FKS1 

(55).  

 Resistance to polyenes is predicted to be rare, however, there have been reports of 

resistance to Amphotericin B in various Candida species (70, 74). It is postulated that resistance 

to Amphotericin B is caused by changes in cell membrane composition due to mutations of ERG 

genes (119, 120).  

 Although drug resistance can cause complications during antifungal therapy, the low 

frequency of echinocandin resistance observed should quell major concerns regarding drug 

resistance. It will be very important to continue conducting surveys for increased resistance, 

though, since the trends, as of now, point upward. Additionally, having more antifungals 

available will allow healthcare workers to better treat individuals affected by fungal infections, 

thus it is imperative to continue the development of novel antifungals.  
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INTRODUCTION 

Fungal infections represent a growing human health concern. Candida species are the 

causative agents of the most prevalent fungal infections in the U.S., causing superficial and 

systemic candidiasis, the latter associated with high mortality rates (2, 121). Additionally, 

Candida species are the fourth most common cause of nosocomial bloodstream infections in the 

U.S (11). The therapeutic agents used to treat superficial and systemic candidiasis are mainly 

limited to three classes of compounds: the polyenes, azoles, and echinocandins (87). The azoles 

are one of the most prescribed antifungal agent even though some strains of C. albicans and C. 

glabrata have acquired resistance to this class of compounds while other Candida species, such 

as C. krusei, are innately azole-resistant at therapeutic concentrations (98, 122). In contrast, the 

polyenes remain highly effective, but drug toxicity has limited their usage (87, 121). 

Echinocandins, the most recent addition to the antifungal arsenal, have shown to be effective 

with minimal drug toxicity and thus a promising alternative to the former classes (87, 121). 

However, an increase in acquired resistance by C. glabrata has been reported, likely due to an 

increase of usage (123-125). The limitations of each class of compounds and the present and 

future concerns of drug resistance have brought to the forefront efforts to develop new 

antifungals effective against Candida species and other pathogenic fungi.  

 One area of research that has garnered interest as a source for novel antimicrobial agents 

is the utilization of naturally occurring antimicrobial peptides (AMPs). AMPs have been 

identified in a wide range of organisms, including plants, invertebrates, and vertebrates (126). 

These peptides often serve as first line of defense against invading pathogens and are a vital 

component of innate immune systems (127, 128). One characteristic that has led to the 

excitement surrounding these peptides is the broad range of activity they display. AMPs have 



17 
 

shown to have antibacterial, antifungal, antiviral, and antitumor activity (129). In addition to the 

broad range of activities, antimicrobial peptides display varying mechanisms of action (129). 

Regarding antimicrobial peptides with antifungal properties, several mechanisms of action 

(MOA) have been proposed, including: membrane permeabilization, mitochondrial 

perturbations, initiation of apoptosis, osmotic stress, and DNA damage (130-134). Due to the 

unique MOAs presented by antimicrobial peptides, it raises the question whether some of these 

could have synergistic effects with traditional antifungal agents during combination therapy and 

indeed, synergistic effects have been reported between AMPs and antifungal agents (135, 136).  

 AMPs share the issues many promising pharmaceuticals have, including: cytotoxicity, 

expensive or laborious production, low activity, and low stability (137, 138). One increasingly 

popular technique used to minimize or circumvent these issues is the design and synthesis of 

AMP analogs (137, 138). Common ways of manipulating natural AMPs include shortening of 

the peptide, amino acid substitution, and lipid tagging (138). Shortening of AMPs can not only 

reduce the cost of production but also increase activity (137, 138). A notable example of 

increasing activity by shortening an AMP is dhvar4, a Histatin 5 derived peptide (139). Amino 

acid substitution has shown to be able to improve activity and stability (140, 141). Improvement 

of activity is usually accomplished by substituting amino acids to increase hydrophobicity or 

cationicity whereas improvement of stability is accomplished by the introduction of D-amino 

acids or bulky side chains (138). It is thought that lipid tagging improves activity by increasing 

membrane association (138).  

 Studies from our laboratory have identified a small histatin 5-derived analog, KM29 (Y-

K-R-K-F-K-R-K-Y), that yields significant fungicidal activity and is active against a variety of 

Candida species (142). Structure-function experiments were performed to identify the minimal 



18 
 

sequence (Y-K-R-K-F; KM Motif) needed to retain fungicidal activity (142). Moreover, a review 

of the literature revealed the presence of this motif in nearly every published Histatin 5-derived 

analog. This sequence was used to generate peptide variants with enhanced antifungal activity 

(142). Additionally, KM29 displayed minimal red blood cell hemolysis (142). These data denote 

the potential of KM29 to be utilized as a cost-effective antifungal therapeutic agent. Here we 

extend these studies by using S. cerevisiae as a genetically tractable model to elucidate the 

mechanism of action of KM29. We conclude by showing the conservation of MOA in the 

clinically relevant Candida albicans.  
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MATERIALS AND METHODS 

Yeast strains 

All experiments involving S. cerevisiae were carried with strain BY4741 (MATa his3∆1 leu2∆0 

met15∆0 ura3∆0) (143). In instances when mutant strains were used, these were obtained from 

the MATa haploid deletion library in the BY4741 background (144). Where indicated, 

experiments involving C. albicans were carried out with SC5314, LLF100 (SN152), or LLF088 

(SN152). LLF100 and LLF088 originate from the SN152 strain. LLF100 is a prototrophic wild 

type control strain and LLF088 carries a homozygous deletion for COQ3 (145). Unless 

indicated, strains were grown on standard YPD medium (1% yeast extract, 2% peptone, 2% 

glucose). Plates contained 2% agar (Difco). 

Genome wide screen for mutants with increased resistance or increased sensitivity to 

KM29 

Mutant strains from the S. cerevisiae MATa haploid deletion library were collected from frozen 

stocks and inoculated on OmniTray (Nunc) YPD plates for 48 hours at 30° C. Deletion strains 

were then transferred to 150 µl of sterile distilled water (diH20) in 96-well plates via 96-well pin 

replicators. The average OD600 of all the wells was calculated with a spectrophotometer (Eon, 

BioTek) and the cell count of the average OD600 was quantified with a hemocytometer. Cell 

density of individual wells was adjusted by adding more cells or adding more diH20 to achieve 

the average OD600. Cells were diluted in diH20 and added to a 96-well plate containing 0.125X 

SD+Trp (synthetic dextrose + 400 µm Tryptophan) supplemented with glucose (pH 6.0), 4 µm or 

2 µm KM29, and 50 µg/ml resazurin (Sigma) for a final concentration of 5.25x104 cells/ml. 4 

µm KM29 was used to test for increased resistance; at this concentration wild-type cells display 

no growth and growth of a deletion mutant would indicate increased resistance. 2 µm KM29 was 
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used to test for increased sensitivity; at this concentration wild-type cells display growth and lack 

of growth of a deletion mutant would indicate increased sensitivity. Each plate contained a well 

with a wild-type control (BY4741) and a negative control with no cells.  Plates containing 4 µm 

KM29 were incubated for 43-48 hours and plates containing 2 µm were incubated for 29-32 

hours at 30° C. After incubation, plates were analyzed for color change of the pH indicator, 

resazurin. Resazurin has a blue color at pH 6.0 and as the pH drops, due to by-products of 

fermentative growth in this case, transitions to orange/red. Resorufin, the acid-form of resazurin, 

can also be fully-reduced to form the colorless dihydroresorufin. Wells were analyzed for a 

transition from blue to orange/red/colorless and labeled as having growth or no growth. Each 

plate was repeated in duplicate for each concentration of KM29 and deletion mutants that 

showed growth or no growth in both trials were denoted as having increased resistance or 

increased sensitivity to KM29.  

KM29 localization in S. cerevisiae and C. albicans  

S. cerevisiae or C. albicans SC5314 was grown overnight in 5 ml of liquid YPD at 30° C or 37° 

C, respectively. The cell count of a 1:100 dilution of an overnight culture was quantified using a 

hemocytometer to determine the cell density. Cells from the overnight culture were pelleted and 

resuspended in distilled water (diH20) to a final concentration of 1x108 cells/ml. Either KM29-

FITC, MitoTracker DeepRed (Molecular Probes), or both concurrently were added to cell 

suspensions for final concentrations of 5 uM KM29-FITC and 500 nM MitoTracker DeepRed. 3 

µM KM29-FITC was used for C. albicans experiments to minimize oversaturation. MitoTracker 

DeepRed is a mitochondria specific stain that constitutively localizes to mitochondria in live 

cells. After incubation for 30 minutes at 30° C, cells were washed 2 times in 1X phosphate 

buffered saline (PBS) and visualized with a fluorescence microscope (Zeiss AxioImager M1). A 
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GFP filter (Zeiss set 38) was used to observed KM29-FITC localization and a Cy5 filter (Zeiss 

set 50) was used to observed MitoTracker DeepRed localization. 

Fungicidal activity of KM29 against S. cerevisiae and C. albicans 

Fungicidal activity of KM29 was probed using microdilution plate assays. S. cerevisiae was 

grown for 48 hours on YPD plates at 30° C. Single colonies of S. cerevisiae were resuspended in 

1 ml of 5 mM sodium phosphate (NaP) buffer, pH 7.4. Cell counts were then calculated using a 

hemocytometer. Afterwards, cells were diluted in the same buffer to reach a cell density of 

1.5x105 cells/ml. Cell suspensions were made by mixing 20 µl cells and 20 µl of peptide 

dissolved in 5mM NaP buffer. Final peptide concentrations used were 1, 2.5, and 5 µM. These 

suspensions were incubated in a shaking incubator at 220 rpm for 2 hours at 30° C. Peptide 

reactions were stopped by adding 360 µl of yeast nitrogen base (YNB). 40 µl of cell suspension 

added to 100 µl of YNB was spread onto YPD plates with 6-8 glass beads and incubated for 48 

hours at 30° C. Colony forming units (CFUs) were counted and percent survival was calculated 

as (colonies from suspension with peptide)/(colonies from suspension without peptide)x100. 

Each assay was repeated a minimum of three times.  

This protocol was modified slightly to determine fungicidal activity of KM29 against C. albicans 

LLF100 and LLF088. Initially, C. albicans was grown for 24 hours on YPD at 37° C. Due to C. 

albicans increased sensitivity to KM29, 10 mM NaP buffer was used instead of 5 mM in all 

cases, and final peptide concentrations of 0.5, 1, and 2.5 µM were used instead of 1, 2.5, and 5 

µM used for S. cerevisiae. These two changes allowed us to maintain a survival curve that 

approximately displayed 75, 50, and 25% survival, respectively. Plates were incubated for 24 

hours at 37° C.  
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In instances that petite mutants were analyzed using microdilution assays, all incubation times 

for plates were extended by 24 hours to account for the slow growth of these mutants.   

Measurement of ROS production  

S. cerevisiae was grown overnight in 5 ml liquid YPD at 30° C. Cells from the overnight culture 

were resuspended in 5 mM sodium phosphate buffer (NaP) pH 7.4 to reach a cell density of 

~OD600 1.2 and KM29 was added to final concentrations of 56 or 139 µm. After incubation for 1 

hour at 30° C, cells were washed and resuspended in 1X phosphate buffered saline (PBS). 

Dichlorofluorescein diacetate (DCFHDA; SIGMA) or dihydroethidium (DHE; Molecular 

Probes) was added to final concentrations of 10 µm or 1 µm, respectively. DCFHDA and DHE 

are fluorescent probes that upon oxidation by reactive oxygen species, transition to highly 

fluorescent molecules. For DHE related fluorescence, ethidium requires intercalating within 

DNA to fluoresce.  These solutions were incubated for 30 minutes at 30° C in the dark in a roller 

drum at medium speed. Cells were then transferred to a black 96-well plate (Costar 3603) and 

fluorescence intensity was measured with a fluorescence spectrophotometer (Eon, BioTek). 

Transition from DCFHDA to DCF was measured with λex 504 nm and λem 529 nm, and transition 

from DHE to ethidium was measured with λex 518 nm and λem 606 nm. A sample of the cells was 

also visualized with a fluorescent microscope (Zeiss AxioImager M1). DCF fluorescence was 

viewed with a GFP filter (Zeiss set 38) and ethidium fluorescence was viewed with a Rho filter 

(Zeiss set 20).  

Measurement of ROS-induced cell death 

S. cerevisiae was grown overnight in 5 ml liquid YPD at 30° C. Cells from the overnight culture 

were resuspended in fresh YPD to reach a cell density of ~OD600 1.2. N-acetyl cysteine (NAC; 

SIGMA) was added for a final concentration of 50 mM and incubated for 2 hours at 30° C in a 
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roller drum at medium speed. For cell suspensions without NAC treatment, a concomitant 

volume of diH2O was added. After incubation, cells from the two experimental groups were used 

in microdilution killing assays as described earlier.  

Assessment of mitochondrial network morphology and mitochondrial membrane potential 

To assay mitochondrial network morphology and mitochondrial membrane potential (MMP), we 

employed the Mitoloc system (146). The MitoLoc system is a microscopy-based dual 

fluorescence system used to assay in vivo mitochondrial membrane potential (MMP) and 

mitochondrial network morphology. It consists of a plasmid constructed with GFP-tagged, 

preSU9 of Neurospora crassa, and mCherry-tagged, preCOX4 of S. cerevisiae; preSU9 localizes 

to mitochondria independent of MMP, thus robustly labeling mitochondrial structures, while 

preCOX4 localization to mitochondria is MMP dependent (146). Measuring colocalization 

between the two markers allows for single cell quantification of MMP on a pixel-by-pixel basis.  

S. cerevisiae BY4741 cells were transformed with pMitoloc using a one-step yeast 

transformation protocol with the addition of a 4 hour recovery in YPD and then plated on YPD 

containing 100 µg/ml of nourseothricin (CloNat, Werner) for plasmid selection (147). One of the 

resulting transformants was used to inoculate 5 ml of liquid YPD+CloNat and grown overnight. 

A 1:100 dilution of the overnight culture was made, and the cell count of this dilution was 

quantified using a hemocytometer. Cells were pelleted and resuspended in 5 mM sodium 

phosphate buffer (NaP) pH 7.4 to reach a cell density of 1x108 cells/ml. Additionally, either 

carbonyl cyanide m-chlorophenyl hydrazine (CCCP; SIGMA) or KM29 was added to the cell 

suspensions for final concentrations of 15 µm and 166 µm, respectively. After incubation for 3 

hours at 30° C, cells were washed 2 times in 1X phosphate buffered saline (PBS) and fixed with 

10% formaldehyde (Mallinckrodt) for 30 minutes at room temperature. Afterwards, cells were 
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washed once with 1X PBS and viewed with a fluorescence microscope. The GFP filter (Zeiss set 

38) was used to observe the MMP independent mitochondrial marker and the Cy5 filter (Zeiss 

set 50) was used to observe the MMP dependent mitochondrial marker. Image stacks using Z-

spacing of 200 nm were acquired with Zeiss AxioVision image analysis software and processed 

by deconvolution. Image stacks were then analyzed using the ImageJ plugin yeast_correlation.  

KM29 uptake in S. cerevisiae and C. albicans 

S. cerevisiae or C. albicans (LLF100 and LLF088) was grown overnight in liquid YPD culture at 

30° C or 37° C, respectively. A 1:100 dilution of the cell culture was made in either 5 mM 

sodium phosphate (NaP) buffer  pH 7.4 for S. cerevisiae or 10 mM NaP buffer for C. albicans. 

Cell counts were quantified using a hemocytometer. Cells from the original culture were pelleted 

and resuspended in NaP buffer for a final cell concentration of 1x108 cells/ml and 5 µm KM29-

FITC. Cell-peptide suspensions were incubated for 30 minutes at 30° C in a roller drum at 

medium speed. Cells were washed twice and resuspended in 1X phosphate buffered saline 

(PBS). 200 µl of these cells were added to a black 96-well plate and fluorescence intensity was 

quantified in a fluorescence spectrophotometer at λex 495 nm and λem 519 nm. Additionally, cells 

were examined with a fluorescence microscope (Zeiss AxioImager M1) with a GFP filter (Zeiss 

set 38). 
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RESULTS 

Genome wide screen for mutants with increased resistance or increased sensitivity to 

KM29. In an effort to discern the antifungal mechanism of action of KM29 we took advantage 

of the S. cerevisiae non-essential deletion library and devised a modified MIC assay that would 

allow us to identify mutants that conferred either increased sensitivity of resistance to the 

peptide. The MATa haploid mutant library in the BY4741 background was screened for 

increased resistance and increased sensitivity to KM29 compared to the wild-type. Mutants with 

increased resistance were identified by the ability to grow in the presence of a KM29 

concentration that completely inhibited wild-type growth, while mutants with increased 

sensitivity were identified by the inability to grow in the presence of a KM29 concentration that 

did not inhibit wild-type growth. Of the ~4900 mutants tested, 1,360 displayed increased 

resistance in duplicate while 508 displayed increased sensitivity in duplicate. These mutants 

represented ~27 and ~10% of the total number of mutants screened, respectively.  

 Two clustering methods were carried out on the mutants to identify any patterns 

associated with increased resistance or increased sensitivity. The first clustering analysis 

employed was GO annotation from the SGD database (Table 1A & 2A). GO annotation grouping 

is based on annotations derived from published experiments in the GO database. ORF lists for 

mutants that displayed increased resistance or sensitivity were inputted into the Yeast GO-

SlimMapper and grouped by “Process”. The second clustering analysis employed was FunSpec 

(Table 1B & 2B). FunSpec clustering is derived from published experiments in the GO database 

as well as the MIPS database. ORF lists for mutants that displayed increased resistance or 

sensitivity were inputted into FunSpec and grouped based on various parameters such as 

function, process, localization, protein complexes, phenotypes, etc.  
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 To analyze the results of the GO annotation clustering, the normalized genome frequency 

(cluster number/genome number x 100) was calculated for each Biological Process and ranked in 

descending order. As shown in Table 1A, several functional categories were enriched in the 

mutants that displayed increased resistance. Interestingly, a few biological processes relating to 

mitochondrial function were among the most enriched, including: mitochondrial translation, 

cellular respiration, and mitochondrion organization. These categories had normalized genome 

frequencies of 37, 35, and 31%, respectively. Amino acid transport and generation of precursor 

metabolites and energy were also heavily enriched processes. Surprisingly, sporulation had the 

third highest normalized genome frequency at 35%.  

 Further quantification of the categories enriched by the resistant mutants supported the 

findings by the GO annotation clustering (Table 1B). In every category, mitochondrial related 

annotations were the most significantly represented. Revealing is the fact that a respiratory 

deficiency phenotype was one of the most significantly enriched annotations. This may denote 

the underlying reason for why so many mitochondrial mutants were uncovered. Understanding 

the relationship between mitochondria and KM29s mechanism of action served as the basis for 

the rest of the studies presented.  

 Analysis of the mutants with increased sensitivity to KM29 by GO annotation clustering 

revealed invasive growth in response to glucose limitation, organelle inheritance, and 

cytoplasmic translation as the functional categories with the three highest normalized genome 

frequencies (Table 2A). These categories had normalized genome frequencies of 27, 23, and 

22%, respectively. Interestingly, endosomal transport and vesicle organization had high 

normalized genome frequencies as well. Analysis of these mutants by FunSpec revealed an 

increased significance of annotations relating to endosomal transport and vacuolar function than 
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the GO annotation clustering revealed (Table 2B). In every category, an annotation relating to 

the endosome was significantly enriched. Additionally, translation related annotations were also 

present. Interestingly, the divalent cation and heavy metal sensitivity phenotype was significantly 

enriched by the mutants that displayed increased sensitivity to KM29.  

KM29 localizes to mitochondria in S. cerevisiae and C. albicans. Among the mutants that 

displayed increased KM29 resistance there was a prevalence of mitochondrial annotations that 

prompted us to investigate the relationship between mitochondrial function and the mechanism 

of action of KM29. To study whether there was a direct association between KM29 and 

mitochondria, the internal localization of KM29 was investigated with fluorescence microscopy. 

S. cerevisiae and C. albicans cells were incubated with 5μM and 3μM KM29-FITC, respectively, 

and 500nM MitoTracker DeepRed concurrently. Preliminary work showed that labeling of 

KM29 with FITC did not affect the fungicidal activity of KM29, assessed by minimum 

inhibitory concentration assays (data not shown). KM29-FITC localized in a punctate pattern 

with some cells displaying increased localization near the cell periphery in S. cerevisiae and C. 

albicans (Fig. 1). In both organisms, partial colocalization occurred between KM29-FITC and 

the mitochondria-specific stain, MitoTracker DeepRed. These data indicate that KM29 is directly 

associated with mitochondria once internalized by S. cerevisiae and C. albicans even though 

some KM29 remains cytosolic, perhaps due to interaction with other cellular targets.  

KM29 fungicidal activity is dependent on Electron Transport Chain function. The results 

from the genome wide screen and KM29 localization study demonstrated mitochondria play a 

role in the mechanism of action of KM29 and led us to hypothesize that the process of aerobic 

respiration plays an intimate role in KM29 fungicidal activity. To test this hypothesis, as well as 
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confirm the results of the genetic screen, we performed microdilution killing assays with S. 

cerevisiae deletion mutants encompassing the Electron Transport Chain (ETC) complexes.  

Ndi1, NADH:ubiquinone oxidoreductase, is the only subunit of the yeast Complex I, 

responsible for transferring elections from NADH to ubiquinone in the respiratory chain (148). 

The ndi1∆ strain didn’t show significantly increased resistance to KM29 in either the 

microdilution killing assays or the genome wide screen (Fig. 2). We next assayed Sdh2, a subunit 

of succinate dehydrogenase and a constituent of Complex II, which receives electrons from 

FADH2 (148). The sdh2∆ strain showed significantly increased resistance to KM29 and 

likewise, was uncovered to have increased resistance in the genome wide screen. It is important 

to note that minor amounts of respiration can still occur in single deletion mutants of each of 

these, and therefore, this may reflect the ability of KM29 to still have fungicidal activity against 

single deletion mutants of these complexes.  

The next two complexes in the ETC series, Complex III (cytochrome bc1 complex) and 

Complex IV (cytochrome c oxidase), are essential for respiration (148). A deletion of the genes 

encoding essential subunits in each of these complexes (qcr7∆, cox9∆, and cox12∆) results in 

significantly increased resistance to KM29, almost reaching 100% survival (Fig. 2). The three 

mutants also displayed high resistance in the genome wide screen. This increased resistance is 

presumably due to the complete lack of respiration in these mutants. Qqcr10∆ is a non-essential 

subunit in the cytochrome bc1 complex; it is the last subunit to be assembled to the complex but 

is not required for respiratory growth (149). According to our hypothesized relationship between 

aerobic respiration and KM29 mechanism of action, we would expect a qcr10∆ strain not to be 

resistant to KM29 since it is still able to respire. Indeed, qcr10∆ cells were sensitive to KM29, 

not significantly different from the wild-type strain. Interestingly, the qcr10∆ mutant was also 
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identified in the screen for increased resistance to KM29, which we interpret as a false positive, 

likely a result of the extreme sensitivity of the MIC assay detecting slight perturbations in growth 

rates. Altogether these results confirm our hypothesis that KM29 fungicidal activity is dependent 

on ETC function; cells defective in respiration are more resistance to KM29. 

Reactive oxygen species (ROS) production in S. cerevisiae. The above results implicating the 

ETC in KM29 activity raise the possibility that perturbations of the ETC may be involved in 

initiating/causing cell death. One of the most common outcomes of aberrant ETC function is 

ROS formation. Two, common fluorescent probes suitable for measuring ROS formation include 

dichloroflourescein diacetate (DCF-DA) and dihydroethidium (DHE). To measure ROS 

formation induced by KM29, we preloaded cells with either 10μM DCF-DA or 1μM DHE and 

subsequently treated them with increasing concentrations of KM29. ROS formation was 

analyzed with fluorescent spectrophotometry and fluorescent microscopy. KM29 induced ROS 

formation regardless of the probe used to test it. When measured with 10μM DCF-DA ROS 

formation increased upon treatment with KM29 in a concentration dependent manner (Fig. 

3A,B). However, when measure with 1µM DHE, the significant increase in ROS formation 

appears to reach a plateau with 56µm KM29 (Fig. 3C,D). This is presumably the maximum level 

of ROS detected due to the minimal concentration of DHE that was used to preload cells. As 

suggested, 1μM DHE was used to avoid artifacts caused by excessive DHE (150).  

 To assess whether there is a correlation between KM29-induced, ROS formation with 

KM29 fungicidal activity, cells were preloaded with n-acetyl cysteine (NAC), a known ROS 

scavenger, and subsequently used in microdilution killing assays. NAC treatment completely 

abolished KM29-induced, ROS formation but did not increase survival by a concomitant 

amount; NAC pretreatment led to ~15% increase in survival at each KM29 concentration (Fig. 
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3E, 3F). This is consistent with the findings from the genome wide screen as only one gene 

associated with the oxidative stress response was found to be more sensitive to KM29 when 

deleted. These results indicate that ROS formation contributes to KM29 fungicidal activity, but it 

is unlikely the only source of damage caused by KM29.  

KM29 causes depolarization of the mitochondrial membrane potential and mitochondrial 

fragmentation in S. cerevisiae. To explore other mitochondrial perturbations possibly caused by 

KM29, we employed the MitoLoc system to assay in vivo mitochondrial membrane potential 

(MMP) and mitochondrial network morphology. A plasmid expressing GFP-tagged preSU9 and 

mCherry-tagged preCOX4 was introduced into wild-type and qcr7∆ strains. preSU9 localizes to 

mitochondria independent of MMP, thus robustly labeling mitochondrial structures, while 

preCOX4 localization to mitochondria is MMP dependent (146). Colocalization of the two 

markers allows for single cell quantification of MMP. Transformed wild-type cells were treated 

with either a non-lethal concentration of KM29 or 15μM CCCP (as a positive control for MMP 

disruption). The Pearson Correlation Coefficient was significantly decreased when cells were 

treated with either KM29 or CCCP, indicating a decrease in MMP (Fig. 4A). We included qcr7∆ 

cells as an additional control. Since these cells are respiratory-deficient we expected the Pearson 

Correlation Coefficient to be very low, as indeed was the case. In addition to lowering MMP, 

KM29-treated cells displayed clear mitochondrial fragmentation when compared with untreated 

cells (Fig. 4B). Also noteworthy is the fact that mitochondrial fragmentation did not occur in 

neither the CCCP treated cells nor the transformed qcr7∆ cells. These data show that the 

physiological status as well as the structure of mitochondria is significantly affected by KM29 

treatment, consistent with KM29 localization to mitochondria and the ETC involvement in its 

fungicidal activity. 
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Respiratory status inversely regulates KM29 uptake in S. cerevisiae. The results thus far 

revealed mitochondria as one of the sites for KM29 induced perturbations, however, these 

findings have not clarified the mechanism by which respiratory deficiency confers cells nearly 

complete resistance to KM29. To investigate whether the resistance associated with respiratory 

deficiency is a consequence of a cytoplasmic effect or could also be affecting uptake of the 

peptide we measured KM29-FITC uptake in the ETC mutants presented earlier. Surprisingly, the 

respiratory capability of each mutant inversely regulates KM29 uptake (Fig. 5), i.e. mutants that 

are completely respiratory deficient have minimal KM29 uptake and mutants that have partially 

decreased respiratory capabilities have intermediate levels of KM29 uptake. The decrease in 

KM29 uptake is reflected in the killing assays presented in Fig. 2. We also looked at KM29 

uptake and KM29 fungicidal activity in ATP synthase mutants. Since ATP synthase is the final 

complex involved in energy production from aerobic respiration, we hypothesized that these 

mutants would be deficient in KM29 uptake. Indeed, mutants of ATP synthase showed to have 

minimal KM29 uptake and ~100% survival when treated with 2.5μM KM29 (Fig. 5). Since ATP 

synthase isn’t involved in electron shuttling nor establishment of the proton gradient, this raises 

the intriguing possibility that the underlying reason KM29 resistance is observed in respiratory 

deficient cells is due to reduced ATP production.  

Respiratory status inversely regulates KM29 uptake and killing in C. albicans. The purpose 

of the genetic screen using the available genome-wide deletion collection in S. cerevisiae was to 

use this as a subrogates species to learn about the killing mechanism used by KM29 in Candida 

species. Therefore, we asked if our findings in S. cerevisiae would extend to the clinically 

relevant Candida albicans. To do this we analyzed KM29 uptake and killing in a coq3∆ mutant 

of C. albicans. COQ3 encodes an enzyme involved in the synthesis of mitochondrial ubiquinone. 
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Ubiquinone shuttles electrons from Complex I & II of the ETC to Complex III (151). Absence of 

ubiquinone results in respiratory deficiency, thus we would expect KM29 uptake and killing to 

be decreased in this mutant when compared to the wild-type. The coq3∆ mutant had significantly 

decreased KM29 uptake and this is reflected in the survival when both the mutant and wild-type 

were treated with 1μM KM29 (Fig. 6A). In addition, the S. cerevisiae coq3∆ mutant shared this 

phenotype (Fig. 6B). Interestingly, when we compared KM29 uptake between S. cerevisiae and 

C. albicans wild-type cells (Fig. 6B & 6E), C. albicans had substantially higher KM29 uptake, 

which correlates with the increased sensitivity of C. albicans to KM29.  
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DISCUSSION 

The goal of this study was to elucidate the fungicidal mechanism of action of the novel 

antifungal peptide, KM29, inspired on the naturally occurring histatins. We initially developed 

and performed an unbiased screen of the haploid deletion collection in S. cerevisiae to identify 

mutations that confer increased resistance or increased sensitivity to KM29 in an effort to 

uncover genetic pathways involved in the mechanism of action of KM29. Of the ~4,900 mutants 

tested, 1,360, ~27% of the total mutants displayed increased resistance while 508, ~10% of the 

total mutants tested displayed increased sensitivity. We hypothesized that any biological process 

implicated in increased resistance to KM29 may represent an intracellular target of the peptide, 

way of entry into the cell, or alterations in the cell wall and membranes. In contrast, we 

hypothesized that any biological process implicated in increased sensitivity may represent a 

defense system against KM29 fungicidal effects, or alterations in the cell wall and membranes. 

Although broad, these served as our basis for analyzing the results of the genetic screen. 

Genetic pathways implicated in increased sensitivity to KM29  

Regarding the mutants that conferred increased sensitivity to KM29, statistical analysis 

with the Yeast GO-SlimMapper revealed several biological processes. Those with the most 

significant representation included invasive growth in response to glucose limitation, organelle 

inheritance, cytoplasmic translation, endosomal transport, vesicle organization, and protein 

glycosylation. In addition, we performed a FunSpec analysis of these mutants which revealed 

endosomal and vacuolar mutants to be at the intersection of these two analyses. 

 It is interesting that these two systems are implicated in sensitivity to KM29, as they 

both have functions in degradation of cell membrane proteins (152). This process begins with 

endocytosis and formation of vesicles carrying membrane components. These vesicles 

coalescence to form early endosomes (152). From here, cargo in early endosomes is sorted into 
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those components destined for degradation in the vacuole and those destined for the golgi in 

order to be recycled (152). It is possible that upon contact with the cell membrane, KM29 

induces damage on cell membrane components which signals these components to be 

endocytosed and degraded. Impairment of the endocytosis system may result in accumulation of 

damaged molecules on the cell membrane, thus resulting in collapse of cell membrane integrity 

and eventually cell death. Likewise, impairment of the system that transports these damaged 

molecules to the vacuole, or of the vacuole itself, may result in intracellular accumulation of 

damaged membrane components and cause further damage. The explanation is particularly 

interesting given the cationic nature of KM29 and the numerous reports of cationic molecules 

interacting with membranes on various cells to induce pore formation or membrane damage 

(153-155).   

Vacuoles also play an important role in cellular homeostasis by storing various ions and 

molecules (156). In a scenario where KM29 induces osmotic stress, the vacuole would serve to 

counter this stress. Impairment of the vacuolar function, in this scenario, would lead to the cell 

being less able to cope with the osmotic stress caused by KM29, thus causing increased 

sensitivity. Confirmation of this would denote a conservation of mechanism of action between 

KM29 and Histatin 5, the protein from which KM29 was designed, as a study found that Histatin 

5 induces osmotic stress in C. albicans (157). This possibility is slightly attenuated, however, by 

the low frequency for which genes categorized in the response to osmotic stress biological 

process were enriched by our genetic screen.   

Supporting the implication of endosomal and vacuolar function in increased sensitivity to 

KM29 is the redundant categorization of endosomal-vacuolar genes into seemingly unrelated 

biological processes with high normalized genome frequencies in our screen. For example, 
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EMP70 is categorized in invasive growth in response to glucose limitation, as well as, endosomal 

transport. It is expected that many genes, such as this one, would have differential expression and 

roles in a complex process, such as invasive growth, unrelated to their basal roles within cells. 

Additionally, many of the genes categorized in the organelle inheritance biological process, the 

biological process with the second highest normalized genome frequency in our genetic screen, 

have functions relating to endosomes and vacuoles. PEP12, VAC8, and VPS21 are some 

examples of this group. Altogether, these findings led us to hypothesize KM29 may induce 

cellular membrane damage and/or alterations in cellular homeostasis. Future work will be needed 

to confirm this.  

Genetic pathways implicated in increased resistance to KM29 

 Regarding the mutants that conferred increased resistance to KM29, statistical analysis 

with the Yeast GO-SlimMapper revealed several biological processes. The most significant 

biological processes include mitochondrial translation, amino acid transport, cellular respiration, 

sporulation, mitochondrion organization, and generation of precursor metabolites and energy. In 

addition, we performed a FunSpec analysis of these mutants which revealed significant 

enrichment of mitochondrial related categories. We initially hypothesized that any biological 

process implicated in increased resistance to KM29 may represent a cellular target, way of entry 

into the cell, or alteration in the cell membrane or cell wall. We believe our results support this 

hypothesis by revealing amino acid transport as a possible way of entry into the cell, and 

mitochondria as a possible target for the peptide.  

Amino acid transport had the second highest normalized genome frequency in our screen. 

This leads us to theorize that KM29 may hijack various amino acid permeases and transporters 

as a way of entry into the cell. In this scenario, it would make sense for a deletion of one of the 
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permeases to confer increased resistance to KM29 since there would be less cytoplasmic 

accumulation of KM29 and therefore, less cellular damage. To analyze whether there is 

specificity for the transport mechanisms KM29 can hijack, we looked closer at the genes 

categorized in this group. Many different amino acid transporters were present, including: a 

leucine permease (BAP2), an arginine permease (CAN1), a proline permease (PUT4), a 

tryptophan and tyrosine permease (TAT2), a cysteine transporter (YCT1), and a general amino 

acid transporter (VBA5). This reveals that KM29 entry into cells may be promiscuous and 

lacking specificity; KM29 may simply take advantage of any entry mechanism. A GABA 

permease (UBA4), was also present in this category, reflecting another transport mechanism 

KM29 may use for entry into cells. These data open up the intriguing possibility this nine-amino 

acid cationic peptide may interact with highly specific but unrelated membrane transporters in a 

non-specific manner to enter the cell. Alternatively, the effect is indirect; cells lacking certain 

transporters may undergo changes on the plasma membrane that affects permeability to KM29. 

As part of our initial hypothesis, we postulated that biological processes implicated in 

increased resistance to KM29 would represent a cellular peptide target. Our reasoning behind 

this hypothesis was that if a cellular peptide target is deleted or impaired the cellular drug, then 

KM29 would be unable to induce damage, thereby increasing survival. Our screen identified the 

mitochondria as a drug target of KM29, as a myriad of genes relating to mitochondria and 

mitochondrial function were found to increase resistance when deleted. Four of the six biological 

processes with the highest normalized genome frequencies were related to mitochondrial 

function, including: mitochondrial translation, cellular respiration, mitochondrion organization, 

and generation of precursor metabolites and energy. Additionally, the FunSpec analysis of the 

mutants with increased resistance revealed an enrichment for mutants with a respiratory 
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deficiency phenotype, which may denote the process of respiration as being a specific source of 

KM29-induced damage. Consequences of impairment of respiration would include reactive 

oxygen species (ROS) production and decrease in ATP levels, both of which would have adverse 

effects on cells.  

The possibility of mitochondria serving as the cellular target of KM29 is exciting. Several 

studies have highlighted the potential of developing antifungals that target this organelle and the 

advantages associated with it (158, 159). Among these advantages include the crippling damage 

mitochondrial perturbations incur on yeast cells due to the critical cell functions this organelle is 

involved in (158, 159). Additionally, many of the fungal mitochondrial factors that could be used 

as potential drug targets do not have close orthologs in humans, which would reduce drug 

toxicity (158). Mitochondrial dysfunction has also been implicated in hypersusceptibility to 

fluconazole, stressing the relevance of this organelle in the mechanism of action of antifungals 

(159).  

The targeting of mitochondria by KM29 may also denote a conservation of mechanism of 

action between KM29 and Histatin 5. Studies have shown energized mitochondrion as the 

cellular target of Histatin 5, based on the loss of mitochondrial membrane potential and 

formation of ROS triggered by exposure to the peptide (160). In a broader sense, this may denote 

a common mechanism by which cationic peptides work. Most studies on cationic peptides focus 

on the membrane activity of these molecules, with little effort being put into understanding the 

intracellular mechanisms. Further exploration on this aspect will be of general relevance to 

continue developing these molecules as antifungals of therapeutic value.  

Based on these data, we propose KM29 to have a multi-step mechanism of action 

following these sequence of events: KM29 entry into the cell via interaction with the plasma 
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membrane resulting in pore formation, and non-specific opportunistic use of plasma membrane 

transport mechanisms, cellular damage caused by KM29 interacting with the plasma membrane, 

followed by targeting to the mitochondria, once inside the intracellular compartment, resulting in 

perturbation of mitochondrial function. The possible multi-faceted mechanism by which KM29 

could induce cell death makes this peptide an interesting antifungal agent as this would make it 

more difficult for pathogenic yeast to acquire drug resistance. Future studies will be needed, 

however, to clarify the exact roles of the genetic pathways implicated in increased resistance and 

increased sensitivity to KM29 in this peptides mechanism of action.    

KM29-induced mitochondrial pertubations 

 To follow up on our proposed mechanism of action, we focused on the role of 

mitochondrial function in KM29 fungicidal activity. Our observation of KM29 localization to 

mitochondrion, as well as the impairment of the electron transport chain conferring increased 

resistance to KM29, supports our proposed mechanism. The finding that KM29 localizes to 

mitochondrion is interesting, as an independent study found that the cellular target of Histatin 5 

to be the mitochondrion (160). Although this group proposes the localization of Histatin 5 to 

mitochondria to be due to structural resemblances between Histatin 5 and mitochondrial 

presequences, we do not believe this to be the case for KM29. An explanation for KM29’s 

localization may be the cationic nature of this peptide. It is possible that KM29 localization to 

mitochondria may be electrostatic-dependent. The proton gradient formed across the inner 

mitochondrial membrane in actively respiring cells may serve as an attractant for KM29. This 

explanation is supported by other work studying the actions of cell penetrating peptides and 

cationic antibacterial peptides (155). This group proposed that the toxicity of these peptides was 

dependent on large membrane potentials. For future studies, it would be fruitful to test this 
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possibility by depolarizing the MMP and observing if KM29-FITC intracellular localization is 

affected by this. If the MMP is an attractant for KM29, we would expect prior depolarization to 

inhibit KM29 localization to mitochondria. Additionally, it would be interesting to examine how 

this might affect KM29 fungicidal activity and would provide confirmation of mitochondria 

serving as a site of damage.  

 We also observed KM29 to induce concentration-dependent ROS formation. This finding 

may denote conservation of mechanism between KM29 and Histatin 5, as it has been reported 

Histatin 5 could induce ROS formation, and this ROS formation was strongly correlated with 

cell death (161). However, there is controversy surrounding the role of ROS in Histatin 5 

mechanism of action as a separate group did not observe ROS formation due to Histatin 5 

exposure (162). In our case, KM29-induced ROS formation was not strongly linked with cell 

death, as pretreatment with a ROS scavenger prior to exposure to KM29 only increased survival 

by ~15%. This is incongruent with our finding that complete respiratory deficiency confers 

nearly 100% resistance to KM29, thus eliminating the possibility that ROS formation is the 

predominate cause of cell death. Although ROS formation did not appear to play a major role in 

KM29 fungicidal activity against S. cerevisiae, it is possible KM29-induced ROS formation may 

adversely affect C. albicans more substantially. The Crabtree effect of S. cerevisiae, presented 

by the ability to ferment in the presence of high glucose levels and repression of respiration, is 

quite different from the Crabtree negative C. albicans. Thus, optimal growth of C. albicans relies 

more heavily on cellular respiration (163, 164). The increased cellular respiration of C. albicans 

may exacerbate KM29 ability to cause ROS production. Along this line, it will be interesting in 

future studies to examine how KM29-induced ROS formation affects different pathogenic yeasts.  
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 Determining the status of mitochondria requires analyzing both MMP and mitochondrial 

network morphology, a complex endeavor due to these two variables not being coupled to one 

another (146, 165, 166). We observed KM29 to induce depolarization of mitochondrial 

membrane potential (MMP) and mitochondrial fission. This could be a sign of mitochondrial 

damage, as the process of mitochondrial fission has been shown to protect healthy mitochondria, 

and to cause degradation of damaged mitochondria (167, 168). However, it is also possible that 

KM29-induced mitochondrial fission simply occurred due to loss of MMP, as rho- have been 

shown to have fragmented mitochondria (146). Additionally, our observation is consistent with 

our finding that ROS formation did not play a major role in KM29 fungicidal activity. H2O2, a 

known inducer of oxidative stress, has been shown to induce mitochondrial fragmentation 

independent of MMP depolarization (146). This is in contrast with what we observed with 

KM29. Although these findings do not show direct damage to mitochondria caused by KM29, it 

is possible that depolarization of MMP caused by KM29 may indirectly affect the health of the 

cell by blocking the function of cellular respiration. The final step in cellular respiration is the 

utilization of the proton gradient formed in the previous steps by ATP synthase to produce ATP 

from ADP and Pi. Without a proton gradient, ATP synthase would not be able to synthesize 

ATP. As mentioned earlier, S. cerevisiae is Crabtree positive thus it is logical to assume this 

organism wouldn’t be affected by loss of mitochondrial function under fermentative conditions, 

however, this doesn’t wholly preclude the loss of mitochondrial ATP to adversely affect the cell.  

 Based on our observations, we do not believe ROS formation to be a major source of 

KM29-induced damage. Instead, we conclude that KM29 localizes to the mitochondria and 

inhibits respiration by depolarizing the MMP. In turn, this would negatively affect the energy 

status of the cell and possibly signal the cell to undergo cell death. It is also possible that KM29 
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deals direct damage to mitochondrial membranes in the process of localizing to this organelle. 

This explanation could account for the mitochondrial fission we observed when analyzing 

mitochondrial network morphology after exposure to KM29. In this case, mitochondrial fission 

serves to protect healthy mitochondria and the signal for degradation of damaged mitochondria. 

Mitochondrial fission after exposure to KM29 could indicate loss of mitochondrial integrity. 

This explanation would be consistent with the active functions cationic peptides have on 

membranes.  

Respiratory deficiency and KM29 uptake 

 Clarification as to why respiratory deficiency confers cells nearly complete resistance to 

KM29 was realized when we analyzed KM29-FITC uptake in various S. cerevisiae electron 

transport chain mutants. We observed a nearly perfect inverse correlation between respiratory 

status and KM29-FITC uptake. This indicates the role of mitochondrial function in KM29 

fungicidal activity to be two-fold: to regulate KM29 uptake and to serve as a site for KM29-

induced perturbations. A possible explanation as to why mutants with varying degrees of 

respiratory deficiency have reduced KM29-FITC uptake could involve the energy availability in 

these strains. It has been reported that the plasma membrane proton ATPase is the major 

facilitator in establishing the plasma membrane potential of the yeast cell (169). This raises the 

question whether respiratory deficient mutants, because of the decrease in ATP output, have 

decreased proton ATPase activity and therefore, a depolarized plasma membrane potential. If 

true, this could explain the inability of KM29 to enter these mutants. This also aligns with our 

explanation of KM29 localization to mitochondria being dependent upon an established MMP.  

Based on this, we suggest a model of KM29 entry into yeast cells dependent upon an 

electrostatic attraction, and thus, an established plasma membrane potential. A similar proposal 
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was reported by a group studying genes important for tolerance to cationic drugs (170). This 

could help explain the reason why various mutants displayed increased resistance or increased 

sensitivity in our genetic screen. Any mutation that affects the plasma membrane potential would 

potentially affect the uptake of KM29. Along this line, it would be interesting to see if chemical 

alteration of the plasma membrane potential affects KM29 uptake. Another explanation for the 

reduced KM29 uptake in respiratory deficient mutants could be alterations of the plasma 

membrane. Mitochondria are most commonly known for “powerhouse” functions, but they are 

also involved in lipid synthesis (171). As a major constituent of the plasma membrane, 

alterations in lipid synthesis could cause alterations in the plasma membrane. This in turn could 

lead to alterations in KM29 entry into cells.  

 The inverse correlation between respiratory status and KM29 uptake was also observed 

the clinically relevant C. albicans. Interesting, C. albicans SC5314 cells had more KM29 uptake 

than S. cerevisiae wild type cells. A possible explanation for this could be differences in plasma 

membrane composition between these two organisms. Additionally, this could be due to 

differences in the Crabtree effect between the two organisms. C. albicans relies more heavily on 

cellular respiration during optimal growth therefore it is reasonable to assume it has more active 

mitochondria than S. cerevisiae. Since respiratory status has been shown to affect KM29 uptake, 

the more active mitochondria of C. albicans could result in increased KM29 uptake. This 

increased uptake in C. albicans would then be reflected in the increased sensitivity to KM29 

compared to S. cerevisiae. Future work will revolve around understanding the increased KM29 

uptake in C. albicans and how the metabolic differences between C. albicans and S. cerevisiae 

affect KM29 fungicidal activity in these two organisms.  
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 In conclusion, we present initial steps in the elucidation of the mechanism of action of 

KM29 in fungal cells. By understanding the mechanism of action of KM29 in S. cerevisiae we 

are able to begin understanding how this peptide works against C. albicans, and provide 

parameters to continue developing KM29 as a potential therapeutic agent for the treatment of 

oral and systemic candidiasis. Additionally, we assert the necessity to consider alterations in 

drug uptake when studying various mechanisms of resistance in medically relevant organisms.  
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TABLES AND FIGURES 

 

Table 1. Functional pathways involved in the antifungal killing activity of KM29. A 

modified MIC assay was performed on the non-essential, single deletion mutants available in the 

S. cerevisiae genome-wide deletion collection. The percentage of genes associated with a 

specific biological process that displayed increased resistance with respect to the frequency in 

the genome for specific biological processes using the Yeast GO-SlimMapper (A). A FunSpec 

analysis was performed to identify functional categories enriched by the mutants that displayed 

increased resistance (B).  
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Table 2. Functional pathways involved in the antifungal killing activity of KM29. A 

modified MIC assay was performed on the non-essential, single deletion mutants available in the 

S. cerevisiae genome-wide deletion collection. The percentage of genes associated with a 

specific biological process that displayed increased sensitivity (A) with respect to the frequency 

in the genome for specific biological processes using the Yeast GO-SlimMapper. (B) A FunSpec 

analysis was performed to identify functional categories enriched by the mutants that displayed 

increased sensitivity.  
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Fig. 1. Intracellular localization of KM29-FITC in S. cerevisiae and C. albicans. Fluorescent 

microscopy images of S. cerevisiae wild-type cells treated with KM29-FITC (A). Fluorescent 

microscopy images of a double labeling experiment. S. cerevisiae wild-typed cells were 

concurrently treated with 5µm KM29-FITC and 500nm MitoTracker DeepRed 

(MolecularProbes). Images show localization of KM29-FITC (left), localization of MitoTracker 

DeepRed (middle), and the double labeling (right) (B). Fluorescent microscopy images of C. 

albicans cells treated with KM29-FITC (C). Fluorescent microscopy images of a double labeling 

experiment. C. albicans wild-typed cells were concurrently treated with 3µm KM29-FITC and 

500nm MitoTracker DeepRed (MolecularProbes). Images show localization of KM29-FITC 

(left), localization of MitoTracker DeepRed (middle), and the double labeling (right) (D). 
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Fig. 2. Effect of Electron Transport Chain mutations on KM29 fungicidal activity. 

Microdilution assay showing cell viability of S. cerevisiae wild-type and mutants from each 

complex in the Electron Transport Chain at 2.5μM KM29. 
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Fig. 3. KM29 concentration-dependent ROS formation. Fluorescent spectrophotometry and 

corresponding fluorescent microscopy images of S. cerevisiae wild-type cells preloaded with 

10μm DCF-DA (A, B) or 1μm DHE (C, D) and treated with increasing concentrations of KM29 

for 30min. Microdilution assay comparing cell viability of S. cerevisiae wild-type cells 

pretreated with ROS scavenger, n-acetylcysteine, and non-pretreated cells after exposure to 

increasing concentrations of KM29 (E).  
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Fig. 4. Mitoloc employed to assess KM29 effect on mitochondrial membrane potential and 

mitochondrial morphology. S. cerevisiae wild-type cells transformed with pMitoloc were 

treated with 166μm KM29 or 15μm CCCP for 3 hrs. and single cells were analyzed using ImageJ 

plugin yeast_correlation. Transformed qcr7∆ (respiratory deficient) cells served as a positive 

control. De co-localization of the two markers is reflected by a decrease in correlation 

coefficient, PCC (A). Fluorescent microscopy images of a representative cell from each 

experimental condition (B). 
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Fig. 5. Comparison of KM29 uptake and killing in single deletion mutants of the yeast 

ETC. Fluorescent spectrophotometry showing uptake of 5μm KM29-FITC in S. cerevisiae wild-

type and mutants (A). Fluorescent microscopy images of KM29-FITC uptake in S. cerevisiae 

wild-type (respiratory capable; top), qcr7∆ (respiratory deficient; middle), and qcr10∆ 

(respiratory capable; bottom) cells (B). Fluorescent sprectrophotometry showing uptake of 5µm 

KM29-FITC in S. cerevisiae wild-type, atp5∆, and atp17∆ (C). Microdilution assay showing cell 

viability of S. cerevisiae wild-type, atp5∆, and atp17∆ at 2.5μM KM29 (D). 
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Fig. 6. Effect of respiratory deficiency on KM29 uptake and killing in S. cerevisiae and C. 

albicans. Microdilution assay showing cell viability of C. albicans LLF100 (prototrophic wild-

type) cells and C. albicans LLF088 (coq3∆; respiratory deficient) cells when treated with 1.0μM 

KM29 (A). Fluorescent sprectrophotometry showing uptake of 5µm KM29-FITC in C. albicans 

LLF100 (prototrophic wild-type) cells and C. albicans LLF088 (coq3∆; respiratory deficient) 

cells (B). Fluorescent microscopy images of KM29-FITC uptake in C. albicans LLF100 

(prototrophic wild-type) cells and C. albicans LLF088 (coq3∆; respiratory deficient) cells (C).  

Microdilution assay showing cell viability of S. cerevisiae wild-type cells and coq3∆ when 

treated with 2.5μM KM29 (D). Fluorescent sprectrophotometry showing uptake of 5µm KM29-

FITC in S. cerevisiae wild-type and coq3∆ (E). Fluorescent microscopy images of KM29-FITC 

uptake in S. cerevisiae wild-type and coq3∆ (F).  
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